FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Sebastian, SE Tanedo, P Goddard, PA Lee, SC Wilson, A Kim, S Cox, S McDonald, RD Hill, S Harrison, N Batista, CD Fisher, IR AF Sebastian, Suchitra E. Tanedo, P. Goddard, P. A. Lee, S. -C. Wilson, A. Kim, S. Cox, S. McDonald, R. D. Hill, S. Harrison, N. Batista, C. D. Fisher, I. R. TI Role of anisotropy in the spin-dimer compound BaCuSi2O6 SO PHYSICAL REVIEW B LA English DT Article ID BOSE-EINSTEIN CONDENSATION; TLCUCL3; TEMPERATURE; MAGNONS; GAP AB We present results of magnetization and electron paramagnetic resonance experiments on the spin-dimer system BaCuSi2O6. Evidence indicates that the origin of anisotropic terms in the spin Hamiltonian lies in magnetic dipolar interactions. Axial symmetry breaking is on a very small energy scale of <= 11 mK, confirming Bose-Einstein condensation critical scaling over an extended temperature range in the vicinity of the quantum critical point. C1 Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. Los Alamos Natl Lab, MST NHMFL, Los Alamos, NM 87545 USA. Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Sebastian, SE (reprint author), Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. RI McDonald, Ross/H-3783-2013; Hill, Stephen/J-5383-2014; Goddard, Paul/A-8638-2015; Batista, Cristian/J-8008-2016; OI McDonald, Ross/0000-0002-0188-1087; Hill, Stephen/0000-0001-6742-3620; Goddard, Paul/0000-0002-0666-5236; Harrison, Neil/0000-0001-5456-7756; Mcdonald, Ross/0000-0002-5819-4739 NR 16 TC 24 Z9 24 U1 0 U2 14 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 18 AR 180401 DI 10.1103/PhysRevB.74.180401 PG 4 WC Physics, Condensed Matter SC Physics GA 110VJ UT WOS:000242409100003 ER PT J AU Shanthakumar, P Balasubramanian, M Pease, DM Frenkel, AI Potrepka, DM Kraizman, V Budnick, JI Hines, WA AF Shanthakumar, P. Balasubramanian, M. Pease, D. M. Frenkel, A. I. Potrepka, D. M. Kraizman, V. Budnick, J. I. Hines, W. A. TI X-ray study of the ferroelectric [Ba0.6Sr0.4] [(YTa)(0.03)Ti-0.94]O-3 SO PHYSICAL REVIEW B LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; ABSORPTION FINE-STRUCTURE; PHASE-TRANSITIONS; DIELECTRIC-PROPERTIES; BARIUM-TITANATE; SOLID-SOLUTION; BATIO3; BEHAVIOR; SRTIO3; FILMS AB We have studied the system [Ba0.6Sr0.4] [(YTa)(0.03)Ti-0.94]O-3, as produced using two different sintering temperatures. It was shown by others that for a sample sintered at 1550 degrees C the material is a relaxor, whereas for the same composition produced with sintering temperature of 1600 degrees C the sample is a normal ferroelectric. We have employed analysis of x-ray diffraction peak broadening, Ti K edge x ray near edge spectroscopy, and extended x-ray absorption edge fine structure spectroscopy of Ta and Y sites in our study. We find that the 1550 degrees C sinter sample has over double the lattice strain as does the 1600 degrees C sample. For the lower temperature sinter material, both Ta and Y go to sites substitutional for Ti in the lattice, with a significant expansion (contraction) of the local perovskite structure about Y (Ta) dopants. Thus, with only three percent B site addition of Y and Ta dopants, there is a strain associated relaxor behavior produced in a bulk sample. For the higher temperature sinter specimen, there is a marked change in the average Y environment relative to the lower temperature sinter sample. C1 Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Yeshiva Univ, Dept Phys, New York, NY 10016 USA. USA, Res Lab, Sensors & Elect Devices Directorate, Adelphi, MD 20783 USA. Rostov State Univ, Rostov Na Donu 344104, Russia. RP Shanthakumar, P (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. RI Frenkel, Anatoly/D-3311-2011; OI Frenkel, Anatoly/0000-0002-5451-1207; Potrepka, Daniel/0000-0002-0528-1038 NR 40 TC 13 Z9 13 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 17 AR 174103 DI 10.1103/PhysRevB.74.174103 PG 10 WC Physics, Condensed Matter SC Physics GA 110VI UT WOS:000242409000041 ER PT J AU Shekhter, A Finkel'stein, AM AF Shekhter, A. Finkel'stein, A. M. TI Temperature dependence of spin susceptibility in two-dimensional Fermi liquid systems SO PHYSICAL REVIEW B LA English DT Article ID DIMENSIONAL ELECTRON-GAS AB We consider the nonanalytic terms in the spin susceptibility arising as a result of rescattering of pairs of quasiparticles. We emphasize the importance of rescattering in the Cooper channel for the analysis of the temperature dependences in the two-dimensional electron systems in the ballistic regime. In the calculation of the linear in T term we use angular harmonics in the Cooper channel, because for each harmonic the interaction amplitude is renormalized independently. We observe, that as a consequence of strong renormalizations in the Cooper ladder, the temperature derivative of the spin susceptibility may change its sign at low temperatures. C1 Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Shekhter, A (reprint author), Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel. RI Shekhter, Arkady/H-4941-2015 OI Shekhter, Arkady/0000-0003-1550-3690 NR 25 TC 13 Z9 13 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 20 AR 205122 DI 10.1103/PhysRevB.74.205122 PG 13 WC Physics, Condensed Matter SC Physics GA 110VM UT WOS:000242409400032 ER PT J AU Svitelskiy, O Suslov, A Schlagel, DL Lograsso, TA Gschneidner, KA Pecharsky, VK AF Svitelskiy, O. Suslov, A. Schlagel, D. L. Lograsso, T. A. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Elastic properties of Gd5Si2Ge2 studied with an ultrasonic pulse-echo technique SO PHYSICAL REVIEW B LA English DT Article ID ADIABATIC TEMPERATURE-CHANGE; PHASE-TRANSITION; SINGLE-CRYSTALS; GIANT; CONSTANTS; GD-5(SI2GE2) AB We present the results of a study of the elastic properties of Gd5Si2Ge2, an alloy with giant magnetocaloric, magnetostrictive, and colossal magnetoresistive properties. Sound wave velocities measured in a number of different geometries allowed us to determine the whole elastic tensor for the monoclinic phase of this material. The anisotropy of the crystal is explored using the polar plots of the variations in the main crystallographic planes of the sound speed, the Young's modulus, the shear modulus, and the linear compressibility. The effect of hydrostatic pressure on the Gd5Si2Ge2 properties is clarified. The acoustical axes are determined. The bulk modulus is estimated as 68.5 GPa; the Debye temperature is 250 K. C1 Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Svitelskiy, O (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RI Suslov, Alexey/M-7511-2014 OI Suslov, Alexey/0000-0002-2224-153X NR 29 TC 4 Z9 4 U1 2 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 18 AR 184105 DI 10.1103/PhysRevB.74.184105 PG 5 WC Physics, Condensed Matter SC Physics GA 110VJ UT WOS:000242409100016 ER PT J AU Szotek, Z Temmerman, WM Kodderitzsch, D Svane, A Petit, L Winter, H AF Szotek, Z. Temmerman, W. M. Koedderitzsch, D. Svane, A. Petit, L. Winter, H. TI Electronic structures of normal and inverse spinel ferrites from first principles SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; SELF-INTERACTION CORRECTION; EFFECTIVE-POTENTIAL METHOD; TRANSITION-METAL OXIDES; MAGNETOCRYSTALLINE ANISOTROPY; CATION DISTRIBUTION; VERWEY TRANSITION; MANGANESE FERRITE; TUNNEL-JUNCTIONS; ROOM-TEMPERATURE AB We apply the self-interaction corrected local spin density approximation to study the electronic structure and magnetic properties of the spinel ferrites MnFe2O4, Fe3O4, CoFe2O4, and NiFe2O4. We concentrate on establishing the nominal valence of the transition metal elements and the ground state structure, based on the study of various valence scenarios for both the inverse and normal spinel structures for all the systems. For both structures we find all the studied compounds to be insulating, but with smaller gaps in the normal spinel scenario. On the contrary, the calculated spin magnetic moments and the exchange splitting of the conduction bands are seen to increase dramatically when moving from the inverse spinel structure to the normal spinel kind. We find substantial orbital moments for NiFe2O4 and CoFe2O4. C1 Daresbury Lab, Warrington WA4 4AD, Cheshire, England. Univ Munich, Munich, Germany. Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Computat Sci, Oak Ridge, TN 37831 USA. Forschungszentrum Karlsruhe, IFP, D-76021 Karlsruhe, Germany. RP Szotek, Z (reprint author), Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RI Petit, Leon/B-5255-2008; OI Petit, Leon/0000-0001-6489-9922 NR 55 TC 128 Z9 131 U1 12 U2 115 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 17 AR 174431 DI 10.1103/PhysRevB.74.174431 PG 12 WC Physics, Condensed Matter SC Physics GA 110VI UT WOS:000242409000102 ER PT J AU Tang, MS Wang, CZ Lu, WC Ho, KM AF Tang, Mingsheng Wang, C. Z. Lu, W. C. Ho, K. M. TI Structures of Si7H2m (m=1-7) clusters by global optimization SO PHYSICAL REVIEW B LA English DT Article ID HYDROGENATED SILICON CLUSTERS; AB-INITIO; STRAIN ENERGIES; THERMAL-DECOMPOSITION; ELECTRON-AFFINITIES; VIBRATIONAL-SPECTRA; SI; GEOMETRIES; SILANE; THERMOCHEMISTRY AB Structures of Si7H2m (m=1-7) clusters are studied by a global search strategy using a genetic algorithm in combination with tight-binding potentials to describe the interatomic interactions. The low-energy structures obtained from the global search are further studied by ab initio calculations. Almost all the lowest-energy structures (except Si7H12) obtained from our present study are energetically more stable than those structures previously proposed. Using the lower-energy isomers from our calculations, the relationship between the geometric structures and energetic stabilities of the hydrogenated silicon clusters is also discussed. C1 Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Zhengzhou Univ, Dept Chem, Zhengzhou 450052, Peoples R China. RP Tang, MS (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. NR 48 TC 5 Z9 5 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 19 AR 195413 DI 10.1103/PhysRevB.74.195413 PG 9 WC Physics, Condensed Matter SC Physics GA 110VK UT WOS:000242409200131 ER PT J AU van Benthem, K Tan, GL French, RH DeNoyer, LK Podgornik, R Parsegian, VA AF van Benthem, Klaus Tan, Guolong French, Roger H. DeNoyer, Linda K. Podgornik, Rudolf Parsegian, V. Adrian TI Graded interface models for more accurate determination of van der Waals-London dispersion interactions across grain boundaries SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-ENERGY-LOSS; PEROVSKITE-TYPE TITANATES; TOUGHENED SILICON-CARBIDE; OPTICAL-PROPERTIES; QUANTITATIVE-ANALYSIS; DIELECTRIC FUNCTION; VANDERWAALS FORCES; VACUUM-ULTRAVIOLET; HAMAKER CONSTANTS; LOSS SPECTROSCOPY AB Attractive van der Waals-London dispersion interactions between two half crystals arise from local physical property gradients within the interface layer separating the crystals. Hamaker coefficients and London dispersion energies were quantitatively determined for Sigma 5 and near-Sigma 13 grain boundaries in SrTiO3 by analysis of spatially resolved valence electron energy-loss spectroscopy (VEELS) data. From the experimental data, local complex dielectric functions were determined, from which optical properties can be locally analyzed. Both local electronic structures and optical properties revealed gradients within the grain boundary cores of both investigated interfaces. The results show that even in the presence of atomically structured grain boundary cores with widths of less than 1 nm, optical properties have to be represented with gradual changes across the grain boundary structures to quantitatively reproduce accurate van der Waals-London dispersion interactions. London dispersion energies of the order of 10% of the apparent interface energies of SrTiO3 were observed, demonstrating their significance in the grain boundary formation process. The application of different models to represent optical property gradients shows that long-range van der Waals-London dispersion interactions scale significantly with local, i.e., atomic length scale property variations. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Penn, Dept Mat Sci, Philadelphia, PA 19104 USA. DuPont Co Inc, Cent Res, Expt Stn, Wilmington, DE 19880 USA. Deconvolut & Entropy Consulting, Ithaca, NY 14850 USA. Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. NIH, Struct Biol Lab, Bethesda, MD 20892 USA. RP van Benthem, K (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RI French, Roger/E-1986-2011; Podgornik, Rudolf/C-6209-2008; Tan, Guolong/A-1098-2013 OI French, Roger/0000-0002-6162-0532; Podgornik, Rudolf/0000-0002-3855-4637; Tan, Guolong/0000-0003-0961-5506 NR 63 TC 18 Z9 18 U1 1 U2 14 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 20 AR 205110 DI 10.1103/PhysRevB.74.205110 PG 12 WC Physics, Condensed Matter SC Physics GA 110VM UT WOS:000242409400020 ER PT J AU Vorontsov, AB Graf, MJ AF Vorontsov, Anton B. Graf, Matthias J. TI Fermi-liquid effects in the Fulde-Ferrell-Larkin-Ovchinnikov state of two-dimensional d-wave superconductors SO PHYSICAL REVIEW B LA English DT Article ID FIELD; FERROMAGNETISM AB We study the effects of Fermi-liquid interactions on quasi-two-dimensional d-wave superconductors in a magnetic field. The phase diagram of the superconducting state, including the periodic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in high magnetic fields, is discussed for different strengths of quasiparticle many-body interactions within Landau's theory of Fermi liquids. Decreasing the Fermi-liquid parameter F-0(a) causes the magnetic spin susceptibility of itinerant electrons to increase, which in turn leads to a reduction of the FFLO phase. It is shown that a negative F-0(a) results in a first-order phase transition from the normal to the uniform superconducting state in a finite temperature interval. Finally, we discuss the thermodynamic implications of a first-order phase transition for CeCoIn5. C1 Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Vorontsov, AB (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. NR 23 TC 14 Z9 14 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 17 AR 172504 DI 10.1103/PhysRevB.74.172504 PG 4 WC Physics, Condensed Matter SC Physics GA 110VI UT WOS:000242409000032 ER PT J AU Wang, B Dai, W Fang, A Zhang, L Tuttle, G Koschny, T Soukoulis, CM AF Wang, B. Dai, W. Fang, A. Zhang, L. Tuttle, G. Koschny, Th. Soukoulis, C. M. TI Surface waves in photonic crystal slabs SO PHYSICAL REVIEW B LA English DT Article ID ARRAYS; MODES; GAP AB Photonic crystals with a finite size can support surface modes when appropriately terminated. We calculate the dispersion curves of surface modes for different terminations using the plane-wave expansion method. These nonradiative surface modes can be excited with the help of attenuated total reflection technique. We did experiments and simulations to trace the surface band curve, both in good agreement with the numerical calculations. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. Univ Crete, Inst Elect Struct & Laser, FORTH, Iraklion, Crete, Greece. Univ Crete, Dept Mat Sci & Technol, Iraklion, Crete, Greece. RP Soukoulis, CM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008 NR 14 TC 33 Z9 34 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 19 AR 195104 DI 10.1103/PhysRevB.74.195104 PG 4 WC Physics, Condensed Matter SC Physics GA 110VK UT WOS:000242409200041 ER PT J AU Wang, F Vishwanath, A AF Wang, Fa Vishwanath, Ashvin TI Spin-liquid states on the triangular and Kagome lattices: A projective-symmetry-group analysis of Schwinger boson states SO PHYSICAL REVIEW B LA English DT Article ID LARGE-N EXPANSION; HEISENBERG-ANTIFERROMAGNET; QUANTUM ANTIFERROMAGNETS; EXCHANGE; PHASE; MODELS; ORDER AB A symmetry-based analysis (projective symmetry group) is used to study spin-liquid phases on the triangular and Kagome lattices in the Schwinger boson framework. A maximum of eight distinct Z(2) spin-liquid states are found for each lattice, which preserve all symmetries. Out of these only a few have nonvanishing nearest-neighbor amplitudes, which are studied in greater detail. On the triangular lattice, only two such states are present-the first (zero-flux state) is the well-known state introduced by Sachdev, which on condensation of spinons leads to the 120 degrees ordered state. The other solution, which we call the pi-flux state has not previously been discussed. Spinon condensation leads to an ordering wave vector at the Brillouin zone edge centers, in contrast to the 120 degrees state. While the zero-flux state is more stable with just nearest-neighbor exchange, we find that the introduction of either next-neighbor antiferromagnetic exchange or four-spin ring exchange (of the sign obtained from a Hubbard model) tends to favor the pi-flux state. On the Kagome lattice four solutions are obtained-two have been previously discussed by Sachdev, which on spinon condensation give rise to the q=0 root 3x root 3 spin-ordered states. In addition we find two states with significantly larger values of the quantum parameter at which magnetic ordering occurs. For one of them this even exceeds unity kappa(c)approximate to 2.0 in a nearest-neighbor model, indicating that if stabilized, could remain spin disordered for physical values of the spin. This state is also stabilized by ring-exchange interactions with signs as derived from the Hubbard model. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 NR 31 TC 112 Z9 112 U1 0 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 17 AR 174423 DI 10.1103/PhysRevB.74.174423 PG 20 WC Physics, Condensed Matter SC Physics GA 110VI UT WOS:000242409000094 ER PT J AU Wang, XJ Yates, JR Souza, I Vanderbilt, D AF Wang, Xinjie Yates, Jonathan R. Souza, Ivo Vanderbilt, David TI Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation SO PHYSICAL REVIEW B LA English DT Article ID BRILLOUIN-ZONE; ENERGY-BANDS; BERRY-PHASE; IRON; PSEUDOPOTENTIALS; FERROMAGNETS; DYNAMICS; SURFACE AB The intrinsic anomalous Hall conductivity in ferromagnets depends on subtle spin-orbit-induced effects in the electronic structure, and recent ab initio studies found that it was necessary to sample the Brillouin zone at millions of k-points to converge the calculation. We present an efficient first-principles approach for computing this quantity. We start out by performing a conventional electronic-structure calculation including spin-orbit coupling on a uniform and relatively coarse k-point mesh. From the resulting Bloch states, maximally localized Wannier functions are constructed which reproduce the ab initio states up to the Fermi level. The Hamiltonian and position-operator matrix elements, needed to represent the energy bands and Berry curvatures, are then set up between the Wannier orbitals. This completes the first stage of the calculation, whereby the low-energy ab initio problem is transformed into an effective tight-binding form. The second stage only involves Fourier transforms and unitary transformations of the small matrices setup in the first stage. With these inexpensive operations, the quantities of interest are interpolated onto a dense k-point mesh and used to evaluate the anomalous Hall conductivity as a Brillouin zone integral. The present scheme, which also avoids the cumbersome summation over all unoccupied states in the Kubo formula, is applied to bcc Fe, giving excellent agreement with conventional, less efficient first-principles calculations. Remarkably, we find that about 99% of the effect can be recovered by keeping a set of terms depending only on the Hamiltonian matrix elements, not on matrix elements of the position operator. C1 Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Wang, XJ (reprint author), Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RI Yates, Jonathan/E-7339-2010; OI Vanderbilt, David/0000-0002-2465-9091 NR 40 TC 103 Z9 103 U1 8 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 19 AR 195118 DI 10.1103/PhysRevB.74.195118 PG 15 WC Physics, Condensed Matter SC Physics GA 110VK UT WOS:000242409200055 ER PT J AU Wang, XW Schatz, GC Gray, SK AF Wang, Xiwen Schatz, George C. Gray, Stephen K. TI Ultrafast pulse excitation of a metallic nanosystem containing a Kerr nonlinear material SO PHYSICAL REVIEW B LA English DT Article ID SILVER ELECTRODE; NANOPARTICLES AB We discuss the effect of introducing a nonlinear material exhibiting a strong optical Kerr effect between two metallic nanowires. Our results are based on rigorous finite-difference time-domain calculations. We show how the near-fields that result as an intense, ultrafast pulse interacts with the system can be very different from those in the absence of the nonlinear material. In particular, for sufficiently large incident intensities, a significant reduction in the near-field intensity between the two nanowires is observed. Optical cross sections are also calculated and shown to vary with increasing intensity. C1 Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Wang, XW (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. NR 17 TC 8 Z9 8 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 19 AR 195439 DI 10.1103/Phys|RevB.74.195439 PG 5 WC Physics, Condensed Matter SC Physics GA 110VK UT WOS:000242409200157 ER PT J AU Willey, TM Bostedt, C van Buuren, T Dahl, JE Liu, SG Carlson, RMK Meulenberg, RW Nelson, EJ Terminello, LJ AF Willey, T. M. Bostedt, C. van Buuren, T. Dahl, J. E. Liu, S. G. Carlson, R. M. K. Meulenberg, R. W. Nelson, E. J. Terminello, L. J. TI Observation of quantum confinement in the occupied states of diamond clusters SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; ELECTRONIC-PROPERTIES; EDGE ABSORPTION; MODEL MOLECULES; GRAPHITE; NANOCRYSTALS; SIMULATION; SURFACES; SPECTRA AB Condensed-phase hydrogen-terminated diamond clusters (diamondoids) have been studied with soft-x-ray emission and x-ray-absorption spectroscopy. The occupied and unoccupied electronic states measured with these methods imply an increasing highest occupied molecular orbital-lowest unoccupied molecular orbital gap with decreasing diamondoid size, with the shifting entirely in the occupied states, in contrast to other semiconductor nanocrystals. These experimental results are compared with theoretical calculations on the electronic structure of diamondoids. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Tech Univ Berlin, D-10623 Berlin, Germany. Chevron, MolecularDiamond Technol, Richmond, CA 94802 USA. RP Willey, TM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM willey1@llnl.gov RI Willey, Trevor/A-8778-2011 OI Willey, Trevor/0000-0002-9667-8830 NR 27 TC 60 Z9 60 U1 0 U2 16 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 20 AR 205432 DI 10.1103/PhysRevB.74.205432 PG 5 WC Physics, Condensed Matter SC Physics GA 110VM UT WOS:000242409400112 ER PT J AU Wixom, RR Wright, AF AF Wixom, R. R. Wright, A. F. TI Formation energies, binding energies, structure, and electronic transitions of Si divacancies studied by density functional calculations SO PHYSICAL REVIEW B LA English DT Article ID PERIODIC BOUNDARY-CONDITIONS; IRRADIATED SILICON; DEFECTS; SYSTEMS; PSEUDOPOTENTIALS; COMPENSATION; ENERGETICS; GAAS; ZNSE AB Atomic configurations, formation energies, electronic transition energies, and binding energies of the silicon divacancy in the +1, 0, -1, and -2 charge states were obtained from density functional theory calculations. The calculations were performed using the local density approximation (LDA) and also the Perdew, Burke, Ernzerhof (PBE) formulation of the generalized-gradient approximation. Supercells of nominally 216, 512, and 1000 atoms were used to extrapolate formation energies for infinite-sized supercells corresponding to isolated defects. The predicted ground-state configuration was found to depend on charge state and the chosen formulation of exchange and correlation (LDA or PBE). Structures, binding energies, and transition energies are compared to values reported in the literature. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wixom, RR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 33 TC 17 Z9 17 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 20 AR 205208 DI 10.1103/PhysRevB.74.205208 PG 6 WC Physics, Condensed Matter SC Physics GA 110VM UT WOS:000242409400043 ER PT J AU Yunoki, S AF Yunoki, Seiji TI Single-particle anomalous excitations of Gutzwiller-projected BCS superconductors and Bogoliubov quasiparticle characteristics SO PHYSICAL REVIEW B LA English DT Article ID T-J MODEL AB Low-lying one-particle anomalous excitations are studied for Gutzwiller-projected strongly correlated BCS states. It is found that the one-particle anomalous excitations are highly coherent, and the numerically calculated spectrum can be reproduced quantitatively by a renormalized BCS theory, thus strongly indicating that the nature of low-lying excitations described by the projected BCS states is essentially understood within a renormalized Bogoliubov quasiparticle picture. This finding resembles the well-known fact that a Gutzwiller-projected Fermi gas is a Fermi liquid. The present results are consistent with numerically exact calculations of the two-dimensional t-J model as well as recent photoemission experiments on high-T-C cuprate superconductors. C1 Ist Nazl Fis Mat, I-34014 Trieste, Italy. Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Yunoki, S (reprint author), Ist Nazl Fis Mat, Via Beirut 4, I-34014 Trieste, Italy. RI Yunoki, Seiji/B-1831-2008 NR 32 TC 8 Z9 8 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 18 AR 180504 DI 10.1103/PhysRevB.74.180504 PG 4 WC Physics, Condensed Matter SC Physics GA 110VJ UT WOS:000242409100010 ER PT J AU Zhang, FX Lian, J Becker, U Ewing, RC Wang, LM Boatner, LA Hu, JZ Saxena, SK AF Zhang, F. X. Lian, J. Becker, U. Ewing, R. C. Wang, L. M. Boatner, L. A. Hu, Jingzhu Saxena, S. K. TI Pressure-induced structural transitions and phase decomposition in the Cd2Nb2O7 pyrochlore SO PHYSICAL REVIEW B LA English DT Article ID ION IRRADIATION; CADMIUM; CD2TA2O7; GD AB The structural transitions of the pyrochlore, Cd2Nb2O7, at pressures up to 32.5 GPa have been investigated by in situ Raman scattering and angle-dispersive x-ray diffraction (ADXRD) methods. The x-ray diffraction results reveal that small amounts (similar to 7%) of metallic cadmium form by chemical decomposition at pressures greater than 4 GPa. Both Raman and XRD results indicate that a pressure-induced structural distortion from pyrochlore to defect fluorite occurs in pyrochlore Cd2Nb2O7 at pressures of 12-14 GPa. Subsequently, a new high-pressure phase formed and the phase transition was complete at similar to 27 GPa. The high-pressure phase is either monoclinic or orthorhombic and transforms to either the pyrochlore (or defect fluorite) structure or the amorphous state when quenched to ambient conditions. Energy dispersive spectroscopy (EDS) analysis and high-resolution transmission electron microscopy (HRTEM) observation of the quenched sample confirmed the Cd loss and resulting mixture of ordered pyrochlore, defect fluorite, high-pressure phase, as well as amorphous domains. C1 Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. Univ Chicago, Cars, NSLS, X17C, Upton, NY 11973 USA. Florida Int Univ, CeSMEC, Miami, FL 33199 USA. RP Ewing, RC (reprint author), Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. EM rodewing@umich.edu RI Lian, Jie/A-7839-2010; Boatner, Lynn/I-6428-2013; Zhang, Fuxiang/P-7365-2015; Becker, Udo/F-7339-2011 OI Boatner, Lynn/0000-0002-0235-7594; Zhang, Fuxiang/0000-0003-1298-9795; Becker, Udo/0000-0002-1550-0484 NR 28 TC 18 Z9 18 U1 1 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 17 AR 174116 DI 10.1103/PhysRevB.74.174116 PG 6 WC Physics, Condensed Matter SC Physics GA 110VI UT WOS:000242409000054 ER PT J AU Zhang, WX Dobrovitski, VV Al-Hassanieh, KA Dagotto, E Harmon, BN AF Zhang, Wenxian Dobrovitski, V. V. Al-Hassanieh, K. A. Dagotto, E. Harmon, B. N. TI Hyperfine interaction induced decoherence of electron spins in quantum dots SO PHYSICAL REVIEW B LA English DT Article ID DYNAMICS; SYSTEM; NUCLEI; FIELD AB We investigate in detail, using both analytical and numerical tools, the decoherence of electron spins in quantum dots (QDs) coupled to a bath of nuclear spins in magnetic fields or with various initial bath polarizations, focusing on the longitudinal relaxation in low and moderate field and polarization regimes. An increase of the initial polarization of nuclear-spin bath has the same effect on the decoherence process as an increase of the external magnetic field, namely, the decoherence dynamics changes from smooth decay to damped oscillations. This change can be observed experimentally for a single QD and for a double-QD setup. Our results indicate that substantial increase of the decoherence time requires very large bath polarizations, and the use of other methods (dynamical decoupling or control of the nuclear spins distribution) may be more practical for suppressing decoherence of QD-based qubits. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37831 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37996 USA. RP Zhang, WX (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Zhang, Wenxian/A-4274-2010 NR 38 TC 61 Z9 61 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2006 VL 74 IS 20 AR 205313 DI 10.1103/PhysRevB.74.205313 PG 5 WC Physics, Condensed Matter SC Physics GA 110VM UT WOS:000242409400057 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Anderson, M Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Benedosso, F Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Burton, TP Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Cheng, J Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Ghazikhanian, V Ghosh, P Gonzalez, JE Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Guertin, SM Guimaraes, KSFF Gupta, N Gutierrez, TD Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Jacobs, P Jacobs, WW Jakl, P Jia, F Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Picha, R Planinic, M Pluta, J Poljak, N Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ray, RL Razin, SV Reinnarth, J Relyea, D Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakuma, T Salur, S Sandweiss, J Sarsour, M Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, EP Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Sumbera, M Sun, Z Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Amonett, J. Anderson, B. D. Anderson, M. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Benedosso, F. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S. -L. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Burton, T. P. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, N. Gutierrez, T. D. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Poljak, N. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Razin, S. V. Reinnarth, J. Relyea, D. Retiere, F. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sugarbaker, E. Sumbera, M. Sun, Z. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. TI Neutral kaon interferometry in Au plus Au collisions at root(S)(NN) =200GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; BOSE-EINSTEIN CORRELATIONS; TIME PROJECTION CHAMBER; STRANGE QUARK MATTER; STAR TPC; PARTICLE CORRELATIONS; PION INTERFEROMETRY; LATTICE QCD; PAIRS; DISTILLATION AB We present the first statistically meaningful results from two-K-s(0) interferometry in heavy-ion collisions at root s(NN)=200 GeV. A model that takes the effect of the strong interaction into account has been used to fit the measured correlation function. The effects of single and coupled channels were explored. At the mean transverse mass < m(T)>=1.07 GeV, we obtain the values R=4.09 +/- 0.46(stat)+/- 0.31(sys) fm and lambda=0.92 +/- 0.23(stat)+/- 0.13(sys), where R and lambda are the invariant radius and chaoticity parameters, respectively. The results are qualitatively consistent with m(T) systematics established with pions in a scenario characterized by a strong collective flow. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Birmingham, Birmingham, W Midlands, England. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Illinois, Chicago, IL USA. Creighton Univ, Omaha, NE 68178 USA. RP Abelev, BI (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014 OI Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Castillo Castellanos, Javier/0000-0002-5187-2779; Okorokov, Vitaly/0000-0002-7162-5345; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Cosentino, Mauro/0000-0002-7880-8611 NR 51 TC 25 Z9 25 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 054902 DI 10.1103/PhysRevC.74.054902 PG 10 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500042 ER PT J AU Baltz, AJ AF Baltz, A. J. TI Impact parameter dependence of heavy ion e(+)e(-) pair production to all orders in Z alpha SO PHYSICAL REVIEW C LA English DT Article ID ELECTRON-POSITRON PAIRS; COULOMB CORRECTIONS; COLLISIONS; COLLIDERS; PARTICLE; FIELDS AB The heavy ion probability for continuum e(+)e(-) pair production has been calculated to all orders in Z alpha as a function of impact parameter. The formula resulting from an exact solution of the semiclassical Dirac equation in the ultrarelativistic limit is evaluated numerically. In a calculation of gamma=100 colliding Au ions, the probability of e(+)e(-) pair production is reduced from the perturbation theory result throughout the impact parameter range. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Baltz, AJ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 34 TC 8 Z9 8 U1 1 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 054903 DI 10.1103/PhysRevC.74.054903 PG 8 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500043 ER PT J AU Ding, HB Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Li, K Luo, YX Rasmussen, JO Lee, IY Goodin, CT Che, XL Chen, YJ Li, ML AF Ding, H. B. Zhu, S. J. Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Li, K. Luo, Y. X. Rasmussen, J. O. Lee, I. Y. Goodin, C. T. Che, X. L. Chen, Y. J. Li, M. L. TI Identification of band structures and proposed one- and two-phonon gamma-vibrational bands in Mo-105 SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STRUCTURE; NEUTRON-RICH MO-106; ROTATIONAL BANDS; OCTUPOLE CORRELATIONS; COLLECTIVE BANDS; IDENTICAL BANDS; NUCLEUS; ISOTOPES; STATES; TRIAXIALITY AB High-spin band structures in neutron-rich Mo-105 have been investigated by measuring prompt gamma rays emitted by the spontaneous fission fragments of Cf-252 with the Gammasphere detector array. The yrast band has been confirmed and five new collective bands are observed. The three bands based on the 246.3-, 332.0-, and 310.0-keV levels are proposed as the single-neutron excitation bands built on the 3/2(+)[411], 1/2(+)[411], and 5/2(+)[413] Nilsson orbitals, respectively. The other two bands with band head levels at 870.5 and 1534.6 keV are candidates for one-phonon K=9/2 and two-phonon K=13/2 gamma-vibrational bands, respectively. Systematic comparison of these bands with bands in neighboring nuclei are discussed. C1 Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China. Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ding, HB (reprint author), Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn NR 40 TC 31 Z9 37 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 054301 DI 10.1103/PhysRevC.74.054301 PG 10 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500010 ER PT J AU Domingo-Pardo, C Abbondanno, U Aerts, G Alvarez-Pol, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Berthoumieux, E Bisterzo, S Calvino, F Cano-Ott, D Capote, R Carrapico, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillman, I Dolfini, R Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fitzpatrick, L Frais-Koelbl, H Fujii, K Furman, W Gallino, R Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Isaev, S Jericha, E Kadi, Y Kappeler, F Karamanis, D Karadimos, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marrone, S Mastinu, P Mengoni, A Milazzo, PM Moreau, C Mosconi, M Neves, F Oberhummer, H Oshima, M O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Plag, R Plompen, A Plukis, A Poch, A Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Domingo-Pardo, C. Abbondanno, U. Aerts, G. Alvarez-Pol, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Bisterzo, S. Calvino, F. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillman, I. Dolfini, R. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fitzpatrick, L. Frais-Koelbl, H. Fujii, K. Furman, W. Gallino, R. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Isaev, S. Jericha, E. Kadi, Y. Kaeppeler, F. Karamanis, D. Karadimos, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marrone, S. Mastinu, P. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. Oshima, M. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Plag, R. Plompen, A. Plukis, A. Poch, A. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. CA nTOF Collaborat TI Resonance capture cross section of Pb-207 SO PHYSICAL REVIEW C LA English DT Article ID GALACTIC CHEMICAL EVOLUTION; GIANT BRANCH STARS; NEUTRON-CAPTURE; ABUNDANCES; ELEMENTS; SOLAR; NUCLEOSYNTHESIS; CHRONOMETERS AB The radiative neutron capture cross section of Pb-207 has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77 +/- 8% to the solar abundance of Pb-207. This corresponds to an r-process component of 23 +/- 8%, which is important for deriving the U/Th ages of metal poor halo stars. C1 Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. Forschungszentrum Karlsruhe, Inst Kernphys, D-76344 Eggenstein Leopoldshafen, Germany. Ist Nazl Fis Nucl, Trieste, Italy. CEA Saclay, DSM, F-91191 Gif Sur Yvette, France. Univ Santiago de Compostela, Santiago De Compostela, Spain. Ctr Invest Energet Medioambientales & Technol, Madrid, Spain. Univ Lodz, PL-90131 Lodz, Poland. Univ Ioannina, GR-45110 Ioannina, Greece. Tech Univ Vienna, Atominst Osterreichischen Univ, A-1060 Vienna, Austria. IReS, Ctr Natl Rech Sci, IN2P3, Strasbourg, France. Charles Univ, Prague, Czech Republic. Univ Turin, Dipartimento Fis Gen, Turin, Italy. Univ Politecn Catalunya, Barcelona, Spain. NAPC, Nucl Data Sect, IAEA, Vienna, Austria. Univ Seville, Seville, Spain. Inst Tecnol & Nucl, Lisbon, Portugal. CERN, Geneva, Switzerland. Univ Coimbra, LIP, Coimbra, Portugal. Univ Coimbra, Dept Fis, Coimbra, Portugal. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Notre Dame, Notre Dame, IN 46556 USA. IPN, CNRS, IN2P3, Orsay, France. Univ Pavia, I-27100 Pavia, Italy. Aristotle Univ Thessaloniki, Thessaloniki, Greece. Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. Inst Phys & Power Engn, Obninsk, Russia. CENBG, CNRS, IN2P3, Bordeaux, France. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Tokyo Inst Technol, Tokyo 152, Japan. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN USA. NCSR Demokritos, Athens, Greece. Japan Atom Energy Res Inst, Tokai, Ibaraki 31911, Japan. Natl Tech Univ Athens, Athens, Greece. Univ Vienna, Inst Isotopenforsch & Kernphys, Vienna, Austria. Pole Univ Leonard Vinci, Paris, France. IRMM, JRC, CEC, Geel, Belgium. Univ Basel, Dept Phys & Astron, Basel, Switzerland. ENEA, Bologna, Italy. Univ Bologna, Dipartimento Fis, Bologna, Italy. Ist Nazl Fis Nucl, I-40126 Bologna, Italy. RP Domingo-Pardo, C (reprint author), Apdo Correos 22085, E-46071 Valencia, Spain. EM cesar.domingo.pardo@cern.ch RI Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Capote Noy, Roberto/M-1245-2014; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Patronis, Nikolaos/A-3836-2008; Rauscher, Thomas/D-2086-2009; Jericha, Erwin/A-4094-2011; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014 OI Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Capote Noy, Roberto/0000-0002-1799-3438; Alvarez Pol, Hector/0000-0001-9643-6252; Gramegna, Fabiana/0000-0001-6112-0602; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Domingo-Pardo, Cesar/0000-0002-2915-5466; Rauscher, Thomas/0000-0002-1266-0642; Jericha, Erwin/0000-0002-8663-0526; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Cano Ott, Daniel/0000-0002-9568-7508; Quesada Molina, Jose Manuel/0000-0002-2038-2814 NR 27 TC 19 Z9 19 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 055802 DI 10.1103/PhysRevC.74.055802 PG 6 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500056 ER PT J AU Escher, JE Dietrich, FS AF Escher, Jutta E. Dietrich, Frank S. TI Determining (n, f) cross sections for actinide nuclei indirectly: Examination of the surrogate ratio method SO PHYSICAL REVIEW C LA English DT Article ID ALPHA-PARTICLE SCATTERING; ANGULAR CORRELATIONS; FISSION-BARRIER; STATES; MODES; D,PF AB The validity of the surrogate ratio method for determining (n,f) cross sections for actinide nuclei is examined. This method relates the ratio of two compound-nucleus reaction cross sections to a ratio of coincidence events from two measurements in which the same compound nuclei are formed via a direct reaction. With certain assumptions, the method allows one of the cross sections to be inferred if the other is known. We develop a nuclear reaction-model simulation to investigate whether the assumptions underlying the ratio approach are valid and employ these simulations to assess whether the cross sections obtained indirectly by applying a ratio analysis agree with the expected results. In particular, we simulate surrogate experiments that allow us to determine fission cross sections for selected actinide nuclei. The nuclei studied, U-233 and U-235, are very similar to those considered in recent surrogate experiments. We find that in favorable cases the ratio method provides useful estimates of the desired cross sections, and we discuss some of the limitations of the approach. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Escher, JE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM escher1@llnl.gov; dietrich2@llnl.gov RI Escher, Jutta/E-1965-2013 NR 44 TC 65 Z9 67 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 054601 DI 10.1103/PhysRevC.74.054601 PG 16 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500028 ER PT J AU Fischer, SM Lister, CJ Hammond, NJ Janssens, RVF Khoo, TL Lauritsen, T Moore, EF Seweryniak, D Sinha, S Balamuth, DP Hausladen, PA Sarantites, DG Reviol, W Chowdhury, P Paul, SD Baktash, C Yu, CH AF Fischer, S. M. Lister, C. J. Hammond, N. J. Janssens, R. V. F. Khoo, T. L. Lauritsen, T. Moore, E. F. Seweryniak, D. Sinha, S. Balamuth, D. P. Hausladen, P. A. Sarantites, D. G. Reviol, W. Chowdhury, P. Paul, S. D. Baktash, C. Yu, C. -H. TI T=1 states in Rb-74 and their Kr-74 analogs SO PHYSICAL REVIEW C LA English DT Article ID TO-Z NUCLEI; BETA-DECAY; RESPONSE CHARACTERISTICS; ISOMERIC STATES; EXCITED-STATES; PROTON; GAMMASPHERE; IDENTIFICATION; ENERGY; BANDS AB Charge symmetry breaking effects that perturb analog symmetry between nuclei are usually small but are important in extracting reliable Fermi matrix elements from "superallowed" beta decays and testing conserved vector current theory, especially for the heavier cases. We have used the Ca-40(Ar-36, pn)Rb-74 and Ca-40(Ca-40,alpha pn)Rb-74 reactions at 108, 123 and 160 MeV, respectively, to populate Rb-74 and determine the analog distortion through comparison of T=1 states in Rb-74 with their corresponding Kr-74 levels. We have traced the analogs of the Kr-74 ground-state band in Rb-74 to a candidate spin J=8 state and determined the Coulomb energy differences. They are small and positive and increase smoothly with spin. New T=0 states were found that better delineate the deformed band structure and clarify the steps in deexcitation from high spin. A new T=0 band was found. No evidence was found for gamma decay to or from a low-lying J(pi)=0(+) state in Rb-74 despite a careful search. C1 De Paul Univ, Dept Phys, Chicago, IL 60614 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. Washington Univ, Dept Chem, St Louis, MO 63130 USA. Masaryk Univ, Dept Phys, Lowell, MA 01854 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Fischer, SM (reprint author), De Paul Univ, Dept Phys, Chicago, IL 60614 USA. EM sfischer@depaul.edu NR 51 TC 9 Z9 9 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 054304 DI 10.1103/PhysRevC.74.054304 PG 10 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500013 ER PT J AU Hartley, DJ Mohr, WH Vanhoy, JR Riley, MA Aguilar, A Teal, C Janssens, RVF Carpenter, MP Hecht, AA Lauritsen, T Moore, EF Zhu, S Kondev, FG Djongolov, MK Danchev, M Riedinger, LL Hagemann, GB Sletten, G Chowdhury, P Tandel, SK Ma, WC Odegard, SW AF Hartley, D. J. Mohr, W. H. Vanhoy, J. R. Riley, M. A. Aguilar, A. Teal, C. Janssens, R. V. F. Carpenter, M. P. Hecht, A. A. Lauritsen, T. Moore, E. F. Zhu, S. Kondev, F. G. Djongolov, M. K. Danchev, M. Riedinger, L. L. Hagemann, G. B. Sletten, G. Chowdhury, P. Tandel, S. K. Ma, W. C. Odegard, S. W. TI Multiple band structures in Ta-169 SO PHYSICAL REVIEW C LA English DT Article ID RARE-EARTH NUCLEI; LYING ISOMERIC STATES; HIGH-SPIN; COINCIDENCE DATA; WOBBLING MODE; EXCITATIONS; ISOTOPES; LU-167; PHONON AB Rotational structures in the Ta-169 nucleus were studied via the Sn-124(V-51, 6n) reaction. These data were obtained as a side channel of an experiment focusing on Ta-171, but the sensitivity provided by the Gammasphere spectrometer proved sufficient for a significant extension of the level scheme of this rare-earth nucleus. Over 170 new transitions and four new band structures were placed in Ta-169, including the intruder pi i(13/2) structure. Linking transitions between all of the sequences were identified, and the relative excitation energies between the different configurations were determined for the first time. The rotational sequences were interpreted within the framework of the cranked shell model. C1 USN Acad, Dept Phys, Annapolis, MD 21402 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Argonne Natl Lab, Dept Nucl Engn, Argonne, IL 60439 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Niels Bohr Inst, DK-2100 Copenhagen, Denmark. Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. RP Hartley, DJ (reprint author), USN Acad, Dept Phys, Annapolis, MD 21402 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 37 TC 12 Z9 12 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 054314 DI 10.1103/PhysRevC.74.054314 PG 16 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500023 ER PT J AU Lappi, T Venugopalan, R AF Lappi, T. Venugopalan, R. TI Universality of the saturation scale and the initial eccentricity in heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID COLOR GLASS CONDENSATE; NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; ENERGY PA-COLLISIONS; HIGH-DENSITY QCD; ELLIPTIC FLOW; TRANSVERSE-MOMENTUM; SEMIHARD PROCESSES; SMALL-X; MULTIPLICITIES AB Recent estimates that color glass condensate initial conditions may generate a larger initial eccentricity for noncentral relativistic heavy ion collisions (relative to the initial eccentricity assumed in earlier hydrodynamic calculations) have raised the possibility of a higher bound on the viscosity of the qark gluon plasma. We show that this large initial eccentricity results in part from a definition of the saturation scale as proportional to the number of nucleons participating in the collision. A saturation scale proportional to the nuclear thickness function (and therefore independent of the probe) leads to a smaller eccentricity, albeit still larger than the value used in hydrodynamic models. Our results suggest that the early elliptic flow in heavy ion collisions (unlike multiplicity distributions) is sensitive to the universality of the saturation scale in high-energy QCD. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lappi, T (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 58 TC 68 Z9 68 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 054905 DI 10.1103/PhysRevC.74.054905 PG 5 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500045 ER PT J AU Michel, N Nazarewicz, W Ploszajczak, M Rotureau, J AF Michel, N. Nazarewicz, W. Ploszajczak, M. Rotureau, J. TI Antibound states and halo formation in the Gamow shell model SO PHYSICAL REVIEW C LA English DT Article ID VIRTUAL STATES; LI-10; SCATTERING; RESONANCES; CONTINUUM; EXPANSIONS; NUCLEI AB The open quantum system formulation of the nuclear shell model, the so-called Gamow shell model (GSM), is a multiconfigurational SM that employs a single-particle basis given by the Berggren ensemble consisting of Gamow states and the non-resonant continuum of scattering states. The GSM is of particular importance for weakly bound/unbound nuclear states where both many-body correlations and the coupling to decay channels are essential. In this context, we investigate the role of center dot=0 antibound (virtual) neutron single-particle states in the shell model description of loosely bound wave functions, such as the ground state wave function of a halo nucleus Li-11. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. CEA, Grand Accelerateur Natl Ions Lourds, DSM, CNRS,IN2P3, F-14076 Caen 05, France. RP Michel, N (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI rotureau, jimmy/B-2365-2013 NR 42 TC 18 Z9 18 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 054305 DI 10.1103/PhysRevC.74.054305 PG 6 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500014 ER PT J AU Skalski, J AF Skalski, Janusz TI Relative kinetic energy correction to self-consistent fission barriers SO PHYSICAL REVIEW C LA English DT Article ID MEAN-FIELD MODELS; NUCLEI; PARAMETRIZATION; FUSION AB The effect of spurious relative kinetic energy removal on the fission barriers is discussed within the Skyrme Hartree-Fock method. Calculations for medium-heavy nuclei show that this correction is large and in the right direction. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. RP Skalski, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. NR 18 TC 4 Z9 4 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2006 VL 74 IS 5 AR 051601 DI 10.1103/PhysRevC.74.051601 PG 5 WC Physics, Nuclear SC Physics GA 110VN UT WOS:000242409500004 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cooke, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kroninger, K Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Onoprienko, D Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Stroehmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cooke, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kafer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kroeninger, K. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Onoprienko, D. Oshima, N. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. TI Measurement of the top quark mass in the lepton plus jets final state with the matrix element method SO PHYSICAL REVIEW D LA English DT Article ID PRODUCTION CROSS-SECTION; COLLIDER DETECTOR; P(P)OVER-BAR COLLISIONS; FRAGMENTATION FUNCTION; DILEPTON EVENTS; FERMILAB; PHYSICS; DECAYS AB We present a measurement of the top quark mass with the matrix element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the matrix element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty. Using a data set of 0.4 fb(-1) taken with the D0 experiment at Run II of the Fermilab Tevatron Collider, the mass of the top quark is measured using topological information to be: m(top)(center dot+jets)(topo)=169.2(-7.4)(+5.0)(stat+JES)(-1.4)(+1.5)(syst) GeV, and when information about identified b jets is included: m(top)(center dot+jets)(b-tag)=170.3(-4.5)(+4.1)(stat+ JES)(-1.8)(+1.2)(syst) GeV. The measurements yield a jet energy scale consistent with the reference scale. C1 Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Univ Alberta, Edmonton, AB, Canada. McGill Univ, Montreal, PQ, Canada. York Univ, Toronto, ON M3J 2R7, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Freancisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Mediterranee, CNRS, CPPM, IN2P3, Marseille, France. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91405 Orsay, France. Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. Univ Paris 07, LPNHE, IN2P3, CNRS, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg 1, CNRS, IPHC, IN2P3, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF, FOM Inst, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Telford, Paul/B-6253-2011; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012 OI Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Fatakia, Sarosh/0000-0003-0430-3191; Belanger-Champagne, Camille/0000-0003-2368-2617; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549 NR 40 TC 43 Z9 43 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 092005 DI 10.1103/PhysRevD.74.092005 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700010 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Onoprienko, D Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kafer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Onoprienko, D. Oshima, N. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0Collaboration TI Measurement of the CP-violation parameter of B-0 mixing and decay with p(p)over-bar ->mu mu X data SO PHYSICAL REVIEW D LA English DT Article ID PARTICLE PHYSICS; DETECTOR AB We measure the dimuon charge asymmetry A in p (p) over bar collisions at a center of mass energy root s=1960 GeV. The data was recorded with the D0 detector and corresponds to an integrated luminosity of approximately 1.0 fb(-1). Assuming that the asymmetry A is due to asymmetric B-0 <->(B) over bar (0) mixing and decay, we extract the CP-violation parameter of B-0 mixing and decay: ((epsilon B0))/(1+vertical bar epsilon B0 vertical bar 2)=(AB0)/(4)= -0.0023 +/- 0.0011(stat)+/- 0.0008(syst).A(B)(0) is the dimuon charge asymmetry from decays of B-0(B) over bar (0) pairs. The general case, with CP violation in both B-0 and B-s(0) systems, is also considered. Finally we obtain the forward-backward asymmetry that quantifies the tendency of mu(+) to go in the proton direction and mu(-) to go in the antiproton direction. The results are consistent with the standard model and constrain new physics. C1 Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Univ Alberta, Edmonton, AB, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, CPPM, IN2P3, Marseille, France. CNRS, Accelerateur Lineaire Lab, IN2P3, F-91405 Orsay, France. Univ Paris 06, CNRS, IN2P3, LPHNE, Paris, France. Univ Paris 07, Paris, France. CEA, Serv Phys Particules, DAPNIA, Saclay, France. Univ Haute Alsace, Mulhouse, France. Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. NIKHEF, FOM Inst, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Univ Stockholm, Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Telford, Paul/B-6253-2011; Fisher, Wade/N-4491-2013; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108 NR 13 TC 48 Z9 48 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 092001 DI 10.1103/PhysRevD.74.092001 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700006 ER PT J AU Abouzaid, E Arenton, M Barker, AR Bellantoni, L Bellavance, A Blucher, E Bock, GJ Cheu, E Coleman, R Corcoran, MD Cox, B Erwin, AR Glazov, A Golossanov, A Hsiung, YB Huang, H Jensen, DA Kessler, R Kobrak, HGE Kotera, K Ledovskoy, A McBride, PL Monnier, E Nguyen, H Niclasen, R Ramberg, EJ Ray, RE Ronquest, M Shields, J Slater, W Smith, D Solomey, N Swallow, EC Toale, PA Tschirhart, R Wah, YW Wang, J White, HB Whitmore, J Wilking, M Winstein, B Winston, R Worcester, ET Yamanaka, T Zimmerman, ED AF Abouzaid, E. Arenton, M. Barker, A. R. Bellantoni, L. Bellavance, A. Blucher, E. Bock, G. J. Cheu, E. Coleman, R. Corcoran, M. D. Cox, B. Erwin, A. R. Glazov, A. Golossanov, A. Hsiung, Y. B. Huang, H. Jensen, D. A. Kessler, R. Kobrak, H. G. E. Kotera, K. Ledovskoy, A. McBride, P. L. Monnier, E. Nguyen, H. Niclasen, R. Ramberg, E. J. Ray, R. E. Ronquest, M. Shields, J. Slater, W. Smith, D. Solomey, N. Swallow, E. C. Toale, P. A. Tschirhart, R. Wah, Y. W. Wang, J. White, H. B. Whitmore, J. Wilking, M. Winstein, B. Winston, R. Worcester, E. T. Yamanaka, T. Zimmerman, E. D. TI Improved K-L ->pi(+/-)e(-/+)nu form factor and phase space integral with reduced model uncertainty SO PHYSICAL REVIEW D LA English DT Article AB Using the published KTeV sample of 2x10(6) K-L ->pi(+/-)e(-/+)nu decays 1 and a new form factor expansion with a rigorous bound on higher order terms 2, we present a new determination of the K-L ->pi(+/-)e(-/+)nu form factor and phase space integral. Compared to the previous KTeV result 1, the uncertainty in the new form factor expansion is negligible and results in an overall uncertainty in the phase space integral (I-K(e)) that is a factor of 2 smaller: I-K(e)=0.15392 +/- 0.00048. C1 Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Univ Colorado, Boulder, CO 80309 USA. Elmhurst Coll, Elmhurst, IL 60126 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Osaka Univ, Toyonaka, Osaka 5600043, Japan. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. Univ Virginia, Inst Nucl & Particle Phys, Charlottesville, VA 22901 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Abouzaid, E (reprint author), Univ Arizona, Tucson, AZ 85721 USA. OI HSIUNG, YEE/0000-0003-4801-1238 NR 5 TC 9 Z9 9 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 097101 DI 10.1103/PhysRevD.74.097101 PG 3 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700074 ER PT J AU Ahn, EJ Kolb, EW AF Ahn, Eun-Joo Kolb, Edward W. TI Instant nonthermal leptogenesis SO PHYSICAL REVIEW D LA English DT Article ID NUMBER NON-CONSERVATION; PROBE WMAP OBSERVATIONS; LEPTON NUMBER; NEUTRINO MASS; COSMOLOGICAL BARYON; PARITY VIOLATION; EARLY UNIVERSE; LOW ENERGIES; BARYOGENESIS; INFLATION AB We propose an economical model of nonthermal leptogenesis following inflation during instant preheating. The model involves only the inflaton field, the standard model Higgs, and the heavy "right-handed" neutrino. C1 Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Fermilab Natl Accelerator Lab, Particle Astrophys Ctr, Batavia, IL 60510 USA. RP Ahn, EJ (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. EM sein@oddjob.uchicago.edu; rocky@fnal.gov NR 48 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 10 AR 103503 DI 10.1103/PhysRevD.74.103503 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VQ UT WOS:000242409800011 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J Briand, H David, P Del Buono, L la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Panetta, J Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. Briand, H. David, P. Del Buono, L. la Vaissiere, Ch. de Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Precise branching ratio measurements of the decays D-0 ->pi(-)pi(+)pi(0) and D-0 -> K-K+pi(0) relative to the D-0 -> K-pi(+)pi(0) decay SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB Using 232 fb(-1) of e(+)e(-) collision data recorded by the BABAR experiment, we measure the rates of three-body Cabibbo-suppressed decays of the D-0 meson relative to the Cabibbo-favored decay, D-0 -> K-pi(+)pi(0). We find: (B(D0 ->pi-pi+pi 0))/(B(D0 -> K-pi+pi 0))=(10.59 +/- 0.06 +/- 0.13)x10(-2) and (B(D0 -> K-K+pi 0))/(B(D0 -> K-pi+pi 0))=(2.37 +/- 0.03 +/- 0.04)x10(-2), where the errors are statistical and systematic, respectively. These measurements are significantly more precise than the current world average measurements. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. IN2P3, Lab Accelerateur Lineaire, CNRS, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London Queen Mary & Westfield Coll, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, Dipartimento Fis, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, Dipartimento Sci Fis, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys, Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, Dipartimento Fis, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, Turin, Italy. Ist Nazl Fis Nucl, Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Warwick CV4 7AL, Coventry, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231 NR 11 TC 9 Z9 9 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 091102 DI 10.1103/PhysRevD.74.091102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700002 ER PT J AU Aubert, B Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. del Amo Sanchez, P. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Measurement of the branching fraction and time-dependent CP asymmetry in the decay B-0 ->(D*+D*-KS0) SO PHYSICAL REVIEW D LA English DT Article ID MESONS; QUARK AB We study the decay B-0 ->(D*+D*-KS0) using (230 +/- 2)x10(6)B (B) over bar pairs collected by the BABAR detector at the PEP-II B factory. We measure a branching fraction B(B-0 ->(D*+D*-KS0))=(4.4 +/- 0.4 +/- 0.7)x10(-3) and find evidence for the decay B-0 -> D*-Ds1+(2536) with a significance of 4.6 sigma. A time-dependent CP asymmetry analysis is also performed to study the possible resonant contributions to B-0 ->(D*+D*-KS0) and the sign of cos2 beta. Our measurement indicates that there is a sizable resonant contribution to the decay B-0 ->(D*+D*-KS0) from an unknown D-s1(+) state with large width, and that cos2 beta is positive at the 94% confidence level under certain theoretical assumptions. C1 IN2P3, Lab Phys Particules, CNRS, Anncey Le Vieux, France. Univ Savoie, Anncey Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Acad Sinica, Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Phys Expt, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. IN2P3, CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 07, IN2P3, CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), IN2P3, Lab Phys Particules, CNRS, Anncey Le Vieux, France. RI Cavallo, Nicola/F-8913-2012; Patrignani, Claudia/C-5223-2009; Della Ricca, Giuseppe/B-6826-2013; Bellini, Fabio/D-1055-2009; Saeed, Mohammad Alam/J-7455-2012; Calcaterra, Alessandro/P-5260-2015; Pappagallo, Marco/R-3305-2016; Luppi, Eleonora/A-4902-2015; Frey, Raymond/E-2830-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Roe, Natalie/A-8798-2012; Kravchenko, Evgeniy/F-5457-2015; Neri, Nicola/G-3991-2012; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Lo Vetere, Maurizio/J-5049-2012; Forti, Francesco/H-3035-2011; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; M, Saleem/B-9137-2013 OI Barlow, Roger/0000-0002-8295-8612; Raven, Gerhard/0000-0002-2897-5323; Patrignani, Claudia/0000-0002-5882-1747; Della Ricca, Giuseppe/0000-0003-2831-6982; Bellini, Fabio/0000-0002-2936-660X; Saeed, Mohammad Alam/0000-0002-3529-9255; Calcaterra, Alessandro/0000-0003-2670-4826; Pappagallo, Marco/0000-0001-7601-5602; Luppi, Eleonora/0000-0002-1072-5633; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Bettarini, Stefano/0000-0001-7742-2998; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Peters, Klaus/0000-0001-7133-0662; Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Lo Vetere, Maurizio/0000-0002-6520-4480; Forti, Francesco/0000-0001-6535-7965; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; NR 20 TC 50 Z9 53 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 091101 DI 10.1103/PhysRevD.74.091101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700001 ER PT J AU Aubert, B Zghiche, A Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Gritsan, AV Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Best, DS Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Del Re, D Hadavand, HK Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Minamora, JS Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Dickopp, M Klose, V Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Passaggio, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mader, WF Mallik, U Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Bevan, AJ Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Green, MG Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Abe, T Allen, MT Aston, D Bartoldus, R Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, S Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, MT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Zghiche, A. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Gritsan, A. V. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Best, D. S. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadel, R. W. Kadyk, J. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Fritsch, M. Goetzen, K. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Del Re, D. Hadavand, H. K. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dubois-Felsmann, G. P. Dvoretskii, A. Hitlin, D. G. Minamora, J. S. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Dickopp, M. Klose, V. Lacker, H. M. Nogowski, R. Otto, S. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Schrenk, S. Thiebaux, Ch. Vasileiadis, G. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Piemontese, L. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Passaggio, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mader, W. F. Mallik, U. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hoecker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Petersen, T. C. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Bevan, A. J. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Green, M. G. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Kovalskyi, D. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Kofler, R. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Abe, T. Allen, M. T. Aston, D. Bartoldus, R. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dujmic, D. Dunwoodie, W. Fan, S. Field, R. C. Glanzman, T. Gowdy, S. J. Hadig, T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Bona, M. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Panvini, R. S. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Graham, M. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. TI Measurements of the B -> D-* form factors using the decay (B)over-bar(0)-> D(*+)e(-)(v)over-bar(e) SO PHYSICAL REVIEW D LA English DT Article ID CB-VERTICAL-BAR; HEAVY-QUARK SYMMETRY; V-CB; BOUNDS AB We measure the dependence of (B) over bar (0)-> D(*+)e(-)(B) over bar (e) on the decay angles and momentum transfer. The data sample consists of similar to 86x10(6) B (B) over bar -pairs accumulated on the Upsilon(4S) resonance by the BABAR detector at the asymmetric e(+)e(-) collider PEP-II. We specify the three form factors by two ratios R-1 and R-2, and by a single parameter rho(2) characterizing the polynomial representing h(A1), the function which describes the momentum-transfer dependence of the form factor A(1). We determine R-1, R-2, and rho(2) using an unbinned maximum likelihood fit to the full decay distribution. The results are R-1=1.396 +/- 0.060 +/- 0.035 +/- 0.027, R-2=0.885 +/- 0.040 +/- 0.022 +/- 0.013, and rho(2)=1.145 +/- 0.059 +/- 0.030 +/- 0.035. The stated uncertainties are the statistical from the data, statistical from the size of the Monte Carlo sample and the systematic uncertainty, respectively. In addition, based on this measurement, we give an updated value for the CKM matrix element vertical bar V-cb vertical bar. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Nazl Frascati Lab, I-00044 Frascati, Italy. Ist Nazl Fis Nucl, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Button-Shafer, J (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Kravchenko, Evgeniy/F-5457-2015; Mir, Lluisa-Maria/G-7212-2015; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; bettarini, stefano/M-2502-2016; Roe, Natalie/A-8798-2012; M, Saleem/B-9137-2013; Bellini, Fabio/D-1055-2009; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Mir, Lluisa-Maria/0000-0002-4276-715X; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Bellini, Fabio/0000-0002-2936-660X; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 NR 33 TC 22 Z9 22 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 092004 DI 10.1103/PhysRevD.74.092004 PG 31 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700009 ER PT J AU Aubert, B Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Structure at 2175 MeV in e(+)e(-)->phi f(0)(980) observed via initial-state radiation SO PHYSICAL REVIEW D LA English DT Article ID BHABHA SCATTERING; MONTE-CARLO; ENERGIES; PHYSICS AB We study the initial-state-radiation processes e(+)e(-)-> K+K-pi(+)pi(-)gamma and e(+)e(-)-> K+K-pi(0)pi(0)gamma using an integrated luminosity of 232 fb(-1) collected at the Upsilon(4S) mass with the BABAR detector at SLAC. Even though these reactions are dominated by intermediate states with excited kaons, we are able to study for the first time the cross section for e(+)e(-)->phi(1020)f(0)(980) as a function of center-of-mass energy. We observe a structure near threshold consistent with a 1(--) resonance with mass m=2.175 +/- 0.010 +/- 0.015 GeV/c(2) and width Gamma=58 +/- 16 +/- 20 MeV. We observe no Y(4260) signal and set a limit of B-Y ->phi pi(+)pi(-)center dot Gamma(Y)(ee)< 0.4 eV (90% confidence level), which excludes some models. C1 CNRS, Lab Phys Particules, IN2P3, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Phys Expt 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Univ Basilicata, I-85100 Potenza, Italy. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, Lab Phys Particules, IN2P3, F-74941 Annecy Le Vieux, France. RI Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; de Sangro, Riccardo/J-2901-2012; Negrini, Matteo/C-8906-2014; Lo Vetere, Maurizio/J-5049-2012; Saeed, Mohammad Alam/J-7455-2012; Rotondo, Marcello/I-6043-2012; Roe, Natalie/A-8798-2012; Forti, Francesco/H-3035-2011; Luppi, Eleonora/A-4902-2015; Della Ricca, Giuseppe/B-6826-2013; Mir, Lluisa-Maria/G-7212-2015; Bellini, Fabio/D-1055-2009; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Patrignani, Claudia/C-5223-2009; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Grancagnolo, Sergio/J-3957-2015; Neri, Nicola/G-3991-2012; Calabrese, Roberto/G-4405-2015; Kolomensky, Yury/I-3510-2015; Lusiani, Alberto/A-3329-2016; Lusiani, Alberto/N-2976-2015; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Morandin, Mauro/A-3308-2016; Martinez Vidal, F*/L-7563-2014; Di Lodovico, Francesca/L-9109-2016 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Cristinziani, Markus/0000-0003-3893-9171; Wilson, Robert/0000-0002-8184-4103; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Lo Vetere, Maurizio/0000-0002-6520-4480; Saeed, Mohammad Alam/0000-0002-3529-9255; Rotondo, Marcello/0000-0001-5704-6163; Forti, Francesco/0000-0001-6535-7965; Luppi, Eleonora/0000-0002-1072-5633; Della Ricca, Giuseppe/0000-0003-2831-6982; Mir, Lluisa-Maria/0000-0002-4276-715X; Bellini, Fabio/0000-0002-2936-660X; Patrignani, Claudia/0000-0002-5882-1747; Peters, Klaus/0000-0001-7133-0662; Grancagnolo, Sergio/0000-0001-8490-8304; Neri, Nicola/0000-0002-6106-3756; Calabrese, Roberto/0000-0002-1354-5400; Kolomensky, Yury/0000-0001-8496-9975; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Morandin, Mauro/0000-0003-4708-4240; Martinez Vidal, F*/0000-0001-6841-6035; Di Lodovico, Francesca/0000-0003-3952-2175 NR 17 TC 159 Z9 160 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 091103 DI 10.1103/PhysRevD.74.091103 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700003 ER PT J AU Aubert, B Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Hart, AJ Harrison, TJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Bard, DJ Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Hart, A. J. Harrison, T. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Bard, D. J. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Measurement of the ratio B(B+-> Xev)/B(B-0 -> Xev) SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; MESONS AB We report measurements of the inclusive electron momentum spectra in decays of charged and neutral B mesons, and of the ratio of semileptonic branching fractions B(B+-> Xe nu) and B(B-0 -> Xe nu). These were performed on a sample of 231x10(6) B (B) over bar events recorded with the BABAR detector at the Upsilon(4S) resonance. Events are selected by fully reconstructing a hadronic decay of one B meson and identifying an electron among the decay products of the recoiling (B) over bar meson. We obtain B(B+-> Xe nu)/B(B-0 -> Xe nu)=1.074 +/- 0.041((stat))+/- 0.026((syst)). C1 CNRS, IN2P3, Lab Phys Particules, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Lab Phys Particules, F-74941 Annecy Le Vieux, France. RI Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Raven, Gerhard/0000-0002-2897-5323; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 NR 12 TC 3 Z9 3 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 091105 DI 10.1103/PhysRevD.74.091105 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700005 ER PT J AU Baltz, EA Battaglia, M Peskin, ME Wizansky, T AF Baltz, Edward A. Battaglia, Marco Peskin, Michael E. Wizansky, Tommer TI Determination of dark matter properties at high-energy colliders SO PHYSICAL REVIEW D LA English DT Review ID MUON MAGNETIC-MOMENT; GAMMA-RAYS; E(+)E(-) ANNIHILATION; NUCLEAR RECOIL; SUPERSYMMETRY; HALOS; CONSTRAINTS; BREAKING; PARTICLE; PHYSICS AB If the cosmic dark matter consists of weakly-interacting massive particles, these particles should be produced in reactions at the next generation of high-energy accelerators. Measurements at these accelerators can then be used to determine the microscopic properties of the dark matter. From this, we can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to direct detection. In this paper, we present studies in supersymmetry models with neutralino dark matter that give quantitative estimates of the accuracy that can be expected. We show that these are well matched to the requirements of anticipated astrophysical observations of dark matter. The capabilities of the proposed International Linear Collider (ILC) are expected to play a particularly important role in this study. C1 Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Baltz, EA (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. OI Peskin, Michael/0000-0001-6403-6828 NR 131 TC 163 Z9 163 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 10 AR 103521 DI 10.1103/PhysRevD.74.103521 PG 57 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VQ UT WOS:000242409800029 ER PT J AU Berger, CF Del Duca, V Dixon, LJ AF Berger, Carola F. Del Duca, Vittorio Dixon, Lance J. TI Recursive construction of Higgs plus multiparton loop amplitudes: The last of the "phi-nite" loop amplitudes SO PHYSICAL REVIEW D LA English DT Review ID LARGE TRANSVERSE-MOMENTUM; HADRON-HADRON COLLISIONS; HIGHER-ORDER CORRECTIONS; GAUGE-THEORY AMPLITUDES; MULTI-GLUON SCATTERING; YANG-MILLS THEORY; TO-LEADING ORDER; BOSON PRODUCTION; HELICITY AMPLITUDES; QCD CORRECTIONS AB We consider a scalar field, such as the Higgs boson H, coupled to gluons via the effective operator H tr G(mu nu)G(mu nu) induced by a heavy-quark loop. We treat H as the real part of a complex field phi which couples to the self-dual part of the gluon field-strength, via the operator phi tr G(SD mu nu)G(SD)(mu nu), whereas the conjugate field phi(dagger) couples to the anti-self-dual part. There are three infinite sequences of amplitudes coupling phi to quarks and gluons that vanish at tree level, and hence are finite at one loop, in the QCD coupling. Using on-shell recursion relations, we find compact expressions for these three sequences of amplitudes and discuss their analytic properties. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Ist Nazl Fis Nucl, Sezione Torino, I-10125 Turin, Italy. RP Berger, CF (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RI del duca, vittorio/F-6992-2012 NR 160 TC 34 Z9 34 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 094021 DI 10.1103/PhysRevD.74.094021 PG 31 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700044 ER PT J AU Blyth, S Abe, K Abe, K Adachi, I Aihara, H Anipko, D Aulchenko, V Aushev, T Bakich, AM Balagura, V Barberio, E Bay, A Bedny, I Belous, K Bitenc, U Bizjak, I Bozek, A Bracko, M Brodzicka, J Browder, TE Chang, MC Chao, Y Chen, A Chen, KF Chen, WT Cheon, BG Chistov, R Choi, Y Choi, YK Chuvikov, A Cole, S Dalseno, J Dash, M Drutskoy, A Eidelman, S Fratina, S Gabyshev, N Garmash, A Gershon, T Go, A Gokhroo, G Golob, B Gorisek, A Ha, H Haba, J Hara, T Hayasaka, K Hayashii, H Hazumi, M Heffernan, D Hokuue, T Hoshi, Y Hou, S Hou, WS Hsiung, YB Iijima, T Imoto, A Inami, K Ishikawa, A Itoh, R Iwasaki, M Iwasaki, Y Kang, JH Katayama, N Kawai, H Kawasaki, T Khan, HR Kichimi, H Kim, HJ Kim, HO Kim, YJ Korpar, S Krizan, P Krokovny, P Kumar, R Kuo, CC Kuzmin, A Kwon, YJ Leder, G Lee, J Lin, SW Liventsev, D Mandl, F Matsumoto, T Matyja, A McOnie, S Mitaroff, W Miyabayashi, K Miyake, H Miyata, H Miyazaki, Y Mizuk, R Moloney, GR Nagamine, T Nakano, E Nakao, M Nishida, S Nitoh, O Ogawa, S Ohshima, T Okabe, T Okuno, S Olsen, SL Onuki, Y Ostrowicz, W Ozaki, H Pakhlov, P Pakhlova, G Palka, H Park, H Park, KS Pestotnik, R Piilonen, LE Sakai, Y Schietinger, T Schneider, O Schumann, J Schwanda, C Schwartz, AJ Seidl, R Shapkin, M Shibuya, H Shwartz, B Sidorov, V Singh, JB Somov, A Soni, N Stanic, S Staric, M Stoeck, H Sumiyoshi, T Suzuki, S Takasaki, F Tamura, N Tanaka, M Taylor, GN Teramoto, Y Tikhomirov, I Tian, XC Trabelsi, K Tsuboyama, T Tsukamoto, T Uehara, S Uglov, T Ueno, K Uno, S Usov, Y Varner, G Varvell, KE Villa, S Wang, CC Wang, CH Wang, MZ Watanabe, Y Won, E Wu, CH Xie, QL Yamaguchi, A Yamashita, Y Yamauchi, M Zhang, LM Zhang, ZP AF Blyth, S. Abe, K. Abe, K. Adachi, I. Aihara, H. Anipko, D. Aulchenko, V. Aushev, T. Bakich, A. M. Balagura, V. Barberio, E. Bay, A. Bedny, I. Belous, K. Bitenc, U. Bizjak, I. Bozek, A. Bracko, M. Brodzicka, J. Browder, T. E. Chang, M. -C. Chao, Y. Chen, A. Chen, K. -F. Chen, W. T. Cheon, B. G. Chistov, R. Choi, Y. Choi, Y. K. Chuvikov, A. Cole, S. Dalseno, J. Dash, M. Drutskoy, A. Eidelman, S. Fratina, S. Gabyshev, N. Garmash, A. Gershon, T. Go, A. Gokhroo, G. Golob, B. Gorisek, A. Ha, H. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. Hazumi, M. Heffernan, D. Hokuue, T. Hoshi, Y. Hou, S. Hou, W. -S. Hsiung, Y. B. Iijima, T. Imoto, A. Inami, K. Ishikawa, A. Itoh, R. Iwasaki, M. Iwasaki, Y. Kang, J. H. Katayama, N. Kawai, H. Kawasaki, T. Khan, H. R. Kichimi, H. Kim, H. J. Kim, H. O. Kim, Y. J. Korpar, S. Krizan, P. Krokovny, P. Kumar, R. Kuo, C. C. Kuzmin, A. Kwon, Y. -J. Leder, G. Lee, J. Lin, S. -W. Liventsev, D. Mandl, F. Matsumoto, T. Matyja, A. McOnie, S. Mitaroff, W. Miyabayashi, K. Miyake, H. Miyata, H. Miyazaki, Y. Mizuk, R. Moloney, G. R. Nagamine, T. Nakano, E. Nakao, M. Nishida, S. Nitoh, O. Ogawa, S. Ohshima, T. Okabe, T. Okuno, S. Olsen, S. L. Onuki, Y. Ostrowicz, W. Ozaki, H. Pakhlov, P. Pakhlova, G. Palka, H. Park, H. Park, K. S. Pestotnik, R. Piilonen, L. E. Sakai, Y. Schietinger, T. Schneider, O. Schuemann, J. Schwanda, C. Schwartz, A. J. Seidl, R. Shapkin, M. Shibuya, H. Shwartz, B. Sidorov, V. Singh, J. B. Somov, A. Soni, N. Stanic, S. Staric, M. Stoeck, H. Sumiyoshi, T. Suzuki, S. Takasaki, F. Tamura, N. Tanaka, M. Taylor, G. N. Teramoto, Y. Tikhomirov, I. Tian, X. C. Trabelsi, K. Tsuboyama, T. Tsukamoto, T. Uehara, S. Uglov, T. Ueno, K. Uno, S. Usov, Y. Varner, G. Varvell, K. E. Villa, S. Wang, C. C. Wang, C. H. Wang, M. -Z. Watanabe, Y. Won, E. Wu, C. -H. Xie, Q. L. Yamaguchi, A. Yamashita, Y. Yamauchi, M. Zhang, L. M. Zhang, Z. P. CA Belle Collaboration TI Improved measurements of color-suppressed decays (B)over-bar(0)-> D-0 pi(0), D-0 eta, D-0 omega, D-*0 pi(0), D-*0 eta and D-*0 omega SO PHYSICAL REVIEW D LA English DT Article ID BELLE DETECTOR AB We present improved measurements of the branching fractions of the color-suppressed decays (B) over bar (0)-> D((*)0)h(0), where h(0) represents a light neutral meson pi(0), eta or omega. The measurements are based on a data sample of 140 fb(-1) collected at the Upsilon(4S) resonance with the Belle detector at the KEKB energy-asymmetric e(+)e(-) collider, corresponding to 7 times the luminosity of the previous Belle measurements. All the measured branching fractions fall in the range 1.4-2.4x10(-4), which is significantly higher than theoretical predictions based on naive factorization. C1 Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Chiba Univ, Chiba, Japan. Chonnam Natl Univ, Kwangju, South Korea. Univ Cincinnati, Cincinnati, OH 45221 USA. Grad Univ Adv Studies, Hayama, Japan. Univ Hawaii, Honolulu, HI 96822 USA. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. Univ Illinois, Urbana, IL 61801 USA. Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. Inst High Energy Phys, Vienna, Austria. Inst High Energy Phys, Protvino, Russia. Inst Theoret & Expt Phys, Moscow, Russia. Jozef Stefan Inst, Ljubljana, Slovenia. Kanagawa Univ, Yokohama, Kanagawa, Japan. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Swiss Fed Inst Technol, CH-1015 Lausanne, Switzerland. Univ Ljubljana, Ljubljana, Slovenia. Univ Maribor, SLO-2000 Maribor, Slovenia. Univ Melbourne, Melbourne, Vic, Australia. Nagoya Univ, Nagoya, Aichi, Japan. Nara Womens Univ, Nara 630, Japan. Natl Cent Univ, Chungli 32054, Taiwan. Natl United Univ, Miaoli, Taiwan. Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Nippon Dent Univ, Niigata, Japan. Niigata Univ, Niigata, Japan. Univ Nova Gorica, Nova Gorica, Slovenia. Osaka City Univ, Osaka 558, Japan. Osaka Univ, Osaka, Japan. Panjab Univ, Chandigarh 160014, India. Peking Univ, Beijing 100871, Peoples R China. Princeton Univ, Princeton, NJ 08544 USA. RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. Saga Univ, Saga 840, Japan. Univ Sci & Technol China, Hefei 230026, Peoples R China. Seoul Natl Univ, Seoul, South Korea. Sungkyunkwan Univ, Suwon, South Korea. Univ Sydney, Sydney, NSW 2006, Australia. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Toho Univ, Funabashi, Chiba 274, Japan. Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. Tohoku Univ, Sendai, Miyagi 980, Japan. Univ Tokyo, Dept Phys, Tokyo 113, Japan. Tokyo Inst Technol, Tokyo 152, Japan. Tokyo Metropolitan Univ, Tokyo 158, Japan. Tokyo Univ Agr & Technol, Tokyo, Japan. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yonsei Univ, Seoul 120749, South Korea. RP Blyth, S (reprint author), Budker Inst Nucl Phys, Novosibirsk 630090, Russia. RI Abe, Kazuo/F-6576-2010; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Tian, Xinchun/L-2060-2013; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014 OI Aihara, Hiroaki/0000-0002-1907-5964; Tian, Xinchun/0000-0002-6246-0470; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022 NR 27 TC 10 Z9 10 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 092002 DI 10.1103/PhysRevD.74.092002 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700007 ER PT J AU Bousso, R Freivogel, B Yang, IS AF Bousso, Raphael Freivogel, Ben Yang, I-Sheng TI Eternal inflation: The inside story SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL CONSTANT; UNIVERSE; TRANSITION AB Motivated by the lessons of black hole complementarity, we develop a causal patch description of eternal inflation. We argue that an observer cannot ascribe a semiclassical geometry to regions outside his horizon, because the large-scale metric is governed by the fluctuations of quantum fields. In order to identify what is within the horizon, it is necessary to understand the late time asymptotics. Any given worldline will eventually exit from eternal inflation into a terminal vacuum. If the cosmological constant is negative, the universe crunches. If it is zero, then we find that the observer's fate depends on the mechanism of eternal inflation. Worldlines emerging from an eternal inflation phase driven by thermal fluctuations end in a singularity. By contrast, if eternal inflation ends by bubble nucleation, the observer can emerge into an asymptotic, locally flat region. As evidence that bubble collisions preserve this property, we present an exact solution describing the collision of two bubbles. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bousso@lbl.gov; freivogel@berkeley.edu; jingking@berkeley.edu NR 23 TC 64 Z9 64 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 10 AR 103516 DI 10.1103/PhysRevD.74.103516 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VQ UT WOS:000242409800024 ER PT J AU Brodsky, SJ Yuan, F AF Brodsky, Stanley J. Yuan, Feng TI Single transverse-spin asymmetries at large x SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; DRELL-YAN PROCESSES; POLARIZED PROTON-BEAM; TO-BACK JETS; PARTON DISTRIBUTIONS; CROSS-SECTIONS; AZIMUTHAL ASYMMETRIES; HARD-SCATTERING; ANALYZING POWER AB The large-x behavior of the transverse-momentum dependent quark distributions is analyzed in the factorization-inspired perturbative QCD framework, particularly for the naive time-reversal-odd quark Sivers function which is responsible for the single transverse-spin asymmetries in various semi-inclusive hard processes. By examining the dominant hard gluon exchange Feynman diagrams, and using the resulting power-counting rule, we find that the Sivers function has power behavior (1-x)(4) at x -> 1, which is one power of (1-x) suppressed relative to the unpolarized quark distribution. These power-counting results provide important guidelines for the parameterization of quark distributions and quark-gluon correlations. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. Beijing Univ, Inst Modern Phys, Beijing 100871, Peoples R China. RP Brodsky, SJ (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RI Yuan, Feng/N-4175-2013 NR 78 TC 26 Z9 26 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 094018 DI 10.1103/PhysRevD.74.094018 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700041 ER PT J AU Carena, M Freitas, A AF Carena, M. Freitas, A. TI Collider searches and cosmology in the MSSM with heavy scalars SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC STANDARD MODEL; ELECTROWEAK PHASE-TRANSITION; EXPLICIT CP VIOLATION; FINITE-TEMPERATURE; BARYON ASYMMETRY; DIMENSIONAL REDUCTION; HIGGS-BOSON; BARYOGENESIS; STOP; OBSERVABLES AB In a variety of supersymmetric extensions of the standard model, the scalar partners of the quarks and leptons are predicted to be very heavy and beyond the reach of next-generation colliders. For instance, the realization of electroweak baryogenesis in supersymmetry requires new sources of CP violation, which can only be naturally accommodated with electric dipole moment constraints if the first- and second-generation scalar fermions are beyond the TeV scale. Also, in focus-point supersymmetry and split supersymmetry the scalar fermions are very heavy. In this work, the phenomenology of scenarios with electroweak baryogenesis and in the focus-point region at the CERN LHC and ILC is studied, which becomes challenging due to the presence of heavy scalar fermions. Implications for the analysis of baryogenesis and dark matter are deduced. It is found that precision measurements of superpartner properties allow an accurate determination of the dark matter relic density in both scenarios, while important but only incomplete information about the baryogenesis mechanism can be obtained. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 73 TC 64 Z9 64 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 095004 DI 10.1103/PhysRevD.74.095004 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700058 ER PT J AU Chou, AS AF Chou, Aaron S. TI Deep shower interpretation of the cosmic ray events observed in excess of the Greisen-Zatsepin-Kuzmin energy SO PHYSICAL REVIEW D LA English DT Article ID ULTRAHIGH-ENERGY; SPECTRUM; DETECTOR AB We consider the possibility that the ultra-high-energy cosmic ray flux has a small component of exotic particles which create showers much deeper in the atmosphere than ordinary hadronic primaries. It is shown that applying the conventional AGASA/HiRes/Auger data analysis procedures to such exotic events results in large systematic biases in the energy spectrum measurement which may distort the shape of the measured spectrum near the expected Greisen-Zatsepin-Kuzmin (GZK) cutoff energy. Sub-GZK exotic showers may be misreconstructed with much higher energies and mimic super-GZK events. Alternatively, super-GZK exotic showers may elude detection by conventional fluorescence analysis techniques. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Chou, AS (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 47 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 10 AR 103001 DI 10.1103/PhysRevD.74.103001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VQ UT WOS:000242409800002 ER PT J AU Dine, M Feng, JL Silverstein, E AF Dine, Michael Feng, Jonathan L. Silverstein, Eva TI Retrofitting O'Raifeartaigh models with dynamical scales SO PHYSICAL REVIEW D LA English DT Article ID MEDIATED SUPERSYMMETRY BREAKING; COSMOLOGICAL CONSTANT; ANOMALOUS U(1); RELAXATION AB We provide a method for obtaining simple models of supersymmetry breaking, with all small mass scales generated dynamically, and illustrate it with explicit examples. We start from models of perturbative supersymmetry breaking, such as O'Raifeartaigh and Fayet models, that would respect an R symmetry if their small input parameters transformed as the superpotential does. By coupling the system to a pure supersymmetric Yang-Mills theory (or a more general supersymmetric gauge theory with dynamically small vacuum expectation values), these parameters are replaced by powers of its dynamical scale in a way that is naturally enforced by the symmetry. We show that supersymmetry breaking in these models may be straightforwardly mediated to the supersymmetric standard model, obtain complete models of direct gauge mediation, and comment on related model building strategies that arise in this simple framework. C1 Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Stanford Univ, SLAC, Stanford, CA 94305 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Dine, M (reprint author), Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. NR 31 TC 115 Z9 115 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 095012 DI 10.1103/PhysRevD.74.095012 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700066 ER PT J AU Duan, HY Fuller, GM Carlson, J Qian, YZ AF Duan, Huaiyu Fuller, George M. Carlson, J. Qian, Yong-Zhong TI Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: Correlated neutrino trajectories SO PHYSICAL REVIEW D LA English DT Article ID CORE-COLLAPSE SUPERNOVAE; STELLAR COLLAPSE; RADIATION HYDRODYNAMICS; DRIVEN WINDS; NUCLEOSYNTHESIS; MATTER; OSCILLATIONS; CONSTRAINTS; TRANSPORT; CAPTURE AB We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (vertical bar m(2)vertical bar 3x10(-3) eV(2)) and values of theta(13) allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the "bi-polar" collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences. C1 Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Duan, HY (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM hduan@ucsd.edu; gfuller@ucsd.edu; carlson@lanl.gov; qian@physics.umn.edu OI Carlson, Joseph/0000-0002-3163-5565 NR 45 TC 198 Z9 198 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 10 AR 105014 DI 10.1103/PhysRevD.74.105014 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VQ UT WOS:000242409800077 ER PT J AU Feldstein, B Hall, LJ Watari, T AF Feldstein, Brian Hall, Lawrence J. Watari, Taizan TI Landscape predictions for the Higgs boson and top quark masses SO PHYSICAL REVIEW D LA English DT Article ID STANDARD-MODEL; VACUUM STABILITY; COSMOLOGICAL CONSTANT; BOUNDS; PHYSICS; METASTABILITY; LEPTOGENESIS; INSTABILITY; CONSTRAINTS; MH AB If the standard model is valid up to scales near the Planck mass, and if the cosmological constant and Higgs mass parameters scan on a landscape of vacua, it is well-known that the observed orders of magnitude of these quantities can be understood from environmental selection for large scale structure and atoms. If in addition the Higgs quartic coupling scans, with a probability distribution peaked at low values, environmental selection for a phase having a scale of electroweak symmetry breaking much less than the Planck scale leads to a most probable Higgs mass of 115 GeV. While fluctuations below this are negligible, the upward fluctuation is 25/p GeV, where p measures the strength of the peaking of the a priori distribution of the quartic coupling. There is an additional +/- 6 GeV uncertainty from calculable higher loop effects, and also sensitivity to the experimental values of m(t) and alpha(s). If the top Yukawa coupling also scans, the most probable top quark mass is predicted to lie in the range (172.4-176.9) GeV, providing the standard model is valid to at least 10(17) GeV, with an additional uncertainty of +/- 3 GeV from higher loops. The downward fluctuation is 35 GeV/root p, suggesting that p is sufficiently large to give a very precise Higgs mass prediction. While a high reheat temperature after inflation could raise the most probable value of the Higgs mass to 124 GeV, maintaining the successful top prediction suggests that reheating is limited to about 10(9) GeV, and that the most probable value of the Higgs mass remains at 115 GeV. If all Yukawa couplings scan, then the e, u, d, and t masses are understood to be outliers having extreme values induced by the pressures of strong environmental selection, while the s, mu, c, b, tau Yukawa couplings span only 2 orders of magnitude, reflecting an a priori distribution peaked around 10(-3). An interesting extension to neutrino masses and leptogenesis follows if right-handed neutrino masses scan, with a preference for larger values, and if T-R and T-max scan with mild distributions. The broad order of magnitude of the light neutrino masses and the baryon asymmetry are correctly predicted, while the right-handed neutrino masses, the reheat temperature and the maximum temperature are all predicted to be of order 10(9) GeV. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Feldstein, B (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. NR 54 TC 28 Z9 28 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 095011 DI 10.1103/PhysRevD.74.095011 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700065 ER PT J AU Gronau, M Rosner, JL Zupan, J AF Gronau, Michael Rosner, Jonathan L. Zupan, Jure TI Updated bounds on CP asymmetries in B-0 ->eta ' K-S and B-0 ->pi K-0(S) SO PHYSICAL REVIEW D LA English DT Article ID B-MESON DECAYS; PHASE-GAMMA; AMPLITUDES; PHYSICS AB New rate measurements of B-0 decays into pi(0)pi(0), pi(0)eta, pi(0)eta('), eta eta, eta eta('), eta(')eta(') and K+K- are used in conjunction with flavor SU(3) to constrain the coefficients S and C of sin Delta mt and cos Delta mt in the time-dependent CP asymmetries of B-0 ->eta K-'(S) and B-0 ->pi K-0(S). Experimental values of (S eta K)-K-' are now seen to be closer to the Standard Model expectations, fully consistent with the new improved bounds. C1 Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Univ Chicago, Dept Phys, Chicago, IL 60637 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Jozef Stefan Inst, SI-1001 Ljubljana, Slovenia. RP Gronau, M (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. NR 36 TC 25 Z9 25 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 093003 DI 10.1103/PhysRevD.74.093003 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700014 ER PT J AU Hill, RJ AF Hill, Richard J. TI Constraints on the form factors for K ->pi l nu and implications for vertical bar V-us vertical bar SO PHYSICAL REVIEW D LA English DT Article ID ZERO MOMENTUM-TRANSFER; QUANTUM CHROMODYNAMICS; DECAYS; BOUNDS; EXPANSION; CURVATURE; CURRENTS; LATTICE; HEAVY; SLOPE AB Rigorous bounds are established for the expansion coefficients governing the shape of semileptonic K ->pi form factors. The constraints enforced by experimental data from tau -> K pi nu eliminate uncertainties associated with model parametrizations in the determination of vertical bar V-us vertical bar. The results support the validity of a powerful expansion that can be applied to other semileptonic transitions. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Hill, RJ (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Hill, Richard/C-8820-2017 OI Hill, Richard/0000-0003-1982-589X NR 28 TC 23 Z9 23 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 096006 DI 10.1103/PhysRevD.74.096006 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700072 ER PT J AU Linder, EV AF Linder, Eric V. TI Importance of supernovae at z < 0.1 for probing dark energy SO PHYSICAL REVIEW D LA English DT Article ID HIGH-REDSHIFT SUPERNOVAE; HUBBLE-SPACE-TELESCOPE; OMEGA(LAMBDA); CONSTRAINTS; PARAMETERS; OMEGA(M); SET AB Supernova experiments to characterize dark energy require a well designed low redshift program; we consider this for both ongoing/near term (e.g. Supernova Legacy Survey) and comprehensive future (e.g. SNAP) experiments. The derived criteria are: a supernova sample centered near z approximate to 0.05 comprising 150-500 (in the former case) and 300-900 (in the latter case) well measured supernovae. Low redshift Type Ia supernovae play two important roles for cosmological use of the supernova distance-redshift relation: as an anchor for the Hubble diagram and as an indicator of possible systematics. An innate degeneracy in cosmological distances implies that 300 nearby supernovae nearly saturate their cosmological leverage for the first use, and their optimum central redshift is z approximate to 0.05. This conclusion is strengthened upon including velocity flow and magnitude offset systematics. Limiting cosmological parameter bias due to supernova population drift (evolution) systematics plausibly increases the requirement for the second use to less than about 900 supernovae. C1 Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. RP Linder, EV (reprint author), Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. NR 16 TC 13 Z9 13 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 10 AR 103518 DI 10.1103/PhysRevD.74.103518 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VQ UT WOS:000242409800026 ER PT J AU Rajagopal, K Sharma, R AF Rajagopal, Krishna Sharma, Rishi TI Crystallography of three-flavor quark matter SO PHYSICAL REVIEW D LA English DT Article ID 2-FLAVOR COLOR SUPERCONDUCTOR; FLAVOR LOCKED PHASE; HIGH-DENSITY; SYMMETRY-BREAKING; BARYON DENSITY; QCD; NEUTRALITY; FIELD; SUPERFLUIDITY AB We analyze and compare candidate crystal structures for the crystalline color superconducting phase that may arise in cold, dense but not asymptotically dense, three-flavor quark matter. We determine the gap parameter Delta and free energy Omega(Delta) for many possible crystal structures within a Ginzburg-Landau approximation, evaluating Omega(Delta) to order Delta(6). In contrast to the two-flavor case, we find a positive Delta(6) term and hence an Omega(Delta) that is bounded from below for all the structures that we analyze. This means that we are able to evaluate Delta and Omega as a function of the splitting between Fermi surfaces for all the structures we consider. We find two structures with particularly robust values of Delta and the condensation energy, within a factor of 2 of those for the CFL phase which is known to characterize QCD at asymptotically large densities. The robustness of these phases results in their being favored over wide ranges of density. However, it also implies that the Ginzburg-Landau approximation is not quantitatively reliable. We develop qualitative insights into what makes a crystal structure favorable, and use these to winnow the possibilities. The two structures that we find to be most favorable are both built from condensates with face-centered cubic symmetry: in one case, the < ud > and < us > condensates are separately face-centered cubic; in the other case < ud > and < us > combined make up a face-centered cube. C1 MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Rajagopal, K (reprint author), MIT, Ctr Theoret Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM krishna@lns.mit.edu; sharma@mit.edu NR 96 TC 71 Z9 71 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 9 AR 094019 DI 10.1103/PhysRevD.74.094019 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VP UT WOS:000242409700042 ER PT J AU Shah, NR Wagner, CEM AF Shah, Nausheen R. Wagner, Carlos E. M. TI Gravitons and dark matter in universal extra dimensions SO PHYSICAL REVIEW D LA English DT Article ID ABUNDANCES; PARTICLES; MODEL AB Models of universal extra dimensions (UED) at the TeV scale lead to the presence of Kaluza Klein (KK) excitations of the ordinary fermions and bosons of the standard model that may be observed at hadron and lepton colliders. A conserved discrete symmetry, KK-parity, ensures the stability of the lightest KK particle (LKP), which, if neutral, becomes a good dark matter particle. It has been recently shown that for a certain range of masses of the LKP a relic density consistent with the experimentally observed one may be obtained. These works, however, ignore the impact of KK graviton production at early times. Whether the G(1) is the LKP or not, the G(n) tower thus produced can decay to the LKP, and depending on the reheating temperature, may lead to a modification of the relic density. In this article, we show that this effect may lead to a relevant modification of the range of KK masses consistent with the observed relic density. Additionally, if evidence for UED is observed experimentally, we find a stringent upper limit on the reheating temperature depending on the mass of the LKP observed. C1 Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Univ Chicago, Kanli Inst Cosmolog Phys, Chicago, IL 60637 USA. Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Shah, NR (reprint author), Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. NR 35 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2006 VL 74 IS 10 AR 104008 DI 10.1103/PhysRevD.74.104008 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 110VQ UT WOS:000242409800037 ER PT J AU Alexandrov, BS Wille, LT Rasmussen, KO Bishop, AR Blagoev, KB AF Alexandrov, B. S. Wille, L. T. Rasmussen, K. O. Bishop, A. R. Blagoev, K. B. TI Bubble statistics and dynamics in double-stranded DNA SO PHYSICAL REVIEW E LA English DT Article ID TRANSCRIPTION; DENATURATION; FLUCTUATIONS; MODEL AB The dynamical properties of double-stranded DNA are studied in the framework of the Peyrard-Bishop-Dauxois model using Langevin dynamics. Our simulations are analyzed in terms of two distribution functions describing localized separations ("bubbles") of the double strand. The result that the bubble distributions are more sharply peaked at the active sites than thermodynamically obtained distributions is ascribed to the fact that the bubble lifetimes affect the distributions. Certain base-pair sequences are found to promote long-lived bubbles, and we argue that this is a result of length scale competition between the nonlinearity and disorder present in the system. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. RP Alexandrov, BS (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. RI Rasmussen, Kim/B-5464-2009; Alexandrov, Boian/D-2488-2010 OI Rasmussen, Kim/0000-0002-4029-4723; Alexandrov, Boian/0000-0001-8636-4603 NR 18 TC 27 Z9 27 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 050901 DI 10.1103/PhysRevE.74.050901 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VF UT WOS:000242408700008 PM 17279870 ER PT J AU Baran, O Ertas, D Halsey, TC Grest, GS Lechman, JB AF Baran, Oleh Ertas, Deniz Halsey, Thomas C. Grest, Gary S. Lechman, Jeremy B. TI Velocity correlations in dense gravity-driven granular chute flow SO PHYSICAL REVIEW E LA English DT Article ID INCLINED PLANE; TRANSITION; HEAP; THIN AB We report numerical results for velocity correlations in dense, gravity-driven granular flow down an inclined plane. For the grains on the surface layer, our results are consistent with experimental measurements reported by Pouliquen. We show that the correlation structure within planes parallel to the surface persists in the bulk. The two-point velocity correlation function exhibits exponential decay for small to intermediate values of the separation between spheres. The correlation lengths identified by exponential fits to the data show nontrivial dependence on the averaging time Delta t used to determine grain velocities. We discuss the correlation length dependence on averaging time, incline angle, pile height, depth of the layer, system size, and grain stiffness and relate the results to other length scales associated with the rheology of the system. We find that correlation lengths are typically quite small, of the order of a particle diameter, and increase approximately logarithmically with a minimum pile height for which flow is possible, h(stop), contrary to the theoretical expectation of a proportional relationship between the two length scales. C1 ExxonMobil Res & Engn Co, Corp Strateg Res, Annandale, NJ 08801 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Baran, O (reprint author), ExxonMobil Res & Engn Co, Corp Strateg Res, Annandale, NJ 08801 USA. NR 15 TC 41 Z9 42 U1 1 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 051302 DI 10.1103/PhysRevE.74.051302 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VF UT WOS:000242408700035 PM 17279897 ER PT J AU Hagberg, A Swart, PJ Schult, DA AF Hagberg, Aric Swart, Pieter J. Schult, Daniel A. TI Designing threshold networks with given structural and dynamical properties SO PHYSICAL REVIEW E LA English DT Article ID COMPLEX NETWORKS; GRAPHS; SYNCHRONIZATION; OSCILLATORS; STABILITY; OUTBREAKS AB The threshold model can be used to generate random networks of arbitrary size with given local properties such as the degree distribution, clustering, and degree correlation. We summarize the properties of networks created using the threshold model and present an alternative deterministic construction. These networks are threshold graphs and therefore contain a highly compressible layered structure and allow computation of important network properties in linear time. We show how to construct arbitrarily large, sparse, threshold networks with (approximately) any prescribed degree distribution or Laplacian spectrum. Control of the spectrum allows careful study of the synchronization properties of threshold networks including the relationship between heterogeneous degrees and resistance to synchrony. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Colgate Univ, Dept Math, Hamilton, NY 13346 USA. RP Hagberg, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 42 TC 19 Z9 19 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 056116 DI 10.1103/PhysRevE.74.056116 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VG UT WOS:000242408800019 PM 17279977 ER PT J AU Hudson, SR AF Hudson, S. R. TI Calculation of cantori for Hamiltonian flows SO PHYSICAL REVIEW E LA English DT Article ID FRENKEL-KONTOROVA MODEL; AREA-PRESERVING MAPS; INVARIANT SURFACES; BOUNDARY CIRCLES; PERIODIC-ORBITS; SYSTEMS; TRANSPORT; STOCHASTICITY AB Cantori are the invariant sets remaining after the destruction of KAM surfaces and create partial barriers to transport in chaotic regions. Cantori may be approximated by high-order periodic orbits; however, field line tracing methods for locating periodic orbits perform poorly in chaotic regions. To approximate cantori for continuous flow dynamics, high-order periodic orbits are determined by Lagrangian variational methods. The method is robust to chaos, converges quadratically, and the computational cost scales linearly with the periodicity length of the orbit. Minimizing-periodic orbits with periodicities in the tens of thousands, that closely approximate cantori, have been constructed. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hudson, SR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 NR 29 TC 15 Z9 15 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 056203 DI 10.1103/PhysRevE.74.056203 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VG UT WOS:000242408800022 PM 17279980 ER PT J AU Liu, W Goodman, J Herron, I Ji, HT AF Liu, Wei Goodman, Jeremy Herron, Isom Ji, Hantao TI Helical magnetorotational instability in magnetized Taylor-Couette flow SO PHYSICAL REVIEW E LA English DT Article ID ACCRETION DISKS; SHEAR-FLOW; TURBULENCE; STABILITY; FIELDS; SIMULATIONS; CYLINDERS; TRANSPORT AB Hollerbach and Rudiger have reported a new type of magnetorotational instability (MRI) in magnetized Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields. The salient advantage of this "helical" MRI (HMRI) is that marginal instability occurs at arbitrarily low magnetic Reynolds and Lundquist numbers, suggesting that HMRI might be easier to realize than standard MRI (axial field only), and that it might be relevant to cooler astrophysical disks, especially those around protostars, which may be quite resistive. We confirm previous results for marginal stability and calculate HMRI growth rates. We show that in the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along the axis. But we report other features of HMRI that make it less attractive for experiments and for resistive astrophysical disks. Large axial currents are required. More fundamentally, instability of highly resistive flow is peculiar to infinitely long or periodic cylinders: finite cylinders with insulating endcaps are shown to be stable in this limit, at least if viscosity is neglected. Also, Keplerian rotation profiles are stable in the resistive limit regardless of axial boundary conditions. Nevertheless, the addition of a toroidal field lowers thresholds for instability even in finite cylinders. C1 Princeton Univ, Ctr Magnet Self Org Lab & Astrophys Plasma, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Princeton Univ Observ, Princeton, NJ 08544 USA. Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA. RP Liu, W (reprint author), Princeton Univ, Ctr Magnet Self Org Lab & Astrophys Plasma, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wliu@pppl.gov OI Liu, Wei/0000-0003-0935-3999 NR 26 TC 45 Z9 45 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 056302 DI 10.1103/PhysRevE.74.056302 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VG UT WOS:000242408800030 PM 17279988 ER PT J AU Martin, JE Anderson, RA Read, D Gulley, G AF Martin, James E. Anderson, Robert A. Read, Douglas Gulley, Gerald TI Magnetostriction of field-structured magnetoelastomers SO PHYSICAL REVIEW E LA English DT Article ID COMPOSITES AB We investigate the magnetostriction of field-structured magnetoelastomers, which are an important class of materials that have great potential as both sensors and actuators. Field-structured magnetoelastomers are synthesized by suspending magnetic particles in a polymeric resin and subjecting these to magnetic structuring fields during polymerization. These structuring fields can consist of as many as three orthogonal ac components, allowing a wide variety of particles structures-chains, sheets, or networks-to be formed. A principal issue is how particle structure and loading affects the magnetostriction of these materials. To investigate magnetostriction in these field-structured composites we have constructed a constant stress, optical cantilever apparatus capable of 1 ppm strain resolution. Magnetoelastomers having a wide range of particle loadings and structures are investigated, and it is shown that the observed deformation depends strongly on composite structure. The best magnetoelastomers exhibit a contractive strain of 10 000 ppm, the worst materials exhibit a negative, tensile response, which we show is due to the dominance of demagnetizing field effects over magnetostriction. Finally, some discussion is given to the surprising finding that magnetostriction is proportional to the sample prestrain. Simulations of a chain of particles in an elastomer show that particle clumping transitions can occur, but this does not account for the dependence of magnetostriction on prestrain. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Dominican Univ, River Forest, IL 60305 USA. RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 9 TC 19 Z9 19 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 051507 DI 10.1103/PhysRevE.74.051507 PN 1 PG 17 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VF UT WOS:000242408700055 PM 17279917 ER PT J AU Reed, EJ Fried, LE Henshaw, WD Tarver, CM AF Reed, Evan J. Fried, Laurence E. Henshaw, William D. Tarver, Craig M. TI Analysis of simulation technique for steady shock waves in materials with analytical equations of state SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS; COMPUTER EXPERIMENTS; CLASSICAL FLUIDS; TEMPERATURE; DETONATIONS; CRYSTAL AB We calculate and analyze a thermodynamic limit of a multiscale molecular dynamics based scheme that we have developed previously for simulating shock waves. We validate and characterize the performance of the former scheme for several simple cases. Using model equations of state for chemical reactions and kinetics in a gas and a condensed phase explosive, we show that detonation wave profiles computed using the computational scheme are in good agreement with the steady state wave profiles of hydrodynamic direct numerical simulations. We also characterize the stability of the technique when applied to detonation waves and describe a technique for determining the detonation shock speed. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. RP Reed, EJ (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. EM reed23@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 NR 23 TC 34 Z9 35 U1 1 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 056706 DI 10.1103/PhysRevE.74.056706 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VG UT WOS:000242408800062 PM 17280020 ER PT J AU Reichhardt, CJO Reichhardt, C AF Reichhardt, C. J. Olson Reichhardt, C. TI Electrophoresis of DNA on a disordered two-dimensional substrate SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; GEL-ELECTROPHORESIS; BROWNIAN DYNAMICS; LIPID-BILAYERS; HYDRODYNAMIC INTERACTIONS; MICROLITHOGRAPHIC ARRAYS; BIOLOGICAL-MEMBRANES; ENTROPIC TRAP; FLAT SURFACE; SEPARATION AB We propose a method for electrophoretic separation of DNA in which adsorbed polymers are driven over a disordered two-dimensional substrate which contains attractive sites for the polymers. Using simulations of a model for long polymer chains, we show that the mobility increases with polymer length, in contrast to gel electrophoresis techniques, and that separation can be achieved for a range of length scales. We demonstrate that the separation mechanism relies on steric interactions between polymer segments, which prevent substrate disorder sites from trapping more than one DNA segment each. Since thermal activation does not play a significant role in determining the polymer mobility, band broadening due to diffusion can be avoided in our separation method. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 NR 57 TC 8 Z9 8 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 051908 DI 10.1103/PhysRevE.74.051908 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VF UT WOS:000242408700078 PM 17279940 ER PT J AU Tsimpanogiannis, IN Lichtner, PC AF Tsimpanogiannis, Ioannis N. Lichtner, Peter C. TI Pore-network study of methane hydrate dissociation SO PHYSICAL REVIEW E LA English DT Article ID CRITICAL GAS SATURATION; POROUS-MEDIA; CARBON-DIOXIDE; SIZE DISTRIBUTIONS; MARINE-SEDIMENTS; INVASION PERCOLATION; PHASE-EQUILIBRIA; BUBBLE-GROWTH; CO2; SILICA AB A two-dimensional pore-network model based on invasion percolation is used to study the patterns obtained from the release of methane during the dissociation of methane hydrates (without including dissociation kinetics) caused by a sudden pressure reduction in the system below the hydrate equilibrium pressure. The concept of the critical gas saturation S-gc (volume fraction of the gas phase at the onset of bulk gas flow) is introduced to analyze gas hydrate dissociation. The effects of throat-size distribution (corresponding to off-shore oceanic sediments or on-shore sediments under permafrost), applied pressure difference across the network, and initial hydrate saturation on the resulting gas patterns and on the critical gas saturation are examined to determine the possibility of producing methane. As expected, large throat sizes or wide throat distributions, large pressure drops, and higher initial hydrate saturation act as promoters for the production of the released gas. For typical deep ocean sediments with small pore sizes and low hydrate saturation, it may be difficult to produce methane resulting from hydrate dissociation. C1 Los Alamos Natl Lab, Hydrol Geochem & Geol Grp, Los Alamos, NM 87545 USA. RP Tsimpanogiannis, IN (reprint author), Los Alamos Natl Lab, Hydrol Geochem & Geol Grp, EES-6,MS T003, Los Alamos, NM 87545 USA. EM tsimpano@usc.edu NR 75 TC 11 Z9 12 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2006 VL 74 IS 5 AR 056303 DI 10.1103/PhysRevE.74.056303 PN 2 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 110VG UT WOS:000242408800031 PM 17279989 ER PT J AU Ives, HC Stygar, WA Fehl, DL Ramirez, LE Dropinski, SC Wall, DL Anctil, JS McGurn, JS Pyle, JH Hanson, DL Allison, BN Berninger, MJ Bryce, EA Chandler, GA Cuneo, ME Fox, AJ Gilliland, TL Haslett, CL Leeper, RJ Lewis, DF Lucero, MA Mazarakis, MG McDaniel, DH McKenney, JL Mills, JA Mix, LP Porter, JL Ritchey, MB Ruggles, LE Seamen, JF Simpson, WW Spielman, RB Torres, JA Vargas, MF Wagoner, TC Warne, LK York, MW AF Ives, H. C. Stygar, W. A. Fehl, D. L. Ramirez, L. E. Dropinski, S. C. Wall, D. L. Anctil, J. S. McGurn, J. S. Pyle, J. H. Hanson, D. L. Allison, B. N. Berninger, M. J. Bryce, E. A. Chandler, G. A. Cuneo, M. E. Fox, A. J. Gilliland, T. L. Haslett, C. L. Leeper, R. J. Lewis, D. F. Lucero, M. A. Mazarakis, M. G. McDaniel, D. H. McKenney, J. L. Mills, J. A. Mix, L. P. Porter, J. L. Ritchey, M. B. Ruggles, L. E. Seamen, J. F. Simpson, W. W. Spielman, R. B. Torres, J. A. Vargas, M. F. Wagoner, T. C. Warne, L. K. York, M. W. TI Measurement of the energy and power radiated by a pulsed blackbody x-ray source SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID NATIONAL-IGNITION-FACILITY; DIAMOND PHOTOCONDUCTIVE DETECTORS; TRANSMISSION GRATINGS; PLASMAS; LASER; DIAGNOSTICS; CALIBRATION; ARRAY; SPECTROMETER; ACCELERATOR AB We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-mu m-diameter pinholes in a 50-mu m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of similar to 1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 ( 1999)]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view ( without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and - on every shot - provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model ( which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented. C1 EG&G, Albuquerque, NM 87107 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Ktech Corp Inc, Albuquerque, NM 87123 USA. Resonet Inc, Nashua, NH 03063 USA. Bechtel Nevada, Los Alamos, NM 87544 USA. Int Specialty Prod, Wayne, NJ 07470 USA. RP Ives, HC (reprint author), EG&G, Albuquerque, NM 87107 USA. NR 51 TC 11 Z9 11 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2006 VL 9 IS 11 AR 110401 DI 10.1103/PhysRevSTAB.9.110401 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 121OX UT WOS:000243168000002 ER PT J AU Molloy, S Frisch, J McCormick, D May, J Ross, M Smith, T Baboi, N Hensler, O Petrosyan, L Napoly, O Paparella, RC Simon, C Eddy, N Nagaitsev, S Wendt, M AF Molloy, Stephen Frisch, Josef McCormick, Doug May, Justin Ross, Marc Smith, Tonee Baboi, Nicoleta Hensler, Olaf Petrosyan, Lyudvig Napoly, Olivier Paparella, Rita C. Simon, Claire Eddy, Nathan Nagaitsev, Sergei Wendt, Manfred TI High precision superconducting cavity diagnostics with higher order mode measurements SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Experiments at the FLASH facility at DESY have demonstrated that the higher order modes induced in superconducting cavities can be used to provide a variety of beam and cavity diagnostics. The axes of the modes can be determined from the beam orbit that produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used to obtain high resolution beam position information, and the phase of the monopole modes to measure the beam phase relative to the accelerator rf. For most superconducting accelerators, the existing higher order mode couplers provide the necessary signals, and the downmix and digitizing electronics are straightforward, similar to those for a conventional beam position monitor. C1 SLAC, Menlo Pk, CA 94025 USA. DESY, D-2000 Hamburg, Germany. CEA, Gif Sur Yvette, France. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Molloy, S (reprint author), SLAC, Menlo Pk, CA 94025 USA. EM smolloy@slac.stanford.edu NR 25 TC 7 Z9 7 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2006 VL 9 IS 11 AR 112802 DI 10.1103/PhysRevSTAB.9.112802 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 121OX UT WOS:000243168000007 ER PT J AU Tantawi, SG AF Tantawi, Sami G. TI rf distribution system for a set of standing-wave accelerator structures SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this paper, we study the rf feeding system for a set of standing-wave accelerator structures. To avoid the initial reflections produced by the structures, sometimes these structures are fed in pairs through a four-port 3-dB hybrid. We present an extension to this system for an arbitrary number of accelerator structures and show it is always possible to cancel the reflection back to the source. The necessary and sufficient condition for this to happen depends only on the spacing between accelerator structures. In this system, the structures are not fed in a binary hierarchal system, rather in series with a set of directional couplers designed to extract an equal amount of power to each accelerator structure in the set. We study the sensitivity of such a system to errors resulting from the differences in accelerator structure spacing. We also study the sensitivity of the system to component imperfections, such as the finite directivity of the directional couplers, and the residual reflections from the loads that are attached to these couplers. We also study the system under fault conditions, such as a breakdown in an accelerator structure or a feed waveguide. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Tantawi, SG (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM tantawi@slac.stanford.edu NR 5 TC 4 Z9 4 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2006 VL 9 IS 11 AR 112001 DI 10.1103/PhysRevSTAB.9.112001 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 121OX UT WOS:000243168000004 ER PT J AU Zhou, F Kabel, A Rosenzweig, J Agustsson, R Andonian, G Cline, D Murokh, A Yakimenko, V AF Zhou, F. Kabel, A. Rosenzweig, J. Agustsson, R. Andonian, G. Cline, D. Murokh, A. Yakimenko, V. TI Experimental characterization of the transverse phase space of a 60-MeV electron beam through a compressor chicane SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID EMITTANCE GROWTH AB Space charge and coherent synchrotron radiation may deteriorate electron beam quality when the beam passes through a magnetic bunch compressor. This paper presents the transverse phase-space tomographic measurements for a compressed beam at 60 MeV, around which energy the first stage of magnetic bunch compression takes place in most advanced linacs. Transverse phase-space bifurcation of a compressed beam is observed at that energy, but the degree of the space charge-induced bifurcation is appreciably lower than the one observed at 12 MeV. C1 Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Accelerator Ctr, Menlo Pk, CA 94025 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zhou, F (reprint author), SLAC, Menlo Pk, CA 94025 USA. EM zhoufeng@slac.stanford.edu NR 26 TC 11 Z9 11 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2006 VL 9 IS 11 AR 114201 DI 10.1103/PhysRevSTAB.9.114201 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 121OX UT WOS:000243168000008 ER PT J AU Li, J Sturhahn, W Jackson, JM Struzhkin, VV Lin, JF Zhao, J Mao, HK Shen, G AF Li, J. Sturhahn, W. Jackson, J. M. Struzhkin, V. V. Lin, J. F. Zhao, J. Mao, H. K. Shen, G. TI Pressure effect on the electronic structure of iron in (Mg,Fe)(Si,Al)O-3 perovskite: a combined synchrotron Mossbauer and X-ray emission spectroscopy study up to 100 GPa SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE aluminum-bearing perovskite; valence state; spin crossover; synchrotron Mossbauer spectroscopy; X-ray emission spectroscopy; pressure effect ID EARTHS LOWER MANTLE; MAGNESIUM-SILICATE PEROVSKITE; FERRIC IRON; (MG,FE)SIO3 PEROVSKITE; SPIN TRANSITION; STATE; SPECTRA; MAGNESIOWUSTITE; DISCONTINUITY; SCATTERING AB We investigated the valence state and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample with the composition (Mg0.88Fe0.09) (Si0.94Al0.10) O-3 between 1 bar and 100 GPa and at 300 K, using diamond cells and synchrotron Mossbauer spectroscopy techniques. At pressures below 12 GPa, our Mossbauer spectra can be sufficiently fitted by a "two-doublet'' model, which assumes one ferrous Fe2+-like site and one ferric Fe3+-like site with distinct hyperfine parameters. The simplest interpretation that is consistent with both the Mossbauer data and previous X-ray emission data on the same sample is that the Fe2+-like site is high-spin Fe2+, and the Fe3+-like site is high-spin Fe3+. At 12 GPa and higher pressures, a "three-doublet'' model is necessary and sufficient to fit the Mossbauer spectra. This model assumes two Fe2+-like sites and one Fe3+-like site distinguished by their hyperfine parameters. Between 12 and 20 GPa, the fraction of the Fe3+-like site, Fe3+/ Sigma Fe, changes abruptly from about 50 to 70%, possibly due to a spin crossover in six-coordinate Fe2+. At pressures above 20 GPa, the fractions of all three sites remain unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. From 20 to 100 GPa, the isomer shift between the Fe3+-like and Fe2+-like sites increases slightly, while the values and widths of the quadruple splitting of all three sites remain essentially constant. In conjunction with the previous X-ray emission data, the Mossbauer data suggest that Fe2+ alone, or concurrently with Fe3+, undergoes pressure-induced spin crossover between 20 and 100 GPa. C1 Univ Illinois, Dept Geol, Urbana, IL 61801 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Li, J (reprint author), Univ Illinois, Dept Geol, 245 Nat Hist Bldg,1301 W Green St, Urbana, IL 61801 USA. EM jackieli@uiuc.edu RI Lin, Jung-Fu/B-4917-2011; Shen, Guoyin/D-6527-2011; Struzhkin, Viktor/J-9847-2013 OI Struzhkin, Viktor/0000-0002-3468-0548 NR 48 TC 63 Z9 63 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD NOV PY 2006 VL 33 IS 8-9 BP 575 EP 585 DI 10.1007/s00269-006-0105-y PG 11 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 101OW UT WOS:000241751100006 ER PT J AU Gavrin, VN Abdurashitov, JN Barsanov, VI Bowles, TJ Cleveland, BT Elliott, SR Girin, SV Gorbachev, VV Gurkina, PP Haxton, WC Ibragimova, TV Janelidze, AA Kalikhov, AV Karpenko, AI Khairnasov, NG Khomyakov, YS Knodel, TV Korenkova, AV Kotelnikov, NA Lande, K Maltsev, VV Markov, SY Matveev, VA Mirmov, IN Mishin, OV Nico, JS Oshkanov, NN Petrov, AN Poplavsky, VM Popov, VV Selin, VV Shakirov, ZN Shikhin, AA Suzuki, A Teasdale, WA Tuchkov, AM Vasiliev, BA Veretenkin, EP Vermul, VM Voronov, SA Wilkerson, JF Yants, VE Zamyatina, AA Zatsepin, GT Zlokazov, SB AF Gavrin, V. N. Abdurashitov, J. N. Barsanov, V. I. Bowles, T. J. Cleveland, B. T. Elliott, S. R. Girin, S. V. Gorbachev, V. V. Gurkina, P. P. Haxton, W. C. Ibragimova, T. V. Janelidze, A. A. Kalikhov, A. V. Karpenko, A. I. Khairnasov, N. G. Khomyakov, Yu. S. Knodel, T. V. Korenkova, A. V. Kotelnikov, N. A. Lande, K. Maltsev, V. V. Markov, S. Yu. Matveev, V. A. Mirmov, I. N. Mishin, O. V. Nico, J. S. Oshkanov, N. N. Petrov, A. N. Poplavsky, V. M. Popov, V. V. Selin, V. V. Shakirov, Z. N. Shikhin, A. A. Suzuki, A. Teasdale, W. A. Tuchkov, A. M. Vasiliev, B. A. Veretenkin, E. P. Vermul, V. M. Voronov, S. A. Wilkerson, J. F. Yants, V. E. Zamyatina, A. A. Zatsepin, G. T. Zlokazov, S. B. TI Measurement of the response of a Ga solar neutrino experiment to Ar-37 source SO PHYSICS OF ATOMIC NUCLEI LA English DT Article ID ORBITAL-ELECTRON-CAPTURE; INNER BREMSSTRAHLUNG; CALIBRATION SOURCE; GALLIUM; DECAY; DETECTORS; CHLORINE AB An intense Ar-37 source was produced by the (n, alpha) reaction on Ca-40 by irradiating 330 kg of calcium oxide in the fast neutron breeder reactor at Zarechny, Russia. The Ar-37 was released from the solid target by dissolution in acid, collected from this solution, purified, sealed into a small source, and brought to the Baksan Neutrino Observatory, where it was used to irradiate 13 t of gallium metal in the Russian-American solar neutrino experiment SAGE. Ten exposures of the gallium to the source, whose initial strength was similar to 409 +/- 2kCi, were carried out during the period from April to September 2004. The Ge-71s produced by the reaction Ga-71(nu(e), e(-))Ge-71 was extracted, purified, and counted. The measured production rate was 11.0(-0.9)(+1.0) (stat.) +/- 0.6 (syst.) atoms of Ge-71/d, which is 0.79(-0.10)(+0.09) of the theoretically calculated production rate. C1 Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. Inst Nucl Mat, Zarechnyi 624250, Russia. Los Alamos Natl Lab, Los Alamos, NM USA. Univ Washington, Seattle, WA 98195 USA. Beloyarsk Nucl Power Plant, Zarechnyi 624250, Russia. Inst Phys & Power Engn, Obninsk 249020, Kaluga Oblast, Russia. Univ Penn, Philadelphia, PA 19104 USA. OKB Mech Engn, Nizhnii Novgorod 603074, Russia. Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. Tohoku Univ, Sendai, Miyagi 9808578, Japan. RP Gavrin, VN (reprint author), Russian Acad Sci, Inst Nucl Res, Pr Shestidesyatiletiya Oktyabrya 7A, Moscow 117312, Russia. EM gavrin@dionis.iasnet.ru RI Abdurashitov, Dzhonrid/B-2206-2014; Yants, Viktor/C-1038-2014; OI Abdurashitov, Dzhonrid/0000-0002-1577-1364; Wilkerson, John/0000-0002-0342-0217 NR 29 TC 0 Z9 0 U1 1 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD NOV PY 2006 VL 69 IS 11 BP 1820 EP 1828 DI 10.1134/S1063778806110032 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 105VU UT WOS:000242061200003 ER PT J AU Gao, Z Fisch, NJ Qin, H AF Gao, Zhe Fisch, Nathaniel J. Qin, Hong TI Nonlinear ponderomotive force by low frequency waves and nonresonant current drive SO PHYSICS OF PLASMAS LA English DT Article ID HELICITY INJECTION; PLASMA TRANSPORT; ALFVEN AB The collisionless nonresonant force by low frequency waves has been thought to be capable of driving the nonresonant current. However, for a single particle, the ponderomotive force is in the direction of the gradient of the wave field energy. For cold plasmas, the Reynolds stress acting on the Lagrangian fluid element fully counteracts the nonresonant force offered by the quasilinear electromagnetic force. For hot plasmas, the collisionless nonresonant force is also cancelled by the nonlinear kinetic stress force. Therefore, in collisionless plasmas, none of the ponderomotive forces by low frequency waves can drive the nonresonant current. (c) 2006 American Institute of Physics. C1 Tsing Hua Univ, Dept Engn, Beijing 100084, Peoples R China. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gao, Z (reprint author), Tsing Hua Univ, Dept Engn, Beijing 100084, Peoples R China. NR 29 TC 10 Z9 11 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2006 VL 13 IS 11 AR 112307 DI 10.1063/1.2397584 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 110VD UT WOS:000242408500020 ER PT J AU Gerhardt, SP Belova, E Inomoto, M Yamada, M Ji, H Ren, Y Kuritsyn, A AF Gerhardt, S. P. Belova, E. Inomoto, M. Yamada, M. Ji, H. Ren, Y. Kuritsyn, A. TI Equilibrium and stability studies of oblate field-reversed configurations in the Magnetic Reconnection Experiment SO PHYSICS OF PLASMAS LA English DT Article ID NEUTRAL BEAM INJECTION; INTERCHANGE STABILITY; ION RINGS; ROTATIONAL INSTABILITY; NONLINEAR STABILITY; TILTING INSTABILITY; LABORATORY PLASMA; SPHEROMAK PLASMA; GLOBAL STABILITY; CONFINED PLASMA AB The equilibrium and stability of oblate field-reversed configurations (FRCs) have been studied in the Magnetic Reconnection Experiment [M. Yamada , Phys. Plasmas 4, 1936 (1997)]. In the absence of a passive stabilization, tilt and shift instabilities often become unstable, with the tilt in particular limiting the plasma lifetime. The tilt instability can be mitigated by either including a passive stabilizing conductor, or by forming very oblate plasmas. Large perturbations (n=2 and 3) may still remain after passive stabilization is applied. These perturbations have the characteristics of co-interchange modes, which have never been observed, and can lead to the early termination of the plasma. The co-interchange modes can be minimized through the formation of plasmas with a very oblate shape, leading to the maximum FRC lifetime. A code has been developed to calculate equilibria for these plasmas. A rigid-body model explains the improved stability of oblate plasmas to n=1 tilt modes. Numerical calculations indicate improved stability to n >= 2 co-interchange modes for the very oblate plasma shapes. (c) 2006 American Institute of Physics. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Yamada, Masaaki/D-7824-2015 OI Yamada, Masaaki/0000-0003-4996-1649 NR 100 TC 14 Z9 15 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2006 VL 13 IS 11 AR 112508 DI 10.1063/1.2360912 PG 18 WC Physics, Fluids & Plasmas SC Physics GA 110VD UT WOS:000242408500028 ER PT J AU Hansen, JF Edwards, MJ Froula, DH Edens, AD Gregori, G Ditmire, T AF Hansen, J. F. Edwards, M. J. Froula, D. H. Edens, A. D. Gregori, G. Ditmire, T. TI Secondary shock formation in xenon-nitrogen mixtures SO PHYSICS OF PLASMAS LA English DT Article ID BLAST WAVES; SUPERNOVA; ASTROPHYSICS; INSTABILITY; TRANSITION; GAS AB The expansion of shock waves has been studied in mediums with different opacities and heat capacities, varied in systematic ways by mixing xenon with nitrogen keeping the mass density constant. An initial shock is generated through the brief (5 ns) deposition of laser energy (5 J) on the tip of a pin surrounded by the xenon-nitrogen mixture. The initial shock is spherical, radiative, with a high Mach number, and it sends a supersonic radiatively driven heat wave far ahead of itself. The heat wave rapidly slows to a transonic regime and when its Mach number drops to similar to 2 with respect to the downstream plasma, the heat wave becomes of the ablative type, driving a second shock ahead of itself to satisfy mass and momentum conservation in the heat wave reference frame. The details of this sequence of events depend, among other things, on the opacity and heat capacity of the surrounding medium. Second shock formation is observed over the entire range from 100% Xe mass fraction to 100% N-2. The formation radius of the second shock as a function of Xe mass fraction is consistent with an analytical estimate. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Rutherford Appleton Lab, LRC, Didcot OX11 0QX, Oxon, England. Univ Texas, Austin, TX 78712 USA. RP Hansen, JF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 33 TC 4 Z9 4 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2006 VL 13 IS 11 AR 112101 DI 10.1063/1.2359283 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 110VD UT WOS:000242408500003 ER PT J AU Hu, B Betti, R Manickam, J AF Hu, Bo Betti, R. Manickam, J. TI Kinetic stability of the internal kink mode in ITER SO PHYSICS OF PLASMAS LA English DT Article ID BANANA REGIME; PLASMA; IONS; PARTICLES; STABILIZATION; EQUILIBRIUM; PROFILES; TOKAMAKS AB The kinetic stability of the n=1, m=1 internal kink mode is analyzed for realistic equilibria typical of the standard operation scenario of ITER (the International Thermonuclear Experimental Reactor) [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)]. The kinetic effects modify the inertia and the perturbed potential energy delta W of the mode, the two key elements determining the mode stability. Numerical results are obtained for ITER-like equilibria with different q profiles. For moderate magnetic shear within the q=1 surface, the low frequency magnetohydrodynamic (MHD) branch is fully suppressed by the kinetic effects for the expected profiles and parameters up to twice the expected plasma beta while the high frequency fishbone branch is found to be destabilized as the plasma beta and the radius of the q=1 surface increase. The MHD branch can be destabilized at higher plasma beta or larger radii of the q=1 surface only for q profiles with a low magnetic shear within the q=1 surface. (c) 2006 American Institute of Physics. C1 Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. Univ Rochester, Dept Mech Engn, Laser Energet Lab, Rochester, NY 14623 USA. Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hu, B (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. NR 26 TC 36 Z9 36 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2006 VL 13 IS 11 AR 112505 DI 10.1063/1.2364147 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 110VD UT WOS:000242408500025 ER PT J AU Hurricane, OA Hammer, JH AF Hurricane, O. A. Hammer, J. H. TI Bent Marshak waves SO PHYSICS OF PLASMAS LA English DT Article ID RADIATION AB Radiation-driven heat waves (Marshak waves) are ubiquitous in astrophysics and terrestrial laser-driven high-energy density plasma physics experiments. Generally, the equations describing Marshak waves are so nonlinear, that solutions involving more than one spatial dimension require simulation. However, in this paper it is shown that one may analytically solve the problem of the two-dimensional nonlinear evolution of a Marshak wave, bounded by lossy walls, using an asymptotic expansion in a parameter related to the wall albedo and a simplification of the heat front equation of motion. Three parameters determine the nonlinear evolution: a modified Markshak diffusion constant, a smallness parameter related to the wall albedo, and the spacing of the walls. The final nonlinear solution shows that the Marshak wave will be both slowed and bent by the nonideal boundary. In the limit of a perfect boundary, the solution recovers the original diffusion-like solution of Marshak. The analytic solution will be compared to a limited set of simulation results and experimental data. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hurricane, OA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hurricane1@llnl.gov NR 12 TC 5 Z9 5 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2006 VL 13 IS 11 AR 113303 DI 10.1063/1.2388268 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 110VD UT WOS:000242408500053 ER PT J AU Michel, P Esarey, E Schroeder, CB Shadwick, BA Leemans, WP AF Michel, P. Esarey, E. Schroeder, C. B. Shadwick, B. A. Leemans, W. P. TI Efficient electron injection into plasma waves using higher-order laser modes SO PHYSICS OF PLASMAS LA English DT Article ID PULSES; ACCELERATION; BEAMS; GENERATION AB Using higher-order transverse laser modes as drivers for plasma wave excitation, and, in particular, using ring laser beams with maximum intensities off-axis, results in reversal of the focusing and defocusing phase regions in a laser wakefield accelerator. This results in improved performance of self-trapping and laser injection schemes. Specifically, the trapping threshold required for optical injection is decreased and the maximum energy gain of the trapped electrons is increased. This method could also be of interest for the generation of ring electron beams or for beam conditioning. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Michel, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Michel, Pierre/J-9947-2012; OI Schroeder, Carl/0000-0002-9610-0166 NR 24 TC 6 Z9 7 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2006 VL 13 IS 11 AR 113112 DI 10.1063/1.2378627 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 110VD UT WOS:000242408500050 ER PT J AU Schneider, MB Hinkel, DE Landen, OL Froula, DH Heeter, RF Langdon, AB May, MJ McDonald, J Ross, JS Singh, MS Suter, LJ Widmann, K Young, BK Baldis, HA Constantin, C Bahr, R Glebov, VY Seka, W Stoeckl, C AF Schneider, M. B. Hinkel, D. E. Landen, O. L. Froula, D. H. Heeter, R. F. Langdon, A. B. May, M. J. McDonald, J. Ross, J. S. Singh, M. S. Suter, L. J. Widmann, K. Young, B. K. Baldis, H. A. Constantin, C. Bahr, R. Glebov, V. Yu. Seka, W. Stoeckl, C. TI Plasma filling in reduced-scale hohlraums irradiated with multiple beam cones SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; NATIONAL IGNITION FACILITY; X-RAY BURNTHROUGH; PHYSICS BASIS; LASER; DRIVE; ABSORPTION; ELECTRON; TARGETS; LIGHT AB The radiation temperature achieved inside a hohlraum, a high-Z cylindrical cavity heated by high-power lasers, is limited by plasma filling of ablated wall material. Recent work [Dewald , Phys. Rev. Lett. 95, 215004 (2005)] tested radiation temperature limits in a simple on-axis laser-hohlraum geometry and validated an analytic plasma-fill model. The experiments reported here use several cones of beams to heat a 600 mu m diameter hohlraum. Thin-walled images show the time evolution: plasma stagnation followed by plasma filling of the hohlraum cavity. Features in the Raman backscatter spectra are correlated to the thin-walled images to measure a fill time. The quantity of hard x rays produced by hot electrons is proportional to the time left in the laser pulse after the fill time. Simulations using the radiation-hydrodynamic code LASNEX and the analytic plasma-fill model predict plasma filling consistent with the data. LASNEX predicts a much higher electron temperature than the analytic model. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Schneider, MB (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM schneider5@llnl.gov NR 37 TC 15 Z9 15 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2006 VL 13 IS 11 AR 112701 DI 10.1063/1.2370697 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 110VD UT WOS:000242408500034 ER PT J AU Simakov, AN Catto, PJ AF Simakov, Andrei N. Catto, Peter J. TI Self-consistent radial electric field in collisional screw-pinches and axisymmetric closed field line configurations in the absence of fluctuations SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; TRANSPORT; TOKAMAK; ROTATION; FUSION; FRC AB Collisional plasma confined by magnetic fields in a screw-pinch and any axisymmetric, up-down symmetric closed magnetic field line configuration (such as a dipole or a field reversed configuration) is considered, and equations governing the evolution of the self-consistent radial electric field and flow are derived for each case, provided that effects of plasma fluctuations are negligible. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, MS K717, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153 NR 21 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2006 VL 13 IS 11 AR 112509 DI 10.1063/1.2395934 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 110VD UT WOS:000242408500029 ER PT J AU Garcia, R Tkalcic, H Chevrot, S AF Garcia, R. Tkalcic, H. Chevrot, S. TI A new global PKP data set to study Earth's core and deep mantle SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE core phases; seismic waves; inner core; simulated annealing ID DIFFERENTIAL TRAVEL-TIMES; TRANSVERSELY ISOTROPIC MEDIA; INNERMOST INNER-CORE; P-WAVE PROPAGATION; NONLINEAR INVERSION; SCALE HETEROGENEITY; SEISMIC ATTENUATION; ANISOTROPY; PKIKP; PHASES AB We present an extension of the previously developed algorithm for Simulated Annealing Waveform Inversion of Body waves (SAWIB) to resolve the interference between direct PKP seismic phases and their corresponding depth phases (pPKP and sPKP) which occurs for shallow earthquakes. This allows us to process shallow earthquakes previously discarded by the analysts, and therefore improve spatial sampling of the deep Earth by PKP phases. The SAWIB algorithm is applied to available waveform data to determine PKP travel times and amplitudes. The new data set of PKP travel times and amplitudes is significantly larger than previous ones. PKP (bc-df) differential travel time residuals display a hemispherical pattern in the inner core when plotted as a function of the angle between PKPdf propagation direction in the inner core and Earth's rotation axis. Most anomalous differential travel times are along polar paths in the quasi-western hemisphere (180 degrees W-40 degrees E), corresponding to earthquakes in the South Sandwich Islands recorded at northern seismic stations. PKP (ab-df) differential travel times display a larger scatter, which we attribute to heterogeneities at the base of the mantle. Relative amplitudes and t* attenuation parameters are analyzed in terms of inner core attenuation. The inner core attenuation decreases with increasing depth. In the upper inner core, in the depth range 150-220 km, an hemispherical pattern appears with a quasi-western hemisphere (40 degrees E-180 degrees E) faster and more attenuating than the rest of the inner core. When stacking PKP waveforms deconvolved by their source time function, we do not find evidence of a global innermost inner core velocity discontinuity. However we cannot rule out the existence of strong local heterogeneities or radial anisotropy variations from our data. (c) 2006 Elsevier B.V. All rights reserved. C1 CNRS, UMR7154, IPGP, Equipe Etud Spatiales & Planetol, F-94107 St Mau Fosses, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Observ Midi Pyrenees, CNRS, UMR5562, F-31400 Toulouse, France. RP Garcia, R (reprint author), CNRS, UMR7154, IPGP, Equipe Etud Spatiales & Planetol, 4 Ave Neptune, F-94107 St Mau Fosses, France. EM garcia@ipgp.jussieu.fr RI Chevrot, Sebastien/D-8442-2011; Garcia, Raphael/B-2612-2012; Tkalcic, Hrvoje/E-8465-2013 OI Chevrot, Sebastien/0000-0002-6508-2524; Tkalcic, Hrvoje/0000-0001-7072-490X NR 59 TC 23 Z9 23 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD NOV PY 2006 VL 159 IS 1-2 BP 15 EP 31 DI 10.1016/j.pepi.2006.05.003 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 095RZ UT WOS:000241327000002 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical point physics legends SO PHYSICS WORLD LA English DT Editorial Material C1 SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD NOV PY 2006 VL 19 IS 11 BP 16 EP 16 PG 1 WC Physics, Multidisciplinary SC Physics GA 103SM UT WOS:000241907000018 ER PT J AU Bernacchi, CJ Leakey, ADB Heady, LE Morgan, PB Dohleman, FG McGrath, JM Gillespie, KM Wittig, VE Rogers, A Long, SP Ort, DR AF Bernacchi, Carl J. Leakey, Andrew D. B. Heady, Lindsey E. Morgan, Patrick B. Dohleman, Frank G. McGrath, Justin M. Gillespie, Kelly M. Wittig, Victoria E. Rogers, Alistair Long, Stephen P. Ort, Donald R. TI Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions SO PLANT CELL AND ENVIRONMENT LA English DT Article DE air pollution; chlorophyll fluorescence; climate change; free-air gas concentration enrichment (FACE); global change ID ELEVATED CARBON-DIOXIDE; ENRICHMENT FACE; ATMOSPHERIC CO2; GAS-EXCHANGE; GLYCINE-MAX; LEAF PHOTOSYNTHESIS; SPRING-WHEAT; RESPONSES; YIELD; TEMPERATURE AB It is anticipated that enrichment of the atmosphere with CO2 will increase photosynthetic carbon assimilation in C3 plants. Analysis of controlled environment studies conducted to date indicates that plant growth at concentrations of carbon dioxide ([CO2]) anticipated for 2050 (similar to 550 mu mol mol(-1)) will stimulate leaf photosynthetic carbon assimilation (A) by 20 to 40%. Simultaneously, concentrations of tropospheric ozone ([O-3]) are expected to increase by 2050, and growth in controlled environments at elevated [O-3] significantly reduces A. However, the simultaneous effects of both increases on a major crop under open-air conditions have never been tested. Over three consecutive growing seasons > 4700 individual measurements of A, photosynthetic electron transport (J(PSII)) and stomatal conductance (g(s)) were measured on Glycine max (L.) Merr. (soybean). Experimental treatments used free-air gas concentration enrichment (FACE) technology in a fully replicated, factorial complete block design. The mean A in the control plots was 14.5 mu mol m(-2) s(-1). At elevated [CO2], mean A was 24% higher and the treatment effect was statistically significant on 80% of days. There was a strong positive correlation between daytime maximum temperatures and mean daily integrated A at elevated [CO2], which accounted for much of the variation in CO2 effect among days. The effect of elevated [CO2] on photosynthesis also tended to be greater under water stress conditions. The elevated [O-3] treatment had no statistically significant effect on mean A, g(s) or J(PSII) on newly expanded leaves. Combined elevation of [CO2] and [O-3] resulted in a slightly smaller increase in average A than when [CO2] alone was elevated, and was significantly greater than the control on 67% of days. Thus, the change in atmospheric composition predicted for the middle of this century will, based on the results of a 3 year open-air field experiment, have smaller effects on photosynthesis, g(s) and whole chain electron transport through photosystem II than predicted by the substantial literature on relevant controlled environment studies on soybean and likely most other C3 plants. C1 Illinois State Water Survey, Champaign, IL 61820 USA. Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. USDA ARS, Photosynth Res Unit, Urbana, IL 61801 USA. Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. RP Bernacchi, CJ (reprint author), Illinois State Water Survey, 2204 Griffith Dr, Champaign, IL 61820 USA. EM bernacch@uiuc.edu RI Long, Stephen/A-2488-2008; Gillespie, Kelly/A-9096-2010; Rogers, Alistair/E-1177-2011; Leakey, Andrew/Q-9889-2016; OI Long, Stephen/0000-0002-8501-7164; Rogers, Alistair/0000-0001-9262-7430; Leakey, Andrew/0000-0001-6251-024X; Bernacchi, Carl/0000-0002-2397-425X NR 48 TC 59 Z9 60 U1 9 U2 78 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0140-7791 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD NOV PY 2006 VL 29 IS 11 BP 2077 EP 2090 DI 10.1111/j.1365-3040.2006.01581.x PG 14 WC Plant Sciences SC Plant Sciences GA 086NX UT WOS:000240681400006 PM 17081242 ER PT J AU Flexas, J Ribas-Carbo, M Hanson, DT Bota, J Otto, B Cifre, J McDowell, N Medrano, H Kaldenhoff, R AF Flexas, Jaume Ribas-Carbo, Miquel Hanson, David T. Bota, Josefina Otto, Beate Cifre, Josep McDowell, Nate Medrano, Hipolito Kaldenhoff, Ralf TI Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo SO PLANT JOURNAL LA English DT Article DE aquaporins; Nicotiana; CO2; permeability; photosynthesis; leaf conductance ID CARBON-ISOTOPE DISCRIMINATION; PHOTOSYNTHETIC ELECTRON-TRANSPORT; PLASMA-MEMBRANE AQUAPORIN; GAS-EXCHANGE MEASUREMENTS; PLANT WATER RELATIONS; LEAF PHOTOSYNTHESIS; TRANSGENIC TOBACCO; SALT STRESS; RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE; XENOPUS-OOCYTES AB Leaf mesophyll conductance to CO2 (g(m)) has been recognized to be finite and variable, rapidly adapting to environmental conditions. The physiological basis for fast changes in g(m) is poorly understood, but current reports suggest the involvement of protein-facilitated CO2 diffusion across cell membranes. A good candidate for this could be the Nicotiana tabacum L. aquaporin NtAQP1, which was shown to increase membrane permeability to CO2 in Xenopus oocytes. The objective of the present work was to evaluate its effect on the in vivo mesophyll conductance to CO2, using plants either deficient in or overexpressing NtAQP1. Antisense plants deficient in NtAQP1 (AS) and NtAQP1 overexpressing tobacco plants (O) were compared with their respective wild-type (WT) genotypes (CAS and CO). Plants grown under optimum conditions showed different photosynthetic rates at saturating light, with a decrease of 13% in AS and an increase of 20% in O, compared with their respective controls. CO2 response curves of photosynthesis also showed significant differences among genotypes. However, in vitro analysis demonstrated that these differences could not be attributed to alterations in Rubisco activity or ribulose-1,5-bisphosphate content. Analyses of chlorophyll fluorescence and on-line C-13 discrimination indicated that the observed differences in net photosynthesis (A(N)) among genotypes were due to different leaf mesophyll conductances to CO2, which was estimated to be 30% lower in AS and 20% higher in O compared with their respective WT. These results provide evidence for the in vivo involvement of aquaporin NtAQP1 in mesophyll conductance to CO2. C1 Univ Illes Balears, Grp Biol Plantes Cond Mediterranies, Lab Fisiol Vegetal, Palma de Mallorca 07122, Balears, Spain. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. Tech Univ Darmstadt, Inst Bot, D-64287 Darmstadt, Germany. Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Flexas, J (reprint author), Univ Illes Balears, Grp Biol Plantes Cond Mediterranies, Lab Fisiol Vegetal, Carretera Valldemossa Km 7-5, Palma de Mallorca 07122, Balears, Spain. EM jaume.flexas@uib.es RI Hanson, David/J-8034-2012; Flexas, Jaume/C-1898-2012; DEL SAZ, NESTOR/N-7244-2013; Medrano, Hipolito/N-7239-2013; Bota, Josefina/A-3725-2015; Kodama, Naomi/D-9553-2011; Ribas-Carbo, Miquel/N-1634-2013 OI Bota, Josefina/0000-0001-7039-7638; Kodama, Naomi/0000-0001-9913-9886; Ribas-Carbo, Miquel/0000-0002-7337-2089 NR 82 TC 190 Z9 210 U1 5 U2 58 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0960-7412 J9 PLANT J JI Plant J. PD NOV PY 2006 VL 48 IS 3 BP 427 EP 439 DI 10.1111/j.1365-313X PG 13 WC Plant Sciences SC Plant Sciences GA 094LG UT WOS:000241240300009 PM 17010114 ER PT J AU Deavours, BE Liu, CJ Naoumkina, MA Tang, YH Farag, MA Sumner, LW Noel, JP Dixon, RA AF Deavours, Bettina E. Liu, Chang-Jun Naoumkina, Marina A. Tang, Yuhong Farag, Mohamed A. Sumner, Lloyd W. Noel, Joseph P. Dixon, Richard A. TI Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula SO PLANT MOLECULAR BIOLOGY LA English DT Article DE isoflavonoid; O-methyltransferase; secondary metabolism; molecular modeling; gene family ID CELL-SUSPENSION CULTURES; ADENOSYL-L-METHIONINE; SATIVA L; SUBSTRATE-SPECIFICITY; CAFFEOYL-COENZYME; STRESS RESPONSES; CDNA CLONING; ALFALFA; BIOSYNTHESIS; METHYLATION AB Previous studies have identified two distinct O-methyltransferases (OMTs) implicated in isoflavonoid biosynthesis in Medicago species, a 7-OMT methylating the A-ring 7-hydroxyl of the isoflavone daidzein and a 4'-OMT methylating the B-ring 4'-hydroxyl of 2,7,4'-trihydroxyisoflavanone. Genes related to these OMTs from the model legume Medicago truncatula cluster as separate branches of the type I plant small molecule OMT family. To better understand the possible functions of these related OMTs in secondary metabolism in M. truncatula, seven of the OMTs were expressed in E. coli, purified, and their in vitro substrate preferences determined. Many of the enzymes display promiscuous activities, and some exhibit dual regio-specificity for the 4' and 7-hydroxyl moieties of the isoflavonoid nucleus. Protein structure homology modeling was used to help rationalize these catalytic activities. Transcripts encoding the different OMT genes exhibited differential tissue-specific and infection- or elicitor-induced expression, but not always in parallel with changes in expression of confirmed genes of the isoflavonoid pathway. The results are discussed in relation to the potential in vivo functions of these OMTs based on our current understanding of the phytochemistry of M. truncatula, and the difficulties associated with gene annotation in plant secondary metabolism. C1 Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. Howard Hughes Med Inst, Jack Skirball Chem Biol & Prote Lab, Salk Inst Biol Studies, La Jolla, CA 92036 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. RP Dixon, RA (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. EM radixon@noble.org RI Sumner, Lloyd/A-3270-2013; OI Sumner, Lloyd/0000-0002-4086-663X FU Howard Hughes Medical Institute NR 40 TC 30 Z9 35 U1 1 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-4412 EI 1573-5028 J9 PLANT MOL BIOL JI Plant Mol.Biol. PD NOV PY 2006 VL 62 IS 4-5 BP 715 EP 733 DI 10.1007/s11103-006-9050-x PG 19 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 099GF UT WOS:000241580600018 PM 17001495 ER PT J AU Yang, XH Tuskan, GA Cheng, ZM AF Yang, Xiaohan Tuskan, Gerald A. Cheng, (Max) Zong-Ming TI Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication SO PLANT PHYSIOLOGY LA English DT Article ID TRANSCRIPTION FACTORS; GENOME DUPLICATION; SEQUENCE ALIGNMENT; PROTEINS; ORIGIN; SUBFUNCTIONALIZATION; METHYLATION; EPIGENETICS; ANGIOSPERMS; COMPLEXITY AB It is widely accepted that gene duplication is a primary source of genetic novelty. However, the evolutionary fate of duplicated genes remains largely unresolved. The classical Ohno's Duplication-Retention-Non/ Neofunctionalization theory, and the recently proposed alternatives such as subfunctionalization or duplication-degeneration-complementation, and subneofunctionalization, each can explain one or more aspects of gene fate after duplication. Duplicated genes are also affected by epigenetic changes. We constructed a phylogenetic tree using Dof (DNA binding with one finger) protein sequences from poplar (Populus trichocarpa) Torr. & Gray ex Brayshaw, Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa). From the phylogenetic tree, we identified 27 pairs of paralogous Dof genes in the terminal nodes. Analysis of protein motif structure of the Dof paralogs and their ancestors revealed six different gene fates after gene duplication. Differential protein methylation was revealed between a pair of duplicated poplar Dof genes, which have identical motif structure and similar expression pattern, indicating that epigenetics is involved in evolution. Analysis of reverse transcription-PCR, massively parallel signature sequencing, and microarray data revealed that the paralogs differ in expression pattern. Furthermore, analysis of nonsynonymous and synonymous substitution rates indicated that divergence of the duplicated genes was driven by positive selection. About one-half of the motifs in Dof proteins were shared by non-Dof proteins in the three plants species, indicating that motif co-option may be one of the forces driving gene diversification. We provided evidence that the Ohno's Duplication-Retention-Non/ Neofunctionalization, subfunctionalization/ duplication-degeneration-complementation, and subneofunctionalization hypotheses are complementary with, not alternative to, each other. C1 Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Cheng, ZM (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. EM zcheng@utk.edu RI Tuskan, Gerald/A-6225-2011; Yang, Xiaohan/A-6975-2011 OI Tuskan, Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210 NR 52 TC 94 Z9 103 U1 4 U2 27 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD NOV PY 2006 VL 142 IS 3 BP 820 EP 830 DI 10.1104/pp.106.083642 PG 11 WC Plant Sciences SC Plant Sciences GA 103NG UT WOS:000241892900003 PM 16980566 ER PT J AU Hebner, GA Barnat, EV Miller, PA Paterson, AM Holland, JP AF Hebner, Gregory A. Barnat, Edward V. Miller, Paul A. Paterson, Alex M. Holland, John P. TI Frequency dependent plasma characteristics in a capacitively coupled 300mm wafer plasma processing chamber SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID LARGE-AREA; REFERENCE CELL; STANDING-WAVE; DISCHARGES; ELECTRON; ARGON; UNIFORMITY; DENSITIES; LENS AB Argon plasma characteristics in a dual-frequency, capacitively coupled, 300 mm-wafer plasma processing system were investigated for rf drive frequencies between 10 and 190 MHz. We report spatial and frequency dependent changes in plasma parameters such as line-integrated electron density, ion saturation current, optical emission and argon metastable density. For the conditions investigated, the line-integrated electron density was a nonlinear function of drive frequency at constant rf power. In addition, the spatial distribution of the positive ions changed from uniform to peaked in the centre as the frequency was increased. Spatially resolved optical emission increased with frequency and the relative optical emission at several spectral lines depended on frequency. Argon metastable density and spatial distribution were not a strong function of drive frequency. Metastable temperature was approximately 400 K. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Appl Mat Inc, Sunnyvale, CA 94086 USA. RP Hebner, GA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gahebne@sandia.gov NR 28 TC 55 Z9 56 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD NOV PY 2006 VL 15 IS 4 BP 879 EP 888 DI 10.1088/0963-0252/15/4/035 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 113DF UT WOS:000242577300040 ER PT J AU Miller, PA Barnat, EV Hebner, GA Paterson, AM Holland, JP AF Miller, Paul A. Barnat, Edward V. Hebner, Gregory A. Paterson, Alex M. Holland, John P. TI Spatial and frequency dependence of plasma currents in a 300mm capacitively coupled plasma reactor SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID STANDING-WAVE; LARGE-AREA; SHAPED ELECTRODE; CURRENT-DENSITY; DISCHARGES; SHEATHS; UNIFORMITY; DYNAMICS; MODEL; LENS AB There is much interest in scaling rf-excited capacitively coupled plasma reactors to larger sizes and to higher frequencies. As the size approaches operating wavelength, concerns arise about non-uniformity across the work piece, particularly in light of the well-documented slow-surface-wave phenomenon. We present measurements and calculations of spatial and frequency dependence of rf magnetic fields inside argon plasma in an industrially relevant, 300 mm plasma-processing chamber. The results show distinct differences in the spatial distributions and harmonic content of rf fields in the plasma at the three frequencies studied (13.56, 60 and 176 MHz). Evidence of a slow-wave structure was not apparent. The results suggest that interaction between the plasma and the rf excitation circuit may strongly influence the structures of these magnetic fields and that this interaction is frequency dependent. At the higher frequencies, wave propagation becomes extremely complex; it is controlled by the strong electrical nonlinearity of the sheath and is not explained simply by previous models. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Appl Mat Inc, Sunnyvale, CA 94086 USA. RP Miller, PA (reprint author), Sandia Natl Labs, MS 1423,POB 5800, Albuquerque, NM 87185 USA. NR 21 TC 29 Z9 29 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD NOV PY 2006 VL 15 IS 4 BP 889 EP 899 DI 10.1088/0963-0252/15/4/036 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 113DF UT WOS:000242577300041 ER PT J AU Angly, FE Felts, B Breitbart, M Salamon, P Edwards, RA Carlson, C Chan, AM Haynes, M Kelley, S Liu, H Mahaffy, JM Mueller, JE Nulton, J Olson, R Parsons, R Rayhawk, S Suttle, CA Rohwer, F AF Angly, Florent E. Felts, Ben Breitbart, Mya Salamon, Peter Edwards, Robert A. Carlson, Craig Chan, Amy M. Haynes, Matthew Kelley, Scott Liu, Hong Mahaffy, Joseph M. Mueller, Jennifer E. Nulton, Jim Olson, Robert Parsons, Rachel Rayhawk, Steve Suttle, Curtis A. Rohwer, Forest TI The marine viromes of four oceanic regions SO PLOS BIOLOGY LA English DT Article ID VIRAL COMMUNITY; MICROBIAL COMMUNITIES; HUMAN FECES; DIVERSITY; VIRUSES; PHAGE; PROCHLOROCOCCUS; AMPLIFICATION; METAGENOMICS; ENVIRONMENTS AB Viruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earth's oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was a distinct "marine-ness'' quality to the viral assemblages. Global diversity was very high, presumably several hundred thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely dispersed and that local environmental conditions enrich for certain viral types through selective pressure. C1 San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. San Diego State Univ, Dept Math, San Diego, CA 92182 USA. San Diego State Univ, Ctr Microbial Sci, San Diego, CA 92182 USA. Fellowship Interpretat Genomes, Burr Ridge, IL USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V5Z 1M9, Canada. Argonne Natl Lab, Argonne, IL 60439 USA. Bermuda Biol Stn Res, St Georges, Bermuda. Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V5Z 1M9, Canada. Univ British Columbia, Dept Bot, Vancouver, BC V5Z 1M9, Canada. RP Rohwer, F (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM forest@sunstroke.sdsu.edu RI Suttle, Curtis/C-3150-2008; Breitbart, Mya/B-1366-2009; Angly, Florent/A-7717-2011 OI Suttle, Curtis/0000-0002-0372-0033; Breitbart, Mya/0000-0003-3210-2899; Angly, Florent/0000-0002-8999-0738 NR 56 TC 513 Z9 548 U1 12 U2 117 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD NOV PY 2006 VL 4 IS 11 BP 2121 EP 2131 AR e368 DI 10.1371/journal.pbio.0040368 PG 11 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 114EJ UT WOS:000242649200023 PM 17090214 ER PT J AU Alm, E Huang, K Arkin, A AF Alm, Eric Huang, Katherine Arkin, Adam TI The evolution of two-component systems in bacteria reveals different strategies for niche adaptation SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID DESULFOVIBRIO-VULGARIS HILDENBOROUGH; SIGNAL-TRANSDUCTION; ESCHERICHIA-COLI; PROKARYOTES; DATABASE; GENOMES; LIFE; SUPERFAMILY; PROTEINS; SEQUENCE AB Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used. C1 Virtual Inst Microbial Stress & Survival, Berkeley, CA USA. MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. MIT, Dept Biol Engn, Cambridge, MA 02139 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Arkin, A (reprint author), Virtual Inst Microbial Stress & Survival, Berkeley, CA USA. EM aparkin@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 NR 40 TC 96 Z9 96 U1 0 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD NOV PY 2006 VL 2 IS 11 BP 1329 EP 1342 AR e143 DI 10.1371/journal.pcbi.0020143 PG 14 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 110JS UT WOS:000242375200002 PM 17083272 ER PT J AU Huerta, AM Francino, MP Morett, E Collado-Vides, J AF Huerta, Araceli M. Francino, M. Pilar Morett, Enrique Collado-Vides, Julio TI Selection for unequal densities of sigma(70) promoter-like signals in different regions of large bacterial genomes SO PLOS GENETICS LA English DT Article ID ESCHERICHIA-COLI; RNA-POLYMERASE; GENE-EXPRESSION; LAC PROMOTER; TRANSCRIPTION; EVOLUTION; SEQUENCE; SIGMA-70; RECOGNITION; SUBUNIT AB The evolutionary processes operating in the DNA regions that participate in the regulation of gene expression are poorly understood. In Escherichia coli, we have established a sequence pattern that distinguishes regulatory from nonregulatory regions. The density of promoter-like sequences, that could be recognizable by RNA polymerase and may function as potential promoters, is high within regulatory regions, in contrast to coding regions and regions located between convergently transcribed genes. Moreover, functional promoter sites identified experimentally are often found in the subregions of highest density of promoter-like signals, even when individual sites with higher binding affinity for RNA polymerase exist elsewhere within the regulatory region. In order to see the generality of this pattern, we have analyzed 43 additional genomes belonging to most established bacterial phyla. Differential densities between regulatory and nonregulatory regions are detectable in most of the analyzed genomes, with the exception of those that have evolved toward extreme genome reduction. Thus, presence of this pattern follows that of genes and other genomic features that require weak selection to be effective in order to persist. On this basis, we suggest that the loss of differential densities in the reduced genomes of host-restricted pathogens and symbionts is an outcome of the process of genome degradation resulting from the decreased efficiency of purifying selection in highly structured small populations. This implies that the differential distribution of promoter-like signals between regulatory and nonregulatory regions detected in large bacterial genomes confers a significant, although small, fitness advantage. This study paves the way for further identification of the specific types of selective constraints that affect the organization of regulatory regions and the overall distribution of promoter- like signals through more detailed comparative analyses among closely related bacterial genomes. C1 Univ Nacl Autonoma Mexico, Ctr Ciencias Genom, Cuernavaca 62191, Morelos, Mexico. Lawrence Berkeley Natl Lab, Evolutionary Genom Program, Dept Energy, Joint Genome Inst, Walnut Creek, CA USA. Lawrence Berkeley Natl Lab, Genom Div, Walnut Creek, CA USA. Univ Nacl Autonoma Mexico, Dept Ingn Celular & Biocatalisis, Inst Biotecnol, Cuernavaca 62191, Morelos, Mexico. RP Huerta, AM (reprint author), Univ Nacl Autonoma Mexico, Ctr Ciencias Genom, Cuernavaca 62191, Morelos, Mexico. EM amhuerta@ccg.unam.mx RI Morett, Enrique/G-3401-2013; Francino, M. Pilar/H-9090-2015 OI Francino, M. Pilar/0000-0002-4510-5653 FU NIGMS NIH HHS [GM62205] NR 46 TC 26 Z9 26 U1 1 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD NOV PY 2006 VL 2 IS 11 BP 1740 EP 1750 AR e185 DI 10.1371/journal.pgen.0020185 PG 11 WC Genetics & Heredity SC Genetics & Heredity GA 110JM UT WOS:000242374600007 PM 17096598 ER PT J AU Okinaka, R Pearson, T Keim, P AF Okinaka, Richard Pearson, Talima Keim, Paul TI Anthrax, but not Bacillus anthracis? SO PLOS PATHOGENS LA English DT Editorial Material ID SINGLE-NUCLEOTIDE POLYMORPHISMS; SEQUENCE CONSERVATION; PLASMID; CEREUS; IDENTIFICATION; DIVERSITY; BACTERIA; STRAINS; GENES; PXO1 C1 No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP Keim, P (reprint author), No Arizona Univ, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA. EM Paul.Keim@nau.edu RI Keim, Paul/A-2269-2010 NR 24 TC 26 Z9 28 U1 0 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD NOV PY 2006 VL 2 IS 11 BP 1025 EP 1027 AR e122 DI 10.1371/journal.ppat.0020122 PG 3 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 116FE UT WOS:000242787100001 PM 17121463 ER PT J AU Lani, BW Feeley, TJ Miller, CE Carney, BA Murphy, JT AF Lani, Bruce W. Feeley, Thomas J., III Miller, Charles E. Carney, Barbara A. Murphy, James T. TI DOE/NETL's advanced NOx emissions control technology R&D program - Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. SO POWER ENGINEERING LA English DT Article C1 US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA. Sci Applicat Int Corp, Mclean, VA 22102 USA. RP Lani, BW (reprint author), US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA. NR 10 TC 0 Z9 0 U1 0 U2 1 PU PENNWELL PUBL CO ENERGY GROUP PI TULSA PA 1421 S SHERIDAN RD PO BOX 1260, TULSA, OK 74112 USA SN 0032-5961 J9 POWER ENG-US JI Power Eng. PD NOV PY 2006 VL 110 IS 11 BP 172 EP + PG 6 WC Energy & Fuels; Engineering, Multidisciplinary SC Energy & Fuels; Engineering GA 108SB UT WOS:000242258400031 ER PT J AU Awes, TC AF Awes, Terry C. TI Status of the quark gluon plasma search SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on High Energy Physics Phenomenology (WHEPP-9) CY JAN 03-14, 2006 CL Inst Phys Bhubaneswar, Bhubaneswar, INDIA SP DAE, BRNS HO Inst Phys Bhubaneswar DE quark gluon plasma; PHENIX; hydrodynamics; direct photons; hadron suppression ID NUCLEUS-NUCLEUS COLLISIONS; HADRONIC PRODUCTION; PHOTON PRODUCTION; THERMAL PHOTONS; MATTER; QCD AB A selection of results are discussed that support the conclusion that strongly interacting quark gluon plasma is produced in heavy-ion collisions at the Relativistic Heavy Ion Collider at BNL. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Awes, TC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM awes@bnl.gov NR 30 TC 0 Z9 0 U1 0 U2 0 PU INDIAN ACADEMY SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD NOV PY 2006 VL 67 IS 5 SI SI BP 915 EP 925 DI 10.1007/s12043-006-0102-1 PG 11 WC Physics, Multidisciplinary SC Physics GA 112BD UT WOS:000242499200017 ER PT J AU Raja, R AF Raja, Rajendran TI The main injector particle production experiment at Fermilab SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on High Energy Physics Phenomenology (WHEPP-9) CY JAN 03-14, 2006 CL Inst Phys Bhubaneswar, Bhubaneswar, INDIA SP DAE, BRNS HO Inst Phys Bhubaneswar DE main injector particle production experiment; particle production ID DETECTOR; CHAMBERS AB We describe the physics capabilities and status of the MIPP experiment which concluded its physics data taking run in March 2006. We show some preliminary results from this run and describe plans to upgrade the spectrometer. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Raja, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM raja@fnal.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU INDIAN ACADEMY SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD NOV PY 2006 VL 67 IS 5 SI SI BP 951 EP 960 DI 10.1007/s12043-006-0105-y PG 10 WC Physics, Multidisciplinary SC Physics GA 112BD UT WOS:000242499200020 ER PT J AU Mustafa, MG Raniwala, S AF Mustafa, Munshi G. Raniwala, Sudhir TI Working group report: Heavy-ion physics and quark-gluon plasma SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on High Energy Physics Phenomenology (WHEPP-9) CY JAN 03-14, 2006 CL Inst Phys Bhubaneswar, Bhubaneswar, INDIA SP DAE, BRNS HO Inst Phys Bhubaneswar DE quantum chromodynamics; quark-gluon plasma; lattice gauge theory; hydrodynamics; susceptibility; flow; AdS/CFT; J/psi-suppression; screening; jet quenching; color superconductor ID RADIATIVE ENERGY-LOSS; J/PSI SUPPRESSION; NUCLEAR ABSORPTION; HIGH-TEMPERATURE; ELLIPTIC FLOW; STRING THEORY; GAUGE-THEORY; MONTE-CARLO; COLLISIONS; QCD AB This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported. C1 Saha Inst Nucl Phys, Theory Grp, Kolkata 700064, W Bengal, India. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Inst Phys, Bhubaneswar 700005, Orissa, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. CINVESTAV, Dept Fis Aplicada, Merida, Yucatan, Mexico. Ctr European Nucl Res, PH Div, Geneva, Switzerland. Bose Inst, Dept Phys, Kolkata 700009, W Bengal, India. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Sikkim Manipal Inst Technol, Rango 737132, Sikkim, India. Phys Res Lab, Div Theory, Ahmadabad 380009, Gujarat, India. Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. CEA, Serv Phys Theor, DSM, SPhT,Unite Rech,CNRS, F-91191 Gif Sur Yvette, France. Univ Piemonte Orientale, Alessandria, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Bhabha Atom Res Ctr, Div Nucl Phys, Van de Graff Lab, Bombay 400085, Maharashtra, India. Univ Allahabad, Dept Phys, Allahabad 211002, Uttar Pradesh, India. RP Mustafa, MG (reprint author), Saha Inst Nucl Phys, Theory Grp, 1-AF Bidhan Nagar, Kolkata 700064, W Bengal, India. EM munshigolam.mustafa@saha.ac.in; raniwala@uorehep.ac.in OI Gavai, Rajiv V./0000-0002-4539-2584; Mohanty, Bedangadas/0000-0001-9610-2914; Ray, Rajarshi/0000-0001-8633-7808 NR 102 TC 0 Z9 0 U1 0 U2 2 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 EI 0973-7111 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD NOV PY 2006 VL 67 IS 5 SI SI BP 961 EP 981 DI 10.1007/s12043-006-0106-x PG 21 WC Physics, Multidisciplinary SC Physics GA 112BD UT WOS:000242499200021 ER PT J AU del Cueto, JA von Roedern, B AF del Cueto, J. A. von Roedern, B. TI Long-term transient and metastable effects in cadmium telluride photovoltaic modules SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE CdTe solar cells; photovoltaics; thin-film photovoltaics; stability; transients ID SOLAR-CELLS; STABILITY AB Thin-film cadmium telluride (CdTe) photovoltaic (PV) technology is poised to begin making significant contributions and impact on terrestrial, electric power generation. However, some outstanding issues such as stability and transient behavior, and their impact on reliability and assessment of performance, remain to be thoroughly addressed, which has prompted some unease among PV industry integrators toward deploying this technology. We explore the issues of long-term stability and transient behavior in the performance of CdTe modules herein, using data acquired from indoor light-soaking studies. We find that measurement of current-voltage parameters and their temperature coefficients are entangled with transient effects. Changes in module power depend on recent operating history, such as electrical bias, and can result in either artificially high or low performance. Both the open-circuit voltage (V-oc) and fill factor (FF) are significantly impacted by metastable behavior that appears to linger for up to tens of hours, and we observe such increased transient effects after modules have undergone several hundred hours of light exposure. We present and analyze data measured under standard reporting conditions and actual operating conditions for six CdTe modules light-exposed and stressed at 65 degrees C nominal temperatures. Copyright (C) 2006 John Wiley & Sons, Ltd. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP del Cueto, JA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM joseph_delcueto@nrel.gov NR 18 TC 12 Z9 12 U1 2 U2 8 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD NOV PY 2006 VL 14 IS 7 BP 615 EP 628 DI 10.1002/pip.687 PG 14 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 101AO UT WOS:000241711500003 ER PT J AU Buchko, GW Ni, SS Robinson, H Welsh, EA Pakrasi, HB Kennedy, MA AF Buchko, Garry W. Ni, Shuisong Robinson, Howard Welsh, Eric A. Pakrasi, Himadri B. Kennedy, Michael A. TI Characterization of two potentially universal turn motifs that shape the repeated five-residues fold - Crystal structure of a lumenal pentapeptide repeat protein from Cyanothece 51142 SO PROTEIN SCIENCE LA English DT Article DE cyanobacteria; beta-bridges; circular dichroism; thermal melt; right-handed parallel beta-helix; single-bridge beta-sheet; beta-bulges ID CIRCULAR-DICHROISM; MICROCIN B17; BETA-TURNS; DNA GYRASE; QUINOLONE RESISTANCE; ANTIFREEZE PROTEIN; VIRULENCE FACTOR; PLASMID; DOMAIN; DATABASE AB The genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 has recently been sequenced and observed to contain 35 pentapeptide repeat proteins (PRPs). These proteins, while present throughout the prokaryotic and eukaryotic kingdoms, are most abundant in cyanobacteria. The sheer number of PRPs in cyanobacteria coupled with their predicted location in every cellular compartment argues for important, yet unknown, physiological and biochemical functions. To gain biochemical insights, the crystal structure for Rfr32, a 167-residue PRP with an N-terminal 29-residue signal peptide, was determined at 2.1 angstrom resolution. The structure is dominated by 21 tandem pentapeptide repeats that fold into a right-handed quadrilateral beta-helix, or Rfr-fold, as observed for the tandem pentapeptide repeats in the only other PRP structure, the mycobacterial fluoroquinoline resistance protein MfpA from Mycobacterium tuberculosis. Sitting on top of the Rfr-fold are two short, antiparallel alpha-helices, bridged with a disulfide bond, that perhaps prevent edge-to-edge aggregation at the C terminus. Analysis of the main-chain (Phi, Psi) dihedral orientations for the pentapeptide repeats in Rfr32 and MfpA makes it possible to recognize the structural details for the two distinct types of four-residue turns adopted by the pentapeptide repeats in the Rfr-fold. These turns, labeled type II and type IV beta-turns, may be universal motifs that shape the Rfr-fold in all PRPs. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. Washington Univ, Dept Biol, St Louis, MO 63130 USA. RP Buchko, GW (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,EMSL Mail Stop K8-98, Richland, WA 99352 USA. EM garry.buchko@pnl.gov; michael.kennedy@muohio.edu RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 NR 66 TC 20 Z9 22 U1 0 U2 4 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD NOV PY 2006 VL 15 IS 11 BP 2579 EP 2595 DI 10.1110/ps.062407506 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 100KC UT WOS:000241666600013 PM 17075135 ER PT J AU Dumont, C Matsumura, Y Kim, SJ Li, JS Kondrashkina, E Kihara, H Gruebele, M AF Dumont, Charles Matsumura, Yoshitaka Kim, Seung Joong Li, Jinsong Kondrashkina, Elena Kihara, Hiroshi Gruebele, Martin TI Solvent-tuning the collapse and helix formation time scales of lambda(*)(6-85) SO PROTEIN SCIENCE LA English DT Article DE collapse; heterogeneous kinetics; cryosolvent; stopped flow ID MONOMERIC LAMBDA-REPRESSOR; FLOW CIRCULAR-DICHROISM; FOLDING SPEED LIMIT; X-RAY-SCATTERING; BETA-LACTOGLOBULIN; ABSORPTION-SPECTROSCOPY; VISCOSITY DEPENDENCE; SMALL PROTEINS; KINETICS; DOWNHILL AB The lambda(6-85)* pseudo-wild type of lambda repressor fragment is a fast two-state folder (k(f) approximate to 35 mu sec(-1) at 58 degrees C). Previously, highly stable lambda(6-85)* mutants with k(f) > 30 mu sec(-1) have been engineered to fold nearly or fully downhill. Stabilization of the native state by solvent tuning might also tune lambda(6-85)* away from two-state folding. We test this prediction by examining the folding thermodynamics and kinetics of lambda(6-85)* in a stabilizing solvent, 45% by weight aqueous ethylene glycol at -28 degrees C. Detection of kinetics by circular dichroism at 222 nm (sensitive to helix content) and small angle X-ray scattering (measuring the radius of gyration) shows that refolding from guanidine hydrochloride denatured conditions exhibits very different time scales for collapse and secondary structure formation: the two processes become decoupled. Collapse remains a low-barrier activated process, while the fastest of several secondary structure formation time scales approaches the downhill folding limit. Two-state folding of lambda(6-85)* is not a robust process. C1 Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Kansai Med Univ, Dept Phys, Hirakata, Osaka 5731136, Japan. IIT, BioCAT Adv Photon Source, BCPS Dept, Chicago, IL 60439 USA. Univ Illinois, Dept Chem, Urbana, IL 61801 USA. Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. RP Gruebele, M (reprint author), Univ Illinois, Dept Phys, 600 S Mathews Ave,Box 5-6, Urbana, IL 61801 USA. EM kihara@makino.kmu.ac.jp; gruebele@scs.uiuc.edu RI ID, BioCAT/D-2459-2012 FU NCRR NIH HHS [P41 RR008630, RR-08630] NR 56 TC 27 Z9 27 U1 0 U2 2 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD NOV PY 2006 VL 15 IS 11 BP 2596 EP 2604 DI 10.1110/ps.062257406 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 100KC UT WOS:000241666600014 PM 17075136 ER PT J AU Osipiuk, J Maltseva, N Dementieva, I Clancy, S Collart, F Joachimiak, A AF Osipiuk, Jerzy Maltseva, Natalia Dementieva, Irina Clancy, Shonda Collart, Frank Joachimiak, Andrzej TI Structure of YidB protein from Shigella flexneri shows a new fold with homeodomain motif SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID DNA-SEQUENCE; REFINEMENT; COMPLEX; GENOME; GENE C1 Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom & Struct Biol Ctr, Argonne, IL 60439 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom & Struct Biol Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. EM andrzejj@anl.gov OI Collart, Frank/0000-0001-6942-4483 FU NIGMS NIH HHS [U54 GM074942-04S2, GM62414, GM074942, P50 GM062414, P50 GM062414-01, U54 GM074942] NR 29 TC 0 Z9 0 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2006 VL 65 IS 2 BP 509 EP 513 DI 10.1002/prot.21054 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 087NI UT WOS:000240748700022 PM 16927377 ER PT J AU Rao, KN Bonanno, JB Burley, SK Swaminathan, S AF Rao, Krishnamurthy N. Bonanno, Jeffrey B. Burley, Stephen K. Swaminathan, Subramanyam TI Crystal structure of glycerophosphodiester phosphodiesterase from Agrobacterium tumefaciens by SAD with a large asymmetric unit SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID PROTEIN; DIFFERENTIATION; REFINEMENT; GDE2 C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. New York Struct Biol Ctr, New York, NY 10027 USA. SGX Pharmaceut Inc, San Diego, CA 92121 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU NIGMS NIH HHS [GM62529] NR 19 TC 10 Z9 11 U1 0 U2 3 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2006 VL 65 IS 2 BP 514 EP 518 DI 10.1002/prot.21079 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 087NI UT WOS:000240748700023 PM 16909422 ER PT J AU Benn, DI Owen, LA Finkel, RC Clemmens, S AF Benn, Douglas I. Owen, Lewis A. Finkel, Robert C. Clemmens, Samuel TI Pleistocene lake outburst floods and fan formation along the eastern Sierra Nevada, California: implications for the interpretation of intermontane lacustrine records SO QUATERNARY SCIENCE REVIEWS LA English DT Article ID OWENS-VALLEY; CATASTROPHIC DRAINAGE; BRITISH-COLUMBIA; COSMOGENIC AGES; ALLUVIAL-FAN; ROCK-FLOUR; YR BP; GLACIATION; OSCILLATIONS; BASIN AB Variations in the rock flour fraction in intermontane lacustrine sediments have the potential to provide more complete records of glacier fluctuations than moraine sequences, which are subject to erosional censoring. Construction of glacial chronologies from such records relies on the assumption that rock flour concentration is a simple function of glacier extent. However, other factors may influence the delivery of glacigenic sediments to intermontane lakes, including paraglacial adjustment of slope and fluvial systems to deglaciation, variations in precipitation and snowmelt, and lake outburst floods. We have investigated the processes and chronology of sediment transport on the Tuttle and Lone Pine alluvial fans in the eastern Sierra Nevada, California, USA, to elucidate the links between former glacier systems located upstream and the long sedimentary record from Owens Lake located downstream. Aggradation of both fans reflects sedimentation by three contrasting process regimes: (1) high magnitude, catastrophic floods, (2) fluvial or glacifluvial river systems, and (3) debris flows and other slope processes. Flood deposits are represented by multiple boulder beds exposed in section, and extensive networks of large palaeochannels and boulder deposits on both fan surfaces. Palaeohydrological analysis implies peak discharges in the order of 10(3)-10(4)m(3)s(-1), Most probably as the result of catastrophic drainage of ice-, moraine-, and landslide-dammed lakes. Cosmogenic radionuclide surface exposure dating shows that at least three flood events are represented on each fan, at 9-13, 16-18 and 32-44 ka (Tuttle Fan); and at similar to 23-32, similar to 80-86 ka, and a poorly constrained older event (Lone Pine Fan). Gravels and sands exposed in both fans represent fluvial and/or glacifluvial sediment transport from the Sierra Nevada into Owens Valley, and show that river systems incised and reworked older sediment stored in the fans. We argue that millennial-scale peaks in rock flour abundance in the Owens Lake core reflect (1) fluctuations in primary subglacial erosion in the catchments in response to glacier advance-retreat cycles; (2) short-lived pulses of sediment delivered directly by catastrophic flood events; and (3) sediment released from storage in alluvial fans by fluvial and glacifluvial incision and reworking. As a result of this complexity the coarse sediment peaks in lake deposits may not simply reflect periods of increased glaciation, but likely also reflect changes in sediment storage and flux controlled by paraglacial processes. Current dating evidence is inadequate to allow precise correlation of individual flood or incision events with the Owens Lake rock flour record, although given the widespread occurrence of flood deposits in fans along the eastern margins of the Sierra Nevada, it is clear that fan deposition and incision played a very important role in modulating the delivery of glacigenic sediment to Owens Lake. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ St Andrews, Sch Geog & Geosci, St Andrews KY16 9AL, Fife, Scotland. UNIS, Dept Geol, N-9171 Longyearbyen, Norway. Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. Univ Wales, Inst Geog & Earth Sci, Aberystwyth SY23 3DB, Dyfed, Wales. RP Benn, DI (reprint author), Univ St Andrews, Sch Geog & Geosci, St Andrews KY16 9AL, Fife, Scotland. EM Doug.Benn@unis.no NR 59 TC 21 Z9 24 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD NOV PY 2006 VL 25 IS 21-22 BP 2729 EP 2748 DI 10.1016/j.quascirev.2006.02.018 PG 20 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 123HF UT WOS:000243286300008 ER PT J AU Diamant, R Huotari, S Hamalainen, K Sharon, R Kao, CC Deutsch, M AF Diamant, R. Huotari, S. Hamalainen, K. Sharon, R. Kao, C. C. Deutsch, M. TI The evolution of inner-shell multielectronic X-ray spectra from threshold to saturation for low- to high-Z atoms SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE multielectronic transitions; X-ray satellites; X-ray hypesatellites; shake up ID K-ALPHA; HOLLOW ATOMS; HYPERSATELLITE SPECTRA; SYNCHROTRON-RADIATION; DOUBLE PHOTOIONIZATION; SATELLITES; EXCITATION; PHOTOEXCITATION; ABSORPTION; LITHIUM AB Inter- and intra-shell electronic correlations in an atom are manifested in, and can be studied through, the X-ray h emission spectra of multielectronic transitions. We have measured the spectra of K-h alpha(1,2) hypersatellites (HS), K alpha(3,4) satellites (S), and the 3d electron shake-up satellites (D) accompanying the K alpha(1,2) diagram lines, and their evolution from the double-ionization threshold, for selected 4- and 5-row elements of the periodic table. These spectra originate in the [1 s](-1), [2p](-1), and [3d](-1) spectator two-electron transitions [1 S](-2) ->[1s2p](-1), [1s2p](-2) -> [2p](-2), and [1s3d](-1) -> [2p3d](-1) respectively. Photoexcitation by monochromatized synchrotron radiation together with high-resolution crystal spectrometers were employed. Ab initio relativistic multiconfigurational Dirac-Fock (RMCDF) calculations reproduce the spectra very well for all transitions, with the HS spectra showing a strong dependence on QED effects. The excitation thresholds were determined accurately. The threshold-to-saturation energy range of the intensity was found to depend strongly on the principal quantum number n of the spectator hole. For example, for Cu, ranges of 2 %, 10%, and 60% of the threshold energy are found for the D, S and FIS spectra, respectively. Only the D spectrum's evolution conforms to the Thomas model, indicating a dominant shake up/off process. The S and HS spectra seem to be dominated by the knockout ("two-step-one") process near threshold. The S spectra show a two-regime behavior. Near threshold both shape and intensity vary with excitation energy, and above that only intensity changes are observed. The lower-than-expected K-h alpha(1)/K-h alpha(2) intensity ratio found for Z = 23-30 and 39-46 indicates that the angular momenta coupling scheme at the regime intermediate between the LS coupling at low-Z and the jj coupling at high-Z may not be fully accounted for by the prevailing theory. (c) 2006 Elsevier Ltd. All rights reserved. C1 Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. ESRF, F-38053 Grenoble, France. Univ Helsinki, Dept Phys Sci, FIN-00014 Helsinki, Finland. Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Deutsch, M (reprint author), Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. EM deutsch@mail.bin.ac.il RI Hamalainen, Keijo/A-3986-2010; OI Hamalainen, Keijo/0000-0002-9234-9810; Huotari, Simo/0000-0003-4506-8722 NR 58 TC 6 Z9 6 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1434 EP 1446 DI 10.1016/j.radphyschem.2006.05.002 PG 13 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600002 ER PT J AU Berrah, N Bilodeau, RC Bozek, JD Walter, CW Gibson, ND Ackerman, GD AF Berrah, N. Bilodeau, R. C. Bozek, J. D. Walter, C. W. Gibson, N. D. Ackerman, G. D. TI Double-auger decay, Feshbach and shape resonances negative ions SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE inner-shell; negative ions; triply excited resonances; Feshbach resonance; Wigner law; post-collision interaction ID HE; PHOTODETACHMENT AB Inner-shell photoionization of negative ions is very different from photoionization of neutral or positive ions. The short-range interaction that governs negative ions leads to new and different physics. Negative ions exist because of electron correlation that is so strong that it leads to strong simultaneous double-Auger decay, as well as shape and Feshbach resonances. Our recent work has also shown that inner-shell photoionization obeys the Wigner law even when post-collision interaction affects the cross-section. (c) 2006 Elsevier Ltd. All rights reserved. C1 Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Ligh Source Div, Berkeley, CA 94720 USA. Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. RP Berrah, N (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM nora.Berrah@wmich.edu RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010; OI Bozek, John/0000-0001-7486-7238; Bilodeau, Rene/0000-0001-8607-2328 NR 21 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1447 EP 1450 DI 10.1016/j.radphyschem.2005.07.067 PG 4 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600003 ER PT J AU Kanter, EP Dunford, RW Krassig, B Southworth, SH Young, L AF Kanter, E. P. Dunford, R. W. Krassig, B. Southworth, S. H. Young, L. TI Double K-photoionization of heavy atoms SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE X-ray photoionization; double-K ionization ID ELECTRON-IMPACT IONIZATION; CROSS-SECTIONS; HYPERSATELLITE SPECTRA; VACANCY PRODUCTION; SHELL IONIZATION; HELIUM; ENERGY; SEQUENCE; SINGLE; HE AB The double K-photoionization of heavy atoms is a rare process which produces a "hollow atom". We have recently conducted a comprehensive study of the energy-dependence of double K-photoionization in Ag (Z = 47) aimed at elucidating the processes contributing. These measurements have served to isolate the effects of the dynamic electron-electron scattering term from the shake-off contribution and demonstrate a significantly larger scattering contribution than in lighter atoms. Based on those results and other measurements in lighter systems, we have developed a quantitative model to predict the energy-dependence of double K-photoionization in other atoms. (c) 2006 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Kanter, EP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kanter@anl.gov NR 31 TC 0 Z9 0 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1529 EP 1533 DI 10.1016/j.radphyschem.2005.12.044 PG 5 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600019 ER PT J AU Southworth, SH Dunford, RW Kanter, EP Krassig, B Young, L LaJohn, LA Pratt, RH AF Southworth, S. H. Dunford, R. W. Kanter, E. P. Krassig, B. Young, L. LaJohn, L. A. Pratt, R. H. TI Nondipole asymmetries of K-shell photoelectrons of Kr, Br(2), and BrCF(3) SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE X-ray; K shell; photoclectron angular distribution; nondipole ID ANGULAR-DISTRIBUTIONS; PHOTOIONIZATION AB The nondipole asymmetries of Kr 1s and Br K-shell photoelectrons of Br(2) and BrCF(3) were measured and compared with first-order retardation calculations within the independent-particle approximation. The measured asymmetries agree well with calculations and demonstrate the importance of screening on the normalizations and phase shifts of the continuum functions. Only small deviations are observed between the molecular Br K-shell measurements and calculations for atomic Br Is nondipole asymmetries. (c) 2006 Published by Elsevier Ltd. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Southworth, SH (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM southworth@anl.gov NR 16 TC 5 Z9 5 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1574 EP 1577 DI 10.1016/j.radphyschem.2005.11.009 PG 4 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600027 ER PT J AU Lucovsky, G Fulton, CC Ju, BS Stoute, NA Tao, S Aspnes, DE Luning, J AF Lucovsky, G. Fulton, C. C. Ju, B. S. Stoute, N. A. Tao, S. Aspnes, D. E. Luening, J. TI Suppression of Jahn-Teller term-split band edge states in the x-ray absorption spectra of non-crystalline Zr silicates and Si oxynitride alloys, and alloys of ZrO2 with Y2O3 SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE x-ray absorption spectra; x-ray absorption spectroscopy; Jahn-Teller term-spit states; Zr silicate alloys; cubic zirconia and hafnia AB Jahn-Teller (J-T) term-split states in nanocrystalline transition metal and trivalent rare earth elemental and complex oxides reduce the band gap, and tunnelling barrier height at interfaces with crystalline Si substrates. These states are identified by x-ray absorption spectroscopy and spectroscopic ellipsometry. Alloys for suppression of J-T d-state degeneracy removal are identified as: (i) non-crystalline Zr/Hf silicates and Si oxynitrides and (ii) ZrO2-Y2O3 alloys with high concentrations of randomly distributed O-vacancies that promote cubic crystalline symmetry. (c) 2006 Elsevier Ltd. All rights reserved. C1 N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. N Carolina State Univ, Coll Engn, Raleigh, NC 27695 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. RP Lucovsky, G (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM luccovsky@ncsu.edu NR 4 TC 2 Z9 2 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1591 EP 1595 DI 10.1016/j.radphyschem.2006.05.004 PG 5 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600031 ER PT J AU Edge, LF Schlom, DG Stemmer, S Lucovsky, G Luning, J AF Edge, L. F. Schlom, D. G. Stemmer, S. Lucovsky, G. Luning, J. TI Detection of nanocrystallinity by X-ray absorption spectroscopy in thin film transition metal/rare-earth atom, elemental and complex oxides SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE X-ray absorption spectra; nanocrystallinity; X-ray absorption spectroscopy; elemental oxides; complex oxides; Jahn-Teller spittings; O-atom vacancies AB Nanocrystallinity has been detected in the X-ray absorption spectra of transition metal and rare-earth oxides by (i) removal of d-state degeneracies in the (a) Ti and Sc L-3 spectra of TiO2 and LaScO3, respectively, and (b) 0 K-1 spectra of Zr(Hf)O-2, Y2O3, LaScO3 and LaAlO3, and by the (ii) detection of the O-atom vacancy in the O K-1 edge ZrO2-Y2O3 alloys. Spectroscopic detection is more sensitive than X-ray diffraction with a limit of similar to 2 nm as compared to > 5 mm. Other example includes detection of ZrO2 nanocrystallinity in phase-separated Zr(Hf) silicate alloys. (c) 2006 Elsevier Ltd. All rights reserved. C1 N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Penn State Univ, Dept Mat Sci, State Coll, PA 16804 USA. Univ Calif Santa Barbara, Dept Mat Sci, Santa Barbara, CA 93106 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. RP Lucovsky, G (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM luccovsky@ncsu.edu RI Stemmer, Susanne/H-6555-2011; Schlom, Darrell/J-2412-2013 OI Stemmer, Susanne/0000-0002-3142-4696; Schlom, Darrell/0000-0003-2493-6113 NR 2 TC 1 Z9 1 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1608 EP 1612 DI 10.1016/j.radphyschem.2006.05.005 PG 5 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600033 ER PT J AU Menzel, A Chang, KC Komanicky, V You, H Chu, YS Tolmachev, YV Rehr, JJ AF Menzel, Andreas Chang, Kee-Chul Komanicky, Vladimir You, Hoydoo Chu, Yong S. Tolmachev, Yuriy V. Rehr, John J. TI Resonance anomalous surface X-ray scattering SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE surface X-ray scattering; anomalous X-ray scattering; electrochemical interfaces; dichroism ID FINE-STRUCTURE; CARBON-MONOXIDE; PT(111); INTERFACE; OXIDATION; ABSORPTION; DIFFRACTION; ADSORPTION; STATE AB Resonance anomalous surface X-ray scattering (RASXS) technique was applied to electrochemical interface studies. It was used to determine the chemical states of electrochemically formed anodic oxide monolayers on platinum surface. It is shown that RASXS exhibits strong polarization dependence when the surface is significantly modified. The polarization dependence is demonstrated for three examples; anodic oxide formation, sulfate adsorption, and CO adsorption on platinum surfaces. sigma- and pi-polarization RASXS data were simulated with the latest version of ab initio multiple-scattering calculations (FEFF8.2). Elementary theoretical considerations are also presented for the origin of the polarization dependence in RASXS. Published by Elsevier Ltd. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Expt Facil Div, Argonne, IL 60439 USA. Kent State Univ, Dept Chem, Kent, OH 44242 USA. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP You, H (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hyou@anl.gov RI Menzel, Andreas/C-4388-2012; Chang, Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011; OI Menzel, Andreas/0000-0002-0489-609X; Chang, Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483; Tolmachev, Yuriy/0000-0001-6705-6058 NR 20 TC 7 Z9 7 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1651 EP 1660 DI 10.1016/j.radphyschem.2005.07.038 PG 10 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600042 ER PT J AU Cheng, KT Chen, MH AF Cheng, K. T. Chen, M. H. TI A large-scale relativistic configuration-interaction calculation for the 4s-4p transition energies of copperlike heavy ions SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE atomic spectroscopy; QED corrections ID CU-LIKE IONS; ZN-LIKE IONS; ISOELECTRONIC SEQUENCE; NA-LIKE; WAVELENGTHS; PB AB The 4s-4p transition energies for high-Z copperlike ions are calculated using the relativistic configuration-interaction (RCI) method. These calculations are based on the relativistic no-pair Hamiltonian which includes Coulomb and frequency-dependent, retarded Breit interactions and use B-spline orbitals as basis functions. Mass polarization and quantum electrodynamic (QED) corrections are also calculated. The present RCI energies agree very well with results from the relativistic many-body perturbation theory. With QED corrections included, our total transition energies are in very good agreement with recent high-precision measurements. (c) 2006 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cheng, KT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ktcheng@llnl.gov NR 15 TC 3 Z9 3 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1753 EP 1756 DI 10.1016/j.radphyschem.2005.07.033 PG 4 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600062 ER PT J AU Beiersdorfer, P AF Beiersdorfer, Peter TI Testing high-Z QED with SuperEBIT: An estimate of the U91+ 1s two-loop Lamb shift based on a measurement of the 2s(1)/(2)-2p(1/2) transition in U89+ SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE QED; two-loop Lamb shift; heavy ion physics; electron beam ion trap ID HELIUM-LIKE URANIUM; CU-LIKE IONS; SOFT-X-RAY; LI-LIKE; HYDROGENLIKE URANIUM; 2S(1/2)-2P(3/2) LEVELS; SELF-ENERGY; NA-LIKE; ESR; PB AB Starting from the results of a recent measurement of the 2s(1/2)-2p(1/2) transition in U89+ made on the SuperEBIT electron beam ion trap, which provided a determination of the 2s two-loop QED contribution, we estimate 1.27 +/- 0.45 eV for the two-loop contribution to the 1s level in U91+. This estimate could be improved by a factor of two or more, if the uncertainties associated with the three-photon exchange in the theoretical calculations were eliminated in the future. (c) 2006 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM beiersdorfer@llnl.gov NR 34 TC 3 Z9 3 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1757 EP 1762 DI 10.1016/j.radphyschem.2005.12.047 PG 6 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600063 ER PT J AU Young, L Dunford, RW Hoehr, C Kanter, EP Krassig, B Peterson, ER Southworth, SH Ederer, DL Rudati, J Arms, DA Dufresne, EM Landahl, EC AF Young, L. Dunford, R. W. Hoehr, C. Kanter, E. P. Krassig, B. Peterson, E. R. Southworth, S. H. Ederer, D. L. Rudati, J. Arms, D. A. Dufresne, E. M. Landahl, E. C. TI X-ray microprobe of optical strong-field processes SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE X-ray; pump-probe; strong-field effects; synchrotron radiation; ultrafast X-rays; microfocus X-rays ID LASER FIELDS; DIFFRACTION; PULSES; GENERATION; MOLECULES; RADIATION; IONIZATION; MICROSCOPY; EMISSION; CLUSTERS AB A time-resolved X-ray microprobe to study optical strong-field processes has been developed. Individual atoms or molecules located within the strong-field environment created by a focused ultrafast laser are probed by undulator-produced X-ray pulses to achieve spatial, temporal, spectral and polarization selectivity. Approximately 10(6) monochromatic X-rays per 100-ps pulse are focused into a similar to 10 mu m spot to selectively probe atoms in focal volumes where intensities up to 10(15) W/cm(2) can be present. In this paper, we describe the time-resolved X-ray microprobe and provide some illustrative examples from our work studying strong-field phenomena such as laser-modified absorption spectra, Coulomb explosion, transient laser-produced plasmas and molecular alignment. (c) 2006 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Tulane Univ, New Orleans, LA 70118 USA. RP Young, L (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM young@anl.gov RI Landahl, Eric/A-1742-2010 NR 51 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1799 EP 1807 DI 10.1016/j.radphyschem.2005.12.049 PG 9 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600069 ER PT J AU Caliebe, WA So, I Lenhard, A Siddons, DP AF Caliebe, W. A. So, I. Lenhard, A. Siddons, D. P. TI Cam-driven monochromator for QEXAFS SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE XAFS; QEXAFS; time-resolved studies ID RAY-ABSORPTION SPECTROSCOPY AB We have developed a cam-drive for quickly tuning the energy of an X-ray monochromator through an X-ray absorption edge for quick extended X-ray absorption spectroscopy (QEXAFS). The data are collected using a 4-channel, 12-bit multiplexed VME analog to digital converter and a VME angle encoder. The VME crate controller runs a real-time operating system. This system is capable of collecting 2 EXAFS-scans in Is with an energy stability of better than I eV. Additional improvements to increase the speed and the energy stability are under way. (c) 2006 Published by Elsevier Ltd. C1 Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Caliebe, WA (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. NR 8 TC 8 Z9 9 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 1962 EP 1965 DI 10.1016/j.radphyschem.2005.07.047 PG 4 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600101 ER PT J AU Dhal, BB Peele, AG McMahon, PJ De Carlo, F Nugent, KA AF Dhal, B. B. Peele, A. G. McMahon, P. J. De Carlo, F. Nugent, K. A. TI Bending magnet source: A radiation source for X-ray phase contrast tomography SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 20th International Conference on X-Ray and Inner-Shell Processes CY JUL 04-08, 2005 CL Univ Melbourne, Melbourne, AUSTRALIA HO Univ Melbourne DE tomography; phase; phase-contrast; synchrotron; X-rays AB The rapid development of electronic data processing and phase retrieval technique for image reconstruction leads to new opportunities in X-ray phase tomography. A range of radiographic and tomographic demonstrations have now been made, typically utilizing the coherent flux from an insertion device at a synchrotron or a micro-focus laboratory source. In this paper we demonstrate that useful results may be obtained using a bending magnet source at a synchrotron. In particular we show that the same beamline can be used to make and characterize a sample made by X-ray lithographic methods. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. Latrobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Dhal, BB (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. EM b.dhal@physics.unimelb.edu.au RI Nugent, Keith/J-2699-2012; Nugent, Keith/I-4154-2016 OI Nugent, Keith/0000-0003-1522-8991; Nugent, Keith/0000-0002-4281-3478 NR 5 TC 2 Z9 2 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD NOV PY 2006 VL 75 IS 11 BP 2004 EP 2007 DI 10.1016/j.radphyschem.2005.10.038 PG 4 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 107QH UT WOS:000242185600110 ER PT J AU Yoshida, PG AF Yoshida, Phyllis Genther TI Japan's fortunes turn positive as third 5-year science/tech plan begins SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Editorial Material C1 US DOE, FreedomCAR & Fuel Partnership, Washington, DC 20585 USA. RP Yoshida, PG (reprint author), US DOE, FreedomCAR & Fuel Partnership, Washington, DC 20585 USA. EM Phyllis.Yoshida@ee.doe.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU INDUSTRIAL RESEARCH INSTITUTE, INC PI ARLINGTON PA 2200 CLARENDON BLVD, STE 1102, ARLINGTON, VA 22201 USA SN 0895-6308 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD NOV-DEC PY 2006 VL 49 IS 6 BP 2 EP 4 PG 3 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA 102LP UT WOS:000241812900001 ER PT J AU Chapas, RB AF Chapas, Richard B. TI Take the abundance road SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Editorial Material C1 Pacific NW Natl Lab, Washington, DC USA. RP Chapas, RB (reprint author), Pacific NW Natl Lab, Washington, DC USA. EM richard.chapas@pni.gov NR 2 TC 2 Z9 2 U1 0 U2 0 PU INDUSTRIAL RESEARCH INSTITUTE, INC PI ARLINGTON PA 2200 CLARENDON BLVD, STE 1102, ARLINGTON, VA 22201 USA SN 0895-6308 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD NOV-DEC PY 2006 VL 49 IS 6 BP 9 EP 10 PG 2 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA 102LP UT WOS:000241812900005 ER PT J AU Baker, KL Carrano, CJ AF Baker, K. L. Carrano, C. J. TI Phase retrieval diagnostic for single pulse x-ray characterization of high density plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID WAVE-FRONT SENSOR; ELECTRON-DENSITY; SYNCHROTRON-RADIATION; INTERFEROMETER; ALGORITHMS; IMAGES AB This article presents designs for a single-shot x-ray compatible wave-front sensor and visible light demonstrations of such a wave-front sensor based on a novel implementation of the method of phase retrieval. This wave-front sensor may be used with a soft x-ray laser, as well as with incoherent line emission at multikilovolt x-ray energies. This approach could be used to characterize line-integrated electron density gradients formed in laser-produced and Z-pinch plasma experiments, as well as for at wavelength testing of extreme ultraviolet lithography components and x-ray phase imaging of biological specimens. The phase retrieval diagnostic is experimentally demonstrated in the visible region using a liquid-crystal spatial light modulator to provide a simulated phase profile, representing the phase that would be incurred by an x-ray probe passing through an exploding foil plasma. The visible light phase retrieval diagnostic represents the first experimental test of this phase retrieval algorithm, and the results are compared with an interferometric measurement and shown to be in close agreement. The merits of this diagnostic include a wide dynamic range, broadband or low coherence length light capability, high x-ray efficiency, two-dimensional gradient determination, and experimental simplicity. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Baker, KL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 20 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2006 VL 77 IS 11 AR 113502 DI 10.1063/1.2372735 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 110VE UT WOS:000242408600015 ER PT J AU Gu, PM Zhang, B Key, MH Hatchett, SP Barbee, T Freeman, RR Akli, K Hey, D King, JA Mackinnon, AJ Snavely, RA Stephens, RB AF Gu, Peimin Zhang, B. Key, M. H. Hatchett, S. P. Barbee, T. Freeman, R. R. Akli, K. Hey, D. King, J. A. Mackinnon, A. J. Snavely, R. A. Stephens, R. B. TI Measurements of electron and proton heating temperatures from extreme-ultraviolet light images at 68 eV in petawatt laser experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID IGNITION; PLASMA; PHOTON; BEAMS; HOT AB A 68 eV extreme-ultraviolet light imaging diagnostic measures short pulse isochoric heating by electrons and protons in petawatt laser experiments. Temperatures are deduced from the absolute intensities and comparison with modeling using a radiation hydrodynamics code. C1 Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Gen Atom Co, San Diego, CA 92186 USA. RP Gu, PM (reprint author), Ohio State Univ, Coll Math & Phys Sci, 425 Stillman Hall, Columbus, OH 43210 USA. RI MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 NR 14 TC 9 Z9 9 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2006 VL 77 IS 11 AR 113101 DI 10.1063/1.2364137 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 110VE UT WOS:000242408600002 ER PT J AU Higbie, JM Corsini, E Budker, D AF Higbie, J. M. Corsini, E. Budker, D. TI Robust, high-speed, all-optical atomic magnetometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NONLINEAR MAGNETOOPTICAL ROTATION; ELECTRIC-DIPOLE MOMENT; LASER; LIMITS; VAPOR AB A self-oscillating magnetometer based on the nonlinear magneto-optical rotation effect with separate modulated pump and unmodulated probe beams is demonstrated. This device possesses a bandwidth exceeding 1 kHz. Pump and probe are delivered by optical fiber, facilitating miniaturization and modularization. The magnetometer has been operated both with vertical-cavity surface-emitting lasers, which are well suited to portable applications, and with conventional edge-emitting diode lasers. A sensitivity of around 3 nG is achieved for a measurement time of 1 s. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Higbie, JM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM budker@berkeley.edu RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 NR 29 TC 25 Z9 28 U1 5 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2006 VL 77 IS 11 AR 113106 DI 10.1063/1.2370597 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 110VE UT WOS:000242408600007 ER PT J AU McCluskey, CW Wilke, MD Anderson, WW Byers, ME Holtkamp, DB Rigg, PA Furnish, MD Romero, VT AF McCluskey, Craig W. Wilke, Mark D. Anderson, William W. Byers, Mark E. Holtkamp, David B. Rigg, Paulo A. Furnish, Michael D. Romero, Vincent T. TI Asay window: A new spall diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SHOCK-WAVE AB By changing from the metallic foil of the Asay foil diagnostic, which can detect ejecta from a shocked surface, to a lithium fluoride (LiF) or polymethyl methacrylate (PMMA) window, it is possible to detect multiple spall layers and interlayer rubble. Past experiments to demonstrate this diagnostic have used high explosives (HEs) to shock metals to produce multiple spall layers. Because the exact characteristics of HE-induced spall layers cannot be predetermined, two issues exist in the quantitative interpretation of the data. First, to what level of fidelity is the Asay window method capable of providing quantitative information about spall layers, possibly separated by rubble, and second, contingent on the first, can an analytic technique be developed to convert the data to a meaningful description of spall from a given experiment? In this article, we address the first issue. A layered projectile fired from a gas gun was used to test the new diagnostic's accuracy and repeatability. We impacted a LiF or PMMA window viewed by a velocity interferometer system for any reflector (VISAR) probe with a projectile consisting of four thin stainless steel disks spaced apart 200 mu m with either vacuum or polyethylene. The window/surface interface velocity measured with a VISAR probe was compared with calculations. The good agreement observed between the adjusted calculation and the measured data indicates that, in principle and given enough prior information, it is possible to use the Asay window data to model a density distribution from spalled material with simple hydrodynamic models and only simple adjustments to nominal predictions. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Bechtel Nevada, Los Alamos, NM 87544 USA. RP McCluskey, CW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 18 TC 5 Z9 7 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2006 VL 77 IS 11 AR 113902 DI 10.1063/1.2336753 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 110VE UT WOS:000242408600022 ER PT J AU Pollock, BB Froula, DH Davis, PF Ross, JS Fulkerson, S Bower, J Satariano, J Price, D Krushelnick, K Glenzer, SH AF Pollock, B. B. Froula, D. H. Davis, P. F. Ross, J. S. Fulkerson, S. Bower, J. Satariano, J. Price, D. Krushelnick, K. Glenzer, S. H. TI High magnetic field generation for laser-plasma experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Pollock, BB (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 11 TC 15 Z9 15 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2006 VL 77 IS 11 AR 114703 DI 10.1063/1.2356854 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 110VE UT WOS:000242408600028 ER PT J AU Clark, RM AF Clark, R. M. TI Investigations into nuclear pairing SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 29th Symposium on Nuclear Physics CY JAN 03-06, 2006 CL Hacienda Cocoyoc, MEXICO DE collective models; pairing; Pb isotopes ID EVEN-EVEN NUCLEI; EXCITATION; VIBRATIONS; STATES; MODEL AB This paper is divided in two main sections focusing oil different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses oil the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Clark, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 33 TC 0 Z9 0 U1 0 U2 0 PU SOCIEDAD MEXICANA DE FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD NOV PY 2006 VL 52 IS 4 SU S BP 5 EP 10 PG 6 WC Physics, Multidisciplinary SC Physics GA 142LP UT WOS:000244651700003 ER PT J AU Li, BA Chen, LW Ko, CM Steiner, AW AF Li, Bao-An Chen, Lie-Wen Ko, Che Ming Steiner, A. W. TI Constraining properties of neutron stars with heavy-ion reactions SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 29th Symposium on Nuclear Physics CY JAN 03-06, 2006 CL Cocoyoc, MEXICO DE neutron stars; nuclear reaction models; equation of state ID EQUATION-OF-STATE; NUCLEAR-MATTER; COLLISIONS; BINARY AB Nuclear reactions induced by stable and/or radioactive neutron-rich nuclei provide the opportunity to pin down the equation of state of neutron-rich matter, especially the density (rho) dependence of its isospin-dependent part, i.e., the nuclear symmetry energy E(sym). A conservative constraint, 32(rho/rho(0))(0.7) < E(sym)(rho) < 32(rho/rho(0))(1.1), around the nuclear matter saturation density rho(0) has recently been obtained from the isospin diffusion data in intermediate energy heavy-ion collisions. We review this exciting result and discuss its consequences and implications on nuclear effective interactions, radii and cooling mechanisms of neutron stars. C1 Arkansas State Univ, Dept Chem & Phys, State Univ, AR 72467 USA. Shanghai Jiao Tong Univ, Inst Theoret Phys, Shanghai 200240, Peoples R China. Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China. Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Li, BA (reprint author), Arkansas State Univ, Dept Chem & Phys, POB 419, State Univ, AR 72467 USA. RI Chen, Lie-Wen/A-2398-2009 OI Chen, Lie-Wen/0000-0002-7444-0629 NR 33 TC 3 Z9 3 U1 0 U2 0 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD NOV PY 2006 VL 52 IS 4 SU S BP 56 EP 61 PG 6 WC Physics, Multidisciplinary SC Physics GA 142LP UT WOS:000244651700011 ER PT J AU Stapleton, M Carlson, JW Celniker, SE AF Stapleton, Mark Carlson, Joseph W. Celniker, Susan E. TI RNA editing in Drosophila melanogaster: New targets and functional consequences SO RNA-A PUBLICATION OF THE RNA SOCIETY LA English DT Article DE adenosine deaminase; Drosophila; RNA editing; ADAR; nervous system; transcriptome ID ACTIVATED POTASSIUM CHANNELS; CLC CHLORIDE CHANNELS; CAENORHABDITIS-ELEGANS; ADENOSINE DEAMINASES; GENE-EXPRESSION; MESSENGER-RNA; TRANSCRIPTIONAL ACTIVITY; SMALL-CONDUCTANCE; TYROSINE-KINASE; BINDING PROTEIN AB Adenosine deaminases that act on RNA [adenosine deaminase, RNA specific (ADAR)] catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice sites, and stability of mature mRNAs. ADAR is an essential gene, and studies in mouse, Caenorhabditis elegans, and Drosophila suggest that its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses led us to identify new classes of genes whose transcripts are targets of ADAR, including components of the actin cytoskeleton and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Biol, Berkeley Drosophila Genome Project,Life Sci Div, Berkeley, CA 94720 USA. RP Stapleton, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Biol, Berkeley Drosophila Genome Project,Life Sci Div, Berkeley, CA 94720 USA. EM staple@fruitfly.org FU NHGRI NIH HHS [R01 HG002673, HG002673] NR 80 TC 36 Z9 62 U1 0 U2 0 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 1355-8382 J9 RNA JI RNA-Publ. RNA Soc. PD NOV PY 2006 VL 12 IS 11 BP 1922 EP 1932 DI 10.1261/rna.254306 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 100XF UT WOS:000241702800002 PM 17018572 ER PT J AU Choi, YR Rack, PD Randolph, SJ Smith, DA Joy, DC AF Choi, Young R. Rack, Philip D. Randolph, Steven J. Smith, Daryl A. Joy, David C. TI Pressure effect of growing with electron beam-induced deposition with tungsten hexafluoride and tetraethylorthosilicate precursor SO SCANNING LA English DT Article DE electron beam-induced deposition; interaction volume; scanning electron microscope; precursor gas; extreme ultraviolet mask ID CHEMICAL-VAPOR-DEPOSITION; FOCUSED-ION-BEAM; INSITU OBSERVATION; FABRICATION; RESOLUTION; NANOSTRUCTURES; NANOLITHOGRAPHY; MICROSCOPY AB Electron beam-induced deposition (EBID) provides a simple way to fabricate submicron- or nanometerscale structures from various elements in a scanning electron microscope (SEM). The growth rate and shape of the deposits are influenced by many factors. We have studied the growth rate and morphology of EBID-deposited nanostructures as a function of the tungsten hexafluoride (WF6) and tetraethylorthosilicate (TEOS) precursor gas pressure and growth time, and we have used Monte Carlo simulations to model the growth of tungsten and silicon oxide to elucidate the mechanisms involved in the EBID growth. The lateral radius of the deposit decreases with increasing pressure because of the enhanced vertical growth rate which limits competing lateral broadening produced by secondary and forward- scattered electrons. The morphology difference between the conical SiOx and the cylindrical W nanopillars is related to the difference in interaction volume between the two materials. A key parameter is the residence time of the precursor gas molecules. This is an exponential function of the surface temperature; it changes during nanopillar growth and is a function of the nanopillar material and the beam conditions. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Choi, YR (reprint author), Univ Tennessee, Dept Mat Sci & Engn, M407 Walters Life Sci Bldg, Knoxville, TN 37996 USA. EM yrchoi@utk.edu OI Rack, Philip/0000-0002-9964-3254 NR 23 TC 19 Z9 19 U1 1 U2 9 PU FAMS INC PI MAHWAH PA BOX 832, MAHWAH, NJ 07430-0832 USA SN 0161-0457 J9 SCANNING JI Scanning PD NOV-DEC PY 2006 VL 28 IS 6 BP 311 EP 318 PG 8 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 114TC UT WOS:000242687500003 PM 17181132 ER PT J AU Knorovsky, GA Nowak-Neely, BM Holm, EA AF Knorovsky, G. A. Nowak-Neely, B. M. Holm, E. A. TI Microjoining with a scanning electron microscope SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE microjoining; SEM; beam power; beam characterisation; LIGA; MEMS AB In the present work the authors describe the adaptation of a standard SEM into a flexible microjoining tool. The system incorporates exceptional control of energy input and its location, environmental cleanliness, part manipulation and especially, part imaging. Beam energetics, modelling of thermal flow in a simple geometry, significant effects of surface energy on molten pools and beam size characterisation are treated. Examples of small to micro fusion welds and molten zones produced in a variety of materials (Ni, tool steel, Tophet C, Si) and sizes are given. Future directions are also suggested. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ New Mexico, Albuquerque, NM 87185 USA. RP Knorovsky, GA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gaknoro@sandia.gov RI Holm, Elizabeth/S-2612-2016 OI Holm, Elizabeth/0000-0003-3064-5769 NR 12 TC 3 Z9 3 U1 0 U2 3 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD NOV PY 2006 VL 11 IS 6 BP 641 EP 649 DI 10.1179/174329306X147698 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 128EB UT WOS:000243639900003 ER PT J AU Crawford, R Cook, GE Strauss, AM Hartman, DA Stremler, MA AF Crawford, R. Cook, G. E. Strauss, A. M. Hartman, D. A. Stremler, M. A. TI Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE FSW modelling; high speed FSW; FSW defects ID ALUMINUM-ALLOYS; FLOW; MODEL AB Experimental data for AA 6061-T6 friction stir welded at rotational and travel speeds ranging from 1000 to 5000 rev min(-1) and from 290 to 1600 mm min(-1) ( 11 - 63 ipm) are presented. The present paper examines the forces and torques during friction stir welding (FSW) with respect to mechanistic defect development owing to process parameter variation. Two types of defects are observed: wormholes and weld deformation in the form of significant excess flash material. A 3D numerical model, implemented using the computational fluids dynamics package Fluent, is used to simulate and investigate the parametric relationship of the forces and torques during FSW. In order to establish a mechanistic quantification of the FSW process, two mechanical models, the Couette and the viscoplastic fluid flow models, were simulated and compared with experimental data for AA 6061-T6. C1 Vanderbilt Univ, Welding Automat Lab, Nashville, TN 37235 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Crawford, R (reprint author), Vanderbilt Univ, Welding Automat Lab, 221 Kirkland Hall, Nashville, TN 37235 USA. EM reginald.crawford@vanderbilt.edu RI Stremler, Mark/B-1309-2012; OI Stremler, Mark/0000-0001-5785-7732 NR 24 TC 35 Z9 36 U1 3 U2 22 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD NOV PY 2006 VL 11 IS 6 BP 657 EP 665 DI 10.1179/174329306X147742 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 128EB UT WOS:000243639900005 ER PT J AU Knorovsky, GA MacCallum, DO Meyers, MT AF Knorovsky, G. A. MacCallum, D. O. Meyers, M. T. TI Selection of parameters for mu E-beam welding SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE MicroEB welding; beam parameters; thermal modelling; MEMS; LIGA Ni; Monte Carlo modelling ID CROSS-SECTION; SCATTERING; ELECTRONS AB Electron beam welding is a well known process used where high precision, high reliability welds are needed, often in exotic materials. Recently, it has been proposed to apply the electron beam produced in a standard scanning electron microscope (SEM), with reversible modifications to increase beam current, for microscale welding. In addition to providing the clean environment associated with the column vacuum, the SEM in imaging mode provides exceptional capabilities in visualising extremely small parts. Furthermore, the standard stage and beam motion controls offer the possibility of flexible programming of beam path with relatively minor software additions. In order to better evaluate the requirements for and effects of mu E-beam welding (mu EBW) on typical microtechnologically important materials, a clear understanding of the characteristics of the SEM's beam and its interaction with possible target materials is needed. The penetration ability of electrons depends strongly upon their accelerating voltage and the target they are being directed at. Hence, in some circumstances the beam may interact as a surface heat source, while in others it may act as a volume heat source, with important consequences on weld schedule development for the parts and geometry being welded. In this work, the authors explore some of the factors involved and propose simple models for the electron beam heat source which depend on the parameters being used. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Knorovsky, GA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gaknoro@sandia.gov NR 14 TC 3 Z9 3 U1 0 U2 1 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD NOV PY 2006 VL 11 IS 6 BP 672 EP 680 DI 10.1179/174329306X147706 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 128EB UT WOS:000243639900007 ER PT J AU Smith, NM Lee, R Heitkemper, DT Cafferky, KD Haque, A Henderson, AK AF Smith, Nicole M. Lee, Robin Heitkemper, Douglas T. Cafferky, Katie DeNicola Haque, Abidul Henderson, Alden K. TI Inorganic arsenic in cooked rice and vegetables from Bangladeshi households SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Bangladesh; arsenite; arsenate; dimethylarsinic acid; food; average daily intake ID PERFORMANCE LIQUID-CHROMATOGRAPHY; ATOMIC FLUORESCENCE SPECTROMETRY; PLASMA-MASS SPECTROMETRY; WEST-BENGAL; DRINKING-WATER; FOOD COMPOSITES; AFFECTED AREA; INDIA; CONTAMINATION; SPECIATION AB Many Bangladeshi suffer from arsenic-related health concerns. Most mitigation activities focus on identifying contaminated wells and reducing the amount of arsenic ingested from well water. Food as a source of arsenic exposure has been recently documented. The objectives of this study were to measure the main types of arsenic in commonly consumed foods in Bangladesh and estimate the average daily intake (ADI) of arsenic from food and water. Total, organic and inorganic, arsenic were measured in drinking water and in cooked rice and vegetables from Bangladeshi households. The mean total arsenic level in 46 rice samples was 358 mu g/kg (range: 46 to 1110 mu g/kg dry weight) and 333 mu g/kg (range: 19 to 2334 mu g/kg dry weight) in 39 vegetable samples. Inorganic arsenic calculated as arsenite and arsenate made up 87% of the total arsenic measured in rice, and 96% of the total arsenic in vegetables. Total arsenic in water ranged from 200 to 500 mu g/L. Using individual, self-reported data on daily consumption of rice and drinking water the total arsenic ADI was 1176 mu g (range: 419 to 2053 mu g), 14% attributable to inorganic arsenic in cooked rice. The ADI is a conservative estimate; vegetable arsenic was not included due to limitations in self-reported daily consumption amounts. Given the arsenic levels measured in food and water and consumption of these items, cooked rice and vegetables are a substantial exposure pathway for inorganic arsenic. Intervention strategies must consider all sources of dietary arsenic intake. Published by Elsevier B.V. C1 Agcy Tox Substances & Dis Registry, Div Hlth Studies, Atlanta, GA 30333 USA. Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Atlanta, GA 30333 USA. US FDA, Forens Chem Ctr, Cincinnati, OH 45237 USA. Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. Natl Inst Prevent & Social Med, Dhaka 1212, Bangladesh. RP Henderson, AK (reprint author), Agcy Tox Substances & Dis Registry, Div Hlth Studies, 1600 Clifton Rd, Atlanta, GA 30333 USA. EM AHenderson@cdc.gov NR 40 TC 73 Z9 77 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD NOV 1 PY 2006 VL 370 IS 2-3 BP 294 EP 301 DI 10.1016/j.scitotenv.2006.06.010 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA 100FH UT WOS:000241653000003 PM 16875714 ER PT J AU Bollen, J de Sompel, HV AF Bollen, Johan de Sompel, Herbert Van TI Mapping the structure of science through usage SO SCIENTOMETRICS LA English DT Article ID SOCIAL DESIRABILITY BIAS; SCIENTIFIC LITERATURE; COMBINED COCITATION; PUBLICATION DELAYS; DIGITAL LIBRARY; WORD ANALYSIS; CITATION; IMPACT; NETWORKS; JOURNALS AB Science has traditionally been mapped on the basis of authorship and citation data. Due to publication and citation delays such data represents the structure of science as it existed in the past. We propose to map science by proxy of journal relationships derived from usage data to determine research trends as they presently occur. This mapping is performed by applying a principal components analysis superimposed with a k-means cluster analysis on networks of journal relationships derived from a large set of article usage data collected for the Los Alamos National Laboratory research community. Results indicate that meaningful maps of the interests of a local scientific community can be derived from usage data. Subject groupings in the mappings corresponds to Thomson ISI subject categories. A comparison to maps resulting from the analysis of 2003 Thomson ISI Journal Citation Report data reveals interesting differences between the features of local usage and global citation data. C1 Los Alamos Natl Lab, Res Lib, Los Alamos, NM 87545 USA. RP Bollen, J (reprint author), Los Alamos Natl Lab, Res Lib, POB 1663, Los Alamos, NM 87545 USA. EM jbollen@lanl.gov NR 50 TC 18 Z9 18 U1 1 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2006 VL 69 IS 2 BP 227 EP 258 DI 10.1007/s11192-006-0151-8 PG 32 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science SC Computer Science; Information Science & Library Science GA 083SE UT WOS:000240477700003 ER PT J AU Jiang, C Gleeson, B AF Jiang, Chao Gleeson, Brian TI Effects of Cr on the elastic properties of B2NiAl: A first-principles study SO SCRIPTA MATERIALIA LA English DT Article DE chromium; nickel alummides; point defects; first-principle electron theory ID TOTAL-ENERGY CALCULATIONS; BRILLOUIN-ZONE INTEGRATIONS; THERMAL BARRIER COATINGS; AUGMENTED-WAVE METHOD; ALUMINIDE BOND COAT; MARTENSITIC-TRANSFORMATION; NICKEL ALUMINIDE; SITE PREFERENCE; POINT-DEFECTS; BASIS-SET AB We performed first-principles calculations based on the density functional theory to investigate the effects of Cr addition on the elastic properties of B2 NiAl. The Wagner-Schottky model was employed to correlate single-crystal elastic constants of ternary B2 NiAl-Cr alloys with point defect concentrations, in which the defect-formation parameters were obtained from first-principles supercell calculations. The present calculations clearly show that the effects of Cr addition on the elastic properties of B2 NiAl are strongly composition-dependent. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Jiang, C (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM chaoisu@iastate.edu RI Jiang, Chao/A-2546-2011 NR 31 TC 17 Z9 17 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2006 VL 55 IS 9 BP 759 EP 762 DI 10.1016/j.scriptamat.2006.07.019 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 086SQ UT WOS:000240693700002 ER PT J AU Mehrotra, P Lillo, TM Agnew, SR AF Mehrotra, P. Lillo, T. M. Agnew, S. R. TI Ductility enhancement of a heat-treatable magnesium alloy SO SCRIPTA MATERIALIA LA English DT Article DE texture; ECAE; ECAP; aging; precipitates ID CHANNEL ANGULAR EXTRUSION; TEXTURE EVOLUTION AB A high strength magnesium alloy is subjected to equal channel angular extrusion imparting a strong shear texture. After annealing, the ductility epsilon(f) similar to 26% is improved by a factor of two in comparison to conventional processing methods. The enhancement is discussed in terms of grain size, texture, aging and failure stress. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 24590 USA. Idaho Natl Engn & Environm Lab, Environm & Energy Sci Div, Idaho Falls, ID 83415 USA. RP Agnew, SR (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 24590 USA. EM agnew@virginia.edu RI Lilllo, Thomas/S-5031-2016 OI Lilllo, Thomas/0000-0002-7572-7883 NR 14 TC 26 Z9 27 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2006 VL 55 IS 10 BP 855 EP 858 DI 10.1016/j.scriptamat.2006.08.005 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 093KA UT WOS:000241166000003 ER PT J AU Han, QY AF Han, Qingyou TI Motion of bubbles in the mushy zone SO SCRIPTA MATERIALIA LA English DT Article DE solidification microstructure; casting; porosity formation ID POROSITY; ALLOYS AB Radical bubble motion in the mushy zone during solidification of transparent material was observed. Often, bubbles jump at great speeds, from location to location towards higher temperature regions in the mushy zone. This type of radical bubble motion may also affect the final distribution and size of pores in a solidifying casting. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Han, QY (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM hanq@ornl.gov NR 8 TC 17 Z9 17 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2006 VL 55 IS 10 BP 871 EP 874 DI 10.1016/j.scriptamat.2006.07.052 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 093KA UT WOS:000241166000007 ER PT J AU Hong, ST Herling, DR AF Hong, Sung-Tae Herling, Darrell R. TI Open-cell aluminum foams filled with phase change materials as compact heat sinks SO SCRIPTA MATERIALIA LA English DT Article DE aluminum foam; phase change material; heat sink ID THERMAL-ENERGY STORAGE; GRAPHITE-MATRIX; ION BATTERY; METAL FOAMS; MANAGEMENT; COMPOSITE AB The effects of geometric parameters of open-cell aluminum foams on the performance of aluminum foam-phase change material (PCM) heat sinks were investigated. Paraffin was selected as the PCM. As the surface area density of foams increases, both the heating and cooling times of the copper block, which simulates a device under thermal load, increase. The effect of the surface area density is more pronounced on the cooling time. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hong, ST (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM sungtae.hong@pnl.gov RI Choi, Seungtae/C-6821-2011; Hong, Sung Tae/K-2720-2015 OI Choi, Seungtae/0000-0002-4119-9787; Hong, Sung Tae/0000-0003-2263-7099 NR 11 TC 48 Z9 53 U1 8 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2006 VL 55 IS 10 BP 887 EP 890 DI 10.1016/j.scriptamat.2006.07.050 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 093KA UT WOS:000241166000011 ER PT J AU Lee, MH Sordelet, DJ AF Lee, M. H. Sordelet, D. J. TI Nanoporous metallic glass with high surface area SO SCRIPTA MATERIALIA LA English DT Article DE amorphous; metallic glass; surface area; nanopores ID SUPERALLOY MEMBRANES; ALLOYS; FOAMS; FABRICATION; COMPOSITES; STABILITY AB The synthesis of uniformly distributed nanoscale pores within a Cu(47)Ti(33)Z(11)Ni(8)Si(1) metallic glass is described. The porous metallic glass was obtained by extruding layered Cu-based metallic glass + Cu composite powders followed dissolution of the Cu in a HNO3 solution. The porous metallic glass has a specific surface area of 23.5 m(2)/g. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Lee, MH (reprint author), Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM mhlee@ameslab.gov NR 25 TC 30 Z9 31 U1 3 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2006 VL 55 IS 10 BP 947 EP 950 DI 10.1016/j.scriptamat.2006.07.024 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 093KA UT WOS:000241166000026 ER PT J AU Burr, T Foy, BR Fry, H Mcvey, B AF Burr, Tom Foy, Bernard R. Fry, Herb McVey, Brian TI Characterizing clutter in the context of detecting weak gaseous plumes in hyperspectral imagery SO SENSORS LA English DT Article DE clutter; single-component multivariate Gaussian; mixture distribution; generalized least squares; near infrared; central limit theorem ID MATCHED-FILTER DETECTION; IMAGING DATA; BAYES FACTORS; REGRESSION; MODELS AB Weak gaseous plume detection in hyperspectral imagery requires that background clutter consisting of a mixture of components such as water, grass, and asphalt be well characterized. The appropriate characterization depends on analysis goals. Although we almost never see clutter as a single-component multivariate Gaussian (SCMG), alternatives such as various mixture distributions that have been proposed might not be necessary for modeling clutter in the context of plume detection when the chemical targets that could be present are known at least approximately. Our goal is to show to what extent the generalized least squares (GLS) approach applied to real data to look for evidence of known chemical targets leads to chemical concentration estimates and to chemical probability estimates (arising from repeated application of the GLS approach) that are similar to corresponding estimates arising from simulated SCMG data. In some cases, approximations to decision thresholds or confidence estimates based on assuming the clutter has a SCMG distribution will not be sufficiently accurate. Therefore, we also describe a strategy that uses a scene-specific reference distribution to estimate decision thresholds for plume detection and associated confidence measures. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, Mail Stop F600, Los Alamos, NM 87545 USA. EM tburr@lanl.gov; bfoy@lanl.gov; ha_fry@lanl.gov NR 32 TC 10 Z9 10 U1 0 U2 2 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL PI BASEL PA MATTHAEUSSTRASSE 11, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD NOV PY 2006 VL 6 IS 11 BP 1587 EP 1615 DI 10.3390/s6111587 PG 29 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 142FC UT WOS:000244633800011 ER PT J AU Chen, JY Xiong, YJ Yin, YD Xia, YN AF Chen, Jingyi Xiong, Yujie Yin, Yadong Xia, Younan TI Pt nanoparticles surfactant-directed assembled into colloidal spheres and used as substrates in forming Pt nanorods and nanowires SO SMALL LA English DT Article DE nanoparticles; nanorods; nanowires; platinum; polyol reduction ID PLATINUM NANOPARTICLES; NANOSTRUCTURES; TEMPLATES; SOLVENTS C1 Univ Washington, Dept Chem, Seattle, WA 98195 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Xia, YN (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM xia@chem.washington.edu RI Yin, Yadong/D-5987-2011; Xiong, Yujie/G-3203-2010; Xia, Younan/E-8499-2011; Chen, Jingyi/E-7168-2010 OI Yin, Yadong/0000-0003-0218-3042; Chen, Jingyi/0000-0003-0012-9640 NR 25 TC 67 Z9 69 U1 8 U2 63 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD NOV PY 2006 VL 2 IS 11 BP 1340 EP 1343 DI 10.1002/smll.200600015 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 095KW UT WOS:000241307600018 PM 17192984 ER PT J AU Liao, JD Boutton, TW Jastrow, JD AF Liao, J. D. Boutton, T. W. Jastrow, J. D. TI Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article; Proceedings Paper CT Fall Meeting of the American-Geophysical-Union CY DEC 13-17, 2004 CL San Francisco, CA SP Amer Geophys Union DE C-sequestration; soil aggregates; carbon; nitrogen; C/N ratio; grasslands; chronosequence ID SUBTROPICAL SAVANNA ECOSYSTEM; PARTICULATE ORGANIC-CARBON; C-13 NATURAL-ABUNDANCE; LITTER DECOMPOSITION; PARTICLE-SIZE; LAND-USE; MATTER; STABILIZATION; TURNOVER; TILLAGE AB Woody plant invasion of grasslands is prevalent worldwide. In the Rio Grande Plains of Texas, subtropical thorn woodlands dominated by C(3) trees/shrubs have been replacing C(4) grasslands over the past 150yr, resulting in increased soil organic carbon (SOC) storage and concomitant increases in soil total nitrogen (STN). To elucidate mechanisms of change in SOC and STN, we separated soil organic matter into specific size/density fractions and determined the concentration of C and N in these fractions. Soils were collected from remnant grasslands (Time 0) and woody plant stands (ages 10-130 yr). Rates of whole-soil C and N accrual in the upper 15 cm of the soil profile averaged 10-30 g C m(-2) yr(-1) and 1-3 g N m(-2) yr(-1), respectively, over the past 130 yr of woodland development. These rates of accumulation have increased soil C and N stocks in older wooded areas by 100-500% relative to remnant grasslands. Probable causes of these increased pool sizes include higher rates of organic matter production in wooded areas, greater inherent biochemical resistance of woody litter to decomposition, and protection of organic matter by stabilization within soil macro- and microaggregates. The mass proportions of the free light fraction (< 1.0 g cm(-3)) and macroaggregate fraction (> 250 mu m) increased linearly with time following woody plant invasion of grassland. Conversely, the mass proportions of free microaggregate (53-250 mu m) and free silt + clay (< 53 mu m) fractions decreased linearly with time after woody invasion, likely reflecting stabilization of these fractions within macroaggregate structures. Carbon and N concentrations increased in all soil fractions with time following woody invasion. Approximately half of the C and N accumulated in free particulate organic matter (POM) fractions, while the remainder accrued in stable macro- and microaggregate structures. Soil C/N ratios indicated that the organic C associated with POM and macroaggregates was of more recent origin (less decomposed) than C associated with the microaggregate and silt + clay fractions. Because grassland-to-woodland conversion has been geographically extensive in grassland ecosystems worldwide during the past century, changes in soil C and N storage and dynamics documented here could have significance for global cycles of those elements. (c) 2006 Elsevier Ltd. All rights reserved. C1 Texas A&M Univ, Dept Rangeland Ecol & Management, College Stn, TX 77843 USA. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Boutton, TW (reprint author), Texas A&M Univ, Dept Rangeland Ecol & Management, College Stn, TX 77843 USA. EM boutton@neo.tamu.edu RI Boutton, Thomas/C-5821-2016 OI Boutton, Thomas/0000-0002-7522-5728 NR 52 TC 96 Z9 114 U1 11 U2 65 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2006 VL 38 IS 11 BP 3184 EP 3196 DI 10.1016/j.soilbio.2006.04.003 PG 13 WC Soil Science SC Agriculture GA 097YA UT WOS:000241484700002 ER PT J AU Liao, JD Boutton, TW Jastrow, JD AF Liao, J. D. Boutton, T. W. Jastrow, J. D. TI Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural (13)C and (15)N SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article; Proceedings Paper CT Fall Meeting of the American-Geophysical-Union CY DEC 13-17, 2004 CL San Francisco, CA SP Amer Geophys Union DE woody plant invasion; soil aggregates; particulate organic matter; organic matter stabilization; stable isotopes; carbon cycle; nitrogen cycle; chronosequence ID PARTICLE-SIZE FRACTIONS; BRAZILIAN AMAZON BASIN; CARBON DYNAMICS; STRUCTURAL STABILITY; LITTER DECOMPOSITION; SUBTROPICAL SAVANNA; PROSOPIS-GLANDULOSA; AGGREGATE STABILITY; VEGETATION CHANGE; CULTIVATED SOILS AB Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (delta(13)C, delta(15)N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C(3) trees/shrubs (delta(13)C = -27 parts per thousand) have largely replaced C(4) grasslands (delta(13)C = -14 parts per thousand) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural delta(13)C and delta(15)N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their delta(13)C with time after woody encroachment. The shortest MRTs (average = 30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 mu m) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt + clay fractions had the longest MRTs (average = 360 years) regardless of whether they were found inside or outside of aggregate structure. delta(15)N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher delta(15)N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C(4)-derived organic matter by protection within microaggregates and association with silt + clay, and the accumulation of new C(3)-derived organic matter in macroaggregates and POM fractions. (c) 2006 Elsevier Ltd. All rights reserved. C1 Texas A&M Univ, Dept Rangeland Ecol & Management, College Stn, TX 77843 USA. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Boutton, TW (reprint author), Texas A&M Univ, Dept Rangeland Ecol & Management, College Stn, TX 77843 USA. EM boutton@neo.tamu.edu RI Boutton, Thomas/C-5821-2016 OI Boutton, Thomas/0000-0002-7522-5728 NR 106 TC 101 Z9 105 U1 9 U2 80 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2006 VL 38 IS 11 BP 3197 EP 3210 DI 10.1016/j.soilbio.2006.04.004 PG 14 WC Soil Science SC Agriculture GA 097YA UT WOS:000241484700003 ER PT J AU Allison, SD Jastrow, JD AF Allison, Steven D. Jastrow, Julie D. TI Activities of extracellular enzymes in physically isolated fractions of restored grassland soils SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article; Proceedings Paper CT Fall Meeting of the American-Geophysical-Union CY DEC 13-17, 2004 CL San Francisco, CA SP Amer Geophys Union DE soil carbon; extracellular enzyme; aggregate; grassland; physical fractionation; microbe; prairie restoration ID PARTICLE-SIZE FRACTIONS; ORGANIC-MATTER; CELLULOSE DEGRADATION; WOOD DECOMPOSITION; CARBON STORAGE; NITROGEN; RESIDUES; TRANSFORMATION; AGGREGATION; PHOSPHORUS AB Extracellular enzymes degrade complex organic compounds and contribute to carbon turnover in soils. We used physical fractionation procedures to investigate whether soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay-sized fraction. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in particulate organic matter (POM) fractions than in bulk soil, consistent with the rapid turnover of POM fractions. Polyphenol oxidase activity in the clay-sized fraction was 3 times that in the bulk soil, despite a higher mean residence time for carbon in the clay-sized fraction. For most enzymes, differences in activity among fractions and across the restoration chronosequence diminished when adjusted for differences in carbon concentrations. However, glycine aminopeptidase activity per unit carbon increased four-fold across the chronosequence in the clay fraction, while polyphenol oxidase activity declined by 40%. These results suggest that enzyme production and carbon turnover occur rapidly in POM fractions, but slowly in mineral-dominated fractions where enzymes and their carbon substrates are immobilized on mineral surfaces. Soil carbon accumulation in mineral fractions and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular to micron scale, rather than exclusion of enzymes from entire soil fractions. Based on these mechanisms, land managers could increase soil C stocks by reducing the physical disruption of soil structure associated with cultivation. Published by Elsevier Ltd. C1 Univ Calif Irvine, Dept Ecol & Evolut, Irvine, CA 92697 USA. Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA. RP Allison, SD (reprint author), Univ Calif Irvine, Dept Ecol & Evolut, 341 Steinhaus Hall, Irvine, CA 92697 USA. EM allisons@uci.edu; jdjastrow@anl.gov RI Allison, Steven/E-2978-2010 OI Allison, Steven/0000-0003-4629-7842 NR 63 TC 126 Z9 135 U1 14 U2 85 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2006 VL 38 IS 11 BP 3245 EP 3256 DI 10.1016/j.soilbio.2006.04.011 PG 12 WC Soil Science SC Agriculture GA 097YA UT WOS:000241484700007 ER PT J AU Sollins, P Swanston, C Kleber, M Filley, T Kramer, M Crow, S Caldwell, BA Lajtha, K Bowden, R AF Sollins, Phillip Swanston, Christopher Kleber, Markus Filley, Timothy Kramer, Marc Crow, Susan Caldwell, Bruce A. Lajtha, Kate Bowden, Richard TI Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article; Proceedings Paper CT Fall Meeting of the American-Geophysical-Union CY DEC 13-17, 2004 CL San Francisco, CA SP Amer Geophys Union DE soil organic matter; particle density; (13)C; (15)N; (14)C; MRT; lignin; hydroxyfatty acids; cutin; suberin; x-ray diffraction; glycoprotein; amino sugar; protein; amino acid; smectite; magnetite; acid/aldehyde ratio; carbon; nitrogen; sulfur; soil C stabilization ID MAGNETIC-RESONANCE-SPECTROSCOPY; ARBUSCULAR MYCORRHIZAL FUNGI; SOLID-STATE C-13; MARINE-SEDIMENTS; AMINO-ACIDS; NMR-SPECTROSCOPY; MINERAL SURFACES; CLAY-MINERALS; AZOSPIRILLUM-BRASILENSE; ISOTOPIC FRACTIONATION AB In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases with increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of nitrogenous N-containing compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which other organics could sorb more readily than onto the unconditioned mineral surfaces ("onion" layering model). To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm(-3) and analyzed the six fractions for measures of organic matter and mineral phase properties. All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and (14)C mean residence time (MRT) increased with particle density from ca. 150 years to > 980 years in the four organo-mineral fractions. In contrast, C/N. (13)C and (15)N concentration all showed the second pattern. All these data are consistent with a general pattern of an increase in extent of microbial processing with increasing organo-mineral particle density, and also with an "onion" layering model. X-ray diffraction before and after separation of magnetic materials showed that the sequential density fractionation (SDF) isolated pools of differing mineralogy, with layer-silicate clays dominating in two of the intermediate fractions and primary minerals in the heaviest two fractions. There was no indication that these differences in mineralogy controlled the differences in density of the organo-mineral particles in this soil. Thus, our data are consistent with the hypothesis that variation in particle density reflects variation in thickness of the organic accumulations and with an "onion" layering model for organic matter accumulation on mineral surfaces. However. the mineralogy differences among fractions made it difficult to test either the layer-thickness or "onion" layering models with this soil. Although SDF isolated pools of distinct mineralogy and organic-matter composition, more work will be needed to understand mechanisms relating the two factors. Published by Elsevier Ltd. C1 Oregon State Univ, Corvallis, OR 97331 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. Allegheny Coll, Meadville, PA 16335 USA. RP Sollins, P (reprint author), Oregon State Univ, Corvallis, OR 97331 USA. EM phil.sollins@orst.edu RI Filley, Timothy/A-9862-2009 NR 85 TC 174 Z9 177 U1 7 U2 133 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2006 VL 38 IS 11 BP 3313 EP 3324 DI 10.1016/j.soilbio.2006.04.014 PG 12 WC Soil Science SC Agriculture GA 097YA UT WOS:000241484700013 ER PT J AU Lombi, E Scheckel, KG Armstrong, RD Forrester, S Cutler, JN Paterson, D AF Lombi, E. Scheckel, K. G. Armstrong, R. D. Forrester, S. Cutler, J. N. Paterson, D. TI Speciation and distribution of phosphorus in a fertilized soil: A synchrotron-based investigation SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID X-RAY TECHNIQUES; CALCAREOUS SOILS; ALKALINE SOILS; PHOSPHATE; SPECTROSCOPY; PRECIPITATION; ADSORPTION; AUSTRALIA; MINERALS; SYSTEMS AB Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of southern Australia, to be more efficient for crop (wheat [Triticum aestivum L.]) P nutrition than granular products. To elucidate the mechanisms responsible for this differential response, an isotopic dilution technique (E value) coupled with a synchrotron-based spectroscopic investigation were used to assess the reaction products of a granular (monoammonium phosphate, MAP) and a fluid P (technical-grade monoammonium phosphate, TG-MAP) fertilizer in a highly calcareous soil. The isotopic exchangeability of P from the fluid fertilizer, measured with the E-value technique, was higher than that of the granular product. The spatially resolved spectroscopic investigation, performed using nano x-ray fluorescence and nano x-ray absorption near-edge structure (n-XANES), showed that P is heterogeneously distributed in soil and that, at least in this highly calcareous soil, it is invariably associated with Ca rather than Fe at the nanoscale. "Bulk" XANES spectroscopy revealed that, in the soil surrounding fertilizer granules, P precipitation in the form of octacalcium phosphate and apatite-like compounds is the dominant mechanism responsible for decreases in P exchangeability. This process was less prominent when the fluid P fertilizer was applied to the soil. C1 CSIRO, Glen Osmond, SA 5064, Australia. US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45224 USA. Dept Primary Ind, Horsham, Vic 3400, Australia. Canadian Light Source Inc, Saskatoon, SK S7N 0X4, Canada. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lombi, E (reprint author), CSIRO, PMB 2, Glen Osmond, SA 5064, Australia. EM enzo.lombi@csiro.au RI Scheckel, Kirk/C-3082-2009; Lombi, Enzo/F-3860-2013 OI Scheckel, Kirk/0000-0001-9326-9241; Lombi, Enzo/0000-0003-3384-0375 NR 42 TC 56 Z9 61 U1 2 U2 28 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD NOV-DEC PY 2006 VL 70 IS 6 BP 2038 EP 2048 DI 10.2136/sssaj2006.0051 PG 11 WC Soil Science SC Agriculture GA 105NV UT WOS:000242038300026 ER PT J AU Anders, A Byon, E Kim, DH Fukuda, K Lim, SHN AF Anders, Andre Byon, Eungsun Kim, Dong-Ho Fukuda, Kentaro Lim, Sunnie H. N. TI Smoothing of ultrathin silver films by transition metal seeding SO SOLID STATE COMMUNICATIONS LA English DT Article DE silver; transition metals; nucleation and growth of thin films ID THIN-FILMS AB The nucleation and coalescence of silver islands on coated glass was investigated by in situ measurements of the sheet resistance. Sub-monolayer amounts of niobium and other transition metals were deposited prior to the deposition of silver. It was found that in some cases, the transition metals lead to coalescence of silver at nominally thinner films with smoother topology. The smoothing or roughening effects by the presence of the transition metal can be explained by kinetically limited transition metal islands growth and oxidation, followed by defect-dominated nucleation of silver. (c) 2006 Elsevier Ltd. All rights reserved. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Korean Inst Machinery & Mat, Chang Won 641010, South Korea. Nippon Sheet Glass Co Ltd, Tsukuba, Ibaraki 3002635, Japan. Univ Sydney, Sch Phys, Washington, DC 20010 USA. RP Anders, A (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Lim, Sunnie/A-2827-2012; Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 13 TC 35 Z9 35 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD NOV PY 2006 VL 140 IS 5 BP 225 EP 229 DI 10.1016/j.ssc.2006.08.027 PG 5 WC Physics, Condensed Matter SC Physics GA 100YJ UT WOS:000241705800003 ER PT J AU Bud'ko, SL Schmiedeshoff, GM Canfield, PC AF Bud'ko, S. L. Schmiedeshoff, G. M. Canfield, P. C. TI Anisotropic thermal expansion and evaluation of uniaxial pressure dependence of superconducting and magnetic transitions in ErNi2B2C SO SOLID STATE COMMUNICATIONS LA English DT Article DE magnetically ordered materials; superconductors; thermal expansion ID SINGLE-CRYSTALS; RNI2B2C; BOROCARBIDES; TEMPERATURE; HO; ER AB We present anisotropic thermal expansion measurements on single crystalline ErNi2B2C. All three, superconducting, antiferromagnetic and weak ferromagnetic phase transitions are unambiguously distinguished in the data. Anisotropic uniaxial pressure dependencies of the transitions are estimated based on the Ehrenfest relation, leading to a conclusion, in particular, that weak ferromagnetic states may be suppressed by small, order of few kbar, hydrostatic pressure. Additionally, magnetostriction is shown to be a useful probe for rich and complex H-T diagram in this material. (c) 2006 Elsevier Ltd. All rights reserved. C1 Iowa State Univ, Ames Lab US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Occidental Coll, Dept Phys, Los Angeles, CA 90041 USA. RP Bud'ko, SL (reprint author), Iowa State Univ, Ames Lab US DOE, Ames, IA 50011 USA. EM budko@ameslab.gov RI Canfield, Paul/H-2698-2014 NR 29 TC 5 Z9 5 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD NOV PY 2006 VL 140 IS 6 BP 281 EP 284 DI 10.1016/j.ssc.2006.08.038 PG 4 WC Physics, Condensed Matter SC Physics GA 102BS UT WOS:000241786400004 ER PT J AU Sparks, CM Gondran, CH Havrilla, GJ Hastings, EP AF Sparks, Chris M. Gondran, Carolyn H. Havrilla, George J. Hastings, Elizabeth P. TI Automated nanoliter solution deposition for total reflection X-ray fluorescence analysis of semiconductor samples SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article; Proceedings Paper CT 11th International Conference on Total Reflection X-Ray Fluorescence Spectrometry and Related Methods CY SEP 18-22, 2005 CL Eotvos Univ, Lagymanyos Campus, Budapest, HUNGARY HO Eotvos Univ, Lagymanyos Campus DE total reflection X-ray fluorescence; TXRF; vapor phase decomposition; VPD; nanoliter dried spot deposition ID METALLIC CONTAMINATION ANALYSIS; WAFER SURFACES; SPECTROMETRY; TXRF; RESIDUE AB In this study, a BioDot BioJet dispensing system was investigated as a nanoliter sample deposition method for total reflection X-ray fluorescence (TXRF) analysis. The BioDot system was programmed to dispense arrays of 20 nL droplets of sample solution on Si wafers. Each 20 nL droplet was approximately 100 mu m in diameter. A 10 x 10 array (100 droplets) was deposited and dried in less than 2 min at room temperature and pressure, demonstrating the efficiency of the automated deposition method. Solutions of various concentrations of Ni and Ni in different matrices were made from stock trace element standards to investigate of the effect of the matrix on the TXRF signal. The concentrations were such that the levels of TXRF signal saturation could be examined. Arrays were deposited to demonstrate the capability of drying 100 mu L of vapor phase decomposition-like residue in the area of a typical TXRF detector. (c) 2006 Elsevier B.V. All rights reserved. C1 ATDF, Proc Characterizat Lab, Austin, TX 78741 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Sparks, CM (reprint author), ATDF, Proc Characterizat Lab, Austin, TX 78741 USA. EM chris.sparks@atdf.com OI Havrilla, George/0000-0003-2052-7152 NR 20 TC 13 Z9 13 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD NOV PY 2006 VL 61 IS 10-11 SI SI BP 1091 EP 1097 DI 10.1016/j.sab.2006.09.014 PG 7 WC Spectroscopy SC Spectroscopy GA 122ET UT WOS:000243209200003 ER PT J AU Lawrence, E Michailidis, G Nair, VN AF Lawrence, Earl Michailidis, George Nair, Vijayan N. TI Monitoring networked applications with incremental quantile estimation - Comment SO STATISTICAL SCIENCE LA English DT Editorial Material ID TOMOGRAPHY AB Our comments are in two parts. First, we make some observations regarding the methodology in Chambers et al. Second, we briefly describe another interesting network monitoring problem that arises in the context of assessing quality of service, such as loss rates and delay distributions, in packet-switched networks. C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA. RP Lawrence, E (reprint author), Los Alamos Natl Lab, Stat Sci Grp, MS F600, Los Alamos, NM 87545 USA. EM earl@lanl.gov; gmichail@umich.edu; vnn@umich.edu NR 12 TC 0 Z9 0 U1 0 U2 0 PU INST MATHEMATICAL STATISTICS PI BEACHWOOD PA PO BOX 22718, BEACHWOOD, OH 44122 USA SN 0883-4237 J9 STAT SCI JI Stat. Sci. PD NOV PY 2006 VL 21 IS 4 BP 479 EP 482 DI 10.1214/088342306000000583 PG 4 WC Statistics & Probability SC Mathematics GA 165NI UT WOS:000246311800009 ER PT J AU Ritchie, RO Nalla, RK Kruzic, JJ Ager, JW Balooch, G Kinney, JH AF Ritchie, R. O. Nalla, R. K. Kruzic, J. J. Ager, J. W., III Balooch, G. Kinney, J. H. TI Fracture and ageing in bone: Toughness and structural characterization SO STRAIN LA English DT Article DE aging; bone; crack bridging; toughness ID HUMAN CORTICAL BONE; AGE-RELATED-CHANGES; FATIGUE-CRACK-PROPAGATION; HUMAN COMPACT-BONE; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; MINERAL-CONTENT; FEMORAL-NECK; COLLAGEN; MICROSTRUCTURE AB The development of a mechanistic understanding of the increase in fracture risk in human bone with age is essential to public health. This represents a challenge for fracture mechanics as bone has a complex, hierarchical structure with characteristic features ranging from nanometer to macroscopic dimensions, and is thus much more complex than most engineering materials. In this study, we review ex vivo fracture experiments which quantitatively assess the effect of age on human cortical bone in the proximal-distal orientation, i.e. along the long axis of the bone. Specifically, cortical bone is seen to exhibit rising crack-growth resistance with crack extension; the toughness is consequently evaluated in terms of R-curves, measured in bones taken from a wide range of age groups (34-99 years). Both crack-initiation and crack-growth toughnesses were determined and were found to deteriorate with age; the initiation toughness decreases some 40% over the 65 years of ageing, while growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging in the wake of the crack. This explanation is supported by an examination of the micro-/nanostructural changes accompanying the process of ageing, performed using deep-UV Raman spectroscopy, computed X-ray tomography and optical/electron microscopy. C1 Univ Calif Berkeley, Div Sci Mat, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Div Sci Mat, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Ritchie, Robert/A-8066-2008; Kruzic, Jamie/M-3558-2014 OI Ritchie, Robert/0000-0002-0501-6998; Kruzic, Jamie/0000-0002-9695-1921 NR 44 TC 14 Z9 15 U1 0 U2 14 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0039-2103 J9 STRAIN JI Strain PD NOV PY 2006 VL 42 IS 4 BP 225 EP 232 DI 10.1111/j.1475-1305.2006.00282.x PG 8 WC Materials Science, Characterization & Testing SC Materials Science GA 095ZQ UT WOS:000241347200001 ER PT J AU Huang, D Allen, TT Notz, WI Miller, RA AF Huang, D. Allen, T. T. Notz, W. I. Miller, R. A. TI Sequential kriging optimization using multiple-fidelity evaluations SO STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION LA English DT Article DE multiple fidelity; surrogate systems; kriging; efficient global optimization; computer experiments ID GLOBAL OPTIMIZATION; RESPONSE-SURFACE; COMPUTER EXPERIMENTS; MODELS; CIRCUITS; DESIGN AB When cost per evaluation on a system of interest is high, surrogate systems can provide cheaper but lower-fidelity information. In the proposed extension of the sequential kriging optimization method, surrogate systems are exploited to reduce the total evaluation cost. The method utilizes data on all systems to build a kriging metamodel that provides a global prediction of the objective function and a measure of prediction uncertainty. The location and fidelity level of the next evaluation are selected by maximizing an augmented expected improvement function, which is connected with the evaluation costs. The proposed method was applied to test functions from the literature and a metal-forming process design problem via finite element simulations. The method manifests sensible search patterns, robust performance, and appreciable reduction in total evaluation cost as compared to the original method. C1 Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. Ohio State Univ, Dept Ind Welding & Syst Engn, Columbus, OH 43210 USA. Ohio State Univ, Dept Stat, Columbus, OH 43210 USA. RP Huang, D (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, POB 999,MS-K6-08, Richland, WA 99352 USA. EM deng.huang@pnl.gov; allen.515@osu.edu; win@stat.ohio-state.edu; miller.6@osu.edu NR 30 TC 76 Z9 86 U1 6 U2 36 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1615-147X J9 STRUCT MULTIDISCIP O JI Struct. Multidiscip. Optim. PD NOV PY 2006 VL 32 IS 5 BP 369 EP 382 DI 10.1007/s00158-005-0587-0 PG 14 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Mechanics SC Computer Science; Engineering; Mechanics GA 098VU UT WOS:000241551700002 ER PT J AU Kostek, SA Grob, P De Carlo, S Lipscomb, JS Garczarek, F Nogales, E AF Kostek, Seth A. Grob, Patricia De Carlo, Sacha Lipscomb, J. Slaton Garczarek, Florian Nogales, Eva TI Molecular architecture and conformational flexibility of human RNA polymerase II SO STRUCTURE LA English DT Article ID GENERAL TRANSCRIPTION FACTORS; 3.3 ANGSTROM RESOLUTION; STRUCTURAL BASIS; ELONGATION COMPLEX; CRYOELECTRON MICROSCOPY; ELECTRON-MICROSCOPY; CRYSTAL-STRUCTURE; COCKAYNE-SYNDROME; TERMINAL DOMAIN; DNA-DAMAGE AB Transcription by RNA polymerase II (RNAPII) is a central process in eukaryotic gene regulation. While atomic details exist for the yeast RNAPII, characterization of the human complex lags behind, mostly due to the inability to obtain large quantities of purified material. Although the complexes have the same protein composition and high sequence similarity, understanding of transcription and of transcription-coupled DNA repair (TCR) in humans will require the use of human proteins in structural studies. We have used cryo-electron microscopy, image reconstruction, and variance analysis to characterize the structure and dynamics of human RNAPII (hRNAPII). Our studies show that hRNAPII in solution parallels the conformational flexibility of the yeast structures crystallized in different states but also illustrate a more extensive conformational range with potential biological significance. This hRNAPII study will serve as a structural platform to build up higher-order transcription and TCR complexes and to gain information that may be unique to the human RNAPII system. C1 Univ Calif Berkeley, Mol & Cell Biol Dept, Berkeley, CA 94720 USA. Howard Hughes Med Inst, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Mol & Cell Biol Dept, Berkeley, CA 94720 USA. EM enogales@lbl.gov NR 53 TC 37 Z9 38 U1 0 U2 0 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 0969-2126 J9 STRUCTURE JI Structure PD NOV PY 2006 VL 14 IS 11 BP 1691 EP 1700 DI 10.1016/j.str.2006.09.011 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 106UQ UT WOS:000242127800012 PM 17098194 ER PT J AU Noy, A AF Noy, Aleksandr TI Chemical force microscopy of chemical and biological interactions SO SURFACE AND INTERFACE ANALYSIS LA English DT Review DE force spectroscopy; chemical force microscopy; intermolecular interactions; single molecules; dynamic force spectroscopy ID SELF-ASSEMBLED MONOLAYERS; FREE-ENERGY DIFFERENCES; INTERMOLECULAR INTERACTIONS; FUNCTIONAL-GROUPS; DNA-MOLECULES; SPECTROSCOPY; ADHESION; BONDS; TIPS; PROTEIN AB Interactions between chemical functionalities define outcomes of the vast majority of important events in chemistry, biology, and materials science. Chemical force microscopy (CFM) - a technique that uses direct chemical functionalization of atomic force microscopy (AFM) probes with specific functionalities - allows researchers to investigate these important interactions directly. We review the basic principles of CFM, some examples of its application, and theoretical models that provide the basis for understanding the experimental results. We also emphasize application of modern kinetic theory of noncovalent interactions to the analysis of CFM data. Copyright (C) 2006 John Wiley & Sons, Ltd. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM noy1@lln1.gov NR 77 TC 51 Z9 51 U1 4 U2 52 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD NOV PY 2006 VL 38 IS 11 BP 1429 EP 1441 DI 10.1002/sia.2374 PG 13 WC Chemistry, Physical SC Chemistry GA 108YZ UT WOS:000242276400008 ER PT J AU Yang, DL Adams, PN Brown, L Mattes, BR AF Yang, Dali Adams, Phillip N. Brown, Lori Mattes, Benjamin R. TI Impact of hydrogen bonds in polyaniline. AMPSA(n)/acid solutions SO SYNTHETIC METALS LA English DT Article DE polyaniline (PANI); hydrogen bond; solubility; gelation; AMPSA ID ACID-DOPED POLYANILINE; ELECTRICALLY CONDUCTING POLYANILINE; SECONDARY AMINE ADDITIVES; EMERALDINE BASE; CONFORMATIONAL-CHANGES; ABSORPTION-SPECTRA; FIBERS; NANOFIBERS; SOLVENTS; N-METHYL-2-PYRROLIDINONE AB changes the solubility of PANI and the stability of its solutions. By varying trace amounts of water, we investigated the impact of hydrogen bonds (H-bonds) on PANI chain conformation in solutions of AMPSA/dichloroacetic acid (DCAA) or AMPSA/orthophosphoric acid. UV-vis-NIR spectral changes of these PANI solutions reveal that a competition between H-bond formation and protonation among PANI, AMPSA and water is an on-going process. The H-bonds between the PANI and AMPSA molecules can cause a large red shift in the pi(b) -> pi(q) electron transition (the quinoid peak) from similar to 630 nm into the near IR (NIR) region. Absent protonation peak (410-490 nm) and blue color of the solution suggest that the H-bond interaction, instead of protonation, is sufficient to cause PANI chains to adopt an "expanded coil" chain conformation in the PANI.AMPSA(n)/DCAA or H3O4 solutions. Protonation leads to the gelation of PANI solutions. The kinetic mechanism of protonation of the PANI.AMPSA(n)/DCAA solutions is studied. The activation energy of protonation in the PANI.AMPSA(0.6)/DCAA solutions is similar to 60 kJ/mol. (c) 2006 Elsevier B.V. All rights reserved. C1 Santa Fe Sci & Technol Inc, Santa Fe, NM USA. RP Yang, DL (reprint author), Los Alamos Natl Lab, MST-7, Los Alamos, NM 87545 USA. EM dyang@lanl.gov NR 45 TC 12 Z9 12 U1 2 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD NOV 1 PY 2006 VL 156 IS 18-20 BP 1225 EP 1235 DI 10.1016/j.synthmet.2006.09.002 PG 11 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 118EQ UT WOS:000242925400012 ER PT J AU Moore, FP Barac, T Borrernans, B Oeyen, L Vangronsveld, J van der Lelie, D Campbell, CD Moore, ERB AF Moore, Fiona Porteous Barac, Tanja Borrernans, Brigitte Oeyen, Licy Vangronsveld, Jaco van der Lelie, Daniel Campbell, Colin D. Moore, Edward R. B. TI Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterisation of isolates with potential to enhance phytoreniediation SO SYSTEMATIC AND APPLIED MICROBIOLOGY LA English DT Article DE enclophytic bacteria; phytoremediation; poplar; Populus trichocarpa; bacterial diversity; bacterial ecology ID XYLEM SAP; PLANTS; IDENTIFICATION; COLONIZATION; TISSUE; CORN AB The diversity of endophytic bacteria found in association with poplar was investigated as part of a larger study to assess the possibility and practicality of using endophytic bacteria to enhance in situ phytoremediation. Endophytic bacteria were isolated from the root, stem and leaf of two cultivars of poplar tree growing on a site contaminated with BTEX compounds. They were further characterised genotypically by comparative sequence analysis of partial 16S rRNA genes and BOX-PCR genomic DNA fingerprinting, and phenotypically by their tolerance to a range of target pollutants, heavy metals and antibiotics. One hundred and 21 stable, morphologically distinct isolates were obtained, belonging to 21 genera, although six isolates could not be identified with confidence to a genus. The endophytic bacteria exhibited marked spatial compartmentalisation within the plant, suggesting there are likely to be species-specific and non-specific associations between bacteria and plants. A number of isolates demonstrated the ability to degrade BTEX compounds or to grow in the presence of TCE. This study demonstrates that within the diverse bacterial communities found in poplar several endophytic strains are present that have the potential to enhance phytoremediation strategies. (c) 2006 Elsevier GmbH. All rights reserved. C1 Macaulay Inst, Aberdeen AB15 8QH, Scotland. Univ Hasselt, Ctr Environm Sci, Limburgs Univ Cent, B-3590 Diepenbeek, Belgium. Vlaamse Instelling Technol Onderzoek, B-2400 Mol, Belgium. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Moore, FP (reprint author), Macaulay Inst, Aberdeen AB15 8QH, Scotland. EM F.Moore@macaulay.ac.uk RI Campbell, Colin/B-3944-2010; OI Campbell, Colin/0000-0002-5163-7656; Moore, Edward/0000-0001-7693-924X NR 45 TC 83 Z9 96 U1 3 U2 33 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 0723-2020 J9 SYST APPL MICROBIOL JI Syst. Appl. Microbiol. PD NOV PY 2006 VL 29 IS 7 BP 539 EP 556 DI 10.1016/j.syapm.2005.11.012 PG 18 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 101MK UT WOS:000241744700003 PM 16919907 ER PT J AU Linkletter, C Bingham, D Hengartner, N Higdon, D AF Linkletter, Crystal Bingham, Derek Hengartner, Nicholas Higdon, David TI Variable selection for Gaussian process models in computer experiments SO TECHNOMETRICS LA English DT Article DE computer simulation; Latin hypercube; random field; screening; spatial process ID DESIGNS AB In many situations, simulation of complex phenomena requires a large number of inputs and is computationally expensive. Identifying the inputs that most impact the system so that these factors can be further investigated can be a critical step in the scientific endeavor. In computer experiments, it is common to use a Gaussian spatial process to model the output of the simulator. In this article we introduce a new, simple method for identifying active factors in computer screening experiments. The approach is Bayesian and only requires the generation of a new inert variable in the analysis; however, in the spirit of frequentist hypothesis testing, the posterior distribution of the inert factor is used as a reference distribution against which the importance of the experimental factors can be assessed. The methodology is demonstrated on an application in material science, a computer experiment from the literature, and simulated examples. C1 Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada. Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. Albert Einstein Coll Med, Dept Epidemiol & Populat Hlth, Bronx, NY 10461 USA. RP Linkletter, C (reprint author), Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada. EM cdlinkle@stat.sfu.ca; dbingham@stat.sfu.ca; nickh@lanl.gov; dhigdon@lanl.gov OI Hengartner, Nicolas/0000-0002-4157-134X NR 20 TC 46 Z9 49 U1 2 U2 7 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 1429 DUKE ST, ALEXANDRIA, VA 22314 USA SN 0040-1706 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2006 VL 48 IS 4 BP 478 EP 490 DI 10.1198/004017006000000228 PG 13 WC Statistics & Probability SC Mathematics GA 107ES UT WOS:000242154100003 ER PT J AU Bala, G Caldeira, K Mirin, A Wickett, M Delire, C Phillips, TJ AF Bala, G. Caldeira, K. Mirin, A. Wickett, M. Delire, C. Phillips, T. J. TI Biogeophysical effects of CO2 fertilization on global climate SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article; Proceedings Paper CT 7th International Carbon Dioxide Conference (CO2) CY SEP 25-30, 2005 CL Boulder, CO SP NOAA ID CARBON-CYCLE MODEL; VEGETATION FEEDBACKS; COUPLED CLIMATE; ATMOSPHERIC CO2; LAND-USE; SENSITIVITY; SIMULATIONS; ECOSYSTEM; DYNAMICS; INCREASE AB CO2 fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO2-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multicentury simulations: a 'Control' simulation with no emissions and a 'Physiol-noGHG' simulation where physiological changes occur as a result of prescribed CO2 emissions, but where CO2-induced greenhouse warming is not included. In our simulations, CO2 fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 yr. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal timescales, the CO2 uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO2-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century timescales, there is the prospect for net warming from CO2 fertilization of the land biosphere. Further study is needed to confirm and better quantify our results. C1 Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. Carnegie Inst Washington, Dept Global Ecol, Stanford, CA 94305 USA. Univ Montpellier 2, ISE M, F-34095 Montpellier 5, France. RP Bala, G (reprint author), Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. EM bala@llnl.gov RI Caldeira, Ken/E-7914-2011 NR 37 TC 34 Z9 36 U1 0 U2 13 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD NOV PY 2006 VL 58 IS 5 BP 620 EP 627 DI 10.1111/j.1600-0889.2006.00210.x PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 095ZT UT WOS:000241347500027 ER PT J AU Flannery, ML Mitchell, FJG Coyne, S Kavanagh, TA Burke, JI Salamin, N Dowding, P Hodkinson, TR AF Flannery, M. L. Mitchell, F. J. G. Coyne, S. Kavanagh, T. A. Burke, J. I. Salamin, N. Dowding, P. Hodkinson, T. R. TI Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs SO THEORETICAL AND APPLIED GENETICS LA English DT Article ID SIMPLE-SEQUENCE REPEATS; ARABIDOPSIS-THALIANA; CHLOROPLAST DNA; MOLECULAR SYSTEMATICS; NONCODING REGIONS; GENETIC-VARIATION; OILSEED RAPE; NAPUS L; MICROSATELLITES; EVOLUTION AB We report a new set of nine primer pairs specifically developed for amplification of Brassica plastid SSR markers. The wide utility of these markers is demonstrated for haplotype identification and detection of polymorphism in B. napus, B. nigra, B. oleracea, B. rapa and in related genera Arabidopsis, Camelina, Raphanus and Sinapis. Eleven gene regions (ndhB-rps7 spacer, rbcL-accD spacer, rpl16 intron, rps16 intron, atpB-rbcL spacer, trnE-trnT spacer, trnL intron, trnL-trnF spacer, trnM-atpE spacer, trnR-rpoC2 spacer, ycf3-psaA spacer) were sequenced from a range of Brassica and related genera for SSR detection and primer design. Other sequences were obtained from GenBank/EMBL. Eight out of nine selected SSR loci showed polymorphism when amplified using the new primers and a combined analysis detected variation within and between Brassica species, with the number of alleles detected per locus ranging from 5 (loci MF-6, MF-1) to 11 (locus MF-7). The combined SSR data were used in a neighbour-joining analysis (SMM, D(DM) distances) to group the samples based on the presence and absence of alleles. The analysis was generally able to separate plastid types into taxon-specific groups. Multi-allelic haplotypes were plotted onto the neighbour joining tree. A total number of 28 haplotypes were detected and these differentiated 22 of the 41 accessions screened from all other accessions. None of these haplotypes was shared by more than one species and some were not characteristic of their predicted type. We interpret our results with respect to taxon differentiation, hybridisation and introgression patterns relating to the 'Triangle of U'. C1 Univ Dublin Trinity Coll, Dept Bot, Sch Nat Sci, Dublin 2, Ireland. Univ Dublin Trinity Coll, Smurfit Inst Genet, Dublin 2, Ireland. TEAGASC, Crops Res Ctr, Carlow, Ireland. Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland. RP Hodkinson, TR (reprint author), Univ Dublin Trinity Coll, Dept Bot, Sch Nat Sci, Dublin 2, Ireland. EM trevor.hodkinson@tcd.ie RI Hodkinson, Trevor/F-6850-2014; Mitchell, Fraser/L-9292-2014; OI Hodkinson, Trevor/0000-0003-1384-7270; Mitchell, Fraser/0000-0002-9857-5632 NR 52 TC 46 Z9 56 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0040-5752 J9 THEOR APPL GENET JI Theor. Appl. Genet. PD NOV PY 2006 VL 113 IS 7 BP 1221 EP 1231 DI 10.1007/s00122-006-0377-0 PG 11 WC Agronomy; Plant Sciences; Genetics & Heredity; Horticulture SC Agriculture; Plant Sciences; Genetics & Heredity GA 094TD UT WOS:000241261000005 PM 16909279 ER PT J AU Geist, DR Abernethy, CS Hand, KD Cullinan, VI Chandler, JA Groves, PA AF Geist, David R. Abernethy, C. Scot Hand, Kristine D. Cullinan, Valerie I. Chandler, James A. Groves, Phillip A. TI Survival, development, and growth of fall Chinook salmon embryos, alevins, and fry exposed to variable thermal and dissolved oxygen regimes SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID VARYING TEMPERATURE REGIMES; SNAKE-RIVER; ONCORHYNCHUS-TSHAWYTSCHA; PACIFIC SALMON; EGG SIZE; INCUBATION; REQUIREMENTS; STEELHEAD; COLUMBIA; TIME AB Some fall Chinook salmon Oncorhynchus tshawytscha initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13 degrees C and at intergravel dissolved oxygen concentrations that are less than 8 mg O-2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, the initial temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine whether temperatures from 13 degrees C to 17 degrees C and dissolved oxygen levels from 4 to more than 8 mg O-2/ L during the first 40 d of incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 d of incubation, temperatures were experimentally adjusted downward approximately 0.2 degrees C/d and oxygen was increased in increments of 2 mg O-2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 d postfertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures of 17 degrees C or more, and a rapid decline in survival occurred between 16.5 degrees C and 17 degrees C; there were no significant differences in survival at temperatures up to 16.5 degrees C. Initial dissolved oxygen levels as low as 4 mg O-2/L over a range of initial temperatures from 15 degrees C to 16.5 degrees C did not affect embryo survival to emergence. There were no significant differences in alevin and fry size at hatch and emergence across the range of initial temperature exposures. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; fish required from 6 to 10 d longer to reach hatch at 4 Mg O-2/L than at saturation and up to 24 d longer to reach emergence. In contrast, within each dissolved oxygen treatment, fish required about 20 d longer to reach hatch at 13 degrees C than at 16.5 degrees C (no data were available for 17 degrees C) and up to 41 d longer to reach emergence. Overall, this study indicates that exposure to water temperatures up to 16.5 degrees C will not have deleterious effects on survival or growth from egg to emergence if temperatures decline at a rate of 0.2 degrees C/d or more after spawning. Although fall Chinook salmon survived low initial dissolved oxygen levels, the delay in emergence could have significant long-term effects on their survival. Thus, an exemption to the state water quality standards for temperature-but not oxygen-may be warranted for the portions of the Snake River where fall Chinook salmon spawn. C1 Battelle Pacific NW Div, Ecol Grp, Richland, WA 99352 USA. Battelle Pacific NW Div, Marine Ecol Proc Grp, Sequim, WA 98382 USA. Idaho Power Co, Boise, ID 83707 USA. RP Geist, DR (reprint author), Battelle Pacific NW Div, Ecol Grp, Post Off Box 999,Mail Stop K6-85, Richland, WA 99352 USA. EM david.geist@pnl.gov NR 49 TC 22 Z9 23 U1 2 U2 43 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA SN 0002-8487 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD NOV PY 2006 VL 135 IS 6 BP 1462 EP 1477 DI 10.1577/T05-294.1 PG 16 WC Fisheries SC Fisheries GA 124CT UT WOS:000243345500004 ER PT J AU Cho, MH Bahadur, S Anderegg, JW AF Cho, M. H. Bahadur, S. Anderegg, J. W. TI Design of experiments approach to the study of tribological performance of Cu-concentrate-filled PPS composites SO TRIBOLOGY INTERNATIONAL LA English DT Article DE design of experiments; Taguchi; mineral filler; wear; friction; transfer film ID TRANSFER FILMS; HIGH-DENSITY; WEAR; POLYTETRAFLUOROETHYLENE; FRICTION; REINFORCEMENT; NYLON; STEEL; FIBER; XPS AB The tribological performance of copper-concentrate (CC) mineral deposit as the filler in polyphenylene sulfide (PPS) was studied as a function of the filler proportions and sliding test variables. CC is a complex mixture of CuS, FexOy, SiO2, Al2O3, and other trace materials. The design of experiments based upon L-9 (3(4)) orthogonal arrays by Taguchi was used. Sliding tests were performed in the pinon-disk configuration against a hardened tool steel (55-60 HRC) disk. The improvement in wear resistance of PPS was considerable with the use of fillers. The lowest steady state wear rate of 0.0030 mm(3)/km was obtained for PPS + 20%CC+ 15%PTFE composition. It was two orders of magnitude lower than that of unfilled PPS. The variations in steady state coefficient of friction with the changes in filler proportions and sliding test variables were small. The transfer film was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray photoelectron microscopy (XPS) was used to detect chemical reactive species developed during sliding, especially in the interface between transfer film and its counterface. Wear particles and the polymer worn surfaces were analyzed by energy dispersive spectroscopy (EDS) for elemental distribution. (c) 2006 Elsevier Ltd. All rights reserved. C1 Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. RP Bahadur, S (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. EM bahadur@iastate.edu NR 18 TC 15 Z9 17 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD NOV PY 2006 VL 39 IS 11 BP 1436 EP 1446 DI 10.1016/j.triboint.2006.01.012 PG 11 WC Engineering, Mechanical SC Engineering GA 085BV UT WOS:000240579100013 ER PT J AU Wu, YS Zhang, K Liu, HH AF Wu, Yu-Shu Zhang, Keni Liu, Hui-Hai TI Estimating large-scale fracture permeability of unsaturated rock using barometric pressure data SO VADOSE ZONE JOURNAL LA English DT Article ID 3-DIMENSIONAL NUMERICAL INVERSION; PNEUMATIC INJECTION TESTS; CROSS-HOLE TESTS; YUCCA MOUNTAIN; CURVE INTERPRETATION; HEAT-FLOW; TUFF; NEVADA; ZONE; TRANSPORT AB We present a three-dimensional modeling study of gas flow in the unsaturated fractured rock of Yucca Mountain. Our objective was to estimate large-scale fracture permeability, using the changes in subsurface pneumatic pressure in response to barometric pressure changes at the land surface. We incorporate the field-measured pneumatic data into a multiphase flow model for describing the coupled processes of liquid and gas flow under ambient geothermal conditions. Comparison of field-measured pneumatic data with model-predicted gas pressures is found to be a powerful technique for estimating the fracture permeability of the unsaturated fractured rock, which is otherwise extremely difficult to determine in field studies with large scales of interest. In addition, this study demonstrates that the multidimensional flow effect on estimated permeability values is significant and should be included when determining fracture permeability in heterogeneous fractured media. C1 Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. RP Zhang, K (reprint author), Lawrence Berkeley Natl Lab, Earth Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kzhang@lbl.gov RI Wu, Yu-Shu/A-5800-2011 NR 35 TC 6 Z9 5 U1 0 U2 5 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2006 VL 5 IS 4 BP 1129 EP 1142 DI 10.2136/vzj2006.0015 PG 14 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 129JK UT WOS:000243724900010 ER PT J AU Albright, WH Benson, CH Gee, GW Abichou, T Tyler, SW Rock, SA AF Albright, William H. Benson, Craig H. Gee, Glendon W. Abichou, Tarek Tyler, Scott W. Rock, Steven A. TI Field performance of three compacted clay landfill covers SO VADOSE ZONE JOURNAL LA English DT Article ID HYDRAULIC CONDUCTIVITY; WATER-BALANCE; FINAL COVERS; FREEZE-THAW; LINERS AB A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills. Water balance of the covers was monitored with large (10 by 20 m), instrumented drainage lysimeters for 2 to 4 yr. Initial drainage at the Iowa and California sites was < 32 mm yr(-1) (i.e., unit gradient flow for a hydraulic conductivity of 1027 cm s(-1), the regulatory standard for the clay barriers in this study); initial drainage rate at the Georgia site was about 80 mm yr(-1). The drainage rate at all sites increased by factors ranging from 100 to 750 during the monitoring periods and in each case the drainage rate exceeded 32 mm yr(-1) by the end of the monitoring period. The drainage rates developed a rapid response to precipitation events, suggesting that increases in drainage rate were the result of preferential flow. Although no direct observations of preferential flow paths were made, field measurements of water content and temperature at all three sites suggested that desiccation or freeze-thaw cycling probably resulted in formation of preferential flow paths through the barrier layers. Data from all three sites showed the effectiveness of all three covers as hydraulic barriers diminished during the 2 to 4 yr monitoring period, which was short compared with the required design life (often 30 yr) of most waste containment facilities. C1 Desert Res Inst, Nevada Syst Higher Educ, Reno, NV 89512 USA. Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA. Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA. Florida State Univ, Dept Civil & Environm Engn, Tallahassee, FL 32306 USA. US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. RP Albright, WH (reprint author), Desert Res Inst, Nevada Syst Higher Educ, 2215 Raggio Pkwy, Reno, NV 89512 USA. EM bill@dri.edu NR 33 TC 22 Z9 22 U1 4 U2 11 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2006 VL 5 IS 4 BP 1157 EP 1171 DI 10.2136/vzj2005.0134 PG 15 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 129JK UT WOS:000243724900012 ER PT J AU Birkholzer, JT Webb, SW Halecky, N Peterson, PF Bodvarsson, GS AF Birkholzer, J. T. Webb, S. W. Halecky, N. Peterson, P. F. Bodvarsson, G. S. TI Evaluating the moisture conditions in the fractured rock at Yucca Mountain: the impact of natural convection processes in heated emplacement drifts SO VADOSE ZONE JOURNAL LA English DT Article ID THERMOHYDROLOGIC CONDITIONS; POTENTIAL REPOSITORY; NUCLEAR-WASTE; TRANSPORT; SEEPAGE; FLOW; TUFF; TUNNELS; NEVADA; MODEL AB The energy output of the high-level radioactive waste to be emplaced in the proposed geologic repository at Yucca Mountain, NV, will strongly affect the thermal-hydrological (TH) conditions in the near-drift fractured rock. Heating of rock water to above-boiling conditions will induce large water saturation changes and flux perturbations close to the waste emplacement tunnels (drifts) that will last several thousand years. Understanding these perturbations is important for the performance of the repository, because they could increase, for example, the amount of formation water seeping into the open drifts and contacting waste packages. Recent computational fluid dynamics analysis has demonstrated that the drifts will act as important conduits for gas flows driven by natural convection. As a result, vapor generated from boiling of formation water near elevated-temperature sections of the drifts may effectively be transported to cooler end sections (where no waste is emplaced), where it would condense and subsequently drain into underlying rock units. Thus, natural convection processes have great potential for reducing the near-drift moisture content in heated drift sections, which has positive ramifications for repository performance. To study these processes, we have developed a new simulation method that couples existing tools for simulating TH conditions in the fractured formation with modules that approximate natural convection and evaporation conditions in heated emplacement drifts. The new method is applied to evaluate the impact of in-drift natural convection on the future TH conditions at Yucca Mountain in a three-dimensional model domain comprising a representative emplacement drift and the surrounding fractured rock. C1 Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Birkholzer, JT (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM jtbirkholzer@lbl.gov RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 NR 39 TC 5 Z9 5 U1 0 U2 7 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2006 VL 5 IS 4 BP 1172 EP 1193 DI 10.2136/vzj2005.0147 PG 22 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 129JK UT WOS:000243724900013 ER PT J AU Palmer, TA Elmer, JW Brasher, D Butler, D Riddle, R AF Palmer, T. A. Elmer, J. W. Brasher, D. Butler, D. Riddle, R. TI Development of an explosive welding process for producing high-strength welds between niobium and 6061-T651 aluminum SO WELDING JOURNAL LA English DT Article DE aluminum initiation point; explosive welding; mechanical properties; niobium; solid state; dissimilar metal joining; impact strength AB Thin interlayers of Nb and Al were used to improve the joining of thicker plates. C1 Lawrence Livermore Natl Lab, Livermore, CA USA. High Energy Met Inc, Washington, DC USA. RP Palmer, TA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. NR 17 TC 6 Z9 6 U1 0 U2 1 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD NOV PY 2006 VL 85 IS 11 BP 252S EP 263S PG 12 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 101DY UT WOS:000241720300027 ER PT J AU Jones, RE Papadopoulos, P AF Jones, Reese E. Papadopoulos, Panayiotis TI A geometric interpretation of frictional contact mechanics SO ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK LA English DT Article DE contact; friction; work-conjugacy; Lagrange multipliers ID FORMULATION AB The work-conjugacy of pressures and tangential tractions with so-called "gap"and "stick" constraints is deduced in order to delineate a rigid-plastic model of a frictional interface. This is accomplished by pursuing a differential-geometric view of the two surfaces that comprise the frictional interface. Given that contact is described in the current configuration, Lie derivatives are shown to be the natural means of establishing the work-conjugacy between tractions and constraints. C1 Sandia Natl Labs, Livermore, CA 94551 USA. Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Jones, RE (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. NR 10 TC 2 Z9 2 U1 0 U2 0 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 0044-2275 J9 Z ANGEW MATH PHYS JI Z. Angew. Math. Phys. PD NOV PY 2006 VL 57 IS 6 BP 1025 EP 1041 DI 10.1007/s00033-005-0052-3 PG 17 WC Mathematics, Applied SC Mathematics GA 099GP UT WOS:000241581600007 ER PT J AU Servet, B AF Servet, Bernard TI Current Trends in Optical and X-ray Metrology of Advanced Materials for Nanoscale Devices - Proceedings of the European Materials Research Society 2005 - Symposium P - Strasbourg, France, May 31-June 3, 2005 SO APPLIED SURFACE SCIENCE LA English DT Editorial Material C1 Thales R&T, Palaiseau, France. NMRC, Cork, Ireland. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN USA. CNRS, CRHEA, F-06560 Valbonne, France. RP Servet, B (reprint author), Thales R&T, Palaiseau, France. EM bernard.servet@thalesgroup.com NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 31 PY 2006 VL 253 IS 1 BP 1 EP 2 DI 10.1016/j.apsusc.2006.06.057 PG 2 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 109OI UT WOS:000242317500001 ER PT J AU Jellison, GE Holcomb, DE Hunn, JD Rouleau, CM Wright, GW AF Jellison, G. E., Jr. Holcomb, D. E. Hunn, J. D. Rouleau, C. M. Wright, G. W. TI Generalized ellipsometry in unusual configurations SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT Symposium P of the Spring Meeting of the European-Materials-Research-Society entitled Curent Trends in Optical and X-ray Meterology of Advanced Materials for Nanoscale Devices CY MAY 31-JUN 03, 2005 CL Strasbourg, FRANCE DE ellipsometry; birefringence; pockels effect; optical anisotropy ID TRANSMISSION ELLIPSOMETRY; OPTICAL FUNCTIONS; BIREFRINGENCE; POLARIMETER; GAAS AB Most ellipsometry experiments are performed by shining polarized light onto a sample at a large angle of incidence, and the results are interpreted in terms of thin film thicknesses and isotropic optical functions of the film or substrate. However, it is possible to alter the geometrical arrangement, either by observing the sample in transmission or at normal-incidence reflection. In both cases, the experiment is fundamentally the same, but the interpretation of the results is considerably different. Both configurations can be used in conjunction with microscope optics, allowing for images to be made of the sample. The results of three examples of these different configurations using the two-modulator generalized ellipsometer (2-MGE) are reported: (1) spectroscopic birefringence measurements of ZnO, (2) electric field-induced birefringence (Pockels effect) in GaAs, and (3) normal-incidence reflection anisotropy of highly oriented pyrolytic graphite (HOPG). (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Mat & Ceram Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Jellison, GE (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. EM jellisongejr@ornl.gov RI Rouleau, Christopher/Q-2737-2015; OI Rouleau, Christopher/0000-0002-5488-3537; Holcomb, David/0000-0001-8263-4661 NR 20 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 31 PY 2006 VL 253 IS 1 BP 47 EP 51 DI 10.1016/j.apsusc.2006.05.120 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 109OI UT WOS:000242317500009 ER PT J AU Sun, YK Myung, ST Park, BC Amine, K AF Sun, Yang-Kook Myung, Seung-Taek Park, Byung-Chun Amine, Khalil TI Synthesis of spherical nano- to microscale core-shell particles Li[(Ni0.8Co0.1Mn0.1)(1-x)(Ni0.5Mn0.5)(x)]O-2 and their applications to lithium batteries SO CHEMISTRY OF MATERIALS LA English DT Article ID POSITIVE ELECTRODE MATERIAL; EMULSION DRYING METHOD; ELECTROCHEMICAL PROPERTIES; HOLLOW SPHERES; ION BATTERIES; INSERTION MATERIAL; CATHODE MATERIALS; BEHAVIOR; LI; COPRECIPITATION C1 Hanyang Univ, Ctr Informat & Commun Mat, Dept Chem Engn, Seoul 133791, South Korea. Iwate Univ, Dept Frontier Mat & Funct Engn, Grad Sch Engn, Morioka, Iwate 0208551, Japan. Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Sun, YK (reprint author), Hanyang Univ, Ctr Informat & Commun Mat, Dept Chem Engn, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013 OI Sun, Yang-Kook/0000-0002-0117-0170; NR 28 TC 58 Z9 63 U1 9 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 31 PY 2006 VL 18 IS 22 BP 5159 EP 5163 DI 10.1021/cm061746k PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 098AS UT WOS:000241492900005 ER PT J AU Samia, ACS Schlueter, JA Jiang, JS Bader, SD Qin, CJ Lin, XM AF Samia, Anna C. S. Schlueter, John A. Jiang, J. Samuel Bader, Samuel D. Qin, Chang-Jin Lin, Xiao-Min TI Effect of ligand-metal interactions on the growth of transition-metal and alloy nanoparticles SO CHEMISTRY OF MATERIALS LA English DT Article ID FEPT NANOPARTICLES; MAGNETIC NANOPARTICLES; CORE-SHELL; SIZE; NANOCRYSTALS; SHAPE; SUPERLATTICES; STABILITY; COBALT; NI AB The growth of cobalt, iron, and platinum and their alloy nanoparticles was investigated with oleic acid and trioctylphosphine oxide as ligands. Both the ligand type and concentration are important in determining the final product of the reactions. With a high concentration of oleic acid, thermal decomposition of dicobalt octacarbonyl and iron pentacarbonyl precursors yields only molecular cluster complex species with oxidized metal centers. However, reduction of platinum acetylacetonate under identical conditions yields nanometer-sized particles. In the presence of a high concentration of trioctylphosphine oxide, only the cobalt system was observed to form a cluster-complex species, while both the iron and platinum systems form nanometer-sized particles. This oxidation process, which forms cluster complexes, provides a digestive ripening mechanism that competes with the Ostwald ripening process, thus affecting the particle size and composition of both the pure metal and alloy nanoparticles. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Univ Chicago, Dept Chem, Chicago, IL 60637 USA. RP Lin, XM (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xmlin@anl.gov RI Bader, Samuel/A-2995-2013 NR 30 TC 54 Z9 55 U1 3 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 31 PY 2006 VL 18 IS 22 BP 5203 EP 5212 DI 10.1021/cm0610579 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 098AS UT WOS:000241492900013 ER PT J AU Park, TJ Wong, SS AF Park, Tae-Jin Wong, Stanislaus S. TI As-prepared single-crystalline hematite rhombohedra and subsequent conversion into monodisperse aggregates of magnetic nanocomposites of iron and magnetite SO CHEMISTRY OF MATERIALS LA English DT Article ID SHAPE-CONTROLLED SYNTHESIS; CHEMICAL-VAPOR-DEPOSITION; FEPT NANOPARTICLES; ALPHA-FE2O3 PARTICLES; COLLOIDAL PARTICLES; OXIDE; SIZE; NANOSTRUCTURES; NANOCRYSTALS; NANOTUBES AB Monodisperse nanocrystalline rhombohedral composites of Fe and Fe3O4 magnetic materials have been obtained employing a reduction reaction, in a flowing gas mixture of H-2 and N-2, of single-crystalline, submicron-sized alpha-Fe2O3 rhombohedral precursors. This synthesis is significant in that we were able to create a nanocomposite with hard and soft magnetic phases juxtaposed within one discrete, anisotropic structure. In turn, the precursor hematite rhombohedra of reproducible shape were successfully prepared using a facile, environmentally friendly, large-scale molten-salt reaction. Rhombohedra represent a high-surfac-earea, anisotropic formulation of an industrially important material (iron oxide), which is an active component of gas sensors, photocatalysts, and other types of catalytic materials. Moreover, the predictive formation of these materials has been investigated through a systematic variation of experimental parameters. Extensive structural characterization of as-prepared samples has been performed using scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive X-ray spectroscopy, selected area electron diffraction, X-ray diffraction, and superconducting quantum interference device (SQUID) magnetic measurements. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Chem & Mat Sci, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu NR 66 TC 39 Z9 39 U1 5 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 31 PY 2006 VL 18 IS 22 BP 5289 EP 5295 DI 10.1021/cm061503s PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 098AS UT WOS:000241492900024 ER PT J AU Mavis, B Akinc, M AF Mavis, Bora Akinc, Mufit TI Cyanate intercalation in nickel hydroxide SO CHEMISTRY OF MATERIALS LA English DT Article ID LAYERED DOUBLE HYDROXIDES; RAY PHOTOELECTRON-SPECTROSCOPY; TRANSITION-METAL IONS; HOMOGENEOUS PRECIPITATION; UREA DECOMPOSITION; ISOCYANATE COMPLEXES; INFRARED-SPECTRA; ELECTRODE; PARTICLES; SELENOCYANATES AB alpha-Ni(OH)(2) and Ni-Al layer double hydroxides (LDHs) precipitated by urea were investigated with FTIR and XPS. Possible modes of cyanate (CNO-) coordination during the nucleation and growth of precipitates is discussed. In the early stages, cyanate ion in R-Ni(OH)(2) is found mainly to be N-bonded to Ni2+ ions in the layers, whereas later in the growth stages, it is bonded through oxygen. In LDHs cyanate remains N-bonded. These changes in the coordinations modes are related to the decreasing supersaturation levels during digestion. XPS results support the FTIR results. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Akinc, M (reprint author), Iowa State Univ, Ames Lab, 2220 Hoover Hall, Ames, IA 50011 USA. EM makinc@iastate.edu RI Mavis, Bora/C-3457-2008 OI Mavis, Bora/0000-0001-8275-3759 NR 64 TC 46 Z9 46 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 31 PY 2006 VL 18 IS 22 BP 5317 EP 5325 DI 10.1021/cm0528835 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 098AS UT WOS:000241492900028 ER PT J AU Tekabe, Y Harja, E Schmidt, AM Majewski, S Gupta, A Weisenberger, A Sedlar, M Narula, J Johnson, L AF Tekabe, Yared Harja, Evis Schmidt, Ann Marie Majewski, Stan Gupta, Ashish Weisenberger, Andrew Sedlar, Marija Narula, Jagat Johnson, Lynne TI Noninvasive monitoring of atherosclerotic plaque with radiolabeled annexin V and matrix metalloproteinase inhibitor in spontaneous atherosclerotic mice SO CIRCULATION LA English DT Meeting Abstract CT 79th Annual Scientific Session of the American-Heart-Association CY NOV 12-15, 2006 CL Chicago, IL SP Amer Heart Assoc C1 Columbia Univ, New York, NY 10027 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD OCT 31 PY 2006 VL 114 IS 18 BP 500 EP 500 PG 1 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 102EC UT WOS:000241792803274 ER PT J AU Harton, SE Luning, J Betz, H Ade, H AF Harton, Shane E. Luning, Jan Betz, Heike Ade, Harald TI Polystyrene/poly(methyl methacrylate) blends in the presence of cyclohexane: Selective solvent washing or equilibrium adsorption? SO MACROMOLECULES LA English DT Article ID INTERACTING CHAIN MOLECULES; ADSORBED POLYMER LAYERS; THIN-FILMS; X-RAY; IMMISCIBLE POLYMERS; GAS-CHROMATOGRAPHY; STATISTICAL-THEORY; INTERFACE WIDTH; SILICA; DESORPTION AB Cyclohexane has been frequently used as a selective solvent to remove PS layers or domains from polystyrene: poly(methyl methacrylate) (PS:PMMA) blends and for reorganization or self-assembly of polymer brushes and block copolymers. We have found that cyclohexane is not efficient at PS removal, observing significant residual PS at PMMA surfaces. In contrast, 1-chloropentane was found to be a far greater selective solvent (i. e., residual PS was essentially nonexistent). These results were compared to PMMA surfaces after PS was allowed to adsorb to the surface from a dilute theta solution in cyclohexane. Using near-edge X-ray absorption fine structure spectroscopy and inverse gas chromatography, coupled with self-consistent mean-field theory calculations, we have demonstrated that selectively washing a polymer from a polymer blend is nearly identical to adsorption of a polymer to a "soft" surface from a dilute solution. Improved knowledge about the effects of selective solvents will improve experimental analysis of washed systems as well as manipulation of block copolymers and polymer brushes for reorganization or self-assembly. C1 N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Ade, H (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM harald_ade@ncsu.edu RI Ade, Harald/E-7471-2011 NR 53 TC 14 Z9 14 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 31 PY 2006 VL 39 IS 22 BP 7729 EP 7733 DI 10.1021/ma061401n PG 5 WC Polymer Science SC Polymer Science GA 098AR UT WOS:000241492700039 ER PT J AU Qin, L Hiser, C Mulichak, A Garavito, RM Ferguson-Miller, S AF Qin, Ling Hiser, Carrie Mulichak, Anne Garavito, R. Michael Ferguson-Miller, Shelagh TI Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cadmium binding; membrane protein structure; proton-conducting water chains ID PROTON EXIT PATHWAY; RHODOBACTER-SPHAEROIDES; SUBUNIT-III; PARACOCCUS-DENITRIFICANS; INTERACTION DOMAIN; ACTIVE-SITE; SUICIDE INACTIVATION; ANGSTROM RESOLUTION; UBIQUINOL OXIDASE; ESCHERICHIA-COLI AB Well ordered reproducible crystals of cytochrome c oxidase (CcO) from Rhodobacter sphaeroides yield a previously unreported structure at 2.0 angstrom resolution that contains the two catalytic subunits and a number of alkyl chains of lipids and detergents. Comparison with crystal structures of other bacterial and mammalian CcOs reveals that the positions occupied by native membrane lipids and detergent substitutes are highly conserved, along with amino acid residues in their vicinity, suggesting a more prevalent and specific role of lipid in membrane protein structure than often envisioned. Well defined detergent head groups (maltose) are found associated with aromatic residues in a manner similar to phospholipid head groups, likely contributing to the success of alkyl glycoside detergents in supporting membrane protein activity and crystallizability. Other significant features of this structure include the following: finding of a previously unreported crystal contact mediated by cadmium and an engineered histidine tag; documentation of the unique His-Tyr covalent linkage close to the active site; remarkable conservation of a chain of waters in one proton pathway (D-path); and discovery of an inhibitory cadmium-binding site at the entrance to another proton path (K-path). These observations provide important insight into CcO structure and mechanism, as well as the significance of bound lipid in membrane proteins. C1 Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. Argonne Natl Lab, Ind Macromol Crystallog Assoc, Collaborat Access Team, Adv Photon Source, Argonne, IL 60439 USA. RP Ferguson-Miller, S (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM fergus20@msu.edu FU NIGMS NIH HHS [GM 26916, P01 GM 57323, R01 GM026916, R37 GM026916] NR 38 TC 186 Z9 193 U1 1 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 31 PY 2006 VL 103 IS 44 BP 16117 EP 16122 DI 10.1073/pnas.0606149103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 103IS UT WOS:000241879500013 PM 17050688 ER PT J AU Banatao, DR Cascio, D Crowley, CS Fleissner, MR Tienson, HL Yeates, TO AF Banatao, D. Rey Cascio, Duilio Crowley, Christopher S. Fleissner, Mark R. Tienson, Heather L. Yeates, Todd O. TI An approach to crystallizing. proteins by synthetic symmetrization SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE assembly; crystallography; disulfide; protein design; symmetry ID X-RAY-DIFFRACTION; REDUCTIVE METHYLATION; LYSINE RESIDUES; T4 LYSOZYME; PHAGE-T4 LYSOZYME; ACCESSIBILITY; MUTAGENESIS; GENOMICS; ENTROPY; SIZE AB Previous studies of symmetry preferences in protein crystals suggest that symmetric proteins, such as homodimers, might crystallize more readily on average than asymmetric, monomeric proteins. Proteins that are naturally monomeric can be made homodimeric artificially by forming disulfide bonds between individual cysteine residues introduced by mutagenesis. Furthermore, by creating a variety of single-cysteine mutants, a series of distinct synthetic dimers can be generated for a given protein of interest, with each expected to gain advantage from its added symmetry and to exhibit a crystallization behavior distinct from the other constructs. This strategy was tested on phage T4 lysozyme, a protein whose crystallization as a monomer has been studied exhaustively. Experiments on three single-cysteine mutants, each prepared in dimeric form, yielded numerous novel crystal forms that cannot be realized by monomeric lysozyme. Six new crystal forms have been characterized. The results suggest that synthetic symmetrization may be a useful approach for enlarging the search space for crystallizing proteins. C1 Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles Young Dr E, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 FU NIGMS NIH HHS [GM 31299, P01 GM031299] NR 39 TC 48 Z9 50 U1 1 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 31 PY 2006 VL 103 IS 44 BP 16230 EP 16235 DI 10.1073/pnas.0607674103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 103IS UT WOS:000241879500032 PM 17050682 ER PT J AU Ambrosini, A Garino, T Nenoff, TM AF Ambrosini, Andrea Garino, Terry Nenoff, Tina M. TI Synthesis and characterization of the double-substituted perovskites LaxSr1-xCo1-yMnyO3-delta for use in high-temperature oxygen separations SO SOLID STATE IONICS LA English DT Article; Proceedings Paper CT 15th International Conference on Solid State Ionics CY 2005 CL Baden Baden, GERMANY DE perovskite; oxygen separation; ceramic membrane; conductivity; thermogravimetric analysis ID PERMEATION PROPERTIES; CONDUCTIVITY; OXIDES; PERMEABILITY; MEMBRANE; HYDROGEN AB Materials in the La(0.1)Sr(0.9)Co(1-y)MnyO(3-delta) (LSCM) family are potentially useful as ceramic membranes for high-temperature oxygen separations. A series of LSCM samples was synthesized by solid state methods and characterized by powder X-ray diffraction, thermogravimetric analysis, and four-probe conductivity. The materials were indexed in the cubic Pm-3m space group. TGA data implied that LSCM can reversibly absorb and desorb oxygen versus temperature and partial oxygen pressure, while powder diffraction data showed that the material maintained the cubic perovskite structure. Preliminary four-probe conductivity measurements signify p-type semiconducting behavior.(c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nenoff, TM (reprint author), Sandia Natl Labs, POB 5800,MS 1415, Albuquerque, NM 87185 USA. EM tmnenof@sandia.gov NR 17 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD OCT 31 PY 2006 VL 177 IS 26-32 BP 2275 EP 2279 DI 10.1016/j.ssi.2006.05.023 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 113QG UT WOS:000242611800014 ER PT J AU Belkin, A Fedor, J Pankowski, P Iavarone, M Novosad, V Karapetrov, G Cambel, V Gregusova, D Kudela, R AF Belkin, A. Fedor, J. Pankowski, P. Iavarone, M. Novosad, V. Karapetrov, G. Cambel, V. Gregusova, D. Kudela, R. TI Switching of magnetic domains in Permalloy microstructures using two-dimensional electron gas SO APPLIED PHYSICS LETTERS LA English DT Article ID CROSS-TIE WALLS; FORCE MICROSCOPY; RECORDING MEDIA; FILMS; NANOSTRUCTURES; FABRICATION AB The authors demonstrate the ability to monitor and alter the magnetization state of microscopic Permalloy element deposited on the active area of a two-dimensional electron gas (2DEG) Hall probe using the current through the 2DEG. Magnetic force microscopy imaging shows the exact magnetization state of the Permalloy thin film ellipse at different applied magnetic fields. Recorded Hall voltage signal provides information on local magnetization of the ferromagnetic element at the same time. Application of short, but intense current pulses through the Hall probe changes the magnetization state of the Permalloy ellipse. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. IIT, Dept Phys, Chicago, IL 60616 USA. RP Belkin, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM goran@anl.gov RI Iavarone, Maria/C-3628-2008; Novosad, Valentyn/C-2018-2014; Karapetrov, Goran/C-2840-2008; Novosad, V /J-4843-2015 OI Karapetrov, Goran/0000-0003-1113-0137; NR 21 TC 0 Z9 0 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 30 PY 2006 VL 89 IS 18 AR 182513 DI 10.1063/1.2378488 PG 3 WC Physics, Applied SC Physics GA 101RG UT WOS:000241757500083 ER PT J AU DeMange, P Negres, RA Rubenchik, AM Radousky, HB Feit, MD Demos, SG AF DeMange, P. Negres, R. A. Rubenchik, A. M. Radousky, H. B. Feit, M. D. Demos, S. G. TI Understanding and predicting the damage performance of KDxH2-xPO4 crystals under simultaneous exposure to 532-and 355-nm pulses SO APPLIED PHYSICS LETTERS LA English DT Article ID LASER-INDUCED DAMAGE; OPTICAL-MATERIALS; KDP AB Laser-induced initiation of bulk damage sites in KDxH2-xPO4 crystals is investigated under simultaneous exposure to 532 and 355 nm nanosecond laser pulses in order to simulate the operational conditions during harmonic conversion as well as probe the damage mechanisms. The results demonstrate synergetic damage effects under the dual-wavelength excitation. Furthermore, the damage performance is directly related to and can be predicted from the damage performance at each wavelength separately. The measured relative effective absorption coefficients at the two wavelengths are found to depend on the laser fluence. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP DeMange, P (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM demange1@llnl.gov RI Feit, Michael/A-4480-2009 NR 15 TC 16 Z9 16 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 30 PY 2006 VL 89 IS 18 AR 181922 DI 10.1063/1.2378484 PG 3 WC Physics, Applied SC Physics GA 101RG UT WOS:000241757500041 ER PT J AU Hastings, JB Rudakov, FM Dowell, DH Schmerge, JF Cardoza, JD Castro, JM Gierman, SM Loos, H Weber, PM AF Hastings, J. B. Rudakov, F. M. Dowell, D. H. Schmerge, J. F. Cardoza, J. D. Castro, J. M. Gierman, S. M. Loos, H. Weber, P. M. TI Ultrafast time-resolved electron diffraction with megavolt electron beams SO APPLIED PHYSICS LETTERS LA English DT Article ID EMITTANCE MEASUREMENTS; PROPAGATION DYNAMICS; PACKETS; MOTIONS; OPTICS; GUN AB A rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. The authors observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible. (c) 2006 American Institute of Physics. C1 Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Hastings, JB (reprint author), Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. EM jbh@slac.stanford.edu OI Loos, Henrik/0000-0001-5085-0562 NR 29 TC 97 Z9 98 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 30 PY 2006 VL 89 IS 18 AR 184109 DI 10.1063/1.2372697 PG 3 WC Physics, Applied SC Physics GA 101RG UT WOS:000241757500152 ER PT J AU Lee, JK Hundley, MF Thompson, JD Schulze, RK Jung, HS Valdez, JA Nastasi, M Zhang, X AF Lee, J. -K. Hundley, M. F. Thompson, J. D. Schulze, R. K. Jung, H. S. Valdez, J. A. Nastasi, M. Zhang, X. TI Magnetic anisotropy study of ion-beam synthesized cobalt nanocrystals SO APPLIED PHYSICS LETTERS LA English DT Article ID EXCHANGE BIAS; THIN-FILMS; SILICA AB The magnetic properties of Co nanocrystals in crystalline Al(2)O(3) and amorphous SiO(2) are investigated. In contrast to the SiO(2) matrix, the Al(2)O(3) matrix provides higher magnetic anisotropy and coercive field for Co nanocrystals. Using x-ray photoemission spectroscopy, it is found that a CoAl(2)O(4) layer forms in Co implanted region. Transmission electron microscopy shows that this CoAl(2)O(4) layer is grown epitaxially around Co nanocrystals. The higher coercive field of the Co nanocrystals in Al(2)O(3) is attributed to the presence of antiferromagnetic CoAl(2)O(4) layers. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87544 USA. Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Lee, JK (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87544 USA. EM jklee@lanl.gov RI Jung, Hyun Suk/H-3659-2015; OI Jung, Hyun Suk/0000-0002-7803-6930; Schulze, Roland/0000-0002-6601-817X NR 19 TC 5 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 30 PY 2006 VL 89 IS 18 AR 182502 DI 10.1063/1.2364176 PG 3 WC Physics, Applied SC Physics GA 101RG UT WOS:000241757500072 ER PT J AU Michael, S Chow, WW Schneider, HC AF Michael, S. Chow, W. W. Schneider, H. C. TI Coulomb corrections to the slowdown factor in quantum-dot quantum coherence SO APPLIED PHYSICS LETTERS LA English DT Article ID LIGHT AB Quantum-coherence induced group-velocity slowdown in a semiconductor quantum-dot structure is investigated using a many-body theory. The predictions are found to be noticeably different from those obtained in the independent-particle treatment typically used for describing atomic quantum coherence. In particular, Hartree-Fock renormalizations can lead to over two orders of magnitude reduction in the predicted pump intensity requirement for group-velocity slowdown to occur. Results are presented for the slowdown factor and slowdown-bandwidth product in a pulsed InAs-GaAs quantum-dot Lambda scheme. (c) 2006 American Institute of Physics. C1 Univ Kaiserslautern, Dept Phys, D-67653 Kaiserslautern, Germany. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Michael, S (reprint author), Univ Kaiserslautern, Dept Phys, POB 3049, D-67653 Kaiserslautern, Germany. EM hcsch@physik.uni-kl.de RI Schneider, Hans Christian/B-9450-2009 OI Schneider, Hans Christian/0000-0001-7656-4919 NR 17 TC 10 Z9 10 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 30 PY 2006 VL 89 IS 18 AR 181114 DI 10.1063/1.2364164 PG 3 WC Physics, Applied SC Physics GA 101RG UT WOS:000241757500014 ER PT J AU Nikzad, S Cunningham, TJ Hoenk, ME Ruiz, RP Soules, DM Holland, SE AF Nikzad, Shouleh Cunningham, T. J. Hoenk, Michael E. Ruiz, R. P. Soules, D. M. Holland, Stephen E. TI Direct detection of 0.1-20 keV electrons with delta doped, fully depleted, high purity silicon p-i-n diode arrays SO APPLIED PHYSICS LETTERS LA English DT Article ID CHARGE-COUPLED-DEVICES; BACKSCATTERING; CCDS AB Direct detection of 0.1-20 keV electrons is demonstrated using a boron delta doped high purity Si p-i-n diode array. Molecular beam epitaxy is used to grow a delta layer on the back surface of these fully depletable p-i-n diode arrays to form an electrode for detecting shallow-penetrating ionizing radiation. Device structure, processing, and characterization methods used for device testing and measurement of its response to electrons are discussed. Use of this detector for measuring the Si quantum yield over this wide energy range is also discussed. (c) 2006 American Institute of Physics. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Nikzad, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shouleh.nikzad@jpl.nasa.gov RI Holland, Stephen/H-7890-2013 NR 16 TC 6 Z9 6 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 30 PY 2006 VL 89 IS 18 AR 182114 DI 10.1063/1.2360904 PG 3 WC Physics, Applied SC Physics GA 101RG UT WOS:000241757500062 ER PT J AU Wang, W Shi, DL Lian, J Guo, Y Liu, GK Wang, LM Ewing, RC AF Wang, Wei Shi, Donglu Lian, Jie Guo, Yan Liu, Guokui Wang, Lumin Ewing, Rodney C. TI Luminescent hydroxylapatite nanoparticles by surface functionalization SO APPLIED PHYSICS LETTERS LA English DT Article ID SEMICONDUCTOR QUANTUM DOTS; WALL CARBON NANOTUBES; IN-VIVO; HYDROXYAPATITE; DEPOSITION; SUBSTRATE AB Hydroxylapatite (HA) nanoparticles were functionalized by depositing rare-earth-doped Y2O3 nanoparticles on the surface, and the structural evolutions of both HA and Y2O3 phases at different annealing temperatures were investigated by x-ray diffraction and transmission electron microscopy. Laser spectroscopy indicated that the surface functionalized HA nanoparticles exhibited strong visible emissions. No visible emissions were observed from rare-earth-doped Y2O3 without any substrate, suggesting a doping-induced environmental change of optically active rare-earth elements in the functionalized HA nanoparticles. The luminescent hydroxylapatite nanoparticles may find important applications as a biodegradable substrate for biomarking and drug delivery. (c) 2006 American Institute of Physics. C1 Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Wang, W (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM shid@email.uc.edu RI Lian, Jie/A-7839-2010 NR 27 TC 31 Z9 31 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 30 PY 2006 VL 89 IS 18 AR 183106 DI 10.1063/1.2374687 PG 3 WC Physics, Applied SC Physics GA 101RG UT WOS:000241757500098 ER PT J AU Yan, YF Al-Jassim, MM Wei, SH AF Yan, Yanfa Al-Jassim, M. M. Wei, Su-Huai TI Doping of ZnO by group-IB elements SO APPLIED PHYSICS LETTERS LA English DT Article ID P-TYPE ZNO; THIN-FILMS; SEMICONDUCTORS; COMPENSATION AB The authors present their first-principles calculations of doping effects in ZnO with group-IB elements such as Cu, Ag, and Au. The calculated transition energies epsilon(0/-) for substitutional Cu, Ag, and Au are 0.7, 0.4, and 0.5 eV, respectively. The calculated formation energies are very low for these group-IB elements on the substitutional sites, but rather high at the interstitial sites under oxygen-rich growth conditions. Under the conditions, the formation of major hole-killer defects, such as oxygen vacancies and Zn interstitial, are suppressed. Thus, Ag may be a good candidate for producing p-type ZnO. (c) 2006 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, YF (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yanfa_yan@nrel.gov NR 27 TC 169 Z9 191 U1 4 U2 69 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 30 PY 2006 VL 89 IS 18 AR 181912 DI 10.1063/1.2378404 PG 3 WC Physics, Applied SC Physics GA 101RG UT WOS:000241757500031 ER PT J AU Naguib, NN Elam, JW Birrell, J Wang, J Grierson, DS Kabius, B Hiller, JM Sumant, AV Carpick, RW Auciello, O Carlisle, JA AF Naguib, Nevin N. Elam, Jeffrey W. Birrell, James Wang, Jian Grierson, David S. Kabius, Bernd Hiller, Jon M. Sumant, Anirudha V. Carpick, Robert W. Auciello, Orlando Carlisle, John A. TI Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers SO CHEMICAL PHYSICS LETTERS LA English DT Article ID ATOMIC LAYER DEPOSITION; THIN-FILMS; SURFACE-CHEMISTRY; GROWTH; CVD; PLASMA AB Extremely smooth (6 nm RMS roughness over 4 mu m(2)), thin (100 nm), and continuous ultrananocrystalline diamond (UNCD) films were synthesized by microwave plasma chemical vapor deposition using a 10 nm tungsten (W) interlayer between the silicon substrate and the diamond film. These UNCD films possess a high content of sp(3)-bonded carbon. The W interlayer significantly increased the initial diamond nucleation density, thereby lowering the surface roughness, eliminating interfacial voids, and allowing thinner UNCD films to be grown. This structural optimization enhances the films' properties and enables its integration with a wide variety of substrate materials. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Energy Syst Div, Argonne, IL 60439 USA. Adv Diamond Technol Inc, Champaign, IL 61820 USA. Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Carlisle, JA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Carlisle@anl.gov RI Hiller, Jon/A-2513-2009 OI Hiller, Jon/0000-0001-7207-8008 NR 27 TC 63 Z9 63 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 30 PY 2006 VL 430 IS 4-6 BP 345 EP 350 DI 10.1016/j.cplett.2006.08.137 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 098US UT WOS:000241548900025 ER PT J AU Tyree, WS Vicic, DA Piccoli, PMB Schultz, AJ AF Tyree, William S. Vicic, David A. Piccoli, Paula M. B. Schultz, Arthur J. TI Structural factors influencing linear M-H-M bonding in bis(dialkylphosphino) methane complexes of nickel SO INORGANIC CHEMISTRY LA English DT Article ID NEUTRON-DIFFRACTION; MOLECULAR-STRUCTURE; CRYSTAL; HYDRIDE; CO-3(DPA)(4)CL-2; MONOANION; LIGANDS; STATE; SALT; BENT AB Structural data for four closely related dinuclear nickel hydride complexes have been compared in order to gain insight into the factors governing the Ni-H-Ni geometries. The derivatives [( dippm)(2)Ni2X2]( A-H) [ dippm) 1,2-bis( diisopropylphosphino)methane] were found to contain a linear Ni - H - Ni bridge, whereas the derivatives [( dcpm)(2)Ni2X2]( mu-H) [ dcpm) 1,2-bis( dicyclohexylphosphino)-methane] were found to contain a bent Ni - H - Ni bridge. The number of internal and interatomic CH-to-halide contacts of the former were much shorter and more numerous than the latter, suggesting an important role of external forces in bridging hydride geometries. C1 Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Vicic, DA (reprint author), Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. EM dvicic@uark.edu; ajschultz@anl.gov FU NCRR NIH HHS [RR-015569-06] NR 18 TC 7 Z9 7 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 30 PY 2006 VL 45 IS 22 BP 8853 EP 8855 DI 10.1021/ic0617036 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 097GN UT WOS:000241435300014 PM 17054341 ER PT J AU Li, B Corbett, JD AF Li, Bin Corbett, John D. TI Electronic stabilization effects: Three new K-In-T (T= Mg, Au, Zn) network compounds SO INORGANIC CHEMISTRY LA English DT Article ID QUASI-CRYSTALLINE APPROXIMANTS; ZINTL PHASE; THEORETICAL-ANALYSIS; CLUSTER PHASE AB The ternary compounds K34In91.05(9)Mg13.95(9) (I), K34In96.19(6) Au-8.81(6) (II), and K34In89.95(1) Zn-13.05(7) (III) have been synthesized by high-temperature means and structurally characterized by single-crystal X-ray diffraction methods. All are analogues of earlier products in which Li is substituted for some In in a hypothetical K34In105 lattice. They consist of complex three-dimensional anionic networks built of In-12 icosahedra and M-28 triply fused icosahedra (M = In or In/T and T = Mg, Au, or Zn). The K atoms bridge between cluster faces or edges and form K-136 clathrate-II type networks. Two neighboring M-28 units are interconnected by an M atom to form a sandwich complex (M-28)M-(M-28) in I and II or by a Zn-Zn dimer in (M-28)ZnZn(M-28) in III. Mixed In/T sites only occur in the M-28 portions. Phase stabilization through electronic tuning is present in all three via substitution of the electron-poorer T elements for In. Extended Huckel analyses indicate that all metal-metal bonding within the M-28 cluster appears to be optimized in I and III even though both are metallic. The size of the substituted element is also important in the structural features, as is especially shown by the Zn compound. C1 Iowa State Univ, Ames Lab, Dept Energy, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab, Dept Energy, Ames, IA 50011 USA. EM jcorbett@iastate.edu NR 36 TC 22 Z9 22 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 30 PY 2006 VL 45 IS 22 BP 8958 EP 8964 DI 10.1021/ic061089y PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 097GN UT WOS:000241435300028 PM 17054355 ER PT J AU Chanowitz, M AF Chanowitz, Michael TI Hunting the scalar glueball: Prospects for BES III SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Workshop on Tau-Charm Physics CY JUN 05-07, 2006 CL Beijing, PEOPLES R CHINA ID MESONS; DECAYS AB The search for the ground state scalar glueball G(0) is reviewed. Spin zero glueballs will have unique dynamical properties if the < G(0)vertical bar(q) over barq > amplitude is suppressed by chiral symmetry, as it is to all orders in perturbation theory: for instance, mixing of Go with (q) over barq mesons would be suppressed, radiative Psi decay would be a filter for new physics in the spin zero channel, and the decay G(0) -> (K) over barK could be enhanced relative to G(0) -> pi pi. These properties are consistent with the identification of f(0)(1710) as the largely unmixed ground state scalar glueball, while recent BES data implies that f(0)(1500) does not contain the dominant glueball admixture. Three hypotheses are discussed: that G(0) is 1) predominantly f(0)(1500) or 2) predominantly f(0)(1710) or 3) is strongly mixed between f(0)(1500) and f(0)(1710). C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chanowitz, M (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM chanowitz@lbl.gov NR 30 TC 12 Z9 12 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD OCT 30 PY 2006 VL 21 IS 27 BP 5535 EP 5542 DI 10.1142/S0217751X06034719 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112SH UT WOS:000242546900022 ER PT J AU Barnes, T AF Barnes, T. TI The XYZs of charmonium at BES SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Workshop on Tau-Charm Physics CY JUN 05-07, 2006 CL Beijing, PEOPLES R CHINA DE charmonium; meson spectroscopy; strong decays; electromagnetic couplings ID QUARK-MODEL; MESONS AB In this contribution I review some recent developments in charmonium spectroscopy, and discuss related theoretical predictions. The spectrum of states, strong decays of states above open charm threshold, electromagnetic transitions, and issues related to the recent discoveries of the "XYZ" states are discussed. Contributions that BES can make to our understanding of charmonium and related states are stressed in particular. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Barnes, T (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM tbarnes@utk.edu NR 28 TC 14 Z9 14 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD OCT 30 PY 2006 VL 21 IS 27 BP 5583 EP 5591 DI 10.1142/S0217751X0603477X PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112SH UT WOS:000242546900028 ER PT J AU Zhu, JX Albers, RC Wills, JM AF Zhu, Jian-Xin Albers, R. C. Wills, J. M. TI Equation-of-motion approach to dynamical mean field theory SO MODERN PHYSICS LETTERS B LA English DT Article DE strongly correlated electron systems; dynamical mean field theory; quantum impurity model; equation of motion; spectral density ID HUBBARD-MODEL; INFINITE DIMENSIONS; MOTT TRANSITION; SPATIAL CORRELATIONS; ANDERSON MODEL; TEMPERATURE; TRANSPORT; STATES AB We propose using an equation-of-motion approach as an impurity solver for dynamical mean field theory. As an illustration of this technique, we consider a finite-U Hubbard model defined on the Bethe lattice with infinite connectivity at arbitrary filling. Depending on the filling, the spectra that is obtained exhibits a quasiparticle peak, and lower and upper Hubbard bands as typical features of strongly correlated materials. The results are also compared and in good agreement with exact diagonalization. We also find a different picture of the spectral weight transfer than the iterative perturbation theory. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zhu, JX (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Zhu, Jianxin/0000-0001-7991-3918 NR 24 TC 7 Z9 7 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9849 J9 MOD PHYS LETT B JI Mod. Phys. Lett. B PD OCT 30 PY 2006 VL 20 IS 25 BP 1629 EP 1636 DI 10.1142/S0217984906011980 PG 8 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 109TQ UT WOS:000242332100007 ER PT J AU Dandoloff, R Saxena, A AF Dandoloff, Rossen Saxena, Avadh TI XY-model on planar and space curves SO PHYSICS LETTERS A LA English DT Article ID ONE-DIMENSIONAL MAGNETS; TOPOLOGICAL SOLITONS; GEOMETRICAL FRUSTRATION; HEISENBERG SPINS; CURVATURE; CYLINDER; FERROMAGNETS; EXCITATIONS; DYNAMICS; CHAIN AB We study the XY-model on a planar curve with a segment with constant curvature kappa(0) and a space curve with a segment with both constant curvature kappa(0) and torsion tau(0). In the first case the bent segment breaks the rotational invariance of the XY-model and thus we get a fractional static sine-Gordon soliton interpolating between the two states theta(1) and theta(2). In-the second case the helical segment breaks the helicity of the model and thus creating a ground state and a metastable state spin configuration with a fractional static soliton. For sufficiently large tau(0) the static soliton solution can be more stable than the trivial (0 = n pi/2) solution. The curvature introduces nonlinearity in the problem thereby localizing the energy in the region with nonzero curvature. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Cergy Pontoise, Lab Phys & Modelisat, F-95302 Cergy Pontoise, France. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Saxena, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM avadh@lanl.gov NR 34 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD OCT 30 PY 2006 VL 358 IS 5-6 BP 421 EP 425 DI 10.1016/j.physleta.2006.05.079 PG 5 WC Physics, Multidisciplinary SC Physics GA 100AZ UT WOS:000241640800019 ER PT J AU Dentener, F Drevet, J Lamarque, JF Bey, I Eickhout, B Fiore, AM Hauglustaine, D Horowitz, LW Krol, M Kulshrestha, UC Lawrence, M Galy-Lacaux, C Rast, S Shindell, D Stevenson, D Van Noije, T Atherton, C Bell, N Bergman, D Butler, T Cofala, J Collins, B Doherty, R Ellingsen, K Galloway, J Gauss, M Montanaro, V Muller, JF Pitari, G Rodriguez, J Sanderson, M Solmon, F Strahan, S Schultz, M Sudo, K Szopa, S Wild, O AF Dentener, F. Drevet, J. Lamarque, J. F. Bey, I. Eickhout, B. Fiore, A. M. Hauglustaine, D. Horowitz, L. W. Krol, M. Kulshrestha, U. C. Lawrence, M. Galy-Lacaux, C. Rast, S. Shindell, D. Stevenson, D. Van Noije, T. Atherton, C. Bell, N. Bergman, D. Butler, T. Cofala, J. Collins, B. Doherty, R. Ellingsen, K. Galloway, J. Gauss, M. Montanaro, V. Mueller, J. F. Pitari, G. Rodriguez, J. Sanderson, M. Solmon, F. Strahan, S. Schultz, M. Sudo, K. Szopa, S. Wild, O. TI Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID TROPOSPHERIC OZONE; BIODIVERSITY HOTSPOTS; ECOSYSTEMS; EMISSION; CYCLE; AEROCOM; AMMONIA; EUROPE; FUTURE; MODEL AB [1] We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces. The models are driven by three emission scenarios: ( 1) current air quality legislation (CLE); ( 2) an optimistic case of the maximum emissions reductions currently technologically feasible ( MFR); and ( 3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present-day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60 - 70% of the model-calculated wet deposition rates agree to within +/- 50% with quality-controlled measurements. Models systematically overestimate NHx deposition in South Asia, and underestimate NOy deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NOy, NHx, and SOx, leading to +/- 1 sigma variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36 - 51% of all NOy, NHx, and SOx is deposited over the ocean, and 50 - 80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the world's natural vegetation receives nitrogen deposition in excess of the "critical load'' threshold of 1000 mg(N) m(-2) yr(-1). The regions most affected are the United States (20% of vegetation), western Europe ( 30%), eastern Europe ( 80%), South Asia (60%), East Asia 40%), southeast Asia (30%), and Japan (50%). Future deposition fluxes are mainly driven by changes in emissions, and less importantly by changes in atmospheric chemistry and climate. The global fraction of vegetation exposed to nitrogen loads in excess of 1000 mg(N) m(-2) yr(-1) increases globally to 17% for CLE and 25% for A2. In MFR, the reductions in NOy are offset by further increases for NHx deposition. The regions most affected by exceedingly high nitrogen loads for CLE and A2 are Europe and Asia, but also parts of Africa. C1 Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabl, I-21020 Ispra, Italy. Swiss Fed Inst Technol, CH-1015 Lausanne, Switzerland. Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. Netherlands Environm Assessment Agcy, RIVM, Bilthoven, Netherlands. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. CEA, CNRS, Lab Sci Climat & Environm, Gif Sur Yvette, France. Univ Wageningen & Res Ctr, WUR, Wageningen, Netherlands. Indian Inst Technol, Analyt & Environm Chem Div, Hyderabad, Andhra Pradesh, India. Max Planck Inst Chem, D-55128 Mainz, Germany. Observ Midi Pyrenees, Lab Aerol, Toulouse, France. Max Planck Inst Meteorol, Hamburg, Germany. NASA, Goddard Inst Space Studies, New York, NY 10025 USA. Univ Edinburgh, Inst Atmosph & Environm Sci, Sch Geosci, Edinburgh EH8 9YL, Midlothian, Scotland. Royal Netherlands Meteorol Inst, KNMI, Atmospher Composit Climate Res & Seismol Dept, De Bilt, Netherlands. Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. Int Inst Appl Syst Anal, Laxenburg, Austria. Met Off, Exeter, Devon, England. Univ Oslo, Dept Geosci, Oslo, Norway. Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA. Univ Aquila, I-67100 Laquila, Italy. Inst Aeron Spatiale Belgique, Brussels, Belgium. Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. JAMSTEC, Frontier Res Ctr Global Change, Atmospher Composit Res Program, Yokohama, Kanagawa, Japan. RP Dentener, F (reprint author), Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabl, TP290, I-21020 Ispra, Italy. EM frank.dentener@jrc.it; jerome.drevet@epfl.ch; lamar@ucar.edu; bey@epfl.ch; bas.eickhout@mnp.nl; arlene.fiore@noaa.gov; didier@lsce.saclay.cea.fr; larry.horowitz@noaa.gov; krol@phys.uu.nl; umesh_iict@rediffmail.com; lawrence@mpch-mainz.mpg.de; lacc@aero.obs-mip.fr; rast@dkrz.de; dshindell@giss.nasa.gov; davids@met.ed.ac.uk; twan.van.noije@knmi.nl; atherton2@llnl.gov; nbell@giss.nasa.gov; dbergmann@llnl.gov; tmb@mpch-mainz.mpg.de; cofala@iiasa.ac.at; bill.collins@metoffice.com; ruth.doherty@ed.ac.uk; kjerstin.ellingsen@geo.uio.no; jng@virginia.edu; michael.gauss@geo.uio.no; veronica.montanaro@aquila.infn.it; jean-francois.muller@bira-iasb.oma.be; pitari@aquila.infn.it; jrodriguez@hyperion.gsfc.nasa.gov; michael.sanderson@metoffice.com; solf@aero.obs-mip.fr; strahan@prometheus.gsfc.nasa.gov; m.schultz@fz-juelich.de; kengo@jamstec.go.jp; sophie.szopa@cea.fr; oliver.wild@atm.ch.cam.ac.uk RI Horowitz, Larry/D-8048-2014; Lamarque, Jean-Francois/L-2313-2014; Unger, Nadine/M-9360-2015; Pitari, Giovanni/O-7458-2016; Schultz, Martin/I-9512-2012; Wild, Oliver/A-4909-2009; Collins, William/A-5895-2010; Szopa, Sophie/F-8984-2010; Krol, Maarten/B-3597-2010; Bergmann, Daniel/F-9801-2011; Butler, Tim/G-1139-2011; Stevenson, David/C-8089-2012; Shindell, Drew/D-4636-2012; Strahan, Susan/H-1965-2012; Magana, Felipe/B-6966-2013; Galloway, James/C-2769-2013; Krol, Maarten/E-3414-2013 OI Horowitz, Larry/0000-0002-5886-3314; Lamarque, Jean-Francois/0000-0002-4225-5074; Pitari, Giovanni/0000-0001-7051-9578; Schultz, Martin/0000-0003-3455-774X; Wild, Oliver/0000-0002-6227-7035; Collins, William/0000-0002-7419-0850; Szopa, Sophie/0000-0002-8641-1737; Bergmann, Daniel/0000-0003-4357-6301; Stevenson, David/0000-0002-4745-5673; Galloway, James/0000-0001-7676-8698; NR 48 TC 335 Z9 347 U1 83 U2 351 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD OCT 28 PY 2006 VL 20 IS 4 AR GB4003 DI 10.1029/2005GB002672 PG 21 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 100WF UT WOS:000241700200001 ER PT J AU Barrio, L Liu, P Rodriguez, JA Campos-Martin, JM Fierro, JLG AF Barrio, L. Liu, P. Rodriguez, J. A. Campos-Martin, J. M. Fierro, J. L. G. TI A density functional theory study of the dissociation of H-2 on gold clusters: Importance of fluxionality and ensemble effects SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AU NANOPARTICLES; ADSORPTION; CATALYSTS; MOLECULES; SURFACES; O-2; CO; OXIDATION; SOLIDS; PHASE AB Density functional theory was employed to calculate the adsorption/dissociation of H-2 on gold surfaces, Au(111) and Au(100), and on gold particles from 0.7 (Au-14) to 1.2 nm (Au-29). Flat surfaces of the bulk metal were not active towards H-2, but a different effect was observed in gold nanoclusters, where the hydrogen was adsorbed through a dissociative pathway. Several parameters such as the coordination of the Au atoms, ensemble effects and fluxionality of the particle were analyzed to explain the observed activity. The effect of the employed functional was also studied. The flexibility of the structure, i.e., its adaptability towards the adsorbate, plays a key role in the bonding and dissociation of H-2. The interaction with hydrogen leads to drastic changes in the structure of the Au nanoparticles. Furthermore, it appears that not only low coordinated Au atoms are needed because H-2 adsorption/dissociation was only observed when a cooperation between several (4) active Au atoms was allowed. (c) 2006 American Institute of Physics. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. CSIC, Inst Catalisis & Petr Quim, Madrid 28049, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov; jlgfierro@icp.csic.es RI Campos-Martin, Jose/A-4055-2008; Barrio, Laura/A-9509-2008; jose, fierro/C-4774-2014; OI Campos-Martin, Jose/0000-0002-7913-9851; Barrio, Laura/0000-0003-3496-4329; jose, fierro/0000-0002-6880-3737; Barrio, Laura/0000-0002-6919-6414 NR 26 TC 84 Z9 85 U1 3 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164715 DI 10.1063/1.2363971 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000074 PM 17092128 ER PT J AU Das, A Poliakoff, ED Lucchese, RR Bozek, JD AF Das, Aloke Poliakoff, E. D. Lucchese, R. R. Bozek, John D. TI Launching a particle on a ring: b(2u)-> ke(2g) ionization of C6F6 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ONE-ELECTRON RESONANCES; MOLECULAR PHOTOIONIZATION; SHAPE RESONANCES; PHOTOELECTRON-SPECTROSCOPY; HIGH-RESOLUTION; CROSS-SECTIONS; BOND LENGTHS; SCATTERING; MODE; FORBIDDEN AB Evidence is presented demonstrating that an electron launched into the continuum is trapped in an unprecedented quasibound state, namely, one that extends through the backbone of the six-member carbon ring of C6F6. The mode specificity of the vibrational sensitivity to the electron trapping provides an experimental signature for this phenomenon, while adiabatic static model-exchange scattering calculations are used to map the wave function, which corroborate the interpretation. (c) 2006 American Institute of Physics. C1 Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Poliakoff, ED (reprint author), Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. EM epoliak@lsu.edu RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010 OI Bozek, John/0000-0001-7486-7238 NR 29 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164316 DI 10.1063/1.2360532 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000028 PM 17092082 ER PT J AU Hankel, M Smith, SC Allan, RJ Gray, SK Balint-Kurti, GG AF Hankel, Marlies Smith, Sean C. Allan, Robert J. Gray, Stephen K. Balint-Kurti, Gabriel G. TI State-to-state reactive differential cross sections for the H+H-2 -> H-2+H reaction on five different potential energy surfaces employing a new quantum wavepacket computer code: DIFFREALWAVE SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TIME-DEPENDENT QUANTUM; HYDROGEN-EXCHANGE REACTION; REAL WAVE-PACKETS; COLLISION-ENERGY; RATE CONSTANTS; SCATTERING CALCULATIONS; CHEMICAL-REACTION; H+H-2 REACTION; H+D-2 REACTION; MOLECULAR PHOTOFRAGMENTATION AB State-to-state differential cross sections have been calculated for the hydrogen exchange reaction, H+H-2 -> H-2+H, using five different high quality potential energy surfaces with the objective of examining the sensitivity of these detailed cross sections to the underlying potential energy surfaces. The calculations were performed using a new parallel computer code, DIFFREALWAVE. The code is based on the real wavepacket approach of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)]. The calculations are parallelized over the helicity quantum number Omega(') (i.e., the quantum number for the body-fixed z component of the total angular momentum) and wavepackets for each J,Omega(') set are assigned to different processors, similar in spirit to the Coriolis-coupled processors approach of Goldfield and Gray [Comput. Phys. Commun. 84, 1 (1996)]. Calculations for J=0-24 have been performed to obtain converged state-to-state differential cross sections in the energy range from 0.4 to 1.2 eV. The calculations employ five different potential energy surfaces, the BKMP2 surface and a hierarchical family of four new ab initio surfaces [S. L. Mielke, , J. Chem. Phys. 116, 4142 (2002)]. This family of four surfaces has been calculated using three different hierarchical sets of basis functions and also an extrapolation to the complete basis set limit, the so called CCI surface. The CCI surface is the most accurate surface for the H-3 system reported to date. Our calculations of differential cross sections are the first to be reported for the A2, A3, A4, and CCI surfaces. They show that there are some small differences in the cross sections obtained from the five different surfaces, particularly at higher energies. The calculations also show that the BKMP2 performs well and gives cross sections in very good agreement with the results from the CCI surface, displaying only small divergences at higher energies. C1 Univ Queensland, Ctr Computat Mol Sci, St Lucia, Qld 4072, Australia. SERC, Daresbury Lab, Adv Res Comp Grp, Warrington WA4 4AD, Cheshire, England. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England. RP Hankel, M (reprint author), Univ Queensland, Ctr Computat Mol Sci, St Lucia, Qld 4072, Australia. EM m.hankel@uq.edu.au; s.smith@uq.edu.au; r.j.allan@daresbury.ac.uk; gray@tcg.anl.gov; gabriel.balint-kurti@bristol.ac.uk RI Hankel, Marlies/C-6262-2009; Smith, Sean/H-5003-2015 OI Hankel, Marlies/0000-0002-8297-7231; Smith, Sean/0000-0002-5679-8205 NR 70 TC 58 Z9 58 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164303 DI 10.1063/1.2358350 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000015 PM 17092069 ER PT J AU Johnson, PM Xu, HF Sears, TJ AF Johnson, Philip M. Xu, Haifeng Sears, Trevor J. TI The calculation of vibrational intensities in forbidden electronic transitions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FRANCK-CONDON PRINCIPLE; POLYATOMIC-MOLECULES; BENZENE; SYMMETRY; SPECTRA AB A method is described for the use of electronic structure and Franck-Condon factor programs in the calculation of the vibrational intensities in forbidden electronic transitions. Using the B B-2(2)-X B-2(1) electronic transition of benzonitrile cation as a test case, transition moments were calculated using the symmetry adapted cluster/configuration interaction method at various points along the normal mode displacements of the molecule, from which transition moment derivatives were obtained. The transition moments were found to vary almost linearly with respect to the normal mode displacements. Using these, along with Franck-Condon factors, an expansion of the transition moment with respect to the normal coordinates provides a measure of vibrational intensities, including the effects of geometry change and Duschinsky rotation [Acta Physicochim. URSS 7, 551 (1937)]. Second order terms in the moment expansion are calculated, and it is determined that they must be included if the intensity of combination bands is to be properly obtained. (c) 2006 American Institute of Physics. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Johnson, PM (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. EM philip.johnson@sunysb.edu RI Sears, Trevor/B-5990-2013 OI Sears, Trevor/0000-0002-5559-0154 NR 17 TC 16 Z9 16 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164330 DI 10.1063/1.2355674 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000042 PM 17092096 ER PT J AU Martinez, R Sierra, JD Gray, SK Gonzalez, M AF Martinez, Rodrigo Sierra, Jose Daniel Gray, Stephen K. Gonzalez, Miguel TI Time dependent quantum dynamics study of the O++H-2(v=0,j=0)-> OH++H ion-molecule reaction and isotopic variants (D-2,HD) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACE; REAL WAVE-PACKETS; RATE CONSTANTS; CROSS-SECTIONS; REACTION PROBABILITIES; MECHANICAL CALCULATION; HD; DISTRIBUTIONS; SCATTERING; SYSTEM AB The time dependent real wave packet method using the helicity decoupling approximation was used to calculate the cross section evolution with collision energy (excitation function) of the O++H-2(v=0,j=0)-> OH++H reaction and its isotopic variants with D-2 and HD, using the best available ab initio analytical potential energy surface. The comparison of the calculated excitation functions with exact quantum results and experimental data showed that the present quantum dynamics approach is a very useful tool for the study of the selected and related systems, in a quite wide collision energy interval (approximately 0.0-1.1 eV), involving a much lower computational cost than the quantum exact methods and without a significant loss of accuracy in the cross sections. C1 Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. Univ Barcelona, Ctr Rec Quim Teor, E-08028 Barcelona, Spain. Univ La Rioja, Dept Quim, Logrono 26006, Spain. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Gonzalez, M (reprint author), Univ Barcelona, Dept Quim Fis, Parc Cient Barcelona,C Marti Franques,1, E-08028 Barcelona, Spain. EM miguel.gonzalez@ub.edu RI Sierra Murillo, Jose Daniel/I-3281-2015; OI Sierra Murillo, Jose Daniel/0000-0001-5359-420X; Martinez Ruiz, Rodrigo/0000-0002-5850-8494 NR 30 TC 20 Z9 20 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164305 DI 10.1063/1.2359727 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000017 PM 17092071 ER PT J AU Nilson, RH Griffiths, SK AF Nilson, Robert H. Griffiths, Stewart K. TI Influence of atomistic physics on electro-osmotic flow: An analysis based on density functional theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRICAL DOUBLE-LAYER; MOLECULAR-DYNAMICS SIMULATION; POISSON-BOLTZMANN THEORY; MODEL INTEGRAL-EQUATION; CHARGED HARD SPHERES; ELECTROKINETIC TRANSPORT; MONTE-CARLO; FLUID; INTERFACE; APPROXIMATION AB Molecular density profiles and charge distributions determined by density functional theory (DFT) are used in conjunction with the continuum Navier-Stokes equations to compute electro-osmotic flows in nanoscale channels. The ion species of the electrolyte are represented as centrally charged hard spheres, and the solvent is treated as a dense fluid of neutral hard spheres having a uniform dielectric constant. The model explicitly accounts for Lennard-Jones interactions among fluid and wall molecules, hard sphere repulsions, and short range electrical interactions, as well as long range Coulombic interactions. Only the last of these interactions is included in classical Poisson-Boltzmann (PB) modeling of the electric field. Although the proposed DFT approach is quite general, the sample calculations presented here are limited to symmetric monovalent electrolytes. For a prescribed surface charge, this DFT model predicts larger counterion concentrations near charged channel walls, relative to classical PB modeling, and hence smaller concentrations in the channel center. This shifting of counterions toward the walls reduces the effective thickness of the Debye layer and reduces electro-osmotic velocities as compared to classical PB modeling. Zeta potentials and fluid speeds computed by the DFT model are as much as two or three times smaller than corresponding PB results. This disparity generally increases with increasing electrolyte concentration, increasing surface charge density and decreasing channel width. The DFT results are found to be comparable to those obtained by molecular dynamics simulation, but require considerably less computing time. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Phys & Engn Sci Ctr, Livermore, CA 94551 USA. RP Nilson, RH (reprint author), Sandia Natl Labs, Phys & Engn Sci Ctr, Livermore, CA 94551 USA. EM rhnilso@sandia.gov NR 38 TC 22 Z9 22 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164510 DI 10.1063/1.2358684 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000054 PM 17092108 ER PT J AU Xu, HF Johnson, PM Sears, TJ AF Xu, Haifeng Johnson, Philip M. Sears, Trevor J. TI Photoinduced Rydberg ionization spectroscopy of the (B)over-tilde state of benzonitrile cation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CHARGE-TRANSFER; DUAL FLUORESCENCE; PIRI SPECTROSCOPY; SPECTRA; PHENYLACETYLENE; CHLOROBENZENE; ASSIGNMENT; COMPLEXES; SYSTEMS; ARGON AB Photoinduced Rydberg ionization (PIRI) spectra of the second excited electronic state of benzonitrile cation were recorded via the origin and 6a(1) and 6b(1) vibrational levels of the cation ground electronic state. This B <- X transition was verified to be a forbidden B-2(2)<- B-2(1) transition with an origin at 17 225 cm(-1) above the ground ionic state. By the use of vibronic coupling calculations, as well as symmetry analysis and comparison of the PIRI spectra via different ground vibrational levels, a nearly complete assignment of the vibrational structure was made, and the vibrational frequencies of the B B-2(2) state of benzonitrile cation were obtained based on the assignments. Comparisons of the experimental spectra with simulations from the vibronic structure calculations are also used to validate the theoretical procedures used in the simulations. (c) 2006 American Institute of Physics. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Xu, HF (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. EM philip.johnson@sunysb.edu RI Sears, Trevor/B-5990-2013 OI Sears, Trevor/0000-0002-5559-0154 NR 24 TC 5 Z9 6 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164331 DI 10.1063/1.2355675 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000043 PM 17092097 ER PT J AU Zhai, HJ Wang, LS AF Zhai, Hua-Jin Wang, Lai-Sheng TI Probing the electronic properties of dichromium oxide clusters Cr2On- (n=1-7) using photoelectron spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FUNCTIONAL THEORY CALCULATIONS; TRANSITION-METAL CLUSTERS; AB-INITIO; THEORETICAL COMPUTATIONS; MASS-SPECTROMETRY; IRON CLUSTERS; DEFECT SITES; CHROMIUM; CR-2; SURFACES AB In an effort to elucidate the variation of the electronic structure as a function of oxidation and composition, we investigated an extensive series of dichromium oxide clusters, Cr2On- (n=1-7), using photoelectron spectroscopy (PES). Well-resolved PES spectra were obtained at several photon energies. While low photon energy spectra yielded much better spectral resolution, high photon energy data allowed both Cr 3d- and O 2p-derived detachment features to be observed. The overall spectral evolution of Cr2On- exhibits a behavior of sequential oxidation with increasing oxygen content, where low binding energy Cr 3d-based spectral features diminish in numbers and the spectra shift towards higher binding energies as a result of charge transfer from Cr to O. Evidence was obtained for the population of low-lying isomers for Cr2O2-, Cr2O3-, and Cr2O6-. The current data are compared with previous studies and with related studies on W2On- and Mo2On-. (c) 2006 American Institute of Physics. C1 Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Zhai, HJ (reprint author), Washington State Univ, Dept Phys, Richland, WA 99354 USA. EM ls.wang@pnl.gov NR 47 TC 30 Z9 30 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164315 DI 10.1063/1.2360531 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000027 PM 17092081 ER PT J AU Zhang, S Medvedev, DM Goldfield, EM Gray, SK AF Zhang, Shesheng Medvedev, Dmitry M. Goldfield, Evelyn M. Gray, Stephen K. TI Quantum dynamics study of the dissociative photodetachment of HOCO- SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACE; INFRARED-ABSORPTION SPECTRUM; HIGH-PRESSURE RANGE; REAL WAVE-PACKETS; TRANS-HOCO; VIBRATIONAL FREQUENCIES; REACTIVE SCATTERING; MOLECULAR-STRUCTURE; RATE CONSTANTS; ORDER DOMAIN AB Six-dimensional wave packet calculations are carried out to study the behavior of HOCO subsequent to the photodetachment of an electron from the negative anion, HOCO-. It is possible to form stable and/or long-lived HOCO complexes, as well as the dissociative products OH+CO and H+CO2. A variety of observables are determined: the electron kinetic energy (eKE) distributions associated with the OH+CO and H+CO2 channels, the correlated eKE and product translational energy distribution for the OH+CO channel, and product branching ratios. Most of our results are in good accord with the experimental results of Clements, Continetti, and Francisco [J. Chem. Phys. 117, 6478 (2002)], except that the calculated eKE distribution for the H+CO2 channel is noticeably colder than experiment. Reasons for this discrepancy are suggested. C1 Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Zhang, S (reprint author), Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. EM evi@chem.wayne.edu NR 55 TC 19 Z9 19 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164312 DI 10.1063/1.2360945 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000024 PM 17092078 ER PT J AU Zhao, SJ Germann, TC Strachan, A AF Zhao, Shijin Germann, Timothy C. Strachan, Alejandro TI Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; METASTABLE INTERSTITIAL COMPOSITES; WAVES; FOILS; COMBUSTION; CRYSTALS AB We employ molecular dynamics simulations with a first principles-based many body potential to characterize the exothermic alloying reactions of nanostructured Ni/Al multilayers induced by shock loading. We introduce a novel technique that captures both the initial shock transit as well as the subsequent longer-time-scale Ni3Al alloy formation. Initially, the softer Al layers are shock heated to a higher temperature than the harder Ni layers as a result of a series of shock reflections from the impedance-mismatched interfaces. Once initiated, the highly exothermic alloying reactions can propagate in a self-sustained manner by mass and thermal diffusion. We also characterize the role of voids on the initiation of alloying. The interaction of the shock wave with the voids leads not only to significant local heating (hot spots) but also directly aids the intermixing between Al and Ni; both of these phenomena contribute to a significant acceleration of the alloying reactions. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP Zhao, SJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM shijin@lanl.gov; tcg@lanl.gov; strachan@purdue.edu OI Germann, Timothy/0000-0002-6813-238X NR 22 TC 50 Z9 50 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2006 VL 125 IS 16 AR 164707 DI 10.1063/1.2359438 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101EP UT WOS:000241722000066 PM 17092120 ER PT J AU Viehland, LA Danailov, DM Goeringer, DE AF Viehland, Larry A. Danailov, Daniel M. Goeringer, Douglas E. TI Moment theory of ion motion in traps and similar devices: IV. Molecular theories SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DRIFT-TUBE EXPERIMENTS; AB-INITIO CALCULATION; TRANSPORT-COEFFICIENTS; KINETIC-THEORY; 3-TEMPERATURE THEORY; ARBITRARY STRENGTH; ELECTRIC-FIELDS; ATOMIC IONS; GAS; MOBILITY AB This paper extends to molecules the moment theory of ion traps and similar devices where the electric fields vary with both position and time. It is based on the Wang Chang-Uhlenbeck-de Boer equation and a series of successive approximations based on the Maxwell model and the assumption that all other moments of the ion distribution function vary much less rapidly with position and time than does the ion number density. Two versions of the theory are presented: a simpler one, based on spherical-polar basis functions, and a more comprehensive one, based on Cartesian functions. C1 Chatham Coll, Div Sci, Pittsburgh, PA 15232 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Viehland, LA (reprint author), Chatham Coll, Div Sci, Pittsburgh, PA 15232 USA. EM viehland@chatham.edu; dmd_daniel@yahoo.com; goeringerde@ornl.gov NR 40 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 28 PY 2006 VL 39 IS 20 BP 3993 EP 4013 DI 10.1088/0953-4075/39/20/001 PG 21 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 111SU UT WOS:000242475700001 ER PT J AU Viehland, LA Danailov, DM Goeringer, DE AF Viehland, Larry A. Danailov, Daniel M. Goeringer, Douglas E. TI Moment theory of ion motion in traps and similar devices: V. Multi-temperature treatment of quadrupole ion traps SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID TRANSPORT-COEFFICIENTS; DOT-RG; HE-RN; SPECTROSCOPY; SIMULATION; FIELDS; ENERGY; GAS AB Recent moment theories of ion motion in devices where the external fields vary with position and time are applied to non-ideal ion traps. In first approximation, the theories give differential equations with collision frequencies that vary with the effective temperature characterizing the relative kinetic energy of the ion neutral collisions. Solutions of the set of coupled differential equations provide the ion number density, average velocities, average energies and average temperatures as functions of time and of position in the apparatus. Solutions of the coupled equations are discussed for the Maxwell model, rigid spheres and general ion-neutral interactions. A surprising finding is that ac fields on the endcaps lead to changes in the stability region for ion motion in traps, changes that can cause ion ejection both for small and large values of the ac field applied to the rings. C1 Chatham Coll, Div Sci, Pittsburgh, PA 15232 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Viehland, LA (reprint author), Chatham Coll, Div Sci, Pittsburgh, PA 15232 USA. EM viehland@chatham.edu; dmd_daniel@yahoo.com; goeringerde@ornl.gov NR 31 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 28 PY 2006 VL 39 IS 20 BP 4015 EP 4035 DI 10.1088/0953-4075/39/20/002 PG 21 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 111SU UT WOS:000242475700002 ER PT J AU Gilb, S Torres, EA Leone, SR AF Gilb, Stefan Torres, Elva A. Leone, Stephen R. TI Mapping of time-dependent electron orbital alignment SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID FINE-STRUCTURE LEVELS; ANGULAR-DISTRIBUTIONS; PUMP-PROBE; IONIZATION; PHOTOIONIZATION; PHOTOELECTRON; POLARIZATION; SPECTRUM; XENON AB Using time-resolved photoelectron imaging, a time-dependent electron orbital alignment is observed during the recurrences of a Rydberg rotational wave packet in krypton. The time-dependent alignment is created via excitation of two ac-Stark shifted states (5d'[5/2](3) and 8d[1/2](1)) using a three-photon femtosecond pulse excitation. A straightforward analysis of the measured photoelectron distributions using angular momentum algebra shows that the observed periodic change in the electron orbital alignment is accompanied by a time-dependent change of the associated Bell states. These Bell states describe the entangled system of excited electron and ionic core. Hence, these experiments present a relatively simple excitation scheme for creating a decoherence-free entangled superposition. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gilb, S (reprint author), Tech Univ Munich, Lichtenbergstr 4, D-85748 Garching, Germany. NR 15 TC 8 Z9 8 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 28 PY 2006 VL 39 IS 20 BP 4231 EP 4238 DI 10.1088/0953-4075/39/20/020 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 111SU UT WOS:000242475700020 ER PT J AU Gritti, F Guiochon, G AF Gritti, Fabrice Guiochon, Georges TI Effects of the thermal heterogeneity of the column on chromatographic results SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE mass transfer mechanism; column efficiency; efficiency optimization; RPLC; HETP equation; axial diffusion; eddy diffusion; film mass transfer; transparticle mass transfer; C(18) surface coverage; phenol ID PRESSURE LIQUID-CHROMATOGRAPHY; VISCOUS HEAT DISSIPATION; TEMPERATURE-GRADIENTS; SOLUTE RETENTION; PHASE; WATER AB The influence of the thermal heterogeneity of HPLC columns on retention data was investigated. The retention factor of the retained compound phenol was measured at 24 increasing values of the flow rate, from 0.025 to 4.9 mL/min, on six different packing materials prepared with the same batch of silica particles (5 mu m diameter, 90 angstrom pore size). One column was packed with the neat silica particles, another with the silica endcapped with trimethylchlorosilane (TMS)(C(1), 3.92 mu mol/m(2)), and the other four with silica first derivatized with octadecyl-dimethyl-chlorosilane (C(18), 0.42, 1.01. 2.03, and 3.15 mu mol/m(2)), and second endcapped with TMS. Four different sources of heat contributing to raise the column temperature were considered: (1) the heat supplied by the hot high-pressure pump chamber to the solvent; (2) the adiabatic (dS=0) compression of the solvent in the high-pressure pump; (3) the isenthalpic (dH=0) decompression of the solvent during its migration along the porous chromatographic bed; and (4) the heat released by the friction of the solvent percolating through the column bed. The main contributions appear to be the heat supplied to the solvent by the RP pump and the friction heat. The average column temperature (ACT) was indirectly derived from the measurements of the first moment, mu(1), of phenol peak, of the column pressure drop, A P, and of the retention factors of the phenol peak apices as a function of the flow rate applied. If the column is placed in a still-air bath at 298 K (and its temperature is not externally controlled), a longitudinal temperature gradient is established along the column and the average column temperature is about 6 K higher when this column is operated at 4.9 mL/min than when the flow rate is only 0.025 mL/min. If the column is placed in a heated air bath (temperature controlled at 316 or 338 K), the ACT changes by less than 3 K over the whole flow rate range applied. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Guiochon, G (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM guiochon@utk.edu NR 20 TC 46 Z9 47 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 27 PY 2006 VL 1131 IS 1-2 BP 151 EP 165 DI 10.1016/j.chroma.2006.07.051 PG 15 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 097EG UT WOS:000241429000016 PM 16919645 ER PT J AU Iwanczyk, J Sadre-Bazzaz, K Ferrell, K Kondrashkina, E Formosa, T Hill, CP Ortega, J AF Iwanczyk, Jack Sadre-Bazzaz, Kianoush Ferrell, Katherine Kondrashkina, Elena Formosa, Timothy Hill, Christopher P. Ortega, Joaquin TI Structure of the Blm10-20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE Blm10; PA200; proteasome activator; cryo-electron microscopy; three-dimensional reconstruction ID 20S PROTEASOME; 26S PROTEASOME; SACCHAROMYCES-CEREVISIAE; ELECTRON-MICROSCOPY; 11S REGULATORS; DNA2 MUTANTS; UCSF CHIMERA; RESOLUTION; PA28; VISUALIZATION AB The 20 S proteasome is regulated at multiple levels including association with endogenous activators. Two activators have been described for the yeast 20 S proteasome: the 19 S regulatory particle and the Blm10 protein. The sequence of Blm10 is 20% identical to the mammalian PA200 protein. Recent studies have shown that the sequences of Blm10 and PA200 each contain multiple HEAT-repeats and that each binds to the ends of mature proteasomes, suggesting a common structural and biochemical function. In order to advance structural studies, we have developed an efficient purification method that produces high yields of stoichiometric Blm10-mature yeast 20 S proteasome complexes and we constructed a three-dimensional (3D) model of the Blm10-20 S complex from cryo-electron microscopy images. This reconstruction shows that Blm10 binds in a defined orientation to both ends of the 20 S particle and contacts all the proteasome alpha subunits. Blm10 displays the solenoid folding predicted by the presence of multiple HEAT-like repeats and the axial gates on the alpha rings of the proteasome appear to be open in the complex. We also performed a genetic analysis in an effort to identify the physiological role of Blm10. These experiments, however, did not reveal a robust phenotype upon gene deletion, overexpression, or in a screen for synthetic effects. This leaves the physiological role of Blm10 unresolved, but challenges earlier findings of a role in DNA repair. (c) 2006 Elsevier Ltd. All rights reserved. C1 McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON L8N 3Z5, Canada. Univ Utah, Sch Med, Dept Biochem, Salt Lake City, UT 84112 USA. IIT, BCPS Dept, Biophys Collaborat Access Team, Chicago, IL 60616 USA. RP Ortega, J (reprint author), McMaster Univ, Dept Biochem & Biomed Sci, 1200 Main St W, Hamilton, ON L8N 3Z5, Canada. EM ortegaj@mcmaster.ca FU Canadian Institutes of Health Research [64342]; NCRR NIH HHS [RR-08630, P41 RR008630]; NIGMS NIH HHS [GM59135, R01 GM059135] NR 43 TC 37 Z9 38 U1 0 U2 1 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 27 PY 2006 VL 363 IS 3 BP 648 EP 659 DI 10.1016/j.jmb.2006.08.010 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 100BE UT WOS:000241641300003 PM 16952374 ER PT J AU Minard, KR Viswanathan, VV Majors, PD Wang, LQ Rieke, PC AF Minard, Kevin R. Viswanathan, Vilayanur V. Majors, Paul D. Wang, Li-Qiong Rieke, Peter C. TI Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation SO JOURNAL OF POWER SOURCES LA English DT Article DE PEM; fuel cell; dehydration; flooding; MRI ID POLYMER ELECTROLYTE MEMBRANE; WATER DISTRIBUTION; H-1-NMR MICROSCOPY; VISUALIZATION; PERFORMANCE; TRANSPORT; CATHODE AB Magnetic resonance imaging (MRI) was employed for visualizing water inside a proton exchange membrane (PEM) fuel cell during 11.4h of continuous operation with a constant load. Two-dimensional images acquired every 128 s revealed the formation of a dehydration front that propagated slowly over the surface of the fuel cell membrane-starting from gas inlets and progressing toward gas outlets. After traversing the entire PEM surface, channels in the gas manifold began to flood on the cathode side. To establish a qualitative understanding of these observations, acquired images were correlated to the current output and the operating characteristics of the fuel cell. Results demonstrate the power of MRI for visualizing changing water distributions during PEM fuel cell operation, and highlight its potential utility for studying the causes of cell failure and/or strategies of water management. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rieke, PC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM lq.wang@pnl.gov; peter.rieke@pnl.gov NR 22 TC 48 Z9 49 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 27 PY 2006 VL 161 IS 2 BP 856 EP 863 DI 10.1016/j.jpowsour.2006.04.125 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 101ZU UT WOS:000241781200018 ER PT J AU Lu, N Li, Q Sun, X Khaleel, MA AF Lu, N. Li, Q. Sun, X. Khaleel, M. A. TI The modeling of a standalone solid-oxide fuel cell auxiliary power unit SO JOURNAL OF POWER SOURCES LA English DT Article DE fuel cells; modeling; distributed generation; power distribution; dynamics ID PLANT; SIMULATION; STACK AB In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stackmodule, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lu, N (reprint author), Pacific NW Natl Lab, POB 999,MS,K5-20, Richland, WA 99352 USA. EM ning.lu@pnl.gov RI Li, Qinghe/D-6747-2011; OI khaleel, mohammad/0000-0001-7048-0749 NR 18 TC 35 Z9 35 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 27 PY 2006 VL 161 IS 2 BP 938 EP 948 DI 10.1016/j.jpowsour.2006.05.009 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 101ZU UT WOS:000241781200028 ER PT J AU Gemmen, RS Trembly, J AF Gemmen, R. S. Trembly, J. TI On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell SO JOURNAL OF POWER SOURCES LA English DT Article DE syngas; coal; solid oxide; fuel cell; anode; model ID YSZ CERMET ELECTRODE; H-2-H2O-CO-CO2 SYSTEM; GAS-TRANSPORT; SOFC ANODES; PERFORMANCE; METHANE; DIFFUSION; OXIDATION; KINETICS; H-2 AB It is expected that in future years high temperature fuel cells will be coupled with coal gasification technology to produce electric power, as well as other valuable commercial products. Numerous technical investigations have already shown the feasibility of such systems at the system level as well as in the details of fuel cell operation. This paper focuses on the operation of an anode comprised of conventional solid oxide fuel cell anode materials (Ni/YSZ cermets) when operating on coal syngas. A model is presented for the transport of gases through the anode, as well as gas specie reactions within the anode consisting of methane reforming and water-gas shift. The model is validated by making comparisons to data and other models from the literature. The model is then employed to analyze transport performance within the anode over operating pressures between 1 and 15 atm. Results show the pressure effects on specie profiles, diffusion losses, and cell heating. Specifically, there is a maximum pressure (8 atm) under which hydrogen is produced by the methane-steam reaction; operating at higher pressure will produce methane. In addition, the concentration overpotential decreases as pressure increases from 1 to 5 atm after which it again increases. Finally, the model predicts a significant amount of heating due to the net reforming and water-gas shift reactions that should be considered by developers of these future systems. Published by Elsevier B.V. C1 Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Gemmen, RS (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM randall.gemmen@netl.doe.gov NR 35 TC 70 Z9 70 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 27 PY 2006 VL 161 IS 2 BP 1084 EP 1095 DI 10.1016/j.jpowsour.2006.06.012 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 101ZU UT WOS:000241781200044 ER PT J AU Jang, YI Dudney, NJ Tiegs, TN Klett, JW AF Jang, Young-Il Dudney, Nancy J. Tiegs, Terry N. Klett, James W. TI Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE carbon foam; graphite foam; lead acid battery; current collector; cyclic voltammetry; intercalation ID RETICULATED VITREOUS CARBON; SULFURIC-ACID; DIOXIDE ELECTRODES; CYCLE LIFE; BEHAVIOR; CAPACITY; CHARGE; PLATES AB Graphite foams with high electrical and thermal conductivities, good mechanical strength, and low mass have been synthesized and evaluated as possible current collector materials to replace lead alloys for the development of lightweight lead acid batteries. Cyclic voltammetry and galvanostatic charge-discharge tests were performed on these foams prior to and after graphitization to evaluate their electrochemical properties. In the voltage range where the negative electrode of lead acid batteries operates, the graphite foam is electrochemically stable. However, in the voltage range of the positive electrode, the graphite foam is not electrochemically stable due to intercalation of sulfuric acid into graphite. For the positive electrode, the non-graphitized foam shows better electrochemical stability and warrants further study for use as a current collector. Preliminary charge/discharge characterization of these graphite and non-graphitized foams coated with a lead oxide battery paste supports these conclusions, although the paste formulation and coating process need to be improved for cycle life evaluation. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Met & Ceram Div, Oak Ridge, TN 37831 USA. RP Dudney, NJ (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, POB 2008,Bldg 3025,MS 6030, Oak Ridge, TN 37831 USA. EM dudneynj@ornl.gov RI Dudney, Nancy/I-6361-2016; Klett, James/E-6860-2017 OI Dudney, Nancy/0000-0001-7729-6178; Klett, James/0000-0002-2553-9649 NR 21 TC 31 Z9 34 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 27 PY 2006 VL 161 IS 2 BP 1392 EP 1399 DI 10.1016/j.jpowsour.2006.04.124 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 101ZU UT WOS:000241781200082 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakraborty, D Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakraborty, D. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for pair production of scalar bottom quarks in p(p)over-bar collisions at root s = 1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS; SUPERSYMMETRY AB A search for direct production of scalar bottom quarks ((b) over bar) is performed with 310 pb(-1) of data collected by the D0 experiment in p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron Collider. The topology analyzed consists of two b jets and an imbalance in transverse momentum due to undetected neutralinos (chi(0)(1)), with chi(0)(1) assumed to be the lightest supersymmetric particle. We find the data consistent with standard model expectations, and set a 95% C.L. exclusion domain in the (m(b), m(chi 1)(0)) mass plane, improving significantly upon the results from run I of the Tevatron. C1 Univ Buenos Aires, Buenos Aires, DF, Argentina. LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Inst Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, Phys Corpusculaire Lab, IN2P3, CNRS, Clermont Ferrand, France. Univ Grenoble 1, IN2P3, CNRS, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Mediterranee, CPPM, IN2P3, CNRS, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, Orsay, France. Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. Univ Paris 07, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg 1, CNRS, IPHC, IN2P3, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Joint Inst Nucl Res Dubna, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Yip, Kin/D-6860-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016 OI Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108 NR 21 TC 25 Z9 25 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 171806 DI 10.1103/PhysRevLett.97.171806 PG 7 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800022 PM 17155465 ER PT J AU Abe, K Hayato, Y Iida, T Ishihara, K Kameda, J Koshio, Y Minamino, A Mitsuda, C Miura, M Moriyama, S Nakahata, M Obayashi, Y Ogawa, H Shiozawa, M Suzuki, Y Takeda, A Takeuchi, Y Ueshima, K Higuchi, I Ishihara, C Ishitsuka, M Kajita, T Kaneyuki, K Mitsuka, G Nakayama, S Nishino, H Okumura, K Saji, C Takenaga, Y Totsuka, Y Clark, S Desai, S Dufour, F Kearns, E Likhoded, S Litos, M Raaf, JL Stone, JL Sulak, LR Wang, W Goldhaber, M Casper, D Cravens, JP Kropp, WR Liu, DW Mine, S Regis, C Smy, MB Sobel, HW Vagins, MR Ganezer, KS Hill, JE Keig, WE Jang, JS Kim, JY Lim, IT Scholberg, K Tanimoto, N Walter, CW Wendell, R Ellsworth, RW Tasaka, S Guillian, E Learned, JG Matsuno, S Messier, MD Ichikawa, AK Ishida, T Ishii, T Iwashita, T Kobayashi, T Nakadaira, T Nakamura, K Nitta, K Oyama, Y Suzuki, AT Hasegawa, M Kato, I Maesaka, H Nakaya, T Nishikawa, K Sasaki, T Sato, H Yamamoto, S Yokoyama, M Haines, TJ Dazeley, S Hatakeyama, S Svoboda, R Sullivan, GW Habig, A Gran, R Fukuda, Y Sato, T Itow, Y Koike, T Jung, CK Kato, T Kobayashi, K Malek, M McGrew, C Sarrat, A Terri, R Yanagisawa, C Tamura, N Sakuda, M Sugihara, M Kuno, Y Yoshida, M Kim, SB Yoo, J Ishizuka, T Okazawa, H Choi, Y Seo, HK Gando, Y Hasegawa, T Inoue, K Ishii, H Nishijima, K Ishino, H Watanabe, Y Koshiba, M Kielczewska, D Zalipska, J Berns, HG Shiraishi, KK Washburn, K Wilkes, RJ AF Abe, K. Hayato, Y. Iida, T. Ishihara, K. Kameda, J. Koshio, Y. Minamino, A. Mitsuda, C. Miura, M. Moriyama, S. Nakahata, M. Obayashi, Y. Ogawa, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takeuchi, Y. Ueshima, K. Higuchi, I. Ishihara, C. Ishitsuka, M. Kajita, T. Kaneyuki, K. Mitsuka, G. Nakayama, S. Nishino, H. Okumura, K. Saji, C. Takenaga, Y. Totsuka, Y. Clark, S. Desai, S. Dufour, F. Kearns, E. Likhoded, S. Litos, M. Raaf, J. L. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Casper, D. Cravens, J. P. Kropp, W. R. Liu, D. W. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Vagins, M. R. Ganezer, K. S. Hill, J. E. Keig, W. E. Jang, J. S. Kim, J. Y. Lim, I. T. Scholberg, K. Tanimoto, N. Walter, C. W. Wendell, R. Ellsworth, R. W. Tasaka, S. Guillian, E. Learned, J. G. Matsuno, S. Messier, M. D. Ichikawa, A. K. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nitta, K. Oyama, Y. Suzuki, A. T. Hasegawa, M. Kato, I. Maesaka, H. Nakaya, T. Nishikawa, K. Sasaki, T. Sato, H. Yamamoto, S. Yokoyama, M. Haines, T. J. Dazeley, S. Hatakeyama, S. Svoboda, R. Sullivan, G. W. Habig, A. Gran, R. Fukuda, Y. Sato, T. Itow, Y. Koike, T. Jung, C. K. Kato, T. Kobayashi, K. Malek, M. McGrew, C. Sarrat, A. Terri, R. Yanagisawa, C. Tamura, N. Sakuda, M. Sugihara, M. Kuno, Y. Yoshida, M. Kim, S. B. Yoo, J. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Gando, Y. Hasegawa, T. Inoue, K. Ishii, H. Nishijima, K. Ishino, H. Watanabe, Y. Koshiba, M. Kielczewska, D. Zalipska, J. Berns, H. G. Shiraishi, K. K. Washburn, K. Wilkes, R. J. TI Measurement of atmospheric neutrino flux consistent with tau neutrino appearance SO PHYSICAL REVIEW LETTERS LA English DT Article ID OSCILLATIONS; ANNIHILATION; DETECTOR AB A search for the appearance of tau neutrinos from nu(mu)<->nu(tau) oscillations in the atmospheric neutrinos has been performed using 1489.2 days of atmospheric neutrino data from the Super-Kamiokande-I experiment. A best fit tau neutrino appearance signal of 138 +/- 48(stat)+15/-32(syst) events is obtained with an expectation of 78 +/- 26(syst). The hypothesis of no tau neutrino appearance is disfavored by 2.4 sigma. C1 Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Chiba 2778582, Japan. Boston Univ, Dept Phys, Boston, MA 02215 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. Duke Univ, Dept Phys, Durham, NC 27708 USA. George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. Gifu Univ, Dept Phys, Gifu 5011193, Japan. Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. Nagoya Univ, Solar Terrestrial Environm Lab, Nagoya, Aichi 4648601, Japan. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Niigata Univ, Dept Phys, Niigata 9502181, Japan. Okayama Univ, Dept Phys, Okayama 7008530, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. Shizuoka Univ, Dept Syst Engn, Shizuoka 4328561, Japan. Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. Tokai Univ, Dept Phys, Kanagawa 2591292, Japan. Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. Univ Tokyo, Tokyo 1130033, Japan. Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Abe, K (reprint author), Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. RI Yokoyama, Masashi/A-4458-2011; Takeuchi, Yasuo/A-4310-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Suzuki, Yoichiro/F-7542-2010; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Obayashi, Yoshihisa/A-4472-2011; Yoo, Jonghee/K-8394-2016 OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; NR 17 TC 100 Z9 100 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 171801 DI 10.1103/PhysRevLett.97.171801 PG 6 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800017 PM 17155460 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beachemin, PH Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben-Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Nnesmann, MT Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beachemin, P. -H. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben-Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Dorr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. nnesmann, M. To] Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. TI Search for large extra dimensions in the production of jets and missing transverse energy in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID CDF; GRAVITY AB We present the results of a search for new physics in the jets plus missing transverse energy data sample collected from 368 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV recorded by the Collider Detector at Fermilab. We compare the number of events observed in the data with a data-based estimate of the standard model backgrounds contributing to this signature. We observe no significant excess of events, and we interpret this null result in terms of lower limits on the fundamental Planck scale for a large extra dimensions scenario. C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; Lysak, Roman/H-2995-2014; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015 OI Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133 NR 32 TC 36 Z9 36 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 171802 DI 10.1103/PhysRevLett.97.171802 PG 7 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800018 ER PT J AU Alvine, KJ Shpyrko, OG Pershan, PS Shin, K Russell, TP AF Alvine, Kyle J. Shpyrko, Oleg G. Pershan, Peter S. Shin, Kyusoon Russell, Thomas P. TI Capillary filling of anodized alumina nanopore arrays SO PHYSICAL REVIEW LETTERS LA English DT Article ID VAPOR-PRESSURE; LIQUID-FILMS; X-RAY; CONDENSATION; PORE; PERFORMANCE AB The filling behavior of a room temperature solvent, perfluoromethylcyclohexane, in approximately 20 nm nanoporous alumina membranes was investigated in situ with small angle x-ray scattering. Adsorption in the pores was controlled reversibly by varying the chemical potential between the sample and a liquid reservoir via a thermal offset, Delta T. The system exhibited a pronounced hysteretic capillary filling transition as liquid was condensed into the nanopores. These results are compared with Kelvin-Cohan theory, with a modified Derjaguin approximation, as well as with predictions by Cole and Saam. C1 Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. Seoul Natl Univ, Sch Chem & Biol Engn, Seoul, South Korea. Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Alvine, KJ (reprint author), Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. EM kalvine@post.harvard.edu RI Shpyrko, Oleg/J-3970-2012 NR 28 TC 34 Z9 34 U1 3 U2 16 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 175503 DI 10.1103/PhysRevLett.97.175503 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800039 PM 17155482 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schmitz, RE Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Cker, AH Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Tinslay, JS Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schmitz, R. E. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Tinslay, J. S. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Measurement of the branching fraction and photon energy moments of B -> X-s gamma and A(CP)(B -> Xs+d gamma) SO PHYSICAL REVIEW LETTERS LA English DT Article ID RADIATIVE B-DECAYS; CP VIOLATION; ASYMMETRY; PHYSICS AB The photon spectrum in B -> X-s gamma decay, where X-s is any strange hadronic state, is studied using a data sample of 88.5x10(6) e(+)e(-)->Upsilon(4S)-> B(B) over bar decays collected by the BABAR experiment at the Stanford Linear Accelerator Center. The partial branching fraction, Delta B(B -> X-s gamma)=(3.67 +/- 0.29(stat)+/- 0.34(syst)+/- 0.29(model))x10(-4), the first moment < E-gamma >=2.288 +/- 0.025 +/- 0.017 +/- 0.015 GeV, and the second moment < E-gamma(2)>=0.0328 +/- 0.0040 +/- 0.0023 +/- 0.0036 GeV2 are measured for the photon energy range 1.9 GeV < E-gamma < 2.7 GeV. They are also measured for narrower E-gamma ranges. The moments are then fit to recent theoretical calculations to extract the heavy quark expansion parameters m(b) and mu(2)(pi) and to extrapolate the partial branching fraction to E-gamma > 1.6 GeV. In addition, the direct CP asymmetry A(CP)(B -> Xs+d gamma) is measured to be -0.110 +/- 0.115(stat)+/- 0.017(syst). C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, La Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 8PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Rizzo, Giuliana/A-8516-2015; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Della Ricca, Giuseppe/B-6826-2013; M, Saleem/B-9137-2013; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Cavallo, Nicola/F-8913-2012; Wang, Wenefng/G-6312-2011; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; OI Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Peters, Klaus/0000-0001-7133-0662; Della Ricca, Giuseppe/0000-0003-2831-6982; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508 NR 27 TC 54 Z9 54 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 171803 DI 10.1103/PhysRevLett.97.171803 PG 7 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800019 PM 17155794 ER PT J AU Aubert, B Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. del Amo Sanchez, P. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hoecker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Observation of B+->(K)over-bar(0) K+ and B-0 -> K-0 (K)over-bar(0) SO PHYSICAL REVIEW LETTERS LA English DT Article ID FACTORIZATION; ASYMMETRIES; DECAYS AB We report observations of the b -> d penguin-dominated decays B+->(K) over bar K-0(+) and B-0 -> K-0(K) over bar (0) in 316 fb(-1) of e(+)e(-) collision data collected with the BABAR detector. We measure the branching fractions B(B+->(K) over bar K-0(+))=(1.61 +/- 0.44 +/- 0.09)x10(-6) and B(B-0 -> K-0(K) over bar (0))=(1.08 +/- 0.28 +/- 0.11)x10(-6) and the CP-violating charge asymmetry A(CP)((K) over bar K-0(+))=0.10 +/- 0.26 +/- 0.03. Using a vertexing technique previously employed in several analyses of all-neutral final states containing kaons, we report the first measurement of time-dependent CP-violating asymmetries in B-0 ->(KSKS0)-K-0, obtaining S=-1.28(-0.73-0.16)(+0.80+0.11) and C=-0.40 +/- 0.41 +/- 0.06. We also report improved measurements of the branching fraction B(B+-> K-0 pi(+))=(23.9 +/- 1.1 +/- 1.0)x10(-6) and CP-violating charge asymmetry A(CP)(K-0 pi(+))=-0.029 +/- 0.039 +/- 0.010. C1 CNRS, IN2P3, Phys Particules Lab, Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, Annecy Le Vieux, France. RI Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Peters, Klaus/C-2728-2008 OI Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Raven, Gerhard/0000-0002-2897-5323; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Peters, Klaus/0000-0001-7133-0662 NR 24 TC 51 Z9 51 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 171805 DI 10.1103/PhysRevLett.97.171805 PG 7 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800021 PM 17155464 ER PT J AU Bradbury, FR Tyryshkin, AM Sabouret, G Bokor, J Schenkel, T Lyon, SA AF Bradbury, F. R. Tyryshkin, A. M. Sabouret, Guillaume Bokor, Jeff Schenkel, Thomas Lyon, S. A. TI Stark tuning of donor electron spins in silicon SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM COMPUTER; RESONANCE EXPERIMENTS; ECHOES AB We report Stark shift measurements for Sb-121 donor electron spins in silicon using pulsed electron spin resonance. Interdigitated metal gates on a Sb-implanted Si-28 epilayer are used to apply the electric fields. Two quadratic Stark effects are resolved: a decrease of the hyperfine coupling between electron and nuclear spins of the donor and a decrease in electron Zeeman g factor. The hyperfine term prevails at magnetic fields of 0.35 T, while the g factor term is expected to dominate at higher magnetic fields. We discuss the results in the context of the Kane model quantum computer. C1 Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Bradbury, FR (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EM bradbury@princeton.edu RI Tyryshkin, Alexei/A-5219-2008; Bokor, Jeffrey/A-2683-2011 NR 26 TC 45 Z9 45 U1 3 U2 19 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 176404 DI 10.1103/PhysRevLett.97.176404 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800046 PM 17155489 ER PT J AU Cai, YQ Chow, PC Restrepo, OD Takano, Y Togano, K Kito, H Ishii, H Chen, CC Liang, KS Chen, CT Tsuda, S Shin, S Kao, CC Ku, W Eguiluz, AG AF Cai, Y. Q. Chow, P. C. Restrepo, O. D. Takano, Y. Togano, K. Kito, H. Ishii, H. Chen, C. C. Liang, K. S. Chen, C. T. Tsuda, S. Shin, S. Kao, C. C. Ku, W. Eguiluz, A. G. TI Low-energy charge-density excitations in MgB2: Striking interplay between single-particle and collective behavior for large momenta SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-SCATTERING; SUPERCONDUCTING PROPERTIES; PERFORMANCE; BORON AB A sharp feature in the charge-density excitation spectra of single-crystal MgB2, displaying a remarkable cosinelike, periodic energy dispersion with momentum transfer (q) along the c(*) axis, has been observed for the first time by high-resolution nonresonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-q collective mode residing in the single-particle excitation gap of the B pi bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB2. C1 Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058586, Japan. Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Cai, YQ (reprint author), Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. EM cai@nsrrc.org.tw RI Cai, Yong/C-5036-2008; TAKANO, Yoshihiko/H-2788-2011; OI Cai, Yong/0000-0002-9957-6426; Takano, Yoshihiko/0000-0002-1541-6928 NR 30 TC 20 Z9 20 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 176402 DI 10.1103/PhysRevLett.97.176402 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800044 PM 17155487 ER PT J AU Dudek, JJ Edwards, RG AF Dudek, Jozef J. Edwards, Robert G. TI Two-photon decays of charmonia from lattice QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID IMPROVEMENT AB We make the first calculation in lattice QCD of two-photon decays of mesons. Working in the charmonium sector, using the Lehmann-Symanzik-Zimmermann reduction to relate a photon to a sum of hadronic vector eigenstates, we compute form factors in both the spacelike and timelike domains for the transitions eta(c)->gamma(*)gamma(*) and chi(c0)->gamma(*)gamma(*). At the on-shell point, we find approximate agreement with experimental world-average values. C1 Jefferson Lab, Newport News, VA 23606 USA. RP Dudek, JJ (reprint author), Jefferson Lab, MS 12H2,12000 Jefferson Ave, Newport News, VA 23606 USA. EM dudek@jlab.org NR 10 TC 33 Z9 34 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 172001 DI 10.1103/PhysRevLett.97.172001 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800023 PM 17155466 ER PT J AU Fishman, RS AF Fishman, Randy S. TI Magnetic susceptibility and order parameter of the spin-glass-like phase of the double-exchange model SO PHYSICAL REVIEW LETTERS LA English DT Article ID MEAN-FIELD THEORY; ISING PYROCHLORE MAGNETS; INFINITE DIMENSIONS; TEMPERATURE; MANGANITES; TRANSITION; FERMIONS; DIAGRAM; LATTICE AB The magnetic susceptibility and Edwards-Anderson order parameter q of the spin-glass-like (SGL) phase of the double-exchange model are evaluated in the weak-coupling or RKKY limit. Dynamical mean-field theory is used to show that q=M(T/T-SGL)(2), where M is the classical Brillouin function and T-SGL is the SGL transition temperature. The correlation length of the SGL phase is determined by a correlation parameter Q that maximizes T-SGL and minimizes the free energy. The magnetic susceptibility has a cusp at T-SGL and reaches a nonzero value as T -> 0. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Fishman, Randy/C-8639-2013 NR 32 TC 1 Z9 1 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 177204 DI 10.1103/PhysRevLett.97.177204 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800061 PM 17155504 ER PT J AU Frassinetti, L Predebon, I Koguchi, H Yagi, Y Hirano, Y Sakakita, H Spizzo, G White, RB AF Frassinetti, L. Predebon, I. Koguchi, H. Yagi, Y. Hirano, Y. Sakakita, H. Spizzo, G. White, R. B. TI Improved particle confinement in transition from multiple-helicity to quasi-single-helicity regimes of a reversed-field pinch SO PHYSICAL REVIEW LETTERS LA English DT Article ID TEARING MODES; PLASMAS; FLUCTUATIONS AB The quasi-single-helicity (QSH) state of a reversed-field pinch (RFP) plasma is a regime in which the RFP configuration can be sustained by a dynamo produced mainly by a single tearing mode and in which a helical structure with well-defined magnetic flux surfaces arises. In this Letter, we show that spontaneous transitions to the QSH regime enhance the particle confinement. This improvement is originated by the simultaneous and cooperative action of the increase of the magnetic island and the reduction of the magnetic stochasticity. C1 Natl Inst AIST, Tsukuba, Ibaraki 3058568, Japan. EURATOM, ENEA, Consorzio RFX, I-35127 Padua, Italy. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Frassinetti, L (reprint author), Natl Inst AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan. RI White, Roscoe/D-1773-2013; Spizzo, Gianluca/B-7075-2009; OI White, Roscoe/0000-0002-4239-2685; Spizzo, Gianluca/0000-0001-8586-2168; Frassinetti, Lorenzo/0000-0002-9546-4494 NR 19 TC 17 Z9 17 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 175001 DI 10.1103/PhysRevLett.97.175001 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800034 PM 17155477 ER PT J AU Ishigami, M Sau, JD Aloni, S Cohen, ML Zettl, A AF Ishigami, Masa Sau, Jay Deep Aloni, Shaul Cohen, Marvin L. Zettl, A. TI Symmetry breaking in boron nitride nanotubes SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; MOLECULAR ADSORBATES; CARBON NANOTUBES; STM IMAGES AB We have imaged boron nitride nanotubes with atomic scale resolution using scanning tunneling microscopy. While some nanotubes show the expected triangular lattice pattern, the majority of the nanotubes show unusual stripe patterns which break the underlying symmetry of the boron nitride lattice. We identify the origin of the symmetry breaking and demonstrate that conventional STM imaging analysis is inadequate for boron nitride nanotubes. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Ishigami, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@socrates.berkeley.edu RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X NR 29 TC 12 Z9 12 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 176804 DI 10.1103/PhysRevLett.97.176804 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800051 PM 17155494 ER PT J AU Johnson, DK Auerbach, D Blumenfeld, I Barnes, CD Clayton, CE Decker, FJ Deng, S Emma, P Hogan, MJ Huang, C Ischebeck, R Iverson, R Joshi, C Katsouleas, TC Kirby, N Krejcik, P Lu, W Marsh, KA Mori, WB Muggli, P O'Connell, CL Oz, E Siemann, RH Walz, D Zhou, M AF Johnson, D. K. Auerbach, D. Blumenfeld, I. Barnes, C. D. Clayton, C. E. Decker, F. J. Deng, S. Emma, P. Hogan, M. J. Huang, C. Ischebeck, R. Iverson, R. Joshi, C. Katsouleas, T. C. Kirby, N. Krejcik, P. Lu, W. Marsh, K. A. Mori, W. B. Muggli, P. O'Connell, C. L. Oz, E. Siemann, R. H. Walz, D. Zhou, M. TI Positron production by X rays emitted by betatron motion in a plasma wiggler SO PHYSICAL REVIEW LETTERS LA English DT Article ID ION-CHANNEL AB Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra. C1 Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ So Calif, Los Angeles, CA 90089 USA. RP Johnson, DK (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RI Lu, Wei/F-2504-2016 NR 15 TC 23 Z9 23 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 175003 DI 10.1103/PhysRevLett.97.175003 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800036 PM 17155479 ER PT J AU Raman, R Nelson, BA Bell, MG Jarboe, TR Mueller, D Bigelow, T LeBlanc, B Maqueda, R Menard, J Ono, M Wilson, R AF Raman, R. Nelson, B. A. Bell, M. G. Jarboe, T. R. Mueller, D. Bigelow, T. LeBlanc, B. Maqueda, R. Menard, J. Ono, M. Wilson, R. TI Efficient generation of closed magnetic flux surfaces in a large spherical tokamak using coaxial helicity injection SO PHYSICAL REVIEW LETTERS LA English DT Article ID NSTX AB A method of coaxial helicity injection has successfully produced a closed flux current without the use of the central solenoid in the NSTX device, on a size scale closer to a spherical torus reactor, for a proof-of-principle demonstration of this concept. For the first time, a remarkable 60 times current multiplication factor was achieved. Grad-Shafranov plasma equilibrium reconstructions are used to verify the existence of closed flux current. In some discharges the generated current persists for a surprisingly long time similar to 400 ms. C1 Univ Washington, Seattle, WA 98195 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Nova Photon, Princeton, NJ USA. RP Raman, R (reprint author), Univ Washington, Seattle, WA 98195 USA. EM raman@aa.washington.edu OI Menard, Jonathan/0000-0003-1292-3286 NR 15 TC 26 Z9 26 U1 2 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 175002 DI 10.1103/PhysRevLett.97.175002 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800035 PM 17155478 ER PT J AU Zhu, JX McElroy, K Lee, J Devereaux, TP Si, QM Davis, JC Balatsky, AV AF Zhu, Jian-Xin McElroy, K. Lee, J. Devereaux, T. P. Si, Qimiao Davis, J. C. Balatsky, A. V. TI Effects of pairing potential scattering on Fourier-transformed inelastic tunneling spectra of high-T-c cuprate superconductors with bosonic modes SO PHYSICAL REVIEW LETTERS LA English DT Article ID BI2SR2CACU2O8+DELTA; PHOTOEMISSION; RESONANCE AB Recent scanning tunneling microscopy (STM) experimentally observed strong gap inhomogeneity in Bi2Sr2CaCu2O8+delta (BSCCO). We argue that disorder in the pair potential underlies the gap inhomogeneity, and investigate its role in the Fourier-transformed inelastic tunneling spectra as revealed in the STM. We find that the random pair potential induces unique q-space patterns in the local density of states (LDOS) of a d-wave superconductor. We consider the effects of electron coupling to various bosonic modes and find the pattern of LDOS modulation due to coupling to the B-1g phonon mode to be consistent with the one observed in the inelastic electron tunnneling STM experiment in BSCCO. These results suggest strong electron-lattice coupling as an essential part of the superconducting state in high-T-c materials. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14850 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada. Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Zhu, JX (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI mcelroy, kyle/D-1816-2013; OI Zhu, Jianxin/0000-0001-7991-3918 NR 24 TC 20 Z9 20 U1 1 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2006 VL 97 IS 17 AR 177001 DI 10.1103/PhysRevLett.97.177001 PG 4 WC Physics, Multidisciplinary SC Physics GA 099IL UT WOS:000241586800053 PM 17155496 ER PT J AU Mao, WL Mao, HK Meng, Y Eng, PJ Hu, MY Chow, P Cai, YQ Shu, JF Hemley, RJ AF Mao, Wendy L. Mao, Ho-kwang Meng, Yue Eng, Peter J. Hu, Michael Y. Chow, Paul Cai, Yong Q. Shu, Jinfu Hemley, Russell J. TI X-ray-induced dissociation of H2O and formation of an O-2-H-2 alloy at high pressure SO SCIENCE LA English DT Article ID RAMAN-SPECTROSCOPY; BONDING CHANGES; AMORPHOUS ICE; SOLID OXYGEN; HYDROGEN; PHASE; TRANSITION; COMPRESSION; MIXTURES; WATER AB When subjected to high pressure and extensive x-radiation, water (H2O) molecules cleaved, forming O - O and H - H bonds. The oxygen (O) and hydrogen (H) framework in ice VII was converted into a molecular alloy of O-2 and H-2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrated that this crystalline solid differs from previously known phases. It remained stable with respect to variations in pressure, temperature, and further x-ray and laser exposure, thus opening new possibilities for studying molecular interactions in the hydrogen-oxygen binary system. C1 Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Argonne Natl Lab, Adv Photon Source, Carnegie Inst Washington, High Pressure Coolaborat Access Team, Argonne, IL 60439 USA. Univ Chicago, Consortium Adv Radiat Sci, Chicago, IL 60637 USA. Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. RP Mao, WL (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, POB 1663, Los Alamos, NM 87545 USA. RI Mao, Wendy/D-1885-2009; Cai, Yong/C-5036-2008 OI Cai, Yong/0000-0002-9957-6426 NR 31 TC 55 Z9 57 U1 2 U2 36 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 27 PY 2006 VL 314 IS 5799 BP 636 EP 638 DI 10.1126/science.1132884 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 098XT UT WOS:000241557800043 PM 17068259 ER PT J AU Wang, XB Wang, YL Woo, HK Li, J Wu, GS Wang, LS AF Wang, Xue-Bin Wang, Yi-Lei Woo, Hin-Koon Li, Jun Wu, Guo-Shi Wang, Lai-Sheng TI Free tetra- and hexa-coordinated platinum-cyanide dianions, Pt(CN)(4)(2-) and Pt(CN)(6)(2-) : A combined photodetachment photoelectron spectroscopic and theoretical study SO CHEMICAL PHYSICS LA English DT Article DE multiply charged anion; repulsive coulomb barrier; cyanide ligand; platinum coordination complex; spin-orbit coupling ID MULTIPLY-CHARGED ANIONS; REPULSIVE COULOMB BARRIER; CIRCULAR-DICHROISM SPECTRA; GAS-PHASE; ELECTRONIC-STRUCTURE; POPULATION ANALYSIS; CORRELATION-ENERGY; METAL-COMPLEXES; WAVE FUNCTIONS; HARTREE-FOCK AB Two doubly charged transition metal complexes, Pt(CN)(4)(2-) and Pt(CN)(6)(2-) commonly found in the condensed phases, are produced as isolated species from solutions to the gas phase using electrospray ionization. Their stability and electronic structures are investigated by photodetachment photoelectron spectroscopy and density functional theory (DFT) calculations. The adiabatic electron detachment energies for the dianions to monoanions are measured to be 1.69 and 3.85 eV for Pt(CN)(4)(2-) and Pt(CN)(6)(2-) respectively. The magnitude of the repulsive Coulomb barrier is estimated to be similar to 2.5 eV for Pt(CN)(4)(2-), and similar to 1.7 eV for Pt(CN)(6)(2-). Well-resolved and distinct peaks are observed in the spectra, yielding rich electronic structure information for these complexes. DFT calculations including scalar relativistic and spin-orbit effects are carried out to determine the geometries and to interpret the observed spectral features. The calculations show that the frontier occupied molecular orbitals are largely metal-based for Pt(CN)(4)(2-) and ligand-based for Pt(CN)(6)(2-), in contrast to the standard ligand field theory description. (c) 2006 Elsevier B.V. All rights reserved. C1 Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Tsing Hua Univ, Dept Chem, Beijing 100084, Peoples R China. Tsing Hua Univ, Minist Educ, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China. RP Li, J (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM junli@tsinghua.edu.cn; ls.wang@pnl.gov RI Li, Jun/E-5334-2011 OI Li, Jun/0000-0002-8456-3980 NR 73 TC 16 Z9 17 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD OCT 26 PY 2006 VL 329 IS 1-3 SI SI BP 230 EP 238 DI 10.1016/j.chemphys.2006.07.018 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 099EE UT WOS:000241574500024 ER PT J AU Santra, R AF Santra, Robin TI Imaging molecular orbitals using photoionization SO CHEMICAL PHYSICS LA English DT Article DE molecular orbitals; Hartree-Fock; X-ray absorption; photoelectron angular distributions ID ELECTRON MOMENTUM SPECTROSCOPY; BODY GREENS FUNCTIONS; IONIZATION-POTENTIALS; PERTURBATION THEORY; PHASE RETRIEVAL; LASER FIELDS; SYNCHROTRON-RADIATION; ANGULAR-DISTRIBUTIONS; ELASTIC SCATTERING; PROPAGATOR THEORY AB The interpretation of a recent experiment using high-order harmonic generation [Itatani et al., Nature 432 (2004) 867] as a measurement of the highest occupied molecular orbital of a molecule is conceptually problematic, even if the independent-particle picture is taken seriously. Guided by the relationship between the amplitude for one-photon-induced electron emission and the electron-ion recombination amplitude in the three-step model of high-order harmonic generation, it is argued that synchrotron-based photoionization might be a superior approach to imaging molecular orbitals. Within the Hartree-Fock independent-particle picture, the molecular-frame photoelectron angular distributions. measured as a function of photon energy, could be used to reconstruct all orbitals occupied in the Hartree-Fock ground state of the molecule investigated. It is suggested that laser alignment techniques could be employed to facilitate the measurement of the molecular-frame photoelectron angular distributions. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Santra, R (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rsantra@anl.gov RI Santra, Robin/E-8332-2014 OI Santra, Robin/0000-0002-1442-9815 NR 80 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD OCT 26 PY 2006 VL 329 IS 1-3 SI SI BP 357 EP 364 DI 10.1016/j.chemphys.2006.07.008 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 099EE UT WOS:000241574500038 ER PT J AU Vidale, JE Boyle, KL Shearer, PM AF Vidale, John E. Boyle, Katie L. Shearer, Peter M. TI Crustal earthquake bursts in California and Japan: Their patterns and relation to volcanoes SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEQUENCES; AFTERSHOCKS AB [1] We analyze 153 bursts of earthquakes in southern California and Japan. The burst patterns are similar in southern California and Japan; they fill a spectrum between "swarm-like'' sequences without obvious mainshocks and mainshocks with Omori-law-abiding aftershocks. In agreement with our previous work, the "swarm-like'' sequences in Japan have more events, are more voluminous, and tend to expand with time, when compared to "mainshock-aftershock'' type sequences. In both regions, we find that the sequences starting with their largest events tend to be much shorter in duration. Bursts within 50 km of volcanoes are similar in character to those elsewhere except they tend to have longer duration. We hypothesize that swarminess is a proxy for fluid pressure redistribution and/or aseismic slip driving the seismicity bursts, and conversely, the mainshock-aftershock-style sequences have end-member behavior that results solely from a cascade of elastic failures. The complexity of the spatial seismicity distribution does not correlate with the style of swarm observed, indicating that fluid conditions and composition are likely more influential than geometry in determining the patterns we observe. C1 Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. Univ Calif San Diego, Scripps Inst Oceanog, Inst Geophys & Planetary Phys, La Jolla, CA 92093 USA. RP Vidale, JE (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. EM john.vidale@gmail.com RI Shearer, Peter/K-5247-2012; Vidale, John/H-4965-2011 OI Shearer, Peter/0000-0002-2992-7630; Vidale, John/0000-0002-3658-818X NR 19 TC 25 Z9 25 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 26 PY 2006 VL 33 IS 20 AR L20313 DI 10.1029/2006GL027723 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 100WC UT WOS:000241699900003 ER PT J AU Jordanova, VK Miyoshi, YS Zaharia, S Thomsen, MF Reeves, GD Evans, DS Mouikis, CG Fennell, JF AF Jordanova, V. K. Miyoshi, Y. S. Zaharia, S. Thomsen, M. F. Reeves, G. D. Evans, D. S. Mouikis, C. G. Fennell, J. F. TI Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETOSPHERIC ION COMPOSITION; RICE CONVECTION MODEL; GEOMAGNETIC STORMS; MAGNETIC STORM; ELECTRIC-FIELD; GEOSYNCHRONOUS ORBIT; ENERGETIC PARTICLES; INNER MAGNETOSPHERE; CYCLOTRON WAVES; PROTON AB [ 1] We investigate the temporal and spatial evolution of the ring current during two storms selected for study by the Geospace Environment Modeling ( GEM) program using our kinetic drift-loss model coupled with a time-dependent plasmasphere model. We use geosynchronous data from LANL satellites to model the inflow of plasma from the magnetotail. We compare results from simulations using either Volland-Stern ( VS) or Weimer (W01) model of the convection electric field and investigate the relative effect of magnetospheric convection and radial diffusion on the storm-time injection and trapping of energetic particles and ring current asymmetry. Model comparisons with in situ Cluster, NOAA, and Polar energetic particle observations show overall better agreement with W01 than with VS model. On the other hand, VS model reproduced better the evolution of the plasmapause as observed by IMAGE. Additional ring current ion injections caused by radial diffusion near Dst minima improved the agreement with observations. Radial diffusion did not affect much ring current buildup during the main phase of the storms and the ring current fluxes remained asymmetric, in good agreement with NOAA data. We calculated the excitation of electromagnetic ion cyclotron (EMIC) waves self-consistently with the evolving plasma populations, and the resulting precipitating fluxes of resonant protons. These fluxes increased significantly within regions of enhanced plasma wave excitation near the plasmapause or inside plasmaspheric plumes and reduced the total H+ energy by similar to 10% during the storm recovery phase. Initial results from self-consistent magnetic field calculations are presented as well. We found that while the magnitude of the ring current fluxes was reduced when adiabatic drifts in a self-consistent magnetic field were calculated, their morphology was not affected significantly and the local time of the equatorial flux peaks remained almost unchanged. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. NOAA, Space Environm Ctr, Boulder, CO 80305 USA. Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. Aerosp Corp, Los Angeles, CA 90009 USA. RP Jordanova, VK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM vania@lanl.gov RI Miyoshi, Yoshizumi/B-5834-2015; Reeves, Geoffrey/E-8101-2011; OI Miyoshi, Yoshizumi/0000-0001-7998-1240; Reeves, Geoffrey/0000-0002-7985-8098; Jordanova, Vania/0000-0003-0475-8743 NR 64 TC 82 Z9 82 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 26 PY 2006 VL 111 IS A11 AR A11S10 DI 10.1029/2006JA011644 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 100WX UT WOS:000241702000001 ER PT J AU Bulusu, S Yoo, S Apra, E Xantheas, S Zeng, XC AF Bulusu, Satya Yoo, Soohaeng Apra, Edo Xantheas, Sotiris Zeng, Xiao Cheng TI Lowest-energy structures of water clusters (H2O)(11) and (H2O)(13) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Letter ID AB-INITIO; VIBRATIONAL-SPECTRA; EMPIRICAL POTENTIALS; GLOBAL OPTIMIZATION; MOLECULAR-DYNAMICS; HYDROGEN; MINIMA; SPECTROSCOPY; COOPERATIVITY; CHEMISTRY AB We employed a four-step searching/screening approach to determine best candidates for the global minima of (H2O)(11) and (H2O)(13). This approach can be useful when there exist a large number of low-lying and near-isoenergetic isomers, many of which have the same oxygen-skeleton structure. On the two new candidates for the global minimum of (H2O)(11), one isomer can be viewed as placing the 11th molecule onto the side of the global minimum of (H2O)(10) and the other can be viewed as removing the 12th molecule from the middle layer of the global minimum of (H2O)(12). The three leading lowest-energy clusters of (H2O)(13) can all be built starting from the global minimum of (H2O) (12), with the difference being in the location of the 13(th) water molecule. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Xantheas, S (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM sotiris.xantheas@pnl.gov; xczeng@phase2.unl.edu RI Apra, Edoardo/F-2135-2010; Xantheas, Sotiris/L-1239-2015 OI Apra, Edoardo/0000-0001-5955-0734; NR 49 TC 62 Z9 63 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 26 PY 2006 VL 110 IS 42 BP 11781 EP 11784 DI 10.1021/jp0655726 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 096MR UT WOS:000241381700001 PM 17048809 ER PT J AU Edwards, DC Myneni, SCB AF Edwards, David C. Myneni, Satish C. B. TI Near edge x-ray absorption fine structure spectroscopy of bacterial hydroxamate siderophores in aqueous solutions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SHELL EXCITATION SPECTROSCOPY; ACETOHYDROXAMIC ACID; SEQUESTERING AGENTS; DESFERRIOXAMINE-B; GAS-PHASE; SPECTRA; TRANSITION; MOLECULES; GLYCINE; COMPLEXATION AB X-ray absorption spectroscopy (XAS) is widely used to explore the coordination environments and structures of metal complexes in aqueous solutions and disordered phases. Although soft-XAS studies on gaseous phases, solid phases and their interfaces have shown that XAS is a versatile tool in studying the functional group composition of organic molecules, the application of XAS to studying aqueous solutions is seriously limited because of experimental difficulties. In this report, using a modified synchrotron endstation geometry, we show how soft-XAS was used to study the changes in electronic states of reactive functional groups in a bacterial macromolecule, desferrioxamine B (desB, a hydroxamate siderophore) and its structural analogue (acetohydroxamic acid (aHa)). We collected C, N, and O near edge X-ray absorption fine structure (NEXAFS) spectra of these molecules in aqueous solutions and complemented their spectral interpretation with calculated X-ray spectra of "hydrated" aHa. The experimental spectra of desB are similar to those for aHa at the C, N, and O K-edges. In addition, the electronic transitions of amide and hydroxamate functional groups in the macromolecule can be distinguished from the N spectra. Small energy differences in the pi*((C=O)NO) and the o*(NO) transitions at the C- and N-edges of aHa and desB indicate that the substituent attached to N in desB ((CH2)(n)) determines the electron density in the (C=O)NO core. As the solution pH increased, the pi((C=O))(NO) transition of the hydroxamate group of these two molecules exhibit energy shifts at the C-, N-, and O-edges, which are consistent with increased electron delocalization in the (C=O) NO core of aHa ( and desB), predicted from the calculations. The spectra of the aHa(H2O)(3)(-) anion also provide evidence for partial N-deprotonation at pH values usually attributed to an O-acid. These results indicate that soft-XAS is well suited for studying the electronic states of different functional groups in aqueous organic macromolecules. C1 Princeton Univ, Dept Chem, Frick Lab, Princeton, NJ 08544 USA. Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Edwards, DC (reprint author), Princeton Univ, Dept Chem, Frick Lab, Princeton, NJ 08544 USA. EM dedwards@weslyancollege.edu NR 45 TC 16 Z9 16 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 26 PY 2006 VL 110 IS 42 BP 11809 EP 11818 DI 10.1021/jp0611976 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 096MR UT WOS:000241381700004 PM 17048812 ER PT J AU Nimlos, MR Qian, XH Davis, M Himmel, ME Johnson, DK AF Nimlos, Mark R. Qian, Xianghong Davis, Mark Himmel, Michael E. Johnson, David K. TI Energetics of xylose decomposition as determined using quantum mechanics modeling SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID BETA-D-GLUCOPYRANOSE; ALPHA-D-GLUCOPYRANOSE; CHEMICAL CONFORMATIONAL-ANALYSIS; GAS-PHASE; AB-INITIO; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTION; SUPERCRITICAL WATER; BOAT CONFORMATIONS; RELATIVE STABILITY AB The decomposition of xylose has been studied using quantum mechanical calculations supported by NMR data. Proposed mechanisms for the decomposition of xylose have been investigated by obtaining the structures and energies of transition states and products. The intent of this study was to understand the experimentally observed formation of furfural and formic acid that occurs during the decomposition of xylose in mildly hot acidic solutions. A mechanism of furfural formation involving the opening of the pyranose ring and subsequent dehydration of the aldose was compared to a direct intramolecular rearrangement of the protonated pyranose. Energies were determined using CBS-QB3, and it was shown that the barriers for dehydration of the aldose were high compared to intramolecular rearrangement. This result suggests that the latter mechanism is a more likely mechanism for furfural formation. The intramolecular rearrangement step results from protonation of xylose at the O2 hydroxyl group. In addition, it has been shown that formic acid formation is a likely result of the protonation of xylose at the O3 hydroxyl group. Finally, solvation of xylose decomposition was studied by calculating energy barriers for xylose in selected water clusters. The mechanisms proposed here were supported in part by C-13-labeling studies using NMR. C1 Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. Rx Innovat Inc, Ft Collins, CO 80525 USA. RP Nimlos, MR (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RI Johnson, David/G-4959-2011; Qian, Xianghong/C-4821-2014; OI Johnson, David/0000-0003-4815-8782; davis, mark/0000-0003-4541-9852 NR 57 TC 73 Z9 74 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 26 PY 2006 VL 110 IS 42 BP 11824 EP 11838 DI 10.1021/jp0626770 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 096MR UT WOS:000241381700006 PM 17048814 ER PT J AU Maksymovych, P Sorescu, DC Yates, JT AF Maksymovych, Peter Sorescu, Dan C. Yates, John T., Jr. TI Methanethiolate adsorption site on Au(111): A combined STM/DFT study at the single-molecule level SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; DENSITY-FUNCTIONAL THEORY; SCANNING-TUNNELING-MICROSCOPY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; CO ADSORPTION; BASIS-SET; SURFACE; ALKANETHIOLS; CU(111) AB The chemisorptive bonding of methanethiolate (CH3S) on the Au(111) surface has been investigated at a single-molecule level using low-temperature scanning tunneling microscopy (LT-STM) and density functional theory (DFT). The CH3S species were produced by STM-tip-induced dissociation of methanethiol (CH3SH) or dimethyl disulfide (CH3SSCH3) at 5 K. The adsorption site of an isolated CH3S species was assigned by comparing the experimental and calculated STM images. We conclude that the S-headgroup of chemisorbed CH3S adsorbs on the 2-fold coordinated bridge site between two Au atoms, consistent with theoretical predictions for CH3S on the nondefective Au(111) surface. Our assignment is also supported by the freezing of the tip-induced rotational dynamics of a single CH3SH molecule upon conversion to CH3S via deprotonation. C1 Univ Pittsburgh, Ctr Surface Sci, Dept Chem, Pittsburgh, PA 15260 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Yates, JT (reprint author), Univ Pittsburgh, Ctr Surface Sci, Dept Chem, Pittsburgh, PA 15260 USA. EM jyates@pitt.edu RI Maksymovych, Petro/C-3922-2016 OI Maksymovych, Petro/0000-0003-0822-8459 NR 39 TC 63 Z9 63 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 26 PY 2006 VL 110 IS 42 BP 21161 EP 21167 DI 10.1021/jp0625964 PG 7 WC Chemistry, Physical SC Chemistry GA 096MQ UT WOS:000241381600067 PM 17048940 ER PT J AU May, M Davis, J Jeanloz, R AF May, Michael Davis, Jay Jeanloz, Raymond TI Preparing for the worst SO NATURE LA English DT Editorial Material C1 Stanford Univ, Lawrence Livermore Natl Lab, Stanford, CA 94305 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP May, M (reprint author), Stanford Univ, Lawrence Livermore Natl Lab, Stanford, CA 94305 USA. NR 4 TC 6 Z9 6 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 26 PY 2006 VL 443 IS 7114 BP 907 EP 908 DI 10.1038/443907a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 098LZ UT WOS:000241523400023 PM 17066010 ER PT J AU Weinstock, GM Robinson, GE Gibbs, RA Worley, KC Evans, JD Maleszka, R Robertson, HM Weaver, DB Beye, M Bork, P Elsik, CG Hartfelder, K Hunt, GJ Zdobnov, EM Amdam, GV Bitondi, MMG Collins, AM Cristino, AS Lattorff, HMG Lobo, CH Moritz, RFA Nunes, FMF Page, RE Simoes, ZLP Wheeler, D Carninci, P Fukuda, S Hayashizaki, Y Kai, C Kawai, J Sakazume, N Sasaki, D Tagami, M Albert, S Baggerman, G Beggs, KT Bloch, G Cazzamali, G Cohen, M Drapeau, MD Eisenhardt, D Emore, C Ewing, MA Fahrbach, SE Foret, S Grimmelikhuijzen, CJP Hauser, F Hummon, AB Huybrechts, J Jones, AK Kadowaki, T Kaplan, N Kucharski, R Leboulle, G Linial, M Littleton, JT Mercer, AR Richmond, TA Rodriguez-Zas, SL Rubin, EB Sattelle, DB Schlipalius, D Schoofs, L Shemesh, Y Sweedler, JV Velarde, R Verleyen, P Vierstraete, E Williamson, MR Ament, SA Brown, SJ Corona, M Dearden, PK Dunn, WA Elekonich, MM Fujiyuki, T Gattermeier, I Gempe, T Hasselmann, M Kadowaki, T Kage, E Kamikouchi, A Kubo, T Kucharski, R Kunieda, T Lorenzen, MD Milshina, NV Morioka, M Ohashi, K Overbeek, R Ross, CA Schioett, M Shippy, T Takeuchi, H Toth, AL Willis, JH Wilson, MJ Gordon, KHJ Letunic, I Hackett, K Peterson, J Felsenfeld, A Guyer, M Solignac, M Agarwala, R Cornuet, JM Monnerot, M Mougel, F Reese, JT Vautrin, D Gillespie, JJ Cannone, JJ Gutell, RR Johnston, JS Eisen, MB Iyer, VN Iyer, V Kosarev, P Mackey, AJ Solovyev, V Souvorov, A Aronstein, KA Bilikova, K Chen, YP Clark, AG Decanini, LI Gelbart, WM Hetru, C Hultmark, D Imler, JL Jiang, HB Kanost, M Kimura, K Lazzaro, BP Lopez, DL Simuth, J Thompson, GJ Zou, Z De Jong, P Sodergren, E Csuros, M Milosavljevic, A Osoegawa, K Richards, S Shu, CL Duret, L Elhaik, E Graur, D Anzola, JM Campbell, KS Childs, KL Collinge, D Crosby, MA Dickens, CM Grametes, LS Grozinger, CM Jones, PL Jorda, M Ling, X Matthews, BB Miller, J Mizzen, C Peinado, MA Reid, JG Russo, SM Schroeder, AJ St Pierre, SE Wang, Y Zhou, PL Jiang, HY Kitts, P Ruef, B Venkatraman, A Zhang, L Aquino-Perez, G Whitfield, CW Behura, SK Berlocher, SH Sheppard, WS Smith, DR Suarez, AV Tsutsui, ND Wei, XH Wheeler, D Havlak, P Li, BS Liu, Y Sodergren, E Jolivet, A Lee, S Nazareth, LV Pu, LL Thorn, R Stolc, V Newman, T Samanta, M Tongprasit, WA Claudianos, C Berenbaum, MR Biswas, S de Graaf, DC Feyereisen, R Johnson, RM Oakeshott, JG Ranson, H Schuler, MA Muzny, D Chacko, J Davis, C Dinh, H Gill, R Hernandez, J Hines, S Hume, J Jackson, L Kovar, C Lewis, L Miner, G Morgan, M Nguyen, N Okwuonu, G Paul, H Santibanez, J Savery, G Svatek, A Villasana, D Wright, R AF Weinstock, George M. Robinson, Gene E. Gibbs, Richard A. Worley, Kim C. Evans, Jay D. Maleszka, Ryszard Robertson, Hugh M. Weaver, Daniel B. Beye, Martin Bork, Peer Elsik, Christine G. Hartfelder, Klaus Hunt, Greg J. Zdobnov, Evgeny M. Amdam, Gro V. Bitondi, Marcia M. G. Collins, Anita M. Cristino, Alexandre S. Lattorff, H. Michael G. Lobo, Carlos H. Moritz, Robin F. A. Nunes, Francis M. F. Page, Robert E., Jr. Simoes, Zila L. P. Wheeler, Diana Carninci, Piero Fukuda, Shiro Hayashizaki, Yoshihide Kai, Chikatoshi Kawai, Jun Sakazume, Naoko Sasaki, Daisuke Tagami, Michihira Albert, Stefan Baggerman, Geert Beggs, Kyle T. Bloch, Guy Cazzamali, Giuseppe Cohen, Mira Drapeau, Mark David Eisenhardt, Dorothea Emore, Christine Ewing, Michael A. Fahrbach, Susan E. Foret, Sylvain Grimmelikhuijzen, Cornelis J. P. Hauser, Frank Hummon, Amanda B. Huybrechts, Jurgen Jones, Andrew K. Kadowaki, Tatsuhiko Kaplan, Noam Kucharski, Robert Leboulle, Gerard Linial, Michal Littleton, J. Troy Mercer, Alison R. Richmond, Timothy A. Rodriguez-Zas, Sandra L. Rubin, Elad B. Sattelle, David B. Schlipalius, David Schoofs, Liliane Shemesh, Yair Sweedler, Jonathan V. Velarde, Rodrigo Verleyen, Peter Vierstraete, Evy Williamson, Michael R. Ament, Seth A. Brown, Susan J. Corona, Miguel Dearden, Peter K. Dunn, W. Augustine Elekonich, Michelle M. Fujiyuki, Tomoko Gattermeier, Irene Gempe, Tanja Hasselmann, Martin Kadowaki, Tatsuhiko Kage, Eriko Kamikouchi, Azusa Kubo, Takeo Kucharski, Robert Kunieda, Takekazu Lorenzen, Marce D. Milshina, Natalia V. Morioka, Mizue Ohashi, Kazuaki Overbeek, Ross Ross, Christian A. Schioett, Morten Shippy, Teresa Takeuchi, Hideaki Toth, Amy L. Willis, Judith H. Wilson, Megan J. Gordon, Karl H. J. Letunic, Ivica Hackett, Kevin Peterson, Jane Felsenfeld, Adam Guyer, Mark Solignac, Michel Agarwala, Richa Cornuet, Jean Marie Monnerot, Monique Mougel, Florence Reese, Justin T. Vautrin, Dominique Gillespie, Joseph J. Cannone, Jamie J. Gutell, Robin R. Johnston, J. Spencer Eisen, Michael B. Iyer, Venky N. Iyer, Vivek Kosarev, Peter Mackey, Aaron J. Solovyev, Victor Souvorov, Alexandre Aronstein, Katherine A. Bilikova, Katarina Chen, Yan Ping Clark, Andrew G. Decanini, Laura I. Gelbart, William M. Hetru, Charles Hultmark, Dan Imler, Jean-Luc Jiang, Haobo Kanost, Michael Kimura, Kiyoshi Lazzaro, Brian P. Lopez, Dawn L. Simuth, Jozef Thompson, Graham J. Zou, Zhen De Jong, Pieter Sodergren, Erica Csuroes, Miklos Milosavljevic, Aleksandar Osoegawa, Kazutoyo Richards, Stephen Shu, Chung-Li Duret, Laurent Elhaik, Eran Graur, Dan Anzola, Juan M. Campbell, Kathryn S. Childs, Kevin L. Collinge, Derek Crosby, Madeline A. Dickens, C. Michael Grametes, L. Sian Grozinger, Christina M. Jones, Peter L. Jorda, Mireia Ling, Xu Matthews, Beverly B. Miller, Jonathan Mizzen, Craig Peinado, Miguel A. Reid, Jeffrey G. Russo, Susan M. Schroeder, Andrew J. St Pierre, Susan E. Wang, Ying Zhou, Pinglei Jiang, Huaiyang Kitts, Paul Ruef, Barbara Venkatraman, Anand Zhang, Lan Aquino-Perez, Gildardo Whitfield, Charles W. Behura, Susanta K. Berlocher, Stewart H. Sheppard, Walter S. Smith, Deborah R. Suarez, Andrew V. Tsutsui, Neil D. Wei, Xuehong Wheeler, David Havlak, Paul Li, Bingshan Liu, Yue Sodergren, Erica Jolivet, Angela Lee, Sandra Nazareth, Lynne V. Pu, Ling-Ling Thorn, Rachel Stolc, Viktor Newman, Thomas Samanta, Manoj Tongprasit, Waraporn A. Claudianos, Charles Berenbaum, May R. Biswas, Sunita de Graaf, Dirk C. Feyereisen, Rene Johnson, Reed M. Oakeshott, John G. Ranson, Hilary Schuler, Mary A. Muzny, Donna Chacko, Joseph Davis, Clay Dinh, Huyen Gill, Rachel Hernandez, Judith Hines, Sandra Hume, Jennifer Jackson, LaRonda Kovar, Christie Lewis, Lora Miner, George Morgan, Margaret Nguyen, Ngoc Okwuonu, Geoffrey Paul, Heidi Santibanez, Jireh Savery, Glenford Svatek, Amanda Villasana, Donna Wright, Rita CA Honeybee Genome Sequencing Consort TI Insights into social insects from the genome of the honeybee Apis mellifera SO NATURE LA English DT Review ID DROSOPHILA-NINAG OXIDOREDUCTASE; BEETLE TRIBOLIUM-CASTANEUM; ANOPHELES-GAMBIAE; TRANSPOSABLE ELEMENTS; MITOCHONDRIAL-DNA; NUCLEAR RECEPTOR; GENE-EXPRESSION; BOMBYX-MORI; FRUIT-FLY; STATISTICAL-ANALYSIS AB Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement. C1 Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. Baylor Coll Med, Dept Mol & Hum Genet, Houston, TX 77030 USA. Baylor Coll Med, Dept Biochem, Houston, TX 77030 USA. USDA ARS, Bee Res Lab, BARC E, Beltsville, MD 20705 USA. USDA ARS, Natl Program Staff, Beltsville, MD 20705 USA. Australian Natl Univ, ARC, Special Ctr Mol Genet Dev, Res Sch Biol Sci, Canberra, ACT 0200, Australia. Univ Illinois, Dept Entomol, Urbana, IL 61801 USA. Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA. Univ Illinois, Dept Cell & Struct Biol, Urbana, IL 61801 USA. Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA. Univ Illinois, Neurosci Program, Urbana, IL 61801 USA. Univ Illinois, Program Ecol & Evolutionary Biol, Urbana, IL 61801 USA. Univ Illinois, Dept Chem, Urbana, IL 61801 USA. Bee Power LP, Navasota, TX 77868 USA. Univ Dusseldorf, Inst Genet, D-40225 Dusseldorf, Germany. European Mol Biol Lab, D-69117 Heidelberg, Germany. Max Delbruck Ctr Mol Med, D-13125 Berlin, Germany. Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA. Univ Houston, Dept Chem, Houston, TX 77204 USA. Univ Houston, Dept Biol & Biochem, Houston, TX 77204 USA. Fac Med Ribeirao Preto, Dept Genet, Ribeirao Preto, Brazil. Fac Med Ribeirao Preto, Dept Biol Celular & Mol & Bioagentes Patogenicos, Ribeirao Preto, Brazil. Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Biol, BR-14049900 Ribeirao Preto, Brazil. Purdue Univ, Dept Entomol, W Lafayette, IN 47907 USA. Univ Geneva, Sch Med, CMU, Dept Genet Med & Dev, CH-1211 Geneva, Switzerland. Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. Univ Sao Paulo, Inst Matemat & Estatist, Sao Paulo, Brazil. Univ Halle Wittenberg, Inst Zool Mol Okol, D-06099 Halle, Saale, Germany. Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA. RIKEN, Genom Sci Ctr, Lab Genome Explorat Res Grp, Yokohama, Kanagawa 2300045, Japan. Inst Med Strahlenkunde & Zellforsch, D-97078 Wurzburg, Germany. Katholieke Univ Leuven, Lab Dev Physiol Genom & Prote, B-3000 Louvain, Belgium. Univ Otago, Dept Biochem, Lab Evolut & Dev, Dunedin, New Zealand. Univ Otago, Dept Zool, Dunedin, New Zealand. Hebrew Univ Jerusalem, Dept Evolut Systemat & Ecol, IL-91904 Jerusalem, Israel. Hebrew Univ Jerusalem, Sudarsky Ctr Computat Biol, IL-91904 Jerusalem, Israel. Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, Dept Biol Chem, IL-91904 Jerusalem, Israel. Univ Copenhagen, Inst Biol, Dept Cell Biol & Comparat Zool, Ctr Funct & Comparat Insect Genom, DK-2100 Copenhagen, Denmark. NYU, Dept Biol, New York, NY 10003 USA. Free Univ Berlin, FB Biol Chem Pharm, D-14195 Berlin, Germany. Univ Oxford, MRC, Funct Genet Unit, Dept Physiol Anat & Genet, Oxford OX1 3QX, England. CSIRO Entomol, Canberra, ACT 2601, Australia. MIT, Picower Inst Learning & Memory, Cambridge, MA 02139 USA. MIT, Dept Biol, Cambridge, MA 02139 USA. Univ Ghent, Lab Zoophysiol, B-9000 Ghent, Belgium. Wake Forest Univ, Dept Biol, Winston Salem, NC 27109 USA. USDA ARS, GMPRC, Manhattan, KS 66502 USA. Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. Kansas State Univ, Dept Biochem, Manhattan, KS 66506 USA. Univ Georgia, Dept Cellular Biol, Athens, GA 30602 USA. Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA. Univ Tokyo, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. Nagoya Univ, Grad Sch Bioagr Sci, Chikusa Ku, Nagoya, Aichi 4648601, Japan. CNRS, Lab Evolut Genomes & Speciat, F-91198 Gif Sur Yvette, France. Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. NHGRI, NIH, Bethesda, MD 20892 USA. Natl Lib Med, Natl Ctr Biotechnol Informat, US Dept HHS, Bethesda, MD 20894 USA. INRA, Ctr Biol & Gest Populat, F-34988 St Gely Du Fesc, France. Univ Texas, Inst Mol & Cellular Biol, Austin, TX 78712 USA. Univ Texas, Sect Integrat Biol, Austin, TX 78712 USA. Virginia Tech, Bioinformat Facil, Virginia Bioinformat Inst 0477, Blacksburg, VA 24061 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Div Genet Genom & Dev, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England. Softberry Inc, Mt Kisco, NY 10549 USA. Univ Penn, Penn Genom Inst, Philadelphia, PA 19104 USA. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. USDA ARS, Honey Bee Unit, Weslaco, TX 78596 USA. Slovak Acad Sci, Bratislava 84551, Slovakia. Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA. Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA. CNRS, Inst Biol Mol & Cellulaire, F-67084 Strasbourg, France. Umea Univ, Umea Ctr Mol Pathogenesis, S-90187 Umea, Sweden. Oklahoma State Univ, Dept Entomol & Plant Pathol, Stillwater, OK 74078 USA. Natl Inst Livestock & Grassland Sci, Tsukuba, Ibaraki 3058517, Japan. Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia. Childrens Hosp Oakland, BACPAC Resources, Oakland, CA 94609 USA. Univ Lyon 1, CNRS, UMR 5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France. N Carolina State Univ, Dept Entomol, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA. Washington State Univ, Dept Entomol, Pullman, WA 99164 USA. Univ Kansas, Dept Ecol & Evolutionary Biol Entomol, Lawrence, KS 66045 USA. Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. NASA, Ames Genome Res Facil, Moffett Field, CA 94035 USA. Systemix Inst, Cupertino, CA 95014 USA. Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada. Univ Liverpool, Liverpool Sch Trop Med, Liverpool L3 5QA, Merseyside, England. Oncol Res Inst, Lhospitalet De Llobregat 08907, Catalonia, Spain. INRA, F-06903 Sophia Antipolis, France. Univ Nice Sophia Antipolis, Ctr Rech Sophia Antipolis, UMR 1112, F-06903 Sophia Antipolis, France. RP Weinstock, GM (reprint author), Baylor Coll Med, Human Genome Sequencing Ctr, 1 Baylor Plaza, Houston, TX 77030 USA. EM gwstock@bcm.edu RI Evans, Jay/C-8408-2012; Simoes, Zila/H-7314-2014; Carninci, Piero/K-1568-2014; Hauser, Frank/M-2952-2014; TAKEUCHI, HIDEAKI/G-4969-2014; Miller, Jonathan/M-4389-2014; Kunieda, Takekazu/G-4946-2014; FORET, Sylvain/B-9207-2012; Hultmark, Dan/C-5058-2013; Childs, Kevin/C-9513-2014; zou, zhen/C-6134-2016; Kawai, Jun/A-6451-2016; Kaplan, Noam/A-3544-2011; Lattorff, H. Michael/F-6287-2010; Schlipalius, David/B-8155-2011; Gordon, Karl/A-1976-2008; Jiang, Haobo/A-6519-2008; Foret, Sylvain/C-7661-2011; Li, Bingshan/H-1944-2011; Dearden, Peter/B-7607-2008; Johnson, Reed/H-3742-2011; Hartfelder, Klaus/A-4293-2009; Beggs, Kyle/A-5843-2009; Letunic, Ivica/A-6032-2009; Blow, joe/C-8616-2009; Nunes, Francis/F-5871-2010; Cristino, Alexandre/A-5834-2012; Sweedler, Jonathan/A-9405-2009; Bitondi, Marcia/E-8014-2012; Thompson, Graham/B-6508-2008; Peinado, Miguel A./A-5591-2008; Schiott, Morten/H-4118-2012; Zdobnov, Evgeny/K-1133-2012; Moritz, Robin/K-6053-2012; Bork, Peer/F-1813-2013; Marion-Poll, Frederic/D-8882-2011; Oakeshott, John/B-5365-2009; Maleszka, Ryszard/A-6078-2008; Feyereisen, Rene/I-3140-2012; Elsik, Christine/C-4120-2017; OI Evans, Jay/0000-0002-0036-4651; Carninci, Piero/0000-0001-7202-7243; Hauser, Frank/0000-0001-5563-2345; Hultmark, Dan/0000-0002-6506-5855; Childs, Kevin/0000-0002-3680-062X; zou, zhen/0000-0003-3550-7656; Kaplan, Noam/0000-0001-9940-1987; Lattorff, H. Michael/0000-0002-8603-6332; Schlipalius, David/0000-0002-8102-7031; Gordon, Karl/0000-0002-4371-0454; Dearden, Peter/0000-0001-7790-9675; Johnson, Reed/0000-0002-2431-0180; Hartfelder, Klaus/0000-0001-7981-8427; Nunes, Francis/0000-0002-7769-3058; Cristino, Alexandre/0000-0002-3468-0919; Sweedler, Jonathan/0000-0003-3107-9922; Bitondi, Marcia/0000-0002-5619-6378; Peinado, Miguel A./0000-0002-4090-793X; Schiott, Morten/0000-0002-4309-8090; Moritz, Robin/0000-0003-0791-887X; Bork, Peer/0000-0002-2627-833X; Marion-Poll, Frederic/0000-0001-6824-0180; Maleszka, Ryszard/0000-0003-1855-555X; Feyereisen, Rene/0000-0002-9560-571X; Elsik, Christine/0000-0002-4248-7713; Duret, Laurent/0000-0003-2836-3463; Eisen, Michael/0000-0002-7528-738X; Grimmelikhuijzen, Cornelis/0000-0001-6486-2046; Claudianos, Charles/0000-0002-9799-9572; Mercer, Alison/0000-0001-8110-4247; Ruef, Barbara/0000-0001-8690-979X; Wilson, Megan/0000-0003-3425-5071; Bloch, Guy/0000-0003-1624-4926; Ranson, Hilary/0000-0003-2332-8247; Letunic, Ivica/0000-0003-3560-4288; /0000-0001-5576-2887; Gillespie, Joseph/0000-0002-5447-7264; Solovyev, Victor/0000-0001-8885-493X NR 180 TC 930 Z9 995 U1 44 U2 366 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 26 PY 2006 VL 443 IS 7114 BP 931 EP 949 DI 10.1038/nature05260 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 098LZ UT WOS:000241523400044 ER PT J AU Woyke, T Teeling, H Ivanova, NN Huntemann, M Richter, M Gloeckner, FO Boffelli, D Anderson, IJ Barry, KW Shapiro, HJ Szeto, E Kyrpides, NC Mussmann, M Amann, R Bergin, C Ruehland, C Rubin, EM Dubilier, N AF Woyke, Tanja Teeling, Hanno Ivanova, Natalia N. Huntemann, Marcel Richter, Michael Gloeckner, Frank Oliver Boffelli, Dario Anderson, Iain J. Barry, Kerrie W. Shapiro, Harris J. Szeto, Ernest Kyrpides, Nikos C. Mussmann, Marc Amann, Rudolf Bergin, Claudia Ruehland, Caroline Rubin, Edward M. Dubilier, Nicole TI Symbiosis insights through metagenomic analysis of a microbial consortium SO NATURE LA English DT Article ID BACTERIA; GENOME; GENE; OLIGOCHAETA; COMMUNITIES; SYSTEM; WORM; SEA AB Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of wormwaste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits. C1 Max Planck Inst Marine Microbiol, D-28359 Bremen, Germany. DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. Int Jacobs Univ Bremen, D-28759 Bremen, Germany. RP Rubin, EM (reprint author), Max Planck Inst Marine Microbiol, D-28359 Bremen, Germany. EM EMRubin@lbl.gov; ndubilie@mpi-bremen.de RI Amann, Rudolf/C-6534-2014; Mussmann, Marc/A-8649-2017; Kyrpides, Nikos/A-6305-2014 OI Amann, Rudolf/0000-0002-0846-7372; Kyrpides, Nikos/0000-0002-6131-0462 NR 39 TC 235 Z9 246 U1 9 U2 82 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 26 PY 2006 VL 443 IS 7114 BP 950 EP 955 DI 10.1038/nature05192 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 098LZ UT WOS:000241523400045 PM 16980956 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Alm, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khalatyan, N KhanoV, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, P Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Alm, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borcherding, F. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Gounder, K. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kafer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khalatyan, N. Khano, A., V Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Kryemadhi, A. Krzywdzinski, S. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. McCroskey, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Rapidis, P. A. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stevenson, K. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Strohmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhao, Z. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Search for particles decaying into a Z boson and a photon in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID GAMMA-GAMMA COUPLINGS; HADRON COLLIDERS; LIMITS; E(+)E(-) AB We present the results of a search for a new particle X produced in p (p) over bar collisions at root s- = 1.96 TeV and subsequently decaying to Z gamma. The search uses 0.3 fb(-1) of data collected with the DO detector at the Fermilab Tevatron Collider. We set limits on the production cross section times the branching fraction sigma(p (p) over bar -> X) x B(X -> Z gamma) that range from 0.4 to 3.5 pb at the 95% C.L. for X with invariant masses between 100 and 1000 GeV/c(2), over a wide range of X decay widths. (c) 2006 Elsevier B.V. All rights reserved. C1 Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Buenos Aires, Buenos Aires, DF, Argentina. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Mediterranee, CNRS, CPPM, IN2P3, Marseille, France. Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. Univ Paris 07, LPNHE, IN2P3, CNRS, Paris, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg 1, CNRS, IN2P3, IReS, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF, FOM Inst, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Nucl Res Inst, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Univ Stockholm, Stockholm, Sweden. Univ Uppsala, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60637 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Alton, A (reprint author), Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. RI Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Oguri, Vitor/B-5403-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; NR 26 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 26 PY 2006 VL 641 IS 6 BP 415 EP 422 DI 10.1016/j.physletb.2006.08.079 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 098PG UT WOS:000241534700002 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borissov, G Bos, K Boos, EE Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Perfilov, M Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamirn, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borissov, G. Bos, K. Boos, E. E. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. . Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Garzon, G. J. Otero Y. Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Perfilov, M. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamirn, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. . Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Search for W ' boson production in the W ' -> t(b)over-bar decay channel SO PHYSICS LETTERS B LA English DT Article ID TOP-QUARK PRODUCTION; ROOT-S=1.96 TEV; DETECTOR; COLLISIONS; COLLIDER; EVENTS AB We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb(-1) of data collected with the DO detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W, boson masses. We exclude masses between 200 and 610 GeV for a W' boson with standard-model-like couplings, between 200 and 630 GeV for a W, boson with right-handed couplings that is allowed to decay to both leptons and quarks, and between 200 and 670 GeV for a W' boson with right-handed couplings that is only allowed to decay to quarks. (c) 2006 Elsevier B.V. All rights reserved. C1 Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Buenos Aires, Buenos Aires, DF, Argentina. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Mediterranee, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France. Univ Paris 07, CNRS, IN2P3, LPHNE, Paris, France. Univ Paris 06, CNRS, IN2P3, LPHNE, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg 1, CNRS, IPHC, IN2P3, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF, FOM Inst, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Nucl Res Inst, Dubna, Russia. Inst Theoret & Expt Phys, Moscow, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Univ Stockholm, Stockholm, Sweden. Univ Uppsala, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14620 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Schwienhorst, R (reprint author), Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. RI Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012 OI Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; NR 31 TC 26 Z9 26 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 26 PY 2006 VL 641 IS 6 BP 423 EP 431 DI 10.1016/j.physletb.2006.09.021 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 098PG UT WOS:000241534700003 ER PT J AU Brodsky, SJ Chakrabarti, D Harindranath, A Mukherjee, A Vary, JP AF Brodsky, S. J. Chakrabarti, D. Harindranath, A. Mukherjee, A. Vary, J. P. TI Hadron optics: Diffraction patterns in deeply virtual Compton scattering SO PHYSICS LETTERS B LA English DT Article ID RELATIVISTIC FRONT DESCRIPTION; PARAXIAL-WAVE OPTICS; INELASTIC SCATTERING; SPIN; QCD; REPRESENTATION; DISTRIBUTIONS; MOMENTUM; QUARK; MODEL AB We show that the Fourier transform of the deeply virtual Compton scattering (DVCS) amplitude with respect to the skewness variable at fixed invariant momentum transfer squared t provides a unique way to visualize the structure of the target hadron in the boost-invariant longitudinal coordinate space. The results are analogous to the diffractive scattering of a wave in optics. As a specific example, we utilize the quantum fluctuations of a fermion state at one loop in QED to obtain the behavior of the DVCS amplitude for electron-photon scattering. We then simulate the wavefunctions for a hadron by differentiating the above LFWFs with respect to M-2 and study the corresponding DVCS amplitudes in light-front longitudinal space. In both cases we observe that the diffractive patterns in the longitudinal variable conjugate to sharpen and the positions of the first minima move in with increasing momentum transfer. For fixed I, higher minima appear at positions which are integral multiples of the lowest minimum. Both these observations strongly support the analogy with diffraction in optics. (c) 2006 Elsevier B.V. All rights reserved. C1 Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ Florida, Dept Phys, Gainesville, FL 32611 USA. Saha Inst Nucl Phys, Kolkata 700064, W Bengal, India. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mukherjee, A (reprint author), Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. EM asmita@phy.iitb.ac.in NR 41 TC 29 Z9 29 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 26 PY 2006 VL 641 IS 6 BP 440 EP 446 DI 10.1016/j.physletb.2006.08.061 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 098PG UT WOS:000241534700005 ER PT J AU Phongikaroon, S Herrmann, SD Li, SX Simpson, MF AF Phongikaroon, Supathorn Herrmann, Steven D. Li, Shelly X. Simpson, Michael F. TI Measurement and analysis of gas bubbles near a reference electrode in aqueous solutions SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID EVOLVING ELECTRODES; MASS-TRANSFER; COALESCENCE; ORIFICES AB Bubble size distributions (BSDs) near a reference electrode (RE) in aqueous glycerol solutions of an electrolyte NaCl have been investigated under various gas superficial velocities (U-s). BSD and voltage reading of the solution were measured by using a high-speed digital camera and a pH/voltage meter, respectively. The results show that bubble size (b) increases with liquid viscosity (mu(c)) and U-s. Self-similarity is seen and can be described by the log-normal form of the continuous number frequency distribution. The result shows that b controls the voltage reading in each solution. As b increases, the voltage increases because of gas bubbles interrupting their electrolyte paths in the solutions. An analysis of bubble rising velocity reveals that Stokes' Law should be used cautiously to describe the system. The fundamental equation for bubble formation was developed via Newton's second law of motion and shown to be the function of three dimensionless groups-Weber number, Bond number, and Capillary number. After linking an electrochemical principle in the practical application, the result indicates that the critical bubble size is similar to 177 mu m. Further analysis suggests that there may be 3 000 to 70 000 bubbles generated on the anode surface depending on the size of initial bubbles and provides the potential cause of the efficiency drop observed in the practical application. C1 Idaho Natl Lab, Pyroproc Technol Dept, Idaho Falls, ID 83415 USA. RP Phongikaroon, S (reprint author), Idaho Natl Lab, Pyroproc Technol Dept, Mat & Fuels Complex,MS 6180, Idaho Falls, ID 83415 USA. EM supathorn.phongikaroon@inl.gov NR 24 TC 4 Z9 4 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT 25 PY 2006 VL 45 IS 22 BP 7679 EP 7687 DI 10.1021/ie0606643 PG 9 WC Engineering, Chemical SC Engineering GA 096EP UT WOS:000241360500038 ER PT J AU Wang, DH Liu, J Huo, QS Nie, ZM Lu, WG Williford, RE Jiang, YB AF Wang, Donghai Liu, Jun Huo, Qisheng Nie, Zimin Lu, Weigang Williford, Rick E. Jiang, Ying-Bing TI Surface-mediated growth of transparent, oriented, and well-defined nanocrystalline anatase titania films SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; AQUEOUS-SOLUTIONS; THIN-FILMS; LOW-TEMPERATURES; TIO2 FILMS; DEPOSITION; DIOXIDE; PHASE; NANOSTRUCTURES; INTERFACES C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ New Mexico, Albuquerque, NM 87131 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pnl.gov RI Wang, Donghai/L-1150-2013 OI Wang, Donghai/0000-0001-7261-8510 NR 25 TC 62 Z9 63 U1 11 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 25 PY 2006 VL 128 IS 42 BP 13670 EP 13671 DI 10.1021/ja0655993 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 096EL UT WOS:000241360100010 PM 17044678 ER PT J AU Lee, CS Ahn, SH DeJonghe, LC Thomas, G AF Lee, Caroline S. Ahn, Sung-Hoon DeJonghe, Lutgard C. Thomas, Gareth TI Effect of functionally graded material (FGM) layers on the residual stress of polytypoidally joined Si3N4-Al2O3 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE functionally graded material (FGM); sialon polytypoid; thermal stress; electron probe X-ray microanalysis (EPMA) ID SYSTEM AB A unique approach introducing sialon polytypoids as a functionally graded material (FGM) bonding has been used to join silicon nitride and alumina. The various multilayered FGM samples ranging from 3 to 20 layers were sintered to fabricate a crack-free joining of heterogeneous ceramics. To calculate thermal stresses for the various multilayered FGM samples, the finite element analysis program (FEAP) was used. These analyses results matched experimental results and showed why some samples had large residual stresses that resulted in fracture. Moreover, the electron probe X-ray microanalysis (EPMA) from a crack-free FGM sample had a smooth concentration profile, which verifies the interface diffusion during sintering at each graded layer and confirms a successful joining. (c) 2006 Elsevier B.V. All rights reserved. C1 Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul, South Korea. Seoul Natl Univ, Inst Adv Machinery & Design, Seoul, South Korea. Hanyang Univ, Div Mat & Chem Engn, Kyunggido, South Korea. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ahn, SH (reprint author), Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul, South Korea. EM ahnsh@snu.ac.kr NR 13 TC 18 Z9 22 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 25 PY 2006 VL 434 IS 1-2 BP 160 EP 165 DI 10.1016/j.msea.2006.06.139 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 089QU UT WOS:000240896400024 ER PT J AU Istratov, AA Buonassisi, T Pickett, MD Heuer, M Weber, ER AF Istratov, A. A. Buonassisi, T. Pickett, M. D. Heuer, M. Weber, E. R. TI Control of metal impurities in "dirty" multicrystalline silicon for solar cells SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY LA English DT Article; Proceedings Paper CT 5th Spring Meeting on Advanced Silicon for the 21st Century CY MAY 29-JUN 02, 2006 CL Nice, FRANCE SP E-MRS, IUMRS, ICEM DE photovoltaics; solar cells; solar-grade silicon; defect engineering; iron; copper; nickel; silicon ID METALLURGICAL-GRADE SILICON; BEAM IRRADIATION METHOD; PLASMA MELTING METHOD; MOLTEN SILICON; IRON CONTAMINATION; THERMAL PLASMA; BORON REMOVAL; IMPACT; PURIFICATION; COPPER AB The rapid growth of the global photovoltaics (PV) industry is increasingly limited by the availability of suitable Si feedstock material. Therefore, it is very important to explore new approaches that might allow processing of solar cells with satisfactory energy conversion efficiency based on inexpensive feedstock material with less stringent impurity control, i.e., "dirty" silicon. Our detailed studies of the distribution of metal impurity clusters in multicrystalline Si have demonstrated that cells with the same total impurity content can have widely different minority carrier diffusion lengths based on the distribution of the metals, i.e., whether they are dispersed throughout the material or concentrated in a few, large clusters. Possible approaches to defect engineering of metal clusters in silicon are discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci, Berkeley, CA 94720 USA. RP Istratov, AA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Bldg 62,Rm 109,Mailstop 62R0203,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM istratov@berkeley.edu RI Buonassisi, Tonio/J-2723-2012 NR 53 TC 91 Z9 96 U1 3 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5107 J9 MAT SCI ENG B-SOLID JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. PD OCT 25 PY 2006 VL 134 IS 2-3 SI SI BP 282 EP 286 DI 10.1016/j.mseb.2006.06.023 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 112FT UT WOS:000242511800034 ER PT J AU Brooks, JS Williams, V Choi, E Graf, D Tokumoto, M Uji, S Zuo, F Wosnitza, J Schlueter, JA Davis, H Winter, RW Gard, GL Storr, K AF Brooks, J. S. Williams, V. Choi, E. Graf, D. Tokumoto, M. Uji, S. Zuo, F. Wosnitza, J. Schlueter, J. A. Davis, H. Winter, R. W. Gard, G. L. Storr, K. TI Fermiology and superconductivity at high magnetic fields in a completely organic cation radical salt SO NEW JOURNAL OF PHYSICS LA English DT Article ID DEPENDENT MAGNETORESISTANCE OSCILLATIONS; INTERLAYER MAGNETORESISTANCE; ELECTRONIC-STRUCTURE; BETA''-(BEDT-TTF)(2)SF5CH2CF2SO3; TRANSPORT; SURFACE; KAPPA-(BEDT-TTF)(2)CU(NCS)(2); BETA''-(ET)(2)SF5CH2CF2SO3; TEMPERATURE; TRANSITION AB We report specialized interplane magnetoresistance ( MR) measurements on the organic superconducting compound beta"-( BEDT-TTF)(2)SF5CH2 CF2SO3 ( where BEDT-TTF is bis( ethylenedithio) tetrathiafulvalene) in both the superconducting ( T-c similar to 5K) and normal states versus magnetic field direction. In the normal state, detailed angular-dependent magnetoresistance oscillation ( AMRO) studies reveal peculiar features of the Fermi surface topology of this compound, and very high magnetic field studies further support the unusual nature of the electronic structure. In the superconducting state we investigate, through detailed AMRO measurements, the anomalous MR peak that appears within the superconducting field-temperature phase diagram. Our results reveal a direct connection between the superconducting state determined from purely in-plane field, and the vortex lattice produced by the inter-plane magnetic field. We also describe several unique sample rotation instruments used in these high field experiments, including the use of dysprosium pole pieces in combination with a 45 T hybrid magnet to carry out measurements at the highest steady-state resistive magnetic field ( 47.8 T) yet achieved. C1 Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. Florida State Univ, NHMFL, Tallahassee, FL 32310 USA. AIST, Nanotechnol Res Inst, Tsukuba, Ibaraki 3058568, Japan. Natl Inst Mat Sci, Tsukuba, Ibaraki 3058568, Japan. Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. Forschungszentrum Rossendorf EV, Hochfeld Magnetlabor Dresden, HLD, D-01314 Dresden, Germany. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Portland State Univ, Dept Chem, Portland, OR 97207 USA. Prairie View A&M Univ, Dept Phys, Prairie View, TX 77446 USA. RP Brooks, JS (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. EM brooks@magnet.fsu.edu NR 35 TC 4 Z9 4 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 25 PY 2006 VL 8 AR 255 DI 10.1088/1367-2630/8/10/255 PG 21 WC Physics, Multidisciplinary SC Physics GA 100GG UT WOS:000241655500002 ER PT J AU Liu, C Conley, R Macrander, AT Maser, J Kang, HC Stephenson, GB AF Liu, Chian Conley, R. Macrander, A. T. Maser, J. Kang, H. C. Stephenson, G. B. TI A multilayer nanostructure for linear zone-plate applications SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 12th International Conference on Thin Films CY SEP 15-20, 2002 CL BRATISLAVA, SLOVAKIA DE magnetron sputter deposition; multilayers; X-ray optics ID X-RAY MULTILAYERS; FABRICATION; RESOLUTION; OPTICS AB A multi layer nanostructure of 728 alternating WSi2 and Si layers with thicknesses gradually increasing from 10 to similar to 58 nm according to the Fresnel zoneplate formula has been fabricated using dc magnetron sputtering. This structure was analyzed with a scanning electron microscope (SEM) and tested with 19.5-keV synchrotron X-rays after sectioning and polishing. Line focus sizes as small as 30.6 nm have been achieved using a sectioned multilayer in transmission diffraction geometry. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Expt Facil Div, Argonne, IL 60439 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Liu, C (reprint author), Argonne Natl Lab, Expt Facil Div, 9700 S Cass Ave,XFD-401, Argonne, IL 60439 USA. EM cliu@aps.anl.gov RI Conley, Ray/C-2622-2013; Maser, Jorg/K-6817-2013 NR 22 TC 10 Z9 11 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD OCT 25 PY 2006 VL 515 IS 2 BP 654 EP 657 DI 10.1016/j.tsf.2005.12.233 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 094DV UT WOS:000241220600066 ER PT J AU Brambilla, A Biagioni, P Rougemaille, N Schmid, AK Lanzara, A Duo, L Ciccacci, F Finazzi, M AF Brambilla, A. Biagioni, P. Rougemaille, N. Schmid, A. K. Lanzara, A. Duo, L. Ciccacci, F. Finazzi, M. TI Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films SO THIN SOLID FILMS LA English DT Article DE magnetic domains; magnetic microscopy; antiferromagnet; nickel oxide; iron AB We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models. (c) 2005 Elsevier B.V. All rights reserved. C1 Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy. Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Brambilla, A (reprint author), Politecn Milan, Dipartimento Fis, Pza Leonardo da Vinci 32, I-20133 Milan, Italy. EM alberto.brambilla@polimi.it RI Biagioni, Paolo/A-9940-2011; Brambilla, Alberto/A-4393-2012; ciccacci, franco/N-9392-2013; Duo, Lamberto/N-9311-2014; Finazzi, Marco/M-7401-2015 OI Biagioni, Paolo/0000-0003-4272-7040; Brambilla, Alberto/0000-0002-5593-317X; ciccacci, franco/0000-0002-1131-4748; Finazzi, Marco/0000-0002-9197-3654 NR 12 TC 5 Z9 5 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD OCT 25 PY 2006 VL 515 IS 2 BP 712 EP 715 DI 10.1016/j.tsf.2005.12.260 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 094DV UT WOS:000241220600080 ER PT J AU Wang, P Guliaev, AB Hang, B AF Wang, Ping Guliaev, Anton B. Hang, Bo TI Metal inhibition of human N-methylpurine-DNA glycosylase activity in base excision repair SO TOXICOLOGY LETTERS LA English DT Article DE glycosylase; base excision repair; metal ions; inhibition of DNA repair; carcinogens ID ZINC-FINGER PROTEINS; MOLECULAR-DYNAMICS; RAMAN-SPECTROSCOPY; GENERALIZED BORN; MAMMALIAN-CELLS; NUCLEIC-ACIDS; CADMIUM; ENDONUCLEASE; COMPLEXES; APE1 AB Cadmium (Cd2+), nickel (Ni2+) and cobalt (Co2+) are human and/or animal carcinogens. Zinc (Zn2+) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd2+, Ni2+, and Zn2+ can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (epsilon A). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 mu M, both Cd2+ and Zn2+ showed metal-dependent inhibition of the MPG catalytic activity. Ni2+ also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co2+ and Mg2+ did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the EA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd2+, Zn2+, and Ni2+ at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn2+ showed that the MPG active site has a potential binding site for Zn2+ formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo. (c) 2006 Published by Elsevier Ireland Ltd. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept Mol Biol, Berkeley, CA 94720 USA. RP Hang, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept Mol Biol, Berkeley, CA 94720 USA. EM Bo_hang@lbl.gov RI Messier, Claude/A-2322-2008 OI Messier, Claude/0000-0002-4791-1763 FU NCI NIH HHS [CA72079] NR 58 TC 17 Z9 18 U1 1 U2 7 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 J9 TOXICOL LETT JI Toxicol. Lett. PD OCT 25 PY 2006 VL 166 IS 3 BP 237 EP 247 DI 10.1016/j.toxlet.2006.06.647 PG 11 WC Toxicology SC Toxicology GA 097XG UT WOS:000241482200006 PM 16938414 ER PT J AU Sorek, R Dror, G Shamir, R AF Sorek, Rotem Dror, Gideon Shamir, Ron TI Assessing the number of ancestral alternatively spliced exons in the human genome SO BMC GENOMICS LA English DT Article ID HUMAN GENES; MOUSE; IDENTIFICATION; CONSERVATION; SEQUENCES AB Background: It is estimated that between 35% and 74% of all human genes undergo alternative splicing. However, as a gene that undergoes alternative splicing can have between one and dozens of alternative exons, the number of alternatively spliced genes by itself is not informative enough. An additional parameter, which was not addressed so far, is therefore the number of human exons that undergo alternative splicing. We have previously described an accurate machine-learning method allowing the detection of conserved alternatively spliced exons without using ESTs, which relies on specific features of the exon and its genomic vicinity that distinguish alternatively spliced exons from constitutive ones. Results: In this study we use the above-described approach to calculate that 7.2% (+/- 1.1%) of all human exons that are conserved in mouse are alternatively spliced in both species. Conclusion: This number is the first estimation for the extent of ancestral alternatively spliced exons in the human genome. C1 Tel Aviv Univ, Sackler Fac Med, Dept Human Genet, IL-69978 Tel Aviv, Israel. Acad Coll Tel Aviv Yaffo, IL-64044 Tel Aviv, Israel. Tel Aviv Univ, Sch Comp Sci, IL-69073 Tel Aviv, Israel. Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Sorek, R (reprint author), Tel Aviv Univ, Sackler Fac Med, Dept Human Genet, IL-69978 Tel Aviv, Israel. EM rsorek@lbl.gov; gideon@mta.ac.il; rshamir@post.tau.ac.il RI Shamir, Ron/E-6514-2011 NR 23 TC 8 Z9 8 U1 0 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD OCT 24 PY 2006 VL 7 AR 273 DI 10.1186/1471-2464-7-273 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 105PL UT WOS:000242044700002 PM 17062157 ER PT J AU Reynolds, BJ Ruegg, ML Mates, TE Radke, CJ Balsara, NP AF Reynolds, Benedict J. Ruegg, Megan L. Mates, Thomas E. Radke, C. J. Balsara, Nitash P. TI Diblock copolymer surfactant transport across the interface between two homopolymers SO LANGMUIR LA English DT Article ID AIR-WATER-INTERFACE; POLYMER-POLYMER INTERFACE; BICONTINUOUS MICROEMULSIONS; AIR/WATER INTERFACE; ADSORPTION-KINETICS; BLOCK COPOLYMERS; PHASE-BEHAVIOR; RATE CONSTANTS; BLENDS; DYNAMICS AB Dynamics of adsorption and desorption of a diblock copolymer to an interface between two homopolymers was measured using dynamic secondary-ion mass spectrometry (SIMS). Thin films were constructed consisting of a layer of saturated polybutadiene with 90% 1,2-addition (sPB90), followed by a layer of saturated polybutadiene with 63% 1,2- addition (sPB63), and finally by another layer of the sPB90 homopolymer. A sPB90-sPB63 diblock copolymer was initially included only in the top sPB90 layer of the film at a volume fraction of 0.05. The thin films were annealed at ambient temperature for times ranging between 0.2 and 108 h, and the concentration profiles of the diblock copolymer through the films were measured using SIMS. The dynamics of adsorption and desorption of the diblock copolymer at the two sPB90-sPB63 interfaces was gauged by comparing the different transient concentration profiles. The sorption process was modeled as diffusion in an external field, generated from self-consistent field theory (SCFT). All parameters for the model were determined independently. Although the model neglects the dynamics of conformational change, experimental results matched theory very well. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM radke@berkeley.edu; nbalsara@berkeley.edu NR 36 TC 4 Z9 4 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 24 PY 2006 VL 22 IS 22 BP 9192 EP 9200 DI 10.1021/la060580z PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 095RJ UT WOS:000241325200020 PM 17042529 ER PT J AU Reynolds, BJ Ruegg, ML Balsara, NP Radke, CJ AF Reynolds, Benedict J. Ruegg, Megan L. Balsara, Nitash P. Radke, C. J. TI Relationship between macroscopic and microscopic models of surfactant adsorption dynamics at fluid interfaces SO LANGMUIR LA English DT Article ID AIR-WATER-INTERFACE; AIR/WATER INTERFACE; OSCILLATING BUBBLE; KINETICS; SORPTION; DESORPTION; MONOLAYERS; DIFFUSION; DECANOL AB In a companion preceding paper, we presented an experimental investigation into the adsorption dynamics of a diblock copolymer surfactant to a polymer/polymer interface and found them to be well-described by a microscopic model of diffusion in a potential generated using self-consistent field theory. We compare the predictions of the microscopic approach with a macroscopic (adsorption-diffusion) model and demonstrate the equivalence of the two models when the free-energy well underlying surfactant adsorption is flanked by barriers that are significantly larger than thermal energy (kT). However, when the energy barriers are nonexistent, as is the case for the experimental system of interest, a finite interfacial width must be introduced into the classical model to obtain physically meaningful results (i.e., nonnegative desorption rates). Surprisingly, we find that the predictions of the macroscopic finite interfacial width model with no adjustable parameters are in excellent agreement with experimental data presented in the companion paper even though the latter was obtained with molecular resolution. This agreement provides insight into aspects of the free-energy landscape that determine surfactant transport. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu; radke@berkeley.edu NR 19 TC 2 Z9 2 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 24 PY 2006 VL 22 IS 22 BP 9201 EP 9207 DI 10.1021/la060581r PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 095RJ UT WOS:000241325200021 PM 17042530 ER PT J AU Liu, G Debnath, S Paul, KW Han, WQ Hausner, DB Hosein, HA Michel, FM Parise, JB Sparks, DL Strongin, DR AF Liu, Gang Debnath, Sudeep Paul, Kristian W. Han, Weiqiang Hausner, Douglas B. Hosein, Hazel-Ann Michel, F. Marc Parise, John B. Sparks, Donald L. Strongin, Daniel R. TI Characterization and surface reactivity of ferrihydrite nanoparticles assembled in ferritin SO LANGMUIR LA English DT Article ID ELECTRON NANODIFFRACTION; SULFUR-DIOXIDE; CO ADSORPTION; COBALT OXIDE; IRON; CATALYSTS; SIZE; SO2; HEMATITE; DENSITY AB Ferrihydrite nanoparticles with nominal sizes of 3 and 6 nm were assembled within ferritin, an iron storage protein. The crystallinity and structure of the nanoparticles (after removal of the protein shell) were evaluated by high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). HRTEM showed that amorphous and crystalline nanoparticles were copresent, and the degree of crystallinity improved with increasing size of the particles. The dominant phase of the crystalline nanoparticles was ferrihydrite. Morphology and electronic structure of the nanoparticles were characterized by AFM and STM. Scanning tunneling spectroscopy (STS) measurements suggested that the band gap associated with the 6 nm particles was larger than the band gap associated with the 3 nm particles. Interaction of SO2(g) with the nanoparticles was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and results were interpreted with the aid of molecular orbital/density functional theory (MO/DFT) frequency calculations. Reaction of SO2(g) with the nanoparticles resulted primarily in SO32-surface species. The concentration of SO32-appeared to be dependent on the ferrihydrite particle size (or differences in structural properties). C1 Temple Univ, Dept Chem, Philadelphia, PA 19122 USA. Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19716 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. SUNY Stony Brook, Ctr Environm Mol Sci, Stony Brook, NY 11794 USA. RP Strongin, DR (reprint author), Temple Univ, Dept Chem, 1901 N 13th S, Philadelphia, PA 19122 USA. EM dstrongi@temple.edu RI Han, WQ/E-2818-2013 NR 60 TC 37 Z9 38 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 24 PY 2006 VL 22 IS 22 BP 9313 EP 9321 DI 10.1021/la0602214 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 095RJ UT WOS:000241325200038 PM 17042547 ER PT J AU Holoubek, J Baldrian, J Lednicky, F Malkova, S Lal, J AF Holoubek, Jaroslav Baldrian, Josef Lednicky, Frantisek Malkova, Sarka Lal, Jyotsana TI Self-assembled structures in blends of block copolymer A-block-B with homopolymer A: SAXS and SANS study SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE diblock copolymers; homopolymer/copolymer blends; SANS; self-assembly; TEM ID ORDER-DISORDER TRANSITION; PHASE-BEHAVIOR; DIBLOCK COPOLYMER/HOMOPOLYMER; MICROPHASE SEPARATION; MOLECULAR-WEIGHT; MORPHOLOGY; DEPENDENCE; POLYSTYRENE; TEMPERATURE; SCATTERING AB The study describes the investigation of the microphase-separated morphology of a block copolymer A-block-B with the parent homopolymer A, where A is polystyrene and A-block-B is poly(perdeuterated styrene)-blockpoly(methyl methacrylate) (dPS-block-PMMA). The microdomain morphology and phase behavior in blends of dPS-block-PNIMA with polystyrene of (M) over bar (W) =8000 and 35000 were investigated. Binary blends of the diblock copolymer and homopolymers were prepared with various amounts of homopolymers. The criterion for "wet and dry brush" taking into account different solubilization of homopolymer has been applied to explain the changes in microdomain morphology during the self-assembling process. C1 Acad Sci Czech Republ, Inst Macromol Chem, Prague, Czech Republic. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Holoubek, J (reprint author), Acad Sci Czech Republ, Inst Macromol Chem, Heyrovsky Sq 2, Prague, Czech Republic. EM holou@imc.cas.cz NR 31 TC 13 Z9 13 U1 1 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1022-1352 J9 MACROMOL CHEM PHYSIC JI Macromol. Chem. Phys. PD OCT 24 PY 2006 VL 207 IS 20 BP 1834 EP 1841 DI 10.1002/macp.200600304 PG 8 WC Polymer Science SC Polymer Science GA 104KN UT WOS:000241957400004 ER PT J AU Berk, V Zhang, W Pai, RD Cate, JHD AF Berk, Veysel Zhang, Wen Pai, Raj D. Cate, Jamie H. Doudna TI Structural basis for mRNA and tRNA positioning on the ribosome SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE x-ray crystallography; protein synthesis ID P-SITE; ANGSTROM RESOLUTION; BINDING; SUBUNIT; IDENTIFICATION; TRANSLOCATION; NUCLEOTIDES; BACTERIAL; PROTEINS AB Protein synthesis requires the accurate positioning of mRNA and tRNA in the peptidyl-tRNA site of the ribosome. Here we describe x-ray crystal structures of the intact bacterial ribosome from Escherichia coli in a complex with mRNA and the anticodon stem-loop of P-site tRNA. At 3.5-angstrom resolution, these structures reveal rearrangements in the intact ribosome that clamp P-site tRNA and mRNA on the small ribosomal subunit. Binding of the anticodon stem-loop of P-site tRNA to the ribosome is sufficient to lock the head of the small ribosomal subunit in a single conformation, thereby preventing movement of mRNA and tRNA before mRNA decoding. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU NCI NIH HHS [CA92584, P01 CA092584]; NIGMS NIH HHS [GM65050, R01 GM065050] NR 32 TC 128 Z9 131 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 24 PY 2006 VL 103 IS 43 BP 15830 EP 15834 DI 10.1073/pnas.0607541103 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 099BW UT WOS:000241568500020 PM 17038497 ER PT J AU Mihardja, S Spakowitz, AJ Zhang, YL Bustamante, C AF Mihardja, Shirley Spakowitz, Andrew J. Zhang, Yongli Bustamante, Carlos TI Effect of force on mononucleosomal dynamics SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE DNA; mononucleosome; optical trapping; single molecule ID COLI RNA-POLYMERASE; MECHANICAL FORCE; SINGLE-MOLECULE; NUCLEOSOMAL DNA; SEQUENCE; CORE; ACCESSIBILITY; DISRUPTION; REVEALS; RELEASE AB Using single-molecule optical-trapping techniques, we examined the force-induced dynamic behavior of a single nucleosome core particle. Our experiments using the DNA construct containing the 601 nucleosome-positioning sequence revealed that the nucleosome unravels in at least two major stages. The first stage, which we attributed to the unraveling of the first DNA wrap around the histone octamer, could be mechanically induced in a reversible manner, and when kept at constant force within a critical force range, exhibited two-state hopping behavior. From the hopping data, we determined the force-dependent equilibrium constant and rates for opening/closing of the outer wrap. Our investigation of the second unraveling event at various loading rates, which we attributed to the inner DNA wrap, revealed that this unraveling event cannot be described as a simple two-state process. We also looked at the behavior of the mononucleosome in a high-salt buffer, which revealed that the outer DNA wrap is more sensitive to changes in the ionic environment than the inner DNA wrap. These findings are needed to understand the energetics of nucleosome remodeling. C1 Univ Calif Berkeley, Dept Chem, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Phys Sci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Bustamante, C (reprint author), Univ Calif Berkeley, Dept Chem, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM carlos@alice.berkeley.edu FU NIGMS NIH HHS [R01 GM071552, R01GM71552] NR 29 TC 97 Z9 101 U1 1 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 24 PY 2006 VL 103 IS 43 BP 15871 EP 15876 DI 10.1073/pnas.0607526103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 099BW UT WOS:000241568500027 PM 17043216 ER PT J AU Campbell, IH Crone, BK AF Campbell, I. H. Crone, B. K. TI Characteristics of an organic light-emitting diode utilizing a phosphorescent, shallow hole trap SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTROPHOSPHORESCENCE; INJECTION; POLYMERS; DEVICES AB The authors demonstrate the effects of incorporating a phosphorescent, shallow hole trap in an organic light-emitting diode. They present device properties as a function of trap concentration including electron only, hole only, and bipolar current-voltage (I-V) characteristics, electroluminescence (EL) and photoluminescence spectra, and diode quantum efficiency. They specifically considered poly(9,9-dioctylfluorene) doped with an Ir phosphor. Built-in potential and I-V measurements were used to determine that the phosphor is a shallow trap. The EL spectrum is dominated by phosphor emission for concentrations above 0.1 wt %. The effects of incorporating the phosphor are shown to be consistent with quasiequilibrium statistics. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Campbell, IH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM campbell@lanl.gov NR 15 TC 6 Z9 6 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 172108 DI 10.1063/1.2364602 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800056 ER PT J AU Chen, G Singh, D Eryilmaz, O Routbort, J Larson, BC Liu, WJ AF Chen, Gang Singh, Dileep Eryilmaz, Osman Routbort, Jules Larson, Bennett C. Liu, Wenjun TI Depth-resolved residual strain in MoN/Mo nanocrystalline films SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-DIFFRACTION; THIN-FILMS; STRESS AB The authors have applied cross-sectional x-ray microdiffraction to measure depth-resolved in-plane residual strain in nanocrystalline MoN/Mo bilayer films deposited on Si. Compressive strains with large gradients were found in the as-deposited films. After thermal annealing, the strain profiles and diffraction peak widths of the MoN and Mo layers were altered. These findings provide insights on the relationship between defects introduced during film processing and the effect of annealing on the structure and properties of magnetron-sputtered nanocrystalline films. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chen, G (reprint author), Argonne Natl Lab, Div Energy Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gchen@anl.gov NR 12 TC 6 Z9 7 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 172104 DI 10.1063/1.2364131 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800052 ER PT J AU Han, WQ Todd, PJ Strongin, M AF Han, Wei-Qiang Todd, Peter J. Strongin, Myron TI Formation and growth mechanism of (BN)-B-10 nanotubes via a carbon nanotube-substitution reaction SO APPLIED PHYSICS LETTERS LA English DT Article ID BORON-NITRIDE NANOTUBES; WALLED NANOTUBES AB A substitution-reaction route has been demonstrated as an efficient synthesis route for producing single-walled and multiwalled (BN)-B-10 nanotubes (BNNTs). The nanotubes have diameters smaller than those of the starting carbon nanotubes and also have similar lengths to the starting carbon nanotubes. The isotopic ratio of B-10 in BNNTs depends on the isotopic ratio of the starting B2O3. A detailed growth model is also given for the carbon nanotube-substitution reaction. (c) 2006 American Institute of Physics. C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Han, WQ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov RI Han, WQ/E-2818-2013 NR 23 TC 15 Z9 15 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 173103 DI 10.1063/1.2363980 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800093 ER PT J AU Highstrete, C Shaner, EA Lee, M Jones, FE Dentinger, PM Talin, AA AF Highstrete, Clark Shaner, Eric A. Lee, Mark Jones, Frank E. Dentinger, Paul M. Talin, A. Alec TI Microwave dissipation in arrays of single-wall carbon nanotubes SO APPLIED PHYSICS LETTERS LA English DT Article ID SCHOTTKY DIODES; TRANSPORT; TRANSISTORS AB The transmission and reflection scattering parameters of arrays of single-wall carbon nanotubes (SWCNTs) directly assembled onto coplanar waveguides (CPWs) have been measured from 0.01 to 50 GHz at room temperature. Typical arrays consisted of roughly similar to 10(3) SWCNTs aligned parallel to the electric field polarization of the propagating field. Scattering parameters were measured on CPWs both before and after SWCNT assembly, allowing separation of SWCNT effects from the characteristics of the bare CPWs. Additional frequency-dependent power dissipation was consistently observed after assembly of SWCNT arrays. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Sandia Natl Labs, Livermore, CA 94551 USA. Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Highstrete, C (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM chighst@sandia.gov; mlee1@sandia.gov NR 14 TC 9 Z9 9 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 173105 DI 10.1063/1.2364061 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800095 ER PT J AU Koch, SJ Thayer, GE Corwin, AD de Boer, MP AF Koch, Steven J. Thayer, Gayle E. Corwin, Alex D. de Boer, Maarten P. TI Micromachined piconewton force sensor for biophysics investigations SO APPLIED PHYSICS LETTERS LA English DT Article ID LOCAL MEASUREMENTS; DNA MOLECULE; ELASTICITY AB The authors describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, they measured the force field produced by an electromagnet on individual 2.8 mu m magnetic beads glued to the sensor. By repeating with 11 different beads, they measured a 9% standard deviation in saturation magnetization. They next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Koch, SJ (reprint author), Univ New Mexico, Ctr High Technol Mat, Dept Phys & Astron, Albuquerque, NM 87106 USA. EM skoch@chtm.unm.edu RI de Boer, Maarten/C-1525-2013; OI de Boer, Maarten/0000-0003-1574-9324; Koch, Steven/0000-0001-9027-7502 NR 18 TC 12 Z9 12 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 173901 DI 10.1063/1.2364118 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800137 ER PT J AU Sacha, GM Gomez-Navarro, C Saenz, JJ Gomez-Herrero, J AF Sacha, G. M. Gomez-Navarro, C. Saenz, J. J. Gomez-Herrero, J. TI Quantitative theory for the imaging of conducting objects in electrostatic force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID CARBON NANOTUBES; DNA-MOLECULES; RESOLUTION; TIP; WATER AB A theoretical method for the imaging of metallic objects in electrostatic force microscopy is presented. The technique, based on the generalized image charge method, includes intrinsically the mutual polarization between the tip, the sample, and the metallic objects. Taking also into account the cantilever and macroscopic shape of the tip, the theory gives us a quantitative value for the electrostatic interaction between the tip and the objects over the surface. Experimental data of frequency shifts in an oscillating tip induced by grounded and isolated nanotubes are analyzed finding an excellent quantitative agreement between experimental data and numerical calculations. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain. RP Sacha, GM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sgomezmonivas@lbl.gov RI Saenz, Juan Jose/F-8871-2010; Gomez Monivas, Sacha/H-5611-2011; Gomez-Herrero, Julio/B-6094-2013 OI Saenz, Juan Jose/0000-0002-1411-5648; Gomez Monivas, Sacha/0000-0003-2280-5021; Gomez-Herrero, Julio/0000-0001-8583-8061 NR 25 TC 21 Z9 21 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 173122 DI 10.1063/1.2364862 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800112 ER PT J AU Shehadeh, MA Bringa, EM Zbib, HM McNaney, JM Remington, BA AF Shehadeh, Mutasem A. Bringa, E. M. Zbib, H. M. McNaney, J. M. Remington, B. A. TI Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations SO APPLIED PHYSICS LETTERS LA English DT Article ID DYNAMICS SIMULATIONS; SINGLE-CRYSTAL; COMPRESSION; COPPER; DEFORMATION; PRESSURE; WAVES; FRONT; MODEL AB A model of plasticity that couples discrete dislocation dynamics and finite element analysis is used to investigate shock-induced dislocation nucleation in copper single crystals. Homogeneous nucleation of dislocations is included based on large-scale atomistic shock simulations. The resulting prodigious rate of dislocation production takes the uniaxialy compressed material to a hydrostatically compressed state after a few tens of picoseconds. The density of dislocations produced in a sample with preexisting dislocation sources decreases slightly as shock rise time increases, implying that relatively lower densities would be expected for isentropic loading using extremely long rise times as suggested experimentally. (c) 2006 American Institute of Physics. C1 Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Shehadeh, MA (reprint author), Calif State Univ Northridge, Dept Phys & Astron, 18111 Nordhoff St, Northridge, CA 91330 USA. EM mutasem@csun.edu RI Bringa, Eduardo/F-8918-2011; McNaney, James/F-5258-2013 NR 24 TC 53 Z9 54 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 171918 DI 10.1063/1.2364853 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800044 ER PT J AU Sugar, JD McKeown, JT Glaeser, AM Gronsky, R Radmilovic, V AF Sugar, Joshua D. McKeown, Joseph T. Glaeser, Andreas M. Gronsky, Ronald Radmilovic, Velimir TI Spatially confined alloy single crystals for model studies of volumetrically constrained phase transformations SO APPLIED PHYSICS LETTERS LA English DT Article ID NI-FE ALLOYS; SPINODAL DECOMPOSITION; NANOSTRUCTURES; NANOWIRES; MAGNETORESISTANCE; MORPHOLOGY; SAPPHIRE; SURFACES AB The authors present a method to fabricate confined, oriented, single crystals of ternary alloys within an inert ceramic matrix. Pulsed-laser deposition of a polycrystalline CuNiFe film fills lithographically defined surface cavities in a sapphire single crystal. Solid-state diffusion bonding to a second sapphire crystal internalizes the metal-filled cavities. Electron microscopy verifies that subsequent heat treatment converts the thin, fully constrained films into single crystals of specific orientation by nucleation-controlled liquid-phase epitaxy during cooling from above the alloy melting temperature. The resulting films provide an ideal medium for fundamental studies of a wide range of volumetrically constrained phase transformations. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Gronsky, R (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM rgronsky@berkeley.edu NR 30 TC 0 Z9 0 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 173102 DI 10.1063/1.2362986 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800092 ER PT J AU Wang, RY Segalman, RA Majumdar, A AF Wang, Robert Y. Segalman, Rachel A. Majumdar, Arun TI Room temperature thermal conductance of alkanedithiol self-assembled monolayers SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILM TRANSISTORS; BOUNDARY RESISTANCE; ELECTRICAL CONTACTS; TRANSPORT; GOLD; SPECTROSCOPY; ALKANETHIOL; DYNAMICS; PROBES AB Solid-solid junctions with an interfacial self-assembled monolayer (SAM) are a class of interfaces with very low thermal conductance. Au-SAM-GaAs junctions were made using alkanedithiol SAMs and fabricated by nanotransfer printing. Measurements of thermal conductance using the 3 omega technique were very robust and no thermal conductance dependence on alkane chain length was observed. The thermal conductances using octanedithiol, nonanedithiol, and decanedithiol SAMs at room temperature are 27.6 +/- 2.9, 28.2 +/- 1.8, and 25.6 +/- 2.4 MW m(-2) K-1, respectively. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM majumdar@me.berkeley.edu RI Wang, Robert/A-5801-2013; OI Segalman, Rachel/0000-0002-4292-5103 NR 35 TC 105 Z9 105 U1 2 U2 42 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 173113 DI 10.1063/1.2358856 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800103 ER PT J AU Zhan, Q Yu, R Crane, SP Zheng, H Kisielowski, C Ramesh, R AF Zhan, Q. Yu, R. Crane, S. P. Zheng, H. Kisielowski, C. Ramesh, R. TI Structure and interface chemistry of perovskite-spinel nanocomposite thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID BATIO3-COFE2O4 NANOSTRUCTURES; ELECTRON-MICROSCOPY; RECONSTRUCTION; RESOLUTION; BIFEO3; CARBON AB The structure and the interface chemistry of epitaxial BiFeO3-NiFe2O4 nanocomposite thin films on SrTiO3(001) substrates were investigated using the Z-contrast imaging and the electron exit-wave reconstruction methods at the atomic scale. The results show that the NiFe2O4 pillars are nonwetting with respect to the substrate and exhibit {111} facets at the surface. The interface between BiFeO3 and NiFe2O4 lies in the {110} planes and is semicoherent. The atomic configuration of the interface, with the BiFeO layer bonding to the [Ni,Fe]O-2 layer, was shown to have the maximized structure continuity and minimized interface charging. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Zhan, Q (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM qzhan@berkeley.edu RI Yu, Rong/A-3011-2008 OI Yu, Rong/0000-0003-1687-3597 NR 17 TC 95 Z9 96 U1 8 U2 67 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 23 PY 2006 VL 89 IS 17 AR 172902 DI 10.1063/1.2364692 PG 3 WC Physics, Applied SC Physics GA 099IB UT WOS:000241585800083 ER PT J AU Benkovitz, CM Schwartz, SE Jensen, MP Miller, MA AF Benkovitz, C. M. Schwartz, S. E. Jensen, M. P. Miller, M. A. TI Attribution of modeled atmospheric sulfate and SO2 in the Northern Hemisphere for June-July 1997 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID 2ND LAGRANGIAN EXPERIMENT; LONG-RANGE TRANSPORT; ANTHROPOGENIC AEROSOLS; UNITED-STATES; SATELLITE MEASUREMENTS; DIMETHYL DISULFIDE; ADVECTION SCHEME; SULFUR EMISSIONS; AIR-POLLUTION; CLOUD AB Anthropogenic sulfate aerosol is a major contributor to shortwave radiative forcing of climate change by direct light scattering and by perturbing cloud properties and to local concentrations of atmospheric particulate matter. Here we analyze results from previously published calculations with an Eulerian transport model for atmospheric sulfur species in the Northern Hemisphere in June - July, 1997 to quantify the absolute and relative contributions of specific source regions ( North America, Europe, and Asia) and SO2-to-sulfate conversion mechanisms (gas-phase, aqueous-phase and primary sulfate) to sulfate and SO2 column burdens as a function of location and time. Although material emitted within a given region dominates the sulfate and SO2 column burden in that region, examination of time series at specific locations shows that material imported from outside can make a substantial and occasionally dominant contribution. Frequently the major fraction of these exogenous contributions to the sulfate column burden was present aloft, thus minimally impacting air quality at the surface, but contributing substantially to the burden and, by implication, to radiative forcing and diminution of surface irradiance. Although the dominant sulfate formation pathway in the domain as a whole is aqueous-phase reaction in clouds (62%), in regions with minimum opportunity for aqueous-phase reaction gas-phase oxidation is dominant, albeit with considerable temporal variability depending on meteorological conditions. These calculations highlight the importance of transoceanic transport of sulfate, especially at the western margins of continents under the influence of predominantly westerly transport winds. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Benkovitz, CM (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM cmb@bnl.gov RI Schwartz, Stephen/C-2729-2008 OI Schwartz, Stephen/0000-0001-6288-310X NR 55 TC 7 Z9 7 U1 1 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD OCT 23 PY 2006 VL 6 BP 4723 EP 4738 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 098RW UT WOS:000241541500001 ER PT J AU Weise, S Grosse, I Klukas, C Koschutzki, D Scholz, U Schreiber, F Junker, BH AF Weise, Stephan Grosse, Ivo Klukas, Christian Koschutzki, Dirk Scholz, Uwe Schreiber, Falk Junker, Bjorn H. TI Meta-All: a system for managing metabolic pathway information SO BMC BIOINFORMATICS LA English DT Article ID DATABASES; BIOLOGY AB Background: Many attempts are being made to understand biological subjects at a systems level. A major resource for these approaches are biological databases, storing manifold information about DNA, RNA and protein sequences including their functional and structural motifs, molecular markers, mRNA expression levels, metabolite concentrations, protein-protein interactions, phenotypic traits or taxonomic relationships. The use of these databases is often hampered by the fact that they are designed for special application areas and thus lack universality. Databases on metabolic pathways, which provide an increasingly important foundation for many analyses of biochemical processes at a systems level, are no exception from the rule. Data stored in central databases such as KEGG, BRENDA or SABIO-RK is often limited to read-only access. If experimentalists want to store their own data, possibly still under investigation, there are two possibilities. They can either develop their own information system for managing that own data, which is very time-consuming and costly, or they can try to store their data in existing systems, which is often restricted. Hence, an out-of-the-box information system for managing metabolic pathway data is needed. Results: We have designed META-ALL, an information system that allows the management of metabolic pathways, including reaction kinetics, detailed locations, environmental factors and taxonomic information. Data can be stored together with quality tags and in different parallel versions. META-ALL uses Oracle DBMS and Oracle Application Express. We provide the META-ALL information system for download and use. In this paper, we describe the database structure and give information about the tools for submitting and accessing the data. As a first application of META-ALL, we show how the information contained in a detailed kinetic model can be stored and accessed. Conclusion: META-ALL is a system for managing information about metabolic pathways. It facilitates the handling of pathway-related data and is designed to help biochemists and molecular biologists in their daily research. It is available on the Web at http://bic-gh.de/meta-all and can be downloaded free of charge and installed locally. C1 Leibniz Inst Plant Genet & Crop Plant Res, D-06466 Gatersleben, Germany. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Weise, S (reprint author), Leibniz Inst Plant Genet & Crop Plant Res, Corrensstr 3, D-06466 Gatersleben, Germany. EM weise@ipk-gatersleben.de; grosse@ipk-gatersleben.de; klukas@ipk-gatersleben.de; koschuet@ipk-gatersleben.de; scholz@ipk-gatersleben.de; schreibe@ipk-gatersleben.de; bjunker@bnl.gov OI Scholz, Uwe/0000-0001-6113-3518 NR 25 TC 5 Z9 5 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 23 PY 2006 VL 7 AR 465 DI 10.1186/1471-2105-7-465 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 103RN UT WOS:000241904500001 PM 17059592 ER PT J AU Moore, JA Cowley, AH Gordon, JC AF Moore, Jennifer A. Cowley, Alan H. Gordon, John C. TI Mediating oxidation states in decamethyleuropocene complexes. The role of the diazabutadiene fragment SO ORGANOMETALLICS LA English DT Article ID CRYSTAL-STRUCTURE; YTTERBOCENES; DERIVATIVES AB The Eu diazabutadiene complexes (C(5)Me(5))(2)Eu- DADBu-t) and (C(5)Me(5))(2)Eu(DADC(6)F(5)) (DADBu-t = t-BuNC(H)C(H) NBu-t; DADC(6)F(5) = C(6)F(5)NC(Me)C(Me)NC(6)F(5)) have been prepared, and on the basis of characterization by X-ray crystallography, magnetic susceptibility, and (1)H NMR and IR spectroscopy, it is concluded that the Eu oxidation states in these complexes are + 2 and + 3, respectively. In the case of (C(5)Me(5))(2)Eu(DADC(6)F(5)), the internal redox process is solvent sensitive. C1 Univ Texas, Dept Chem & Biochem, Austin, TX 78712 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Cowley, AH (reprint author), Univ Texas, Dept Chem & Biochem, 1 Univ Stn A5300, Austin, TX 78712 USA. EM cowley@mail.utexas.edu NR 12 TC 28 Z9 28 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD OCT 23 PY 2006 VL 25 IS 22 BP 5207 EP 5209 DI 10.1021/om060793j PG 3 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 094IJ UT WOS:000241232800005 ER PT J AU An, Q Zheng, LQ Fu, RS Ni, SD Luo, SN AF An, Qi Zheng, Lianqing Fu, Rongshan Ni, Sidao Luo, Sheng-Nian TI Solid-liquid transitions of sodium chloride at high pressures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LENNARD-JONES SYSTEM; MOLECULAR-DYNAMICS SIMULATION; LINDEMANN MELTING LAW; ALKALI-HALIDES; CRYSTAL NUCLEATION; STABILITY LIMIT; NACL; STATE; TEMPERATURE; CURVES AB We investigate solid-liquid transitions in NaCl at high pressures using molecular dynamics simulations, including the melting curve and superheating/supercooling as well as solid-solid and liquid-liquid transitions. The first-order B1-B2 (NaCl-CsCl type) transition in solid is observed at high pressures besides continuous liquid structure transitions, which are largely analogous to the B1-B2 transition in solid. The equilibrium melting temperatures (T-m) up to megabar pressure are obtained from the solid-liquid coexistence technique and the superheating-supercooling hysteresis method. Lindemann's vibrational and Born's mechanical instabilities are found upon melting. The Lindemann frequency is calculated from the vibrational density of states. The Lindemann parameter (fractional root-mean-squared displacement) increases with pressure and approaches a constant asymptotically, similar to the Lennard-Jones system. However, the Lindemann melting relation holds for both B1 and B2 phases to high accuracy as for the Lennard-Jonesium. The B1 and B2 NaCl solids can be superheated by 0.18T(m) and 0.24T(m), and the NaCl liquid, supercooled by 0.22T(m) and 0.32T(m), respectively, at heating or cooling rates of 1 K/s and 1 K/ps. The amount of maximum superheating or supercooling and its weak pressure dependence observed for NaCl are in accord with experiments on alkali halides and with simulations on the Lennard-Jones system and Al. (c) 2006 American Institute of Physics. C1 Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. Univ Missouri, Dept Chem, Columbia, MO 65211 USA. Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP An, Q (reprint author), Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. EM sluo@lanl.gov RI Luo, Sheng-Nian /D-2257-2010; Zheng, Lianqing/B-4171-2008; An, Qi/I-6985-2012; An, Qi/G-4517-2011 OI Luo, Sheng-Nian /0000-0002-7538-0541; NR 77 TC 12 Z9 12 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2006 VL 125 IS 15 AR 154510 DI 10.1063/1.2357737 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 096VQ UT WOS:000241405300046 PM 17059275 ER PT J AU Buth, C AF Buth, Christian TI Quasiparticle band structure of infinite hydrogen fluoride and hydrogen chloride chains SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GREENS-FUNCTION CALCULATIONS; CORRELATED MOLECULAR CALCULATIONS; BODY PERTURBATION-THEORY; GAUSSIAN-BASIS SETS; STATIC SELF-ENERGY; ELECTRON CORRELATION; EXTENDED SYSTEMS; PERIODIC-SYSTEMS; LATTICE SUMMATIONS; IONIZATION SPECTRA AB We study the quasiparticle band structure of isolated, infinite (HF)(infinity) and (HCl)(infinity) bent (zigzag) chains and examine the effect of the crystal field on the energy levels of the constituent monomers. The chains are one of the simplest but realistic models of the corresponding three-dimensional crystalline solids. To describe the isolated monomers and the chains, we set out from the Hartree-Fock approximation, harnessing the advanced Green's function methods local molecular orbital algebraic diagrammatic construction (ADC) scheme and local crystal orbital ADC (CO-ADC) in a strict second order approximation, ADC(2,2) and CO-ADC(2,2), respectively, to account for electron correlations. The configuration space of the periodic correlation calculations is found to converge rapidly only requiring nearest-neighbor contributions to be regarded. Although electron correlations cause a pronounced shift of the quasiparticle band structure of the chains with respect to the Hartree-Fock result, the bandwidth essentially remains unaltered in contrast to, e.g., covalently bound compounds. (c) 2006 American Institute of Physics. C1 Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. RP Buth, C (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Christian.Buth@web.de RI Buth, Christian/A-2834-2017 OI Buth, Christian/0000-0002-5866-3443 NR 93 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2006 VL 125 IS 15 AR 154707 DI 10.1063/1.2357929 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 096VQ UT WOS:000241405300054 PM 17059283 ER PT J AU Zheng, LQ An, Q Fu, RS Ni, SD Luo, SN AF Zheng, Lianqing An, Qi Fu, Rongshan Ni, Sidao Luo, Sheng-Nian TI Densification of silica glass at ambient pressure SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LASER-INDUCED DENSIFICATION; MOLECULAR-DYNAMICS; VITREOUS SILICA; FUSED-SILICA; COMPUTER-SIMULATION; AMORPHOUS SILICA; RANGE STRUCTURE; QUARTZ; DEFECTS; COMPRESSION AB We show that densification of silica glass at ambient pressure as observed in irradiation experiments can be attributed to defect generation and subsequent structure relaxation. In our molecular dynamics simulations, defects are created by randomly removing atoms, by displacing atoms from their nominal positions in an otherwise intact glass, and by assigning certain atom excess kinetic energy (simulated ion implantation). The former forms vacancies; displacing atoms and ion implantation produce both vacancies and "interstitials." Appreciable densification is induced by these defects after equilibration of the defective glasses. The structural and vibrational properties of the densified glasses are characterized, displaying resembling features regardless of the means of densification. These results indicate that relaxation of high free-energy defects into metastable amorphous structures enriched in atomic coordination serves as a common mechanism for densification of silica glass at ambient pressure. (c) 2006 American Institute of Physics. C1 Univ Missouri, Dept Chem, Columbia, MO 65211 USA. Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Zheng, LQ (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM sluo@lanl.gov RI Zheng, Lianqing/B-4171-2008; An, Qi/G-4517-2011; Luo, Sheng-Nian /D-2257-2010; An, Qi/I-6985-2012 OI Luo, Sheng-Nian /0000-0002-7538-0541; NR 49 TC 4 Z9 4 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2006 VL 125 IS 15 AR 154511 DI 10.1063/1.2358130 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 096VQ UT WOS:000241405300047 PM 17059276 ER PT J AU Chylek, P Robinson, S Dubey, MK King, MD Fu, Q Clodius, WB AF Chylek, Petr Robinson, S. Dubey, M. K. King, M. D. Fu, Q. Clodius, W. B. TI Comparison of near-infrared and thermal infrared cloud phase detections SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL-THICKNESS; ACCURATE PARAMETERIZATION; RADIATIVE PROPERTIES; AEROSOL PROPERTIES; SPECTRAL RANGE; CLIMATE MODELS; CIRRUS CLOUDS; WATER-VAPOR; ICE; MODIS AB [1] We compare the results of the cloud thermodynamic phase detections that use ( 1) the ratio of the near-infrared and visible bands or ( 2) the brightness temperature difference of two thermal infrared bands. We find that the brightness temperature difference algorithm using the Moderate Resolution Imaging Spectroradiometer (MODIS) bands is generally consistent with the expectations based on the retrieval of the cloud top radiative temperature. On the other hand, the band ratio method, which uses near-infrared and visible bands, assigns considerably more ice phase compared to the brightness temperature difference method and leads to discrepancies with the expectations based on the cloud top radiative temperature. When the cloud phase algorithm, developed originally for the Department of Energy Multispectral Thermal Imager research satellite, is applied to the MODIS imagery, the cloud phase assignments are close to the brightness temperature difference results and are in better agreement with the expectations based on the cloud top radiative temperature. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chylek, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Dubey, Manvendra/E-3949-2010; King, Michael/C-7153-2011 OI Dubey, Manvendra/0000-0002-3492-790X; King, Michael/0000-0003-2645-7298 NR 23 TC 20 Z9 21 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 21 PY 2006 VL 111 IS D20 AR D20203 DI 10.1029/2006JD007140 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 100UT UT WOS:000241695500007 ER PT J AU Stivoli, F Baccigalupi, C Maino, D Stompor, R AF Stivoli, Federico Baccigalupi, Carlo Maino, Davide Stompor, Radek TI Separating polarized cosmological and galactic emissions for cosmic microwave background B-mode polarization experiments SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods : data analysis; techniques : image processing; cosmic microwave background ID PROBE WMAP OBSERVATIONS; ASTROPHYSICAL COMPONENT SEPARATION; POWER SPECTRUM; CMB POLARIZATION; DUST EMISSION; SKY MAPS; 1.4 GHZ; FASTICA; FOREGROUNDS; LATITUDES AB The detection and characterization of the B mode of cosmic microwave background (CMB) polarization anisotropies will not be possible without a high-precision removal of the foreground contamination present in the microwave band. In this work, we study the relevance of the component-separation technique based on the Independent Component Analysis (ICA) for this purpose and investigate its performance in the context of a limited sky coverage observation and from the viewpoint of our ability to differentiate between cosmological models with different primordial B-mode content. We focus on the low Galactic emission sky patch centred at 40 degrees in right ascension and -45 in declination, corresponding to the target of several operating and planned CMB experiments and which, in many respects, adequately represents a typical 'clean' high-latitude sky. We consider two fiducial observations, one operating at low (40, 90 GHz) frequencies and one at high (150, 350 GHz) frequencies and thus dominated by the synchrotron and thermal dust emission, respectively. We use foreground templates simulated in accordance with the existing observations in the radio and infrared bands, as well as the Wilkinson Microwave Anisotropy Probe (WMAP) and Archeops data and model the CMB emission adopting the current best-fitting cosmological model, with an amplitude of primordial gravitational waves set to either zero or 10 per cent. We use a parallel version of the FASTICA code to explore a substantial parameter space including Gaussian pixel noise level, observed sky area and the amplitude of the foreground emission and employ large Monte Carlo simulations to quantify errors and biases pertinent to the reconstruction for different choices of the parameter values. We identify a large subspace of the parameter space for which the quality of the CMB reconstruction is excellent, i.e. where the errors and biases introduced by the separation are found to be comparable or lower than the uncertainty due to the cosmic variance and instrumental noise. For both the cosmological models, with and without the primordial gravitational waves, we find that FASTICA performs extremely well even in the cases when the B-mode CMB signal is up to a few times weaker than the foreground contamination and the noise amplitude is comparable with the total CMB polarized emission. In addition, we discuss limiting cases of the noise and foreground amplitudes, for which the ICA approach fails. Although our conclusions are limited by the absence of systematics in the simulated data, these results indicate that these component-separation techniques could play a crucial role in the forthcoming experiments aiming at the detection of B modes in the CMB polarization. C1 SISSA, ISAS, Astrophys Sector, I-34014 Trieste, Italy. Univ Heidelberg, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy. Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Univ Paris 07, Lab Astropart & Cosmol, Paris, France. RP Stivoli, F (reprint author), SISSA, ISAS, Astrophys Sector, Via Beirut 4, I-34014 Trieste, Italy. EM stivoli@sissa.it NR 53 TC 12 Z9 12 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2006 VL 372 IS 2 BP 615 EP 629 DI 10.1111/j.1365-2966.2006.10769.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 093GU UT WOS:000241157100009 ER PT J AU Fryer, CL Young, PA Hungerford, AL AF Fryer, Christopher L. Young, Patrick A. Hungerford, Aimee L. TI Explosive nucleosynthesis from gamma-ray burst and hypernova progenitors: Direct collapse versus fallback SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays : bursts; nuclear reactions, nucleosynthesis, abundances; supernovae : general ID MODEL CALCULATIONS; SUPERNOVA; ACCRETION; RATES AB The collapsar engine behind long-duration gamma-ray bursts extracts the energy released from the rapid accretion of a collapsing star onto a stellar mass black hole. In a collapsing star, this black hole can form in two ways: the direct collapse of the stellar core into a black hole and the delayed collapse of a black hole caused by fallback in a weak supernova explosion. In the case of a delayed-collapse black hole, the strong collapsar-driven explosion overtakes the weak supernova explosion before shock breakout, and it is very difficult to distinguish this black hole formation scenario from the direct-collapse scenario. However, the delayed-collapse mechanism, with its double explosion, produces explosive nucleosynthetic yields that are very different from those in the direct-collapse scenario. We present one-dimensional studies of the nucleosynthetic yields from both black hole formation scenarios, deriving differences and trends in their nucleosynthetic yields. C1 Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Computat & Comp Sci Div, Tucson, AZ 85721 USA. RP Fryer, CL (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. NR 24 TC 41 Z9 43 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2006 VL 650 IS 2 BP 1028 EP 1047 DI 10.1086/506250 PN 1 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 098CD UT WOS:000241497700041 ER PT J AU Leutenegger, MA Paerels, FBS Kahn, SM Cohen, DH AF Leutenegger, Maurice A. Paerels, Frits B. S. Kahn, Steven M. Cohen, David H. TI Measurements and analysis of helium-like triplet ratios in the X-ray spectra of O-type stars SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars : early-type; stars : winds, outflows; techniques : spectroscopic ID ION LINE-INTENSITIES; DRIVEN STELLAR WINDS; THETA(1) ORIONIS-C; MASS-LOSS RATES; HOT-STAR; MAGNETIC-FIELDS; EMISSION-LINES; ZETA-PUPPIS; MODEL ATMOSPHERES; EUVE SPECTROSCOPY AB We discuss new methods of measuring and interpreting the forbidden-to-intercombination line ratios of heliumlike triplets in the X-ray spectra of O- type stars, including accounting for the spatial distribution of the X-ray-emitting plasma and using the detailed photospheric UV spectrum. Measurements are made for four O stars using archival Chandra HETGS data. We assume an X- ray-emitting plasma spatially distributed in the wind above some minimum radius R-0. We find minimum radii of formation typically in the range of 1.25 < R-0 / R-* < 1.67, which is consistent with results obtained independently from line profile fits. We find no evidence for anomalously low f / i ratios, and we do not require the existence of X-ray-emitting plasmas at radii that are too small to generate sufficiently strong shocks. C1 Columbia Univ, Dept Phys, New York, NY 10027 USA. Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. Stanford Univ, Menlo Pk, CA 94025 USA. Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. RP Leutenegger, MA (reprint author), Columbia Univ, Dept Phys, 550 W 120th St, New York, NY 10027 USA. EM maurice@astro.columbia.edu OI Cohen, David/0000-0003-2995-4767 NR 64 TC 56 Z9 56 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2006 VL 650 IS 2 BP 1096 EP 1110 DI 10.1086/507147 PN 1 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 098CD UT WOS:000241497700047 ER PT J AU Wunschel, D Wahl, J Willse, A Valentine, N Wahl, K AF Wunschel, David Wahl, Jon Willse, Alan Valentine, Nancy Wahl, Karen TI Small protein biomarkers of culture in Bacillus spores detected using capillary liquid chromatography coupled with matrix assisted laser desorption/ionization mass spectrometry SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE capillary liquid chromatography; Bacillus; spores; MALDI mass spectrometry; differential display; small proteins ID TIME-OF-FLIGHT; ACID-SOLUBLE PROTEINS; WHOLE CELLS; MALDI-MS; SUBTILIS; BACTERIA; IDENTIFICATION; SPORULATION; PROTEOMICS; SEQUENCES AB Capillary liquid chromatography (cLC) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) was used to compare small proteins and peptides extracted from Bacillus subtilis spores grown on four different media. A single, efficient protein separation, compatible with MALDI-MS analysis, was employed to reduce competitive ionization between proteins, and thus interrogate more proteins than possible using direct MALDI-MS. The MALDI-MS data files for each fraction are assembled as two-dimensional data sets of retention time and mass information. This method of visualizing small protein data required careful attention to background correction as well as mass and retention time variability. The resulting data sets were used to create comparative displays of differences in protein profiles between different spore preparations. Protein differences were found between two different solid media in both phase bright and phase dark spore phenotype. The protein differences between two different liquid media were also examined. As an extension of this method, we have demonstrated that candidate protein biomarkers can be trypsin digested to provide identifying peptide fragment information following the cLC-MALDI experiment. We have demonstrated this method on two markers and utilized acid breakdown information to identify one additional marker for this organism. The resulting method can be used to identify discriminating proteins as potential biomarkers of growth media, which might ultimately be used for source attribution. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Chem & Biol Sci, Richland, WA 99354 USA. Pacific NW Natl Lab, Stat Sci, Richland, WA 99354 USA. RP Wunschel, D (reprint author), Pacific NW Natl Lab, Chem & Biol Sci, Richland, WA 99354 USA. RI Wunschel, David/F-3820-2010 FU NIDCR NIH HHS [DE-AC-06-76 RLO 1830] NR 36 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-0232 J9 J CHROMATOGR B JI J. Chromatogr. B PD OCT 20 PY 2006 VL 843 IS 1 BP 25 EP 33 DI 10.1016/j.jchromb.2006.05.021 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 097TS UT WOS:000241472400005 PM 16798120 ER PT J AU Simner, SR Anderson, MD Coleman, JE Stevenson, JW AF Simner, Steven R. Anderson, Michael D. Coleman, James E. Stevenson, Jeffry W. TI Performance of a novel La(Sr)Fe(Co)O-3-Ag SOFC cathode SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC; cathode; silver; LSCF ID OXIDE FUEL-CELLS; CERMET CATHODE; METAL; ANODE; ELECTRODES; PARTICLES AB Atomized silver spheres (<= 53 mu m diameter) were coated with a 1 mu m thick layer of (La0.6Sr0.4)(0.98)Co0.2Fe0.8O3-delta via a mechanofusion dry processing method. The material was successfully utilized as an SOFC cathode on anode-supported YSZ electrolytes at 700 degrees C, producing > 500 mW cm(-2) (at 0.7 V) and exhibiting relatively stable performance (similar to 3% power degradation per 1000 h at 0.7 V) during > 2000 h of operation. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Div Mat Sci, Richland, WA 99352 USA. RP Simner, SR (reprint author), Pacific NW Natl Lab, Div Mat Sci, Richland, WA 99352 USA. EM Steven.Simner@pnl.gov NR 23 TC 46 Z9 46 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 20 PY 2006 VL 161 IS 1 BP 115 EP 122 DI 10.1016/j.jpowsour.2006.04.103 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 096YE UT WOS:000241412000017 ER PT J AU Yang, H Zhuang, GV Ross, PN AF Yang, Hui Zhuang, Guorong V. Ross, Philip N., Jr. TI Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6 SO JOURNAL OF POWER SOURCES LA English DT Article DE ethylene carbonate; lithium hexafuorophosphate; lithium ion battery ID DECOMPOSITION; PF5 AB The thermal stability of the neat lithium hexafluorophosphate (LiPF6) salt and of 1 molal (m) solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF6 salt is thermally stable up to 107 degrees C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF5 as a gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form phosphorous oxyfluoride (POF3) and hydrofluoric acid (HF). No new products were observed in I m solutions of LiPF6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 degrees C for 300-420 h did not produce any significant quantity of new products as well. In particular. no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Ross, PN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM pnross@lbl.gov RI Yang, Hui/B-3249-2012 OI Yang, Hui/0000-0003-4035-8894 NR 13 TC 122 Z9 127 U1 13 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 20 PY 2006 VL 161 IS 1 BP 573 EP 579 DI 10.1016/j.jpowsour.2006.03.058 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 096YE UT WOS:000241412000071 ER PT J AU Abraham, DP Roth, EP Kostecki, R McCarthy, K MacLaren, S Doughty, DH AF Abraham, D. P. Roth, E. P. Kostecki, R. McCarthy, K. MacLaren, S. Doughty, D. H. TI Diagnostic examination of thermally abused high-power lithium-ion cells SO JOURNAL OF POWER SOURCES LA English DT Article DE accelerating rate calorimetry; x-ray photoelectron spectroscopy; raman spectroscopy; gas analysis; LiNi0.8Co0.15Al0.05O2 ID ELECTRODE-SOLUTION INTERACTIONS; ACCELERATING RATE CALORIMETRY; INTERCALATED GRAPHITE; LI; BATTERIES; STABILITY; SPECTROSCOPY; PERFORMANCE; DECOMPOSITION; ETHYLENE AB The inherent thermal instability of lithium-ion cells is a significant impediment to their widespread commercialization for hybrid-electric vehicle applications. Cells containing conventional organic electrolyte-based chemistries are prone to thermal runaway at temperatures around 180 degrees C. We conducted accelerating rate calorimetry measurements on high-power 18650-type lithium-ion cells in an effort to decipher the sequence of events leading to thermal runaway. In addition, electrode and separator samples harvested from a cell that was heated to 150 degrees C then air-quenched to room temperature were examined by microscopy, spectroscopy, and diffraction techniques. Self-heating of the cell began at 84 degrees C. The gases generated in the cell included CO2 and CO, and smaller quantities of H-2, CH4, CH4, and C2H6. The main changes on cell heating to 150 degrees C were observed on the anode surface, which was covered by a thick layer of surface deposits that included LiF and inorganic and organo-phosphate compounds. The sources of gas generation and the mechanisms leading to the formation of compounds observed on the electrode surfaces are discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Adv Power Sources R&D Dept, Albuquerque, NM 87185 USA. Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. Univ Illinois, Ctr Microanal Mat, Urbana, IL 61801 USA. RP Roth, EP (reprint author), Sandia Natl Labs, Adv Power Sources R&D Dept, Albuquerque, NM 87185 USA. EM eproth@sandia.gov RI MacLaren, Scott/A-5075-2009 NR 29 TC 57 Z9 59 U1 9 U2 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 20 PY 2006 VL 161 IS 1 BP 648 EP 657 DI 10.1016/j.jpowsour.2006.04.088 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 096YE UT WOS:000241412000082 ER PT J AU Pascal, JM Tsodikov, OV Hura, GL Song, W Cotner, EA Classen, S Tomkinson, AE Tainer, JA Ellenberger, T AF Pascal, John M. Tsodikov, Oleg V. Hura, Greg L. Song, Wei Cotner, Elizabeth A. Classen, Scott Tomkinson, Alan E. Tainer, John A. Ellenberger, Tom TI A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA SO MOLECULAR CELL LA English DT Article ID ARCHAEON SULFOLOBUS-SOLFATARICUS; BASE-EXCISION-REPAIR; STRAND BREAK REPAIR; RNA CAPPING ENZYME; CRYSTAL-STRUCTURE; SLIDING CLAMPS; CHECKPOINT COMPLEX; REPLICATION FORK; STRUCTURAL BASIS; MECHANISM AB DNA sliding clamps encircle DNA and provide binding sites for many DNA-processing enzymes. However, it is largely unknown how sliding clamps like proliferating cell nuclear antigen (PCNA) coordinate multistep DNA transactions. We have determined structures of Sulfolobus solfataricus DNA ligase and heterotrimeric PCNA separately by X-ray diffraction and in complex by small-angle X-ray scattering (SAXS). Three distinct PCNA subunits assemble into a protein ring resembling the homotrimeric PCNA of humans but with three unique protein-binding sites. In the absence of nicked DNA, the Sulfolobus solfataricus DNA ligase has an open, extended conformation. When complexed with heterotrimeric PCNA, the DNA ligase binds to the PCNA3 subunit and ligase retains an open, extended conformation. A closed, ring-shaped conformation of ligase catalyzes a DNA end-joining reaction that is strongly stimulated by PCNA. This open-to-closed switch in the conformation of DNA ligase is accommodated by a malleable interface with PCNA that serves as an efficient platform for DNA ligation. C1 Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. Univ Maryland, Sch Med, Radiat Oncol Res Lab, Dept Radiat Oncol, Baltimore, MD 21201 USA. Univ Maryland, Sch Med, Marlene & Stewart Greenebaum Canc Ctr, Baltimore, MD 21201 USA. Lawrence Berkeley Lab, Div Life Sci, Dept Mol Biol, Berkeley, CA 94720 USA. Scripps Res Inst, Skaggs Inst Chem Biol, Dept Mol Biol, La Jolla, CA 92037 USA. Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA. RP Tainer, JA (reprint author), Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. EM jat@scripps.edu; tome@biochem.wustl.edu FU NCI NIH HHS [CA081967, P01 CA92584]; NIGMS NIH HHS [GM52504] NR 43 TC 101 Z9 106 U1 3 U2 8 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD OCT 20 PY 2006 VL 24 IS 2 BP 279 EP 291 DI 10.1016/j.molcel.2006.08.015 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 101SF UT WOS:000241760100013 PM 17052461 ER PT J AU Mazzitelli, FD Dalvit, DAR Lombardo, FC AF Mazzitelli, F. D. Dalvit, D. A. R. Lombardo, F. C. TI Exact zero-point interaction energy between cylinders SO NEW JOURNAL OF PHYSICS LA English DT Article ID CASIMIR FORCE; MU-M; RANGE AB We calculate the exact Casimir interaction energy between two perfectly conducting, very long, eccentric cylindrical shells using a mode summation technique. Several limiting cases of the exact formula for the Casimir energy corresponding to this configuration are studied both analytically and numerically. These include concentric cylinders, cylinder-plane and eccentric cylinders, for small and large separations between the surfaces. For small separations we recover the proximity approximation, while for large separations we find a weak logarithmic decay of the Casimir interaction energy, typical of cylindrical geometries. C1 Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mazzitelli, FD (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis JJ Giambiagi, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina. EM fmazzi@df.uba.ar NR 44 TC 44 Z9 44 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 20 PY 2006 VL 8 AR 240 DI 10.1088/1367-2630/8/10/240 PG 21 WC Physics, Multidisciplinary SC Physics GA 096YM UT WOS:000241412800007 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakraborty, D Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakraborty, D. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for neutral, long-lived particles decaying into two muons in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARITY VIOLATING DECAYS; SUPERSYMMETRIC PARTICLES; E(+)E(-) COLLISIONS; DETECTOR AB We present a search for a neutral particle, pair produced in pp collisions at root s=1.96 TeV, which decays into two muons and lives long enough to travel at least 5 cm before decaying. The analysis uses approximate to 380 pb(-1) of data recorded with the D0 detector. The background is estimated to be about one event. No candidates are observed, and limits are set on the pair-production cross section times branching fraction into dimuons + X for such particles. For a mass of 10 GeV and lifetime of 4x10(-11) s, we exclude values greater than 0.14 pb (95% C.L.). These results are used to limit the interpretation of NuTeV's excess of dimuon events. C1 Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Lab Phys Corpusculaire, Clermont Ferrand, France. Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. Univ Aix Marseille 2, CNRS, CPPM, IN2P3, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg 1, CNRS, IPHC, IN2P3, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. FOM, NIKHEF, NL-1098 SJ Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Stockholm Univ, S-10691 Stockholm, Sweden. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Fisher, Wade/N-4491-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Oguri, Vitor/B-5403-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Yip, Kin/D-6860-2013; Mundim, Luiz/A-1291-2012; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108 NR 26 TC 17 Z9 17 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 20 PY 2006 VL 97 IS 16 AR 161802 DI 10.1103/PhysRevLett.97.161802 PG 7 WC Physics, Multidisciplinary SC Physics GA 096VR UT WOS:000241405400010 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Matttig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maetttig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for the standard model Higgs boson in the p(p)over-bar -> ZH -> v(v)over-barb(b)over-bar channel SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB We report a search for the standard model (SM) Higgs boson based on data collected by the D0 experiment at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 260 pb(-1). We study events with missing transverse energy and two acoplanar b jets, which provide sensitivity to the ZH production cross section in the nu nu bb channel, and to WH production when the lepton from the W ->center dot nu decay is undetected. The data are consistent with the SM background expectation, and we set 95% C.L. upper limits on sigma(pp -> ZH/WH) x B(H -> bb) from 3.4/8.3 to 2.5/6.3 pb, for Higgs-boson masses between 105 and 135 GeV. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB T6G 2M7, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ H3A 2T5, Canada. Inst High Energy Phys, Beijing, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. Lab Accelerateur Lineaire, CNRS, IN2P3, F-91405 Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. CEA, Serv Phys Particules, DAPNIA, Saclay, France. Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, D-7800 Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, S-10044 Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Telford, Paul/B-6253-2011; De, Kaushik/N-1953-2013; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016 OI De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108 NR 16 TC 9 Z9 9 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 20 PY 2006 VL 97 IS 16 AR 161803 DI 10.1103/PhysRevLett.97.161803 PG 7 WC Physics, Multidisciplinary SC Physics GA 096VR UT WOS:000241405400011 PM 17155384 ER PT J AU Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Anderson, M Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Bezverkhny, BI Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, CO Blyth, SL Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, Y Cheng, J Cherney, M Chikanian, A Choi, HA Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Gans, J Ganti, MS Ghazikhanian, V Ghosh, P Gonzalez, JE Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Guertin, SM Guimaraes, KSFF Guo, Y Gupta, N Gutierrez, TD Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Jacobs, P Jacobs, WW Jakl, P Jia, F Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Poljak, N Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ray, RL Razin, SV Reinnarth, J Relyea, D Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Salur, S Sandweiss, J Sarsour, M Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Sumbera, M Sun, Z Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Adams, J. Aggarwal, M. M. Ahammed, Z. Amonett, J. Anderson, B. D. Anderson, M. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Bezverkhny, B. I. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, C. O. Blyth, S-L. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, Y. Cheng, J. Cherney, M. Chikanian, A. Choi, H. A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Gans, J. Ganti, M. S. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guimaraes, K. S. F. F. Guo, Y. Gupta, N. Gutierrez, T. D. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Lopez-Noriega, M. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Nikitin, V. A. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Petrov, V. A. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Poljak, N. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Razin, S. V. Reinnarth, J. Relyea, D. Retiere, F. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Salur, S. Sandweiss, J. Sarsour, M. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sugarbaker, E. Sumbera, M. Sun, Z. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Vander Molen, A. M. Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I-K. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. CA STAR Collaboration TI Direct observation of dijets in central Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; HADRON SPECTRA; ENERGY-LOSS; COLLABORATION; PERSPECTIVE; QCD AB The STAR Collaboration at the Relativistic Heavy Ion Collider reports measurements of azimuthal correlations of high transverse momentum (p(T)) charged hadrons in Au+Au collisions at higher p(T) than reported previously. As p(T) is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter. C1 Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. Lab High Energy, JINR, Dubna, Russia. Particle Phys Lab, JINR, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Inst Modern Phys, Lanzhou, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Phys Engn Inst, Moscow, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Utrecht, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, BR-05508 Sao Paulo, Brazil. Univ Sci & Technol China, Hefei 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. CCNU, HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adams, J (reprint author), Univ Birmingham, Birmingham B15 2TT, W Midlands, England. RI Lee, Chang-Hwan/B-3096-2015; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Chen, Yu/E-3788-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014 OI Lee, Chang-Hwan/0000-0003-3221-1171; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323 NR 36 TC 147 Z9 147 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 20 PY 2006 VL 97 IS 16 AR 162301 DI 10.1103/PhysRevLett.97.162301 PG 6 WC Physics, Multidisciplinary SC Physics GA 096VR UT WOS:000241405400015 PM 17155388 ER PT J AU Fortier, TM Le Coq, Y Stalnaker, JE Ortega, D Diddams, SA Oates, CW Hollberg, L AF Fortier, T. M. Le Coq, Y. Stalnaker, J. E. Ortega, D. Diddams, S. A. Oates, C. W. Hollberg, L. TI Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb SO PHYSICAL REVIEW LETTERS LA English DT Article ID TI-SAPPHIRE LASER; 2-PHOTON SPECTROSCOPY; REPETITION RATE; LIGHT-PULSES; STABILIZATION; GENERATION; ABSORPTION; LINEWIDTHS; METROLOGY AB We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity. C1 Los Alamos Natl Lab, Div Phys P23, Los Alamos, NM 87545 USA. Natl Inst Stand & Technol, Div Time & Frequency, Boulder, CO 80305 USA. Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. RP Fortier, TM (reprint author), Los Alamos Natl Lab, Div Phys P23, MS H803, Los Alamos, NM 87545 USA. RI Diddams, Scott/L-2819-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017 NR 26 TC 33 Z9 33 U1 1 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 20 PY 2006 VL 97 IS 16 AR 163905 DI 10.1103/PhysRevLett.97.163905 PG 4 WC Physics, Multidisciplinary SC Physics GA 096VR UT WOS:000241405400025 PM 17155398 ER PT J AU Martin-Solis, JR Esposito, B Sanchez, R Poli, FM Panaccione, L AF Martin-Solis, J. R. Esposito, B. Sanchez, R. Poli, F. M. Panaccione, L. TI Enhanced production of runaway electrons during a disruptive termination of discharges heated with lower hybrid power in the frascati tokamak upgrade SO PHYSICAL REVIEW LETTERS LA English DT Article ID FTU TOKAMAK; AVALANCHE; DYNAMICS; SYSTEM; ITER; JET AB We report on the observation of a large production of runaway electrons during a disruptive termination of discharges heated with lower-hybrid waves at the Frascati Tokamak Upgrade. The runaway current plateaus, which can carry up to 80% of the predisruptive current, are observed more often than in normal Ohmic disruptions. The largest runaway currents correspond to the slowest plasma current decay rates. This trend is opposite to what is observed in most tokamaks. We attribute this anomalous behavior to the acceleration of the preexistent wave-resonant suprathermal electrons during the disruption decay phase. These results could be relevant for the operation of the ITER tokamak whenever a sizeable amount of lower-hybrid power is made available. C1 Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. EURATOM, ENEA Fus, CR Frascati, I-00044 Frascati, Italy. Oak Ridge Natl Lab, Fus Energy Div, Oak Ridge, TN 37831 USA. Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. RP Martin-Solis, JR (reprint author), Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. EM solis@fis.uc3m.es RI Sanchez, Raul/C-2328-2008; poli, francesca/C-2226-2008 OI poli, francesca/0000-0003-3959-4371 NR 18 TC 19 Z9 19 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 20 PY 2006 VL 97 IS 16 AR 165002 DI 10.1103/PhysRevLett.97.165002 PG 4 WC Physics, Multidisciplinary SC Physics GA 096VR UT WOS:000241405400031 PM 17155404 ER PT J AU Moller, P Bengtsson, R Carlsson, BG Olivius, P Ichikawa, T AF Moller, Peter Bengtsson, Ragnar Carlsson, B. Gillis Olivius, Peter Ichikawa, Takatoshi TI Global calculations of ground-state axial shape asymmetry of nuclei SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY; MASSES; TRENDS; MODEL AB Important insight into the symmetry properties of the nuclear ground-state (gs) shape is obtained from the characteristics of low-lying collective energy-level spectra. In the 1950s, experimental and theoretical studies showed that in the gs many nuclei are spheroidal in shape rather than spherical. Later, a hexadecapole component of the gs shape was identified. In the 1970-1995 time frame, a consensus that reflection symmetry of the gs shape was broken for some nuclei emerged. Here we present the first calculation across the nuclear chart of axial symmetry breaking in the nuclear gs. We show that we fulfill a necessary condition: Where we calculate axial symmetry breaking, characteristic gamma bands are observed experimentally. Moreover, we find that, for those nuclei where axial asymmetry is found, a systematic deviation between calculated and measured masses is removed. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Lund Inst Technol, Dept Math Phys, SE-22100 Lund, Sweden. JAEA, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Olivius, Petri/0000-0002-7401-9826; Moller, Peter/0000-0002-5848-3565 NR 19 TC 84 Z9 86 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 20 PY 2006 VL 97 IS 16 AR 162502 DI 10.1103/PhysRevLett.97.162502 PG 4 WC Physics, Multidisciplinary SC Physics GA 096VR UT WOS:000241405400018 PM 17155391 ER PT J AU Pfeifer, T Gallmann, L Abel, MJ Nagel, PM Neumark, DM Leone, SR AF Pfeifer, Thomas Gallmann, Lukas Abel, Mark J. Nagel, Phillip M. Neumark, Daniel M. Leone, Stephen R. TI Heterodyne mixing of laser fields for temporal gating of high-order harmonic generation SO PHYSICAL REVIEW LETTERS LA English DT Article ID PULSES AB The concept of heterodyne mixing of laser fields is theoretically applied to the process of high-harmonic generation to enhance and modulate the kinetic energy of the active electron on subcycle time scales. A very small amount of intensity in the heterodyne field creates a significant modification of the electron kinetic energy, due to its amplification by the strong fundamental field in the kinetic-energy term, in which the heterodyne mixing occurs. Quantum calculations are carried out to verify the predictions of the classical results, demonstrating very good qualitative and quantitative agreement. Applications of the heterodyne-mixing concept are the extension of the harmonic cutoff to higher photon energies and the temporal gating of attosecond pulse production. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Pfeifer, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tpfeifer@lbl.gov RI Neumark, Daniel/B-9551-2009; Gallmann, Lukas/E-5204-2014 OI Neumark, Daniel/0000-0002-3762-9473; Gallmann, Lukas/0000-0003-3167-8271 NR 17 TC 117 Z9 123 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 20 PY 2006 VL 97 IS 16 AR 163901 DI 10.1103/PhysRevLett.97.163901 PG 4 WC Physics, Multidisciplinary SC Physics GA 096VR UT WOS:000241405400021 PM 17155394 ER PT J AU Zhai, HY Ma, JX Gillaspie, DT Zhang, XG Ward, TZ Plummer, EW Shen, J AF Zhai, Hong-Ying Ma, J. X. Gillaspie, D. T. Zhang, X. G. Ward, T. Z. Plummer, E. W. Shen, J. TI Giant discrete steps in metal-insulator transition in perovskite manganite wires SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOPED MANGANITES; COLOSSAL MAGNETORESISTANCE; MAGNETIC-FIELD; COEXISTENCE AB Optical lithography is used to fabricate LPCMO wires starting from a single (La5/8-0.3Pr0.3)Ca3/8MnO3 (LPCMO) film epitaxially grown on a LaAlO3(100) substrate. As the width of the wires is decreased, the resistivity of the LPCMO wires exhibits giant and ultrasharp steps upon varying temperature and magnetic field in the vicinity of the metal-insulator transition. The origin of the ultrasharp transitions is attributed to the effect of spatial confinement on the percolative transport in manganites. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Shen, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM shenj@ornl.gov RI Gillaspie, Dane/E-2731-2010; Ward, Thomas/I-6636-2016 OI Ward, Thomas/0000-0002-1027-9186 NR 14 TC 72 Z9 73 U1 4 U2 44 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 20 PY 2006 VL 97 IS 16 AR 167201 DI 10.1103/PhysRevLett.97.167201 PG 4 WC Physics, Multidisciplinary SC Physics GA 096VR UT WOS:000241405400055 PM 17155428 ER PT J AU Schroder, L Lowery, TJ Hilty, C Wemmer, DE Pines, A AF Schroeder, Leif Lowery, Thomas J. Hilty, Christian Wemmer, David E. Pines, Alexander TI Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor SO SCIENCE LA English DT Article ID LASER-POLARIZED XE-129; XENON BIOSENSOR; IN-VIVO; FUNCTIONALIZED XENON; SATURATION-TRANSFER; NMR; DELIVERY; SPECTROSCOPY; EXCHANGE; AGENTS AB A magnetic resonance approach is presented that enables high-sensitivity, high-contrast molecular imaging by exploiting xenon biosensors. These sensors link xenon atoms to specific biomolecular targets, coupling the high sensitivity of hyperpolarized nuclei with the specificity of biochemical interactions. We demonstrated spatial resolution of a specific target protein in vitro at micromolar concentration, with a readout scheme that reduces the required acquisition time by >3300-fold relative to direct detection. This technique uses the signal of free hyperpolarized xenon to dramatically amplify the sensor signal via chemical exchange saturation transfer (CEST). Because it is similar to 10,000 times more sensitive than previous CEST methods and other molecular magnetic resonance imaging techniques, it marks a critical step toward the application of xenon biosensors as selective contrast agents in biomedical applications. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Wemmer, DE (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dewemmer@lbl.gov; pines@berkeley.edu RI Hilty, Christian/C-1892-2015; Schroder, Leif/H-6036-2011 OI Hilty, Christian/0000-0003-2539-2568; Schroder, Leif/0000-0003-4901-0325 NR 20 TC 243 Z9 247 U1 12 U2 85 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 20 PY 2006 VL 314 IS 5798 BP 446 EP 449 DI 10.1126/science.1131847 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 096MW UT WOS:000241382500036 PM 17053143 ER PT J AU Lin, LH Wang, PL Rumble, D Lippmann-Pipke, J Boice, E Pratt, LM Lollar, BS Brodie, EL Hazen, TC Andersen, GL DeSantis, TZ Moser, DP Kershaw, D Onstott, TC AF Lin, Li-Hung Wang, Pei-Ling Rumble, Douglas Lippmann-Pipke, Johanna Boice, Erik Pratt, Lisa M. Sherwood Lollar, Barbara Brodie, Eoin L. Hazen, Terry C. Andersen, Gary L. DeSantis, Todd Z. Moser, Duane P. Kershaw, Dave Onstott, T. C. TI Long-term sustainability of a high-energy, low-diversity crustal biome SO SCIENCE LA English DT Article ID WITWATERSRAND BASIN; MICROBIAL COMMUNITIES; DEEP SUBSURFACE; SOUTH-AFRICA; SULFATE; WATERS; FLUIDS; GEOCHEMISTRY; SEA AB Geochemical, microbiological, and molecular analyses of alkaline saline groundwater at 2.8 kilometers depth in Archaean metabasalt revealed a microbial biome dominated by a single phylotype affiliated with thermophilic sulfate reducers belonging to Firmicutes. These sulfate reducers were sustained by geologically produced sulfate and hydrogen at concentrations sufficient to maintain activities for millions of years with no apparent reliance on photosynthetically derived substrates. C1 Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. Natl Taiwan Univ, Dept Geosci, Taipei 10764, Taiwan. Natl Taiwan Univ, Inst Oceanog, Taipei 10764, Taiwan. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany. Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. Univ Toronto, Dept Geol, Toronto, ON, Canada. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Berkeley, CA 94720 USA. Desert Res Inst, Div Earth & Ecosyst Sci, Las Vegas, NV USA. Anglo Gold, Mponeng Mine, Johannesburg, South Africa. RP Lin, LH (reprint author), Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. EM lhlin@ntu.edu.tw RI Lin, Li-Hung/K-8091-2012; Brodie, Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; Hazen, Terry/C-1076-2012; Lippmann-Pipke, Johanna/D-7987-2011 OI Lin, Li-Hung/0000-0002-0985-1464; Brodie, Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; Hazen, Terry/0000-0002-2536-9993; Lippmann-Pipke, Johanna/0000-0002-9765-3803 NR 29 TC 161 Z9 174 U1 4 U2 67 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 20 PY 2006 VL 314 IS 5798 BP 479 EP 482 DI 10.1126/science.1127376 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 096MW UT WOS:000241382500046 PM 17053150 ER PT J AU Cortis, A Knudby, C AF Cortis, Andrea Knudby, Christen TI A continuous time random walk approach to transient flow in heterogeneous porous media SO WATER RESOURCES RESEARCH LA English DT Article ID TRANSPORT; DERIVATION; EQUATIONS AB [1] We propose a new physical interpretation of the diffusion process for the piezometric head h(x, t) in heterogeneous aquifers based on the continuous time random walk (CTRW) theory. For the typical heterogeneities considered in this work, we find that a CTRW based diffusion equation for h(x, t) provides better fits to the transient flow simulations than the classical diffusion equation (DE). The DE is found to be a special case of the CTRW diffusion equation. The results of this work have clear implications for the interpretation of pumping tests and what information can be extracted from them. C1 Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. Schlumberger Doll Res Ctr, Cambridge, MA 02141 USA. RP Cortis, A (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM acortis@lbl.gov RI Cortis, Andrea/A-3525-2008 NR 23 TC 16 Z9 16 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 20 PY 2006 VL 42 IS 10 AR W10201 DI 10.1029/2006WR005227 PG 5 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 100VV UT WOS:000241698800007 ER PT J AU Rateick, RG Karasek, KR Cunningham, AJ Goretta, KC Routbort, JL AF Rateick, R. G., Jr. Karasek, K. R. Cunningham, A. J. Goretta, K. C. Routbort, J. L. TI Solid-particle erosion of tungsten carbide/cobalt cermet and hardened 440C stainless steel - A comparison SO WEAR LA English DT Article DE solid-particle erosion; cermet; stainless steel; carbide ID BRITTLE MATERIALS; DUCTILE METALS; COMPOSITES; ALUMINA; IMPACT; DAMAGE AB Solid-particle erosion tests were conducted on hardened AISI 440C stainless steel and a cermet that consisted of approximate to 90 vol.% submicrometer WC embedded in approximate to 10 vol.% Co. Angular Al2O3 abrasives were used as the erodent. Experimental variables were: angle of impact = 20 degrees, 50 degrees, or 90 degrees; erodent velocity = 60 or 120 m/s; erodent nominal diameter = 63 or 143 mu m. For all test conditions, the stainless steel eroded faster than the cermet. Analysis of weight-loss data and examination of eroded surfaces by scanning electron microscopy indicated that the erosion mechanisms were similar for the two hard materials. Both exhibited significant plasticity when impacted, but the stainless steel's response to impact appeared to have been more ductile in nature. Published by Elsevier B.V. C1 Honeywell, South Bend, IN 46620 USA. Honeywell, Des Plaines, IL 60017 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Routbort, JL (reprint author), Honeywell, South Bend, IN 46620 USA. EM routbort@anl.gov NR 33 TC 14 Z9 14 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD OCT 20 PY 2006 VL 261 IS 7-8 BP 773 EP 778 DI 10.1016/j.wear.2006.01.012 PG 6 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 094CK UT WOS:000241216700008 ER PT J AU Qu, J Truhan, JJ AF Qu, Jun Truhan, John J. TI An efficient method for accurately determining wear volumes of sliders with non-flat wear scars and compound curvatures SO WEAR LA English DT Article DE wear volume; sliding wear; pin-on-disk; ball-on-flat; spherical; compound curvatures ID FRICTION AB Point contact is often used in unidirectional pin-on-disk and reciprocating pin-on-flat sliding friction and wear tests. The slider tip could have either a spherical shape or compound curvatures (such as an ellipsoidal shape), and the worn tip usually is not flat but has unknown curvatures. Current methods for determining the wear volumes of sliders suffer from one or more limitations. For example, the gravimetric method is not able to detect small amounts of wear, and the two-dimensional wear scar size measurement is valid only for flat wear scars. More rigorous methods can be very time consuming, such as the 3D surface profiling method that involves obtaining tedious multiple surface profiles and analyzing a large set of data. In this study, a new "single-trace" analysis is introduced to efficiently evaluate the wear volumes of non-flat worn sliders. This method requires only the measurement of the wear scar size and one trace of profiling to obtain the curvature on the wear cap. The wear volume calculation only involves closed-form algebraic equations. This single-trace method has demonstrated much higher accuracy and fewer limitations than the gravimetric method and 2D method, and has shown good agreement with the 3D method while saving significant surface profiling and data analysis time. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Knoxville, TN 37996 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6063, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov OI Qu, Jun/0000-0001-9466-3179 NR 7 TC 34 Z9 34 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD OCT 20 PY 2006 VL 261 IS 7-8 BP 848 EP 855 DI 10.1016/j.wear.2006.01.009 PG 8 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 094CK UT WOS:000241216700018 ER PT J AU Zang, QJ Su, ZM Lu, WC Wang, CZ Ho, KM AF Zang, Q. J. Su, Z. M. Lu, W. C. Wang, C. Z. Ho, K. M. TI A first-principles study of oxidation pattern in magic Si-7 cluster SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SILICON-OXIDE CLUSTERS; NANOSTRUCTURES; BULK AB Oxidation pattern of the magic cluster Sip was studied by first-principles calculations of Si7On (n = 1-14) clusters. The lowest-energy structures of the Si-rich clusters consist of a pure Si fragment and an oxide fragment. The oxidation is found to extend from one edge throughout the whole cluster as the number of the oxygen atoms increases. Fragmentation energy analysis shows that the Si-rich clusters can often dissociate into a small pure Si-n (n = 2-6) cluster and a silicon oxide fragment. The O-rich clusters tend to separate into a SiO molecule and a silicon oxide fragment, except for Si7O14 which can easily lose an oxygen molecule in the fragmentation. The ionic clusters Si7On +/- (n = 1-14) were also studied. (c) 2006 Elsevier B.V. All rights reserved. C1 NE Normal Univ, Inst Funct Mat Chem, Changchun 130024, Jilin, Peoples R China. Jilin Univ, State Key Lab Theoret & Comp Chem, Changchun 130021, Jilin, Peoples R China. Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Su, ZM (reprint author), NE Normal Univ, Inst Funct Mat Chem, Changchun 130024, Jilin, Peoples R China. EM suzm@nenu.edu.cn; wencailu@jlu.edu.cn OI Wang, Chong/0000-0003-4489-4344 NR 20 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 19 PY 2006 VL 430 IS 1-3 BP 1 EP 7 DI 10.1016/j.cplett.2006.08.072 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 097KS UT WOS:000241446900001 ER PT J AU Borovsky, JE Denton, MH AF Borovsky, Joseph E. Denton, Michael H. TI Effect plasmaspheric drainage plumes on solar-wind/magnetosphere coupling SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EVOLUTION; PLASMA; WIND AB [ 1] Evidence is uncovered that plasmaspheric drainage plumes flowing into the dayside reconnection site mass load the reconnection rate and thereby reduce the coupling of the solar wind to the Earth's magnetosphere. Solar-wind/magnetosphere coupling is statistically analyzed with the 1963-2003 OMNI2 data set matched up with the AE, AU, and PCI geomagnetic indices. Times when plasmaspheric drainage plumes are flowing are discerned using multiple spacecraft with plasma detectors in geosynchronous orbit. It is found that for a given value of -vB(z) of the solar wind, the geomagnetic indices AE, AU, and PCI are statistically lower when plasmaspheric drainage plumes are present than when plumes are not present. This is taken as a measure of a weakened coupling of the solar wind to the Earth's magnetosphere caused by the plumes. An Addendum examines the effects of polar-cap saturation on the auroral electrojet index. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Southampton, Southampton, Hants, England. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov OI Denton, Michael/0000-0002-1748-3710 NR 21 TC 49 Z9 49 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 19 PY 2006 VL 33 IS 20 AR L20101 DI 10.1029/2006GL026519 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 100UJ UT WOS:000241694400001 ER PT J AU Parsons, Z Leavitt, C Duong, T Groenewold, GS Gresham, GL Van Stipdonk, MJ AF Parsons, Zack Leavitt, Chris Duong, Thanh Groenewold, Gary S. Gresham, Garold L. Van Stipdonk, Michael J. TI Generation of gas-phase VO2+, VOOH+, and VO2+-nitrile complex ions by electrospray ionization and collision-induced dissociation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID OXIDE CLUSTER CATIONS; VANADIUM-DEPENDENT HALOPEROXIDASES; TRANSITION-METAL COMPLEXES; SYNTHETIC OXYGEN CARRIERS; C-C BONDS; MASS-SPECTROMETRY; MOLECULE REACTIONS; CHEMISTRY; REACTIVITY; OXIDATION AB Cationic metal species normally function as Lewis acids, accepting electron density from bound electron-donating ligands, but they can be induced to function as electron donors relative to dioxygen by careful control of the oxidation state and ligand field. In this study, cationic vanadium(IV) oxohydroxy complexes were induced to function as Lewis bases, as demonstrated by addition of O-2 to an undercoordinated metal center. Gas-phase complex ions containing the vanadyl (VO2+), vanadyl hydroxide (VOOH+), or vanadium( V) dioxo (VO2+) cation and nitrile ( acetonitrile, propionitrile, butyronitrile, or benzonitrile) ligands were generated by electrospray ionization (ESI) for study by multiple-stage tandem mass spectrometry. The principal species generated by ESI were complexes with the formula [VO(L)(n)](2+), where L represents the respective nitrile ligands and n) 4 and 5. Collision-induced dissociation ( CID) of [ VO( L)(5)](2+) eliminated a single nitrile ligand to produce [ VO( L)(n)](2+). Two distinct fragmentation pathways were observed for the subsequent dissociation of [ VO(L)(4)](2+). The first involved the elimination of a second nitrile ligand to generate [ VO( L)(3)](2+), which then added neutral H2O via an association reaction that occurred for all undercoordinated vanadium complexes. The second [UO(L)(4)](2+) fragmentation pathway led instead to the formation of [VOOH(L)(2)](+) through collisions with gas-phase H2O and concomitant losses of L and [ L + H]+. CID of [ VOOH( L)(2)](+) caused the elimination of a single nitrile ligand to generate [ VOOH( L)](+), which rapidly added O-2 ( in addition to H2O) by a gas-phase association reaction. CID of [VONO3( L) (2)](+), generated from spray solutions created by mixing VOSO4 and Ba(NO3)(2) (and precipitation of BaSO4), caused elimination of NO2 to produce [VO2( L)(2)](+.) CID of [ VO2( L)(2)](+) produced elimination of a single nitrile ligand to form [VO2( L)](+), a V( V) analogue to the O-2-reactive V( IV) species [ VOOH( L)]+; however, this V( V) complex was unreactive with O-2, which indicates the requirement for an unpaired electron in the metal valence shell for O-2 addition. In general, the [ VO2(L)(2)](+) species required higher collisions energies to liberate the nitrile ligand, suggesting that they are more strongly bound than the [ VOOH( L)(2)](+) counterparts. C1 Wichita State Univ, Dept Chem, Wichita, KS 67260 USA. Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Van Stipdonk, MJ (reprint author), Wichita State Univ, Dept Chem, Wichita, KS 67260 USA. EM Mike.VanStipdonk@wichita.edu NR 62 TC 4 Z9 4 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 19 PY 2006 VL 110 IS 41 BP 11627 EP 11635 DI 10.1021/jp062769p PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 093TJ UT WOS:000241192100006 PM 17034156 ER PT J AU Kerisit, S Ilton, ES Parker, SC AF Kerisit, Sebastien Ilton, Eugene S. Parker, Stephen C. TI Molecular dynamics simulations of electrolyte solutions at the (100) goethite surface SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ELECTROCHEMICAL DOUBLE-LAYER; ELECTRICAL DOUBLE-LAYER; RUTILE-WATER INTERFACE; ION-PAIR; STATICS CALCULATIONS; POLARIZABLE WATER; GOETHITE SURFACES; AQUEOUS-SOLUTIONS; PROTON BINDING; ADSORPTION AB Molecular dynamics simulations of electrolyte solutions in contact with a neutral (100) goethite (alpha-FeOOH) surface were used to probe the structure of the mineral-water interface and gain insight into the adsorption properties of monovalent ions. Three electrolyte solutions were considered: NaCl, CsCl, and CsF. The electrolyte ions were chosen to cover a range of ionic sizes and affinities for the aqueous phase. The molecular dynamics simulations indicate the presence of a structured interfacial region resulting from the strong interaction of water with the mineral surface. The specific arrangement and preferred orientation of water that arise from this interaction create adsorption sites in the interfacial region, i.e., as far as 15 angstrom away from the surface, and hence give rise to a strong correlation between the water and ion distributions. The structure of the hydrated ion, its effect on the water arrangement at the interface, and the strength of the ion-water bond are found to be key factors that determine the location and extent of ion adsorption at the interface. Additionally, in all simulations, we find a build up of positive charges near the surface due to cation adsorption, which is compensated by an accumulation of anions in the next few angstroms. This creates an excess of negative charges, which is in turn compensated by an excess of positive charges, and so on. As we modeled a neutral surface, the structure of the electrolyte distribution arises from the complex interplay of the interactions between the surface, water, and the electrolyte ions rather than from the need to neutralize a surface charge. In addition, our simulations indicate that the electrolyte distribution does not resemble that of a classical electrical double layer. Indeed, our calculations predict the presence of several condensed layers and oscillations in the net charge away from the surface. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM sebastien.kerisit@pnl.gov RI Parker, Steve/C-8180-2011 OI Parker, Steve/0000-0003-3804-0975 NR 42 TC 37 Z9 37 U1 5 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 19 PY 2006 VL 110 IS 41 BP 20491 EP 20501 DI 10.1021/jp0636569 PG 11 WC Chemistry, Physical SC Chemistry GA 093TK UT WOS:000241192200063 PM 17034235 ER PT J AU Shen, YQ Joachimiak, A Rosner, MR Tang, WJ AF Shen, Yuequan Joachimiak, Andrzej Rosner, Marsha Rich Tang, Wei-Jen TI Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism SO NATURE LA English DT Article ID AMYLOID BETA-PROTEIN; MITOCHONDRIAL PROCESSING PEPTIDASE; BUD-SITE SELECTION; ALZHEIMERS-DISEASE; IN-VIVO; DEGRADATION; DOMAIN; INSULYSIN; GLUCAGON; AMYLIN AB Insulin-degrading enzyme (IDE), a Zn2+-metalloprotease, is involved in the clearance of insulin and amyloid-beta (refs 1 - 3). Loss-of-function mutations of IDE in rodents cause glucose intolerance and cerebral accumulation of amyloid-beta, whereas enhanced IDE activity effectively reduces brain amyloid-beta ( refs 4 - 7). Here we report structures of human IDE in complex with four substrates ( insulin B chain, amyloid-beta peptide ( 1 - 40), amylin and glucagon). The amino- and carboxy-terminal domains of IDE (IDE-N and IDE-C, respectively) form an enclosed cage just large enough to encapsulate insulin. Extensive contacts between IDE-N and IDE-C keep the degradation chamber of IDE inaccessible to substrates. Repositioning of the IDE domains enables substrate access to the catalytic cavity. IDE uses size and charge distribution of the substrate-binding cavity selectively to entrap structurally diverse polypeptides. The enclosed substrate undergoes conformational changes to form beta-sheets with two discrete regions of IDE for its degradation. Consistent with this model, mutations disrupting the contacts between IDE-N and IDE-C increase IDE catalytic activity 40-fold. The molecular basis for substrate recognition and allosteric regulation of IDE could aid in designing IDE-based therapies to control cerebral amyloid-beta and blood sugar concentrations(1,8,9). C1 Univ Chicago, Ben May Inst Canc Res, Chicago, IL 60637 USA. Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Tang, WJ (reprint author), Univ Chicago, Ben May Inst Canc Res, 929 E 57th St, Chicago, IL 60637 USA. EM wtang@uchicago.edu OI Tang, Wei-Jen/0000-0002-8267-8995 FU NIGMS NIH HHS [U54 GM074942, U54 GM074942-01] NR 30 TC 187 Z9 192 U1 0 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 19 PY 2006 VL 443 IS 7113 BP 870 EP 874 DI 10.1038/nature05143 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 096FJ UT WOS:000241362700055 PM 17051221 ER PT J AU Layten, M Hornak, V Simmerling, C AF Layten, Melinda Hornak, Viktor Simmerling, Carlos TI The open structure of a multi-drug-resistant HIV-1 protease is stabilized by crystal packing contacts SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; FLAPS; DESIGN; TARGET C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Mol & Cellular Biol Program, Stony Brook, NY 11794 USA. SUNY Stony Brook, Ctr Struct Biol, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Simmerling, C (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM carlos.simmerling@stonybrook.edu FU NIGMS NIH HHS [R01 GM061678, GM 61678-03, R01 GM061678-07] NR 14 TC 29 Z9 29 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 18 PY 2006 VL 128 IS 41 BP 13360 EP 13361 DI 10.1021/ja065133k PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 093GZ UT WOS:000241157600022 PM 17031940 ER PT J AU Meloni, G Zou, P Klippenstein, SJ Ahmed, M Leone, SR Taatjes, CA Osborn, DL AF Meloni, Giovanni Zou, Peng Klippenstein, Stephen J. Ahmed, Musahid Leone, Stephen R. Taatjes, Craig A. Osborn, David L. TI Energy-resolved photoionization of alkylperoxy radicals and the stability of their cations SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ION PHOTOELECTRON-SPECTROSCOPY; ORGANIC PEROXY-RADICALS; SET MODEL CHEMISTRY; GAS-PHASE ACIDITY; FUEL-RICH FLAMES; MOLECULAR-OXYGEN; REACTION-MECHANISM; ELECTRONIC-STRUCTURE; ETHANE COMBUSTION; AB-INITIO AB The photoionization of alkylperoxy radicals has been investigated using a newly developed experimental apparatus that combines the tunability of the vacuum ultraviolet radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory with time-resolved mass spectrometry. Methylperoxy (CH3OO) and ethylperoxy (C2H5OO) radicals are produced by the reaction of pulsed, photolytically produced alkyl radicals with molecular oxygen, and the mass spectrum of the reacting mixture is monitored in time by using synchrotron-photoionization with a double-focusing mass spectrometer. The kinetics of product formation is used to confirm the origins and assignments of ionized species. The photoionization efficiency curve for CH3OO has been measured, and an adiabatic ionization energy of (10.33 +/- 0.05) eV was determined with the aid of Franck-Condon spectral simulations, including ionization to the lowest triplet and singlet cation states. Using the appearance energy of CH3+ from CH3OO, an enthalpy of formation for CH3OO of Delta H-f(0)o (CH3OO) = (22.4 +/- 5) kJ mol(-1) is derived. The enthalpy of formation of CH3OO+ is derived as Delta H-f(0)o = (1019 +/- 7) kJ mol(-1) and the CH3+-OO bond energy as D-0(o)(CH3+ -O-2) = (80 +/- 7) kJ mol(-1). The C2H5OO+ signal is not detectable; however, the time profile of the ethyl cation signal suggests its formation from dissociative ionization of C2H5OO. Electronic structure calculations suggest that hyperconjugation reduces the stability of the ethylperoxy cation, making the C2H5OO+ ground state only slightly bound with respect to the ground-state products, C2H5+ and O-2. The value of the measured appearance energy of C2H5+ is consistent with dissociative ionization of C2H5OO via the Franck-Condon favored ionization to the a (a) over tilde (1)A' state of C2H5OO+. C1 Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Osborn, DL (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. EM cataatj@sandia.gov; dlosbor@sandia.gov RI Osborn, David/A-2627-2009; Ahmed, Musahid/A-8733-2009; OI Klippenstein, Stephen/0000-0001-6297-9187 NR 53 TC 48 Z9 49 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 18 PY 2006 VL 128 IS 41 BP 13559 EP 13567 DI 10.1021/ja064556j PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 093GZ UT WOS:000241157600052 PM 17031970 ER PT J AU de Menezes, SMC Lam, YL Damodaran, K Pruski, M AF de Menezes, S. M. Cabral Lam, Y. L. Damodaran, K. Pruski, M. TI Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by (27) Al solid-state NMR and characterization of their catalytic properties SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE H-ZSM-5 zeolite; P-ZSM-5 zeolite; phosphorus modification; solid-state Al-27 NMR ID CONTAINING ZSM-5 ZEOLITES; SHAPE-SELECTIVE REACTIONS; ANGLE-SPINNING NMR; P-MODIFIED H-ZSM-5; TOLUENE DISPROPORTIONATION; MOLECULAR-SIEVE; MODIFIED HZSM-5; AL-27 MAS; ALKYLATION; METHANOL AB Aluminum species in P-ZSM-5 zeolites were identified and quantified using Al-27 MAS and MQMAS NMR methods. Samples containing between 0% and 15% P2O5 were studied after calcination or calcination followed by steaming. In addition to the tetrahedral framework aluminum, Altet-f, and the octahedral aluminum, Al-oct, we also observed significant quantities of highly distorted aluminum with tetrahedral coordination, Altet-dis, and octahedrally coordinated aluminum in aluminum phosphate, Aloct-O-P. Furthermore, small quantities of the pentahedrally coordinated species Alpent-O-P were seen in samples with high phosphorus content. There was a good correlation between the amount of framework aluminum and acidity measured by TPD of n-propylamine. In contrast, the aluminum phosphate was shown to be catalytically inactive both by acidity measurements and catalytic tests. Published by Elsevier Inc. C1 Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. CENPES, Petrobras Res Ctr, Rio De Janeiro, Brazil. RP Pruski, M (reprint author), Iowa State Univ Sci & Technol, Ames Lab, 230 Spedding Hall, Ames, IA 50011 USA. EM mpruski@iastate.edu NR 59 TC 32 Z9 32 U1 6 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD OCT 18 PY 2006 VL 95 IS 1-3 BP 286 EP 295 DI 10.1016/j.micromeso.2006.05.032 PG 10 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 095KJ UT WOS:000241306300039 ER PT J AU Damodaran, K Wiench, JW de Menezes, SMC Lam, YL Trebosc, J Amoureux, JP Pruski, M AF Damodaran, K. Wiench, J. W. de Menezes, S. M. Cabral Lam, Y. L. Trebosc, J. Amoureux, J. -P Pruski, M. TI Modification of H-ZSM-5 zeolites with phosphorus. 2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE P-ZSM-5 zeolite; phosphorus modification; P-31 MAS NMR; (27) AI(_31) PHETCOR NMR ID NUCLEAR-MAGNETIC-RESONANCE; MOLECULAR-SIEVES; MULTINUCLEAR NMR; ZSM-5 ZEOLITES; P-31 NMR; MAS NMR; AL-27; GLASSES; ACID; SILICOALUMINOPHOSPHATE AB A suite of one- and two-dimensional solid-state NMR methods was used to follow the complex structural changes in different types of phosphorus species in P-ZSM-5 zeolites that were generated upon treatment of H-ZSM5 zeolites with 0-15% P2O5, followed by calcination or calcination and steaming. Through space and through bond Al-27-P-31 correlations were used for the first time to study the interaction of phosphorus with the aluminum species. Homogeneous impregnation of phosphorus inside the zeolite channels was observed even at low concentrations. In the calcined samples, the P-31 resonances were assigned mainly to orthophosphates, short chain polyphosphates and condensed phosphates. These species were converted into various types of aluminum phosphates with steaming and with the increase in P content. The mechanisms of formation of phosphates and aluminum phosphates are proposed. Published by Elsevier Inc. C1 Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. CENPES, Petrobras Res Ctr, Rio De Janeiro, Brazil. USTL, ENSCL, LCPS, CNRS 8012, F-59652 Villeneuve Dascq, France. RP Pruski, M (reprint author), Iowa State Univ Sci & Technol, Ames Lab, 230 Spedding Hall, Ames, IA 50011 USA. EM mpruski@iastate.edu NR 43 TC 36 Z9 46 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD OCT 18 PY 2006 VL 95 IS 1-3 BP 296 EP 305 DI 10.1016/j.micromeso.2006.05.034 PG 10 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 095KJ UT WOS:000241306300040 ER PT J AU Wang, YQ Palmer, RA Schoonover, JR Aubuchon, SR AF Wang, Yanqia Palmer, Richard A. Schoonover, Jon R. Aubuchon, Steven R. TI Dynamic mechanical analysis and dynamic infrared linear dichroism study of the frequency-dependent viscoelastic behavior of a poly(ester urethane) SO VIBRATIONAL SPECTROSCOPY LA English DT Article; Proceedings Paper CT 3rd International Conference on Advanced Vibrational Spectroscopy (ICAVS-3) CY AUG 14-19, 2005 CL Delavan, WI DE dynamic infrared linear dichroism; mechanical response; poly(ester urethane) ID MULTIVARIATE CURVE RESOLUTION; SCAN FT-IR; SPECTROSCOPY; COPOLYMER AB Dynamic infrared linear dichroism (DIRLD) data have been collected as a function of strain modulation frequency in a simultaneous DIRLD-dynamic mechanical analysis experiment. The frequency range is limited, but the DIRLD data indicate some similarities to the temperature-dependent data. The frequency-dependent infrared data do not show the direct correlation with the mechanical data that was evident in the temperature-dependent study. However, the frequency-dependent infrared data do provide some molecular insight, with a similarity to the temperature-dependent results in the 1800-1320 cm(-1) region, a quadrature signal increasing with increasing frequency in the 1320-1000 cm(-1) region, and complex changes in the low wavenumber region that are interpreted as polymer chain responses as a function of frequency. (C) 2006 Elsevier B.V. All rights reserved. C1 Duke Univ, Dept Chem, Durham, NC 27706 USA. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87544 USA. TA Insturments Waters LLC, New Castle, DE 19720 USA. RP Palmer, RA (reprint author), Duke Univ, Dept Chem, Durham, NC 27706 USA. EM richard.a.palmer@duke.edu NR 13 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2031 J9 VIB SPECTROSC JI Vib. Spectrosc. PD OCT 18 PY 2006 VL 42 IS 1 SI SI BP 74 EP 77 DI 10.1016/j.vibspec.2006.04.017 PG 4 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 101DU UT WOS:000241719900012 ER PT J AU Jain, M Shukla, P Li, Y Hundley, MF Wang, HY Foltyn, SR Burrell, AK McCleskey, TM Jia, QX AF Jain, Menka Shukla, Piyush Li, Yuan Hundley, Michael F. Wang, Haiyan Foltyn, Stephen R. Burrell, Anthony K. McCleskey, Thomas M. Jia, Quanxi TI Manipulating magnetoresistance near room temperature in La0.67Sr0.33MnO3/La(0.67)Ca(0.33)MnO(3)Films prepared by polymer assisted deposition SO ADVANCED MATERIALS LA English DT Article ID COLOSSAL MAGNETORESISTANCE; MAGNETIC-PROPERTIES; THIN-FILMS; LA0.67CA0.33MNO3; SUPERLATTICES; MULTILAYERS; TRANSPORT AB Multilayer-coated La0.67Sr0.33MnO3/La0.67Ca0.33MnO3 (LSMO/LCMO) films can be prepared using cost-effective polymer assisted deposition, keeping a constant LSMO/LCMO volume ratio. By changing the thickness of the individual layers (see figure), the temperature of maximum resistance and the magnitude of magnetoresistance values can be manipulated. Similar properties are not achieved by simply mixing LSMO with LCMO phases at the same volume ratio. C1 Los Alamos Natl Lab, Superconduct Technol Ctr, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Mat Chem Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Jain, M (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM mjain@lanl.gov; qxjia@lanl.gov RI McCleskey, Thomas/J-4772-2012; Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014; OI Wang, Haiyan/0000-0002-7397-1209; Jain, Menka/0000-0002-2264-6895; Mccleskey, Thomas/0000-0003-3750-3245 NR 19 TC 27 Z9 27 U1 3 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD OCT 17 PY 2006 VL 18 IS 20 BP 2695 EP + DI 10.1002/adma.200601221 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 100BK UT WOS:000241641900006 ER PT J AU Zheng, HM Straub, F Zhan, Q Yang, PL Hsieh, WK Zavaliche, F Chu, YH Dahmen, U Ramesh, R AF Zheng, Haimei Straub, Florian Zhan, Qian Yang, Pei-Ling Hsieh, Wen-Kuo Zavaliche, Florin Chu, Ying-Hao Dahmen, Uli Ramesh, Ramamoorthy TI Self-assembled growth of BiFeO3-CoFe2O4 nanostructures SO ADVANCED MATERIALS LA English DT Article ID SURFACE-ENERGY; BATIO3-COFE2O4 NANOSTRUCTURES; PHASE-SEPARATION; ELECTRIC-FIELD; FILMS; BATIO3; SRTIO3 AB 3D heteroepitaxial growth of BiFeO3-CoFe2O4 nanostructures leads to unique morphological patterns depending on the substrate orientations. The morphologies of the BiFeO3-CoFe2O4 nanostructures, estimated using the Winter-bottom construction (see figure), are dependent on the different nucleation modes that result from the differences in surface energy anisotropy. The dimensions of the BiFeO3-CoFe2O41 nanostructures increase as the growth temperature increases and decrease as the growth rate increases. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Zheng, HM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM haimei@berkeley.edu RI Ying-Hao, Chu/A-4204-2008 OI Ying-Hao, Chu/0000-0002-3435-9084 NR 27 TC 201 Z9 210 U1 14 U2 147 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD OCT 17 PY 2006 VL 18 IS 20 BP 2747 EP + DI 10.1002/adma.200601215 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 100BK UT WOS:000241641900017 ER PT J AU Witting, PK Harris, HH Rayner, BS Aitken, JB Dillon, CT Stocker, R Lai, B Cai, ZH Lay, PA AF Witting, Paul K. Harris, Hugh H. Rayner, Benjamin S. Aitken, Jade B. Dillon, Carolyn T. Stocker, Roland Lai, Barry Cai, Zhonghou Lay, Peter A. TI The endothelium-derived hyperpolarizing factor, H2O2, promotes metal-ion efflux in aortic endothelial cells: Elemental mapping by a hard X-ray microprobe SO BIOCHEMISTRY LA English DT Article ID NITRIC-OXIDE SYNTHASE; HAMSTER LUNG-CELLS; VASCULAR SMOOTH-MUSCLE; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; CORONARY-ARTERIES; INTRACELLULAR CALCIUM; SUPEROXIDE-PRODUCTION; SIGNAL-TRANSDUCTION; NITROGEN MONOXIDE AB Hydrogen peroxide (H2O2) is a physiologic oxidant implicated in vascular cell signaling, although little is known about the biochemical consequences of its reaction with endothelial cells. Submicrometer-resolution hard X-ray elemental mapping of cultured porcine aortic endothelial cells (PAEC) has provided data on the global changes for intracellular elemental density within PAEC and indicates an efflux of metal ions and phosphorus from the cytoplasm after H2O2 treatment. The synchrotron-radiation-induced X-ray emission experiments (SRIXE) show that H2O2-treated cells are irregularly shaped and exhibit blebbing indicative of increased permeability due to the damaged membrane. The SRIXE results suggest that H2O2-induced damage is largely restricted to the cell membrane as judged by the changes to membrane and cytoplasmic components rather than the cell nucleus. The SRIXE data also provide a mechanism for cell detoxification as the metal-ion efflux resulting from the initial H2O2-mediated changes to cell membrane potentially limits intracellular metal-mediated redox processes through Fenton-like chemistry. They may also explain the increased levels of these ions in atherosclerotic plaques, regardless of whether they are involved in plaque formation. Finally, the SRIXE data support the notion that cultured endothelial cells exposed to H2O2 respond with enhanced cellular metal-ion efflux into the extracellular space. C1 Univ Sydney, Sch Chem, Ctr Heavy Met Res, Sydney, NSW 2006, Australia. Concord Repatriat Gen Hosp, ANZAC Res Inst, Vasc Biol Grp, Concord, NSW 2139, Australia. Univ Sydney, Australian Key Ctr Microscopy & Microanal, Electron Microscope Unit, Sydney, NSW 2006, Australia. Univ New S Wales, Sch Med Sci, Ctr Vasc Res, Sydney, NSW 2052, Australia. Argonne Natl Lab, Expt Facil Div, Argonne, IL 60439 USA. RP Lay, PA (reprint author), Univ Sydney, Sch Chem, Ctr Heavy Met Res, Sydney, NSW 2006, Australia. EM p.lay@chem.usyd.edu.au RI Harris, Hugh/A-4983-2008; Lay, Peter/B-4698-2014; OI Lay, Peter/0000-0002-3232-2720; Harris, Hugh/0000-0002-3472-8628 NR 73 TC 17 Z9 17 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 17 PY 2006 VL 45 IS 41 BP 12500 EP 12509 DI 10.1021/bi0604375 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 092OK UT WOS:000241107000011 PM 17029405 ER PT J AU Zhou, CLE Lam, MW Smith, JR Zemla, AT Dyer, MD Kuczmarski, TA Vitalis, EA Slezak, TR AF Zhou, Carol L. Ecale Lam, Marisa W. Smith, Jason R. Zemla, Adam T. Dyer, Matthew D. Kuczmarski, Thomas A. Vitalis, Elizabeth A. Slezak, Thomas R. TI MannDB - A microbial database of automated protein sequence analyses and evidence integration for protein characterization SO BMC BIOINFORMATICS LA English DT Article ID GENOME ANNOTATION SYSTEM; SUBCELLULAR-LOCALIZATION; PREDICTION; TOPOLOGY AB Background: MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. Description: MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes ( lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. Conclusion: MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high-priority agents on the websites of several governmental organizations concerned with bio-terrorism. MannDB provides the user with a BLAST interface for comparison of native and non-native sequences and a query tool for conveniently selecting proteins of interest. In addition, the user has access to a web-based browser that compiles comprehensive and extensive reports. Access to MannDB is freely available at http://manndb.llnl.gov/. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. RP Zhou, CLE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM zhou4@llnl.gov; lam9@llnl.gov; smith250@llnl.gov; zemla1@llnl.gov; dyer20@llnl.gov; tomk45@gmail.com; vitalis1@llnl.gov; slezak1@llnl.gov NR 20 TC 2 Z9 3 U1 0 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 17 PY 2006 VL 7 AR 459 DI 10.1186/1471-2105-7-459 PG 6 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 097SW UT WOS:000241470000001 PM 17044936 ER PT J AU Hicks, JC Dabestani, R Buchanan, AC Jones, CW AF Hicks, Jason C. Dabestani, Reza Buchanan, A. C., III Jones, Christopher W. TI Spacing and site isolation of amine groups in 3-aminopropyl-grafted silica materials: The role of protecting groups SO CHEMISTRY OF MATERIALS LA English DT Article ID ETHYLENE POLYMERIZATION CATALYSTS; SOLID-STATE NMR; ALKOXYSILANE COUPLING AGENTS; MESOPOROUS SILICA; SURFACE PHOTOCHEMISTRY; ALUMINA SURFACES; FLUORESCENCE SPECTROSCOPY; ENGINEERING NANOSPACES; CONTROLLABLE CHEMISTRY; THERMOLYTIC SYNTHESIS AB The relative spacing of amines in 3-aminopropylsilyl-grafted silica is studied by solid-state fluorescence spectroscopy of 1-pyrenecarboxylic acid (PCA) and 1-pyrenebutyric acid (PBA) bound to traditionally prepared, deprotected benzyl- or deprotected trityl-spaced aminosilicas. Thermogravimetric analysis and FT-Raman spectroscopy results show evidence that the protected imine can be cleaved to yield the corresponding amine in essentially quantitative yield. The steady-state fluorescence spectroscopic data of either PCA or PBA indicate that the number of amine pairs on the surface separated by a distance of 1 nm or less decreases as the total amine loading decreases. Both the intensity ratio of the excimer band to the monomer band (I-470/I-384 or I-exc/I-mon) and lifetime decay studies of the fluorophore are useful probes of the amine spacing. Separation of amines on the surface can be achieved by either use of a protected synthesis route or through reduction of the concentration of the unprotected 3-aminopropyltrimethoxysilane used in the grafting solution. However, the two routes lead to materials with significantly different average amine spacings. Due to clustering of unprotected amines in solution before grafting or on the surface during the grafting process, amine-amine distances on the surface of materials prepared by an unprotected synthesis are on average smaller than when a protected synthesis is used. With the protected synthesis, evidence suggests that the amines are more isolated, with larger average amine-amine distances when compared to corresponding materials with a similar amine loading prepared via an unprotected synthesis. This is attributed to both the steric influence of the protecting groups and a reduction in silane clustering in solution due to protection of the amines before grafting. Thus, the mechanism of surface amine spacing when using the protection-deprotection strategy appears to involve both of these factors ( especially in the case of trityl-spaced samples). C1 Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jones, CW (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr, Atlanta, GA 30332 USA. EM cjones@chbe.gatech.edu NR 68 TC 82 Z9 82 U1 4 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD OCT 17 PY 2006 VL 18 IS 21 BP 5022 EP 5032 DI 10.1021/cm061382w PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 092OI UT WOS:000241106800009 ER PT J AU Wasserburg, GJ Busso, M Gallino, R Nollett, KM AF Wasserburg, G. J. Busso, M. Gallino, R. Nollett, K. M. TI Short-lived nuclei in the early Solar System: Possible AGB sources SO NUCLEAR PHYSICS A LA English DT Review DE solar abundances; short-lived nuclei; nucleosynthesis; Solar System formation; isotopic anomalies; stars; AGB; stars; supernovae ID ASYMPTOTIC GIANT BRANCH; METAL-POOR STARS; ALUMINUM-RICH INCLUSIONS; S-PROCESS NUCLEOSYNTHESIS; PRESOLAR SIC GRAINS; TURBULENT PROTOPLANETARY NEBULA; GALACTIC CHEMICAL EVOLUTION; CHONDRULE-SIZED PARTICLES; CORE-COLLAPSE SUPERNOVAE; SILICON-CARBIDE GRAINS AB The abundances of short-lived radionuclides in the early Solar System (ESS) are reviewed, as well as the methodology used in determining them. These results are compared with the inventory estimated for a uniform galactic production model. It is shown that, to within a factor of two, the observed abundances of U-238, U-235, Th-232, Pu-244, Hf-182, Sm-146, and Mn-53 are roughly compatible with long-term galactic nucleosynthesis. U-129, is an exception, with an ESS inventory much lower than expected from uniform production. The isotopes Pd-107, Fe-60, Ca-41, Cl-36, Al-26, and Be-10 require late addition to the protosolar nebula. Be-10 is the product of energetic particle irradiation of the Solar System as most probably is Cl-36. Both of these nuclei appear to be present when Al-26 is absent. A late injection by a supernova (SN) cannot be responsible for most of the short-lived nuclei without excessively producing Mn-53; it can however be the source of Mn-53 itself and possibly of Fe-60. If a late SN injection is responsible for these two nuclei, then there remains the problem of the origin of Pd-107 and several other isotopes. Emphasis is given to an AGB star as a source of many of the nuclei, including Fe-60; this possibility is explored with a new generation of stellar models. It is shown that if the dilution factor (i.e. the ratio of the contaminating mass to the solar parental cloud mass) is f(0) similar to 4 x 10(-3), a reasonable representation for many nuclei is obtained; this requires that (Fe-60/Fe-56)(ESS) similar to 10(-7) to 2 x 10(-6). The nuclei produced by an AGB source do not include Mn-53, Be-10 or Cl-36 if it is very abundant. The role of irradiation is discussed with regard to Al-26, Cl-36 and Ca-41, and the estimates of bulk solar abundances of these isotopes are commented on. The conflict between various scenarios is emphasized as well as the current absence of an astrophysically plausible global interpretation for all the existing data. Examination of abundances for the actinides indicates that a quiescent interval of similar to 10(8) yr is required for actinide group production. This is needed in order to explain the data on Pu-244 and the new bounds on Cm-247. Because this quiescent interval is not compatible with the Hf-182 data, a separate type of r-process event is needed for at least the actinides, distinct from the two types that have previously been identified. The apparent coincidence of the 1291 and trans-actinide time scales suggests that the last heavy r contribution was from an r-process that produced very heavy nuclei but without fission recycling so that the yields at Ba and below (including I) were governed by fission. (c) 2005 Elsevier B.V. All rights reserved. C1 CALTECH, Div Geol & Planet Sci, Lunat Asylum, Pasadena, CA 91125 USA. Univ Perugia, Dept Phys, I-06123 Perugia, Italy. Univ Turin, Dept Gen Phys, I-10125 Turin, Italy. Univ Turin, Sez INFN, I-10125 Turin, Italy. Monash Univ, Sch Mat Sci, Ctr Stellar & Planet Astrophys, Clayton, Vic 3800, Australia. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Wasserburg, GJ (reprint author), CALTECH, Div Geol & Planet Sci, Lunat Asylum, Pasadena, CA 91125 USA. EM gjw@gps.caltech.edu; maurizio.busso@fisica.unipg.it; gallino@ph.unito.it; nollett@anl.gov RI Busso, Maurizio Maria/K-7075-2015 OI Nollett, Kenneth/0000-0002-0671-320X; Busso, Maurizio Maria/0000-0001-8944-5820 NR 291 TC 152 Z9 154 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 17 PY 2006 VL 777 BP 5 EP 69 DI 10.1016/j.nuclphysa.2005.07.015 PG 65 WC Physics, Nuclear SC Physics GA 095IH UT WOS:000241300900003 ER PT J AU Marcucci, LE Nollett, KM Schiavilla, R Wiringa, RB AF Marcucci, L. E. Nollett, Kenneth M. Schiavilla, R. Wiringa, R. B. TI Modem theories of low-energy astrophysical reactions SO NUCLEAR PHYSICS A LA English DT Review DE astrophysical reaction rates; radiative capture; weak capture ID NUCLEON-NUCLEON-INTERACTION; MONTE-CARLO CALCULATIONS; CAPTURE REACTION HE-3(ALPHA,GAMMA)BE-7; P-HE-3 ELASTIC-SCATTERING; BIG-BANG NUCLEOSYNTHESIS; PROTON-PROTON REACTION; FEW-BODY NUCLEI; CROSS-SECTION; EXCHANGE CURRENTS; LIGHT-NUCLEI AB fWe summarize recent ab initio studies of low-energy electroweak reactions of astrophysical interest, relevant for both big bang nucleosynthesis and solar neutrino production. The calculational methods include direct integration for np radiative and pp weak capture, correlated hyperspherical harmonics for reactions of A = 3,4 nuclei, and variational Monte Carlo for A = 6, 7 nuclei. Realistic nucleon-nucleon and three-nucleon interactions and consistent current operators are used as input. (c) 2004 Published by Elsevier B.V. C1 Univ Pisa, Dept Phys, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Jefferson Lab, Newport News, VA 23606 USA. Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Marcucci, LE (reprint author), Univ Pisa, Dept Phys, I-56127 Pisa, Italy. EM marcucci@df.unipi.it RI Wiringa, Robert/M-4970-2015 NR 122 TC 25 Z9 25 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 17 PY 2006 VL 777 BP 111 EP 136 DI 10.1016/j.nuclphysa.2004.09.008 PG 26 WC Physics, Nuclear SC Physics GA 095IH UT WOS:000241300900006 ER PT J AU Hix, WR Meyer, BS AF Hix, W. Raphael Meyer, Bradley S. TI Thermonuclear kinetics in astrophysics SO NUCLEAR PHYSICS A LA English DT Article DE nucleosynthesis; numerical methods ID NUCLEAR-REACTION NETWORKS; REACTION-RATES; QUASI-EQUILIBRIUM; STELLAR HYDRODYNAMICS; CORE COLLAPSE; MASSIVE STARS; WHITE-DWARFS; RP-PROCESS; NUCLEOSYNTHESIS; SILICON AB Over the billions of years since the Big Bang, the lives, deaths and afterlives of stars have enriched the Universe in the heavy elements that make up so much of ourselves and our world. This review summarizes the methods used to evolve these nuclear abundances within astrophysical simulations. These methods fall into 2 categories; evolution via rate equations and via equilibria. Because the rate equations in nucleosynthetic applications involve a wide range of timescales, implicit methods have proven mandatory, leading to the need to solve matrix equations. Efforts to improve the performance of such rate equation methods are focused on efficient solution of these matrix equations, in particular by making best use of the sparseness of these matrices, and finding methods that require less frequent matrix solutions. Recent work to produce hybrid schemes which use local equilibria to reduce the computational cost of the rate equations is also discussed. Such schemes offer significant improvements in the speed of reaction networks and are accurate under circumstances where calculations which assume complete equilibrium fail. (c) 2004 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. RP Hix, WR (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM raph@utk.edu RI Hix, William/E-7896-2011 OI Hix, William/0000-0002-9481-9126 NR 74 TC 19 Z9 19 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 17 PY 2006 VL 777 BP 188 EP 207 DI 10.1016/j.nuclphysa.2004.10.009 PG 20 WC Physics, Nuclear SC Physics GA 095IH UT WOS:000241300900009 ER PT J AU Burrows, A Reddy, S Thompson, TA AF Burrows, Adam Reddy, Sanjay Thompson, Todd A. TI Neutrino opacities in nuclear matter SO NUCLEAR PHYSICS A LA English DT Article DE supernovae; neutrino interactions; neutrino spectra; protoneutron stars; kinetic theory ID CORE-COLLAPSE SUPERNOVAE; WEAK INTERACTION RATES; DENSE MATTER; EXPLOSIONS; STARS; SCATTERING; TRANSPORT; BREMSSTRAHLUNG; EMISSIVITIES; ANNIHILATION AB Neutrino-matter cross sections and interaction rates are central to the core-collapse supernova phenomenon and, very likely, to the viability of the explosion mechanism itself. In this paper, we describe the major neutrino scattering, absorption, and production processes that together influence the outcome of core collapse and the cooling of protoneutron stars. One focus is on energy redistribution and many-body physics, but our major goal is to provide a useful resource for those interested in supernova neutrino microphysics. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. RP Burrows, A (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. EM burrows@zenith.as.arizona.edu; reddy@lanl.gov; thomp@astro.berkeley.edu NR 69 TC 83 Z9 84 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 17 PY 2006 VL 777 BP 356 EP 394 DI 10.1016/j.nuclphysa.2004.06.012 PG 39 WC Physics, Nuclear SC Physics GA 095IH UT WOS:000241300900016 ER PT J AU Blackmon, JC Angulo, C Shotter, AC AF Blackmon, J. C. Angulo, C. Shotter, A. C. TI Experimental approaches to nuclear reactions involved in explosive stellar binaries SO NUCLEAR PHYSICS A LA English DT Review DE nova; X-ray burst; nucleosynthesis; radioactive nuclei; experimental techniques ID RADIOACTIVE ION-BEAMS; RADIATIVE-CAPTURE REACTIONS; REACTION CROSS-SECTION; HOT CNO CYCLE; RECOIL SEPARATOR; F-18(P,ALPHA)O-15 REACTION; ASTROPHYSICAL IMPLICATIONS; FRAGMENTATION PRODUCTS; COULOMB DISSOCIATION; MASS-SPECTROMETRY AB Explosive stellar environments such as novae and X-ray bursts are currently among the most exciting topics in nuclear astrophysics. Reactions on unstable nuclei play a crucial role in energy generation and nucleosynthesis due to the high temperatures and short reaction time scales in these events, but substantial uncertainties exist in nuclear reaction rates on unstable nuclei resulting from limited experimental data. In recent years some remarkable developments in radioactive ion beam production and experimental techniques have allowed many key reaction rates to be experimentally determined with reasonable accuracy for the first time. In this paper we review experimental methods that have recently been exploited to study reactions important in explosive binaries, highlight some key examples of recent results, and outline remaining experimental challenges. (c) 2005 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Catholic Univ Louvain, Ctr Rech Cyclotron, B-1348 Louvain, Belgium. TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Blackmon, JC (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM blackmon@ornl.gov NR 148 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 17 PY 2006 VL 777 BP 531 EP 549 DI 10.1016/j.nuclphysa.2005.03.011 PG 19 WC Physics, Nuclear SC Physics GA 095IH UT WOS:000241300900022 ER PT J AU Schatz, H Rehm, KE AF Schatz, H. Rehm, K. E. TI X-ray binaries SO NUCLEAR PHYSICS A LA English DT Review ID ACCRETING NEUTRON-STAR; MAGNETIC-FIELD EVOLUTION; WEAK INTERACTION RATES; RADIOACTIVE ION-BEAMS; STELLAR REACTION-RATE; RAPID-PROTON PROCESS; HOT CNO CYCLE; RP-PROCESS; THERMONUCLEAR FLASHES; AQUILA X-1 C1 Michigan State Univ, Joint Lab Nucl Astrophys, Dept Phys & Astron, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Schatz, H (reprint author), Michigan State Univ, Joint Lab Nucl Astrophys, Dept Phys & Astron, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. EM schatz@nscl.msu.edu NR 157 TC 72 Z9 72 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 17 PY 2006 VL 777 BP 601 EP 622 DI 10.1016/j.nuclphysa.2005.05.200 PG 22 WC Physics, Nuclear SC Physics GA 095IH UT WOS:000241300900025 ER PT J AU Chain, PSG Denef, VJ Konstantinidis, KT Vergez, LM Agullo, L Reyes, VL Hauser, L Cordova, M Gomez, L Gonzalez, M Land, M Lao, V Larimer, F Lipuma, JJ Mahenthiralingam, E Malfatti, SA Marx, CJ Parnell, JJ Ramette, A Richardson, P Seeger, M Smith, D Spilker, T Sul, WJ Tsoi, TV Ulrich, LE Zhulin, IB Tiedje, JM AF Chain, Patrick S. G. Denef, Vincent J. Konstantinidis, Konstantinos T. Vergez, Lisa M. Agullo, Loreine Reyes, Valeria Latorre Hauser, Loren Cordova, Macarena Gomez, Luis Gonzalez, Myriam Land, Miriam Lao, Victoria Larimer, Frank Lipuma, John J. Mahenthiralingam, Eshwar Malfatti, Stephanie A. Marx, Christopher J. Parnell, J. Jacob Ramette, Alban Richardson, Paul Seeger, Michael Smith, Daryl Spilker, Theodore Sul, Woo Jun Tsoi, Tamara V. Ulrich, Luke E. Zhulin, Igor B. Tiedje, James M. TI Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE genomics; niche adaptation; evolution; biodegradation; redundancy ID SP STRAIN LB400; PSEUDOMONAS-PUTIDA; CEPACIA COMPLEX; BENZOATE METABOLISM; SIGNAL-TRANSDUCTION; CATABOLIC PATHWAY; CAUSATIVE AGENT; SEQUENCE; GENE; DEGRADATION AB Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that > 20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven "central aromatic" and twenty "peripheral aromatic" pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes. C1 Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA 94550 USA. Joint Genome Inst, Walnut Creek, CA 94598 USA. Univ Ghent, Dept Biosci Engn, B-9000 Ghent, Belgium. Univ Tecn Federico Santa Maria, Nucleus Millennium Microbial Ecol & Environm Micr, Valparaiso, Chile. Univ Cardiff Wales, Sch Biosci, Cardiff CF10 3TL, Wales. Univ Michigan, Dept Pediat & Communicable Dis, Ann Arbor, MI 48109 USA. Univ Tennessee, Oak Ridge Natl Lab, Joint Inst COmputat Sci, Oak Ridge, TN 37831 USA. MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. Max Planck Inst Marine Microbiol, D-28359 Bremen, Germany. Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. Univ British Columbia, Inst Life Sci, Vancouver, BC V6T 1Z4, Canada. Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Univ Magallanes, Dept Ciencias & Recursos Nat, Punta Arenas, Chile. RP Tiedje, JM (reprint author), Michigan State Univ, Ctr Microbial Ecol, 540E Plant & Soil Sci Bldg, E Lansing, MI 48824 USA. EM tiedjej@msu.edu RI Mahenthiralingam, Eshwar/D-3333-2009; Ramette, Alban/E-9197-2016; Land, Miriam/A-6200-2011; Sul, Woo Jun/A-9291-2012; Hauser, Loren/H-3881-2012; chain, patrick/B-9777-2013; Zhulin, Igor/A-2308-2012 OI Mahenthiralingam, Eshwar/0000-0001-9014-3790; Ramette, Alban/0000-0002-3437-4639; Land, Miriam/0000-0001-7102-0031; Sul, Woo Jun/0000-0002-7016-1454; Zhulin, Igor/0000-0002-6708-5323 FU NIEHS NIH HHS [P42 ES004911, P42 ES 04911-12] NR 66 TC 180 Z9 627 U1 3 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 17 PY 2006 VL 103 IS 42 BP 15280 EP 15287 DI 10.1073/pnas.0606924103 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 097VC UT WOS:000241476200003 PM 17030797 ER PT J AU Frauenfelder, H Fenimore, PW Chen, G McMahon, BH AF Frauenfelder, H. Fenimore, P. W. Chen, G. McMahon, B. H. TI Protein folding is slaved to solvent motions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE folding energy landscape; fractional viscosity dependence; internal viscosity; Maxwell relation; protein-solvent interaction ID ENERGY LANDSCAPES; INTERNAL-FRICTION; DYNAMICS; 2-STATE; FLUCTUATIONS; VISCOSITY; KINETICS; SPEED; COSOLVENTS; DEPENDENCE AB Proteins, the workhorses of living systems, are constructed from chains of amino acids, which are synthesized in the cell based on the instructions of the genetic code and then folded into working proteins. The time for folding varies from microseconds to hours. What controls the folding rate is hotly debated. We postulate here that folding has the same temperature dependence as the a-fluctuations in the bulk solvent but is much slower. We call this behavior slaving. Slaving has been observed in folded proteins: Large-scale protein motions follow the solvent fluctuations with rate coefficient k(alpha) but can be slower by a large factor. Slowing occurs because large-scale motions proceed in many small steps, each determined by k(alpha). if conformational motions of folded proteins are slaved, so a fortiori must be the motions during folding. The unfolded protein makes a Brownian walk in the conformational space to the folded structure, with each step controlled by k(alpha). Because the number of conformational substates in the unfolded protein is extremely large, the folding rate coefficient, k(f), is much smaller than k(alpha). The slaving model implies that the activation enthalpy of folding is dominated by the solvent, whereas the number of steps n(f) = k(alpha)/k(f) is controlled by the number of accessible substates in the unfolded protein and the solvent. Proteins, however, undergo not only alpha- but also beta-fluctuations. These additional fluctuations are local protein motions that are essentially independent of the bulk solvent fluctuations and may be relevant at late stages of folding. C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. EM frauenfelder@lanl.gov NR 34 TC 168 Z9 170 U1 3 U2 46 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 17 PY 2006 VL 103 IS 42 BP 15469 EP 15472 DI 10.1073/pnas.0607168103 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 097VC UT WOS:000241476200036 PM 17030792 ER PT J AU Makarova, K Slesarev, A Wolf, Y Sorokin, A Mirkin, B Koonin, E Pavlov, A Pavlova, N Karamychev, V Polouchine, N Shakhova, V Grigoriev, I Lou, Y Rohksar, D Lucas, S Huang, K Goodstein, DM Hawkins, T Plengvidhya, V Welker, D Hughes, J Goh, Y Benson, A Baldwin, K Lee, JH Diaz-Muniz, I Dosti, B Smeianov, V Wechter, W Barabote, R Lorca, G Altermann, E Barrangou, R Ganesan, B Xie, Y Rawsthorne, H Tamir, D Parker, C Breidt, F Broadbent, J Hutkins, R O'Sullivan, D Steele, J Unlu, G Saier, M Klaenhammer, T Richardson, P Kozyavkin, S Weimer, B Mills, D AF Makarova, K. Slesarev, A. Wolf, Y. Sorokin, A. Mirkin, B. Koonin, E. Pavlov, A. Pavlova, N. Karamychev, V. Polouchine, N. Shakhova, V. Grigoriev, I. Lou, Y. Rohksar, D. Lucas, S. Huang, K. Goodstein, D. M. Hawkins, T. Plengvidhya, V. Welker, D. Hughes, J. Goh, Y. Benson, A. Baldwin, K. Lee, J. -H. Diaz-Muniz, I. Dosti, B. Smeianov, V. Wechter, W. Barabote, R. Lorca, G. Altermann, E. Barrangou, R. Ganesan, B. Xie, Y. Rawsthorne, H. Tamir, D. Parker, C. Breidt, F. Broadbent, J. Hutkins, R. O'Sullivan, D. Steele, J. Unlu, G. Saier, M. Klaenhammer, T. Richardson, P. Kozyavkin, S. Weimer, B. Mills, D. TI Comparative genomics of the lactic acid bacteria SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE evolutionary genomics; fermentation ID HORIZONTAL GENE-TRANSFER; LACTOCOCCUS-LACTIS; LACTOBACILLUS-PLANTARUM; RADIATION-RESISTANCE; MOLECULAR CLOCK; COG DATABASE; TRANSFER-RNA; SEQUENCE; EVOLUTION; ARCHAEAL AB Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats. C1 Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA. Fidel Syst Inc, Gaithersburg, MD 20879 USA. Univ London, Birkbeck Coll, Sch Informat Syst & Comp Sci, London WC1E 7HX, England. Joint Gen Inst, US Dept Energy, Walnut Creek, CA 94598 USA. N Carolina State Univ, Dept Food Sci, Raleigh, NC 27695 USA. USDA ARS, Raleigh, NC 27695 USA. Utah State Univ, Dept Biol, Logan, UT 84322 USA. Utah State Univ, Dept Nutr & Food Sci, Logan, UT 84322 USA. Utah State Univ, Ctr Integrated Biosyst, Logan, UT 84322 USA. Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE 68583 USA. Univ Minnesota, Dept Food Sci & Nutr, St Paul, MN 55108 USA. Univ Calif San Diego, Dept Biol, La Jolla, CA 92093 USA. Univ Wisconsin, Dept Food Sci, Madison, WI 53706 USA. Univ Idaho, Dept Food Sci & Toxicol, Moscow, ID 83844 USA. Univ Calif Davis, Dept Viticulture & Enol, Davis, CA 95616 USA. RP Koonin, E (reprint author), Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA. EM koonin@ncbi.nlm.nih.gov; trk@unity.ncsu.edu; bcweimer@cc.usu.edu; damills@ucdavis.edu RI Barabote, Ravi/B-8727-2011; Broadbent, Jeff/A-9626-2010; Mills, David/G-2282-2011; Barrangou, Rodolphe/I-2878-2014; Barabote, Ravi/C-1299-2017; OI Broadbent, Jeff/0000-0002-0751-0877; Mills, David/0000-0003-1913-9865; Mirkin, Boris/0000-0001-5470-8635; Barrangou, Rodolphe/0000-0002-0648-3504; Barabote, Ravi/0000-0002-0403-246X; Altermann, Eric/0000-0003-1376-1549 FU Intramural NIH HHS; NIGMS NIH HHS [R01 GM055434, R01 GM55434] NR 56 TC 678 Z9 3042 U1 31 U2 224 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 17 PY 2006 VL 103 IS 42 BP 15611 EP 15616 DI 10.1073/pnas.0607117103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 097VC UT WOS:000241476200061 PM 17030793 ER PT J AU Wang, GJ Yang, J Volkow, ND Telang, F Ma, YM Zhu, W Wong, CT Tomasi, D Thanos, PK Fowler, JS AF Wang, Gene-Jack Yang, Julia Volkow, Nora D. Telang, Frank Ma, Yeming Zhu, Wei Wong, Christopher T. Tomasi, Dardo Thanos, Panayotis K. Fowler, Joanna S. TI Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE brain activation; obesity ID VAGUS NERVE-STIMULATION; ORBITOFRONTAL CORTEX; FOOD-INTAKE; PREFRONTAL CORTEX; MEMORY; DOPAMINE; RATS; INDIVIDUALS; MECHANISMS; MOTIVATION AB The neurobiological mechanisms underlying overeating in obesity are not understood. Here, we assessed the neurobiological responses to an Implantable Gastric Stimulator (IGS), which induces stomach expansion via electrical stimulation of the vagus nerve to identify the brain circuits responsible for its effects in decreasing food intake. Brain metabolism was measured with positron emission tomography and 2-deoxy-2[F-18]fluoro-D-glucose in seven obese subjects who had the IGS implanted for 1-2 years. Brain metabolism was evaluated twice during activation (on) and during deactivation (off) of the IGS. The Three-Factor Eating Questionnaire was obtained to measure the behavioral components of eating (cognitive restraint, uncontrolled eating, and emotional eating). The largest difference was in the right hippocampus, where metabolism was 18% higher (P < 0.01) during the "on" than "off" condition, and these changes were associated with scores on "emotional eating," which was lower during the on than off condition and with "uncontrolled eating," which did not differ between conditions. Metabolism also was significantly higher in right anterior cerebellum, orbitofrontal cortex, and striatum during the on condition. These findings corroborate the role of the vagus nerve in regulating hippocampal activity and the importance of the hippocampus in modulating eating behaviors linked to emotional eating and lack of control. IGS-induced activation of regions previously shown to be involved in drug craving in addicted subjects (orbitofrontal cortex, hippocampus, cerebellum, and striatum) suggests that similar brain circuits underlie the enhanced motivational drive for food and drugs seen in obese and drug-addicted subjects, respectively. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. Mt Sinai Sch Med, Dept Psychiat, New York, NY 10029 USA. NIAAA, Natl Inst Drug Abuse, Rockville, MD 20857 USA. SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. RP Wang, GJ (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM gjwang@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU NCRR NIH HHS [M01 RR010710, M01RR 10710]; NIAAA NIH HHS [AA9481, R01 AA009481, Y1AA3009]; NIDA NIH HHS [DA6278, DA6891, R01 DA006278, R01 DA006891] NR 43 TC 81 Z9 84 U1 1 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 17 PY 2006 VL 103 IS 42 BP 15641 EP 15645 DI 10.1073/pnas.0601977103 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 097VC UT WOS:000241476200066 PM 17023542 ER PT J AU Sviripa, VM Gakh, AA Brovarets, VS Gutov, AV Drach, BS AF Sviripa, Vitaliy M. Gakh, Andrei A. Brovarets, Vladimir S. Gutov, Aleksei V. Drach, Boris S. TI Original approach to new derivatives of [1,3]oxazolo[4,5-d]pyrimidine SO SYNTHESIS-STUTTGART LA English DT Article DE heterocycles; fused-ring systems; cyclizations; oxazoles; pyrimidines ID OXAZOLO<4,5-B>PYRIDINES; OXAZOLOPYRIMIDINES AB Based on the readily available 4-dichloromethylene-2-phenyl-1,3-oxazol-5(4H)-one, preparative methods for the synthesis of a set of functionalized derivatives of the poorly studied [1,3]oxazolo[4,5-d]pyrimidine system were elaborated. C1 Natl Acad Sci Ukraine, Inst Bioorgan Chem & Biochem, UA-02094 Kiev, Ukraine. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Natl Acad Sci Ukraine, Inst Organ Chem, UA-02094 Kiev, Ukraine. RP Drach, BS (reprint author), Natl Acad Sci Ukraine, Inst Bioorgan Chem & Biochem, Murmanskaya Str 1, UA-02094 Kiev, Ukraine. EM drach@bpci.kiev.ua OI Sviripa, Vitaliy/0000-0002-7272-373X NR 23 TC 12 Z9 12 U1 0 U2 1 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0039-7881 J9 SYNTHESIS-STUTTGART JI Synthesis PD OCT 17 PY 2006 IS 20 BP 3462 EP 3466 DI 10.1055/s-2006-950221 PG 5 WC Chemistry, Organic SC Chemistry GA 099WK UT WOS:000241627700015 ER PT J AU Clement, T Ingole, S Ketharanathan, S Drucker, J Picraux, ST AF Clement, T. Ingole, S. Ketharanathan, S. Drucker, Jeff Picraux, S. T. TI In situ studies of semiconductor nanowire growth using optical reflectometry SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON AB The authors report the use of in situ optical reflectometry to determine the incubation time for the onset of growth, mean growth rate, and average length of Si nanowires during chemical vapor deposition vapor-liquid-solid synthesis. Results for the constructive and destructive interferences of 635 nm linearly polarized laser light scattering from growing nanowire layers are compared to simulations. This real time optical reflectance approach is shown to quantitatively determine nanowire growth rates as well as reveal a pressure dependence for the time to nucleate nanowire growth. C1 Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Picraux, ST (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM picraux@lanl.gov NR 11 TC 21 Z9 21 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 163125 DI 10.1063/1.2364121 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200104 ER PT J AU Ji, L Ji, Q Leung, KN Gough, RA AF Ji, L. Ji, Q. Leung, K. -N. Gough, R. A. TI Combined electron and focused ion beam system for improvement of secondary ion yield in secondary ion mass spectrometry instrument SO APPLIED PHYSICS LETTERS LA English DT Article ID TRACE AB Using a combined electron and focused ion beam system to improve performance of secondary ion mass spectrometry instruments has been investigated experimentally. The secondary ion yield for an Al target has been enhanced to about one order of magnitude higher with the postionization induced by the low energy electrons in the combined beam. It can be further improved with the increase of electron beam current. When the combined beam is applied to insulating targets, sample charging is also eliminated. For Teflon targets, the secondary ion signal is increased by more than a factor of 20. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ji, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM lji@lbl.gov NR 8 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 164103 DI 10.1063/1.2362996 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200131 ER PT J AU Jiang, F Wang, RV Munkholm, A Streiffer, SK Stephenson, GB Fuoss, PH Latifi, K Thompson, C AF Jiang, F. Wang, R. -V. Munkholm, A. Streiffer, S. K. Stephenson, G. B. Fuoss, P. H. Latifi, K. Thompson, Carol TI Indium adsorption on GaN under metal-organic chemical vapor deposition conditions SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; SURFACE-STRUCTURE; ENVIRONMENT; GAN(0001); HYDROGEN; KINETICS; FILMS; INGAN AB Real-time synchrotron grazing-incidence x-ray fluorescence is employed to study indium adsorption on the GaN (0001) surface under typical process conditions for InGaN metal-organic chemical vapor deposition. An indium condensation boundary is mapped as a function of trimethylindium pressure, substrate temperature, and carrier gas composition. Below the condensation boundary, indium surface coverage reaches a maximum of similar to 1/ 4 ML. The addition of 8% H-2 to the carrier gas is found to have a significant effect on both condensation and adsorption of indium. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Philips Lumileds Lighting Co, San Jose, CA 95131 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Jiang, F (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fjiang@anl.gov RI Streiffer, Stephen/A-1756-2009; OI Thompson, Carol/0000-0003-3832-4855 NR 14 TC 21 Z9 21 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 161915 DI 10.1063/1.2364060 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200036 ER PT J AU Kim, DH Lee, HN Varela, M Christen, HM AF Kim, Dae Ho Lee, Ho Nyung Varela, Maria Christen, Hans M. TI Antiferroelectricity in multiferroic BiCrO3 epitaxial films SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIC-PROPERTIES; POLARIZATION; BIMNO3 AB Multiferroic BiCrO3 epitaxial films were grown by pulsed laser deposition on SrTiO3 (001) substrates with SrRuO3 bottom electrodes. The authors found that the films exhibit antiferroelectricity with a characteristic electric field induced ferroelectric phase, as evidenced by double hysteretic behaviors in the electric field dependence of dielectric constants and polarization. The antiferroelectricity is consistent with theoretical predictions that the Bi lone pair induces polarization in bismuth-based perovskites, such as ferroelectric BiMnO3 and BiFeO3. Magnetic measurements revealed weak parasitic ferromagnetism resulting from antiferromagnetic ordering below 140 K. This magnetic transition coincides with a local maximum in the dielectric constants' temperature dependence. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kim, DH (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM kimdh@ornl.gov RI Kim, Dae Ho/B-4670-2012; Varela, Maria/H-2648-2012; Christen, Hans/H-6551-2013; Varela, Maria/E-2472-2014; Lee, Ho Nyung/K-2820-2012 OI Christen, Hans/0000-0001-8187-7469; Varela, Maria/0000-0002-6582-7004; Lee, Ho Nyung/0000-0002-2180-3975 NR 17 TC 52 Z9 56 U1 4 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 162904 DI 10.1063/1.2362585 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200071 ER PT J AU Schlotter, WF Rick, R Chen, K Scherz, A Stohr, J Luning, J Eisebitt, S Gunther, C Eberhardt, W Hellwig, O McNulty, I AF Schlotter, W. F. Rick, R. Chen, K. Scherz, A. Stoehr, J. Luening, J. Eisebitt, S. Guenther, Ch. Eberhardt, W. Hellwig, O. McNulty, I. TI Multiple reference Fourier transform holography with soft x rays SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD AB The authors demonstrate multiple reference source Fourier transform holography with soft x rays. This technique extends the detection limit of high resolution lensless imaging by introducing spatial multiplexing to coherent x-ray scattering. In this way, image quality is improved without increasing the radiation exposure to the sample. This technique is especially relevant for recording static images of radiation sensitive samples and for studying spatial dynamics with pulsed light sources. Applying their technique in the weak illumination limit they image a nanoscale test object by detecting similar to 2500 photons. The observed enhancement in the signal-to-noise ratio of the image follows the square root of the number of reference sources. C1 Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Stanford Synchrotron Radiat Lab, SLAC, Menlo Pk, CA 94025 USA. BESSY MbH, D-12489 Berlin, Germany. Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95120 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Schlotter, WF (reprint author), Stanford Univ, Dept Appl Phys, 316 Via Pueblo Mall, Stanford, CA 94305 USA. EM wschlott@stanford.edu OI Gunther, Christian Michael/0000-0002-3750-7556 NR 14 TC 69 Z9 70 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 163112 DI 10.1063/1.2364259 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200091 ER PT J AU Specht, ED Goyal, A Li, J Martin, PM Li, X Rupich, MW AF Specht, E. D. Goyal, A. Li, J. Martin, P. M. Li, X. Rupich, M. W. TI Stacking faults in YBa2Cu3O7-x: Measurement using x-ray diffraction and effects on critical current SO APPLIED PHYSICS LETTERS LA English DT Article ID RESOLUTION ELECTRON-MICROSCOPY; THIN-FILMS; OXIDE SUPERCONDUCTORS; CRYSTAL-STRUCTURE; GRAIN-BOUNDARIES; DEPOSITION; DENSITY; 80-K; JC AB The density n of stacking faults (SFs) in epitaxial YBa2Cu3O7-x (Y123) films, consisting of extra CuO planes, is measured by fitting x-ray diffraction patterns using a random stacking model. The SF density is n=0.068 nm(-1) in films grown by metal-organic deposition on textured templates and optimized for high I-c. The presence of SF is correlated with pinning of magnetic field (H) applied in the Y123 ab plane. SF can be nearly eliminated by a high temperature anneal, or by adding excess Dy, resulting in I-c which is nearly independent of the orientation of H. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Amer Superconductor Corp, Westborough, MA 01581 USA. RP Specht, ED (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM spechted@ornl.gov RI Specht, Eliot/A-5654-2009 OI Specht, Eliot/0000-0002-3191-2163 NR 20 TC 41 Z9 41 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 162510 DI 10.1063/1.2364185 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200066 ER PT J AU Sun, T Pan, ZX Dravid, VP Wang, ZY Yu, MF Wang, J AF Sun, Tao Pan, Zixiao Dravid, Vinayak P. Wang, Zhaoyu Yu, Min-Feng Wang, Jin TI Nanopatterning of multiferroic BiFeO3 using "soft" electron beam lithography SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; FERROELECTRIC POLARIZATION; ARRAYS; HETEROSTRUCTURES; DEPOSITION; DOMAINS; MEMORY AB The authors report fabrication of multiferroic BiFeO3 (BFO) by the soft electron beam lithography technique. BiFeO3 nanopatterns with less than 100 nm characteristic dimension are fabricated from its liquid-phase precursor on diverse substrates. The chemical constituents and phase purity are characterized by transmission electron microscopy. The ferroelectric behavior is confirmed by piezoresponse force microscopy. A saturation magnetization of about 10 emu/cm(3) is observed, demonstrating the multiferroic characteristic of the BFO nanopatterns. Furthermore, the BFO nanolines pattened on SrTiO3 substrate exhibit a bamboolike structure, which can serve as an excellent model system for investigating the contribution of grain boundaries to the leakage current. C1 Northwestern Univ, Dept Mat Sci & Engn, Int Inst Nanotechnol, Evanston, IL 60208 USA. Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Sun, T (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Int Inst Nanotechnol, Evanston, IL 60208 USA. EM v-dravid@northwestern.edu RI Dravid, Vinayak/B-6688-2009; Pan, Zixiao/D-5650-2011; Yu, Min-Feng/C-2809-2012 NR 25 TC 16 Z9 16 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 163117 DI 10.1063/1.2364117 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200096 ER PT J AU Veal, BW Paulikas, AP Birtcher, RC AF Veal, B. W. Paulikas, A. P. Birtcher, R. C. TI Mechanisms and control of phase transition in thermally grown aluminas SO APPLIED PHYSICS LETTERS LA English DT Article ID OXIDATION; SCALES; STRAINS; STRESS AB The oxidation rate of beta-NiA1, at 1100 degrees C in air, can be slowed by means of a mechanical polish with alpha-A1(2)O(3) grit. Particles embedded during polishing act as nucleation sites for conversion of the initially formed theta-A1(2)O(3) to the stable alpha-A1(2)O(3) phase. Since theta-phase growth is much faster than alpha-phase growth, accelerated alpha ->theta conversion results in a thinner oxide when conversion is complete. A model is presented to quantitatively describe this behavior. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Veal, BW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM veal@anl.gov NR 15 TC 14 Z9 14 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 161916 DI 10.1063/1.2364124 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200037 ER PT J AU Young, DL Stradins, P Xu, YQ Gedvilas, L Reedy, B Mahan, AH Branz, HM Wang, Q Williamson, DL AF Young, David L. Stradins, Paul Xu, Yueqin Gedvilas, Lynn Reedy, Bob Mahan, A. H. Branz, Howard M. Wang, Qi Williamson, D. L. TI Rapid solid-phase crystallization of high-rate, hot-wire chemical-vapor-deposited hydrogenated amorphous silicon SO APPLIED PHYSICS LETTERS LA English DT Article ID A-SI-H; THIN-FILM AB Solid-phase crystallization of hydrogenated amorphous silicon thin films deposited by hot-wire (HW) and plasma-enhanced (PE) chemical vapor deposition was studied using in situ optical monitoring. HW films crystallized at least five times faster than PE films, independent of H and O concentration, deposition rate (2-110 angstrom/s), and nanovoid density due to reduced enthalpy barriers to both nucleation and final crystallization, which may be related to the presence of larger regions of highly ordered Si in the films. (c) 2006 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Young, DL (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM david_young@nrel.gov NR 13 TC 16 Z9 16 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 161910 DI 10.1063/1.2361163 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200031 ER PT J AU Zhang, P Istratov, AA Weber, ER Kisielowski, C He, HF Nelson, C Spence, JCH AF Zhang, Peng Istratov, Andrei A. Weber, Eicke R. Kisielowski, Christian He, Haifeng Nelson, Chris Spence, John C. H. TI Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction SO APPLIED PHYSICS LETTERS LA English DT Article ID RELAXATION; DEVICES; STRESS; SI AB Using the energy-filtered convergent-beam electron diffraction (CBED) technique in a transmission electron microscope, the authors report here a direct measurement of the lattice parameters of uniaxially strained silicon as close as 25 nm below the gate in a 65 nm node p-type metal-oxide-semiconductor field-effect transistor with SiGe source and drain. It is found that the dominant strain component (0.58%) is compressive along the source-drain direction. The compressive stress is 1.1 GPa along this direction. These findings demonstrate that CBED can serve as a strain metrology technique for the development of strained silicon device technology. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Zhang, P (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM pzhang@lbl.gov NR 18 TC 41 Z9 41 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 16 PY 2006 VL 89 IS 16 AR 161907 DI 10.1063/1.2362978 PG 3 WC Physics, Applied SC Physics GA 096VP UT WOS:000241405200028 ER PT J AU Wilson, RE Almond, PM Burns, PC Soderholm, L AF Wilson, Richard E. Almond, Philip M. Burns, Peter C. Soderholm, L. TI The structure and synthesis of plutonium(III) chlorides from aqueous solution SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURES; LANTHANIDE CHLORIDES; LN=LA-ND; COMPLEXES; HEXACHLORIDE; ENTHALPIES; CHEMISTRY; K2PUCL5; LN=CE; AQUO AB The preparation and structure of three trivalent plutonium chloride compounds from aqueous solution is reported. Two of the three are plutonium tetraaquatetrachloro complexes exhibiting a cis and a trans arrangement of Cl about the Pu. The identification of the coordination number of 4 with respect to Cl and the isomerism are both unprecedented in actinide solution chemistry. The third complex is a hexaaquadichloro complex of Pu(III), predicted by available thermodynamic data. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. RP Wilson, RE (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rewilson@anl.gov RI Wilson, Richard/H-1763-2011; Burns, Peter/J-3359-2013; OI Wilson, Richard/0000-0001-8618-5680; Burns, Peter/0000-0002-2319-9628 NR 28 TC 7 Z9 7 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 16 PY 2006 VL 45 IS 21 BP 8483 EP 8485 DI 10.1021/ic060979a PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 092OH UT WOS:000241106700008 PM 17029356 ER PT J AU Aquila, AL Salmassi, F Dollar, F Liu, Y Gullikson, M AF Aquila, A. L. Salmassi, F. Dollar, F. Liu, Y. Gullikson, M. TI Developments in realistic design for aperiodic Mo/Si multilayer mirrors SO OPTICS EXPRESS LA English DT Article ID GENETIC ALGORITHM; OPTIMIZATION AB Aperiodic multilayers have been designed for various applications, using numeric algorithms and analytical solutions, for many years with varying levels of success. This work developed a more realistic model for simulating aperiodic Mo/Si multilayers to be used in these algorithms by including the formation of MoSi2. Using a genetic computer code we were able to optimize a 45 degrees multilayer for a large bandpass reflection multilayer that gave good agreement with the model. (c) 2006 Optical Society of America C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Aquila, AL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, 2-400, Berkeley, CA 94720 USA. EM ALAquila@lbl.gov RI Dollar, Franklin/C-9214-2013 OI Dollar, Franklin/0000-0003-3346-5763 NR 9 TC 30 Z9 31 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 16 PY 2006 VL 14 IS 21 BP 10073 EP 10078 DI 10.1364/OE.14.010073 PG 6 WC Optics SC Optics GA 098JS UT WOS:000241517400059 PM 19529401 ER PT J AU Levin, V Henza, A Park, J Rodgers, A AF Levin, Vadim Henza, Alissa Park, Jeffrey Rodgers, Arthur TI Texture of mantle lithosphere along the Dead Sea Rift: Recently imposed or inherited? SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE anisotropy; lithosphere; upper mantle; body waves ID WAVE SPLITTING PARAMETERS; WESTERN SAUDI-ARABIA; SEISMIC ANISOTROPY; RED-SEA; AZIMUTHAL ANISOTROPY; PLATE KINEMATICS; SHEAR ZONES; SHIELD; VELOCITY; BENEATH AB Seismic anisotropy, a property linked to the texture of the mantle rock, should be distributed with depth along the trace of the Dead Sea Rift (DSR), owing to a combination of present day and ancient tectonics. Using data from four permanent and one temporary seismic observatories we evaluate birefringence (splitting) of 91 teleseismic core-refracted shear waves, primarily SKS phases. We find significant levels of birefringence in the bulk of observed phases. We also find that birefringence parameters (fast directions and delays) vary as a function of source-receiver geometry. Notably, the pattern of this directional variation in birefringence is quite similar at all sites we have examined. We interpret observed birefringence in SKS phases in terms of one- and two-layer models. Single-layer models for all stations exhibit a fast polarization oriented 12-19 degrees east of north, with anisotropy sufficient to generate 1.3-s time delay. We find strong evidence for at least two distinct anisotropic layers. For the two layer models, the upper layers resemble the single-layer models, showing near-north fast polarizations and delays on the order of I s. Three out of four sites show fast polarizations in the lower layer that strike 50-80 degrees CW from north with time delays 0.3-0.6 s. One site, at the northern end of the DSR, displays a higher degree of anisotropy in the lower layer, and a more northerly fast polarization. Overall, the lower layers at all sites appear to be consistent with the deformation caused by plate motion relative to the asthenosphere. The fabric in the upper layer is sub-parallel to the present-day transcurrent motion on the DSR, but also matches the typical orientation of lithospheric seismic anisotropy in the Arabian shield. Our overall conclusion is that the impact of the DSR on the rock fabric of the mantle lithosphere is probably quite weak. (c) 2006 Elsevier B.V. All rights reserved. C1 Rutgers State Univ, Dept Geol Sci, Piscataway, NJ 08855 USA. Yale Univ, Dept Geol & Geophys, New Haven, CT USA. Lawrence Livermore Natl Lab, Earth & Environm Sci Directorate, Livermore, CA 94551 USA. RP Levin, V (reprint author), Rutgers State Univ, Dept Geol Sci, Piscataway, NJ 08855 USA. EM vlevin@rci.rutgers.edu RI Rodgers, Arthur/E-2443-2011; GEOFON, GlobalSeismicNetwork/E-4273-2012 NR 57 TC 12 Z9 12 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 EI 1872-7395 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD OCT 16 PY 2006 VL 158 IS 2-4 BP 174 EP 189 DI 10.1016/j.pepi.2006.05.007 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 093BR UT WOS:000241142700007 ER PT J AU Kempe, MD AF Kempe, Michael D. TI Modeling of rates of moisture ingress into photovoltaic modules SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE EVA; encapsulant; diffusivity; solubility; humidity ID SOLAR-CELLS; DIFFUSION; PERFORMANCE; STABILITY; POLYMERS AB Encapsulant materials are used in photovoltaic devices for mechanical support, electrical isolation, and protection against corrosion. During long-term exposure of photovoltaic modules to environmental stress, the ingress of water into the module is correlated with decreased performance. By using diffusivity measurements for water through ethylene vinyl acetate (EVA), we have modeled moisture ingress using finite-element analysis with atmospheric data from various locations such as Miami, Florida. This analysis shows that because of the high diffusivity of EVA, even an impermeable glass back-sheet is incapable of preventing significant moisture ingress from the edges for a 20-30-year lifetime. Once moisture penetrates a module, it can condense and increase corrosion rates. Significantly reducing moisture ingress requires a true hermetic seal, the use of an encapsulant loaded with a desiccant, or the use of an encapsulant with a very low diffusivity. (c) 2006 Elsevier B.V. All rights reserved. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kempe, MD (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Michael_Kempe@NREL.gov NR 26 TC 95 Z9 95 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT 16 PY 2006 VL 90 IS 16 BP 2720 EP 2738 DI 10.1016/j.solmat.2006.04.002 PG 19 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 066UC UT WOS:000239254600013 ER PT J AU Jorgensen, GJ Terwilliger, KM DelCueto, JA Glick, SH Kempe, MD Pankow, JW Pern, FJ McMahon, TJ AF Jorgensen, G. J. Terwilliger, K. M. DelCueto, J. A. Glick, S. H. Kempe, M. D. Pankow, J. W. Pern, F. J. McMahon, T. J. TI Moisture transport, adhesion, and corrosion protection of PV module packaging materials SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE packaging materials; backsheets; encapsulants; moisture transport; adhesion ID ENCAPSULATION; FILMS AB We compare the properties of a number of encapsulant and soft backsheet materials that are important for photovoltaic (PV) module packaging. These properties include moisture transport and interfacial adhesion as a function of accelerated exposure to damp heat. Various cleaning and priming methods were studied for improving adhesion to glass and polymer surfaces. Barrier coatings prepared by industry and at NREL have been found to promote adhesion and provide varying levels of moisture-ingress protection. Plasma pre-etch of polyethylene terephthalate (PET) before barrier deposition reduces adhesion strength and moisture barrier properties. Resistance to cracking during lamination and peeling during test are investigated. The relative effectiveness of various combined packaging strategies to protect PV devices has been studied using 80-nm-thick aluminum films deposited onto 10cm x 10cm glass substrates. Glass/ethylene vinyl acetate (EVA)/aluminized-glass laminate constructions were found to trap harmful compounds that catalyzed moisture-driven corrosion of Al. Constructions with breathable backsheets allow higher rates of moisture ingress, but also allow egress of deleterious substances, thereby reducing corrosion. Published by Elsevier B.V. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jorgensen, GJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM gary_jorgensen@nrel.gov NR 30 TC 76 Z9 78 U1 10 U2 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT 16 PY 2006 VL 90 IS 16 BP 2739 EP 2775 DI 10.1016/j.solmat.2006.04.003 PG 37 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 066UC UT WOS:000239254600014 ER PT J AU Pan, CL Kora, G Tabb, DL Pelletier, DA McDonald, WH Hurst, GB Hettich, RL Samatova, NF AF Pan, Chongle Kora, Guruprasad Tabb, David L. Pelletier, Dale A. McDonald, W. Hayes Hurst, Gregory B. Hettich, Robert L. Samatova, Nagiza F. TI Robust estimation of peptide abundance ratios and rigorous scoring of their variability and bias in quantitative shotgun proteomics SO ANALYTICAL CHEMISTRY LA English DT Article ID SEQUENTIAL PAIRED COVARIANCE; MASS-SPECTROMETRY DATA; CODED AFFINITY TAGS; CELL-CULTURE; AMINO-ACIDS; IDENTIFICATION; EXPRESSION; RESOLUTION; MIXTURES; PROTEINS AB The abundance ratio between the light and heavy isotopologues of an isotopically labeled peptide can be estimated from their selected ion chromatograms. However, quantitative shotgun proteomics measurements yield selected ion chromatograms at highly variable signal-to-noise ratios for tens of thousands of peptides. This challenge calls for algorithms that not only robustly estimate the abundance ratios of different peptides but also rigorously score each abundance ratio for the expected estimation bias and variability. Scoring of the abundance ratios, much like scoring of sequence assignment for tandem mass spectra by peptide identification algorithms, enables filtering of unreliable peptide quantification and use of formal statistical inference in the subsequent protein abundance ratio estimation. In this study, a parallel paired covariance algorithm is used for robust peak detection in selected ion chromatograms. A peak profile is generated for each peptide, which is a scatterplot of ion intensities measured for the two isotopologues within their chromatographic peaks. Principal component analysis of the peak profile is proposed to estimate the peptide abundance ratio and to score the estimation with the signal-to-noise ratio of the peak profile ( profile signal-to-noise ratio). We demonstrate that the profile signal-to-noise ratio is inversely correlated with the variability and bias of peptide abundance ratio estimation. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37830 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37830 USA. Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37830 USA. Univ Tennessee, Oak Ridge Natl Lab, Genome Sci & Technol Grad Sch, Oak Ridge, TN 37830 USA. RP Samatova, NF (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. EM samatovan@ornl.gov RI Pan, Chongle/C-6960-2008; Pelletier, Dale/F-4154-2011; McDonald, W. Hayes/B-4109-2016; Hettich, Robert/N-1458-2016; OI McDonald, W. Hayes/0000-0002-3510-426X; Hettich, Robert/0000-0001-7708-786X; Hurst, Gregory/0000-0002-7650-8009 NR 26 TC 33 Z9 33 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2006 VL 78 IS 20 BP 7110 EP 7120 DI 10.1021/ac0606554 PG 11 WC Chemistry, Analytical SC Chemistry GA 094DO UT WOS:000241219800006 PM 17037910 ER PT J AU Pan, CL Kora, G McDonald, WH Tabb, DL VerBerkmoes, NC Hurst, GB Pelletier, DA Samatova, NF Hettich, RL AF Pan, Chongle Kora, Guruprasad McDonald, W. Hayes Tabb, David L. VerBerkmoes, Nathan C. Hurst, Gregory B. Pelletier, Dale A. Samatova, Nagiza F. Hettich, Robert L. TI ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation SO ANALYTICAL CHEMISTRY LA English DT Article ID CODED AFFINITY TAGS; MASS-SPECTROMETRY; RHODOPSEUDOMONAS-PALUSTRIS; SHOTGUN PROTEOMICS; IDENTIFICATION; EXPRESSION; COMPLEXES; MIXTURES AB A profile likelihood algorithm is proposed for quantitative shotgun proteomics to infer the abundance ratios of proteins from the abundance ratios of isotopically labeled peptides derived from proteolysis. Previously, we have shown that the estimation variability and bias of peptide abundance ratios can be predicted from their profile signal-to-noise ratios. Given multiple quantified peptides for a protein, the profile likelihood algorithm probabilistically weighs the peptide abundance ratios by their inferred estimation variability, accounts for their expected estimation bias, and suppresses contribution from outliers. This algorithm yields maximum likelihood point estimation and profile likelihood confidence interval estimation of protein abundance ratios. This point estimator is more accurate than an estimator based on the average of peptide abundance ratios. The confidence interval estimation provides an "error bar" for each protein abundance ratio that reflects its estimation precision and statistical uncertainty. The accuracy of the point estimation and the precision and confidence level of the interval estimation were benchmarked with standard mixtures of isotopically labeled proteomes. The profile likelihood algorithm was integrated into a quantitative proteomics program, called ProRata, freely available at www.MSProRata.org. C1 Univ Tennessee, Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37830 USA. Univ Tennessee, Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. Univ Tennessee, Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37830 USA. Univ Tennessee, Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37830 USA. Univ Tennessee, Oak Ridge Natl Lab, Genome Sci & Technol Grad Sch, Oak Ridge, TN 37830 USA. RP Samatova, NF (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37830 USA. EM samatovan@ornl.gov; hettichrl@ornl.gov RI Pan, Chongle/C-6960-2008; Pelletier, Dale/F-4154-2011; McDonald, W. Hayes/B-4109-2016; Hettich, Robert/N-1458-2016 OI Hurst, Gregory/0000-0002-7650-8009; Tabb, David/0000-0001-7223-578X; McDonald, W. Hayes/0000-0002-3510-426X; Hettich, Robert/0000-0001-7708-786X NR 25 TC 75 Z9 76 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2006 VL 78 IS 20 BP 7121 EP 7131 DI 10.1021/ac060654b PG 11 WC Chemistry, Analytical SC Chemistry GA 094DO UT WOS:000241219800007 PM 17037911 ER PT J AU Chan, P Phan, T Kao, MC Dolan, C Tok, JBH AF Chan, Priscilla Phan, Tiffany Kao, Michael C. Dolan, Cheryl Tok, Jeffrey B. -H. TI Generating short peptidic ligands for silver nanowires from phage display random libraries SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE phage display random library; nanowires; amino acid residues; Tentagel resins; in vitro biosynthesis AB We report the generation of peptide ligands for silver nanowires using a linear 12-mer peptide phage display random library technique. Phage clones that specifically bind the silver nanowires are sequenced after three rounds of biopanning, and obtained DNA sequences suggest that there are a few conserved amino acid residues which may be critical for binding. A selected binding peptide, together with two mutant peptide sequences, were subsequently synthesized on Tentagel resins to examine the importance of both the identities and positions of the conserved amino acid residues. (c) 2006 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Biosecur & Nanosci Lab, Dept Chem & Mat Sci, Livermore, CA 94551 USA. RP Tok, JBH (reprint author), Lawrence Livermore Natl Lab, Biosecur & Nanosci Lab, Dept Chem & Mat Sci, Livermore, CA 94551 USA. EM tok2@llnl.gov FU NIAID NIH HHS [AI065359] NR 15 TC 5 Z9 6 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD OCT 15 PY 2006 VL 16 IS 20 BP 5261 EP 5264 DI 10.1016/j.bmcl.2006.08.013 PG 4 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 095YO UT WOS:000241344400001 PM 16934463 ER PT J AU Bruland, OS Nilsson, S Fisher, DR Larsen, RH AF Bruland, Oyvind S. Nilsson, Sten Fisher, Darrell R. Larsen, Roy H. TI High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter Ra-223: Adjuvant or alternative to conventional modalities? SO CLINICAL CANCER RESEARCH LA English DT Article; Proceedings Paper CT Conference on Advances in Treating Metastatic Bone Cancer CY OCT 28-29, 2005 CL Cambridge, MA ID PAINFUL BONE METASTASES; REFRACTORY PROSTATE CARCINOMA; RADIUM DIAL WORKERS; PHASE-III TRIAL; DOUBLE-BLIND; ANKYLOSING-SPONDYLITIS; RADIONUCLIDE THERAPY; RANDOMIZED-TRIAL; CANCER-PATIENTS; CLINICAL-TRIAL AB The bone-seeking alpha-particle-emitting radiopharmaceutical Alpharadin, (RaCl2)-Ra-223 (half-life = 11.4 days) is under clinical development is a novel treatment for skeletal metastases from breast and prostate cancer. This article summarizes the current status of preclinical and clinical research on (RaCl2)-Ra-223. Potential advantages of Ra-223 to that of external beam irradiation and registered beta-emitting bone seekers are discussed. Published data of Ra-223 dosimetry in mice and a therapeutic study in a skeletal metastases model in nude rats have indicated significant therapeutic potential of bone-seeking alpha-emitters. This article provides short-term and long-term results from the first clinical single dosage trial. We also present data from a repeated dosage study of five consecutive injections of 50 kBq/kg body weight, once every 3rd week, or two injections of 125 kBq/kg body weight, 6 weeks apart. Furthermore, interim results are described for a randomized phase 2 trial involving 64 patients with hormone refractory prostate cancer and painful skeletal metastases who received for monthly injections of Ra-223 or saline as an adjuvant to external beam radiotherapy. Lastly we present preliminary dose estimates for Ra-223 in humans. results indicate that repeated dosing is feasible and toxicity is low, and that opportunities are available for combined treatment strategies. C1 Univ Oslo, Fac Med, N-0310 Oslo, Norway. Norwegian Radium Hosp, Dept Oncol, N-0310 Oslo, Norway. Algeta ASA, Oslo, Norway. Karolinska Hosp & Inst, Stockholm, Sweden. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bruland, OS (reprint author), Univ Oslo, Fac Med, N-0310 Oslo, Norway. EM oyvind.bruland@klinmed.uio.no NR 57 TC 90 Z9 95 U1 0 U2 12 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD OCT 15 PY 2006 VL 12 IS 20 SU S BP 6250S EP 6257S DI 10.1158/1078-0432.CCR-06-0841 PN 2 PG 8 WC Oncology SC Oncology GA 099AC UT WOS:000241563900008 PM 17062709 ER PT J AU Lee, DE Gerasimov, MR Schiffer, WK Gifford, AN AF Lee, Dianne E. Gerasimov, Madina R. Schiffer, Wynne K. Gifford, Andrew N. TI Concentration-dependent conditioned place preference to inhaled toluene vapors in rats SO DRUG AND ALCOHOL DEPENDENCE LA English DT Article DE toluene; inhalant abuse; conditioned place preference; rats; drugs-of-abuse ID LOCOMOTOR-ACTIVITY; EXTRACELLULAR DOPAMINE; ORGANIC-SOLVENTS; ABUSED SOLVENTS; MICE; EXPOSURE; INHALATION; BEHAVIOR; COCAINE; ETHANOL AB Objectives: Toluene is present in many commercial products and is subject to abuse by inhalation. The goal of this study was to extend previous reports indicating that rats will exhibit a positive conditioned place preference to inhaled toluene vapors and to determine the dose-response relationship for inhaled toluene in terms of exposure concentration and number of exposures. For the conditioned place preference experiments rats were exposed to toluene vapors at concentrations of 800, 2000, 3000 or 5000 ppm in one compartment of a three-compartment box. Results: Following six conditioning sessions with toluene, a significant place preference was obtained at 2000 and 3000 ppm, but not at 800 or 5000 ppm. Extending the number of toluene pairings at the 2000 and 3000 ppm concentration to 12 significantly enhanced the place preference compared to that at six pairings. Conclusions: These experiments extend our previous finding that rats will show a conditioned place preference to inhaled toluene, and indicate that a reinforcing "dose" of toluene depends on both the concentration and number of pairings. (c) 2006 Elsevier Ireland Ltd. All rights reserved. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Gifford, AN (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM gifforda@bnl.gov FU NIDA NIH HHS [DA017349] NR 39 TC 18 Z9 20 U1 1 U2 3 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0376-8716 J9 DRUG ALCOHOL DEPEN JI Drug Alcohol Depend. PD OCT 15 PY 2006 VL 85 IS 1 BP 87 EP 90 DI 10.1016/j.drugalcdep.2006.03.013 PG 4 WC Substance Abuse; Psychiatry SC Substance Abuse; Psychiatry GA 094VU UT WOS:000241268100011 PM 16675162 ER PT J AU Liu, CX Jeon, BH Zachara, JM Wang, ZM Dohnalkova, A Fredrickson, JK AF Liu, Chongxuan Jeon, Byong-Hun Zachara, John M. Wang, Zheming Dohnalkova, Alice Fredrickson, James K. TI Kinetics of microbial reduction of solid phase U(VI) SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HANFORD-SITE; VADOSE ZONE; SUBSURFACE SEDIMENTS; REDUCING BACTERIA; URANIUM; BIOREMEDIATION; WASHINGTON; DIFFUSION; SORPTION; REMOVAL AB Sodium boltwoodite (NaUO(2)SiO(3)OH center dot 1.5 H(2)O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)(tot) and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solidphase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Yonsei Univ, Wonju 220710, Kangwon, South Korea. RP Liu, CX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Liu, Chongxuan/C-5580-2009; Wang, Zheming/E-8244-2010; OI Wang, Zheming/0000-0002-1986-4357; Jeon, Byong-Hun/0000-0002-5478-765X NR 31 TC 18 Z9 19 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2006 VL 40 IS 20 BP 6290 EP 6296 DI 10.1021/es0608601 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 093TM UT WOS:000241192600021 PM 17120555 ER PT J AU Lengke, MF Ravel, B Fleet, ME Wanger, G Gordon, RA Southam, G AF Lengke, Maggy F. Ravel, Bruce Fleet, Michael E. Wanger, Gregory Gordon, Robert A. Southam, Gordon TI Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III) - Chloride complex SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; PLACER GOLD; BASAL REEF; IN-VITRO; ACCUMULATION; BACTERIA; BIOMASS; ORIGIN; SILVER; DEPOSITION AB The mechanisms of gold bioaccumulation by cyanobacteria (Plectonema boryanum UTEX 485) from gold(III)-chloride solutions have been studied at three gold concentrations (0.8, 1.7, and 7.6 mM) at 25 C, using both fixed-time laboratory and real-time synchrotron radiation absorption spectroscopy (XAS) experiments. Interaction of cyanobacteria with aqueous gold(III)-chloride initially promoted the precipitation of nanoparticles of amorphous gold(I)-sulfide at the cell walls, and finally deposited metallic gold in the form of octahedral (111) platelets (similar to 10 nm to 6 mu m) near cell surfaces and in solutions. The XAS results confirm that the reduction mechanism of gold( III)-chloride to metallic gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I)-sulfide. C1 Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada. Argonne Natl Lab, Argonne, IL 60439 USA. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. RP Lengke, MF (reprint author), Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada. EM mlengke@uwo.ca RI Southam, Gordon/D-1983-2013 OI Southam, Gordon/0000-0002-8941-1249 NR 38 TC 99 Z9 105 U1 1 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2006 VL 40 IS 20 BP 6304 EP 6309 DI 10.1021/es061040r PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 093TM UT WOS:000241192600023 PM 17120557 ER PT J AU Podsiadlowski, L Carapelli, A Nardi, F Dallal, R Koch, M Boore, JL Frati, F AF Podsiadlowski, L. Carapelli, A. Nardi, F. Dallal, R. Koch, M. Boore, J. L. Frati, F. TI The mitochondrial genomes of Campodea fragilis and Campodea lubbocki (Hexapoda : Diplura): High genetic divergence in a morphologically uniform taxon SO GENE LA English DT Article DE mtDNA; mitochondrial genome; apterygote hexapods ID RNA SECONDARY STRUCTURE; 12S RIBOSOMAL-RNA; COMPLETE SEQUENCE; EVOLUTION; INSECTA; CRUSTACEANS; PHYLOGENY; DNA; ORGANIZATION; REARRANGEMENTS AB Complete mitochondrial genome sequences are presented from two dipluran hexapods (i.e., a group of "primarily wingless insects") of the genus Campodea and compared to those of other arthropods. Their gene order is the same as in most other hexapods and crustaceans. Structural changes have occurred in tRNA-C, tRNA-R, tRNA-SI and tRNA-S2 as well as in both ribosomal RNAs. These mtDNAs have striking biases in nucleotide and amino acid composition. Although the two Campodea species are morphologically highly similar, their genetic divergence is larger than expected, suggesting a long evolutionary history, perhaps under stable ecological conditions. Published by Elsevier B.V. C1 Free Univ Berlin, Dept Anim Systemat & Evolut, D-14195 Berlin, Germany. Univ Siena, Dept Evolut Biol, I-53100 Siena, Italy. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, US Dept Energy Joint Genome Inst, Berkeley, CA 94720 USA. RP Podsiadlowski, L (reprint author), Free Univ Berlin, Dept Anim Systemat & Evolut, Konigin Luise Str 1-3, D-14195 Berlin, Germany. EM lars@podsiadlowski.de RI Podsiadlowski, Lars/B-2796-2008; Nardi, Francesco/E-5516-2011; OI Dallai, Romano/0000-0002-2258-8891; Nardi, Francesco/0000-0003-0271-9855; CARAPELLI, Antonio/0000-0002-3165-9620 NR 59 TC 22 Z9 22 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1119 J9 GENE JI Gene PD OCT 15 PY 2006 VL 381 BP 49 EP 61 DI 10.1016/j.gene.2006.06.009 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 097CV UT WOS:000241424900007 PM 16919404 ER PT J AU Johnson, KJ Cygan, RT Fein, JB AF Johnson, Kelly J. Cygan, Randall T. Fein, Jeremy B. TI Molecular simulations of metal adsorption to bacterial surfaces SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID GRAM-POSITIVE BACTERIA; FINE-STRUCTURE SPECTROSCOPY; CHEMICAL-EQUILIBRIUM MODEL; X-RAY-DIFFRACTION; CELL-WALLS; BACILLUS-SUBTILIS; AQUEOUS-SOLUTIONS; PSEUDOMONAS-AERUGINOSA; DYNAMICS SIMULATIONS; COMPUTER-SIMULATION AB The atomic-scale interactions that occur between cations and the metal-binding cell wall components common to many gram-positive bacteria were investigated using molecular simulations techniques. We examined the adsorption of Cd and Ph onto peptidoglycan and teichoic acid components of the bacterial cell wall using classical energy force field methods. Within the framework of molecular mechanics and the Cerius(2) modeling software, we used energy minimization, conformational analysis, and molecular dynamics to examine the different components of the cell wall and to determine relative binding energies and structural configurations of the cell wall components, both with and without the metals present. Electronic structure calculations of representative metal-organic complexes validate the more practical classical methods required in simulating the large number of atoms associated with the cell wall components. The classical force field simulations were conducted in both gas phase and solvated periodic cells. Force field-based simulation techniques can adequately describe the interactions of Cd with the cell wall, defining both metal ion coordinations and binding distances. However, the classical force field approach is inconsistent in describing the observed Pb-cell wall interactions due to possible limitations in the force field parameters, the propensity for Pb to form hydroxides at circumneutral pH, or the dominance of other adsorption mechanisms. (c) 2006 Elsevier Inc. All rights reserved. C1 Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. RP Cygan, RT (reprint author), Sandia Natl Labs, Dept Geochem, POB 5800, Albuquerque, NM 87185 USA. EM rtcygan@sandia.gov NR 57 TC 15 Z9 16 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2006 VL 70 IS 20 BP 5075 EP 5088 DI 10.1016/j.gca.2006.07.028 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 101SK UT WOS:000241760600001 ER PT J AU Newman, BD Vivoni, ER Groffman, AR AF Newman, Brent D. Vivoni, Enrique R. Groffman, Armand R. TI Surface water-groundwater interactions in semiarid drainages of the American southwest SO HYDROLOGICAL PROCESSES LA English DT Review DE surface water-groundwater interactions; semiarid; recharge; biogeochemistry ID PONDEROSA PINE HILLSLOPE; HYDROLOGIC PROCESSES; NEW-MEXICO; ECOSYSTEM PERSPECTIVE; ENVIRONMENTAL TRACERS; HYDRAULIC GEOMETRY; EPHEMERAL STREAMS; CHANNEL NETWORKS; ORGANIC-CARBON; DESERT SOILS AB Drainages are important features of semiarid landscapes because they are areas where surface water, groundwater, and terrestrial and aquatic ecosystems converge. Management of these critical ecohydrological systems requires a sound understanding of surface water-groundwater interactions. At the basin- to landscape-scale, drainage density, location, and channel characteristics are formed upon a geomorphic and geologic template that limit where and how surface water-groundwater interactions occur. At smaller scales, semiarid surface water-groundwater interactions exhibit a high degree of temporal and spatial variability that links directly to biogeochemical characteristics and ecosystem dynamics. In this paper, we review key features of interactions in semiarid drainages, and supplement the discussion with new examples from the American southwest. We conclude by presenting a series of alternative conceptual models that describe surface water-groundwater interactions within semiarid drainages and highlight areas for future research. Copyright (C) 2006 John Wiley & Sons, Ltd. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. Los Alamos Natl Lab, Water Stewardship Grp, Los Alamos, NM 87545 USA. RP Newman, BD (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS J495, Los Alamos, NM 87545 USA. EM bnewman@lanl.gov RI Vivoni, Enrique/E-1202-2012 OI Vivoni, Enrique/0000-0002-2659-9459 NR 104 TC 18 Z9 18 U1 3 U2 29 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0885-6087 J9 HYDROL PROCESS JI Hydrol. Process. PD OCT 15 PY 2006 VL 20 IS 15 BP 3371 EP 3394 DI 10.1002/hyp.6336 PG 24 WC Water Resources SC Water Resources GA 097PP UT WOS:000241460700013 ER PT J AU Gray, JL Hull, R Floro, JA AF Gray, J. L. Hull, R. Floro, J. A. TI Periodic arrays of epitaxial self-assembled SiGe quantum dot molecules grown on patterned Si substrates SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE-MORPHOLOGY; STRAINED FILMS; ISLANDS; SI(001); GE; NUCLEATION; ORGANIZATION; STABILITY; EVOLUTION; PYRAMIDS AB Ex situ focused ion-beam (FIB) patterning of arrays of holes on Si (001) substrates results in the subsequent formation of SiGe quantum dot molecules at each of the patterned sites during heteroepitaxial growth under kinetically limited growth conditions where island formation is constrained. These quantum dot molecules are fourfold self-assembled island nanostructures bound by a central pit. During growth, material is ejected from the patterned sites forming the pits that in turn provide favorable sites for the cooperative nucleation of {105} faceted islands. The degree of order and quality of the resulting structures depend on many factors including growth temperature, ion-beam milling depth, Si buffer thickness, and spacings between FIB exposed sites. This technique provides a method for controlling the lateral placement of semiconductor nanostructures, which could be used in applications such as complex nanoelectronic architectures. (c) 2006 American Institute of Physics. C1 Univ Pittsburgh, Dept Mat Sci & Engn, Pittsburgh, PA 15261 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Gray, JL (reprint author), Univ Pittsburgh, Dept Mat Sci & Engn, 848 Benedum Hall, Pittsburgh, PA 15261 USA. EM jgray@engr.pitt.edu NR 30 TC 32 Z9 32 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2006 VL 100 IS 8 AR 084312 DI 10.1063/1.2358003 PG 7 WC Physics, Applied SC Physics GA 101EO UT WOS:000241721900080 ER PT J AU Ozcan, AS Wang, YY Ozaydin, G Ludwig, KF Bhattacharyya, A Moustakas, TD Siddons, DP AF Ozcan, Ahmet S. Wang, Yiyi Ozaydin, Gozde Ludwig, Karl F. Bhattacharyya, Anirban Moustakas, Theodore D. Siddons, D. Peter TI Real-time x-ray studies of gallium adsorption and desorption SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; SURFACE MORPHOLOGIES; DROPLET EPITAXY; QUANTUM DOTS; GROWTH; GAN; SIMULATIONS; KINETICS AB Real-time grazing-incidence small-angle x-ray scattering has been employed to study the adsorption and desorption of Ga on c-plane sapphire and Ga-polar GaN surfaces. Formation of self-organized liquid Ga nanodroplets has been observed on sapphire during Ga exposure from an effusion cell at high flux. Subsequent to the Ga deposition, the nanodroplets were nitridated in situ by a nitrogen plasma source, which converted the droplets into GaN nanodots. In addition to the droplet studies, at lower Ga flux, the adsorption and desorption of Ga have been studied in the predroplet regime. For identical processing conditions, significantly different Ga adsorption/desorption rates were observed on sapphire and GaN surfaces. (c) 2006 American Institute of Physics. C1 Boston Univ, Dept Phys, Boston, MA 02215 USA. Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. IBM Microelect, Fishkill, NY USA. RP Ozcan, AS (reprint author), Boston Univ, Dept Phys, Boston, MA 02215 USA. RI Ozaydin-Ince, Gozde/F-3780-2011; Moustakas, Theodore/D-9249-2016 OI Moustakas, Theodore/0000-0001-8556-884X NR 21 TC 5 Z9 5 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2006 VL 100 IS 8 AR 084307 DI 10.1063/1.2358307 PG 6 WC Physics, Applied SC Physics GA 101EO UT WOS:000241721900075 ER PT J AU Qi, L Lee, BI Samuels, WD Exarhos, GJ Parler, SG AF Qi, Lai Lee, Burtrand I. Samuels, William D. Exarhos, Gregory J. Parler, Sam G., Jr. TI Three-phase percolative silver-BaTiO3-epoxy nanocomposites with high dielectric constants SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE composites; dielectric properties; inorganic materials; nanocomposites ID POLYMER COMPOSITES; CAPACITORS; BEHAVIOR; PHYSICS AB A three-phase epoxy-based composite with randomly distributed silver nanoparticles and BaTiO3 particles was synthesized. By the incorporation of silver nanoparticles into the epoxy resin, the dielectric properties of the resin were significantly enhanced, and this provided an ideal host for further mixing with BaTiO3 to prepare high dielectric-constant, polymer-based dielectrics with high dielectric strength. The devices that adopted these composites demonstrated high relative dielectric constants of approximately 450, 110 times higher than that of the epoxy matrix, with a dielectric strength of 5 kV/mm at room temperature. These nanocomposites were found to be potentially useful for embedded capacitor applications. (c) 2006 Wiley Periodicals, Inc. C1 Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29631 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Cornell Dubilier, Liberty, SC 29657 USA. RP Qi, L (reprint author), Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29631 USA. EM laiqi@hotmail.com NR 22 TC 16 Z9 16 U1 1 U2 18 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0021-8995 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD OCT 15 PY 2006 VL 102 IS 2 BP 967 EP 971 DI 10.1002/app.23739 PG 5 WC Polymer Science SC Polymer Science GA 079VX UT WOS:000240207100003 ER PT J AU Chialvo, AA Bartok, A Baranyai, A AF Chialvo, Ariel A. Bartok, Albert Baranyai, Andras TI On the re-engineered TIP4P water models for the prediction of vapor-liquid equilibrium SO JOURNAL OF MOLECULAR LIQUIDS LA English DT Article DE Gibbs ensemble Monte Carlo; water models; ices; melting point; density maximum ID COMPUTER-SIMULATION; MAXIMUM DENSITY; ICE; TEMPERATURE; PHASES; STABILITY AB We perform extensive Gibbs Ensemble Monte Carlo simulations to study the capability of some recently re-parameterizations of the original TIP4P model intended to predict accurately the vapor-liquid coexistence envelope of water, its critical point, and its temperature dependence for the vapor pressure and second virial coefficient, and complement this analysis with the characterization of some specific crystalline faces of ice. We also disclose some trends between the resulting dipole moment of the models and the Lennard-Jones parameters, the location of the negative charge, as well as the estimated critical temperature. Finally, we discuss the inability of these models to predict accurately and simultaneously the melting temperature and the temperature of maximum density. (C) 2006 Elsevier B.V All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Eotvos Lorand Univ, Dept Theoret Chem, H-1518 Budapest 112, Hungary. RP Chialvo, AA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM chialvoaa@ornl.gov OI Chialvo, Ariel/0000-0002-6091-4563 NR 23 TC 15 Z9 15 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7322 J9 J MOL LIQ JI J. Mol. Liq. PD OCT 15 PY 2006 VL 129 IS 1-2 BP 120 EP 124 DI 10.1016/j.molliq.2006.08.018 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 101CN UT WOS:000241716600019 ER PT J AU Brillo, J Bytchkov, A Egry, I Hennet, L Mathiak, G Pozdnyakova, I Price, DL Thiaudiere, D Zanghi, D AF Brillo, J. Bytchkov, A. Egry, I. Hennet, L. Mathiak, G. Pozdnyakova, I. Price, D. L. Thiaudiere, D. Zanghi, D. TI Local structure in liquid binary Al-Cu and Al-Ni alloys SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE liquid alloys and liquid metals; synchrotron radiation; X-ray diffraction; medium-range order; short-range order ID SHORT-RANGE ORDER; MELTS; DIFFRACTION; LEVITATION; SCATTERING; PREPEAK; MODEL AB The local short-to-intermediate range structure was studied in liquid Al-Ni and Al-Cu alloys by X-ray diffraction as a function of temperature and composition. A containerless technique, combining aerodynamic levitation and inductive heating, was used to position and melt the samples. The scattered intensity was recorded by an image plate. Liquid samples with compositions corresponding to an intermetallic solid phase show a pronounced prepeak in the structure function S(Q). (c) 2006 Elsevier B.V. All rights reserved. C1 Inst Space Simulat, German Aerosp Ctr, D-51170 Cologne, Germany. CNRS, CRMHT, F-45071 Orleans, France. Oak Ridge Natl Lab, Adv Photon Source, Oak Ridge, TN 37830 USA. Synchrotron Soleil, Gif Sur Yvette, France. RP Egry, I (reprint author), Inst Space Simulat, German Aerosp Ctr, Linder Hoehe,DLR, D-51170 Cologne, Germany. EM Ivan.Egry@dlr.de RI HENNET, Louis/C-1711-2008; ZANGHI, Didier/C-1822-2008; Pozdnyakova, Irina/C-4832-2008; bytchkov, aleksei/F-2609-2012 OI HENNET, Louis/0000-0002-2992-4800; NR 23 TC 40 Z9 41 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD OCT 15 PY 2006 VL 352 IS 38-39 BP 4008 EP 4012 DI 10.1016/j.jnoncrysol.2006.08.011 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 097WD UT WOS:000241479200008 ER PT J AU Wilson, TW Choo, H Porter, WD Speakman, SA Fan, C Liaw, PK AF Wilson, Timothy W. Choo, Hahn Porter, Wallace D. Speakman, Scott A. Fan, Cang Liaw, Peter K. TI Amorphization and crystallization processes of the ball-milled Al-Y-Fe-TM alloys (TM = Ni, Co, Cu, and Fe) SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE amorphous metals, metallic glasses; crystallization; nanocrystals ID HIGH-TENSILE-STRENGTH; METALLIC GLASSES; AMORPHOUS-ALLOYS; ALUMINUM; FORMABILITY; KINETICS; BEHAVIOR AB High-energy ball milling was used to synthesize aluminum-based alloys containing amorphous and nanocrystalline phases to investigate the compositional effects of transition metals (TM) on the amorphization and crystallization processes of the ball-milled Al85Y7Fe5TM3 alloys (TM = Ni, Co, Cu, and Fe) were investigated. The crystallization kinetics of the ball-milled Al-Y-Fe-TM nanocomposite powders were studied using differential scanning calorimetry (DSC). The DSC results of Al83Y7Fe5Ni5 show that the crystallization temperature and the activation energy of crystallization are 668 K and 310 kJ/mol, respectively. In-situ high-temperature X-ray diffraction showed that the crystallization was a complex process involving growth of the nanocrystalline phase along with crystallization of the amorphous matrix phase. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Met & Ceram Div, Oak Ridge, TN 37831 USA. RP Choo, H (reprint author), Univ Tennessee, Dept Mat Sci & Engn, 318 Dougherty Bldg, Knoxville, TN 37996 USA. EM twilson3@utk.edu; hchoo@utk.edu RI Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 NR 37 TC 9 Z9 10 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD OCT 15 PY 2006 VL 352 IS 38-39 BP 4024 EP 4029 DI 10.1016/j.jnoncrysol.2006.07.004 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 097WD UT WOS:000241479200011 ER PT J AU Vergara, LI Meyer, FW Krause, HF Traskelin, P Nordlund, K Salonen, E AF Vergara, L. I. Meyer, F. W. Krause, H. F. Traskelin, P. Nordlund, K. Salonen, E. TI Methane production from ATJ graphite by slow atomic and molecular D ions: Evidence for projectile molecule-size-dependent yields at low energies SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CHEMICAL EROSION; PYROLYTIC-GRAPHITE; HYDROCARBON FORMATION; IMPACT; CARBON; BOMBARDMENT; DYNAMICS AB We present experimental results for methane production from ATJ graphite impacted by atomic and molecular D ions in the energy range 5-60 eV/D. A systematic trend of the methane yields for the different molecular species compared at the same impact energy/D is observed: while all three species lead to methane yields that coincide within the experimental uncertainty at the high energy end of the investigated range, at lower energies the yields diverge by progressively larger amounts, with the incident triatomic molecular ion leading to the largest yields per atom, and the atomic ion to the smallest. The difference at the lowest investigated energy (10 eV/D) is about a factor of two. Total chemical sputtering yields obtained by classical molecular dynamic simulations also indicate that molecular projectiles lead to larger yields per atom than atomic projectiles. The energy dependence of the total yield increase obtained by the simulations, however, is different than that observed experimentally for methane production. (c) 2006 Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Helsinki, Accelerator Lab, FIN-00014 Helsinki, Finland. Helsinki Univ Technol, FIN-02015 Helsinki, Finland. Helsinki Inst Phys, FIN-02015 Helsinki, Finland. RP Vergara, LI (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM vergarali@ornl.gov; meyerfw@ornl.gov RI Salonen, Emppu/E-8975-2012; Nordlund, Kai/L-8275-2014 OI Nordlund, Kai/0000-0001-6244-1942 NR 30 TC 21 Z9 21 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2006 VL 357 IS 1-3 BP 9 EP 18 DI 10.1016/j.jnucmat.2006.02.102 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 098SU UT WOS:000241543900002 ER PT J AU MacLean, HJ Ballinger, RG Kolaya, LE Simonson, SA Lewis, N Hanson, ME AF MacLean, H. J. Ballinger, R. G. Kolaya, L. E. Simonson, S. A. Lewis, N. Hanson, M. E. TI The effect of annealing at 1500 degrees C on migration and release of ion implanted silver in CVD silicon carbide SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DIFFUSION; BEHAVIOR; DAMAGE; FUEL AB The transport of silver in CVD beta-SiC has been studied using ion implantation. Silver ions were implanted in beta-SiC using the ATLAS accelerator facility at the Argonne National Laboratory. Ion beams with energies of 93 and 161 MeV were used to achieve deposition with peak concentrations of approximately 26 wt% at depths of approximately 9 and 13 mu m, respectively. As-implanted samples were then annealed at 1500 degrees C for 210 or 480 h. XPS, SEM, TEM, STEM, and optical methods were used to analyze the material before and after annealing. Silver concentration profiles were determined using XPS before and after annealing. STEM and SEM equipped with quantitative chemical analysis capability were used to more fully characterize the location and morphology of the silver before and after annealing. The results show that, within the uncertainty of measurement techniques, there is no silver migration, via either inter- or intra-granular paths, for the times and temperature studied. Additionally, the silver was observed to phase separate within the SiC after annealing. The results of this work do not support the long held assumption that silver release from CVD SiC, used for gas-reactor coated particle fuel, is dominated by grain boundary diffusion. (c) 2006 Elsevier B.V. All rights reserved. C1 MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. Idaho Natl Lab, Idaho Falls, ID USA. Lockheed Martin Corp, Schenectady, NY USA. RP Ballinger, RG (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,Bldg NW-22-117, Cambridge, MA 02139 USA. EM hvymet@mit.edu NR 19 TC 33 Z9 33 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2006 VL 357 IS 1-3 BP 31 EP 47 DI 10.1016/j.jnucmat.2006.05.043 PG 17 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 098SU UT WOS:000241543900004 ER PT J AU Klueh, RL Hashimoto, N Sokolov, MA Shiba, K Jitsukawa, S AF Klueh, R. L. Hashimoto, N. Sokolov, M. A. Shiba, K. Jitsukawa, S. TI Mechanical properties of neutron-irradiated nickel-containing martensitic steels: I. Experimental study SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CR-MO STEELS; ACTIVATION FERRITIC/MARTENSITIC STEELS; POSTIRRADIATION TENSILE BEHAVIOR; LOW FLUENCE IRRADIATION; DOPED FERRITIC STEELS; MICROSTRUCTURAL EVOLUTION; 12CR-1MOVW STEELS; HFIR; EMBRITTLEMENT; 9CR-1MOVNB AB Tensile and Charpy specimens of 9Cr-1MoVNb (modified 9Cr-1Mo) and 12Cr-1MoVW (Sandvik HT9) steels and these steels doped with 2% Ni were irradiated at 300 and 400 degrees C in the High Flux Isotope Reactor (HFIR) up to 12 dpa and at 393 degrees C in the Fast Flux Test Facility (FFTF) to approximate to 15 dpa. In HFIR, a mixed-spectrum reactor, (n, alpha) reactions of thermal neutrons with Ni-58 produce helium in the steels. Little helium is produced during irradiation in FFTF. After HFIR irradiation, the yield stress of all steels increased, with the largest increases occurring for nickel-doped steels. The ductile-brittle transition temperature (DBTT) increased up to two times and 1.7 times more in steels with 2% Ni than in those without the nickel addition after HFIR irradiation at 300 and 400 degrees C, respectively. Much smaller differences occurred between these steels after irradiation in FFTF. The DBTT increases for steels with 2% Ni after HFIR irradiation were 2-4 times greater than after FFTF irradiation. Results indicated there was hardening due to helium in addition to hardening by displacement damage and irradiation-induced precipitation. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Japan Atom Energy Res Inst, Tokai, Ibaraki 3191195, Japan. RP Klueh, RL (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6151, Oak Ridge, TN 37831 USA. EM kluehrl@ornl.gov RI HASHIMOTO, Naoyuki/D-6366-2012 NR 25 TC 14 Z9 14 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2006 VL 357 IS 1-3 BP 156 EP 168 DI 10.1016/j.jnucmat.2006.05.048 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 098SU UT WOS:000241543900017 ER PT J AU Klueh, RL Hashimoto, N Sokolov, MA Maziasz, PJ Shiba, K Jitsukawa, S AF Klueh, R. L. Hashimoto, N. Sokolov, M. A. Maziasz, P. J. Shiba, K. Jitsukawa, S. TI Mechanical properties of neutron-irradiated nickel-containing martensitic steels: II. Review and analysis of helium-effects studies SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LOW-ACTIVATION ALLOYS; LOW-TEMPERATURE IRRADIATION; TENSILE PROPERTIES; FERRITIC STEELS; MICROSTRUCTURAL EVOLUTION; EMBRITTLEMENT BEHAVIOR; RADIATION-DAMAGE; MIXED-SPECTRUM; HFIR; 9CR-1MOVNB AB In part I of this helium-effects study on ferritic/martensitic steels, results were presented on tensile and Charpy impact properties of 9Cr-1MoVNb (modified 9Cr-1Mo) and 12Cr-1MoVW (Sandvik HT9) steels and these steels containing 2% Ni after irradiation in the High Flux Isotope Reactor (HFIR) to 10-12 dpa at 300 and 400 degrees C and in the Fast Flux Test Facility (FFTF) to 15 dpa at 393 degrees C. The results indicated that helium caused an increment of hardening above irradiation hardening produced in the absence of helium. In addition to helium-effects studies on ferritic/martensitic steels using nickel doping, studies have also been conducted over the years using boron doping, ion implantation, and spallation neutron sources. In these previous investigations, observations of hardening and embrittlement were made that were attributed to helium. In this paper, the new results and those from previous helium-effects studies are reviewed and analyzed. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Japan Atom Energy Res Inst, Tokai, Ibaraki 3191195, Japan. RP Klueh, RL (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, POB 2008,Bldg 4500S,MS 6151, Oak Ridge, TN 37831 USA. EM kluehrl@ornl.gov RI HASHIMOTO, Naoyuki/D-6366-2012; OI Maziasz, Philip/0000-0001-8207-334X NR 66 TC 21 Z9 21 U1 4 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2006 VL 357 IS 1-3 BP 169 EP 182 DI 10.1016/j.jnucmat.2006.05.049 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 098SU UT WOS:000241543900018 ER PT J AU Cho, CG Kim, YS Yu, X Hill, M McGrath, JE AF Cho, Chang Gi Kim, Yu Seung Yu, Xiang Hill, Melinda McGrath, James E. TI Synthesis and characterization of poly(arylene ether sulfone) copolymers with sulfonimide side groups for a proton-exchange membrane SO JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY LA English DT Article DE electrochemistry; fuel cells; membrane; poly(arylene ether sulfone); poly(ether sulfones); proton conductivity; proton-exchange membranes; sulfonimides ID FUEL-CELL APPLICATIONS; POLYMER; CHLOROSULFONATION; SULFONAMIDES; DERIVATIVES; HYDROLYSIS; STABILITY; MONOMERS AB A sulfonimide-containing comonomer derived from 4,4 '-dichlorodiphenylsulfone was synthesized and copolymerized with 4,4 '-dichlorodiphenylsulfone and 4,4 '-biphenol to prepare sulfonimide-containing poly(arylene ether sulfone) random copolymers (BPSIs). These copolymers showed slightly higher water uptake than disulfonated poly(arylene ether sulfone) copolymer (BPSH) controls, but their proton-conductivity values were very comparable to those of the BPSH series with similar ion contents. The proton conductivity increased with the temperature for both systems. For samples with 30 mol % ionic groups, BPSI showed less temperature dependence in proton conductivity and slightly higher methanol permeability in comparison with BPSH. The thermal characterization of the suffortimide copolymers showed that both the acid and salt forms were stable up to 250 degrees C under a nitrogen atmosphere. The results suggested that the presumed enhanced stability of the sulfonimide systems did not translate into higher protonic conductivity in liquid water. (c) 2006 Wiley Periodicals, Inc. C1 Hanyang Univ, Ctr Adv Funct Polymers, Seoul 133791, South Korea. Los Alamos Natl Lab, MPA11, Los Alamos, NM 87545 USA. Virginia Tech, Dept Chem & Macromol, Blacksburg, VA 24061 USA. Virginia Tech, Interfaces Inst, Blacksburg, VA 24061 USA. RP McGrath, JE (reprint author), Hanyang Univ, Ctr Adv Funct Polymers, Seoul 133791, South Korea. EM jmcgrath@vt.edu NR 27 TC 32 Z9 32 U1 3 U2 22 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-624X J9 J POLYM SCI POL CHEM JI J. Polym. Sci. Pol. Chem. PD OCT 15 PY 2006 VL 44 IS 20 BP 6007 EP 6014 DI 10.1002/pola.21565 PG 8 WC Polymer Science SC Polymer Science GA 092GO UT WOS:000241085200018 ER PT J AU Hsueh, CH Lee, S Lin, HY Chen, LS Wang, WH AF Hsueh, Chun-Hway Lee, Sanboh Lin, Hung-Yi Chen, Lai-Sheng Wang, Wei-Han TI Analyses of mechanical failure in nanoimprint processes SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE nanoimprint; failure; finite element analysis ID THIN POLYMER-FILMS; IMPRINT LITHOGRAPHY; ROOM-TEMPERATURE; FILM/SUBSTRATE SYSTEMS; DEFECT ANALYSIS; FLOW BEHAVIOR; LOW-PRESSURE; FABRICATION; TRANSISTORS; STRESSES AB Nanoimprint lithography offers a low-cost and high-throughput technique for the future manufacturing of semiconductor integrated circuits and other nanodevices. While processing of nanoirnprints has undergone extensive exploration, studies of mechanical failure and reliability issues are sparse. However, both delamination/buckling of imprinted films and fracture of imprinted lines have been identified as the causes for failure in the nanoimprint processes. To understand the factors that result in such damage, stresses are characterized for various steps in nanoimprint processes including molding/demolding, film solidification, and thermomechanical mismatch during cooling. The damage modes are then correlated to the stresses that are generated. The present study identifies factors that result in mechanical failure in nanoimprint processes. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan. Ind Technol Res Inst, Mech & Syst Res Labs, Hsinchu, Taiwan. RP Hsueh, CH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM hsuehc@ornl.gov RI Hsueh, Chun-Hway/G-1345-2011 NR 27 TC 28 Z9 30 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2006 VL 433 IS 1-2 BP 316 EP 322 DI 10.1016/j.mseas.2006.06.106 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 088OQ UT WOS:000240821400046 ER PT J AU Luo, Y AF Luo, Yun TI Matrix perturbation approach to the weak linear coupling SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE normalized coordinate system; weak linear coupling; eigenmode projection parameters AB The strict matrix treatment of linear coupling in the normalized coordinate system is presented. Then, assuming weak linear coupling, with the perturbed one-turn transfer matrix in the normalized coordinate system, the analytical expressions for the coupling parameters are obtained directly. Two complex coefficients h(-) and h(+) are defined to represent the weak linear difference and sum coupling, respectively. Numerical simulation was carried out to check these analytical expressions. The perturbed betatron motion of the weak linear coupling is discussed. Four eigenmode projection parameters are defined. Based on their measurement, the coupling parameters r and h- can be determined under weak linear difference coupling. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Luo, Y (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM yluo@bnl.gov NR 13 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 15 PY 2006 VL 566 IS 2 BP 218 EP 226 DI 10.1016/j.nima.2006.06.066 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095KU UT WOS:000241307400004 ER PT J AU Margaryan, A Carlini, R Ent, R Grigoryan, N Gyunashyan, K Hashimoto, O Hovater, K Ispiryan, M Knyazyan, S Kross, B Majewski, S Marikyan, G Mkrtchyan, M Parlakyan, L Popov, V Tang, L Vardanyan, H Yan, C Zhamkochyan, S Zorn, C AF Margaryan, A. Carlini, R. Ent, R. Grigoryan, N. Gyunashyan, K. Hashimoto, O. Hovater, K. Ispiryan, M. Knyazyan, S. Kross, B. Majewski, S. Marikyan, G. Mkrtchyan, M. Parlakyan, L. Popov, V. Tang, L. Vardanyan, H. Yan, C. Zhamkochyan, S. Zorn, C. TI Radio frequency picosecond phototube SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE photon detector; RF deflector; picosecond techniques; Cherenkov radiation ID CORRELATED TIMING DETECTOR; TIME RESOLUTION; STREAK CAMERA AB We propose a photon detector for recording low-level and ultra-fast optical signals, based on radio frequency (RF) analysis of low-energy photoelectrons (PEs). By using currently developed 500 MHz RF deflector, it is possible to scan circularly and detect single PEs, amplified in multi-channel plates (MCPs). The operation of the tube is investigated by means of thermionic electron source. It is demonstrated that the signals generated in the MCP can be processed event by event; by using available nanosecond electronics and that time resolution better than 20 ps can be achieved. Timing characteristics of the Cherenkov detector with RF phototube in a 'head-on' geometry is investigated by means of Monte Carlo simulation. (c) 2006 Elsevier B.V. All rights reserved. C1 Yerevan Phys Inst, Yerevan 375036, Armenia. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Yerevan State Univ Architecture & Construct, Yerevan, Armenia. Tohoku Univ, Sendai, Miyagi 9877, Japan. Univ Houston, Houston, TX 77204 USA. RP Margaryan, A (reprint author), Yerevan Phys Inst, 2 Alikhanian Bros St, Yerevan 375036, Armenia. EM mat@mail.yerphi.am NR 17 TC 8 Z9 8 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 15 PY 2006 VL 566 IS 2 BP 321 EP 326 DI 10.1016/j.nima.2006.07.035 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095KU UT WOS:000241307400017 ER PT J AU Jones, RT Kornicer, M Dzierba, AR Gunter, JL Lindenbusch, R Scott, E Smith, P Steffen, C Teige, S Rubin, P Smith, ES AF Jones, R. T. Kornicer, M. Dzierba, A. R. Gunter, J. L. Lindenbusch, R. Scott, E. Smith, P. Steffen, C. Teige, S. Rubin, P. Smith, E. S. TI A bootstrap method for gain calibration and resolution determination of a lead-glass calorimeter SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE meson; photoproduction; radiative; decay; Phi; Radphi; calorimeter; calibration AB We describe a method for calibration of a lead-glass calorimeter that does not require a beam of known energy. The technique was used to calibrate the RADPHI lead-glass calorimeter at Jefferson Lab. The technique described can be applied to any segmented electromagnetic calorimeter capable of detecting all-photon decays of mesons, for example, pi(0)-> 2 gamma, eta -> 2 gamma or omega ->pi(0)gamma. We also demonstrate how the measured 2 gamma mass width of the no and eta mesons can be unfolded to extract the single-shower energy and position resolution functions of the calorimeter. (c) 2006 Elsevier B.V. All rights reserved. C1 Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. Univ Connecticut, Dept Phys, Storrs, CT 06268 USA. Univ Richmond, Dept Phys, Richmond, VA 23173 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Teige, S (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM steige@indiana.edu OI Jones, Richard/0000-0002-1410-6012 NR 6 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 15 PY 2006 VL 566 IS 2 BP 366 EP 374 DI 10.1016/j.nima.2006.07.061 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095KU UT WOS:000241307400022 ER PT J AU Bhatti, A Canelli, F Heinemann, B Adelman, J Ambrose, D Arguin, JF Barbaro-Galtieri, A Budd, H Chung, YS Chung, K Cooper, B Currat, C D'Onofrio, M Dorigo, T Erbacher, R Field, R Flanagan, G Gibson, A Hatakeyama, K Happacher, F Hoffman, D Introzzi, G Kuhlmann, S Kwang, S Jun, S Latino, G Malkus, A Mattson, M Mehta, A Movilla-Fernandez, PA Nodulman, L Paulini, M Proudfoot, J Ptohos, F Sabik, S Sakumoto, W Savard, P Shochet, M Sinervo, P Tiwari, V Wicklund, A Yun, G AF Bhatti, A. Canelli, F. Heinemann, B. Adelman, J. Ambrose, D. Arguin, J. -F. Barbaro-Galtieri, A. Budd, H. Chung, Y. S. Chung, K. Cooper, B. Currat, C. D'Onofrio, M. Dorigo, T. Erbacher, R. Field, R. Flanagan, G. Gibson, A. Hatakeyama, K. Happacher, F. Hoffman, D. Introzzi, G. Kuhlmann, S. Kwang, S. Jun, S. Latino, G. Malkus, A. Mattson, M. Mehta, A. Movilla-Fernandez, P. A. Nodulman, L. Paulini, M. Proudfoot, J. Ptohos, F. Sabik, S. Sakumoto, W. Savard, P. Shochet, M. Sinervo, P. Tiwari, V. Wicklund, A. Yun, G. TI Determination of the jet energy scale at the Collider Detector at Fermilab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE jet energy scale; JES; Collider Detector at Fermilab; CDF; Fermilab; particle physics; high-energy physics ID CENTRAL ELECTROMAGNETIC CALORIMETER; PHOTON CROSS-SECTION; CDF; COLLISIONS; UPGRADE; TEV AB A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron p (p) over bar collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Lawrence Berkeley Lab, Ernest Orlando Lawrence Berkeley, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Michigan State Univ, E Lansing, MI 48824 USA. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Wayne State Univ, Detroit, MI 48201 USA. RP Canelli, F (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90024 USA. EM canelli@fnal.gov RI Paulini, Manfred/N-7794-2014; Introzzi, Gianluca/K-2497-2015; Canelli, Florencia/O-9693-2016; OI Paulini, Manfred/0000-0002-6714-5787; Introzzi, Gianluca/0000-0002-1314-2580; Canelli, Florencia/0000-0001-6361-2117; Latino, Giuseppe/0000-0002-4098-3502; Jun, Soon Yung/0000-0003-3370-6109 NR 39 TC 231 Z9 231 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 15 PY 2006 VL 566 IS 2 BP 375 EP 412 DI 10.1016/j.nima.2006.05.269 PG 38 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095KU UT WOS:000241307400023 ER PT J AU Enqvist, A Pazsit, I Pozzi, S AF Enqvist, Andreas Pazsit, Imre Pozzi, Sara TI The number distribution of neutrons and gamma photons generated in a multiplying sample SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE nuclear safeguards; materials control and accounting; neutron and photon numbers; number distributions; generating functions; master equations; multiplicity AB The subject of this paper is an analytical derivation of the full probability distribution of the number of neutrons and photons generated in a sample with internal multiplication by one source emission event (spontaneous fission), and its comparison with Monte Carlo calculations. We derive recursive analytic expressions for the probability distributions P(n) up to values of n = N for which the cumulative probability Sigma(N)(n=0) P(n) is equal to or larger than 0.99. The derivation is achieved using the symbolic computation language Mathematica. With the in introduction of a modified factorial moment of the number of neutrons and gamma photons generated in fission, the resulting expressions could be brought to a formally equivalent form with those for the factorial moments of the total number of neutrons and photons generated in the sample. The results were compared to Monte Carlo calculations, and excellent agreement was found between the analytical results and the simulations. The results show that the probability distributions change with increasing sample mass in such a way that the "bulk" of the distribution changes only slightly, but a tail develops for higher n values. This tail is the main reason for the increase of the factorial moments with increasing sample mass, an effect that was observed in earlier studies. (c) 2006 Elsevier B.V. All rights reserved. C1 Chalmers Univ Technol, Dept Nucl Engn, SE-41296 Gothenburg, Sweden. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Enqvist, A (reprint author), Chalmers Univ Technol, Dept Nucl Engn, SE-41296 Gothenburg, Sweden. EM andreas@nephy.chalmers.se; imre@nephy.chalmers.se; pozzisa@ornl.gov NR 10 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 15 PY 2006 VL 566 IS 2 BP 598 EP 608 DI 10.1016/j.nima.2006.06.046 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095KU UT WOS:000241307400047 ER PT J AU Janssens, P Van Hoorebeke, L Fonvieille, H D'Hose, N Bertin, PY Bensafa, I Degrande, N Distler, M Di Salvo, R Doria, L Friedrich, JM Friedrich, J Hyde-Wright, C Jaminion, S Kerhoas, S Laveissiere, G Lhuillier, D Marchand, D Merkel, H Roche, J Tamas, G Vanderhaeghen, M Van de Vyver, R Van de Wiele, J Walcher, T AF Janssens, P. Van Hoorebeke, L. Fonvieille, H. D'Hose, N. Bertin, P. Y. Bensafa, I. Degrande, N. Distler, M. Di Salvo, R. Doria, L. Friedrich, J. M. Friedrich, J. Hyde-Wright, Ch. Jaminion, S. Kerhoas, S. Laveissiere, G. Lhuillier, D. Marchand, D. Merkel, H. Roche, J. Tamas, G. Vanderhaeghen, M. Van de Vyver, R. Van de Wiele, J. Walcher, Th. TI Monte Carlo simulation of virtual Compton scattering below pion threshold SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monte Carlo simulation; Virtual Compton Scattering (VCS); radiative correction ID GENERALIZED POLARIZABILITIES; PROTON AB This paper describes the Monte Carlo simulation developed specifically for the Virtual Compton Scattering (VCS) experiments below pion threshold that have been performed at MAMI and JLab. This simulation generates events according to the (Bethe-Heitler + Born) cross-section behaviour and takes into account all relevant resolution-deteriorating effects. It determines the "effective" solid angle for the various experimental settings which are used for the precise determination of the photon electroproduction absolute cross-section. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. Univ Clermont Ferrand, LPC, IN2P3, F-63177 Aubiere, France. CEA, DAPNIA, SPhN, Saclay, France. Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. Old Dominion Univ, Norfolk, VA 23529 USA. Univ Paris 11, Inst Phys Nucl, F-91406 Orsay, France. Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Janssens, P (reprint author), Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. EM peter@inwfsun1.ugent.be; luc.vanhoorebeke@ugent.be RI Friedrich, Jan/B-9024-2013; Merkel, Harald/B-9705-2013; OI Friedrich, Jan/0000-0001-9298-7882; Doria, Luca/0000-0002-7800-6328; Di Salvo, Rachele/0000-0002-2162-714X; Hyde, Charles/0000-0001-7282-8120 NR 13 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 15 PY 2006 VL 566 IS 2 BP 675 EP 686 DI 10.1016/j.nima.2006.07.039 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095KU UT WOS:000241307400055 ER PT J AU Ooi, M Ino, T Muhrer, G Pitcher, EJ Russell, GJ Ferguson, PD Iverson, EB Freeman, D Kiyanagi, Y AF Ooi, M. Ino, T. Muhrer, G. Pitcher, E. J. Russell, G. J. Ferguson, P. D. Iverson, E. B. Freeman, D. Kiyanagi, Y. TI Measurements of the change of neutronic performance of a hydrogen moderator at Manuel Lujan Neutron Scattering Center due to conversion from ortho- to para-hydrogen state SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE pulsed neutron source; hydrogen moderator; ortho-para conversion; energy spectrum; emission time distribution AB The ortho/para-hydrogen ratio is a key parameter for the neutronic performance of a liquid hydrogen moderator. In order to get a better understanding of the influence that the ortho/para-hydrogen ratio has on the performance of such a moderator, we measured the neutronic performance of the partially coupled liquid-hydrogen moderator at the LANSCE Manuel Lujan Jr. Neutron Scattering Center, Los Alamos, USA, as a function of time after condensation. This was done by measuring the energy spectra and pulse shapes (neutron emission time distributions) of this moderator. It was found that the neutronic characteristic of the moderator changes with the elapsed time after condensation, and that the changes were so significant that for any scattering experiment made on such a moderator, the effect should be carefully evaluated. (c) 2006 Elsevier B.V. All rights reserved. C1 Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0608628, Japan. KEK, High Energy Accelerator Res Org, Mat & Struct Sci Inst, Tsukuba, Ibaraki 3050801, Japan. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Oak Ridge Natl Lab, Expt Phys Div, Oak Ridge, TN 37831 USA. Japan Atom Energy Agcy, Ibaraki 3191195, Japan. RP Ooi, M (reprint author), Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0608628, Japan. EM ohi.motoki@jaea.go.jp RI Kiyanagi, Yoshiaki/D-7132-2012; Lujan Center, LANL/G-4896-2012; OI Ferguson, Phillip/0000-0002-7661-4223; Iverson, Erik /0000-0002-7920-705X NR 13 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 15 PY 2006 VL 566 IS 2 BP 699 EP 705 DI 10.1016/j.nima.2006.06.073 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095KU UT WOS:000241307400057 ER PT J AU Bertsche, W Boston, A Bowe, PD Cesar, CL Chapman, S Charlton, M Chartier, M Deutsch, A Fajans, J Fujiwara, MC Funakoshi, R Gomberoff, K Hangst, JS Hayano, RS Jenkins, MJ Jorgensen, LV Ko, P Madsen, N Nolan, P Page, RD Posada, LGC Povilus, A Sarid, E Silveira, DM van der Werf, DP Yamazaki, Y Parker, B Escallier, J Ghosh, A AF Bertsche, W. Boston, A. Bowe, P. D. Cesar, C. L. Chapman, S. Charlton, M. Chartier, M. Deutsch, A. Fajans, J. Fujiwara, M. C. Funakoshi, R. Gomberoff, K. Hangst, J. S. Hayano, R. S. Jenkins, M. J. Jorgensen, L. V. Ko, P. Madsen, N. Nolan, P. Page, R. D. Posada, L. G. C. Povilus, A. Sarid, E. Silveira, D. M. van der Werf, D. P. Yamazaki, Y. Parker, B. Escallier, J. Ghosh, A. CA ALPHA Collaboration TI A magnetic trap for antihydrogen confinement SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE antihydrogen; antiprotons; positrons; penning trap; neutral trap ID PURE ELECTRON-PLASMA; NEUTRAL ATOMS; SPECTROSCOPY; HYDROGEN; PARTICLE; LORENTZ; THEOREM; CPT AB The goal of the ALPHA collaboration at CERN is to test CPT conservation by comparing the 1S-2S transitions of hydrogen and antihydrogen. To reach the ultimate accuracy of 1 part in 10(18), the (anti)atoms must be trapped. Using current technology, only magnetic minimum traps can confine (anti)hydrogen. In this paper, the design of the ALPHA antihydrogen trap and the results of measurements on a prototype system will be presented. The trap depth of the final system will be 1.16 T, corresponding to a temperature of 0.78 K for ground state antihydrogen. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. TRIUMF, Vancouver, BC V6T 2A3, Canada. Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. Nucl Res Ctr, Dept Phys, IL-84190 Beer Sheva, Israel. Brookhaven Natl Lab, Upton, NY 11973 USA. RP van der Werf, DP (reprint author), Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales. EM D.P.van.der.Werf@Swansea.ac.uk RI Bertsche, William/A-3678-2012; Madsen, Niels/G-3548-2013; Jorgensen, Lars/B-8991-2012; Hayano, Ryugo/F-7889-2012; Fajans, Joel/J-6597-2016; Yamazaki, Yasunori/N-8018-2015; OI Bertsche, William/0000-0002-6565-9282; Madsen, Niels/0000-0002-7372-0784; Hayano, Ryugo/0000-0002-1214-7806; Fajans, Joel/0000-0002-4403-6027; Yamazaki, Yasunori/0000-0001-5712-0853; van der Werf, Dirk/0000-0001-5436-5214 NR 35 TC 53 Z9 53 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 15 PY 2006 VL 566 IS 2 BP 746 EP 756 DI 10.1016/j.nima.2006.07.012 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095KU UT WOS:000241307400064 ER PT J AU Grosjean, A Sanseau, O Radmilovic, V Thorel, A AF Grosjean, Arnaud Sanseau, Olivier Radmilovic, Velimir Thorel, Alain TI Reactivity and diffusion between La0.8Sr0.2MnO3 and ZrO2 at interfaces in SOFC cores by TEM analyses on FIB samples SO SOLID STATE IONICS LA English DT Article; Proceedings Paper CT 15th International Conference on Solid State Ionics CY 2005 CL Baden Baden, GERMANY DE SOFC; TEM; FIB; reactivity at interfaces AB In this paper, we investigate the diffusion and reactivity at the interface between the electrolyte (YSZ) and the cathode (LSM) of planar SOFC single cells by Analytical and High Resolution Transmission Microscopy. Cells were obtained via an aqueous tape-casting process allowing casting the three layers (cathode, electrolyte, anode [Ni-YSZ]) in a single operation. To allow the cell to function at intermediate temperatures (750-850 degrees C), the final electrolyte thickness after co-sintering at 1350 degrees C must range between 40 mu m and 50 mu m. As-sintered cells as well as cells that have been operated at 850 degrees C have been considered here; it is shown that the electrical performances were one order of magnitude less than expected and that they deteriorated quickly under operating conditions. In order to explain this behavior, we carried out analytical transmission electron microcopy. To obtain precisely located chemical and structural information, we used the "H-Shape" as well as the Lift Out FIB (Focused Ion Beam) techniques to extract 5 x 10 x 0.1 mu m TEM samples; additional High Resolution characterization was carried out at interfaces between LSM and YSZ grains on standard ion-milled samples. We showed that the co-sintering temperature (1350 degrees C) was responsible for some diffusion of manganese through the electrolyte and the cathode, leading then to the rise of a significant electronic conduction and to the drop off of the ionic conductivity, and accounts for the germination and growth of the resistive pyrochlore phase La2Zr2O7. Operating the cell at 850 degrees C do not aggravate these phenomena, but rather alters the anode microstructure. (c) 2006 Published by Elsevier B.V. C1 Ecole Mines Paris, Ctr Mat, UMR 7633, F-91003 Evry, France. CNRS, ICMCB, F-33608 Pessac, France. RHODIA, Ctr Rech Aubervillers, F-93308 Aubervilliers, France. Ernest Orlando Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Grosjean, A (reprint author), Ecole Mines Paris, Ctr Mat, UMR 7633, BP 87, F-91003 Evry, France. EM grosjean@icmcb-bordeaux.cnrs.fr NR 9 TC 22 Z9 22 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD OCT 15 PY 2006 VL 177 IS 19-25 BP 1977 EP 1980 DI 10.1016/j.ssi.2006.04.032 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 112VH UT WOS:000242555200082 ER PT J AU Williams, MC Strakey, JP Surdoval, WA Wilson, LC AF Williams, Mark C. Strakey, Joseph P. Surdoval, Wayne A. Wilson, Lane C. TI Solid oxide fuel cell technology development in the US SO SOLID STATE IONICS LA English DT Article; Proceedings Paper CT 15th International Conference on Solid State Ionics CY 2005 CL Baden Baden, GERMANY DE Solid State Energy Conversion Alliance (SECA); fuel cell turbine (FCT) hybrid; High Temperature Electrochemistry Center (HiTEC); distributed generation (DG); FutureGen AB The U.S. Department of Energy (DOE) Office of Fossil Energy (FE) through the National Energy Technology Laboratory (NETL) is leading the development and demonstration of high efficiency and low cost solid oxide fuel cells (SOFCs) and fuel cell turbine (FCT) hybrid power generation systems primarily under the Solid State Energy Conversion Alliance (SECA). Additional long-term basic research is performed at the High Temperature Electrochemistry Center (HiTEC). Distributed generation (DG) systems have ultra low emissions, produce water, and can be configured to isolate/segregate carbon dioxide - all features useable in FutureGen and advanced coal-based systems. (c) 2006 Published by Elsevier B.V. C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Williams, MC (reprint author), US DOE, Natl Energy Technol Lab, POB 880,3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM mark.williams@netl.doe.gov NR 14 TC 71 Z9 73 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD OCT 15 PY 2006 VL 177 IS 19-25 BP 2039 EP 2044 DI 10.1016/j.ssi.2006.02.051 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 112VH UT WOS:000242555200093 ER PT J AU Leung, L Ledieu, J Unsworth, P Lograsso, TA Ross, AR McGrath, R AF Leung, L. Ledieu, J. Unsworth, P. Lograsso, T. A. Ross, A. R. McGrath, R. TI Ordering of Si atoms on the ten-fold surface of the decagonal Al72Ni11Co17 quasicrystal SO SURFACE SCIENCE LA English DT Article DE silicon adlayer; scanning tunnelling microscopy; alloys ID AL-NI-CO; ADSORPTION; XE AB The deposition of Si at room temperature on the ten-fold quasicrystalline surface of d-Al-Ni-Co has been investigated by scanning tunnelling microscopy. At a coverage of 0.30 ML, Si pentagons in two orientations related by inversion symmetry are observed on the same substrate terrace. The side-length of the pentagons is 4.2 +/- 0.2 angstrom. At this coverage, the Si adlayer displays quasiperiodic order. Depressions related to pentagonal features observed in STM images of the clean d-Al-Ni-Co substrate are proposed as plausible adsorption sites for the Si adatoms. As the Si coverage is increased, the well-defined structures observed are no longer distinguishable. At coverages above the monolayer, the Si overlayer follows a rough three-dimensional growth mode. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England. Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Leung, L (reprint author), Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England. EM L.Leung@liverpool.ac.uk RI McGrath, Ronan/A-1568-2009; Ledieu, Julian/F-1430-2010 OI McGrath, Ronan/0000-0002-9880-5741; NR 29 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT 15 PY 2006 VL 600 IS 20 BP 4752 EP 4757 DI 10.1016/j.susc.2006.07.045 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 100YX UT WOS:000241707200015 ER PT J AU Kuntova, Z Hupalo, M Chvoj, Z Tringides, MC AF Kuntova, Z. Hupalo, M. Chvoj, Z. Tringides, M. C. TI Non-classical kinetics processes and morphologies in QSE driven growth in Pb/Si(111) SO SURFACE SCIENCE LA English DT Article DE quantum size effects; self-organized growth; magic thickness; interlayer diffusion nucleation ID NUCLEATION; ISLANDS; FILMS AB A novel growth low temperature morphology is observed in the growth of Pb/Si(111) related to the kinetics of Quantum Size effects. This morphology is globally observed over mesoscopic distances. Bilayer height rings nucleate first at the island perimeter which spread out towards the center. With Monte Carlo simulations the morphology is reproduced with highly anisotropic diffusion (i.e., radial diffusion out of a ring of one lattice constant is slower than azimuthal diffusion by at least 10(-5) at 180 K). This shows that both kinetics and energetics are responsible for the uniform height island formation and the similar temperature "window" similar to 180 K independent of the initial Si interface. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Dept Phys, Ames Lab, US DOE, Ames, IA 50011 USA. Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. RP Tringides, MC (reprint author), Iowa State Univ, Dept Phys, Ames Lab, US DOE, Ames, IA 50011 USA. EM tringides@ameslab.gov RI Chromcova, Zdenka/H-3101-2014 NR 21 TC 11 Z9 11 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT 15 PY 2006 VL 600 IS 20 BP 4765 EP 4770 DI 10.1016/j.susc.2006.07.052 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 100YX UT WOS:000241707200017 ER PT J AU Dyer, PJ Cummings, PT AF Dyer, Peter J. Cummings, Peter T. TI Hydrogen bonding and induced dipole moments in water: Predictions from the Gaussian charge polarizable model and Car-Parrinello molecular dynamics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LIQUID WATER; AB-INITIO; 1ST PRINCIPLES; CONDENSED PHASES; DENSITY; SIMULATIONS AB We compare a new classical water model, which features Gaussian charges and polarizability (GCPM) with ab initio Car-Parrinello molecular dynamics (CPMD) simulations. We compare the total dipole moment, the total dipole moment distribution, and degree of hydrogen bonding at ambient to supercritical conditions. We also compared the total dipole moment calculated from both the electron density (partitioning the electron density among molecules based on a zero electron flux condition), and from the center of localized Wannier function centers (WFCs). Compared to CPMD, we found that GCPM overpredicts the dipole moment derived by partitioning the electron density and underpredicts that obtained from the WFCs, but exhibits similar trends and distribution of values. We also found that GCPM predicted similar degrees of hydrogen bonding compared to CPMD and has a similar structure. (c) 2006 American Institute of Physics. C1 Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanomat Theory Inst, Oak Ridge, TN 37831 USA. RP Dyer, PJ (reprint author), Vanderbilt Univ, Dept Chem Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM peter.cummings@vanderbilt.edu RI Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 NR 34 TC 28 Z9 28 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2006 VL 125 IS 14 AR 144519 DI 10.1063/1.2355485 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 094OI UT WOS:000241248400052 PM 17042621 ER PT J AU Fan, H Pratt, ST AF Fan, H. Pratt, S. T. TI The stability of allyl radicals following the photodissociation of allyl iodide at 193 nm SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CL BOND FISSION; CHLORIDE; DYNAMICS; DISSOCIATION; PHOTOIONIZATION; EXCITATION; PHOTOLYSIS; DEPENDENCE; MOLECULES; SPECTRA AB The photodissociation of allyl iodide (C3H5I) at 193 nm was investigated by using a combination of vacuum-ultraviolet photoionization of the allyl radical, resonant multiphoton ionization of the iodine atoms, and velocity map imaging. The data provide insight into the primary C-I bond fission process and into the dissociative ionization of the allyl radical to produce C3H3+. The experimental results are consistent with the earlier results of Szpunar [J. Chem. Phys. 119, 5078 (2003)], in that some allyl radicals with internal energies higher than the secondary dissociation barrier are found to be stable. This stability results from the partitioning of available energy between the rotational and vibrational degrees of freedom of the radical, the effects of a centrifugal barrier along the reaction coordinate, and the effects of the kinetic shift in the secondary dissociation of the allyl radical. The present results suggest that the primary dissociation of allyl iodide to allyl radicals plus I-*(P-2(1/2)) is more important than previously suspected. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Fan, H (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM stpratt@anl.gov NR 34 TC 9 Z9 9 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2006 VL 125 IS 14 AR 144302 DI 10.1063/1.2352733 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 094OI UT WOS:000241248400016 PM 17042585 ER PT J AU Fanourgakis, GS Schenter, GK Xantheas, SS AF Fanourgakis, G. S. Schenter, G. K. Xantheas, S. S. TI A quantitative account of quantum effects in liquid water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSFERABLE INTERACTION MODELS; CENTROID MOLECULAR-DYNAMICS; RADIAL-DISTRIBUTION FUNCTIONS; DENSITY-FUNCTIONAL THEORY; POTENTIAL-ENERGY SURFACE; AB-INITIO CALCULATIONS; 1ST PRINCIPLES; BINDING-ENERGIES; ORDER CORRECTION; PATH AB We report converged quantum statistical mechanical simulations of liquid water with the Thole-type Model (version 2.1), Flexible, polarizable (TTM2.1-F) interaction potential for water. Simulations of total length of 600 ps with a 0.05 fs time step for a periodic unit cell of 256 molecules with up to 32 replicas per atom suggest that the quantum effects contribute 1.01 +/- 0.02 kcal/mol to the liquid enthalpy of formation at 298.15 K. They furthermore demonstrate for the first time a quantitative agreement with experiment for the heights and broadening of the intramolecular OH and HH peaks in the radial distribution functions. (c) 2006 American Institute of Physics. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM sotiris.xantheas@pnl.gov RI Schenter, Gregory/I-7655-2014; Xantheas, Sotiris/L-1239-2015; OI Schenter, Gregory/0000-0001-5444-5484; Xantheas, Sotiris/0000-0002-6303-1037 NR 60 TC 59 Z9 59 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2006 VL 125 IS 14 AR 141102 DI 10.1063/1.2358137 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 094OI UT WOS:000241248400002 PM 17042571 ER PT J AU Karton, A Rabinovich, E Martin, JML Ruscic, B AF Karton, Amir Rabinovich, Elena Martin, Jan M. L. Ruscic, Branko TI W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COUPLED-CLUSTER THEORY; BASIS-SET CALCULATIONS; CORRELATED MOLECULAR CALCULATIONS; CORRELATION-ENERGY EXTRAPOLATION; CONNECTED QUADRUPLE EXCITATIONS; PLESSET PERTURBATION-THEORY; AB-INITIO THERMOCHEMISTRY; ANHARMONIC-FORCE FIELD; GAUSSIAN-BASIS SETS; HARTREE-FOCK LIMIT AB In an attempt to improve on our earlier W3 theory [A. D. Boese , J. Chem. Phys. 120, 4129 (2004)] we consider such refinements as more accurate estimates for the contribution of connected quadruple excitations (T-4), inclusion of connected quintuple excitations (T-5), diagonal Born-Oppenheimer corrections (DBOC), and improved basis set extrapolation procedures. Revised experimental data for validation purposes were obtained from the latest version of the Active Thermochemical Tables thermochemical network. The recent CCSDT(Q) method offers a cost-effective way of estimating T-4, but is insufficient by itself if the molecule exhibits some nondynamical correlation. The latter considerably slows down basis set convergence for T-4, and anomalous basis set convergence in highly polar systems makes two-point extrapolation procedures unusable. However, we found that the CCSDTQ-CCSDT(Q) difference converges quite rapidly with the basis set, and that the formula 1.10[CCSDT(Q)/cc-pVTZ+CCSDTQ/cc-pVDZ-CCSDT(Q)/cc-pVDZ] offers a very reliable as well as fairly cost-effective estimate of the basis set limit T-4 contribution. The T-5 contribution converges very rapidly with the basis set, and even a simple double-zeta basis set appears to be adequate. The largest T-5 contribution found in the present work is on the order of 0.5 kcal/mol (for ozone). DBOCs are significant at the 0.1 kcal/mol level in hydride systems. Post-CCSD(T) contributions to the core-valence correlation energy are only significant at that level in systems with severe nondynamical correlation effects. Based on the accumulated experience, a new computational thermochemistry protocol for first- and second-row main-group systems, to be known as W4 theory, is proposed. Its computational cost is not insurmountably higher than that of the earlier W3 theory, while performance is markedly superior. Our W4 atomization energies for a number of key species are in excellent agreement (better than 0.1 kcal/mol on average, 95% confidence intervals narrower than 1 kJ/mol) with the latest experimental data obtained from Active Thermochemical Tables. Lower-cost variants are proposed: the sequence W1 -> W2.2 -> W3.2 -> W4lite -> W4 is proposed as a converging hierarchy of computational thermochemistry methods. A simple a priori estimate for the importance of post-CCSD(T) correlation contributions (and hence a pessimistic estimate for the error in a W2-type calculation) is proposed. (c) 2006 American Institute of Physics. C1 Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Karton, A (reprint author), Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel. EM comartin@weizmann.ac.il RI Karton, Amir/B-7628-2008; Ruscic, Branko/A-8716-2008; Martin, Jan/A-7457-2008 OI Karton, Amir/0000-0002-7981-508X; Ruscic, Branko/0000-0002-4372-6990; Martin, Jan/0000-0002-0005-5074 NR 80 TC 322 Z9 323 U1 5 U2 57 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2006 VL 125 IS 14 AR 144108 DI 10.1063/1.2348881 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 094OI UT WOS:000241248400011 PM 17042580 ER PT J AU Yang, M Jackson, KA Jellinek, J AF Yang, M. Jackson, K. A. Jellinek, J. TI First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; COLLISION-INDUCED DISSOCIATION; ION MOBILITY MEASUREMENTS; COPPER CLUSTERS; ELECTRONIC-PROPERTIES; METAL-CLUSTERS; PHOTOELECTRON-SPECTRA; JELLIUM MODEL; AB-INITIO; STATIC POLARIZABILITIES AB Low-energy isomers of Ag-N clusters are studied within gradient-corrected density functional theory over the size range of N=9-20. The candidate conformations are drawn from an extensive structural database created in a recent exploration of Cu-N clusters [M. Yang , J. Chem. Phys. 124, 24308 (2006)]. Layered configurations dominate the list of the lowest-energy isomers of Ag-N for N < 16. The most stable structures for N > 16 are compact with quasispherical shapes. The size-driven shape evolution is similar to that found earlier for Na-N and Cu-N. The shape change has a pronounced effect on the cluster cohesive energies, ionization potentials, and polarizabilities. The properties computed for the most stable isomers of Ag-N are in good agreement with the available experimental data. (c) 2006 American Institute of Physics. C1 Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Jackson, KA (reprint author), Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. EM jackson@phy.cmich.edu RI Yang, Mingli/E-9983-2012 OI Yang, Mingli/0000-0001-8590-8840 NR 69 TC 47 Z9 48 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2006 VL 125 IS 14 AR 144308 DI 10.1063/1.2351818 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 094OI UT WOS:000241248400022 PM 17042591 ER PT J AU Shindell, DT Faluvegi, G Stevenson, DS Krol, MC Emmons, LK Lamarque, JF Petron, G Dentener, FJ Ellingsen, K Schultz, MG Wild, O Amann, M Atherton, CS Bergmann, DJ Bey, I Butler, T Cofala, J Collins, WJ Derwent, RG Doherty, RM Drevet, J Eskes, HJ Fiore, AM Gauss, M Hauglustaine, DA Horowitz, LW Isaksen, ISA Lawrence, MG Montanaro, V Muller, JF Pitari, G Prather, MJ Pyle, JA Rast, S Rodriguez, JM Sanderson, MG Savage, NH Strahan, SE Sudo, K Szopa, S Unger, N van Noije, TPC Zeng, G AF Shindell, D. T. Faluvegi, G. Stevenson, D. S. Krol, M. C. Emmons, L. K. Lamarque, J. -F. Petron, G. Dentener, F. J. Ellingsen, K. Schultz, M. G. Wild, O. Amann, M. Atherton, C. S. Bergmann, D. J. Bey, I. Butler, T. Cofala, J. Collins, W. J. Derwent, R. G. Doherty, R. M. Drevet, J. Eskes, H. J. Fiore, A. M. Gauss, M. Hauglustaine, D. A. Horowitz, L. W. Isaksen, I. S. A. Lawrence, M. G. Montanaro, V. Mueller, J. -F. Pitari, G. Prather, M. J. Pyle, J. A. Rast, S. Rodriguez, J. M. Sanderson, M. G. Savage, N. H. Strahan, S. E. Sudo, K. Szopa, S. Unger, N. van Noije, T. P. C. Zeng, G. TI Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CHEMICAL-TRANSPORT MODEL; STRATOSPHERE-TROPOSPHERE EXCHANGE; GENERAL-CIRCULATION MODEL; AIRCRAFT MOZAIC DATA; NONMETHANE HYDROCARBONS; OZONE SIMULATIONS; METHANE EMISSIONS; WESTERN PACIFIC; CLIMATE-CHANGE; 3-D MODELS AB We analyze present-day and future carbon monoxide (CO) simulations in 26 state-of-the-art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year-round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south-central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 +/- 3.5 ppbv (16%) for the high-emissions (A2) scenario, by 1.7 +/- 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 +/- 2.3 ppbv (11%) for the low-emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 +/- 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10-20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year-round under A2, with the largest changes over central Africa (20-30 ppbv), southern Brazil (20-35 ppbv) and south and east Asia (30-70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the world's populated areas. C1 Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. Univ Edinburgh, Sch Geosci, Edinburgh EH8 9YL, Midlothian, Scotland. SRON, NL-3584 CA Utrecht, Netherlands. Univ Wageningen & Res Ctr, Wageningen, Netherlands. Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA. Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21020 Ispra, Italy. Univ Oslo, Dept Geosci, N-0317 Oslo, Norway. Max Planck Inst Meteorol, D-20146 Hamburg, Germany. Japan Agcy Marine Earth Sci & Technol, Frontier Res Ctr Global Change, Yokohama, Kanagawa 2360001, Japan. Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA 94550 USA. Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. Max Planck Inst Chem, D-55128 Mainz, Germany. Met Off, Exeter EX1 3PB, Devon, England. Rdscientific, Newbury RG14 6LH, Berks, England. Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France. Univ Aquila, Dipartimento Fis, I-67010 Coppito, Italy. Inst Aeron Spatiale Belgique, B-1180 Brussels, Belgium. Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. Univ Cambridge, Ctr Atmospher Sci, Cambridge CB2 1EW, England. Goddard Earth Sci & Technol Ctr, Greenbelt, MD 21228 USA. RP Shindell, DT (reprint author), Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM dshindell@giss.nasa.gov RI Rodriguez, Jose/G-3751-2013; Strahan, Susan/H-1965-2012; Magana, Felipe/B-6966-2013; Unger, Nadine/M-9360-2015; Pitari, Giovanni/O-7458-2016; Emmons, Louisa/R-8922-2016; Schultz, Martin/I-9512-2012; Stevenson, David/C-8089-2012; Butler, Tim/G-1139-2011; Pfister, Gabriele/A-9349-2008; Krol, Maarten/B-3597-2010; Wild, Oliver/A-4909-2009; Szopa, Sophie/F-8984-2010; Shindell, Drew/D-4636-2012; Krol, Maarten/E-3414-2013; Horowitz, Larry/D-8048-2014; Bergmann, Daniel/F-9801-2011; Lamarque, Jean-Francois/L-2313-2014; Collins, William/A-5895-2010 OI Rodriguez, Jose/0000-0002-1902-4649; Pitari, Giovanni/0000-0001-7051-9578; Emmons, Louisa/0000-0003-2325-6212; Schultz, Martin/0000-0003-3455-774X; Savage, Nicholas/0000-0001-9391-5100; Derwent, Richard/0000-0003-4498-645X; Stevenson, David/0000-0002-4745-5673; Wild, Oliver/0000-0002-6227-7035; Szopa, Sophie/0000-0002-8641-1737; Horowitz, Larry/0000-0002-5886-3314; Bergmann, Daniel/0000-0003-4357-6301; Lamarque, Jean-Francois/0000-0002-4225-5074; Collins, William/0000-0002-7419-0850 NR 74 TC 138 Z9 138 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 14 PY 2006 VL 111 IS D19 AR D19306 DI 10.1029/2006JD007100 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 095GY UT WOS:000241297400004 ER PT J AU Masson, YJ Pride, SR Nihei, KT AF Masson, Y. J. Pride, S. R. Nihei, K. T. TI Finite difference modeling of Biot's poroelastic equations at seismic frequencies SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID NUMERICAL-SOLUTION; ISOTROPIC MEDIA; WAVE-EQUATIONS; ELASTIC WAVES; POROUS-MEDIA; PROPAGATION; RANGE AB [ 1] Across the seismic band of frequencies ( loosely defined as < 10 kHz), a seismic wave propagating through a porous material will create flow in the pore space that is laminar; that is, in this low-frequency "seismic limit,'' the development of viscous boundary layers in the pores need not be modeled. An explicit time stepping staggered-grid finite difference scheme is presented for solving Biot's equations of poroelasticity in this low-frequency limit. A key part of this work is the establishment of rigorous stability conditions. It is demonstrated that over a wide range of porous material properties typical of sedimentary rock and despite the presence of fluid pressure diffusion ( Biot slow waves), the usual Courant condition governs the stability as if the problem involved purely elastic waves. The accuracy of the method is demonstrated by comparing to exact analytical solutions for both fast compressional waves and slow waves. Additional numerical modeling examples are also presented. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Chevron Energy Technol Co, San Ramon, CA 94583 USA. RP Masson, YJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM yjmasson@lbl.gov; srpride@lbl.gov; knih@chevron.com RI masson, yder/K-8264-2012; Nihei, Kurt/K-1239-2016; OI masson, yder/0000-0001-6884-8823 NR 26 TC 36 Z9 36 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT 14 PY 2006 VL 111 IS B10 AR B10305 DI 10.1029/2006JB004366 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 095IG UT WOS:000241300800004 ER PT J AU Stoica, T Sutter, E AF Stoica, T. Sutter, E. TI Ge dots embedded in SiO2 obtained by oxidation of Si/Ge/Si nanostructures SO NANOTECHNOLOGY LA English DT Article ID SILICON NANOCRYSTALS; SI1-XGEX ALLOYS; TEMPERATURE; SIGE; MEMORY; BEHAVIOR; PHOTOLUMINESCENCE; SPECTROSCOPY; TRANSITION; SIO2-FILMS AB Selective epitaxial growth was used to fabricate narrow Si/Ge/Si pillar nanostructures in small holes in ultrathin oxide (UTO) on Si(100). The self-assembled holes with diameters of 5-30 nm were obtained by in situ partial removal of the UTO at high temperature. The UTO formation and the annealing process were optimized for a high density of holes. The SiGe nanopillars were grown with sizes determined by the initial hole diameter in the UTO. Crystalline Ge dots embedded in oxide were formed by oxidation of the pillar nanostructures. High-resolution transmission electron microscopy (HRTEM) was used to study the pillar nanostructures and the dot shapes before and after oxidation. Capacitors obtained with the oxidized samples showed a hysteresis in their C-V curves attributed to charge retention in the Ge dots embedded in the oxide. C1 Forschungszentrum Julich GmbH, IBN 1, D-52425 Julich, Germany. CNI, Ctr Nanoelect Syst Informat Technol, D-52425 Julich, Germany. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Stoica, T (reprint author), Forschungszentrum Julich GmbH, IBN 1, D-52425 Julich, Germany. EM t.stoica@fz-juelich.de NR 40 TC 14 Z9 14 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 14 PY 2006 VL 17 IS 19 BP 4912 EP 4916 DI 10.1088/0957-4484/17/19/022 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 100LQ UT WOS:000241671000022 ER PT J AU Yu, ZN Wu, W Jung, GY Olynick, DL Straznicky, J Li, XM Li, ZY Tong, WM Liddle, JA Wang, SY Williams, RS AF Yu, Zhaoning Wu, Wei Jung, Gun-Young Olynick, D. L. Straznicky, J. Li, Xuema Li, Zhiyong Tong, William M. Liddle, J. A. Wang, Shih-Yuan Williams, R. Stanley TI Fabrication of 30 nm pitch imprint moulds by frequency doubling for nanowire arrays SO NANOTECHNOLOGY LA English DT Article ID NANOIMPRINT LITHOGRAPHY; LOGIC GATES; HALF-PITCH; NANOFABRICATION; RESOLUTION; CIRCUITS AB We report the fabrication of 30 nm pitch nanowire array imprint moulds by spatial frequency doubling a 60 nm pitch array generated by electron beam lithography. We have successfully fabricated nanowire arrays at a 30 nm pitch, which is targeted for the year 2020 by the International Technology Roadmap for Semiconductors, with an average line-width of 17 nm and a 3 sigma line width roughness (LWR) of 4.0 nm. In contrast to previously reported procedures, our spatial frequency doubling technique produces electrically isolated nanowires that are appropriate for crossbar circuits. C1 Hewlett Packard Labs, Palo Alto, CA 94304 USA. Gwangju Inst Sci & Technol, Kwangju 500712, South Korea. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Hewlett Packard Corp, Tech Dev Operat, Corvallis, OR 97330 USA. RP Yu, ZN (reprint author), Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA. EM stan.williams@hp.com RI Tong, William/D-2564-2010; Wu, Wei/D-1908-2011; Williams, R. Stanley/A-8281-2009; Liddle, James/A-4867-2013; Wang, Shih-Yuan/C-3889-2009 OI Williams, R. Stanley/0000-0003-0213-4259; Liddle, James/0000-0002-2508-7910; Wang, Shih-Yuan/0000-0002-1212-3484 NR 19 TC 14 Z9 14 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 14 PY 2006 VL 17 IS 19 BP 4956 EP 4961 DI 10.1088/0957-4484/17/19/030 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 100LQ UT WOS:000241671000030 ER PT J AU Weaver, ML Qiu, SR Hoyer, JR Casey, WH Nancollas, GH De Yoreo, JJ AF Weaver, Matthew L. Qiu, S. Roger Hoyer, John R. Casey, William H. Nancollas, George H. De Yoreo, James J. TI Improved model for inhibition of pathological mineralization based on citrate-calcium oxalate monohydrate interaction SO CHEMPHYSCHEM LA English DT Article DE biomineralization; crystal growth; kinetics; scanning probe microscopy; surface chemistry ID HYPERACTIVE ANTIFREEZE PROTEIN; CRYSTAL-GROWTH; CRYSTALLIZATION; MORPHOLOGY; AGGREGATION; UROPONTIN; KINETICS; INVITRO; BINDING; URINE C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. Univ Calif Davis, Dept Chem, Davis, CA 95615 USA. Univ Calif Davis, Dept Geol, Davis, CA 95615 USA. Univ Delaware, Dept Biol Sci, Newark, DE 19716 USA. SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. RP De Yoreo, JJ (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. EM deyoreo1@llnl.gov FU NIDDK NIH HHS [DK61673, DK33501] NR 34 TC 23 Z9 23 U1 3 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD OCT 13 PY 2006 VL 7 IS 10 BP 2081 EP 2084 DI 10.1002/cphc.200600371 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 097RA UT WOS:000241464700009 PM 16941562 ER PT J AU Bencharit, S Edwards, CC Morton, CL Howard-Williams, EL Kuhn, P Potter, PM Redinbo, MR AF Bencharit, Sompop Edwards, Carol C. Morton, Christopher L. Howard-Williams, Escher L. Kuhn, Peter Potter, Philip M. Redinbo, Matthew R. TI Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1 SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE cholesterol metabolism; cholesterol esters; foam cells; atherosclerosis; heart diseases ID CHOLESTERYL ESTER HYDROLASE; PALMITOYL-PROTEIN THIOESTERASE; ELECTRON-DENSITY MAPS; SALT ACTIVATED LIPASE; CRYSTAL-STRUCTURE; MAMMALIAN CARBOXYLESTERASES; TRIACYLGLYCEROL HYDROLASE; LIVER CARBOXYLESTERASE; STRUCTURAL INSIGHTS; GENE-EXPRESSION AB Human carboxylesterase 1 (hCE1) is a drug and endobiotic-processing serine hydrolase that exhibits relatively broad substrate specificity. It has been implicated in a variety of endogenous cholesterol metabolism pathways including the following apparently disparate reactions: cholesterol ester hydrolysis (CEH), fatty acyl Coenzyme A hydrolysis (FACoAH), acyl-Coenzyme A:cholesterol acyltransfer (ACAT), and fatty acyl ethyl ester synthesis (FAEES). The structural basis for the ability of hCE1 to perform these catalytic actions involving large substrates and products has remained unclear. Here we present four crystal structures of the hCE1 glycoprotein in complexes with the following enclogenous substrates or substrate analogues: Coenzyme A, the fatty acid palmitate, and the bile acids cholate and tatfrocholate. While the active site of hCE1 was known to be promiscuous and capable of interacting with a variety of chemically distinct ligands, these structures reveal that the enzyme contains two additional ligand-binding sites and that each site also exhibits relatively non-specific ligandbinding properties. Using this multisite promiscuity, hCE1 appears structurally capable of assembling several catalytic events depending, apparently, on the physiological state of the cellular environment. These results expand our understanding of enzyme promiscuity and indicate that, in the case of hCEI, multiple non-specific sites are employed to perform distinct catalytic actions. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Biochem & Biophys, Sch Med, Chapel Hill, NC 27599 USA. Univ N Carolina, Lineberger Comprehens Canc Ctr, Sch Med, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Prosthodont, Sch Dent, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Pharmacol, Sch Med, Chapel Hill, NC 27599 USA. St Jude Childrens Res Hosp, Dept Mol Pharmacol, Memphis, TN 38105 USA. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Redinbo, MR (reprint author), Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. EM redinbo@unc.edu RI Potter, Philip/J-4515-2013 FU NCI NIH HHS [R01 CA098468] NR 53 TC 70 Z9 72 U1 3 U2 12 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 13 PY 2006 VL 363 IS 1 BP 201 EP 214 DI 10.1016/j.jmb.2006.08.025 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 094PB UT WOS:000241250300017 PM 16962139 ER PT J AU Standaert, RF Park, SB AF Standaert, Robert F. Park, Seung Bum TI Abc amino acids: Design, synthesis, and properties of new photoelastic amino acids SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID PHOTOINDUCIBLE BETA-HAIRPIN; GAS ELECTRON-DIFFRACTION; TRANS-AZOBENZENE; CONFORMATIONAL STATES; BACKBONE CONSTITUENT; CIS-AZOBENZENE; ION CHANNELS; (4-AMINOMETHYL)PHENYLAZOBENZOIC ACID; PHOTOBIOLOGICAL SWITCHES; ACETYLCHOLINE-RECEPTORS AB Photoisomerizable amino acids provide a direct avenue to the experimental manipulation of bioactive polypeptides, potentially allowing real-time, remote control of biological systems and enabling useful applications in nanobiotechnology. Herein, we report a new class of photoisomerizable amino acids intended to cause pronounced expansion and contraction in the polypeptide backbone, i.e., to be photoelastic. These compounds, termed Abc amino acids, employ a photoisomerizable azobiphenyl chromophore to control the relative disposition of aminomethyl and carboxyl substituents. Molecular modeling of nine Abc isomers led to the identification of one with particularly attractive properties, including the ability to induce contractions up to 13 angstrom in the backbone upon trans -> cis photoisomerization. This isomer, designated mpAbc, has substituents at meta and para positions on the inner (azolinked) and outer rings, respectively. An efficient synthesis of Fmoc-protected mpAbc was executed in which the biaryl components were formed via Suzuki couplings and the azo linkage was formed via amine/nitroso condensation; protected forms of three other Abc isomers were prepared similarly. An undecapeptide incorporating mpAbc was synthesized by conventional solid-phase methods and displayed characteristic azobenzene photochemical behavior with optimal conversion to the cis isomer at 360 nm and a thermal cis -> trans half-life of 100 min at 80 degrees C. C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Seoul Natl Univ, Sch Chem, Seoul 151742, South Korea. RP Standaert, RF (reprint author), Oak Ridge Natl Lab, Div Life Sci, POB 2008,MS 6123, Oak Ridge, TN 37831 USA. EM standaertrf@ornl.gov; sbpark@snu.ac.kr RI Standaert, Robert/D-9467-2013; Park, Seung Bum/N-1901-2014 OI Standaert, Robert/0000-0002-5684-1322; Park, Seung Bum/0000-0003-1753-1433 FU NIGMS NIH HHS [GM 57543] NR 81 TC 25 Z9 25 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD OCT 13 PY 2006 VL 71 IS 21 BP 7952 EP 7966 DI 10.1021/jo060763q PG 15 WC Chemistry, Organic SC Chemistry GA 091UE UT WOS:000241053000004 PM 17025282 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJY Owen, M Padley, P Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kafer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Mattig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Strohmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. TI Search for associated Higgs boson production WH -> WWW*-> l(+/-)nu l('+/-)nu(')+X in p(p)over-bar collisions at root S=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present a search for associated Higgs boson production in the process p (p) over bar -> WH -> WWW*-> l(+/-)nu l('+/-)nu(')+X in final states containing two like-sign isolated electrons or muons (e(+/-)e(+/-), e(+/-)mu(+/-), or mu(+/-)mu(+/-)). The search is based on D0 run II data samples corresponding to integrated luminosities of 360-380 pb(-1). No excess is observed over the predicted standard model background. We set 95% C.L. upper limits on sigma ->(p (p) over bar WH) x Br(H -> WW*) between 3.2 and 2.8 pb for Higgs boson masses from 115 to 175 GeV. C1 Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. McGill Univ, Montreal, PQ, Canada. York Univ, Toronto, ON M3J 2R7, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, Phys Corpusculaire Lab, IN2P3, CNRS, Clermont Ferrand, France. Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, IN2P3,CNRS, Grenoble, France. Univ Mediterranee, CPPm, IN2P3, CNRS, Marseille, France. CNRS, Lab Accelerateur Lineaire, IN2P3, Orsay, France. Univ Paris 06, LPHNE, IN2P3, CNRS, Paris, France. Univ Paris 07, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Louis Pasteur Strasbourg 1, CNRS, IPHC, IN2P3, Strasbourg, France. Univ Haut Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Royal Inst Technol, Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Imperial Coll Sch Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Oklahoma City, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Guo, Jun/O-5202-2015; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Merkin, Mikhail/D-6809-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Novaes, Sergio/D-3532-2012 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Guo, Jun/0000-0001-8125-9433; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549 NR 14 TC 10 Z9 10 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 13 PY 2006 VL 97 IS 15 AR 151804 DI 10.1103/Phys.Rev.Lett.97.151804 PG 7 WC Physics, Multidisciplinary SC Physics GA 094OB UT WOS:000241247700021 PM 17155320 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Anderson, M Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Benedosso, F Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Burton, TP Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCLB Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Cheng, J Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Ghazikhanian, V Ghosh, P Gonzalez, JE Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Guertin, SM Guimaraes, KSFF Gupta, N Gutierrez, TD Haag, B Hamed, A Harris, JW Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hoffmann, GW Horner, MJ Huang, HZ Hughes, EW Humanic, TJ Igo, G Jacobs, P Jacobs, WW Jakl, P Jia, F Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, NS Netrakanti, PK Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Picha, R Planinic, M Pluta, J Poljak, N Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ray, RL Reinnarth, J Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakuma, T Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, EP Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Subba, NL Sugarbaker, E Sumbera, M Sun, Z Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zoulkameev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Anderson, M. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Benedosso, F. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S-L. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Burton, T. P. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, N. Gutierrez, T. D. Haag, B. Hamed, A. Harris, J. W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, N. S. Netrakanti, P. K. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Poljak, N. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Reinnarth, J. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakuma, T. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Subba, N. L. Sugarbaker, E. Sumbera, M. Sun, Z. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I-K. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zoulkameev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. TI Identified baryon and meson distributions at large transverse momenta from Au plus Au collisions at root(S)(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRON SPECTRA; FRAGMENTATION FUNCTIONS; D+AU COLLISIONS; QUARK; P+P AB Transverse momentum spectra of pi(+/-), p, and (p) over bar p up to 12 GeV/c at midrapidity in centrality selected Au + Au collisions at root s(NN) = 200 GeV are presented. In central Au + Au collisions, both pi(+/-) and p((p) over bar) show significant suppression with respect to binary scaling at p(T) greater than or similar to 4 GeV/c. Protons and antiprotons are less suppressed than pi(+/-), in the range 1.5 less than or similar to p(T) less than or similar to 6 GeV/c. The pi(-)/pi(+) and (p) over bar /p ratios show at most a weak pT dependence and no significant centrality dependence. The p/pi ratios in central Au + Au collisions approach the values in p + p and d + Au collisions at p(T) greater than or similar to 5 GeV/c. The results at high p(T) indicate that the partonic sources of pi(+/-), p, and (p) over bar have similar energy loss when traversing the nuclear medium. C1 Yale Univ, New Haven, CT 06520 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Birmingham, Birmingham, W Midlands, England. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Illinois, Chicago, IL USA. Creighton Univ, Omaha, NE 68178 USA. Nucl Phys Inst AS CR, Rez 25068, Czech Republic. Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Inst Modern Phys, Lanzhou, Peoples R China. Lawrence Bekeley Natl Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Phys Engn Inst, Moscow, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF, Amsterdam, Netherlands. Univ Utrecht, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Hefei 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Yale Univ, New Haven, CT 06520 USA. RI Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Peitzmann, Thomas/K-2206-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Dogra, Sunil /B-5330-2013; Planinic, Mirko/E-8085-2012; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Takahashi, Jun/B-2946-2012; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Witt, Richard/H-3560-2012; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Lee, Chang-Hwan/B-3096-2015 OI Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Peitzmann, Thomas/0000-0002-7116-899X; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Castillo Castellanos, Javier/0000-0002-5187-2779; Takahashi, Jun/0000-0002-4091-1779; Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Lee, Chang-Hwan/0000-0003-3221-1171 NR 41 TC 167 Z9 168 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 13 PY 2006 VL 97 IS 15 AR 152301 DI 10.1103/PhysRevLett.97.152301 PG 6 WC Physics, Multidisciplinary SC Physics GA 094OB UT WOS:000241247700022 PM 17026027 ER PT J AU Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Berger, J Bezverkhny, BI Bharadwaj, S Bhasin, A Bhati, AK Bhatia, VS Bichsel, H Bielcik, J Bielcikova, J Billmeier, A Bland, LC Blyth, CO Blyth, SL Bonner, BE Botje, M Boucham, A Bouchet, J Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, Y Cheng, J Cherney, M Chikanian, A Choi, HA Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dubey, AK Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Faivre, J Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fisyak, Y Fornazier, KSF Fox, BD Fu, J Gagliardi, CA Gaillard, L Gans, J Ganti, MS Geurts, F Ghazikhanian, V Ghosh, P Gonzalez, JE Gorbunov, YG Gos, H Grachov, O Grebenyuk, O Grosnick, D Guertin, SM Guo, Y Gupta, A Gupta, N Gutierrez, TD Hallman, TJ Hamed, A Harris, JW Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Jacobs, P Jacobs, WW Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kutuev, RK Kuznetsov, AA Lamb, R Lamont, MAC Landgraf, JM Lange, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, QJ Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahajan, S Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Marx, JN Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Martin, L Marx, JN Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Miller, ML Minaev, NG Mironov, C Mischke, A Mishra, DK Mitchell, J Mioduszewski, S Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ravel, O Ray, RL Razin, SV Reichhold, D Reid, JG Reinnarth, J Renault, G Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Salur, S Sandweiss, J Sarsour, M Savin, I Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Shao, W Sharma, M Shen, WQ Shestermanov, KE Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Sumbera, M Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, G Wang, XL Wang, Y Wang, Y Wang, ZM Ward, H Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, QH Xu, Z Xu, ZZ Yepes, P Yoo, IK Yurevich, VI Zborovsky, I Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhong, C Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Adams, J. Aggarwal, M. M. Ahammed, Z. Amonett, J. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Badyal, S. K. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Berger, J. Bezverkhny, B. I. Bharadwaj, S. Bhasin, A. Bhati, A. K. Bhatia, V. S. Bichsel, H. Bielcik, J. Bielcikova, J. Billmeier, A. Bland, L. C. Blyth, C. O. Blyth, S-L. Bonner, B. E. Botje, M. Boucham, A. Bouchet, J. Brandin, A. V. Bravar, A. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, Y. Cheng, J. Cherney, M. Chikanian, A. Choi, H. A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dubey, A. K. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Faivre, J. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fisyak, Y. Fornazier, K. S. F. Fox, B. D. Fu, J. Gagliardi, C. A. Gaillard, L. Gans, J. Ganti, M. S. Geurts, F. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gorbunov, Y. G. Gos, H. Grachov, O. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guo, Y. Gupta, A. Gupta, N. Gutierrez, T. D. Hallman, T. J. Hamed, A. Harris, J. W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Jacobs, P. Jacobs, W. W. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kutuev, R. Kh. Kuznetsov, A. A. Lamb, R. Lamont, M. A. C. Landgraf, J. M. Lange, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Q. J. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Lopez-Noriega, M. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahajan, S. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Marx, J. N. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Martin, L. Marx, J. N. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Miller, M. L. Minaev, N. G. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mioduszewski, S. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nayak, S. K. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Nikitin, V. A. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Petrov, V. A. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ravel, O. Ray, R. L. Razin, S. V. Reichhold, D. Reid, J. G. Reinnarth, J. Renault, G. Retiere, F. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Salur, S. Sandweiss, J. Sarsour, M. Savin, I. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Shao, W. Sharma, M. Shen, W. Q. Shestermanov, K. E. Shimanskiy, S. S. Sichtermann, E. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sugarbaker, E. Sumbera, M. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, G. Wang, X. L. Wang, Y. Wang, Y. Wang, Z. M. Ward, H. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Xu, Z. Z. Yepes, P. Yoo, I-K. Yurevich, V. I. Zborovsky, I. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhong, C. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. TI Forward neutral pion production in p+p and d+Au collisions at root(S)(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROTON-NUCLEUS COLLISIONS; COLOR GLASS CONDENSATE; GLUON DISTRIBUTION; EP SCATTERING; QCD; FRAGMENTATION; PP AB Measurements of the production of forward pi(0) mesons from p+p and d+Au collisions at root s(NN) = 200 GeV are reported. The p+p yield generally agrees with next-to-leading order perturbative QCD calculations. The d+Au yield per binary collision is suppressed as eta increases, decreasing to similar to 30% of the p+p yield at =4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward pi(0) with charged hadrons at eta approximate to 0 show a recoil peak in p+p that is suppressed in d+Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei. C1 Univ Birmingham, Birmingham, W Midlands, England. Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. Nucl Phys Inst AS CR, Rez 25068, Czech Republic. Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. Joint Inst Nucl Res Dubna, Phys Particules Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF, Amsterdam, Netherlands. Univ Utrecht, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Hefei 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adams, J (reprint author), Univ Birmingham, Birmingham, W Midlands, England. RI Barnby, Lee/G-2135-2010; Strikhanov, Mikhail/P-7393-2014; Mischke, Andre/D-3614-2011; Lee, Chang-Hwan/B-3096-2015; Dogra, Sunil /B-5330-2013; Takahashi, Jun/B-2946-2012; Chen, Yu/E-3788-2012; Planinic, Mirko/E-8085-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Zborovsky, Imrich/G-7964-2014; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Peitzmann, Thomas/K-2206-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Barnby, Lee/0000-0001-7357-9904; Strikhanov, Mikhail/0000-0003-2586-0405; Lee, Chang-Hwan/0000-0003-3221-1171; Takahashi, Jun/0000-0002-4091-1779; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Peitzmann, Thomas/0000-0002-7116-899X; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 NR 43 TC 169 Z9 169 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 13 PY 2006 VL 97 IS 15 AR 152302 DI 10.1103/Phys/RevLett.97.152302 PG 6 WC Physics, Multidisciplinary SC Physics GA 094OB UT WOS:000241247700023 PM 17155322 ER PT J AU Berns, DM Oliver, WD Valenzuela, SO Shytov, AV Berggren, KK Levitov, LS Orlando, TP AF Berns, D. M. Oliver, W. D. Valenzuela, S. O. Shytov, A. V. Berggren, K. K. Levitov, L. S. Orlando, T. P. TI Coherent quasiclassical dynamics of a persistent current qubit SO PHYSICAL REVIEW LETTERS LA English DT Article ID MACROSCOPIC QUANTUM STATES; JOSEPHSON-JUNCTION; INTERFEROMETRY; SUPERPOSITION AB A new regime of coherent quantum dynamics of a qubit is realized at low driving frequencies in the strong driving limit. Coherent transitions between qubit states occur via the Landau-Zener process when the system is swept through an energy-level avoided crossing. The quantum interference mediated by repeated transitions gives rise to an oscillatory dependence of the qubit population on the driving-field amplitude and flux detuning. These interference fringes, which at high frequencies consist of individual multiphoton resonances, persist even for driving frequencies smaller than the decoherence rate, where individual resonances are no longer distinguishable. A theoretical model that incorporates dephasing agrees well with the observations. C1 MIT, Dept Phys, Cambridge, MA 02139 USA. MIT, Lincoln Lab, Lexington, MA 02420 USA. MIT, Francis Bitter Natl Magnet Lab, Cambridge, MA 02139 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. RP Berns, DM (reprint author), MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM dmb@mit.edu OI Shytov, Andrey/0000-0002-4674-8124 NR 23 TC 59 Z9 60 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 13 PY 2006 VL 97 IS 15 AR 150502 DI 10.1103/PhysRevLett.97.150502 PG 4 WC Physics, Multidisciplinary SC Physics GA 094OB UT WOS:000241247700008 PM 17155307 ER PT J AU Csernai, LP Kapusta, JI McLerran, LD AF Csernai, Laszlo P. Kapusta, Joseph I. McLerran, Larry D. TI Strongly interacting low-viscosity matter created in relativistic nuclear collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLECTIVE-FLOW; ELLIPTIC FLOW; PB+PB COLLISIONS; SHEAR VISCOSITY; DEPENDENCE; PLASMA AB Substantial collective flow is observed in collisions between large nuclei at BNL RHIC (Relativistic Heavy Ion Collider) as evidenced by single-particle transverse momentum distributions and by azimuthal correlations among the produced particles. The data are well reproduced by perfect fluid dynamics. A calculation of the dimensionless ratio of shear viscosity eta to entropy density s by Kovtun, Son, and Starinets within anti-de Sitter space/conformal field theory yields eta/s=h/4 pi k(B), which has been conjectured to be a lower bound for any physical system. Motivated by these results, we show that the transition from hadrons to quarks and gluons has behavior similar to helium, nitrogen, and water at and near their phase transitions in the ratio eta/s. We suggest that experimental measurements can pinpoint the location of this transition or rapid crossover in QCD. C1 Univ Bergen, Dept Phys, Sect Theoret Phys, N-5007 Bergen, Norway. MTA KFKI, Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary. Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. Brookhaven Natl Lab, Nucl Theory Grp, Upton, NY 11973 USA. Brookhaven Natl Lab, Riken Brookhaven Ctr, Upton, NY 11973 USA. RP Csernai, LP (reprint author), Univ Bergen, Dept Phys, Sect Theoret Phys, Allegaten 55, N-5007 Bergen, Norway. NR 39 TC 271 Z9 274 U1 3 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 13 PY 2006 VL 97 IS 15 AR 152303 DI 10.1103/PhysRevLett.97.152303 PG 4 WC Physics, Multidisciplinary SC Physics GA 094OB UT WOS:000241247700024 PM 17155323 ER PT J AU Du, SX Gao, HJ Seidel, C Tsetseris, L Ji, W Kopf, H Chi, LF Fuchs, H Pennycook, SJ Pantelides, ST AF Du, S. X. Gao, H. J. Seidel, C. Tsetseris, L. Ji, W. Kopf, H. Chi, L. F. Fuchs, H. Pennycook, S. J. Pantelides, S. T. TI Selective nontemplated adsorption of organic molecules on nanofacets and the role of bonding patterns SO PHYSICAL REVIEW LETTERS LA English DT Article ID EPITAXY; SURFACES; CHEMISORPTION; NANOPARTICLES; NANOCRYSTALS; PTCDA; DNA AB A key element of functionalizing nanocrystals with organic molecules is the nontemplated selective adsorption of different molecules on different facets. Here we report scanning-tunneling-microscopy images of perylene-3,4,9,10-tetracarboxylic-dianhydride and 2,5-dimethyl-N,N-'-dicyanoquinonediimine on silver, demonstrating selective adsorption on different facets. We also report first-principles calculations that account for the data and show that bonding, which controls selectivity, occurs via the end atoms, while the molecule's midregion arches away from the substrate. The results are also consistent with data that have been interpreted in terms of bonding via the midregion. C1 Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Munster, Inst Phys, D-48149 Munster, Germany. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Gao, HJ (reprint author), Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, POB 603, Beijing 100080, Peoples R China. EM hjgao@aphy.iphy.ac.cn; pantelides@vanderbilt.edu RI IoP, Nano Lab/B-9663-2013; Du, Shixuan/K-7145-2012; Ji, Wei/G-6097-2010; Chi, Lifeng/A-1419-2015 OI Du, Shixuan/0000-0001-9323-1307; Ji, Wei/0000-0001-5249-6624; NR 30 TC 54 Z9 59 U1 2 U2 76 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 13 PY 2006 VL 97 IS 15 AR 156105 DI 10.1103/PhysRevLett.97.156105 PG 4 WC Physics, Multidisciplinary SC Physics GA 094OB UT WOS:000241247700046 PM 17155345 ER PT J AU Sharma, PA Harrison, N Jaime, M Oh, YS Kim, KH Batista, CD Amitsuka, H Mydosh, JA AF Sharma, P. A. Harrison, N. Jaime, M. Oh, Y. S. Kim, K. H. Batista, C. D. Amitsuka, H. Mydosh, J. A. TI Phonon thermal transport of URu2Si2: Broken translational symmetry and strong-coupling of the "hidden order" to the lattice SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-FERMION COMPOUNDS; SPIN-DENSITY-WAVE; CONDUCTIVITY; SUPERCONDUCTORS; RATIO; FIELD AB A dramatic increase in the total thermal conductivity (kappa) is observed in the hidden order (HO) state of single crystal URu2Si2. Through measurements of the thermal Hall conductivity, we explicitly show that the electronic contribution to kappa is extremely small, so that this large increase in kappa is dominated by phonon conduction. An itinerant BCS or mean-field model describes this behavior well: the increase in kappa is associated with the opening of a large energy gap at the Fermi surface, thereby decreasing electron-phonon scattering. Our analysis implies that the "hidden order" parameter is strongly coupled to the lattice, suggestive of a broken symmetry involving charge degrees of freedom. C1 Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Seoul Natl Univ, Sch Phys, Seoul 151742, South Korea. Seoul Natl Univ, CSCMR, Seoul 151742, South Korea. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Hokkaido Univ, Grad Sch Sci, Sapporo, Hokkaido 0600810, Japan. Univ Cologne, Inst Phys 2, D-5000 Cologne, Germany. Max Planck Inst Chem Phys Fester Stoffe, D-01187 Dresden, Germany. RP Sharma, PA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS E536, Los Alamos, NM 87545 USA. RI Oh, Yoon Seok/A-1071-2011; Sharma, Peter/G-1917-2011; Amitsuka, Hiroshi/K-8539-2012; Jaime, Marcelo/F-3791-2015; Batista, Cristian/J-8008-2016 OI Oh, Yoon Seok/0000-0001-8233-1898; Sharma, Peter/0000-0002-3071-7382; Harrison, Neil/0000-0001-5456-7756; Jaime, Marcelo/0000-0001-5360-5220; NR 30 TC 23 Z9 23 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 13 PY 2006 VL 97 IS 15 AR 156401 DI 10.1103/PhysRevLett.97.156401 PG 4 WC Physics, Multidisciplinary SC Physics GA 094OB UT WOS:000241247700047 PM 17155346 ER PT J AU Xu, Q Sharp, ID Yuan, CW Yi, DO Liao, CY Glaeser, AM Minor, AM Beeman, JW Ridgway, MC Kluth, P Ager, JW Chrzan, DC Haller, EE AF Xu, Q. Sharp, I. D. Yuan, C. W. Yi, D. O. Liao, C. Y. Glaeser, A. M. Minor, A. M. Beeman, J. W. Ridgway, M. C. Kluth, P. Ager, J. W., III Chrzan, D. C. Haller, E. E. TI Large melting-point hysteresis of Ge nanocrystals embedded in SiO2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SURFACE-ENERGY; NANOCLUSTERS; GERMANIUM; CRYSTALS; ALUMINUM; MATRIX; GROWTH AB The melting behavior of Ge nanocrystals embedded within SiO2 is evaluated using in situ transmission electron microscopy. The observed melting-point hysteresis is large (+/- 17%) and nearly symmetric about the bulk melting point. This hysteresis is modeled successfully using classical nucleation theory without the need to invoke epitaxy. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia. RP Xu, Q (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RI Kluth, Patrick/A-1497-2008; Ridgway, Mark/D-9626-2011; Sharp, Ian/I-6163-2015; OI Kluth, Patrick/0000-0002-1806-2432; Ridgway, Mark/0000-0002-0642-0108; Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 NR 28 TC 104 Z9 105 U1 2 U2 29 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 13 PY 2006 VL 97 IS 15 AR 155701 DI 10.1103/PhysRevLett.97.155701 PG 4 WC Physics, Multidisciplinary SC Physics GA 094OB UT WOS:000241247700037 PM 17155336 ER PT J AU Nelson, CM VanDuijn, MM Inman, JL Fletcher, DA Bissell, MJ AF Nelson, Celeste M. VanDuijn, Martijn M. Inman, Jamie L. Fletcher, Daniel A. Bissell, Mina J. TI Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures SO SCIENCE LA English DT Article ID GROWTH-FACTOR-BETA; GLAND; MOUSE; FORM; BUD; PROLIFERATION; TGF-BETA-1; MODEL AB The treelike structures of many organs, including the mammary gland, are generated by branching morphogenesis, a reiterative process of branch initiation and invasion from a preexisting epithelium. Using a micropatterning approach to control the initial three-dimensional structure of mouse mammary epithelial tubules in culture, combined with an algorithm to quantify the extent of branching, we found that the geometry of tubules dictates the position of branches. We predicted numerically and confirm experimentally that branches initiate at sites with a local minimum in the concentration of autocrine inhibitory morphogens, such as transforming growth factor - beta. These results reveal that tissue geometry can control organ morphogenesis by defining the local cellular microenvironment, a finding that has relevance to control of invasion and metastasis. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM cmnelson@lbl.gov; mjbissell@lbl.gov OI van Duijn, Martijn/0000-0002-6654-994X FU NCI NIH HHS [CA57621, CA64786, R01 CA057621, R01 CA057621-10, R01 CA064786, R01 CA064786-10, R37 CA064786]; NIGMS NIH HHS [GM72736, R01 GM072736, R01 GM072736-05] NR 30 TC 313 Z9 318 U1 5 U2 49 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 13 PY 2006 VL 314 IS 5797 BP 298 EP 300 DI 10.1126/science.1131000 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 093TV UT WOS:000241194100041 PM 17038622 ER PT J AU Ji, SH Nicholl, MJ Glass, RJ Lee, KK AF Ji, Sung-Hoon Nicholl, Michael J. Glass, Robert J. Lee, Kang-Kun TI Influence of simple fracture intersections with differing aperture on density-driven immiscible flow: Wetting versus nonwetting flows SO WATER RESOURCES RESEARCH LA English DT Article ID LIQUID-PHASE STRUCTURE; UNSATURATED FLOW; INVASION PERCOLATION; MATRIX NETWORK; ART.; SIMULATIONS; DYNAMICS AB [ 1] We conducted laboratory experiments to evaluate the effects of simple fracture intersections with differing aperture on density-driven immiscible wetting ( water into air) and nonwetting ( Trichloroethylene into water) flows, and analyzed them quantitatively. The experimental systems consisting of vertical and horizontal fractures were fabricated with glass for easy visualization. The aperture variation between intersecting fractures and the viscous force of the injected fluid were considered to be critical system parameters. Experimental results show the critical difference between the wetting and nonwetting flows by the intersection and viscous force, and subsequent mathematical analyses explain well our observations: The intersection acts as a capillary barrier (CB) for the wetting and capillary bridge for the nonwetting flows, and the viscous force of flowing fluids reduces the strength of CBs. The results of both laboratory experiments and mathematical analyses suggest that the fracture intersection with differing aperture can be a more significant factor controlling the network-scale phase structure for the nonwetting than the wetting flows. C1 Univ Waterloo, Dept Earth Sci, Waterloo, ON N2L 3G1, Canada. Univ Nevada, Dept Geosci, Las Vegas, NV 89122 USA. Sandia Natl Labs, Flow Visualizat & Proc Lab, Albuquerque, NM 87185 USA. Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151747, South Korea. RP Ji, SH (reprint author), Univ Waterloo, Dept Earth Sci, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada. EM shji@scimail.uwaterloo.ca; michael.nicholll@ccmail.nevada.edu; rjglass@sandia.gov; kklee@snu.ac.kr NR 22 TC 5 Z9 5 U1 3 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 13 PY 2006 VL 42 IS 10 AR W10416 DI 10.1029/2006WR004953 PG 10 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 095JP UT WOS:000241304300001 ER PT J AU Johnson, KS de Foy, B Zuberi, B Molina, LT Molina, MJ Xie, Y Laskin, A Shutthanandan, V AF Johnson, K. S. de Foy, B. Zuberi, B. Molina, L. T. Molina, M. J. Xie, Y. Laskin, A. Shutthanandan, V. TI Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; ATMOSPHERIC AEROSOLS; CHEMICAL-COMPOSITION; PARTICULATE SOURCES; RECEPTOR MODEL; AIR-POLLUTION; UNITED-STATES; PIXE ANALYSIS; BLACK CARBON; PARTICLES AB Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter <= 2.5 mu m (PM2.5) were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission ( PIXE), Proton-Elastic Scattering Analysis ( PESA) and Scanning Transmission Ion Microscopy (STIM) measurements were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion, V and Ni, correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfates determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of nonvolatile PM2.5 consisted of carbonaceous material. C1 MIT, Dept Chem & Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. Pacific NW Natl Lab, Nat Resource Div, Richland, WA 99352 USA. Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Johnson, KS (reprint author), MIT, Dept Chem & Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM kirstenj@mit.edu RI de Foy, Benjamin/A-9902-2010; Laskin, Alexander/I-2574-2012; OI de Foy, Benjamin/0000-0003-4150-9922; Laskin, Alexander/0000-0002-7836-8417; Xie, Yulong/0000-0001-5579-482X NR 62 TC 57 Z9 59 U1 2 U2 21 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD OCT 12 PY 2006 VL 6 BP 4591 EP 4600 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 093YM UT WOS:000241206200003 ER PT J AU Vrugt, JA Clark, MP Diks, CGH Duan, Q Robinson, BA AF Vrugt, Jasper A. Clark, Martyn P. Diks, Cees G. H. Duan, Qinyun Robinson, Bruce A. TI Multi-objective calibration of forecast ensembles using Bayesian model averaging SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SYSTEM AB Bayesian Model Averaging ( BMA) has recently been proposed as a method for statistical postprocessing of forecast ensembles from numerical weather prediction models. The BMA predictive probability density function (PDF) of any weather quantity of interest is a weighted average of PDFs centered on the bias-corrected forecasts from a set of different models. However, current applications of BMA calibrate the forecast specific PDFs by optimizing a single measure of predictive skill. Here we propose a multi-criteria formulation for postprocessing of forecast ensembles. Our multi-criteria framework implements different diagnostic measures to reflect different but complementary metrics of forecast skill, and uses a numerical algorithm to solve for the Pareto set of parameters that have consistently good performance across multiple performance metrics. Two illustrative case studies using 48-hour ensemble data of surface temperature and sea level pressure, and multi-model seasonal forecasts of temperature, show that a multi-criteria formulation provides a more appealing basis for selecting the appropriate BMA model. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Natl Inst Water & Atmospher Res, Christchurch, New Zealand. Univ Amsterdam, Ctr Nonlinear Dynam Econ & Finance, NL-1018 WB Amsterdam, Netherlands. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Vrugt, JA (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Mail Stop T003, Los Alamos, NM 87545 USA. EM vrugt@lanl.gov RI Diks, Cees/B-1869-2008; Vrugt, Jasper/C-3660-2008; Robinson, Bruce/F-6031-2010; Clark, Martyn/A-5560-2015; Duan, Qingyun/C-7652-2011 OI Clark, Martyn/0000-0002-2186-2625; Duan, Qingyun/0000-0001-9955-1512 NR 19 TC 32 Z9 32 U1 4 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 12 PY 2006 VL 33 IS 19 AR L19817 DI 10.1029/2006GL027126 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 095FZ UT WOS:000241294900003 ER PT J AU Lester, WA Salomon-Ferrer, R AF Lester, William A. Salomon-Ferrer, Romelia TI Some recent developments in quantum Monte Carlo for electronic structure: Methods and application to a bio system SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM LA English DT Article; Proceedings Paper CT 7th Triennial Conference of the World-Association-of-Theoretical-and-Computational-Chemists CY 2005 CL Cape Town, SOUTH AFRICA SP World Assoc Theoret & Computat Chemists DE electronic structure; quantum Monte Carlo; linear diffusion Monte Carlo; quantum chemistry; computational chemistry; photoprotection ID COUPLED-CLUSTER CALCULATIONS; LOCAL ENERGY; RANDOM-WALK; MOLECULES; LOCALIZATION; CHEMISTRY; SOLIDS; ATOMS AB A brief review of recent advances in quantum Monte Carlo for the electronic structure of molecules at the University of California, Berkeley, is given based on an invited talk presented at the WATOC meeting, Cape Town, South Africa, January 2005. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Lester, WA (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. EM walester@lbl.gov NR 38 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-1280 J9 J MOL STRUC-THEOCHEM JI Theochem-J. Mol. Struct. PD OCT 12 PY 2006 VL 771 IS 1-3 SI SI BP 51 EP 54 DI 10.1016/j.theochem.2006.04.001 PG 4 WC Chemistry, Physical SC Chemistry GA 094LT UT WOS:000241241600008 ER PT J AU Montiel, D Cang, H Yang, H AF Montiel, D. Cang, H. Yang, H. TI Quantitative characterization of changes in dynamical behavior for single-particle tracking studies SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID GLASS-TRANSITION; MOLECULE MEASUREMENTS; KINETIC-THEORY; DIFFUSION; CELLS; TIME; MEMBRANE; MOTION; LOCALIZATION; COEFFICIENTS AB Single-particle tracking experiments have been used widely to study the heterogeneity of a sample. Segments with dissimilar diffusive behaviors are associated with different intermediate states, usually by visual inspection of the tracking trace. A likelihood-based, systematic approach is presented to remove this incertitude. Maximum likelihood estimators are derived for the determination of diffusion coefficients. A likelihood ratio test is applied to the localization of the changes in them. Simulations suggest that the proposed procedure is statistically robust and is able to quantitatively recover time- dependent changes in diffusion coefficients even in the presence of large measurement noise. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Yang, H (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM hawyang@berkeley.edu OI Yang, Haw/0000-0003-0268-6352 NR 51 TC 67 Z9 67 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 12 PY 2006 VL 110 IS 40 BP 19763 EP 19770 DI 10.1021/jp062024j PG 8 WC Chemistry, Physical SC Chemistry GA 091UI UT WOS:000241053400004 PM 17020359 ER PT J AU Kim, ZH Leone, SR AF Kim, Zee Hwan Leone, Stephen R. TI High-resolution apertureless near-field optical imaging using gold nanosphere probes SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MICROSCOPY; TIP; FLUORESCENCE; SCATTERING; SCALE; SPECTROSCOPY; SENSITIVITY; MOLECULES; CONSTANTS; CONTRAST AB An apertureless near-field scanning optical microscope (ANSOM) that utilizes the enhanced field around a gold nanosphere, which is attached to the end of an atomic force microscope (AFM) tip, is used to image the local dielectric constant of the patterned metallic surfaces and local electric field around plasmonic nanosphere samples. A colloidal gold nanosphere (similar to 50 nm diameter) is linked to the extremity of the conventional etchedsilicon probe. The scattering of laser radiation (633 or 532 nm) is modulated by the oscillating nanosphere-functionalized silicon tip, and the scattered radiation is detected. The approach curve (scattering intensity as a function of the tip - sample distance), the polarization dependence (scattering intensity as a function of the excitation polarization direction), and ANSOM image contrast confirm that the spherical nanosphere attached to the silicon tip acts as a point dipole that interacts with the sample surface via a dipole - dipole coupling, in which the dipole created by the field at the tip interacts with its own image dipole in the sample. The image obtained with the nanoparticle functionalized tip provides a dielectric map of the sample surface with a spatial resolution better than 80 nm. In addition, we show that the functionalized tip is capable of imaging the local electric field distribution above the plasmonic nanosphere samples. Overall, the result shows that high-resolution ANSOM is possible without the aid of the lightning-rod effect. With an improved tip-fabrication method, we believe that the method can provide a versatile high-resolution chemical imaging that is not available from usual forms of ANSOM. C1 Univ Calif Berkeley, Dept Chem & Phys, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem & Phys, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM srl@uclink.berkeley.edu RI Kim, Zee Hwan/A-9273-2010 NR 34 TC 39 Z9 39 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 12 PY 2006 VL 110 IS 40 BP 19804 EP 19809 DI 10.1021/jp061398 PG 6 WC Chemistry, Physical SC Chemistry GA 091UI UT WOS:000241053400010 PM 17020365 ER PT J AU Son, DH Wittenberg, JS Banin, U Alivisatos, AP AF Son, Dong Hee Wittenberg, Joshua S. Banin, Uri Alivisatos, A. Paul TI Second harmonic generation and confined acoustic phonons in highly excited semiconductor nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID HYPER-RAYLEIGH SCATTERING; QUANTUM DOTS; COHERENT PHONONS; DYNAMICS; SUSCEPTIBILITY; EXCITATION; DEPENDENCE; CARRIERS; SURFACE; GAAS AB The photo-induced enhancement of second harmonic generation and the effect of nanocrystal shape and pump intensity on confined acoustic phonons in semiconductor nanocrystals have been investigated with time-resolved scattering and absorption measurements. The second harmonic signal showed a sublinear increase of the second-order susceptibility with respect to the pump pulse energy, indicating a reduction of the effective one-electron second-order nonlinearity with increasing electron-hole density in the nanocrystals. The coherent acoustic phonons in spherical and rod-shaped semiconductor nanocrystals were detected in a time-resolved absorption measurement. Both nanocrystal morphologies exhibited oscillatory modulation of the absorption cross section, the frequency of which corresponded to their coherent radial breathing modes. The amplitude of the oscillation also increased with the level of photoexcitation, suggesting an increase in the amplitude of the lattice displacement as well. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Hebrew Univ Jerusalem, Dept Chem, IL-91904 Jerusalem, Israel. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Son, Dong Hee/C-2234-2015; Alivisatos , Paul /N-8863-2015; OI Son, Dong Hee/0000-0001-9002-5188; Alivisatos , Paul /0000-0001-6895-9048; Banin, Uri/0000-0003-1698-2128 NR 32 TC 30 Z9 30 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 12 PY 2006 VL 110 IS 40 BP 19884 EP 19890 DI 10.1021/jp062028o PG 7 WC Chemistry, Physical SC Chemistry GA 091UI UT WOS:000241053400019 PM 17020374 ER PT J AU Schwartzberg, AM Olson, TY Talley, CE Zhang, JZ AF Schwartzberg, Adam M. Olson, Tammy Y. Talley, Chad E. Zhang, Jin Z. TI Synthesis, characterization, and tunable optical properties of hollow gold nanospheres SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON RESONANCE; SHAPE-CONTROLLED SYNTHESIS; METAL NANOSTRUCTURES; DISTANCE-DEPENDENCE; COLLOIDAL STABILITY; SPECTROSCOPY; NANOPARTICLES; NANORODS; NANOSHELLS AB Nearly monodisperse hollow gold nanospheres (HGNs) with tunable interior and exterior diameters have been synthesized by sacrificial galvanic replacement of cobalt nanoparticles. It is possible to tune the peak of the surface plasmon band absorption between 550 and 820 nm by carefully controlling particle size and wall thickness. Cobalt particle size is tunable by simultaneously changing the concentration of sodium borohydride and sodium citrate, the reducing and capping agent, respectively. The thickness of the gold shell can be varied by carefully controlling the addition of gold salt. With successful demonstration of ensemble as well as single HGN surface-enhanced Raman scattering, these HGNs have shown great potential for chemical and biological sensing applications, especially those requiring nanostructures with near-IR absorption. C1 Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. Lawrence Livermore Natl Lab, Dept Chem & Mat Sci, Livermore, CA 94550 USA. RP Zhang, JZ (reprint author), Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. EM zhang@chemistry.ucsc.edu NR 66 TC 314 Z9 315 U1 24 U2 162 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 12 PY 2006 VL 110 IS 40 BP 19935 EP 19944 DI 10.1021/jp062136a PG 10 WC Chemistry, Physical SC Chemistry GA 091UI UT WOS:000241053400025 PM 17020380 ER PT J AU Somorjai, GA Bratlie, KM Montano, MO Park, JY AF Somorjai, Gabor A. Bratlie, Kaitlin M. Montano, Max O. Park, Jeong Y. TI Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SUM-FREQUENCY GENERATION; SCANNING-TUNNELING-MICROSCOPY; CYCLIC C-6 HYDROCARBONS; PT(111) CRYSTAL-SURFACE; VIBRATIONAL SPECTROSCOPY; HIGH-PRESSURE; CARBON-MONOXIDE; CYCLOHEXENE DEHYDROGENATION; ETHYLENE HYDROGENATION; SINGLE-CRYSTAL AB The mechanism that controls bond breaking at transition metal surfaces has been studied with sum frequency generation (SFG), scanning tunneling microscopy (STM), and catalytic nanodiodes operating under the high-pressure conditions. The combination of these techniques permits us to understand the role of surface defects, surface diffusion, and hot electrons in dynamics of surface catalyzed reactions. Sum frequency generation vibrational spectroscopy and kinetic measurements were performed under 1.5 Torr of cyclohexene hydrogenation/dehydrogenation in the presence and absence of H-2 and over the temperature range 300 - 500 K on the Pt(100) and Pt(111) surfaces. The structure specificity of the Pt(100) and Pt(111) surfaces is exhibited by the surface species present during reaction. On Pt(100), pi-allyl c-C6H9, cyclohexyl (C6H11), and 1,4-cyclohexadiene are identified adsorbates, while on the Pt(111) surface, pi-allyl c-C6H9, 1,4-cyclohexadiene, and 1,3-cyclohexadiene are present. A scanning tunneling microscope that can be operated at high pressures and temperatures was used to study the Pt(111) surface during the catalytic hydrogenation/ dehydrogenation of cyclohexene and its poisoning with CO. It was found that catalytically active surfaces were always disordered, while ordered surface were always catalytically deactivated. Only in the case of the CO poisoning at 350 K was a surface with a mobile adsorbed monolayer not catalytically active. From these results, a CO-dominated mobile overlayer that prevents reactant adsorption was proposed. By using the catalytic nanodiode, we detected the continuous flow of hot electron currents that is induced by the exothermic catalytic reaction. During the platinum-catalyzed oxidation of carbon monoxide, we monitored the flow of hot electrons over several hours using a metal - semiconductor Schottky diode composed of Pt and TiO2. The thickness of the Pt film used as the catalyst was 5 nm, less than the electron mean free path, resulting in the ballistic transport of hot electrons through the metal. The electron flow was detected as a chemicurrent if the excess electron kinetic energy generated by the exothermic reaction was larger than the effective Schottky barrier formed at the metal - semiconductor interface. The measurement of continuous chemicurrent indicated that chemical energy of exothermic catalytic reaction was directly converted into hot electron flux in the catalytic nanodiode. We found the chemicurrent was well-correlated with the turnover rate of CO oxidation separately measured by gas chromatography. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Bratlie, Kaitlin/A-1133-2009; Park, Jeong Young/A-2999-2008 NR 41 TC 42 Z9 42 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 12 PY 2006 VL 110 IS 40 BP 20014 EP 20022 DI 10.1021/jp062569d PG 9 WC Chemistry, Physical SC Chemistry GA 091UI UT WOS:000241053400034 PM 17020389 ER PT J AU Stiopkin, I Brixner, T Yang, M Fleming, GR AF Stiopkin, Igor Brixner, Tobias Yang, Mino Fleming, Graham R. TI Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID FEMTOSECOND SPECTROSCOPY; INFRARED-SPECTROSCOPY; SOLVATION DYNAMICS; PHOTON-ECHO; BOND AB We show that optical two-dimensional (2D) spectroscopy can recover ultrafast heterogeneous dynamics of closely spaced delocalized exciton states from a molecular exciton manifold characterized by a single absorption band. The complete experimental third-order nonlinear optical response from room-temperature J-aggregates in liquid phase is reproduced for the first time with self-consistent Frenkel exciton theory combined with modified Redfield theory. We show that exciton relaxation between the exciton states and nuclear-motion-induced exchange-narrowed energy fluctuations of individual delocalized exciton states can be distinguished because these two processes lead to a distinctively different evolution of the absolute 2D spectrum. Our technique also allows recovery of the variation of the exciton relaxation rates as well as the degree of exciton delocalization across the absorption band. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Div Phys Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Inst QB3, Div Phys Sci, Berkeley, CA 94720 USA. Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. Chungbuk Natl Univ, Dept Chem, Cheongju 361763, South Korea. Chungbuk Natl Univ, Inst Basic Sci Res, Cheongju 361763, South Korea. RP Fleming, GR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Div Phys Sci, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Brixner, Tobias/S-1451-2016; OI Brixner, Tobias/0000-0002-6529-704X; Yang, Mino/0000-0001-9504-0280 NR 26 TC 38 Z9 38 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 12 PY 2006 VL 110 IS 40 BP 20032 EP 20037 DI 10.1021/jp062882f PG 6 WC Chemistry, Physical SC Chemistry GA 091UI UT WOS:000241053400036 PM 17020391 ER PT J AU Smith, JD Cappa, CD Messer, BM Drisdell, WS Cohen, RC Saykally, RJ AF Smith, Jared D. Cappa, Christopher D. Messer, Benjamin M. Drisdell, Walter S. Cohen, Ronald C. Saykally, Richard J. TI Probing the local structure of liquid water by x-ray absorption spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID HYDROGEN-BOND NETWORK; REARRANGEMENTS; APPROXIMATION; TEMPERATURE; ENERGETICS; MICROJETS; EDGE; DEPENDENCE; DYNAMICS; SPECTRA AB It was recently suggested that liquid water primarily comprises hydrogen-bonded rings and chains, as opposed to the traditionally accepted locally tetrahedral structure (Wernet et al. Science 2004, 304, 995). This controversial conclusion was primarily based on comparison between experimental and calculated X-ray absorption spectra (XAS) using computer-generated ice-like 11-molecule clusters. Here we present calculations which conclusively show that when hydrogen-bonding configurations are chosen randomly, the calculated XAS does not reproduce the experimental XAS regardless of the bonding model employed (i.e., rings and chains vs tetrahedral). Furthermore, we also present an analysis of a recently introduced asymmetric water potential (Soper, A. K. J. Phys.: Condens. Matter 2005, 17, S3273), which is representative of the rings and chains structure, and make comparisons with the standard SPC/E potential, which represents the locally tetrahedral structure. We find that the calculated XAS from both potentials is inconsistent with the experimental XAS. However, we also show the calculated electric field distribution from the rings and chains structure is strongly bimodal and highly inconsistent with the experimental Raman spectrum, thus casting serious doubt on the validity of the rings and chains model for liquid water. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94721 USA. Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94721 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94721 USA. EM saykally@berkeley.edu RI Cohen, Ronald/A-8842-2011 OI Cohen, Ronald/0000-0001-6617-7691 NR 44 TC 66 Z9 67 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 12 PY 2006 VL 110 IS 40 BP 20038 EP 20045 DI 10.1021/jp063661c PG 8 WC Chemistry, Physical SC Chemistry GA 091UI UT WOS:000241053400037 PM 17020392 ER PT J AU Cortis, A Harter, T Hou, LL Atwill, ER Packman, AI Green, PG AF Cortis, Andrea Harter, Thomas Hou, Lingling Atwill, E. Robert Packman, Aaron I. Green, Peter G. TI Transport of Cryptosporidium parvum in porous media: Long-term elution experiments and continuous time random walk filtration modeling SO WATER RESOURCES RESEARCH LA English DT Article ID PHYSICOCHEMICAL FILTRATION; HETEROGENEOUS MEDIA; BED FILTRATION; WASTE-WATER; OOCYSTS; BACTERIA; DEPOSITION; KINETICS; ADHESION; GIARDIA AB Complex transport behavior other than advection-dispersion, simple retardation, and first-order removal has been observed in many biocolloid transport experiments in porous media. Such nonideal transport behavior is particularly evident in the late time elution of biocolloids at low concentrations. Here we present a series of saturated column experiments that were designed to measure the breakthrough and long-term elution of Cryptosporidium parvum in medium sand for a few thousand pore volumes after the initial source of oocysts was removed. For a wide range of ionic strengths, I, we consistently observe slower-than-Fickian, power law tailing. The slope of the tail is flatter for higher I. At very high ionic strength the slope decays to a rate slower than t(-1). To explain this behavior, we propose a new filtration model based on the continuous time random walk (CTRW) theory. Our theory upscales heterogeneities at both the pore-scale geometry of the flow field and the grain surface physicochemical properties that affect biocolloid attachment and detachment. Pore-scale heterogeneities in fluid flow are shown to control the breakthrough of a conservative tracer but are shown to have negligible effect on oocyst transport. In our experiments, C. parvum transport is dominated by the effects of physicochemical heterogeneities. The CTRW model provides a parsimonious theory of nonreactive and reactive transport. The CTRW filtration process is controlled by three parameters, Lambda, beta, and c, which are related to the overall breakthrough retardation (R = 1 + Lambda), the slope of the power law tail (beta), and the transition to a slower than t(-1) decay (c). C1 Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA. Univ Calif Davis, Vet Med Teaching & Resource Ctr, Dept Populat Hlth & Reprod, Tulare, CA 93274 USA. RP Cortis, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM acortis@lbl.gov RI Cortis, Andrea/A-3525-2008; Packman, Aaron/B-7085-2009 NR 54 TC 48 Z9 48 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 12 PY 2006 VL 42 IS 12 AR W12S13 DI 10.1029/2006WR004897 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 095JR UT WOS:000241304500001 ER PT J AU Huang, XW King, DL AF Huang, Xiwen King, David L. TI Gas-phase hydrodesulfurization of JP-8 light fraction using steam reformate SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID DEEP DESULFURIZATION; DIESEL FUEL; SELECTIVE ADSORPTION; SULFUR-COMPOUNDS; OIL; OXIDATION; HYDROGEN; HYDRODEOXYGENATION; REACTIVITIES; TECHNOLOGY AB Gas-phase hydrodesulfurization of a JP-8 light fraction was investigated over CoMo/Al2O3 and NiMo/Al2O3 catalysts. Use of a light fraction provides a fuel that is more easily desulfurized and allows the process to operate in the vapor phase. This study investigated the utilization of reformate ( syngas) from a steam reformer rather than pure H-2 as gas feed to HDS unit. This is consistent with what might be available to the military during operation in the field. Dry syngas functions almost as well as pure H-2 in the HDS reaction, and sulfur levels below 5 ppmw are readily obtained from a feed initially containing 320 ppmw sulfur. Addition of 40 vol % steam to the syngas has a significant negative impact on HDS performance with CoMo/Al2O3, but only a small effect with NiMo/Al2O3. The impacts of various process conditions on S removal efficiency were examined and will be described. C1 Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP King, DL (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM david.king@pnl.gov NR 27 TC 4 Z9 4 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT 11 PY 2006 VL 45 IS 21 BP 7050 EP 7056 DI 10.1021/ie0607301 PG 7 WC Engineering, Chemical SC Engineering GA 091LQ UT WOS:000241030700024 ER PT J AU Ganushkina, NY Pulkkinen, TI Milillo, A Liemohn, M AF Ganushkina, N. Y. Pulkkinen, T. I. Milillo, A. Liemohn, M. TI Evolution of the proton ring current energy distribution during 21-25 April 2001 storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL INNER MAGNETOSPHERE; IMPULSIVE ELECTRIC-FIELDS; DAWN-DUSK ASYMMETRY; PLASMA SHEET; PARTICLE ENERGIZATION; GEOMAGNETIC STORMS; EMPIRICAL-MODEL; ION COMPOSITION; MAGNETIC STORM; SOLAR-ACTIVITY AB Three ring current models are used to follow the evolution of the proton ring current during the 2001-04-21-25 storm: The ring current model combined with tracing particles numerically in the drift approximation by Ganushkina et al. (2005), the empirical model of proton fluxes in the inner magnetosphere developed by Milillo et al. (2003), and the kinetic ring current-atmosphere interaction model (RAM) by Liemohn et al. (2001). The paper focuses on the effects of the electric and magnetic field models and initial particle distributions on the final energy distribution. We examine a variety of large-scale magnetic field and convection electric field models as well as substorm-associated, smaller-scale, and time-varying electric fields. We find that (1) using more realistic magnetic field models leads to reduction of the ring current energy content by similar to 30%; (2) details of the global convection field have little influence on the overall ring current evolution; (3) smaller-scale impulsive electric field have profound effects on the ring current evolution, particularly with regard to the acceleration of the higher-energy particles; and (4) in the ring current models, the choice of the initial and boundary conditions have significant effects on the modeled ring current intensity and energy spectrum. C1 Finnish Meteorol Inst, Space Res Div, FI-00101 Helsinki, Finland. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA. RP Ganushkina, NY (reprint author), Finnish Meteorol Inst, Space Res Div, FI-00101 Helsinki, Finland. EM nataly.ganushkina@fmi.fi; tuija@lanl.gov; anna.milillo@ifsi.rm.cnr.it; liemohn@umich.edu RI Pulkkinen, Tuija/D-8403-2012; Liemohn, Michael/H-8703-2012; Ganushkina, Natalia/K-6314-2013; OI Pulkkinen, Tuija/0000-0002-6317-381X; Liemohn, Michael/0000-0002-7039-2631; Milillo, Anna/0000-0002-0266-2556 NR 66 TC 27 Z9 28 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 11 PY 2006 VL 111 IS A11 AR A11S08 DI 10.1029/2006JA011609 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 095IP UT WOS:000241301700001 ER PT J AU Venturini, F Cezar, JC De Nadai, C Canfield, PC Brookes, NB AF Venturini, F. Cezar, J. C. De Nadai, C. Canfield, P. C. Brookes, N. B. TI The Ce 4f electronic structure in CeCo2Ge2: a soft x-ray resonant photoemission investigation SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID RESOLVED PHOTOEMISSION; SINGLE-CRYSTALS; KONDO RESONANCE; HIGH-ENERGY; TEMPERATURE; SYSTEMS; MODEL; SPECTROSCOPY; CERIUM; CHARACTER AB Soft x-ray resonant photoemission spectroscopy has been used as a tool to investigate the cerium 4f electronic levels of a single-crystalline sample of CeCo2Ge2. Temperature-dependent angle-integrated and angle-resolved results are discussed. For the lowest investigated temperatures two distinct 4f spectral features are clearly observed close to the Fermi level: the Kondo resonance and its lower lying spin-orbit partner. As the temperature is increased, the intensity of such features evolves consistently with the theoretical predictions of the single-impurity Anderson model. However, the angle-resolved results show momentum-dependent effects that require a modification of the single-impurity theory. C1 European Synchrotron Radiat Facil, F-38043 Grenoble, France. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Venturini, F (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. EM venturin@esrf.fr RI Criginski Cezar, Julio/B-2731-2008; Criginski Cezar, Julio/D-5039-2012; Canfield, Paul/H-2698-2014 OI Criginski Cezar, Julio/0000-0002-7904-6874; NR 39 TC 9 Z9 9 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 11 PY 2006 VL 18 IS 40 BP 9221 EP 9229 DI 10.1088/0953-8984/18/40/008 PG 9 WC Physics, Condensed Matter SC Physics GA 094WO UT WOS:000241270100010 ER PT J AU Ishitsuka, Y Arnt, L Majewski, J Frey, S Ratajczek, M Kjaer, K Tew, GN Lee, KYC AF Ishitsuka, Yuji Arnt, Lachelle Majewski, Jaroslaw Frey, Shelli Ratajczek, Maria Kjaer, Kristian Tew, Gregory N. Lee, Ka Yee C. TI Amphiphilic poly(phenyleneethynylene)s can mimic antimicrobial peptide membrane disordering effect by membrane insertion SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DE-NOVO DESIGN; AIR-WATER-INTERFACE; BETA-PEPTIDES; LIPID-BILAYERS; PROTEGRIN; OLIGOMERS; MONOLAYERS; CELLS; ETHYNYLENE)S; CURVATURE AB Antimicrobial peptides (AMPs) are a class of peptides that are innate to various organisms and function as a defense agent against harmful microorganisms by means of membrane disordering. Characteristic chemical and structural properties of AMPs allow selective interaction and subsequent disruption of invaders' cell membranes. Polymers based on m-phenylene ethynylenes (mPE) were designed and synthesized to mimic the amphiphilic, cationic, and rigid structure of AMPs and were found to be good mimics of AMPs in terms of their high potency toward microbes and low hemolytic activities. Using a Langmuir monolayer insertion assay, two mPEs are found to readily insert into anionic model bacterial membranes but to differ in the degree of selectivity between bacterial and mammalian erythrocyte model membranes. Comparison of grazing incidence X-ray diffraction (GIXD) data before and after the insertion of mPE clearly indicates that the insertion of mPE disrupts lipid packing, altering the tilt of the lipid tail. X-ray reflectivity (XR) measurements of the lipid/mPE system demonstrate that mPE molecules insert through the headgroup region and partially into the tail group region, thus accounting for the observed disordering of tail packing. This study demonstrates that mPEs can mimic AMP's membrane disordering. C1 Univ Chicago, Dept Chem, Inst Biophys Dynam, Chicago, IL 60637 USA. Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Univ Copenhagen, Niels Bohr Inst, Mat Res Dept, DK-2100 Copenhagen, Denmark. RP Lee, KYC (reprint author), Univ Chicago, Dept Chem, Inst Biophys Dynam, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM kayeelee@uchicago.edu RI Lujan Center, LANL/G-4896-2012; Ishitsuka, Yuji/J-1921-2014 OI Ishitsuka, Yuji/0000-0002-6780-7154 FU NIGMS NIH HHS [R01-GM-65803] NR 46 TC 68 Z9 68 U1 5 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 11 PY 2006 VL 128 IS 40 BP 13123 EP 13129 DI 10.1021/ja061186q PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 091LP UT WOS:000241030500029 PM 17017792 ER PT J AU Montano, M Bratlie, K Salmeron, M Somorjai, GA AF Montano, Max Bratlie, Kaitlin Salmeron, Miquel Somorjai, Gabor A. TI Hydrogen and deuterium exchange on Pt(111) and its poisoning by carbon monoxide studied by surface sensitive high-pressure techniques SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUM-FREQUENCY GENERATION; SCANNING-TUNNELING-MICROSCOPY; RAY PHOTOELECTRON-SPECTROSCOPY; ETHYLENE HYDROGENATION; VIBRATIONAL SPECTROSCOPY; SINGLE-CRYSTAL; CO; PLATINUM; SYSTEM; CHEMISORPTION AB Catalytic hydrogen/deuterium exchange on a platinum (111) single crystal and its poisoning with carbon monoxide was studied using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), sum frequency generation vibrational spectroscopy (SFG), and mass spectrometry under reaction conditions at pressures in the mTorr to atmospheric range. At 298 K and in the presence of 200 mTorr of hydrogen and 20 mTorr of deuterium the surface is catalytically active, producing HD with activation energy of similar to 5.3 kcal/mol. Addition of 5 mTorr of CO stops the reaction completely. In situ STM images reveal an ordered surface structure of chemisorbed CO. At 353 K the addition of 5 mTorr of CO slows the reaction by 3 orders of magnitude, but HD production continues with an activation energy of 17.4 kcal/mol. Changes in coverage and adsorption site of CO were followed by XPS and SFG up to a temperature of 480 K. From these data, a CO dominated, mobile and catalytically active surface model is proposed C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM maxmonta@berkeley.edu; somorjai@socrates.berkeley.edu RI Bratlie, Kaitlin/A-1133-2009 NR 35 TC 56 Z9 56 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 11 PY 2006 VL 128 IS 40 BP 13229 EP 13234 DI 10.1021/ja063703a PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 091LP UT WOS:000241030500040 PM 17017803 ER PT J AU Martinell, JJ Del-Castillo-Negrete, D Raga, AC Williams, DA AF Martinell, J. J. del-Castillo-Negrete, D. Raga, A. C. Williams, D. A. TI Non-local diffusion and the chemical structure of molecular clouds SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE ISM : kinematics and dynamics ID INTERSTELLAR CLOUDS; CS CORE; CHEMISTRY; DESORPTION; EVOLUTION; MODELS; L673 AB We present an application of a non-local turbulent transport model (currently being used to model transport in magnetically confined laboratory plasmas) to the study of the chemical structure of a molecular cloud. We consider a 'toy model' chemistry with a single molecular species which is adsorbed/desorbed from grain surfaces. With this idealized chemistry, we are able to find analytic solutions to both the 'classical' turbulent diffusion model as well as to the non-local transport model. For the turbulent diffusion model, we find that for the turbulent transport to be important one needs a mixing length comparable to the size of the cloud. On the other hand, with the non-local transport model we find that the chemistry is already strongly affected by the turbulent transport for mixing lengths two orders of magnitude smaller than the cloud size. This model then has the desirable property of being able to mix material over long distances (compared with the size of a molecular cloud) without requiring an inordinately large characteristic size for the turbulent eddies. C1 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. UCL, London, England. RP Martinell, JJ (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap P-70-543, Mexico City 04510, DF, Mexico. EM martinel@nucleares.unam.mx OI Martinell, Julio J/0000-0002-2728-220X; del-Castillo-Negrete, Diego/0000-0001-7183-801X NR 29 TC 5 Z9 5 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2006 VL 372 IS 1 BP 213 EP 218 DI 10.1111/j.1365-2966.2006.10853.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088PO UT WOS:000240823800019 ER PT J AU Cannon, R Drinkwater, M Edge, A Eisenstein, D Nichol, R Outram, P Pimbblet, K De Propris, R Roseboom, I Wake, D Allen, P Bland-Hawthorn, J Bridges, T Carson, D Chiu, K Colless, M Couch, W Croom, S Driver, S Fine, S Hewett, P Loveday, J Ross, N Sadler, EM Shanks, T Sharp, R Smith, JA Stoughton, C Weilbacher, P Brunner, RJ Meiksin, A Schneider, DP AF Cannon, Russell Drinkwater, Michael Edge, Alastair Eisenstein, Daniel Nichol, Robert Outram, Phillip Pimbblet, Kevin De Propris, Roberto Roseboom, Isaac Wake, David Allen, Paul Bland-Hawthorn, Joss Bridges, Terry Carson, Daniel Chiu, Kuenley Colless, Matthew Couch, Warrick Croom, Scott Driver, Simon Fine, Stephen Hewett, Paul Loveday, Jon Ross, Nicholas Sadler, Elaine M. Shanks, Tom Sharp, Robert Smith, J. Allyn Stoughton, Chris Weilbacher, Peter Brunner, Robert J. Meiksin, Avery Schneider, Donald P. TI The 2dF-SDSS LRG and QSO (2SLAQ) Luminous Red Galaxy Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE catalogues; surveys; galaxies : high redshift; cosmology : observations ID DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; DATA RELEASE; REDSHIFT SURVEY; CATALOG; SPECTRA; SAMPLE AB We present a spectroscopic survey of almost 15 000 candidate intermediate-redshift luminous red galaxies (LRGs) brighter than i = 19.8, observed with 2dF on the Anglo-Australian Telescope. The targets were selected photometrically from the Sloan Digital Sky Survey (SDSS) and lie along two narrow equatorial strips covering 180 deg(2). Reliable redshifts were obtained for 92 per cent of the targets and the selection is very efficient: over 90 per cent have 0.45 < z < 0.8. More than 80 per cent of the similar to 11 000 red galaxies have pure absorption-line spectra consistent with a passively evolving old stellar population. The redshift, photometric and spatial distributions of the LRGs are described. The 2SLAQ data will be released publicly from mid-2006, providing a powerful resource for observational cosmology and the study of galaxy evolution. C1 Anglo Australian Observ, Epping, NSW 1710, Australia. Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia. Univ Durham, Dept Phys, Durham DH1 3LE, England. Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. Cerro Tololo Interamer Observ, La Serena, Chile. Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2600, Australia. Queens Univ, Dept Phys, Kingston, ON K7M 3N6, Canada. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. Univ Sussex, Ctr Astron, Brighton BN1 9QJ, E Sussex, England. Los Alamos Natl Lab, Los Alamos, NM 87544 USA. Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Astrophys Inst Potsdam, D-14482 Potsdam, Germany. Univ Illinois, Dept Astron, Urbana, IL 61801 USA. Univ Edinburgh, Dept Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. Penn State Univ, Dept Astron, University Pk, PA 16802 USA. RP Cannon, R (reprint author), Anglo Australian Observ, POB 296, Epping, NSW 1710, Australia. EM rdc@aao.gov.au RI Drinkwater, Michael/A-2201-2008; Driver, Simon/H-9115-2014; OI Drinkwater, Michael/0000-0003-4867-0022; Driver, Simon/0000-0001-9491-7327; Meiksin, Avery/0000-0002-5451-9057; Edge, Alastair/0000-0002-3398-6916; Sadler, Elaine/0000-0002-1136-2555; Colless, Matthew/0000-0001-9552-8075 NR 29 TC 130 Z9 130 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2006 VL 372 IS 1 BP 425 EP 442 DI 10.1111/j.1365-2966.2006.10875.x PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088PO UT WOS:000240823800041 ER PT J AU Franceschetti, A An, JM Zunger, A AF Franceschetti, A. An, J. M. Zunger, A. TI Impact ionization can explain carrier multiplication in PbSe quantum dots SO NANO LETTERS LA English DT Article ID MULTIPLE EXCITON GENERATION; SOLAR-CELLS; ELECTRONIC-STRUCTURE; CDSE NANOCRYSTALS; EFFICIENCY AB The efficiency of conventional solar cells is limited because the excess energy of absorbed photons converts to heat instead of producing electron-hole pairs. Recently, efficient carrier multiplication has been observed in semiconductor quantum dots. In this process, a single, high-energy photon generates multiple electron-hole pairs. Rather exotic mechanisms have been proposed to explain the efficiency of carrier multiplication in PbSe quantum dots. Using atomistic pseudopotential calculations, we show here that the more conventional impact ionization mechanism, whereby a photogenerated electron-hole pair decays into a biexciton in a process driven by Coulomb interactions between the carriers, can explain both the rate (<< 1 ps) and the energy threshold (similar to 2.2 times the band gap) of carrier multiplication, without the need to invoke alternative mechanisms. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alberto_franceschetti@nrel.gov RI Zunger, Alex/A-6733-2013 NR 21 TC 180 Z9 182 U1 2 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT 11 PY 2006 VL 6 IS 10 BP 2191 EP 2195 DI 10.1021/nl0612401 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 093GW UT WOS:000241157300004 PM 17034081 ER PT J AU Walter, P Welcomme, E Hallegot, P Zaluzec, NJ Deeb, C Castaing, J Veyssiere, P Breniaux, R Leveque, JL Tsoucaris, G AF Walter, Philippe Welcomme, Eleonore Hallegot, Philippe Zaluzec, Nestor J. Deeb, Christopher Castaing, Jacques Veyssiere, Patrick Breniaux, Rene Leveque, Jean-Luc Tsoucaris, Georges TI Early use of PbS nanotechnology for an ancient hair dyeing formula SO NANO LETTERS LA English DT Article AB Lead-based chemistry was initiated in ancient Egypt for cosmetic preparation more than 4000 years ago. Here, we study a hair-dyeing recipe using lead salts described in text since Greco-Roman times. We report direct evidence about the shape and distribution of PbS nanocrystals that form within the hair during blackening. It is remarkable that the composition and supramolecular organization of keratins can control PbS nanocrystal growth inside a hair. C1 CNRS, UMR171, Ctr Rech & Restaurat, Musees France, F-75001 Paris, France. LOreal Rech, F-93601 Bois, France. Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. Off Natl Etud & Rech Aerosp, CNRS, UMR 104, Lab Etud Microstruct, F-92322 Chatillon, France. RP Walter, P (reprint author), CNRS, UMR171, Ctr Rech & Restaurat, Musees France, 14 Quai Francois Mitterrand, F-75001 Paris, France. EM philippe.walter@culture.gouv.fr RI Walter, Philippe/K-7722-2012; Welcomme, Eleonore/D-1882-2016 OI Walter, Philippe/0000-0002-1804-8374; Welcomme, Eleonore/0000-0002-3758-6717 NR 18 TC 41 Z9 41 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT 11 PY 2006 VL 6 IS 10 BP 2215 EP 2219 DI 10.1021/nl061493u PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 093GW UT WOS:000241157300009 PM 17034086 ER PT J AU Wiley, BJ Wang, ZH Wei, J Yin, YD Cobden, DH Xia, YN AF Wiley, Benjamin J. Wang, Zenghui Wei, Jiang Yin, Yadong Cobden, David H. Xia, Younan TI Synthesis and electrical characterization of silver nanobeams SO NANO LETTERS LA English DT Article ID SHAPE-CONTROLLED SYNTHESIS; POLYOL SYNTHESIS; SINGLE-CRYSTAL; NANOSTRUCTURES; PARTICLES; NANOWIRES; GOLD AB By slowing the rate of atomic addition to singly twinned seeds, we have grown silver nanobeams with lengths of 3-30 mu m, widths ranging from 17 to 70 nm, and a width to thickness ratio of 1.4. The well-defined dimensions, smooth surface, and crystallinity of nanobeams make them promising candidates for studying the effects of size on electron transport. With a simple method that allows rapid characterization of single nanobeams, we find that even the thinnest nanobeams largely retain the low resistivity of bulk silver. Nanobeams can support remarkably high current densities of up to 2.6 x 10(8) A cm(-2) before the conduction path is broken by the formation of a nanogap. C1 Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. Univ Washington, Dept Phys, Seattle, WA 98195 USA. Univ Washington, Dept Chem, Seattle, WA 98195 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Xia, YN (reprint author), Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. EM xia@chem.washington.edu RI Wiley, Benjamin/A-7003-2008; Yin, Yadong/D-5987-2011; wang, zenghui/H-8367-2012; Xia, Younan/E-8499-2011 OI Yin, Yadong/0000-0003-0218-3042; NR 23 TC 100 Z9 103 U1 8 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT 11 PY 2006 VL 6 IS 10 BP 2273 EP 2278 DI 10.1021/nl061705n PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 093GW UT WOS:000241157300019 PM 17034096 ER PT J AU Kamisaka, H Kilina, SV Yamashita, K Prezhdo, OV AF Kamisaka, Hideyuki Kilina, Svetlana V. Yamashita, Koichi Prezhdo, Oleg V. TI Ultrafast vibrationally-induced dephasing of electronic excitations in PbSe quantum dot SO NANO LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; MULTIPLE EXCITON GENERATION; IV-VI SEMICONDUCTORS; CARRIER MULTIPLICATION; RELAXATION DYNAMICS; CDSE NANOCRYSTALS; SIZE DEPENDENCE; SPECTROSCOPY; STATES; PBTE AB Vibrationally induced pure-dephasing of electronic states in PbSe quantum dots (QDs) at room temperature is investigated using two independent theoretical approaches based on the optical response function and semiclassical formalisms. Both approaches predict dephasing times of around 10 fs and reproduce the recently measured homogeneous linewidths of optical absorption well. Because dephasing slows down with increasing cluster size, the dephasing times calculated for the small clusters correspond to the lower end of the experimental data. The dephasing is almost independent of the electronic excitation energy and occurs faster for biexcitons than single excitons. The dephasing time is roughly proportional to the square root of the mass of the lighter atom (Se), suggesting that dephasing should be faster in PbS and slower in PbTe relative to PbSe. Core atoms produce stronger dephasing than surface atoms. In the collective description, pure-dephasing occurs via low-frequency acoustic modes, in support of the elastic QD model of dephasing. Because the electron-phonon coupling in PbSe QDs is relatively weak compared to other semiconductor nanocrystals, fast vibrationally induced dephasing can be expected in semiconductor QDs in general. C1 Univ Washington, Dept Chem, Seattle, WA 98195 USA. Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan. Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Kamisaka, H (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM kami@tcl.t.u-tokyo.ac.jp; prezhdo@u.washington.edu NR 58 TC 64 Z9 64 U1 6 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT 11 PY 2006 VL 6 IS 10 BP 2295 EP 2300 DI 10.1021/nl0617383 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 093GW UT WOS:000241157300023 PM 17034100 ER PT J AU Jang, SY Reddy, P Majumdar, A Segalman, RA AF Jang, Sung-Yeon Reddy, Pramod Majumdar, Arun Segalman, Rachel A. TI Interpretation of Stochastic events in single molecule conductance measurements SO NANO LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; SCANNING-TUNNELING-MICROSCOPY; METALLIC POINT CONTACTS; ELECTRON-TRANSPORT; GOLD ATOMS; JUNCTIONS; QUANTIZATION; RESISTANCE; TEMPERATURE; FLUCTUATION AB The electrical conductance of a series of thiol-terminated alkanes, (1,6-hexanedithiol (HDT), 1,8-octanedithiol (ODT), and 1,10-decanedithol (DDT)) was measured using a modified scanning tunneling microscope break junction technique. The interpretation of data obtained in this technique is complicated due to multiple effects such as microscopic details of the metal-molecule junctions, superposition of tunneling currents, and conformational changes in the molecules. A new method called the last-step analysis (LSA) is introduced here to clarify the contribution of these effects. In direct contrast to previous work, LSA does not require any data preselection, making the results less subjective and more reproducible. Finally, LSA was used to obtain the conductance of single molecules (HDT, (3.6 x 10(-4))G(o); ODT, (4.4 x 10(-5))G(o); DDT, (5.7 x 10(-6))G(o)). The tunneling decay parameter (beta) was calculated, and it was found to be similar to 1.0 per carbon atom. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM Majumdar@me.berkeley.edu; Segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103 NR 30 TC 83 Z9 83 U1 5 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT 11 PY 2006 VL 6 IS 10 BP 2362 EP 2367 DI 10.1021/nl0609495 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 093GW UT WOS:000241157300035 PM 17034112 ER PT J AU Biener, J Hodge, AM Hayes, JR Volkert, CA Zepeda-Ruiz, LA Hamza, AV Abraham, FF AF Biener, Juergen Hodge, Andrea M. Hayes, Joel R. Volkert, Cynthia A. Zepeda-Ruiz, Luis A. Hamza, Alex V. Abraham, Farid F. TI Size effects on the mechanical behavior of nanoporous Au SO NANO LETTERS LA English DT Article ID GOLD NANOWIRES; POROUS GOLD; STRENGTH; SCALE; PLASTICITY; DEPENDENCE; STRAIN AB Recent nanomechanical tests on submicron metal columns and wires have revealed a dramatic increase in yield strength with decreasing sample size. Here, we demonstrate that nanoporous metal foams can be envisioned as a three-dimensional network of ultrahigh-strength nanowires, thus bringing together two seemingly conflicting properties: high strength and high porosity. Specifically, we characterized the size-dependent mechanical properties of nanoporous gold using a combination of nanoindentation, column microcompression, and molecular dynamics simulations. We find that nanoporous gold can be as strong as bulk Au, despite being a highly porous material, and that the ligaments in nanoporous gold approach the theoretical yield strength of Au. C1 Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. Forschungszentrum Karlsruhe, Inst Mat Res 2, D-76021 Karlsruhe, Germany. RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, POB 808,L-367, Livermore, CA 94550 USA. EM biener2@llnl.gov NR 31 TC 222 Z9 225 U1 17 U2 159 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT 11 PY 2006 VL 6 IS 10 BP 2379 EP 2382 DI 10.1021/nl061978i PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 093GW UT WOS:000241157300038 PM 17034115 ER PT J AU Chang, PY Alumbaugh, D Brainard, J Hall, L AF Chang, Ping-Yu Alumbaugh, David Brainard, Jim Hall, Laila TI Cross-borehole ground-penetrating radar for monitoring and imaging solute transport within the vadose zone SO WATER RESOURCES RESEARCH LA English DT Article AB A two-stage salt infiltration experiment was conducted to simulate vadose zone contaminant transport and to investigate mechanisms that affect the development of contaminant plumes in the unsaturated zone. A low-concentration sodium chloride solution (1024 ppm) was first infiltrated for 7 months through one third of a specially designed infiltrometer at a rate of 2.7 cm/d, with tap water infiltrating through the remaining two thirds at the same rate. This first stage was followed by 3 months of running tap water through the entire infiltrometer to flush the system while maintaining the same unsaturated infiltration conditions. Next, the concentration of the sodium chloride solution was increased to 6900 ppm, which was introduced at the same infiltration rate over a different one third of the infiltrometer for 3 months. This paper focuses on using cross-borehole ground-penetrating radar attenuation tomography to image the developing plume in a time-lapse sense. Attenuation is shown to increase with increasing salt concentration, and the time-lapse images indicate that regions of anomalous attenuation develop in locations where pockets of higher moisture content exist. This suggests that either preferential transport pathways develop within the finer-grained sediments exhibiting greater water retention capability or salt ions are being incorporated into the mineral surficial charge within the fine-grained materials. C1 Univ Wisconsin, Geol Engn Program, Madison, WI USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Hydrosphere Resource Consultants, Socorro, NM 87801 USA. New Mexico Inst Technol, Dept Earth & Environm Sci, Socorro, NM USA. RP Chang, PY (reprint author), Chia Nan Univ, Dept Environm Resources Management, 60 Erh Jen Rd,Sec 1, Tainan, Taiwan. EM pingyuchang@pchome.com.tw NR 26 TC 6 Z9 6 U1 3 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 11 PY 2006 VL 42 IS 10 AR W10413 DI 10.1029/2004WR003871 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 095JF UT WOS:000241303300001 ER PT J AU Tran, NT Campbell, CG Shi, FG AF Tran, Nguyen T. Campbell, Chris G. Shi, Frank G. TI Study of particle size effects on an optical fiber sensor response examined with Monte Carlo simulation SO APPLIED OPTICS LA English DT Article ID SUSPENDED-SEDIMENT; TOMOGRAPHY; TURBIDITY; FIELD; CALIBRATION; SUSPENSIONS; SYSTEM; PROBE AB Optical fiber sensors based on the total light transmittance are widely used to measure the volume fraction of particles in suspensions. However, the sensor response depends not only on the volume fraction but also on the particle size. The particle size effect is studied for a sensor configuration consisting of two linear arrays of fibers on each of two blocks: the emitting and receiving blocks. These two linear arrays are arranged with three adjacent fibers (one fiber on the first array, two fibers on the second array) forming a perfect triangle. The almost superimposition of the calculated sensor response versus the extinction factor for different particle sizes allows for the application of single-curve models. Two single-curve models that describe the sensor response for all particle sizes ranging from 36 to 200 mu m are proposed. The models are validated by Monte Carlo simulation for different particle sizes and are valid within a detectable volume fraction. The single-curve models proposed provide an easier approach to creating a database for sensor calibration for suspended sediment concentration measurements. (c) 2006 Optical Society of America C1 Univ Calif Irvine, Optoelect Packaging & Mat Lab, Irvine, CA 92697 USA. Univ Calif Irvine, Henry Samueli Sch Engn, Irvine, CA 92697 USA. Lawrence Livermore Natl Lab, Water Guidance & Monitoring Grp, Environm Protect Dept, Livermore, CA 94550 USA. RP Tran, NT (reprint author), Univ Calif Irvine, Optoelect Packaging & Mat Lab, 916 Engn Tower, Irvine, CA 92697 USA. EM ntran3000@yahoo.com; campbell48@llnl.gov; fgshi@uci.edu NR 25 TC 15 Z9 15 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD OCT 10 PY 2006 VL 45 IS 29 BP 7557 EP 7566 DI 10.1364/AO.45.007557 PG 10 WC Optics SC Optics GA 092GF UT WOS:000241084300002 PM 17068587 ER PT J AU Aldering, G Antilogus, P Bailey, S Baltay, C Bauer, A Blanc, N Bongard, S Copin, Y Gangler, E Gilles, S Kessler, R Kocevski, D Lee, BC Loken, S Nugent, P Pain, R Pecontal, E Pereira, R Perlmutter, S Rabinowitz, D Rigaudier, G Scalzo, R Smadja, G Thomas, RC Wang, L Weaver, BA AF Aldering, G. Antilogus, P. Bailey, S. Baltay, C. Bauer, A. Blanc, N. Bongard, S. Copin, Y. Gangler, E. Gilles, S. Kessler, R. Kocevski, D. Lee, B. C. Loken, S. Nugent, P. Pain, R. Pecontal, E. Pereira, R. Perlmutter, S. Rabinowitz, D. Rigaudier, G. Scalzo, R. Smadja, G. Thomas, R. C. Wang, L. Weaver, B. A. CA Nearby Supernova Factory TI Nearby supernova factory observations of SN 2005gj: Another type Ia supernova in a massive circumstellar envelope SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : abundances; stars : winds, outflows; supernovae : general; supernovae : individual (SN 2005gj, SN 2002ic) ID HUBBLE-SPACE-TELESCOPE; INTEGRAL-FIELD SPECTROGRAPH; HIGH-REDSHIFT SUPERNOVAE; EMISSION-LINE SPECTRUM; M-CIRCLE-DOT; II SUPERNOVAE; COSMOLOGICAL CONSTANT; STELLAR MODELS; LIGHT CURVES; DECLINE-RATE AB We report Nearby Supernova Factory observations of SN 2005gj, the second confirmed case of a "hybrid" Type Ia/IIn supernova, which we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN2005gj shows that the interaction is much stronger than for the prototype, SN2002ic. Our first spectrum shows a hot continuum with broad and narrow H alpha emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H gamma, H beta, H alpha, and He I lambda lambda 5876, 7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [ O III] lambda 5007. We find that the light curve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. The early light curve is well described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission-line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities and the lack of evidence for evolution in the line widths. Ground- and space-based photometry and Keck spectroscopy of the host galaxy are used to ascertain that the host galaxy has low metallicity ( Z/Z(circle dot) < 0.3; 95% confidence) and that this galaxy is undergoing a significant star formation event that began roughly 200 +/- 70 Myr ago. We discuss the implications of these observations for progenitor models and cosmology using Type Ia supernovae. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris 05, France. Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris 05, France. Yale Univ, Dept Phys, New Haven, CT 06250 USA. Univ Lyon 1, CNRS, IN2P3, UMR5822,Inst Phys Nucl, F-69622 Villeurbanne, France. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Ctr Rech Astron Lyon, F-69561 St Genis Laval, France. RP Aldering, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Copin, Yannick/B-4928-2015; Perlmutter, Saul/I-3505-2015; OI Copin, Yannick/0000-0002-5317-7518; Perlmutter, Saul/0000-0002-4436-4661; Scalzo, Richard/0000-0003-3740-1214 NR 96 TC 156 Z9 158 U1 0 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2006 VL 650 IS 1 BP 510 EP 527 DI 10.1086/507020 PN 1 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 093TR UT WOS:000241193400044 ER PT J AU Zucker, DB Belokurov, V Evans, NW Kleyna, JT Irwin, MJ Wilkinson, MI Fellhauer, M Bramich, DM Gilmore, G Newberg, HJ Yanny, B Smith, JA Hewett, PC Bell, EF Rix, HW Gnedin, OY Vidrih, S Wyse, RFG Willman, B Grebel, EK Schneider, DP Beers, TC Kniazev, AY Barentine, JC Brewington, H Brinkmann, J Harvanek, M Kleinman, SJ Krzesinski, J Long, D Nitta, A Snedden, SA AF Zucker, D. B. Belokurov, V. Evans, N. W. Kleyna, J. T. Irwin, M. J. Wilkinson, M. I. Fellhauer, M. Bramich, D. M. Gilmore, G. Newberg, H. J. Yanny, B. Smith, J. A. Hewett, P. C. Bell, E. F. Rix, H. -W. Gnedin, O. Y. Vidrih, S. Wyse, R. F. G. Willman, B. Grebel, E. K. Schneider, D. P. Beers, T. C. Kniazev, A. Y. Barentine, J. C. Brewington, H. Brinkmann, J. Harvanek, M. Kleinman, S. J. Krzesinski, J. Long, D. Nitta, A. Snedden, S. A. TI A curious Milky Way satellite in Ursa Major SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : dwarf; galaxies : individual (Ursa Major II); local group ID DIGITAL SKY SURVEY; GLOBULAR-CLUSTER; GALAXY FORMATION; DWARF SATELLITE; HIGH-VELOCITY; DATA RELEASE; SYSTEM; SUBSTRUCTURE; TELESCOPE; CAMERA AB In this Letter, we study a localized stellar overdensity in the constellation of Ursa Major, first identified in Sloan Digital Sky Survey (SDSS) data and subsequently followed up with Subaru imaging. Its color-magnitude diagram (CMD) shows a well-defined subgiant branch, main sequence, and turnoff, from which we estimate a distance of similar to 30 kpc and a projected size of similar to 250 x 125 pc(2). The CMD suggests a composite population with some range in metallicity and/or age. Based on its extent and stellar population, we argue that this is a previously unknown satellite galaxy of the Milky Way, hereby named Ursa Major II (UMa II) after its constellation. Using SDSS data, we find an absolute magnitude of, which would make it the faintest known satellite galaxy. UMa II's isophotes are irregular M-V similar to -3.8 and distorted with evidence for multiple concentrations; this suggests that the satellite is in the process of disruption. C1 Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. Univ Hawaii, Astron Inst, Honolulu, HI 96822 USA. Rensselaer Polytech Inst, Troy, NY 12180 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Los Alamos Natl Lab, ISR4, Los Alamos, NM 87545 USA. Austin Peay State Univ, Dept Phys & Astron, Clarksville, TN 37044 USA. Max Planck Inst Astron, D-69117 Heidelberg, Germany. Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. NYU, Ctr Cosmol & Particle Phys, Dept Phys, New York, NY 10003 USA. Univ Basel, Inst Astron, Dept Phys, CH-4102 Binningen, Switzerland. Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. S African Astron Observ, ZA-7935 Cape Town, South Africa. Apache Point Observ, Sunspot, NM 88349 USA. Subaru Telescope, Hilo, HI 96720 USA. Cracow Pedagog Univ, Mt Suhora Observ, PL-30084 Krakow, Poland. Gemini Observ, Hilo, HI 96720 USA. RP Zucker, DB (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM zucker@ast.cam.ac.uk; vasily@ast.cam.ac.uk; nwe@astcam.ac.uk OI Gnedin, Oleg/0000-0001-9852-9954; /0000-0002-1891-3794; Bell, Eric/0000-0002-5564-9873 NR 37 TC 224 Z9 225 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2006 VL 650 IS 1 BP L41 EP L44 DI 10.1086/508628 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 093TS UT WOS:000241193500011 ER PT J AU Hughes, JL Picorel, R Seibert, M Krausz, E AF Hughes, Joseph L. Picorel, Rafael Seibert, Michael Krausz, Elmars TI Photophysical behavior and assignment of the low-energy chlorophyll states in the CP43 proximal antenna protein of higher plant photosystem II SO BIOCHEMISTRY LA English DT Article ID LOW-TEMPERATURE FLUORESCENCE; PRIMARY CHARGE SEPARATION; REACTION-CENTER COMPLEX; CORE ANTENNA; CRYSTAL-STRUCTURE; REACTION CENTERS; PICOSECOND FLUORESCENCE; ANGSTROM RESOLUTION; PRIMARY ELECTRON; OPTICAL-SPECTRA AB We have employed absorption, circular dichroism ( CD), and persistent spectral hole-burning measurements at 1.7 K to study the photoconversion properties and exciton coupling of low-energy chlorophylls (Chls) in the CP43 proximal antenna light-harvesting subunit of photosystem II ( PSII) isolated from spinach. These similar to 683 nm states act as traps for excitation energy in isolated CP43. They "bleach" at 683 nm upon illumination and photoconvert to a form absorbing in the range similar to 660-680 nm. We present new data that show the changes in the CD spectrum due to the photoconversion process. These changes occur in parallel with those in absorption, providing evidence that the feature undergoing the apparent bleach is a component of a weakly exciton-coupled system. From our photoconversion difference spectra, we assign four states in the Chl long-wavelength region of CP43, two of which are the known trap states and are both highly localized on single Chls. The other two states are associated with weak exciton coupling (maximally similar to 50 cm(-1)) to one of these traps. We propose a mechanism for photoconversion that involves Chl-protein hydrogen bonding. New hole-burning data are presented that indicate this mechanism is distinct to that for narrow-band spectral hole burning in CP43. We discuss the photophysical behavior of the Chl trap states in isolated CP43 compared to their behavior in intact PSII preparations. The latter represent a more intact, physiological complex, and we find no clear evidence that they exhibit the photoconversion process reported here. C1 Australian Natl Univ, Res Sch Chem, Canberra, ACT 0200, Australia. Natl Renewable Energy Lab, Golden, CO 80401 USA. CSIC, Estac Expt Aula Dei, E-50080 Zaragoza, Spain. RP Hughes, JL (reprint author), Australian Natl Univ, Res Sch Chem, GPO Box 4, Canberra, ACT 0200, Australia. EM hughes@rsc.anu.edu.au RI Krausz, Elmars/I-2885-2014; PICOREL, RAFAEL/K-7930-2014 OI Krausz, Elmars/0000-0002-8536-6890; PICOREL, RAFAEL/0000-0003-3791-129X NR 76 TC 30 Z9 30 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 10 PY 2006 VL 45 IS 40 BP 12345 EP 12357 DI 10.1021/bi0614683 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 090MC UT WOS:000240954400015 PM 17014087 ER PT J AU Jouanneau, Y Meyer, C Jakoncic, J Stojanoff, V Gaillard, J AF Jouanneau, Yves Meyer, Christine Jakoncic, Jean Stojanoff, Vivian Gaillard, Jacques TI Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons SO BIOCHEMISTRY LA English DT Article ID RING-HYDROXYLATING DIOXYGENASES; TERMINAL OXYGENASE COMPONENT; B-356 BIPHENYL DIOXYGENASE; RHODOBACTER-CAPSULATUS; CIS-DIHYDRODIOLS; STRAIN RW1; PURIFICATION; 1,2-DIOXYGENASE; OXIDATION; ENZYME AB In Sphingomonas CHY-1, a single ring-hydroxylating dioxygenase is responsible for the initial attack of a range of polycyclic aromatic hydrocarbons (PAHs) composed of up to five rings. The components of this enzyme were separately purified and characterized. The oxygenase component (ht-PhnI) was shown to contain one Rieske-type [2Fe-2S] cluster and one mononuclear Fe center per R subunit, based on EPR measurements and iron assay. Steady-state kinetic measurements revealed that the enzyme had a relatively low apparent Michaelis constant for naphthalene (K-m = 0.92 +/- 0.15 mu M) and an apparent specificity constant of 2.0 +/- 0.3 mu M-1 s(-1). Naphthalene was converted to the corresponding 1,2-dihydrodiol with stoichiometric oxidation of NADH. On the other hand, the oxidation of eight other PAHs occurred at slower rates and with coupling efficiencies that decreased with the enzyme reaction rate. Uncoupling was associated with hydrogen peroxide formation, which is potentially deleterious to cells and might inhibit PAH degradation. In single turnover reactions, ht-PhnI alone catalyzed PAH hydroxylation at a faster rate in the presence of organic solvent, suggesting that the transfer of substrate to the active site is a limiting factor. The four-ring PAHs chrysene and benz[a] anthracene were subjected to a double ring-dihydroxylation, giving rise to the formation of a significant proportion of bis-cis-dihydrodiols. In addition, the dihydroxylation of benz[a] anthracene yielded three dihydrodiols, the enzyme showing a preference for carbons in positions 1,2 and 10,11. This is the first characterization of a dioxygenase able to dihydroxylate PAHs made up of four and five rings. C1 CEA, DRDC, BBSI, DSV,CNRS,UMR 5092, F-38054 Grenoble 9, France. Brookhaven Natl Lab, Upton, NY 11973 USA. CEA, DRFMC, SCIB, LRM,UMR,UJF, F-38054 Grenoble, France. RP Jouanneau, Y (reprint author), CEA, DRDC, BBSI, DSV,CNRS,UMR 5092, F-38054 Grenoble 9, France. EM yves.jouanneau@cea.fr RI stojanoff, vivian /I-7290-2012 OI stojanoff, vivian /0000-0002-6650-512X NR 45 TC 33 Z9 34 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 10 PY 2006 VL 45 IS 40 BP 12380 EP 12391 DI 10.1021/bi0611311 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 090MC UT WOS:000240954400018 PM 17014090 ER PT J AU Peinetti, F Peano, F Coppa, G Wurtele, J AF Peinetti, F. Peano, F. Coppa, G. Wurtele, J. TI Particle-in-cell method for parallel dynamics in magnetized electron plasmas: Study of high-amplitude BGK modes SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE plasma physics; nonneutral plasmas; particle-in-cell techniques; BGK modes ID AUTORESONANT NONSTATIONARY EXCITATION; DIOCOTRON MODE; NONNEUTRAL PLASMAS; KRUSKAL MODES; INSTABILITY; BERNSTEIN; DRIVEN; GREENE AB The present paper describes the numerical technique that has been developed, in the framework of the particle-in-cell (PIC) method, to study the dynamics of a nonneutral plasma along the magnetic field lines. In particular, the technique has been employed to simulate the formation and long-term evolution of large-amplitude electrostatic waves experimentally observed in electron plasmas confined in a Penning trap [W. Bertsche, J. Fajans, L. Friedland, Phys. Rev. Lett. 91 (2003) 265003]. Due to the peculiar features of the physical system, namely the existence of different time scales and the presence of a perturbative oscillating potential, ad hoc numerical techniques have been developed. In particular, with a suitable radial decomposition all important two-dimensional phenomena are fully taken into account while keeping the computational effort to that of a standard one-dimensional PIC codes. Moreover, a novel particle loading technique (ergodic loading) has been developed, which ensures a significant reduction of numerical noise. The results obtained with the present technique are in excellent agreement with the experiments [F. Peinetti, W. Bertsche, J. Fajans, J. Wurtele, L. Friedland, Phys. Plasmas 12 (2005) 062112]. Moreover, results presented here furnish clear evidences of the close relationship between the observed nonlinear structures and the Bernstein-Greene-Kruskal modes. (c) 2006 Elsevier Inc. All rights reserved. C1 Politecn Torino, Dipartimento Energet, I-10129 Turin, Italy. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. LBNL, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Coppa, G (reprint author), Politecn Torino, Dipartimento Energet, Corso Duca Abruzzi 24, I-10129 Turin, Italy. EM gianni.coppa@polito.it RI wurtele, Jonathan/J-6278-2016; OI wurtele, Jonathan/0000-0001-8401-0297; Coppa, Gianni/0000-0002-1003-914X NR 17 TC 8 Z9 8 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 10 PY 2006 VL 218 IS 1 BP 102 EP 122 DI 10.1016/j.jcp.2006.01.040 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 099AQ UT WOS:000241565300006 ER PT J AU Hetmaniuk, U Lehoucq, R AF Hetmaniuk, U. Lehoucq, R. TI Basis selection in LOBPCG SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE symmetric generalized eigenvalue problem; preconditioned eigensolver; orthonormalization; LOBPCG ID EFFICIENT AB The purpose of our paper is to discuss basis selection for Knyazev's locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh-Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties. Published by Elsevier Inc. C1 Sandia Natl Labs, Computat Math & Algorithms Dept, Albuquerque, NM 87185 USA. RP Hetmaniuk, U (reprint author), Sandia Natl Labs, Computat Math & Algorithms Dept, POB 5800,MS 1110, Albuquerque, NM 87185 USA. EM uthetma@sandia.gov; rblehou@sandia.gov NR 14 TC 15 Z9 15 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 10 PY 2006 VL 218 IS 1 BP 324 EP 332 DI 10.1016/j.jcp.2006.02.007 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 099AQ UT WOS:000241565300015 ER PT J AU Hwang, WT Eaton, JK AF Hwang, Wontae Eaton, John K. TI Homogeneous and isotropic turbulence modulation by small heavy (St similar to 50) particles SO JOURNAL OF FLUID MECHANICS LA English DT Article ID DIRECT NUMERICAL-SIMULATION; SOLID 2-PHASE FLOW; CHANNEL FLOW; GENERATED TURBULENCE; 2-WAY INTERACTION; LDV MEASUREMENTS; LADEN FLOWS; AIR; MICROPARTICLES; VELOCITY AB The interaction of a dilute dispersion of small heavy particles with homogeneous and isotropic air turbulence has been investigated. Stationary turbulence (at Taylor micro-scale Reynolds number of 230) with small mean flow was created in a nearly spherical sealed chamber by means of eight synthetic jet actuators. Two-dimensional particle image velocimetry was used to measure global turbulence statistics in the presence of spherical glass particles that had a diameter of 165 Pin, which was similar to the Kolmogorov length scale of the flow. Experiments were conducted at two different turbulence levels and particle mass loadings up to 0.3. The particles attenuated the fluid turbulence kinetic energy and viscous dissipation rate with increasing mass loadings. Attenuation levels reached 35-40% for the kinetic energy (which was significantly greater than previous numerical studies) and 40-50% for the dissipation rate at the highest mass loadings. The main source of fluid turbulence kinetic energy production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra energy. The sink of fluid energy in the chamber was due to the ordinary viscous dissipation and extra dissipation caused by particles. The extra dissipation was greatly underestimated by conventional models. C1 Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Hwang, WT (reprint author), Sandia Natl Labs, Engine Combust Dept, Combust Res Facil, POB 969,MS 9053, Livermore, CA 94551 USA. NR 59 TC 46 Z9 48 U1 4 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD OCT 10 PY 2006 VL 564 BP 361 EP 393 DI 10.1017/S0022112006001431 PG 33 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 105LC UT WOS:000242030400014 ER PT J AU Tang, ZX Hicks, RK Magyar, RJ Tretiak, S Gao, Y Wang, HL AF Tang, Zhexiong Hicks, Raea K. Magyar, Rudolph J. Tretiak, Sergei Gao, Yuan Wang, Hsing-Lin TI Synthesis and characterization of amphiphilic phenylene ethynylene oligomers and their Langmuir-Blodgett films SO LANGMUIR LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LIGHT-EMITTING-DIODES; CONJUGATED POLYMERS; ENERGY-TRANSFER; DENDRIMERS; ELECTRONICS; MOLECULES; COUPLINGS; TRANSPORT; DEVICES AB We report the synthesis of a series of amphiphilic molecular building blocks that can be self-assembled at the air-water interface to form two- and three-dimensional nanostructures with tunable optoelectronic properties. Compression of these molecular building blocks using the Langmuir-Blodgett method gives rise to monolayer and multilayer thin films with different packing densities and electronic properties that are tunable due to varying pi-pi (hydrophobic) interactions. Depending on the noncovalent interaction between chromophores, we observe a transition toward denser packing with increasing number of phenylene ethynylene repeat units. Additionally, we use quantum-chemical simulations to help determine the excited-state electronic structure, intermolecular interactions, and packing trends. Our results demonstrate that the interplay between dipole-dipole and pi-pi interactions dominates the formation of thin films with various packing densities and determines the associated optical properties. C1 PCAS, Div Chem, Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gao, Y (reprint author), PCAS, Div Chem, Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM yuangao@lanl.gov; hwang@lanl.gov RI Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 NR 41 TC 13 Z9 13 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 10 PY 2006 VL 22 IS 21 BP 8813 EP 8820 DI 10.1021/la060914k PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 090MB UT WOS:000240954300031 PM 17014122 ER PT J AU Dhindsa, MS Smith, NR Heikenfeld, J Rack, PD Fowlkes, JD Doktycz, MJ Melechko, AV Simpson, ML AF Dhindsa, Manjeet S. Smith, Neil R. Heikenfeld, Jason Rack, Philip D. Fowlkes, Jason D. Doktycz, Mitchel J. Melechko, Anatoli V. Simpson, Micheal L. TI Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers SO LANGMUIR LA English DT Article ID VOLTAGE AB Reversible electrostatically induced wetting (electrowetting) of vertically aligned superhydrophobic carbon nanofibers has been investigated. Carbon nanofibers on a 5 x 5 Am pitch were grown on Si substrates, electrically insulated with a conformal dielectric, and hydrophobized with fluoropolymer. This nanostructured scaffold exhibited superhydrophobic behavior for saline (theta approximate to 160 degrees). Electrowetting induced a contact angle reduction to theta approximate to 100. Competitive two-liquid (dodecane/ saline) electrowetting exhibited reversibility on the same nanostructured scaffold. Without applied bias, ultra-fine-point tip (similar to 25 nm radius) nanofibers result in effectively zero capacitance with the overlying saline layer. Complete electrowetting of the substrate is confirmed as capacitance values increase by several orders of magnitude with increased wetting. These results demonstrate the applicability of reversible electrowetting on nanostructured scaffolds and use of nanofabricated structures that can be integrated with various micro- and nanoelectronic technologies. C1 Univ Cincinnati, Novel Devices Lab, Cincinnati, OH 45220 USA. Univ Tennessee, Knoxville, TN 37931 USA. Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Grp, Oak Ridge, TN 37831 USA. RP Heikenfeld, J (reprint author), Univ Cincinnati, Novel Devices Lab, Cincinnati, OH 45220 USA. EM heikenjc@email.uc.edu RI Melechko, Anatoli/B-8820-2008; Doktycz, Mitchel/A-7499-2011; Simpson, Michael/A-8410-2011; OI Doktycz, Mitchel/0000-0003-4856-8343; Simpson, Michael/0000-0002-3933-3457; Rack, Philip/0000-0002-9964-3254 FU NIBIB NIH HHS [EB000657] NR 11 TC 80 Z9 81 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 10 PY 2006 VL 22 IS 21 BP 9030 EP 9034 DI 10.1021/1a061139b PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 090MB UT WOS:000240954300059 PM 17014150 ER PT J AU Ramamoorthy, A Bird, JP Reno, JL AF Ramamoorthy, A. Bird, J. P. Reno, J. L. TI Quantum asymmetry of switching in laterally coupled quantum wires with tunable coupling strength SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRON WAVE-GUIDE; SPECTROSCOPY; TRANSPORT AB The authors study switching in laterally coupled quantum wires under conditions where their sidewall confinement strongly influences the transmission properties of their coupling region. Their analysis suggests that the low-temperature behavior of the currents in this regime results from the influence of inevitable structural asymmetry on the quantum-level structure of the quantum wires. (c) 2006 American Institute of Physics. C1 Arizona State Univ, Dept Elect Engn, Nanostruct Res Grp, Tempe, AZ 85287 USA. SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. Sandia Natl Labs, Nanostruct & Semicond Phys Dept, Albuquerque, NM 87185 USA. RP Ramamoorthy, A (reprint author), Arizona State Univ, Dept Elect Engn, Nanostruct Res Grp, Tempe, AZ 85287 USA. EM arunkumar@asu.edu RI Bird, Jonathan/G-4068-2010 OI Bird, Jonathan/0000-0002-6966-9007 NR 16 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 9 PY 2006 VL 89 IS 15 AR 153128 DI 10.1063/1.2362592 PG 3 WC Physics, Applied SC Physics GA 094OD UT WOS:000241247900120 ER PT J AU Talin, AA Hunter, LL Leonard, F Rokad, B AF Talin, A. Alec Hunter, Luke L. Leonard, Francois Rokad, Bhavin TI Large area, dense silicon nanowire array chemical sensors SO APPLIED PHYSICS LETTERS LA English DT Article ID LITHOGRAPHY AB The authors present a simple top-down approach based on nanoimprint lithography to create dense arrays of silicon nanowires over large areas. Metallic contacts to the nanowires and a bottom gate allow the operation of the array as a field-effect transistor with very large on/off ratios. When exposed to ammonia gas or cyclohexane solutions containing nitrobenzene or phenol, the threshold voltage of the field-effect transistor is shifted, a signature of charge transfer between the analytes and the nanowires. The threshold voltage shift is proportional to the Hammett parameter and the concentration of the nitrobenzene and phenol analytes. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Livermore, CA 94550 USA. RP Talin, AA (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM aatalin@sandia.gov NR 17 TC 76 Z9 76 U1 4 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 9 PY 2006 VL 89 IS 15 AR 153102 DI 10.1063/1.2358214 PG 3 WC Physics, Applied SC Physics GA 094OD UT WOS:000241247900094 ER PT J AU Wang, YJ Im, KS Fezzaa, K Lee, WK Wang, J Micheli, P Laub, C AF Wang, Y. J. Im, Kyoung-Su Fezzaa, K. Lee, W. K. Wang, Jin Micheli, P. Laub, C. TI Quantitative x-ray phase-contrast imaging of air-assisted water sprays with high Weber numbers SO APPLIED PHYSICS LETTERS LA English DT Article ID ATOMIZATION AB X-ray in-line phase-contrast imaging along with a single-image phase retrieval reconstruction was used to visualize the near-nozzle breakup of optically dense water jets atomized by a high-speed, annular air flow. The influence of the atomizing air on water mass distribution was investigated to reveal the complex air/liquid interactions at various breakup stages. Unlike low-Weber-number jets, the breakup of high-Weber-number jets can occur in the liquid core, which causes sudden decreases in liquid volume fraction. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Illinois Tool Works Inc, Glenview, IL 60026 USA. RP Wang, YJ (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM wangj@aps.anl.gov RI wang, yujie/C-2582-2015 NR 13 TC 26 Z9 27 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 9 PY 2006 VL 89 IS 15 AR 151913 DI 10.1063/1.2358322 PG 3 WC Physics, Applied SC Physics GA 094OD UT WOS:000241247900039 ER PT J AU Yi, JM Je, JH Chu, YS Zhong, Y Hwu, Y AF Yi, J. M. Je, J. H. Chu, Y. S. Zhong, Y. Hwu, Y. TI Bright-field imaging of lattice distortions using x rays (vol 89, art no 074103, 2006) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 POSTECH, Xray Imaging Ctr, Pohang 790784, South Korea. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Yi, JM (reprint author), POSTECH, Xray Imaging Ctr, Pohang 790784, South Korea. EM jhje@postech.ac.kr NR 1 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 9 PY 2006 VL 89 IS 15 AR 159901 DI 10.1063/1.2359697 PG 1 WC Physics, Applied SC Physics GA 094OD UT WOS:000241247900144 ER PT J AU McIntyre, A Stamp, J Cook, B Lanzone, A AF McIntyre, Annie Stamp, Jason Cook, Ben Lanzone, Andrew TI Workshops identify threats to process control systems SO OIL & GAS JOURNAL LA English DT Article C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McIntyre, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU PENNWELL PUBL CO ENERGY GROUP PI TULSA PA 1421 S SHERIDAN RD PO BOX 1260, TULSA, OK 74112 USA SN 0030-1388 J9 OIL GAS J JI Oil Gas J. PD OCT 9 PY 2006 VL 104 IS 38 BP 44 EP + PG 7 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 096RC UT WOS:000241393500014 ER PT J AU Kim, H Dooley, KS North, SW Hall, GE Houston, PL AF Kim, Hahkjoon Dooley, Kristin S. North, Simon W. Hall, Gregory E. Houston, P. L. TI Anisotropy of photofragment recoil as a function of dissociation lifetime, excitation frequency, rotational level, and rotational constant SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PHOTODISSOCIATION DYNAMICS; ANGULAR-DISTRIBUTIONS; 2-PHOTON ABSORPTION; VECTOR CORRELATIONS; AXIAL RECOIL; SPECTROSCOPY; CLO; NM; SPECTRA; INTENSITIES AB Quantum mechanical calculations of photofragment angular distributions have been performed as a function of the frequency of excitation, the lifetime of the dissociative state, the rotational level, and the rotational constant. In the limit of high J values and white, incoherent excitation, the general results are found to agree exactly with both those of Mukamel and Jortner [J. Chem. Phys. 61, 5348 (1974)] and those of Jonah [J. Chem. Phys. 55, 1915 (1971)]. Example calculations describe how the anisotropy is dependent on the degree of broadening, the rotational constant, the initial rotational level, and the frequency of excitation. Applications are also made to interpret experimental results on the photodissociation of ClO via the 11-0, 10-0, and 6-0 bands of the A (2)Pi(3/2)-X (2)Pi(3/2) transition and on the photodissociation of O-2 via the 0-0 band of the E (3)Sigma(-)(u)-X (3)Sigma(-)(g) transition. (c) 2006 American Institute of Physics. C1 Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Cornell Univ, Baker Lab, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. RP Kim, H (reprint author), Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842 USA. EM plh2@cornell.edu RI Hall, Gregory/D-4883-2013; North, Simon/G-5054-2012 OI Hall, Gregory/0000-0002-8534-9783; North, Simon/0000-0002-0795-796X NR 39 TC 16 Z9 16 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 7 PY 2006 VL 125 IS 13 AR 133316 DI 10.1063/1.2216708 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 091VO UT WOS:000241056600052 PM 17029469 ER PT J AU Kiran, B Li, X Zhai, HJ Wang, LS AF Kiran, Boggavarapu Li, Xi Zhai, Hua-Jin Wang, Lai-Sheng TI Gold as hydrogen: Structural and electronic properties and chemical bonding in Si3Au3+/0/- and comparisons to Si3H3+/0/- SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSITION-METAL CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; THEORETICAL CHEMISTRY; VAPOR-DEPOSITION; BASIS-SETS; DENSITY; MOLECULES; ANALOGS; ATOMS; RELATIVITY AB A single Au atom has been shown to behave like H in its bonding to Si in several mono- and disilicon gold clusters. In the current work, we investigate the Au/H analogy in trisilicon gold clusters, Si3Au3+/0/-. Photoelectron spectroscopy and density functional calculations are combined to examine the geometric and electronic structure of Si3Au3-. We find that there are three isomers competing for the ground state of Si3Au3- as is the case for Si3H3-. Extensive structural searches show that the potential energy surfaces of the trisilicon gold clusters (Si3Au3-, Si3Au3, and Si3Au3+) are similar to those of the corresponding silicon hydrides. The lowest energy isomers for Si3Au3- and Si3Au3 are structurally similar to a Si3Au four-membered ring serving as a common structural motif. For Si3Au3+, the 2 pi aromatic cyclotrisilenylium auride ion, analogous to the aromatic cyclotrisilenylium ion (Si3H3+), is the most stable species. Comparison of the structures and chemical bonding between Si3Au3+/0/- and the corresponding silicon hydrides further extends the isolobal analogy between Au and H. (c) 2006 American Institute of Physics. C1 Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Kiran, B (reprint author), Virginia Commonwealth Univ, Dept Phys, Med Coll Virginia Campus, Richmond, VA 23284 USA. EM ls.wang@pnl.gov NR 41 TC 56 Z9 57 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 7 PY 2006 VL 125 IS 13 AR 133204 DI 10.1063/1.2216707 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 091VO UT WOS:000241056600034 PM 17029451 ER PT J AU Miller, WH AF Miller, William H. TI Including quantum effects in the dynamics of complex (i.e., large) molecular systems SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INITIAL-VALUE REPRESENTATION; TIME-CORRELATION-FUNCTIONS; CLASSICAL S-MATRIX; CONDENSED-PHASE; SEMICLASSICAL DESCRIPTION; PROPAGATING WAVEPACKETS; PROTON-TRANSFER; COLLISIONS; SIMULATION; SCATTERING AB The development in the 1950s and 1960s of crossed molecular beam methods for studying chemical reactions at the single-collision molecular level stimulated the need and desire for theoretical methods to describe these and other dynamical processes in molecular systems. Chemical dynamics theory has made great strides in the ensuing decades, so that methods are now available for treating the quantum dynamics of small molecular systems essentially completely. For the large molecular systems that are of so much interest nowadays (e.g., chemical reactions in solution, in clusters, in nanostructures, in biological systems, etc.), however, the only generally available theoretical approach is classical molecular dynamics (MD) simulations. Much effort is currently being devoted to the development of approaches for describing the quantum dynamics of these complex systems. This paper reviews some of these approaches, especially the use of semiclassical approximations for adding quantum effects to classical MD simulations, also showing some new versions that should make these semiclassical approaches even more practical and accurate. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, KS Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Miller, WH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM millerwh@berkeley.edu NR 69 TC 63 Z9 63 U1 3 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 7 PY 2006 VL 125 IS 13 AR 132305 DI 10.1063/1.2211608 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 091VO UT WOS:000241056600007 PM 17029424 ER PT J AU Neumark, DM AF Neumark, Daniel M. TI Probing chemical dynamics with negative ions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID ELECTRON KINETIC-ENERGY; FEMTOSECOND PHOTOELECTRON-SPECTROSCOPY; THRESHOLD PHOTODETACHMENT SPECTROSCOPY; TRANSITION-STATE SPECTROSCOPY; LASER-INDUCED FLUORESCENCE; WATER-CLUSTER ANIONS; CROSSED MOLECULAR-BEAM; VIBRATIONAL PREDISSOCIATION SPECTROSCOPY; PHOTOFRAGMENT TRANSLATIONAL SPECTROSCOPY; ELASTIC-SCATTERING MEASUREMENTS AB Experiments are reviewed in which key problems in chemical dynamics are probed by experiments based on photodetachment and/or photoexcitation of negative ions. Examples include transition state spectroscopy of biomolecular reactions, spectroscopy of open shell van der Waals complexes, photodissociation of free radicals, and time-resolved dynamics in clusters. The experimental methods used in these investigations are described along with representative systems that have been studied. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 NR 235 TC 41 Z9 41 U1 6 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 7 PY 2006 VL 125 IS 13 AR 132303 DI 10.1063/1.2216709 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 091VO UT WOS:000241056600005 PM 17029422 ER PT J AU Plenge, J Nicolas, C Caster, AG Ahmed, M Leone, SR AF Plenge, Jurgen Nicolas, Christophe Caster, Allison G. Ahmed, Musahid Leone, Stephen R. TI Two-color visible/vacuum ultraviolet photoelectron imaging dynamics of Br-2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ADVANCED LIGHT-SOURCE; SYNCHROTRON-RADIATION; VACUUM-ULTRAVIOLET; CHEMICAL-DYNAMICS; CROSS-SECTIONS; EXCITED-STATES; LASER; SPECTROSCOPY; PHOTOIONIZATION; SPECTRA AB An experimental two-color photoionization dynamics study of laser-excited Br-2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X (1)Sigma(+)(g)-B (3)Pi(0+u) transition in Br-2 is excited at 527 nm corresponding predominantly to excitation of the v(')=28 vibrational level in the B (3)Pi(0+u) state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X (2)Pi(3/2,1/2) state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B (3)Pi(0+u) state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br-2(X (1)Sigma(+)(g),v"=0)-Br-2(+)(X (2)Pi(1/2,3/2),v(+)) and Br-2(B (3)Pi(+)(0)u,v(')=28)-Br-2(+)(X (2)Pi(1/2,3/2),v(+)) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v"=0 electronic ground state (X (1)Sigma(+))(g) versus the electronically and vibrationally excited state (B (3)Pi(+)(0)u,v(')=28). (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Plenge, J (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mahmed@lbl.gov RI Ahmed, Musahid/A-8733-2009 NR 37 TC 6 Z9 7 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 7 PY 2006 VL 125 IS 13 AR 133315 DI 10.1063/1.2217375 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 091VO UT WOS:000241056600051 PM 17029468 ER PT J AU Tuncer, E James, DR Sauers, I Ellis, AR Pace, MO AF Tuncer, Enis James, D. Randy Sauers, Isidor Ellis, Alvin R. Pace, Marshall O. TI On dielectric breakdown statistics SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID THEORETICAL BASIS; WEIBULL; POLYETHYLENE; PROBABILITY AB In this paper, we investigate the dielectric breakdown data of some insulating materials and focus on the applicability of the two- and three-parameter Weibull distributions. A new distribution function is also proposed. In order to assess the model distribution's trustworthiness, we employ the Monte Carlo technique and, randomly selecting data-subsets from the whole dielectric breakdown data, determine whether the selected probability functions accurately describe the breakdown data. The utility and strength of the proposed expression are illustrated distinctly by the numerical procedure. The proposed expression is shown to be a valuable alternative to the Weibull ones. C1 Oak Ridge Natl Lab, Fus Energy Div, High Voltage & Dielect Appl Supercond Grp, Oak Ridge, TN 37832 USA. Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. RP Tuncer, E (reprint author), Oak Ridge Natl Lab, Fus Energy Div, High Voltage & Dielect Appl Supercond Grp, Oak Ridge, TN 37832 USA. EM tuncere@ornl.gov OI Tuncer, Enis/0000-0002-9324-4324 NR 25 TC 36 Z9 36 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD OCT 7 PY 2006 VL 39 IS 19 BP 4257 EP 4268 DI 10.1088/0022-3727/39/19/020 PG 12 WC Physics, Applied SC Physics GA 098SJ UT WOS:000241542800021 ER PT J AU Sutherland, JC AF Sutherland, John C. TI Repair dependent radiation survival: a stochastic model with Euler gamma function solutions SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID POTENTIALLY LETHAL DAMAGE; ESCHERICHIA COLI K-12; X-RAY DAMAGE; IONIZING-RADIATION; DNA-DAMAGE; MICROCOCCUS RADIODURANS; MECHANISTIC BASIS; MAMMALIAN-CELLS; SENSITIVE SITES; STRAND BREAKS AB The probability of survival of cells or viruses exposed to various forms of radiation is expressed as a function of the probability that a given cell will receive a certain number of lethal damages, the average probability that each such damage is repairable, and an upper bound on the repair capacity of each cell. All lethal damages are presumed induced as a linear function of dose. The probability of survival is found to be the product of a single exponential, which reflects inactivation by unrepairable lethal damages and dominates at low doses, and an Euler gamma function, which reflects inactivation due to repairable damages formed in excess of the upper bound on repair capacity. Computational procedures obtain stochastic parameters from published survival data for the inactivation of bacterial, yeast and mammalian cells exposed to ionizing or ultraviolet radiation, including splitdose experiments. The survival of cells exposed to photodynamic therapy is analysed assuming that lethal damages cannot be repaired, but more than one may be required for inactivation. C1 E Carolina Univ, Dept Phys, Greenville, NC 27858 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Sutherland, JC (reprint author), E Carolina Univ, Dept Phys, Greenville, NC 27858 USA. EM sutherlandj@ecu.edu FU NIBIB NIH HHS [EB002121] NR 40 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD OCT 7 PY 2006 VL 51 IS 19 BP 4883 EP 4901 DI 10.1088/0031-9155/51/19/011 PG 19 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 092GA UT WOS:000241083800011 PM 16985277 ER PT J AU Boy, M Hellmuth, O Korhonen, H Nilsson, ED ReVelle, D Turnipseed, A Arnold, F Kulmala, M AF Boy, M. Hellmuth, O. Korhonen, H. Nilsson, E. D. ReVelle, D. Turnipseed, A. Arnold, F. Kulmala, M. TI MALTE - model to predict new aerosol formation in the lower troposphere SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GAS-PHASE REACTIONS; CONTINENTAL BOUNDARY-LAYER; KINETIC DATA EVALUATION; ATMOSPHERIC CHEMISTRY; PHOTOCHEMICAL DATA; DRY DEPOSITION; SULFURIC-ACID; CONVECTIVE CONDITIONS; IUPAC SUBCOMMITTEE; RATE CONSTANTS AB The manuscript presents a detailed description of the meteorological and chemical code of Malte - a model to predict new aerosol formation in the lower troposphere. The aerosol dynamics are achieved by the new developed UHMA (University of Helsinki Multicomponent Aerosol Model) code with kinetic limited nucleation as responsible mechanism to form new clusters. First results indicate that the model is able to predict the on- and offset of new particle formation as well as the total aerosol number concentrations that were in good agreement with the observations. Further, comparison of predicted and measured H(2)SO(4) concentrations showed a satisfactory agreement. The simulation results indicated that at a certain transitional particle diameter (2-7 nm), organic molecules can begin to contribute significantly to the growth rate compared to sulphuric acid. At even larger particle sizes, organic molecules can dominate the growth rate on days with significant monoterpene concentrations. The intraday vertical evolution of newly formed clusters and particles in two different size ranges resulted in two maxima at the ground. These particles grow around noon to the detectable size range and agree well with measured vertical profiles. C1 Univ Helsinki, Dept Phys Sci, Div Atmospher Sci, FIN-00014 Helsinki, Finland. NCAR, ASP ACD, Boulder, CO 80305 USA. Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany. Finnish Meteorol Inst, Helsinki 00880, Finland. Univ Stockholm, Dept Meteorol, S-10691 Stockholm, Sweden. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NCAR, ACD, Boulder, CO 80305 USA. Max Planck Inst Nucl Phys, Atmospher Phys Div, D-69029 Heidelberg, Germany. RP Boy, M (reprint author), Univ Helsinki, Dept Phys Sci, Div Atmospher Sci, POB 64, FIN-00014 Helsinki, Finland. EM michael.boy@helsinki.fi RI Korhonen, Hannele/E-4489-2011; Boy, Michael/C-2920-2015; Kulmala, Markku/I-7671-2016 OI Korhonen, Hannele/0000-0001-6264-0706; Boy, Michael/0000-0002-8107-4524; Kulmala, Markku/0000-0003-3464-7825 NR 55 TC 35 Z9 36 U1 0 U2 16 PU COPERNICUS PUBLICATIONS PI KATHLENBURG-LINDAU PA MAX-PLANCK-STR 13, KATHLENBURG-LINDAU, 37191, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD OCT 6 PY 2006 VL 6 BP 4499 EP 4517 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 093YF UT WOS:000241205500002 ER PT J AU Kaszuba, JP Williams, LL Janecky, DR Hollis, WK Tsimpanogiannis, IN AF Kaszuba, John P. Williams, Laurie L. Janecky, David R. Hollis, W. Kirk Tsimpanogiannis, Ioannis N. TI Immiscible CO2-H2O fluids in the shallow crust SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE water-rock interaction; geochemistry : reactions and phase equilibria; geochemistry : hydrothermal systems; mineralogy and petrology : fluid flow; mineralogy and petrology : metamorphic petrology ID SUPERCRITICAL CARBON-DIOXIDE; DALENE MINING DISTRICT; TROUGH BACKARC BASIN; CONTACT-METAMORPHISM; H2O-CO2-NACL FLUIDS; HIGH-TEMPERATURES; HIGH-PRESSURES; ALTA STOCK; GEOCHEMICAL CONSEQUENCES; SYSTEM H2O-CO2-NACL AB The significance of a single CO2-H2O fluid phase is well known for metamorphic systems, and CO2-H2O immiscibility is explicit in fluid inclusion literature, especially regarding hydrothermal ores. Complex multiphase CO2-H2O behavior exists over wide temperature and pressure ranges overlapping other important geochemical processes. The character and physical-chemical properties of multiple phases possible for CO2 and H2O, and the potential impact of these coexisting phases on geochemical processes in the crust, are not broadly appreciated. We propose that immiscible supercritical CO2 fluid and a liquid rich in H2O coexist in the shallow crust, to 400 degrees C and 300 MPa, and that interactions among the two fluids and host rock are significant processes that produce recognizable geochemical and textural evidence. Supercritical CO2 fluids bring potential complexity to fluid-rock systems by influencing aqueous reactions via carbonic acid equilibria, penetrating complex geometries inaccessible to aqueous fluid, and dissolving and redistributing metals as organometallic compounds. The distal margin of a contact metamorphic aureole is one example we discuss in which interaction between two disparate CO2-H2O fluids controls H2O activity and the progress and distribution of metamorphic hydration reactions. In another example, supercritical CO2 produces acidity, carbonate saturation, and silica supersaturation in brine. Separation and emplacement of this brine into a rock-dominated system buffered to neutral pH enhances precipitation of carbonates and quartz, chalcedony, or amorphous silica in veins. Other possible examples of CO2-H2O fluid immiscibility coupled with multiphase fluid-rock interactions are clay desiccation, diagenetic and postdiagenetic silicate reactions, origin and distribution of carbonate cements in sedimentary basin sandstones, fluid-mass transfer, and anthropogenic CO2 sequestration. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kaszuba, JP (reprint author), Los Alamos Natl Lab, Mail Stop J514, Los Alamos, NM 87545 USA. EM jkaszuba@lanl.gov OI Janecky, David/0000-0001-9072-8326 NR 69 TC 17 Z9 18 U1 2 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD OCT 6 PY 2006 VL 7 AR Q10003 DI 10.1029/2005GC001107 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 092SM UT WOS:000241117600001 ER PT J AU Jiang, XN Lau, NC Klein, SA AF Jiang, Xianan Lau, Ngar-Cheung Klein, Stephen A. TI Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LOW-LEVEL JET; UNITED-STATES; PRECIPITATION; MODEL AB By diagnosing the 3-hourly North American Regional Reanalysis rainfall data set for the 1979 - 2003 period, it is illustrated that the eastward propagation of convection systems from the Rockies to the Great Plains plays an essential role for the warm season climate over the central U. S. This eastward propagating mode could be the deciding factor for the observed nocturnal rainfall peak over the Great Plains. The results also suggest that nearly half of the total summer mean rainfall over this region is associated with these propagating convection systems. For instance, the extreme wet condition of the 1993 summer may be attributed to the frequent occurrence of propagating convection events and enhanced diurnal rainfall amplitude over the Great Plains. Thus, proper representation of this important propagating component in GCMs is essential for simulating the diurnal and seasonal mean characteristics of summertime rainfall over the central US. C1 Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA. Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. RP Jiang, XN (reprint author), Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Forrestal Campus,POB 308, Princeton, NJ 08542 USA. EM xianan.jiang@noaa.gov RI Jiang, Xianan/A-2283-2012; Klein, Stephen/H-4337-2016 OI Klein, Stephen/0000-0002-5476-858X NR 19 TC 27 Z9 27 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 6 PY 2006 VL 33 IS 19 AR L19809 DI 10.1029/2006GL027022 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 092SU UT WOS:000241118400004 ER PT J AU Coppe, JP Kauser, K Campisi, J Beausejour, CM AF Coppe, Jean-Philippe Kauser, Katalin Campisi, Judith Beausejour, Christian M. TI Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID REPLICATIVE LIFE-SPAN; CELLULAR SENESCENCE; STROMAL FIBROBLASTS; TUMOR-SUPPRESSOR; HUMAN-CELLS; IN-VIVO; CANCER; EXPRESSION; P53; ANGIOGENESIS AB Cellular senescence prevents the proliferation of cells at risk for neoplastic transformation. Nonetheless, the senescence response is thought to be antagonistically pleiotropic and thus contribute to aging phenotypes, including, ironically, late life cancers. The cancer- promoting activity of senescent cells is likely due to secreted molecules, the identity of which remains largely unknown. Here, we have shown that senescent fibroblasts, much more than presenescent fibroblasts, stimulate tumor vascularization in mice. Weakly malignant epithelial cells co- injected with senescent fibroblasts had larger and greater numbers of blood vessels compared with controls. Accordingly, increased vascular endothelial growth factor ( VEGF) expression was a frequent characteristic of senescent human and mouse fibroblasts in culture. Importantly, conditioned medium from senescent fibroblasts, more than medium from presenescent cells, stimulates cultured human umbilical vein endothelial cells to invade a basement membrane, a hallmark of angiogenesis. Increased VEGF expression was specific to the senescent phenotype and increased whether senescence was induced by replicative exhaustion, overexpression of p16(Ink4a), or overexpression of oncogenic RAS. The senescence-dependent increase in VEGF production was accompanied by very little increase in hypoxic- inducible ( transcription) factor 1 alpha protein levels, and hypoxia further inducedVEGFin senescent cells. This result suggests the rise in VEGF expression at senescence is not a hypoxic response. Our findings may in part explain why senescent cells stimulate tumorigenesis in vivo and support the idea that senescent cells may facilitate age- associated cancer development by secreting factors that promote malignant progression. C1 Univ Montreal, Ctr Hosp Univ Ste Justine, Montreal, PQ H3T 1C5, Canada. Univ Montreal, Dept Pharmacol, Montreal, PQ H3T 1C5, Canada. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Berlex Biosci, Richmond, CA 94804 USA. Buck Inst Age Res, Novato, CA 94945 USA. RP Beausejour, CM (reprint author), Univ Montreal, Ctr Hosp Univ Ste Justine, 3175 Chemin Cote Ste Catherine, Montreal, PQ H3T 1C5, Canada. EM christian.beausejour@recherche-ste-justine.qc.ca FU NIA NIH HHS [AG09909] NR 38 TC 181 Z9 185 U1 1 U2 14 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 6 PY 2006 VL 281 IS 40 BP 29568 EP 29574 DI 10.1074/jbc.M603307200 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 089QT UT WOS:000240896300018 PM 16880208 ER PT J AU Yang, C Rodionov, DA Li, XQ Laikova, ON Gelfand, MS Zagnitko, OP Romine, MF Obraztsova, AY Nealson, KH Osterman, AL AF Yang, Chen Rodionov, Dmitry A. Li, Xiaoqing Laikova, Olga N. Gelfand, Mikhail S. Zagnitko, Olga P. Romine, Margaret F. Obraztsova, Anna Y. Nealson, Kenneth H. Osterman, Andrei L. TI Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ESCHERICHIA-COLI; MOLECULAR-CLONING; GLUCOSAMINE-6-PHOSPHATE DEAMINASE; ORNITHINE-DECARBOXYLASE; TRANSCRIPTOME ANALYSIS; BACTERIAL GENOMES; CHITIN CATABOLISM; OUTER-MEMBRANE; BINDING-SITES; SEQUENCE AB We used a comparative genomics approach implemented in the SEED annotation environment to reconstruct the chitin and GlcNAc utilization subsystem and regulatory network in most proteobacteria, including 11 species of Shewanella with completely sequenced genomes. Comparative analysis of candidate regulatory sites allowed us to characterize three different GlcNAc- specific regulons, NagC, NagR, and NagQ, in various proteobacteria and to tentatively assign a number of novel genes with specific functional roles, in particular new GlcNAc- related transport systems, to this subsystem. Genes SO3506 and SO3507, originally annotated as hypothetical in Shewanella onei-densis MR-1, were suggested to encode novel variants of GlcN-6-P deaminase and GlcNAc kinase, respectively. Reconstitution of the GlcNAc catabolic pathway in vitro using these purified recombinant proteins and GlcNAc-6-P deacetylase (SO3505) validated the entire pathway. Kinetic characterization of GlcN-6-P deaminase demonstrated that it is the subject of allosteric activation by GlcNAc- 6- P. Consistent with genomic data, all tested Shewanella strains except S. frigidimarina, which lacked representative genes for the GlcNAc metabolism, were capable of utilizing GlcNAc as the sole source of carbonandenergy. Thisstudyexpandstherangeofcarbonsubstrates utilized by Shewanella spp., unambiguously identifies several genes involved in chitin metabolism, and describes a novel variant of the classical three- step biochemical conversion of GlcNAc to fructose 6- phosphate first described in Escherichia coli. C1 Burnham Inst Med Res, La Jolla, CA 92037 USA. Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia. State Sci Ctr GosNIIGenetika, Moscow 117545, Russia. Moscow MV Lomonosov State Univ, Dept Bioengn & Bioinformat, Moscow 119992, Russia. Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. RP Rodionov, DA (reprint author), Burnham Inst Med Res, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM rodionov@burnham.org RI Gelfand, Mikhail/F-3425-2012 FU NIAID NIH HHS [1R01-AI059146-01A2] NR 57 TC 72 Z9 75 U1 1 U2 13 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 6 PY 2006 VL 281 IS 40 BP 29872 EP 29885 DI 10.1074/jbc.M60505220 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 089QT UT WOS:000240896300049 PM 16857666 ER PT J AU Ahmad, T Guiochon, G AF Ahmad, Tarab Guiochon, Georges TI Effect of temperature on the adsorption behavior of tryptophan in reversed-phase liquid chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE liquid chromatography; adsorption isotherms; tryptophan ID POLYBUTADIENE-COATED ZIRCONIA; STATIONARY-PHASE; ELEVATED-TEMPERATURES; ISOTHERM PARAMETERS; CONCENTRATION BAND; SUPERHEATED WATER; GRADIENT ELUTION; PERFORMANCE; RETENTION; SEPARATION AB Single-component adsorption isotherm data of L-tryptophan on a C-18-bonded silica column were acquired by frontal analysis (FA), with aqueous mobile phases containing 5 % of acetonitrile at five different temperatures between 23 and 62 degrees C. The non-linear fitting of these data provided the bi-Moreau model for all temperatures as the best isotherm model. The inverse method (IM) was used to derive the parameters at these temperatures from the parameters of the 25 degrees C isotherm. The adsorption constants and the saturation capacities of the low and high-energy sites decreases by increasing the temperature, while the adsorbate-adsorbate parameters of both sites increase. An excellent agreement was found between the experimental and calculated overloaded band profiles at all the temperatures used. The breakthrough curves obtained and the overloaded band profiles obtained were found to have different shapes according to the range of concentration studied and the temperatures. At low concentration 0.05-0.5 g/L the breakthrough curves and the overloaded band profiles have a front shock and diffuse rear, which indicates langmuirian behavior, but at intermediate 1-2 g/L and high concentration 8 g/L they start to have diffuse fronts and shocks at the rear or more than one shock at the rear which indicates non-langmuirian behavior. At 23 degrees C the isotherm has another langmuirian part, which appears at high concentration. The behavior of the breakthrough curves is explained by the shape of the isotherm in which all of the isotherms have a langmuirian part (the isotherm is concave upward) and an antilangmuirian part (the isotherm is concave downward). The temperature affected the breakthrough curves by decreasing the time of the appearance of the fronts for all concentration ranges studied, and by decreasing the time difference between the highest concentration and lowest concentration of the fronts, especially the low concentration range at 0.5 g/L. The fronts of the breakthrough curves at high concentration seems to be the most affected by temperature. (c) 2006 Elsevier B.V All fights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 63 TC 6 Z9 6 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 6 PY 2006 VL 1129 IS 2 BP 174 EP 188 DI 10.1016/j.chroma.2006.06.108 PG 15 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 089KK UT WOS:000240879200004 PM 16859697 ER PT J AU Bailey, DH Borwein, JM Crandall, RE AF Bailey, D. H. Borwein, J. M. Crandall, R. E. TI Integrals of the Ising class SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL LA English DT Article ID MODEL SUSCEPTIBILITY; DIFFERENTIAL-EQUATION; CHI((4)) AB From an experimental-mathematical perspective we analyse 'Ising- class' integrals. These are structurally related n-dimensional integrals we call C-n, D-n, E-n, where D-n is a magnetic susceptibility integral central to the Ising theory of solid-state physics. We first analyse C-n := 4/n! integral(infinity)(0) ... integral(infinity)(0) 1/(Sigma(n)(j=1) (u(j + 1/u)j))(2) du(1)/u(1) ... du(n)/u(n). We had conjectured-on the basis of extreme-precision numerical quadrature that C-n has a finite large-n limit, namely C-infinity = 2 e(-2 gamma), with gamma being the Euler constant. On such a numerological clue we are able to prove the conjecture. We then show that integrals D-n and E-n both decay exponentially with n, in a certain rigorous sense. While C-n, D-n remain unresolved for n >= 5, we were able to conjecture a closed form for E-5. Our experimental results involved extreme-precision, multidimensional quadrature on intricate integrands; thus, a highly parallel computation was required. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 2W5, Canada. Reed Coll, Ctr Adv Computat, Portland, OR 97202 USA. RP Bailey, DH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM dhbailey@lbl.gov; jborwein@cs.dal.ca; crandall@reed.edu RI Borwein, Jonathan/A-6082-2009; OI Borwein, Jonathan/0000-0002-1263-0646 NR 27 TC 27 Z9 27 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0305-4470 J9 J PHYS A-MATH GEN JI J. Phys. A-Math. Gen. PD OCT 6 PY 2006 VL 39 IS 40 BP 12271 EP 12302 DI 10.1088/0305-4470/39/40/001 PG 32 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 098SO UT WOS:000241543300004 ER PT J AU Williams, MC Maru, HC AF Williams, Mark C. Maru, Hansraj C. TI Distributed generation - Molten carbonate fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article; Proceedings Paper CT International Workshop on Molten Carbonate Fuels Cells and Related Science and Technology CY AUG 29-31, 2005 CL Toulouse, FRANCE DE molten carbonate fuel cell (MCFC); distributed generation; Solid State Energy Conversion Alliance (SECA); solid oxide fuel cell (SOFC); fuel cell turbine hybrids AB High efficiency and ultra-clean molten carbonate fuel cell (MCFC) technology development by FuelCell Energy, with support from the U.S. Department of Energy (DOE), has progressed to commercial power plants for stationary applications such as distributed generation. Lessons learned from this development will also be valuable to DOE for the ongoing Solid State Energy Conversion Alliance (SECA) solid oxide fuel cell (SOFC) development and cost reduction, for fuel cell turbine hybrids, and for hydrogen economy development with FutureGen. (c) 2006 Elsevier B.V. All rights reserved. C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. FuelCell Energy Inc, Danbury, CT 06813 USA. RP Williams, MC (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM markcwilliams1@verizon.net NR 9 TC 13 Z9 14 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 6 PY 2006 VL 160 IS 2 SI SI BP 863 EP 867 DI 10.1016/j.jpowsour.2006.05.019 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 096YA UT WOS:000241411600017 ER PT J AU Tucker, MC Jacobson, CP De Jonghe, LC Visco, SJ AF Tucker, Michael C. Jacobson, Craig P. De Jonghe, Lutgard C. Visco, Steven J. TI A braze system for sealing metal-supported solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE solid oxide fuel cell; braze; seal; coefficient of thermal expansion; thermal cycling ID OXIDATION BEHAVIOR; FILLER METALS; SILVER; ALUMINA AB A composite braze, consisting of Ag-Cu-Ti braze alloy and particulate Al2TiO5 filler, was used to produce metal/braze/metal and metal/braze/YSZ joints to seal and interconnect metal-supported SOFC membranes. The addition of Al2TiO5 to the braze alloy lowers the coefficient of thermal expansion (CTE) of the resulting composite sufficiently so as to produce joints in which the YSZ does not crack due to CTE mismatch. Optimization of the reactive element (Ti) loading is discussed with regard to its effect on electrolyte conductivity. Electronic conductivity, sealing ability, and strength of the braze alloy remain acceptable after complete oxidation at 700 degrees C in air. Joints were also tested in air/fuel dual atmosphere environment at 700 degrees C. After this exposure, the joint remains hermetically sealed, and no significant degradation of the joint was observed. This is in contrast to a free-standing foil of the braze alloy, which failed upon dual atmosphere exposure. The composite braze material was used to seal a metal-supported thin-film YSZ cell. The sealed cell was thermally cycled 30 times very rapidly without any deterioration of the open circuit voltage. Published by Elsevier B.V. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Tucker, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,MS 62-203, Berkeley, CA 94720 USA. EM mctucker@lbl.gov NR 22 TC 43 Z9 47 U1 4 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 6 PY 2006 VL 160 IS 2 SI SI BP 1049 EP 1057 DI 10.1016/j.jpowsour.2006.02.067 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 096YA UT WOS:000241411600041 ER PT J AU Yang, ZG Xia, GG Stevenson, JW AF Yang, Zhenguo Xia, Guan-Guang Stevenson, Jeffry W. TI Evaluation of Ni-Cr-base alloys for SOFC interconnect applications SO JOURNAL OF POWER SOURCES LA English DT Article DE solid oxide fuel cell; interconnect; high temperature alloys; oxidation ID OXIDE FUEL-CELLS; ELECTRONIC RESISTANCE; EXPOSURE CONDITIONS; OXIDATION-KINETICS; STAINLESS-STEELS; SUPERALLOY FOILS; BEHAVIOR AB To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Crbase alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr2O3 and (Mn,CrNi)(3)O-4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer-22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 x 10(-6) K-1 from room temperature to 800 degrees C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, ZG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM zgary.yang@pnl.gov NR 23 TC 49 Z9 51 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 6 PY 2006 VL 160 IS 2 SI SI BP 1104 EP 1110 DI 10.1016/j.jpowsour.2006.02.099 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 096YA UT WOS:000241411600047 ER PT J AU Guidotti, RA Reinhardt, FW Dai, J Reisner, DE AF Guidotti, R. A. Reinhardt, F. W. Dai, J. Reisner, D. E. TI Performance of thermal cells and batteries made with plasma-sprayed cathodes and anodes SO JOURNAL OF POWER SOURCES LA English DT Article DE plasma spray; thermal batteries; CoS2; FeS2; LiCl-KCl; LiCl-LiBr-LiF AB Cathodes for thermally activated ("thermal") batteries based on CoS2 and LiCl-LiBr-LiF electrolyte and FeS2 (pyrite) and LiCl-KCl eutectic were prepared by thermal spraying catholyte mixtures onto graphite-paper substrates. Composite separator-cathode deposits were also prepared in the same manner by sequential thermal spraying of LiCl-KCl-based separator material onto a pyrite-cathode substrate. These materials were then tested in single cells over a temperature range of 400-600 degrees C and in 5-cell and 15-cell batteries. A limited number of battery tests were conducted with the separator-cathode composites and plasma-sprayed Li(Si) anodes-the first report of an all-plasma-sprayed thermal battery. Thermal-spraying offers distinct advantages over conventional pressed-powder parts for fabrication of thin electrodes for short-life thermal batteries. The plasma-sprayed electrodes have lower impedances than the corresponding pressed-powder parts due to improved particle-particle contact. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. US Nanocorp Inc, Farmington, CT 06032 USA. RP Guidotti, RA (reprint author), Sierra Nevada Consulting, 1536 W High Pointe Ct, Minden, NV 89423 USA. EM RonGuidotti@SierraNevadaConsulting.com NR 13 TC 18 Z9 21 U1 4 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 6 PY 2006 VL 160 IS 2 SI SI BP 1456 EP 1464 DI 10.1016/j.jpowsour.2006.02.025 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 096YA UT WOS:000241411600095 ER PT J AU Corzett, TH Fodor, IK Choi, MW Walsworth, VL Chromy, BA Turteltaub, KW McCutchen-Maloney, SL AF Corzett, Todd H. Fodor, Imola K. Choi, Megan W. Walsworth, Vicki L. Chromy, Brett A. Turteltaub, Kenneth W. McCutchen-Maloney, Sandra L. TI Statistical analysis of the experimental variation in the proteomic characterization of human plasma by two-dimensional difference gel electrophoresis SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE 2-D DIGE; human plasma; proteomics; statistical analysis; technical variation; variance decomposition ID HUMAN SERUM; EXPERIMENTAL-DESIGN; ABUNDANT PROTEINS; DETECTING CHANGES; TECHNOLOGY; DISCOVERY; DEPLETION; PHASE; DIGE AB The complexity of human plasma presents a number of challenges to the efficient and reproducible proteomic analysis of differential expression in response to disease. Before individual variation and disease-specific protein biomarkers can be identified from human plasma, the experimental variability inherent in the protein separation and detection techniques must be quantified. We report on the variation found in two-dimensional difference gel electrophoresis (2-D DIGE) analysis of human plasma. Eight aliquots of a human plasma sample were subjected to top-6 highest abundant protein depletion and were subsequently analyzed in triplicate for a total of 24 DIGE samples on 12 gels. Spot-wise standard deviation estimates indicated that fold changes greater than 2 can be detected with a manageable number of replicates in simple ANOVA experiments with human plasma. Mixed-effects statistical modeling quantified the effect of the dyes, and segregated the spot-wise variance into components of sample preparation, gel-to-gel differences, and random error. The gel-to-gel component was found to be the largest source of variation, followed by the sample preparation step. An improved protocol for the depletion of the top-6 high-abundance proteins is suggested, which, along with the use of statistical modeling and future improvements in gel quality and image processing, can further reduce the variation and increase the efficiency of 2-D DIGE proteomic analysis of human plasma. C1 Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA 94550 USA. RP McCutchen-Maloney, SL (reprint author), Lawrence Livermore Natl Lab, Biosci Directorate, 700 E Ave,L452, Livermore, CA 94550 USA. EM smaloney@llnl.gov NR 24 TC 33 Z9 35 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD OCT 6 PY 2006 VL 5 IS 10 BP 2611 EP 2619 DI 10.1021/pr060100p PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 091UF UT WOS:000241053100013 PM 17022632 ER PT J AU Bauer, CW Schwartz, MD AF Bauer, Christian W. Schwartz, Matthew D. TI Improving jet distributions with effective field theory SO PHYSICAL REVIEW LETTERS LA English DT Article AB We obtain perturbative expressions for jet distributions using soft-collinear effective theory (SCET). By matching SCET onto QCD at high energy, tree level matrix elements and higher order virtual corrections can be reproduced in SCET. The resulting operators are then evolved to lower scales, with additional operators being populated by required threshold matchings in the effective theory. We show that the renormalization group evolution and threshold matchings reproduce the Sudakov factors and splitting functions of QCD, and that the effective theory naturally combines QCD matrix elements and parton showers. The effective theory calculation is systematically improvable and any higher order perturbative effects can be included by a well-defined procedure. C1 Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Bauer, CW (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cwbauer@lbl.gov; mdschwartz@lbl.gov OI SCHWARTZ, MATTHEW/0000-0001-6344-693X NR 19 TC 29 Z9 29 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 6 PY 2006 VL 97 IS 14 AR 142001 DI 10.1103/PhysRevLett.97.142001 PG 4 WC Physics, Multidisciplinary SC Physics GA 091VT UT WOS:000241057100019 PM 17155240 ER PT J AU Chen, SY Eyink, GL Wan, MP Xiao, ZL AF Chen, Shiyi Eyink, Gregory L. Wan, Minping Xiao, Zuoli TI Is the Kelvin theorem valid for high Reynolds number turbulence? SO PHYSICAL REVIEW LETTERS LA English DT Article ID 3-DIMENSIONAL TURBULENCE; VELOCITY CIRCULATION; ENERGY-DISSIPATION; FLUID; EULER; DISPERSION AB The Kelvin-Helmholtz theorem on conservation of circulation is supposed to hold for ideal inviscid fluids and is believed to be play a crucial role in turbulent phenomena. However, this expectation does not take into account singularities in turbulent velocity fields at infinite Reynolds number. We present evidence from numerical simulations for the breakdown of the classical Kelvin theorem in the three-dimensional turbulent energy cascade. Although violated in individual realizations, we find that circulation is still conserved in some average sense. For comparison, we show that Kelvin's theorem holds for individual realizations in the two-dimensional enstrophy cascade, in agreement with theory. The turbulent "cascade of circulations" is shown to be a classical analogue of phase slip due to quantized vortices in superfluids, and various applications in geophysics and astrophysics are outlined. C1 Peking Univ, Coll Engn & CCSE, Beijing 100871, Peoples R China. Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, T Div, Los Alamos, NM 87545 USA. RP Chen, SY (reprint author), Peking Univ, Coll Engn & CCSE, 5 Yiheyuan Rd, Beijing 100871, Peoples R China. RI Chen, Shiyi/A-3234-2010; Wan, Minping/A-1344-2011; Xiao, Zuoli/N-4193-2013 OI Xiao, Zuoli/0000-0001-6123-3404 NR 31 TC 9 Z9 9 U1 2 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 6 PY 2006 VL 97 IS 14 AR 144505 DI 10.1103/PhysRevLett.97.144505 PG 4 WC Physics, Multidisciplinary SC Physics GA 091VT UT WOS:000241057100038 PM 17155259 ER PT J AU Goodrich, RG Harrison, N Fisk, Z AF Goodrich, R. G. Harrison, N. Fisk, Z. TI Fermi surface changes across the Neel phase boundary of NdB6 SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM INTERFERENCE; MAGNETIC-ANISOTROPY; HEAVY; CEB6; VANALPHEN; FIELDS; PRB6; HEXABORIDES; DEHAAS; MASS AB We report de Haas-van Alphen measurements in both the antiferromagetic and paramagnetic regimes of NdB6, which are shown to be separated by a second order upper critical field for antiferromagnetic ordering of H-c approximate to 30 T when the magnetic field is parallel to [001]. The Fermi surface changes across the transition provide an ideal example of a system in which the effect of a one-dimensional magnetic periodic potential on doubling the unit cell (as originally predicted by Slater [Phys. Rev. 82, 538 (1951)]) can be tuned by varying only the magnetic field. The Fermi surface within the paramagnetic phase resembles that observed in other hexaborides such as LaB6 but with additional exchange splitting effects and weak correlations. C1 Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70801 USA. Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. RP Goodrich, RG (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70801 USA. OI Harrison, Neil/0000-0001-5456-7756 NR 23 TC 15 Z9 15 U1 1 U2 15 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 6 PY 2006 VL 97 IS 14 AR 146404 DI 10.1103/PhysRevLett.97.146404 PG 4 WC Physics, Multidisciplinary SC Physics GA 091VT UT WOS:000241057100054 PM 17155275 ER PT J AU Isakov, SV Wessel, S Melko, RG Sengupta, K Kim, YB AF Isakov, S. V. Wessel, S. Melko, R. G. Sengupta, K. Kim, Yong Baek TI Hard-core bosons on the kagome lattice: Valence-bond solids and their quantum melting SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIQUID HELIUM; MODEL AB Using large scale quantum Monte Carlo simulations and dual vortex theory, we analyze the ground state phase diagram of hard-core bosons on the kagome lattice with nearest-neighbor repulsion. In contrast with the case of a triangular lattice, no supersolid emerges for strong interactions. While a uniform superfluid prevails at half filling, two novel solid phases emerge at densities rho=1/3 and rho=2/3. These solids exhibit an only partial ordering of the bosonic density, allowing for local resonances on a subset of hexagons of the kagome lattice. We provide evidence for a weakly first-order phase transition at the quantum melting point between these solid phases and the superfluid. C1 Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Saha Inst Nucl Phys, TCMP Div, Kolkata 700064, W Bengal, India. RP Isakov, SV (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. NR 28 TC 67 Z9 67 U1 3 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 6 PY 2006 VL 97 IS 14 AR 147202 DI 10.1103/PhysRevLett.97.147202 PG 4 WC Physics, Multidisciplinary SC Physics GA 091VT UT WOS:000241057100067 PM 17155288 ER PT J AU Maksymovych, P Sorescu, DC Yates, JT AF Maksymovych, Peter Sorescu, Dan C. Yates, John T., Jr. TI Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; DENSITY-FUNCTIONAL THEORY; AUGMENTED-WAVE METHOD; AB-INITIO; MONOLAYERS; ADSORPTION; DYNAMICS; SULFIDES; DEFECTS; METALS AB Microscopic evidence for Au-adatom-induced self-assembly of alkanethiolate species on the Au(111) surface is presented. Based on STM measurements and density-functional theory calculations, a new model for the low-coverage self-assembled monolayer of alkanethiolate on the Au(111) surface is developed, which involves the adsorbate complexes incorporating Au adatoms. It is also concluded that the Au(111) herringbone reconstruction is lifted by the alkanethiolate self-assembly because the reconstructed surface layer provides reactive Au adatoms that drive self-assembly. C1 Univ Pittsburgh, Ctr Surface Sci, Dept Chem, Pittsburgh, PA 15260 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Yates, JT (reprint author), Univ Pittsburgh, Ctr Surface Sci, Dept Chem, Pittsburgh, PA 15260 USA. EM jyates@pitt.edu RI Maksymovych, Petro/C-3922-2016 OI Maksymovych, Petro/0000-0003-0822-8459 NR 27 TC 301 Z9 301 U1 8 U2 96 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 6 PY 2006 VL 97 IS 14 AR 146103 DI 10.1103/PhysRevLett.97.146103 PG 4 WC Physics, Multidisciplinary SC Physics GA 091VT UT WOS:000241057100050 PM 17155271 ER PT J AU Petit, L Stocks, GM Egami, T Szotek, Z Temmerman, WM AF Petit, L. Stocks, G. M. Egami, T. Szotek, Z. Temmerman, W. M. TI Ground state valency and spin configuration of the Ni ions in nickelates SO PHYSICAL REVIEW LETTERS LA English DT Article ID MANY-ELECTRON SYSTEMS; DENSITY APPROXIMATION; MAGNETIC-BEHAVIOR; LINIO2; OXIDES; METAL; ESR AB The ab initio self-interaction-corrected local-spin-density approximation is used to study the electronic structure of both stoichiometric and nonstoichiometric nickelates. From total energy considerations it emerges that, in their ground state, both LiNiO2 and NaNiO2 are insulators, with the Ni ion in the Ni3+ low-spin state (t(2g)(6)e(g)(1)) configuration. It is established that a substitution of a number of Li/Na atoms by divalent impurities drives an equivalent number of Ni ions in the NiO2 layers from the Jahn-Teller (JT)-active trivalent low-spin state to the JT-inactive divalent state. We describe how the observed considerable differences between LiNiO2 and NaNiO2 can be explained through the creation of Ni2+ impurities in LiNiO2. The indications are that the random distribution of the Ni2+ impurities might be responsible for the destruction of the long-range orbital ordering in LiNiO2. C1 Oak Ridge Natl Lab, Comp Sci & Mat Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Petit, L (reprint author), Oak Ridge Natl Lab, Comp Sci & Mat Div, Oak Ridge, TN 37831 USA. RI Petit, Leon/B-5255-2008; Stocks, George Malcollm/Q-1251-2016; OI Stocks, George Malcollm/0000-0002-9013-260X; Petit, Leon/0000-0001-6489-9922 NR 23 TC 14 Z9 14 U1 3 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 6 PY 2006 VL 97 IS 14 AR 146405 DI 10.1103/PhysRevLett.97.146405 PG 4 WC Physics, Multidisciplinary SC Physics GA 091VT UT WOS:000241057100055 PM 17155276 ER PT J AU Schiros, T Haq, S Ogasawara, H Takahashi, O Ostrom, H Andersson, K Pettersson, LGM Hodgson, A Nilsson, A AF Schiros, T. Haq, S. Ogasawara, H. Takahashi, O. Ostrom, H. Andersson, K. Pettersson, L. G. M. Hodgson, A. Nilsson, A. TI Structure of water adsorbed on the open Cu(110) surface: H-up, H-down, or both? SO CHEMICAL PHYSICS LETTERS LA English DT Article ID DISSOCIATIVE ADSORPTION; RU(0001); PT(111); FILMS; INTACT; OXYGEN; ATOMS AB We investigated the structure of the water monolayer on an open surface, Cu(110), at low temperature. We found that water adsorbs molecularly, adopting a 2:1 ratio of H-down and H-up configurations. This behavior of water on an open surface is quite different to the behavior on close-packed surfaces, such as Pt(111) and Ru(0001), where water adsorbs primarily H-down, but can be understood on the basis of a range of different water adsorption sites across the observed (7 x 8) unit cell. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. Stockholm Univ, FYSIKUM, Albanova Univ Ctr, SE-10691 Stockholm, Sweden. Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England. Hiroshima Univ, Dept Chem, Grad Sch Sci, Higashihiroshima 7398526, Japan. Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany. RP Nilsson, A (reprint author), Stanford Synchrotron Radiat Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM nilsson@slac.stanford.edu RI Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Pettersson, Lars/J-4925-2013; Ogasawara, Hirohito/D-2105-2009; OI Nilsson, Anders/0000-0003-1968-8696; Pettersson, Lars/0000-0003-1133-9934; Ogasawara, Hirohito/0000-0001-5338-1079; Andersson, Klas J./0000-0002-6064-5658 NR 35 TC 61 Z9 62 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 5 PY 2006 VL 429 IS 4-6 BP 415 EP 419 DI 10.1016/j.cplett.2006.08.048 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 092LJ UT WOS:000241097900014 ER PT J AU Martin, MG AF Martin, Marcus G. TI Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities SO FLUID PHASE EQUILIBRIA LA English DT Article DE Monte Carlo; Gibbs ensemble; force field comparison ID UNITED-ATOM DESCRIPTION; BIAS MONTE-CARLO; MOLECULAR-DYNAMICS SIMULATIONS; PHASE-EQUILIBRIA; TRANSFERABLE POTENTIALS; N-ALKANES; COMPUTER-SIMULATIONS; GIBBS ENSEMBLE; ALGORITHM; PROTEINS AB Monte Carlo simulations in the isobaric-isothermal and Gibbs ensembles are used to compute liquid densities and vapor-liquid coexistence curves for a series of small organic molecules for the AMBER-96, CHARMM22, COMPASS, GROMOS 43A1, OPLS-aa, TraPPE-UA, and UFF force fields. The simulation results are compared with experimental measurements to provide an assessment of the accuracy expected when using these force fields to study unknown molecules. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Martin, MG (reprint author), Sandia Natl Labs, POB 5800,Mail Stop 0895, Albuquerque, NM 87185 USA. EM marcus_martin@users.sourceforge.net NR 37 TC 53 Z9 54 U1 10 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3812 J9 FLUID PHASE EQUILIBR JI Fluid Phase Equilib. PD OCT 5 PY 2006 VL 248 IS 1 BP 50 EP 55 DI 10.1016/j.fluid.2006.07.014 PG 6 WC Thermodynamics; Chemistry, Physical; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA 089HL UT WOS:000240871200007 ER PT J AU Tirumala, VR Caneba, GT Mancini, DC Wang, HH AF Tirumala, Vijay R. Caneba, Gerard T. Mancini, Derrick C. Wang, H. H. TI Microfabrication by X-ray-induced polymerization above the lower critical solution temperature SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE hydrogels; polymerization; X-ray; scattering; lithography ID COIL-GLOBULE TRANSITION; MONTE-CARLO-SIMULATION; SINGLE-CHAIN COLLAPSE; POOR-SOLVENT; POLY(METHYL METHACRYLATE); PHASE-TRANSITION; RADICAL POLYMERIZATION; MIXED-SOLVENT; FRRPP PROCESS; TO-GLOBULE AB A polymer synthesis method is presented in which chain growth driven by exothermic reaction stimulates a gradual chain collapse. The globular precipitates in such systems can be restrained from coalescing by polymerizing in a quiescent environment. Time-resolved small-angle scattering study of the methacrylic acid polymerization kinetics in a quiescent system above its lower critical solution temperature (LCST) in water reveals the following features of this method: (a) growing oligomers remain as rigid chains until a critical chain length is reached, at which they undergo chain collapse, (b) radius of gyration increases linearly with time until a critical conversion is reached, and (c) radius of gyration remains constant after the critical conversion, even while conversion is gradually increasing. Following this self-stabilizing growth mechanism, we show that nanoparticles can be directly synthesized by polymerizing N-isopropylacrylamicle above its LCST in water. The average size of nanoparticles obtained from a polymer-solvent system is expected to be the maximum extent of reaction spread at that monomer concentration. This hypothesis was then verified by polymerizing N-isopropylacrylamide above their LCST in water, but by initiating the reaction with X-rays shielded by a mask. The microfabricated patterns conform well to the size and shape of the mask used confirming that the growing chains do not propagate beyond the exposed regions as long as the reaction temperature is maintained above the LCST. (c) 2006 Wiley Periodicals, Inc. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Tirumala, VR (reprint author), Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20878 USA. EM vijay@aps.anl.gov NR 52 TC 4 Z9 4 U1 1 U2 4 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0021-8995 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD OCT 5 PY 2006 VL 102 IS 1 BP 429 EP 435 DI 10.1002/app.24073 PG 7 WC Polymer Science SC Polymer Science GA 077QO UT WOS:000240045000055 ER PT J AU Xie, SC Klein, SA Zhang, MH Yio, JJ Cederwall, RT McCoy, R AF Xie, Shaocheng Klein, Stephen A. Zhang, Minghua Yio, John J. Cederwall, Richard T. McCoy, Renata TI Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OBJECTIVE ANALYSIS; SENSITIVITY; ADVECTION; MOISTURE; HEAT AB [ 1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program ( ARM) Mixed-Phase Arctic Cloud Experiment ( M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related to the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Finally, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA. RP Xie, SC (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM xie2@llnl.gov RI Xie, Shaocheng/D-2207-2013; Klein, Stephen/H-4337-2016 OI Xie, Shaocheng/0000-0001-8931-5145; Klein, Stephen/0000-0002-5476-858X NR 24 TC 11 Z9 11 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 5 PY 2006 VL 111 IS D19 AR D19104 DI 10.1029/2005JD006950 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 092TH UT WOS:000241119700003 ER PT J AU Krull, ES Swanston, CW Skjemstad, JO McGowan, JA AF Krull, Evelyn S. Swanston, Christopher W. Skjemstad, Jan O. McGowan, Janine A. TI Importance of charcoal in determining the age and chemistry of organic carbon in surface soils SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID C-13 NATURAL-ABUNDANCE; BLACK CARBON; DIOXIDE METABOLISMS; MATTER; STABILIZATION; SEDIMENTS; TURNOVER; POOLS; MECHANISMS; PLANTS AB Understanding the chemical character and turnover time of the oldest soil organic carbon (SOC) fraction is fundamental in deciphering soil carbon sequestration processes and the fate of soil-eroded carbon in aquatic sediments. Two main processes are thought to extend the turnover time of SOC: protection by the mineral matrix and chemical recalcitrance. Various oxidation methods have been proposed to isolate the oldest and most recalcitrant SOC fraction, which is often assumed to be black carbon (BC). However, few data have been published that confirm the chemical character of the isolated fractions. Using established and newly developed methods together with (13)C-NMR spectroscopy and AMS dating, we show that protection by the mineral matrix prolonged the turnover time of SOC by tens of years, but long-term (hundreds of years) stabilization was controlled by the inherent recalcitrance of SOC, determined by the type of ecosystems. In ecosystem without significant fire occurrences, the older SOC pool was comparably small and was represented by alkyl carbon. In ecosystems with high fire frequency charcoal constituted the oldest SOC pool, and constituted up to 35% of the total SOC. By applying methods with different oxidative strengths, it was possible to isolate different age groups of charcoal with different degrees of weathering. Further substantiation of this finding could provide a much greater resolution of paleo-fire events. Our results demonstrate that fire frequency plays a dominant role in determining the chemical nature and 14 C abundance of SOC and that the separation of age groups of charcoal provides a means to reconstruct detailed fire histories. Our results indicate that modeling SOC turnover, transport and sequestration for frequently burnt environments requires modification of existing models, specifying an input and decay function for the charcoal pool in different environments. C1 Commonwealth Sci & Ind Res Org Land & Water, Glen Osmond, SA, Australia. Cooperat Res Ctr Greenhouse Accounting, Canberra, ACT, Australia. Lawrence Livermore Natl Lab, Livermore, CA USA. RP Krull, ES (reprint author), Commonwealth Sci & Ind Res Org Land & Water, Glen Osmond, SA, Australia. EM evelyn.krull@csiro.au NR 40 TC 48 Z9 53 U1 4 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD OCT 5 PY 2006 VL 111 IS G4 AR G04001 DI 10.1029/2006JG000194 PG 9 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 092TI UT WOS:000241119800001 ER PT J AU Zaharia, S Jordanova, VK Thomsen, MF Reeves, GD AF Zaharia, Sorin Jordanova, V. K. Thomsen, M. F. Reeves, G. D. TI Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ASYMMETRIC RING CURRENT; GEOSYNCHRONOUS ORBIT; ENERGETIC PARTICLES; KINETIC-MODEL; ART.; PRESSURE; SUBSTORM; TAIL; DISTRIBUTIONS; SIMULATION AB [ 1] A geomagnetic storm model needs to take into account the coupling between magnetic field and plasma, as the storm-time field in the inner nightside magnetosphere can be very depressed compared to that of the Earth dipole, thus significantly modifying plasma transport. In this paper we extend our previous "one-way'' coupling between a kinetic ring current model and a magnetospheric force-balance model to a fully magnetically self-consistent approach, in which the force-balanced fields are fed back into the kinetic model to guide its evolution. The approach is applied to simulating the 21 - 23 April 2001 "GEM Storm Challenge'' event. We use boundary and initial conditions for the kinetic model from several spacecraft, and magnetic flux boundaries for the equilibrium code from an empirical magnetic field model. We find significant differences in the self-consistent results compared to those obtained from the kinetic model with a dipolar background field ( with the same particle boundary conditions and electric fields), due mainly to changes in the particle drifts. In addition to large depressions in the nightside magnetic field values compared to a dipolar field, we also find significantly lower particle density and perpendicular plasma pressure in the inner magnetosphere in the self-consistent case, as well as local, narrow pressure peaks and strongly enhanced plasma beta(p) in localized regions on the nightside. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Zaharia, S (reprint author), Los Alamos Natl Lab, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM szaharia@lanl.gov RI Reeves, Geoffrey/E-8101-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Jordanova, Vania/0000-0003-0475-8743 NR 52 TC 68 Z9 68 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 5 PY 2006 VL 111 IS A11 AR A11S14 DI 10.1029/2006JA011619 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 092UQ UT WOS:000241123200001 ER PT J AU Eldo, J Cardia, JP O'Day, EM Xia, JR Tsuruta, H Kantrowitz, ER AF Eldo, Joby Cardia, James P. O'Day, Elizabeth M. Xia, Jiarong Tsuruta, Hiro Kantrowitz, Evan R. TI N-phosphonacetyl-L-isoasparagine a potent and specific inhibitor of Escherichia coli aspartate transcarbamoylase SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID DISC ELECTROPHORESIS; QUATERNARY STRUCTURE; CRYSTAL-STRUCTURES; TRANSITION; BINDING; STATE; N-(PHOSPHONACETYL)-L-ASPARTATE; MECHANISMS; ENZYME; ACID AB The synthesis of a new inhibitor, N-phosphonacetyl-L-isoasparagine (PALI), of Escherichia coli aspartate transcarbamoylase (ATCase) is reported, as well as structural studies of the enzyme, PALI complex. PALI was synthesized in 7 steps from beta-benzyl L-aspartate. The K-D of PALI was 2 mu M. Kinetics and small-angle X-ray scattering experiments showed that PALI can induce the cooperative transition of ATCase from the T to the R state. The X-ray structure of the enzyme center dot PALI complex showed 22 hydrogen-bonding interactions between the enzyme and PALI. The kinetic characterization and crystal structure of the ATCase, PALI complex also provides detailed information regarding the importance of the alpha-carboxylate for the binding of the substrate aspartate. C1 Boston Coll, Merkert Chem Ctr, Dept Chem, Chestnut Hill, MA 02467 USA. Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Kantrowitz, ER (reprint author), Boston Coll, Merkert Chem Ctr, Dept Chem, Chestnut Hill, MA 02467 USA. EM evan.kantrowitz@bc.edu FU NCRR NIH HHS [P41 RR001209, P41RR01209]; NIGMS NIH HHS [R01 GM026237-29, R01 GM026237, R01 GM026237-28, GM26237] NR 37 TC 9 Z9 9 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 EI 1520-4804 J9 J MED CHEM JI J. Med. Chem. PD OCT 5 PY 2006 VL 49 IS 20 BP 5932 EP 5938 DI 10.1021/jm0607294 PG 7 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 088QM UT WOS:000240826200009 PM 17004708 ER PT J AU Bosch, J Robien, MA Mehlin, C Boni, E Riechers, A Buckner, FS Van Voorhis, WC Myler, PJ Worthey, EA DeTitta, G Luft, JR Lauricella, A Gulde, S Anderson, LA Kalyuzhniy, O Neely, HM Ross, J Earnest, TN Soltis, M Schoenfeld, L Zucker, F Merritt, EA Fan, E Verlinde, CLMJ Hol, WGJ AF Bosch, Jurgen Robien, Mark A. Mehlin, Christopher Boni, Erica Riechers, Aaron Buckner, Frederick S. Van Voorhis, Wesley C. Myler, Peter J. Worthey, Elizabeth A. DeTitta, George Luft, Joseph R. Lauricella, Angela Gulde, Stacey Anderson, Lori A. Kalyuzhniy, Oleksandr Neely, Helen M. Ross, Jenni Earnest, Thomas N. Soltis, Michael Schoenfeld, Lori Zucker, Frank Merritt, Ethan A. Fan, Erkang Verlinde, Christophe L. M. J. Hol, Wim G. J. TI Using fragment cocktail crystallography to assist inhibitor design of Trypanosoma brucei nucleoside 2-deoxyribosyltransferase SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURES; LEAD DISCOVERY; ACTIVE-SITE; PROTEIN; MACROMOLECULES; CRYSTALLIZATION; REFINEMENT; PROGRAM; FORMS AB The 1.8 angstrom resoultion de nouo structure of nucleoside 2-deoxyribosyltransferase (EC 2.4.2.6) from Trypanosoma brucei (TbNDRT) has been determined by SAD(a) phasing in an unliganded state and several ligand-bound states. This enzyme is important in the salvage pathway of nucleoside recycling. To identify novel lead compounds, we exploited "fragment cocktail soaks". Out of 304 compounds tried in 31 cocktails, four compounds could be identified crystallographically in the active site. In addition, we demonstrated that very short soaks of similar to 10 s are sufficient even for rather hydrophobic ligands to bind in the active site groove, which is promising for the application of similar soaking experiments to less robust crystals of other proteins. C1 Univ Washington, Dept Biochem, Div Infect Dis, Seattle, WA 98195 USA. Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA. SGPP Consortium, Seattle, WA 98185 USA. Seattle Biomed Res Inst, Seattle, WA 98109 USA. Hauptmann Woodward Inst, Buffalo, NY 14203 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Stanford Univ, SSRL, Stanford, CA 94309 USA. RP Hol, WGJ (reprint author), Univ Washington, Dept Biochem, Div Infect Dis, Seattle, WA 98195 USA. EM wghol@u.washington.edu RI VERLINDE, CHRISTOPHE/J-5796-2013; Bosch, Jurgen/E-9370-2011; OI Bosch, Jurgen/0000-0002-2624-4105; Myler, Peter/0000-0002-0056-0513 FU NIGMS NIH HHS [1P50 GM64655-01] NR 34 TC 40 Z9 42 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD OCT 5 PY 2006 VL 49 IS 20 BP 5939 EP 5946 DI 10.1021/jm060429m PG 8 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 088QM UT WOS:000240826200010 PM 17004709 ER PT J AU Tikhonov, AM Patel, H Garde, S Schlossman, ML AF Tikhonov, Aleksey M. Patel, Harshit Garde, Shekhar Schlossman, Mark L. TI Tail ordering due to headgroup hydrogen bonding interactions in surfactant monolayers at the water-oil interface SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY; MOLECULAR-DYNAMICS; LIQUID INTERFACES; PHASE-TRANSITIONS; HEXANE INTERFACE; ADSORPTION; SCATTERING; MEMBRANES; ACIDS AB Interactions between surfactants, and the resultant ordering of surfactant assemblies, can be tuned by the appropriate choice of head- and tailgroups. Detailed studies of the ordering of monolayers of long-chain n-alkanoic and n-alkanol monolayers at the water-vapor interface have demonstrated that rigid-rod all-trans ordering of the tailgroups is maintained upon replacing the alcohol with a carboxylic acid headgroup. In contrast, at the water-hexane liquid-liquid interface, we demonstrate that substitution of the -CH2OH with the -COOH headgroup produces a major conformational change of the tailgroup from disordered to ordered. This is demonstrated by the electron density profiles of triacontanol (CH3(CH2)(29)OH) and triacontanoic acid (CH3(CH2)(28)COOH) monolayers at the water-hexane interface, as determined by X-ray reflectivity measurements. Molecular dynamics simulations illustrate the presence of hydrogen bonding between the triacontanoic acid headgroups that is likely responsible for the tail ordering. A simple free energy illustrates the interplay between the attractive hydrogen bonding and the ordering of the tailgroup. C1 Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA. Univ Illinois, Dept Phys, Chicago, IL 60607 USA. Univ Illinois, Dept Chem, Chicago, IL 60607 USA. RP Tikhonov, AM (reprint author), Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. EM tikhonov@bnl.gov; schloss@uic.edu RI Garde, Shekhar/C-3060-2008; Tikhonov, Aleksey/N-1111-2016 NR 24 TC 20 Z9 20 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 5 PY 2006 VL 110 IS 39 BP 19093 EP 19096 DI 10.1021/jp064120q PG 4 WC Chemistry, Physical SC Chemistry GA 088QJ UT WOS:000240825900003 PM 17004752 ER PT J AU Barnard, AS Sternberg, M AF Barnard, A. S. Sternberg, M. TI Substitutional boron in nanodiamond, bucky-diamond, and nanocrystalline diamond grain boundaries SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DOPED DIAMOND; AB-INITIO; FILMS; GROWTH; STABILITY; MECHANISMS; ELECTRODES; EMISSION; HYDROGEN; COMPLEX AB Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples. C1 Univ Oxford, Dept Mat, Oxford OX1 3PH, England. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Barnard, AS (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM amanda.barnard@materials.ox.ac.uk RI Barnard, Amanda/A-7340-2011 OI Barnard, Amanda/0000-0002-4784-2382 NR 32 TC 30 Z9 31 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 5 PY 2006 VL 110 IS 39 BP 19307 EP 19314 DI 10.1021/jp0634252 PG 8 WC Chemistry, Physical SC Chemistry GA 088QJ UT WOS:000240825900036 PM 17004785 ER PT J AU Liu, P Rodriguez, JA AF Liu, Ping Rodriguez, Jose A. TI Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TRANSITION-METAL CARBIDES; DENSITY-FUNCTIONAL THEORY; CO ADSORPTION; CARBON-MONOXIDE; PT-RE; CATALYSTS; CU(111); ALPHA-MO2C(0001); NANOPARTICLES; DEACTIVATION AB Density functional theory (DFT) was employed to investigate the behavior of Mo carbides in the water-gas-shift reaction (WGS, CO + H2O -> H-2 +CO2). The kinetics of the WGS reaction was studied on the surfaces of Mo-terminated Mo2C(001) (Mo-Mo2C), C-terminated Mo2C(001) (C-Mo2C), and Cu(111) as a known active catalyst. Our results show that the WGS activity decreases in a sequence: Cu > C-Mo2C > MoMo2C. The slow kinetics on C-Mo2C and Mo-Mo2C is due to the fact that the C or Mo sites bond oxygen too strongly to allow the facile removal of this species. In fact, due to the strong O-Mo and O-C interactions, the carbide surfaces are likely to be covered by O produced from the H2O dissociation. It is shown that the O-covered Mo-terminated Mo2C(001) (O_Mo-Mo2C) surfave displays the lowest WGS activity of all. With the Mo oxide in the surface, O_Mo-Mo2C is too inert to adsorb CO or to dissociate H2O. In contrast, the same amount of O on the C-Mo2C surface (O_C-Mo2C) does not lead to deactivation, but enhances the rate of the WGS reaction and makes this system even more active than Cu. The good behavior of O_C-Mo2C is attributed to the formation of a Mo oxycarbide in the surface. The C atoms destabilize O-poisoning by forming CO species, which shift away from the Mo hollow sites when the surface reacts with other adsorbates. In this way, the Mo sites are able to provide a moderate bond to the reaction intermediates. In addition, both C and O atoms are not spectators and directly participate in the WGS reaction. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM pingliu3@bnl.gov NR 50 TC 83 Z9 83 U1 10 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 5 PY 2006 VL 110 IS 39 BP 19418 EP 19425 DI 10.1021/jp0621629 PG 8 WC Chemistry, Physical SC Chemistry GA 088QJ UT WOS:000240825900051 PM 17004800 ER PT J AU Woodward, JD Pickel, JM Anovitz, LM Heller, WT Rondinone, AJ AF Woodward, Jonathan D. Pickel, Joseph M. Anovitz, Lawrence M. Heller, William T. Rondinone, Adam J. TI Self-assembled colloidal crystals from ZrO2 nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-SCATTERING; TETRAGONAL ZIRCONIA; SUPERLATTICES; NANOCRYSTALS; PHASE; MIXTURES AB Ordered three-dimensional (3-D) assemblies of nanocrystalline zirconia were synthesized from aqueous suspensions of ZrO2 nanoparticles without the need for hydrocarbon surfactants or solvents to control colloidal crystal growth. Nanoparticles were suspended in mild acid and subsequently titrated from low to neutral pH. The solubility was reduced as the surfaces were neutralized, promoting assembly of the nanoparticles into ordered monoliths. TEM measurements indicated the formation of three-dimensional, hexagonal faceted, micrometer-sized colloidal crystals composed of 4 nm diameter ZrO2 nanoparticles. Lacking organic surfactants, the colloidal crystals were exceptionally robust and were sintered at high temperatures (300-500 degrees C) for further stability. Small-angle X-ray scattering (SAXS) measurements demonstrate that the samples become progressively more amorphous above 350 degrees C, although some ordered domains of nanoparticles persist. Additionally, the heat treatment dramatically increases the surface area of the colloidal crystals as water and residual organics are desorbed, revealing highly controlled interstitial spaces and pores. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Rondinone, AJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM rondinoneaj@ornl.gov RI Rondinone, Adam/F-6489-2013; Anovitz, Lawrence/P-3144-2016; OI Rondinone, Adam/0000-0003-0020-4612; Anovitz, Lawrence/0000-0002-2609-8750; Pickel, Joseph/0000-0001-9828-1565 NR 27 TC 11 Z9 11 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 5 PY 2006 VL 110 IS 39 BP 19456 EP 19460 DI 10.1021/jp062471z PG 5 WC Chemistry, Physical SC Chemistry GA 088QJ UT WOS:000240825900056 PM 17004805 ER PT J AU Kitano, R AF Kitano, Ryuichiro TI Gravitational gauge mediation SO PHYSICS LETTERS B LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; LOW-ENERGY SUPERSYMMETRY; FALSE VACUUM; MODEL; HIERARCHY; FATE AB It is often the case that the naive introduction of the messenger sector to supersymmetry breaking models causes restoration of supersymmetry. We discuss a possibility of stabilizing the supersymmetry breaking vacuum by gravitational interaction. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Kitano, R (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM kitano@slac.stanford.edu NR 28 TC 73 Z9 73 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 5 PY 2006 VL 641 IS 2 BP 203 EP 207 DI 10.1016/j.physletb.2006.08.044 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 092ZS UT WOS:000241137400014 ER PT J AU Kayani, A Smith, RJ Teintze, S Kopczyk, M Gannon, PE Deibert, MC Gorokhovsky, VI Shutthanandan, V AF Kayani, A. Smith, R. J. Teintze, S. Kopczyk, M. Gannon, P. E. Deibert, M. C. Gorokhovsky, V. I. Shutthanandan, V. TI Oxidation studies of CrAlON nanolayered coatings on steel plates SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE CrAlON; oxynitride; interconnect; coatings; ion beam analysis; corrosion resistance ID HIGH-TEMPERATURE OXIDATION; FILMS; RESISTANCE; CR-1-XALXN; DEPOSITION; CR AB The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks have directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with nanolayered coatings consisting of [CrON/AlON](n). The coatings were deposited using large-area filtered arc deposition technology, with various O/N pressure ratios, and subsequently annealed in air for up to 25 h at 800 degrees C. The composition, structure and surface morphology of the coated plates were characterized using RBS, nuclear reaction analysis, and AFM techniques. By altering the architecture and composition of the coatings, the rate of oxidation was reduced relative to the uncoated steel plates, and Fe diffusion from the substrate to the surface through the coating was significantly reduced. (c) 2006 Elsevier B.V. All rights reserved. C1 Montana State Univ, Dept Phys, Bozeman, MT 59715 USA. Arcomac Surface Engn LLC, Bozeman, MT USA. Pacific NW Natl Lab, Richland, WA USA. RP Kayani, A (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59715 USA. EM kayani@physics.montana.edu NR 18 TC 13 Z9 14 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD OCT 5 PY 2006 VL 201 IS 3-4 BP 1685 EP 1694 DI 10.1016/j.surfcoat.2006.02.053 PG 10 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 140BN UT WOS:000244477300160 ER PT J AU Yarwood, RR Rockhold, ML Niemet, MR Selker, JS Bottomley, PJ AF Yarwood, R. R. Rockhold, M. L. Niemet, M. R. Selker, J. S. Bottomley, P. J. TI Impact of microbial growth on water flow and solute transport in unsaturated porous media SO WATER RESOURCES RESEARCH LA English DT Article ID SATURATED HYDRAULIC CONDUCTIVITY; SAND COLUMNS; PSEUDOMONAS-FLUORESCENS; LIGHT TRANSMISSION; PHYSICAL-PROPERTIES; BIOFILM GROWTH; LIQUID SATURATION; BACTERIA; SOILS; GAS AB [ 1] A novel analytical method was developed that permitted real-time, noninvasive measurements of microbial growth and associated changes in hydrodynamic properties in porous media under unsaturated flowing conditions. Salicylate-induced, lux gene-based bioluminescence was used to quantify the temporal and spatial development of colonization over a 7-day time course. Water contents were determined daily by measuring light transmission through the system. Hydraulic flow paths were determined daily by pulsing a bromophenol blue dye solution through the colonized region of the sand. Bacterial growth and accumulation had a significant impact on the hydraulic properties of the porous media. Microbial colonization caused localized drying within the colonized zone, with decreases in saturation approaching 50% of antecedent values, and a 25% lowering of the capillary fringe height. Flow was retarded within the colonized zone and diverted around it concurrent with the expansion of the colonized zone between days 3 and 6. The location of horizontal dispersion corresponded with the cell densities of 1 - 3 x 10(9) cells g(-1) dry sand. The apparent solute velocity through the colonized region was reduced from 0.41 cm min(-1) (R-2 = 0.99) to 0.25 cm min(-1) (R-2 = 0.99) by the sixth day of the experiment, associated with population densities that would occupy approximately 7% of the available pore space within the colonized region. Changes in the extent of colonization occurred over the course of the experiment, including upward migration against flow. The distribution of cells was not determined by water flow alone, but rather by a dynamic interaction between water flow and microbial growth. This experimental system provides rich data sets for the testing of conceptualizations expressed through numerical modeling. C1 Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. CH2M, Corvallis, OR 97330 USA. Oregon State Univ, Dept Bioengn, Corvallis, OR 97331 USA. Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. RP Yarwood, RR (reprint author), Oregon State Univ, Dept Crop & Soil Sci, 3017 Agr & Life Sci Bldg, Corvallis, OR 97331 USA. EM rockie.yarwood@oregonstate.edu OI Selker, John/0000-0001-9751-6094 NR 53 TC 21 Z9 21 U1 7 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 5 PY 2006 VL 42 IS 10 AR W10405 DI 10.1029/2005WR004550 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 092VI UT WOS:000241125000002 ER PT J AU Shrotriya, V Li, G Yao, Y Moriarty, T Emery, K Yang, Y AF Shrotriya, Vishal Li, Gang Yao, Yan Moriarty, Tom Emery, Keith Yang, Yang TI Accurate measurement and characterization of organic solar cells SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID POLYMER PHOTOVOLTAIC CELLS; EFFICIENT; HETEROJUNCTIONS; NETWORK; BLENDS AB Methods to accurately measure the current-voltage characteristics of organic solar cells under standard reporting conditions are presented. Four types of organic test cells and two types of silicon reference cells (unfiltered and with a KG5 color filter) are selected to calculate spectral-mismatch factors for different test-cell/reference-cell combinations. The test devices include both polymer/fullerene-based bulk-heterojunction solar cells and small-molecule-based heterojunction solar cells. The spectral responsivities of test cells are measured as per American Society for Testing and Materials Standard E1021, and their dependence on light-bias intensity is reported. The current-voltage curves are measured under 100 mW cm(-2) standard AM 1.5 G (AM: air mass) spectrum (International Electrotechnical Commission 69094-1) generated from a source set with a reference cell and corrected for spectral error. C1 Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Shrotriya, V (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. EM keith_emery@nrel.gov; yangy@ucla.edu RI Yang, Yang/A-2944-2011; Yao, Yan/D-7774-2011; Li, Gang/A-5667-2012 OI Yao, Yan/0000-0002-8785-5030; Li, Gang/0000-0001-8399-7771 NR 52 TC 393 Z9 396 U1 11 U2 132 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 4 PY 2006 VL 16 IS 15 BP 2016 EP 2023 DI 10.1002/adfm.200600489 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 097UB UT WOS:000241473400012 ER PT J AU Wang, ZC Ho, KCJ Medforth, CJ Shelnutt, JA AF Wang, Zhongchun Ho, Kuangchiu J. Medforth, Craig J. Shelnutt, John A. TI Porphyrin Nanofiber Bundles from Phase-Transfer Ionic Self-Assembly and Their Photocatalytic Self-Metallization SO ADVANCED MATERIALS LA English DT Article ID PLATINUM; NANOSTRUCTURES; NANOPARTICLES; CATALYSTS AB Porphyrin nanoriber bundles (see figure) are synthesized by a novel phase-transfer ionic self-assembly technique, allowing the use of a wide range of water-insoluble porphyrin tectons. Their photocatalytic self-metallization with Pt, An, Ag, or Pt-Au alloys result in unusual porphyrin-metal composite nanostructures with potential applications in catalysis, sensing, and solar hydrogen production. C1 Sandia Natl Labs, Surface & Interface Sci Dept, Albuquerque, NM 87185 USA. Univ Georgia, Dept Chem, Athens, GA 30602 USA. Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. RP Shelnutt, JA (reprint author), Sandia Natl Labs, Surface & Interface Sci Dept, POB 5800, Albuquerque, NM 87185 USA. EM jasheln@unm.edu RI Shelnutt, John/A-9987-2009; Medforth, Craig/D-8210-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Shelnutt, John/0000-0001-7368-582X; Medforth, Craig/0000-0003-3046-4909; NR 23 TC 80 Z9 83 U1 6 U2 64 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD OCT 4 PY 2006 VL 18 IS 19 BP 2557 EP + DI 10.1002/adma.200600539 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 095NO UT WOS:000241314800010 ER PT J AU Sutter, E Sutter, P AF Sutter, Eli Sutter, Peter TI Au-induced encapsulation of Ge nanowires in protective C shells SO ADVANCED MATERIALS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; GERMANIUM NANOWIRES; SILICON NANOWIRES; GROWTH; NANOSTRUCTURES; TRANSPORT; NANOPARTICLES; GOLD; SI AB In situ annealing experiments (in the temperature range between room temperature and 400 degrees C) in a transmission electron microscope show that Ge nanowires can be encapsulated in graphitic C shells in the presence of C (see figure) if the wire surface is decorated with small amounts of Au. The C shells are demonstrated to provide a protective barrier against nanowire oxidation even after prolonged exposure to ambient conditions. C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov NR 25 TC 37 Z9 37 U1 2 U2 15 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD OCT 4 PY 2006 VL 18 IS 19 BP 2583 EP + DI 10.1002/adma.200600624 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 095NO UT WOS:000241314800016 ER PT J AU Cai, ZQ Penaflor, C Kuehl, JV Leebens-Mack, J Carlson, JE dePamphilis, CW Boore, JL Jansen, RK AF Cai, Zhengqiu Penaflor, Cynthia Kuehl, Jennifer V. Leebens-Mack, James Carlson, John E. dePamphilis, Claude W. Boore, Jeffrey L. Jansen, Robert K. TI Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids SO BMC EVOLUTIONARY BIOLOGY LA English DT Article ID COMPLETE NUCLEOTIDE-SEQUENCE; MADS-BOX GENES; RIBOSOMAL DNA-SEQUENCES; LONG-BRANCH ATTRACTION; CHLOROPLAST GENOME; BASAL ANGIOSPERMS; FLOWERING PLANTS; MOLECULAR-DATA; CODON USAGE; EARLIEST ANGIOSPERMS AB Background: The magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence resulted in phylogenetic reconstructions supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. We sequenced the plastid genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other angiosperm plastid genomes to assess phylogenetic relationships among magnoliids and to examine patterns of variation of GC content. Results: The Drimys, Liriodendron, and Piper plastid genomes are very similar in size at 160,604, 159,886 bp, and 160,624 bp, respectively. Gene content and order are nearly identical to many other unrearranged angiosperm plastid genomes, including Calycanthus, the other published magnoliid genome. Overall GC content ranges from 34-39%, and coding regions have a substantially higher GC content than non-coding regions. Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Phylogenetic analyses using parsimony and likelihood methods and sequences of 61 protein-coding genes provided strong support for the monophyly of magnoliids and two strongly supported groups were identified, the Canellales/Piperales and the Laurales/Magnoliales. Strong support is reported for monocots and eudicots as sister clades with magnoliids diverging before the monocot-eudicot split. The trees also provided moderate or strong support for the position of Amborella as sister to a clade including all other angiosperms. Conclusion: Evolutionary comparisons of three new magnoliid plastid genome sequences, combined with other published angiosperm genomes, confirm that GC content is unevenly distributed across the genome by location, codon position, and functional group. Furthermore, phylogenetic analyses provide the strongest support so far for the hypothesis that the magnoliids are sister to a large clade that includes both monocots and eudicots. C1 Univ Texas, Patterson Labs 141, Sect Integrat Biol, Austin, TX 78712 USA. Univ Texas, Inst Mol & Cellular Biol, Sect Integrat Biol, Austin, TX 78712 USA. Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. Lawrence Berkeley Natl Lab, Walnut Creek, CA 94598 USA. Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. Penn State Univ, Sch Forest Resources, University Pk, PA 16802 USA. Penn State Univ, Huck Inst Life Sci, Dept Biol, University Pk, PA 16802 USA. RP Jansen, RK (reprint author), Univ Texas, Patterson Labs 141, Sect Integrat Biol, Austin, TX 78712 USA. EM caizhq@mail.utexas.edu; cynthia_penaflor@myldsmail.net; jvkuehl@lbl.gov; jleebensmack@plantbio.uga.edu; jec16@psu.edu; cwd3@psu.edu; jlboore@calmail.berkeley.edu; jansen@mail.utexas.edu RI Jansen, Robert/F-6272-2011; cai, zhengqiu/G-2002-2011; dePamphilis, Claude/P-6652-2016 NR 91 TC 70 Z9 317 U1 3 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2148 J9 BMC EVOL BIOL JI BMC Evol. Biol. PD OCT 4 PY 2006 VL 6 AR 77 DI 10.1186/1471-2148-6-77 PG 20 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA 100OW UT WOS:000241679400001 PM 17020608 ER PT J AU Davis, MS Phan, TD Gosling, JT Skoug, RM AF Davis, M. S. Phan, T. D. Gosling, J. T. Skoug, R. M. TI Detection of oppositely directed reconnection jets in a solar wind current sheet SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAGNETIC RECONNECTION; MAGNETOPAUSE; MAGNETOTAIL AB We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was similar to 150 degrees, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field similar to 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection. C1 Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Davis, MS (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM phan@ssl.berkeley.edu NR 11 TC 39 Z9 41 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 4 PY 2006 VL 33 IS 19 AR L19102 DI 10.1029/2006GL026735 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 092SQ UT WOS:000241118000002 ER PT J AU Zhao, ZJ Meza, JC Van Hove, M AF Zhao, Zhengji Meza, Juan C. Van Hove, M. TI Using pattern search methods for surface structure determination of nanomaterials SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ENERGY-ELECTRON DIFFRACTION; SIMULATED ANNEALING ALGORITHM; LEED; OPTIMIZATION; CRYSTALLOGRAPHY; CDTE(110) AB Atomic-scale surface structure plays an important role in describing many properties of materials, especially in the case of nanomaterials. One of the most effective techniques for the determination of surface structure is low-energy electron diffraction (LEED), which can be used in conjunction with optimization to fit simulated LEED intensities to experimental data. This optimization problem has a number of characteristics that make it challenging: it has many local minima, the optimization variables can be either continuous or categorical, the objective function can be discontinuous, there are no exact analytical derivatives (and no derivatives at all for categorical variables) and function evaluations are expensive. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, and are particularly appropriate when categorical variables are present, an important feature that has not been addressed in previous LEED studies. We have found that pattern search methods can produce excellent results compared to previously used methods, both in terms of performance and in locating optimal results. C1 Lawrence Berkeley Lab, High Performance Comp Res Dept, Berkeley, CA 94720 USA. City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China. RP Zhao, ZJ (reprint author), Lawrence Berkeley Lab, High Performance Comp Res Dept, 1 Cyclotron Rd,Mail Stop 50F1650, Berkeley, CA 94720 USA. EM ZZhao@lbl.gov RI Van Hove, Michel/A-9862-2008; Meza, Juan/B-5601-2012; OI Van Hove, Michel/0000-0002-8898-6921; Meza, Juan/0000-0003-4543-0349 NR 31 TC 20 Z9 20 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 4 PY 2006 VL 18 IS 39 BP 8693 EP 8706 DI 10.1088/0953-8984/18/39/002 PG 14 WC Physics, Condensed Matter SC Physics GA 094WL UT WOS:000241269800005 ER PT J AU Komesu, T Waddill, GD Tobin, JG AF Komesu, Takashi Waddill, G. D. Tobin, J. G. TI Spin-polarized electron energy loss spectroscopy on Fe(100) thin films grown on Ag(100) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID STONER EXCITATION SPECTRUM; ULTRATHIN FE FILMS; SCATTERING; IRON; PHOTOEMISSION; DIFFRACTION; LAYERS; CO AB We report sharp spin-dependent energy loss features in electron scattering from bcc Fe(100) thin films grown on Ag(100). Majority spin features are observed at similar to 1.8 and 2.5 eV energy loss, and a minority spin feature is observed at similar to 2.0 eV energy loss. The majority spin peaks are attributed to spin-flip exchange scattering from the Fe films. The minority spin peak is attributed to non-flip exchange scattering with an energy corresponding to the separation between occupied and unoccupied minority spin bands. The observed peak energies compare favourably with electronic structure calculations for Fe and with spin-resolved photoemission and inverse photoemission results. C1 Univ Missouri, Dept Phys, Rolla, MO 65401 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Komesu, T (reprint author), Univ Missouri, Dept Phys, Rolla, MO 65401 USA. EM komesut@umr.edu; waddill@umr.edu RI Tobin, James/O-6953-2015 NR 24 TC 5 Z9 5 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 4 PY 2006 VL 18 IS 39 BP 8829 EP 8836 DI 10.1088/0953-8984/18/39/013 PG 8 WC Physics, Condensed Matter SC Physics GA 094WL UT WOS:000241269800016 ER PT J AU Qu, W Tan, X McCallum, RW Cann, DP Ustundag, E AF Qu, W. Tan, X. McCallum, R. W. Cann, D. P. Ustundag, E. TI Room temperature magnetoelectric multiferroism through cation ordering in complex perovskite solid solutions SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID NEUTRON POWDER DIFFRACTION; FERROELECTRIC POLARIZATION; PB(FE2/3W1/3)O-3 CERAMICS; MAGNETIC-STRUCTURE; BIFEO3 CERAMICS; ELECTRIC-FIELD; THIN-FILM; PHASE; DOMAINS; IRON AB A strategy for developing ferrimagnetism through B-site cation ordering in thermodynamically stable ferroelectric complex perovskites is described, with the aim of realizing both a spontaneous polarization and magnetization at room temperature. Specifically, solid solutions of the complex perovskites Pb(Fe2/3W1/3)O-3, Sr(Fe2/3W1/3)O-3, and Ba(Fe2/3W1/3)O-3 with BiFeO3 are considered. Preliminary data on the 0.75Pb(Fe2/3W1/3)O-3-0.25BiFeO(3) ceramic show promising results. C1 Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. Oregon State Univ, Dept Mech Engn, Corvallis, OR 97331 USA. RP Tan, X (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM xtan@iastate.edu RI Ustundag, Ersan/C-1258-2009; Tan, Xiaoli/C-3376-2013; Qu, Weiguo/D-9875-2013 OI Ustundag, Ersan/0000-0002-0812-7028; Tan, Xiaoli/0000-0002-4182-663X; Qu, Weiguo/0000-0001-7925-7340 NR 38 TC 13 Z9 14 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 4 PY 2006 VL 18 IS 39 BP 8935 EP 8942 DI 10.1088/0953-8984/18/39/023 PG 8 WC Physics, Condensed Matter SC Physics GA 094WL UT WOS:000241269800026 ER PT J AU Hayton, TW Boncella, JM Scott, BL Batista, ER AF Hayton, Trevor W. Boncella, James M. Scott, Brian L. Batista, Enrique R. TI Exchange of an imido ligand in bis(imido) complexes of uranium SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID VALENT ORGANOURANIUM COMPLEXES; URANYL-ION; FUNCTIONAL-GROUPS; ANALOGS; DIHALIDES C1 Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Boncella, JM (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MS J514, Los Alamos, NM 87545 USA. EM boncella@lanl.gov RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Boncella, James/0000-0001-8393-392X NR 11 TC 44 Z9 44 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 4 PY 2006 VL 128 IS 39 BP 12622 EP 12623 DI 10.1021/ja064400j PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 088ES UT WOS:000240795000017 PM 17002336 ER PT J AU Yin, YD Erdonmez, C Aloni, S Alivisatos, AP AF Yin, Yadong Erdonmez, Can Aloni, Shaul Alivisatos, A. Paul TI Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID REPLACEMENT REACTION; NANOPARTICLES; NANOSHELLS; GROWTH C1 Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Yin, Yadong/D-5987-2011; Alivisatos , Paul /N-8863-2015 OI Yin, Yadong/0000-0003-0218-3042; Alivisatos , Paul /0000-0001-6895-9048 NR 23 TC 190 Z9 192 U1 6 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 4 PY 2006 VL 128 IS 39 BP 12671 EP 12673 DI 10.1021/ja0646038 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 088ES UT WOS:000240795000041 PM 17002360 ER PT J AU Bratlie, KM Montano, MO Flores, LD Paajanen, M Somorjai, GA AF Bratlie, Kaitlin M. Montano, Max O. Flores, Lucio D. Paajanen, Matti Somorjai, Gabor A. TI Sum frequency generation vibrational spectroscopic and high-pressure scanning tunneling microscopic studies of benzene hydrogenation on Pt(111) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID REACTIVE SURFACE INTERMEDIATE; CARBON-MONOXIDE; CATALYTIC-REACTIONS; CYCLOHEXENE; ADSORPTION; TEMPERATURE; PYRIDINE; SPECTRA; SYSTEM; RH(111) AB Sum frequency generation (SFG) vibrational spectroscopy and high-pressure scanning tunneling microscopy (HP-STM) have been used in combination for the first time to study a catalytic reaction. These techniques have been able to identify surface intermediates in situ during benzene hydrogenation on a Pt(111) single-crystal surface at Torr pressures. In a background of 10 Torr of benzene, STM is able to image small ordered regions corresponding to the c(2 root 3 x 3) rect structure in which each molecule is chemisorbed at a bridge site. In addition, individual benzene molecules are also observed between the ordered regions. These individual molecules are assumed to be physisorbed benzene on the basis of the SFG results showing both chemisorbed and physisorbed molecules. The surface becomes too mobile to image upon addition of hydrogen but is determined to have physisorbed and chemisorbed benzene present by SFG. It was spectroscopically determined that heating the platinum surface after poisoning with CO displaces benzene molecules. The high-coverage pure CO structure of (root 19 x root 19) R 23.4 degrees imaged with STM is a verification of spectroscopic measurements. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Helsinki Univ Technol, Phys Lab, FI-02015 Helsinki, Finland. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Bratlie, Kaitlin/A-1133-2009 NR 33 TC 28 Z9 28 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 4 PY 2006 VL 128 IS 39 BP 12810 EP 12816 DI 10.1021/ja0626032 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 088ES UT WOS:000240795000057 PM 17002376 ER PT J AU Smith, JD Cappa, CD Drisdell, WS Cohen, RC Saykally, RJ AF Smith, Jared D. Cappa, Christopher D. Drisdell, Walter S. Cohen, Ronald C. Saykally, Richard J. TI Raman thermometry measurements of free evaporation from liquid water droplets SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MASS ACCOMMODATION COEFFICIENT; MOLECULAR-DYNAMICS SIMULATION; TRAIN/FLOW REACTOR EXPERIMENT; SUPERCOOLED WATER; CONDENSATION COEFFICIENT; ISOSBESTIC POINTS; REVISED ANALYSIS; TEMPERATURE; INTERFACE; VAPOR AB Recent theoretical and experimental studies of evaporation have suggested that on average, molecules in the higher-energy tail of the Boltzmann distribution are more readily transferred into the vapor during evaporation. To test these conclusions, the evaporative cooling rates of a droplet train of liquid water injected into vacuum have been studied via Raman thermometry. The resulting cooling rates are fit to an evaporative cooling model based on Knudsen's maximum rate of evaporation, in which we explicitly account for surface cooling. We have determined that the value of the evaporation coefficient (gamma(e)) of liquid water is 0.62 +/- 0.09, confirming that a rate-limiting barrier impedes the evaporation rate. Such insight will facilitate the formulation of a microscopic mechanism for the evaporation of liquid water. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu RI Cohen, Ronald/A-8842-2011 OI Cohen, Ronald/0000-0001-6617-7691 NR 37 TC 71 Z9 72 U1 3 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 4 PY 2006 VL 128 IS 39 BP 12892 EP 12898 DI 10.1021/ja063579v PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 088ES UT WOS:000240795000065 PM 17002384 ER PT J AU Brown, EN Rae, PJ Orler, EB AF Brown, Eric N. Rae, Philip J. Orler, E. Bruce TI The influence of temperature and strain rate on the constitutive and damage responses of polychlorotrifluoroethylene (PCTFE, Kel-F 81) SO POLYMER LA English DT Article DE polychlorotrifluoroethylene (PCTFE); constitutive response; Taylor impact ID RAPID DEFORMATION-BEHAVIOR; TAYLOR IMPACT; POLYTETRAFLUOROETHYLENE PTFE; SHOCK COMPRESSION; POLYMERS; FRACTURE; POLY(CHLOROTRIFLUOROETHYLENE); TRANSITION; PHASE; POLY(TETRAFLUOROETHYLENE) AB Polychlorotrifluoroethylene (PCTFE), also known as Kel-F81, is a semi-crystalline fluoropolymer. Although it has been employed in a wide range of cryogenic components, valve seats, seals, and microelectronics packaging, its mechanical behavior has received limited coverage in the literature. In this work, we present the tensile and compressive constitutive response of PCTFE for a range of temperatures (-85 to 150 degrees C) and strain rates (1 x 10(-4)-2.9 x 10(3) s(-1)). Both large-strain experiments based on flow stress and small-strain dynamic mechanical analysis (DMA) using the elastic modulus exhibit a strong increase in the glass transition temperature, T-g, with increasing strain rate. The quasistatic fracture behavior of PCTFE is presented using J-integral fracture experiments. Finally, a discussion of the implication of the constitutive and damage responses of PCTFE on impact failure modes observed in Taylor impact experiments is presented. (c) 2006 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Brown, EN (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755, Los Alamos, NM 87545 USA. EM en_brown@lanl.gov OI Brown, Eric/0000-0002-6812-7820 NR 63 TC 31 Z9 31 U1 3 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD OCT 4 PY 2006 VL 47 IS 21 BP 7506 EP 7518 DI 10.1016/j.polymer.2006.08.032 PG 13 WC Polymer Science SC Polymer Science GA 097CU UT WOS:000241424800024 ER PT J AU Dey, M Kunz, RC Van Heuvelen, KM Craft, JL Horng, YC Tang, Q Bocian, DF George, SJ Brunold, TC Ragsdale, SW AF Dey, Mishtu Kunz, Ryan C. Van Heuvelen, Katherine M. Craft, Jennifer L. Horng, Yih-Chern Tang, Qun Bocian, David F. George, Simon J. Brunold, Thomas C. Ragsdale, Stephen W. TI Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F-430 from methyl-coenzyme M reductase SO BIOCHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; DENSITY-FUNCTIONAL CALCULATIONS; BIOLOGICAL METHANE FORMATION; MAGNETIC CIRCULAR-DICHROISM; NICKEL OXIDATION-STATES; F430 PENTAMETHYL ESTER; GAUSSIAN-BASIS SETS; METHANOBACTERIUM-THERMOAUTOTROPHICUM; METHANOGENIC BACTERIA; ELECTRONIC-PROPERTIES AB Methyl-coenzyme M reductase (MCR) catalyzes the final step in methane biosynthesis by methanogenic archaea and contains a redox-active nickel tetrahydrocorphin, coenzyme F-430, at its active site. Spectroscopic and computational methods have been used to study a novel form of the coenzyme, called F-330, which is obtained by reducing F-430 with sodium borohydride (NaBH4). F-330 exhibits a prominent absorption peak at 330 nm, which is blue shifted by 100 nm relative to F-430. Mass spectrometric studies demonstrate that the tetrapyrrole ring in F-330 has undergone reduction, on the basis of the incorporation of protium (or deuterium), upon treatment of F-430 with NaBH4 (or NaBD4). One- and two-dimensional NMR studies show that the site of reduction is the exocyclic ketone group of the tetrahydrocorphin. Resonance Raman studies indicate that elimination of this pi-bond increases the overall pi-bond order in the conjugative framework. X-ray absorption, magnetic circular dichroism, and computational results show that F-330 contains low-spin Ni(II). Thus, conversion of F-430 to F-330 reduces the hydrocorphin ring but not the metal. Conversely, reduction of F-430 with Ti(III) citrate to generate F-380 (corresponding to the active MCRred1 state) reduces the Ni(II) to Ni(I) but does not reduce the tetrapyrrole ring system, which is consistent with other studies [Piskorski, R., and Jaun, B. (2003) J. Am. Chem. Soc. 125, 13120-13125; Craft, J. L., et al. (2004) J. Biol. Inorg. Chem. 9, 77-89]. The distinct origins of the absorption band shifts associated with the formation of F-330 and F-380 are discussed within the framework of our computational results. These studies on the nature of the product(s) of reduction of F-430 are of interest in the context of the mechanism of methane formation by MCR and in relation to the chemistry of hydroporphinoid systems in general. The spectroscopic and time-dependent DFT calculations add important insight into the electronic structure of the nickel hydrocorphinate in its Ni(II) and Ni(I) valence states. C1 Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA. Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ragsdale, SW (reprint author), Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA. EM sragsdale1@unl.edu FU NCRR NIH HHS [P20 RR017675, P20 RR017675-067441, P20 RR017675-049002, P20 RR017675-057226, P20 RR017675-039002, 1P20RR17675]; NIGMS NIH HHS [GM-36243] NR 87 TC 9 Z9 9 U1 2 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 3 PY 2006 VL 45 IS 39 BP 11915 EP 11933 DI 10.1021/bi0613269 PG 19 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 087OT UT WOS:000240752400021 PM 17002292 ER PT J AU Mintseris, J Eisen, MB AF Mintseris, Julian Eisen, Michael B. TI Design of a combinatorial DNA microarray for protein-DNA interaction studies SO BMC BIOINFORMATICS LA English DT Article ID TRANSCRIPTIONAL REGULATORY NETWORKS; SACCHAROMYCES-CEREVISIAE; BINDING SPECIFICITIES AB Background: Discovery of precise specificity of transcription factors is an important step on the way to understanding the complex mechanisms of gene regulation in eukaryotes. Recently, double-stranded protein-binding microarrays were developed as a potentially scalable approach to tackle transcription factor binding site identification. Results: Here we present an algorithmic approach to experimental design of a microarray that allows for testing full specificity of a transcription factor binding to all possible DNA binding sites of a given length, with optimally efficient use of the array. This design is universal, works for any factor that binds a sequence motif and is not species-specific. Furthermore, simulation results show that data produced with the designed arrays is easier to analyze and would result in more precise identification of binding sites. Conclusion: In this study, we present a design of a double stranded DNA microarray for protein-DNA interaction studies and show that our algorithm allows optimally efficient use of the arrays for this purpose. We believe such a design will prove useful for transcription factor binding site identification and other biological problems. C1 Boston Univ, Bioinformat Program, Boston, MA 02215 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Mintseris, J (reprint author), Boston Univ, Bioinformat Program, Boston, MA 02215 USA. EM julianm@bu.edu; mbeisen@lbl.gov OI Eisen, Michael/0000-0002-7528-738X NR 18 TC 19 Z9 22 U1 1 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 3 PY 2006 VL 7 AR 429 DI 10.1186/1471-2105-7-429 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 103RJ UT WOS:000241904100001 PM 17018151 ER PT J AU Leon-Escamilla, EA Corbett, JD AF Leon-Escamilla, E. Alejandro Corbett, John D. TI Hydrogen in polar intermetallics. Binary pnictides of divalent metals with Mn5Si3-type structures and their isotypic ternary hydride solutions SO CHEMISTRY OF MATERIALS LA English DT Article ID RARE-EARTH ARSENIDES; CRYSTAL-STRUCTURE; ZINTL PHASE; CR5B3-LIKE STRUCTURES; INTERMEDIATE PHASES; ALKALINE-EARTH; SB SYSTEM; SR; BA; EU AB Studies of the hydrogen-free binary A(5)Pn(3) systems for A = Ca, Sr, Ba, Sm, Eu, Yb and Pn (pnictogen) = As, Sb, Bi, reveal four new examples, (Ca, Yb)(5)Bi-3 and Eu-5(Sb, Bi) 3, among the 16 that form with a hexagonal (P6(3)/mcm) Mn5Si3-type structure. Most of the previous literature on unit cell dimensions for these correspond to those of smaller ternary hydrides (or other materials). Previously reported Ba5As3 and cubic SmAs could not be reproduced. New cubic anti-Th3P4 phases are also found in the Sm-As and Ba-Sb-F systems. Crystal structures have been refined from single-crystal X-ray data for hexagonal Sr5As3H similar to 1, Ca5Sb3, Ba5Sb3H similar to 0.7, Sm5Sb3H similar to 1, Eu5Sb3, Yb5Sb3, and Eu5Bi3. The widths of H solubility regions in the hexagonal parent structures in terms of cell constant changes have been determined for 12 examples, eight of which with more hydrogen further convert into known orthorhombic Ca5Sb3F-type phases. The Sm5Sb3 and Sm5Bi3 members contain trivalent cations according to several criteria. Magnetic susceptibility data are reported for Eu5Sb3 and Eu5Bi3, which contain normal Eu-II states. C1 Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. NR 43 TC 18 Z9 18 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 3 PY 2006 VL 18 IS 20 BP 4782 EP 4792 DI 10.1021/cm0612191 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 087PK UT WOS:000240754100014 ER PT J AU Hemraj-Benny, T Wong, SS AF Hemraj-Benny, Tirandai Wong, Stanislaus S. TI Silylation of single-walled carbon nanotubes SO CHEMISTRY OF MATERIALS LA English DT Article ID RAMAN-SPECTROSCOPY; CHEMICAL FUNCTIONALIZATION; ELECTRONIC-STRUCTURE; ADDITION-REACTIONS; DIAMETER; DISPROPORTIONATION; REACTIVITY; DEPENDENCE; CHEMISTRY; GERMYLENE AB Herein we present, to the best of our knowledge, the first report of effective silylation of raw, pristine single-walled carbon nanotubes (SWNTs). Specifically, commercially available CoMoCAT SWNTs were functionalized at their ends and sidewalls (a) with trimethoxysilane and in a separate experiment, (b) with hexaphenyldisilane. Raman analyses demonstrated selective reactivity of predominantly smaller-diameter semiconducting nanotubes. High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy, and atomic force microscopy showed that the functionalization reaction was structurally nondestructive to the tube integrity. Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (Si-29 NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS) data provided evidence for chemical attachment of organosilanes onto the carbon nanotube surface. UV-visible data also yielded evidence for selectivity and functionalization. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Chem & Mat Sci, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu NR 56 TC 50 Z9 51 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 3 PY 2006 VL 18 IS 20 BP 4827 EP 4839 DI 10.1021/cm061185x PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 087PK UT WOS:000240754100019 ER PT J AU Chervin, CN Clapsaddle, BJ Chiu, HW Gash, AE Satcher, JH Kauzlarich, SM AF Chervin, Christopher N. Clapsaddle, Brady J. Chiu, Hsiang Wei Gash, Alexander E. Satcher, Joe H., Jr. Kauzlarich, Susan M. TI Role of cyclic ether and solvent in a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia nanoparticles SO CHEMISTRY OF MATERIALS LA English DT Article ID MIXED-OXIDE NANOCOMPOSITES; CUBIC PHASE-BOUNDARY; RAMAN-SCATTERING; SURFACE-AREA; MAJOR PHASE; MONOLITHS; EPOXIDES; AEROGELS; SYSTEM; ROUTE AB The effects of cyclic ether (epoxide versus oxetane), solvent, and drying method were examined for a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia (YSZ). YSZ sol-gel materials, from 3 to 25 mol % Y2O3, were successfully prepared with either propylene oxide (PO) or trimethylene oxide (TMO) in both aqueous and mixed ethanol-water solutions of Zr4+ and Y3+ chlorides. Supercritical drying (aerogels) produced fine, nanoparticulate networks, whereas drying under ambient conditions (xerogels) resulted in heterogeneous micrometer-sized hard agglomerates. The resulting materials were characterized using powder X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption/desorption analysis, and elemental analysis by inductively coupled plasma-atomic emission spectroscopy. The cyclic ether and solvent were found to be critical factors in the resulting as-prepared aerogel surface area and morphology. For a given solvent, aerogels prepared with PO had higher surface areas than did those prepared with TMO. For example, the surface areas of aerogels prepared in water were 453 and 295 m(2)/g for PO and TMO, respectively. Following calcination to 550 degrees C, however, the crystallized YSZ powders were similar, consisting of homogeneous nanoparticles (similar to 10 nm) with spherical morphologies and high surface areas (> 100 m(2)/g). Elemental analysis, XRD, and electron microscopy indicated that Y2O3 and ZrO2 formed a homogeneous nanostructure over a wide range of Zr/Y ratios, corresponding to 3-25 mol % Y2O3. C1 Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. Univ Outreach, Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. RP Kauzlarich, SM (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. EM smkauzlarich@ucdavis.edu RI Kauzlarich, Susan/H-1439-2011 NR 25 TC 26 Z9 28 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD OCT 3 PY 2006 VL 18 IS 20 BP 4865 EP 4874 DI 10.1021/cm061258c PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 087PK UT WOS:000240754100023 ER PT J AU Olsen, BD Segalman, RA AF Olsen, Bradley D. Segalman, Rachel A. TI Phase transitions in asymmetric rod-coil block copolymers SO MACROMOLECULES LA English DT Article ID ORDER-DISORDER TRANSITION; DIBLOCK COPOLYMERS; THIN-FILMS; LIGHT; POLYISOPRENE; POLYMERS; ORGANIZATION; MORPHOLOGY; SEPARATION; MOLECULES AB Poly(alkoxyphenylenevinylene-b-isoprene) is used to study the phase transitions of a weakly segregated rod-coil block copolymer system. In the high coil fraction region of the phase diagram, phase transitions are caused by relatively small changes in temperature and composition. Several different sequences of phase transitions are observed, allowing fine control of structure, orientation, and thermal history effects. Weakly segregated symmetric rod-coil block copolymers organize into lamellar microphases at low temperature and disorder into nematic and isotropic phases with increasing temperature. As the coil fraction is increased, the lamellar structure loses long-range order but the microphase structure does not change. In these asymmetric block copolymers, a distinct change in phase transitions upon heating is observed. The stable nematic window narrows as the coil fraction increases. As a result, while symmetric block copolymers transition from a lamellar to an intermediate nematic and finally to an isotropic phase upon heating, coil-rich block copolymers transition is directly from a lamellar to an isotropic. The division between these two regimes occurs at a coil fraction of similar to 0.8. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103; Olsen, Bradley/0000-0002-7272-7140 NR 44 TC 61 Z9 64 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 3 PY 2006 VL 39 IS 20 BP 7078 EP 7083 AR MA060994Z DI 10.1021/ma060994z PG 6 WC Polymer Science SC Polymer Science GA 087OY UT WOS:000240752900040 ER PT J AU Subburaman, K Pernodet, N Kwak, SY DiMasi, E Ge, S Zaitsev, V Ba, X Yang, NL Rafailovich, M AF Subburaman, K. Pernodet, N. Kwak, S. Y. DiMasi, E. Ge, S. Zaitsev, V. Ba, X. Yang, N. L. Rafailovich, M. TI Templated biomineralization on self-assembled protein fibers SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE calcium carbonate; elastic modulus; extracellular matrix; secondary ion mass spectroscopy ID MODULATION FORCE MICROSCOPY; CALCIUM-CARBONATE; MATRIX; MONOLAYERS; MINERALIZATION; CALCIFICATION; EGGSHELL; CRYSTALLIZATION; FIBRONECTIN; ORIENTATION AB Biological mineralization of tissues in living organisms relies on proteins that preferentially nucleate minerals and control their growth. This process is often referred to as "templating," but this term has become generic, denoting various proposed mineral-organic interactions including both chemical and structural affinities. Here, we present an approach using self-assembled networks of elastin and fibronectin fibers, similar to the extracellular matrix. When induced onto negatively charged sulfonated polystyrene surfaces, these proteins form fiber networks of approximate to 10-mu m spacing, leaving open regions of disorganized protein between them. We introduce an atomic force microscopy-based technique to measure the elastic modulus of both structured and disorganized protein before and during calcium carbonate mineralization. Mineral-induced thickening and stiffening of the protein fibers during early stages of mineralization is clearly demonstrated, well before discrete mineral crystals are large enough to image by atomic force microscopy. Calcium carbonate stiffens the protein fibers selectively without affecting the regions between them, emphasizing interactions between the mineral and the organized protein fibers. Late-stage observations by optical microscopy and secondary ion mass spectroscopy reveal that Ca is concentrated along the protein fibers and that crystals form preferentially on the fiber crossings. We demonstrate that organized versus unstructured proteins can be assembled mere nanometers apart and probed in identical environments, where mineralization is proved to require the structural organization imposed by fibrillogenesis of the extracellular matrix. C1 Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. CUNY, Dept Chem, Staten Isl, NY 10314 USA. RP Kwak, SY (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM skwak@forsyth.org NR 30 TC 42 Z9 43 U1 2 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 3 PY 2006 VL 103 IS 40 BP 14672 EP 14677 DI 10.1073/pnas.0602952103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 092AL UT WOS:000241069300008 PM 17003131 ER PT J AU Shan, C AF Shan, Chao TI An analytical solution for transient gas flow in a multiwell system SO WATER RESOURCES RESEARCH LA English DT Article ID UNSATURATED FRACTURED TUFF; PNEUMATIC INJECTION TESTS; CURVE INTERPRETATION; AIR PERMEABILITY; EXTRACTION; WELLS; ZONE AB [1] Soil vapor extraction (SVE) combined with air injection provides an efficient way for the cleanup of vadose zone contaminated by volatile organic chemicals (VOCs). A successful design of an SVE system, however, relies on a good knowledge of the induced gas flow field in the vadose zone. Analytical solutions are available to help understand the gas flow field at steady state. However, most SVE systems must pass a transient period before reaching steady ( or quasi-steady) state, and the length of the period should be system-specific. This paper presents an analytical solution for transient gas flow in a vadose zone with extraction and injection wells. The transient solution approaches the steady state solution as time increases. Calculations have shown that for a shallow well ( screened in a depth of less than 10 m) in a vadose zone with an air permeability of 1 darcy (10(-12) m(2)) or larger, the system reaches steady state in just several hours. Decreasing the air permeability or increasing the screen depth increases the time to reach steady state. In practical applications the transient solution may be relatively insignificant in an SVE design. However, the solution can be important in site characterization through pneumatic tests. A procedure is provided for applying the dimensionless solution in estimating air permeability and air-filled porosity. An example is also given to use the transient solution for verifying numerical codes. C1 Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Shan, C (reprint author), Shans Groundwater, 906 Peralta Ave, Albany, CA 94706 USA. EM shan_chao@sbcglobal.net NR 16 TC 5 Z9 5 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 3 PY 2006 VL 42 IS 10 AR W10401 DI 10.1029/2005WR004737 PG 7 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 092VE UT WOS:000241124600002 ER PT J AU Lee, AWM Qin, Q Kumar, S Williams, BS Hu, Q AF Lee, Alan W. M. Qin, Qi Kumar, Sushil Williams, Benjamin S. Hu, Qing TI Real-time terahertz imaging over a standoff distance (> 25 meters) SO APPLIED PHYSICS LETTERS LA English DT Article ID QUANTUM-CASCADE LASERS AB The authors demonstrate the use of a terahertz quantum cascade laser (QCL) for real-time imaging in transmission mode at a standoff distance of 25 meters. Lasing frequency was selected for optimum transmission within an atmospheric window at similar to 4.9 THz. Coarse frequency selection was made by design of the QCL gain medium. Finer selection (to within 0.1 THz) was made by judicious choice of laser cavity length to adjust facet losses and therefore lasing threshold bias, in order to overlap the peak frequency of the Stark-shifted gain spectrum with the atmospheric window. Images are shown using an uncooled 320x240 microbolometer camera. (c) 2006 American Institute of Physics. C1 MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA. Sandia Natl Labs, Dept 1123, Albuquerque, NM 87185 USA. RP Lee, AWM (reprint author), MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM awmlee@mit.edu RI Williams, Benjamin/B-4494-2013; Qin, Qi/G-9373-2013 OI Williams, Benjamin/0000-0002-6241-8336; NR 12 TC 139 Z9 143 U1 3 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 2 PY 2006 VL 89 IS 14 AR 141125 DI 10.1063/1.2360210 PG 3 WC Physics, Applied SC Physics GA 091VR UT WOS:000241056900025 ER PT J AU Prasher, R Evans, W Meakin, P Fish, J Phelan, P Keblinski, P AF Prasher, Ravi Evans, William Meakin, Paul Fish, Jacob Phelan, Patrick Keblinski, Pawel TI Effect of aggregation on thermal conduction in colloidal nanofluids SO APPLIED PHYSICS LETTERS LA English DT Article ID DIFFUSION-LIMITED AGGREGATION; SUSPENSION; TRANSPORT; CLUSTERS AB Using effective medium theory the authors demonstrate that the thermal conductivity of nanofluids can be significantly enhanced by the aggregation of nanoparticles into clusters. Predictions of the effective medium theory are in excellent agreement with detailed numerical calculation on model nanofluids involving fractal clusters and show the importance of cluster morphology on thermal conductivity enhancements. (c) 2006 American Institute of Physics. C1 Intel Corp, Chandler, AZ 85226 USA. Rensselaer Polytech Inst, Dept Mech Engn, Troy, NY 12180 USA. Lockheed Martin Corp, Schenectady, NY 12301 USA. Idaho Natl Engn Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. RP Prasher, R (reprint author), Intel Corp, 5000 W Chandler Blvd, Chandler, AZ 85226 USA. EM ravi.s.prasher@intel.com; keblip@rpi.edu NR 24 TC 30 Z9 30 U1 2 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 2 PY 2006 VL 89 IS 14 AR 143119 DI 10.1063/1.2360229 PG 3 WC Physics, Applied SC Physics GA 091VR UT WOS:000241056900109 ER PT J AU Rodriguez, AF Heyderman, LJ Nolting, F Hoffmann, A Pearson, JE Doeswijk, LM van den Boogaart, MAF Brugger, J AF Rodriguez, A. Fraile Heyderman, L. J. Nolting, F. Hoffmann, A. Pearson, J. E. Doeswijk, L. M. van den Boogaart, M. A. F. Brugger, J. TI Permalloy thin films exchange coupled to arrays of cobalt islands SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETS; MEDIA AB Periodic arrays of elongated cobalt islands exchange coupled to continuous Permalloy thin films were fabricated using silicon nitride stencil masks and the magnetic spin configurations during magnetization reversal were studied with photoemission electron microscopy. The presence of cobalt islands results in a spatial modulation of the magnetic properties of the Permalloy films and domain walls positioned at the island boundaries. While magneto-optical Kerr effect measurements indicate differences depending on film thickness, the direct observations reveal two reversal mechanisms: formation of domains running between the islands and coherent rotation followed by propagation of a large domain. (c) 2006 American Institute of Physics. C1 Paul Scherrer Inst, CH-5232 Villigen, Switzerland. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Ecole Polytech Fed Lausanne, Inst Microelect & Microsyst, Microsyst Lab, CH-1015 Lausanne, Switzerland. RP Rodriguez, AF (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM arantxa.fraile-rodriguez@psi.ch RI Fraile Rodriguez, Arantxa/A-2446-2009; Hoffmann, Axel/A-8152-2009; Brugger, Juergen/C-5357-2009; Heyderman, Laura/E-7959-2015 OI Fraile Rodriguez, Arantxa/0000-0003-2722-0882; Hoffmann, Axel/0000-0002-1808-2767; Brugger, Juergen/0000-0002-7710-5930; NR 14 TC 15 Z9 15 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 2 PY 2006 VL 89 IS 14 AR 142508 DI 10.1063/1.2357007 PG 3 WC Physics, Applied SC Physics GA 091VR UT WOS:000241056900071 ER PT J AU Romero, MJ Jiang, CS Abushama, J Moutinho, HR Al-Jassim, MM Noufi, R AF Romero, Manuel J. Jiang, C. -S. Abushama, J. Moutinho, H. R. Al-Jassim, M. M. Noufi, R. TI Electroluminescence mapping of CuGaSe2 solar cells by atomic force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID QUARTZ TUNING FORK; PROBE AB The authors report on the observation of electroluminescence (EL) in CuGaSe2 solar cells using tapping-mode atomic force microscopy based on tuning-fork sensors. Individually injected current pulses are seen during intermittent contact driven by an external bias applied to the conducting tip. It follows that EL can be stimulated when the solar cell is forward biased during the contact cycle. Local L-V characteristics show evidence for EL, with a threshold voltage of 3.0-3.7 V. Mapping of the photon emission suggests that grain boundaries effectively isolate grain interiors, which behave as individual light-emitting diodes. (c) 2006 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Romero, MJ (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM manuel_romero@nrel.gov RI jiang, chun-sheng/F-7839-2012 NR 16 TC 11 Z9 11 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 2 PY 2006 VL 89 IS 14 AR 143120 DI 10.1063/1.2360230 PG 3 WC Physics, Applied SC Physics GA 091VR UT WOS:000241056900110 ER PT J AU Rosen, J Schneider, JM Anders, A AF Rosen, Johanna Schneider, Jochen M. Anders, Andre TI Charge state dependence of cathodic vacuum arc ion energy and velocity distributions SO APPLIED PHYSICS LETTERS LA English DT Article ID PLASMA; REGION; FLUX; GAS AB In the literature, conflicting conclusions are reported concerning the charge state dependence of cathodic arc ion energy and velocity distributions. It appears that data from electrostatic energy analyzers indicate charge state dependence of ion energy, whereas time-of-flight methods support charge state independence of ion velocity. Here the authors present charge-state-resolved ion energy distributions and calculate the corresponding ion velocity distributions in aluminum vacuum arc plasma. They show that the conflicting conclusions reported in the literature for the two different characterization techniques may originate from the commonly employed data interpretation of energy and velocity, in which peak values and average values are not carefully distinguished. (c) 2006 American Institute of Physics. C1 Univ Sydney, Sch Phys A28, Sydney, NSW 2006, Australia. Rhein Westfal TH Aachen, D-52056 Aachen, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Rosen, J (reprint author), Univ Sydney, Sch Phys A28, Sydney, NSW 2006, Australia. EM rosen@physics.usyd.edu.au RI Schneider, Jochen/A-4701-2012; Rosen, Johanna/M-9284-2014; Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 21 TC 18 Z9 18 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 2 PY 2006 VL 89 IS 14 AR 141502 DI 10.1063/1.2361197 PG 3 WC Physics, Applied SC Physics GA 091VR UT WOS:000241056900029 ER PT J AU Seo, KI Lee, DI Pianetta, P Kim, H Saraswat, KC McIntyre, PC AF Seo, Kang-Ill Lee, Dong-Ick Pianetta, Piero Kim, Hyoungsub Saraswat, Krishna C. McIntyre, Paul C. TI Chemical states and electrical properties of a high-k metal oxide/silicon interface with oxygen-gettering titanium-metal-overlayer SO APPLIED PHYSICS LETTERS LA English DT Article AB The authors report on the chemical bonding structure of the HfO(2)/Si (001) stack after the SiO(2) interfacial layer (IL) is partially removed by a reactive titanium metal overlayer. Using synchrotron photoelectron spectroscopy, they found that ultrathin SiO(2)-like IL similar to 6.5 angstrom thick, which is significantly less than the initial SiO(2) IL thickness of similar to 15 angstrom, exists at the HfO(2)/Si interface with an overlying Ti electrode. The dissociated Si from SiO(2) IL is believed to go onto Si substrate where it regrows epitaxially. The interfacial trap density of the Ti-electrode sample was extracted to be similar to 1.6 x 10(11) eV(-1) cm(-2) near the midgap of Si, which was comparable to that of the control sample with W electrode. (c) 2006 American Institute of Physics. C1 Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea. Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. RP Seo, KI (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM kiseo@stanford.edu NR 9 TC 24 Z9 24 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 2 PY 2006 VL 89 IS 14 AR 142912 DI 10.1063/1.2358834 PG 3 WC Physics, Applied SC Physics GA 091VR UT WOS:000241056900088 ER PT J AU White, MS Olson, DC Shaheen, SE Kopidakis, N Ginley, DS AF White, M. S. Olson, D. C. Shaheen, S. E. Kopidakis, N. Ginley, D. S. TI Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer SO APPLIED PHYSICS LETTERS LA English DT Article ID LIGHT-EMITTING-DIODES; SOLAR-CELLS; ZINC-OXIDE; EFFICIENCY AB Inverted organic photovoltaic devices based on a blend of poly(3-hexylthiophene) and a fullerene have been developed by inserting a solution-processed ZnO interlayer between the indium tin oxide (ITO) electrode and the active layer using Ag as a hole-collecting back contact. Efficient electron extraction through the ZnO and hole extraction through the Ag, with minimal loss in open-circuit potential, is observed with a certified power conversion efficiency of 2.58%. The inverted architecture removes the need for the use of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as an ITO modifier and for the use of a low-work-function metal as the back contact in the device. (c) 2006 American Institute of Physics. C1 Univ Colorado, Dept Phys, Boulder, CO 80309 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP White, MS (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM matthew_white@nrel.gov RI White, Matthew/B-3405-2013; Shaheen, Sean/M-7893-2013; Wei, Zhanhua/D-7544-2013; Kopidakis, Nikos/N-4777-2015 OI White, Matthew/0000-0001-6719-790X; Wei, Zhanhua/0000-0003-2687-0293; NR 15 TC 514 Z9 521 U1 13 U2 220 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 2 PY 2006 VL 89 IS 14 AR 143517 DI 10.1063/1.2359579 PG 3 WC Physics, Applied SC Physics GA 091VR UT WOS:000241056900129 ER PT J AU Bray, TH Beitz, JV Bean, AC Yu, YQ Albrecht-Schmitt, TE AF Bray, Travis H. Beitz, James V. Bean, Amanda C. Yu, Yaqin Albrecht-Schmitt, Thomas E. TI Structural polarity induced by cooperative hydrogen bonding and lone-pair alignment in the molecular uranyl iodate Na-2[UO2(IO3)(4)(H2O)] SO INORGANIC CHEMISTRY LA English DT Article ID ONE-DIMENSIONAL URANYL; TRANSITION-METAL IODATES; SINGLE-CRYSTAL RAMAN; HYDROTHERMAL PREPARATION; MOLYBDENYL IODATES; HEXAVALENT URANIUM; VALENCE PARAMETERS; PLUTONIUM COMPOUND; EXTENDED NETWORKS; NLO PROPERTIES AB Na-2[UO2(IO3)(4)(H2O)] has been synthesized under mild hydrothermal conditions. Its structure consists of Na+ cations and [UO2(IO3)(4)(H2O)](2-) anions. The [UO2(IO3)(4)(H2O)](2-) anions are formed from the coordination of a nearly linear uranyl, UO22+, cation by four monodentate IO3- anions and a coordinating water molecule to yield a pentagonal bipyramidal environment around the uranium center. The water molecules form intermolecular hydrogen bonds with the terminal oxo atoms of neighboring [UO2(IO3)(4)(H2O)](2-) anions to yield one-dimensional chains that extend down the b axis. There are two crystallographically unique iodate anions in the structure of Na-2[UO2(IO3)(4)(H2O)]. One of these anions is aligned so that the lone-pair of electrons is also directed along the b axis. The overall structure is therefore polar, owing to the cooperative alignment of both the hydrogen bonds and the lone-pair of electrons on iodate. The polarity of the monoclinic space group C2 (a = 11.3810(12) angstrom, b = 8.0547(8) angstrom, c = 7.6515(8) angstrom, beta = 90.102(2)degrees Z = 2, T = 193 K) found for this compound is consistent with the structure. Second-harmonic generation of 532 nm light from a 1064 nm laser source yields a response of approximately 16x alpha-SiO2. C1 Auburn Univ, Dept Chem & Biochem, Auburn, AL 36849 USA. Auburn Univ, EC Leach Nucl Sci Ctr, Auburn, AL 36849 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Los Alamos Natl Lab, Div Nucl Mat Technol, Los Alamos, NM 87545 USA. RP Albrecht-Schmitt, TE (reprint author), Auburn Univ, Dept Chem & Biochem, Auburn, AL 36849 USA. EM albreth@auburn.edu NR 63 TC 14 Z9 14 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD OCT 2 PY 2006 VL 45 IS 20 BP 8251 EP 8257 DI 10.1021/ic060957o PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 086ZJ UT WOS:000240711500036 PM 16999424 ER PT J AU Stephenson, NA Bell, AT AF Stephenson, Ned A. Bell, Alexis T. TI The influence of substrate composition on the kinetics of olefin epoxidation by hydrogen peroxide catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Article DE porphyrin; epoxidation; peroxide; mechanism; kinetics ID TERT-BUTYL HYDROPEROXIDE; CYCLOOCTENE EPOXIDATION; FIELD STRENGTHS; COMPLEX; H2O2; OXYGENATIONS; HYDROCARBONS; SOLVENT; ALKENE; ACID AB We have recently proposed a mechanism for the epoxidation of cyclooctene by hydrogen peroxide catalyzed by iron(111) [tetrakis(pentafluorophenyl)] porphyrin chloride. The expressions for the rate of hydrogen peroxide consumption and the yield of epoxide derived from this mechanism are in excellent agreement with experimental observations for a wide range of reaction conditions. An interesting feature of the expressions for the apparent rate coefficient and the yield of epoxide relative to peroxide consumed is that they are independent of the properties of the olefin. The present work was undertaken with the aim of determining whether this is a general result applicable to the epoxidation of other olefins. To this end, the rates of epoxidation of cyclooctene, styrene, cis-stilbene, cyclohexene, and norbornene were measured under identical conditions. For cyclooctene, styrene, and cis-stilbene, the observed kinetics and yield of epoxide were independent of the substrate, and no evidence was found by either UV-visible or H-1 NMR spectroscopy for olefin coordination to the iron cation of the porphyrin. By contrast, the rates of cyclohexene and norbornene epoxidation and the corresponding epoxide yields were significantly lower than those of the other three olefins. The lower catalyst activity and lower epoxide yield correlated with both UV-visible and H-1 NMR evidence for olefin coordination to the iron cation of the porphyrin. Olefin coordination increases the electron density on the iron cation and promotes homolytic cleavage relative to heterolytic cleavage of the oxygen-oxygen bond of coordinated hydrogen peroxide. This has the effect of reducing both the apparent rate coefficient for hydrogen peroxide consumption and the epoxide yield. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM alexbell@berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 NR 18 TC 24 Z9 24 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD OCT 2 PY 2006 VL 258 IS 1-2 BP 231 EP 235 DI 10.1016/j.molcata.2006.05.034 PG 5 WC Chemistry, Physical SC Chemistry GA 093MZ UT WOS:000241173700031 ER PT J AU Gelis, F Venugopalan, R AF Gelis, Francois Venugopalan, Raju TI Particle production in field theories coupled to strong external sources, I: Formalism and main results SO NUCLEAR PHYSICS A LA English DT Article ID COLOR GLASS CONDENSATE; HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; NUCLEUS-NUCLEUS COLLISIONS; BOTTOM-UP THERMALIZATION; ENERGY PA-COLLISIONS; AGK CUTTING RULES; RENORMALIZATION-GROUP; TRANSVERSE-MOMENTUM; PERTURBATIVE QCD AB We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory. (c) 2006 Elsevier B.V. All rights reserved. C1 CEA Saclay, DSM, CNRS, URA 2306,Serv Phys Theor, F-91191 Gif Sur Yvette, France. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Gelis, F (reprint author), CEA Saclay, DSM, CNRS, URA 2306,Serv Phys Theor, Bat 774, F-91191 Gif Sur Yvette, France. EM gelis@spht.saclay.cea.fr NR 73 TC 64 Z9 64 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 2 PY 2006 VL 776 IS 3-4 BP 135 EP 171 DI 10.1016/j.nuclphysa.2006.07.020 PG 37 WC Physics, Nuclear SC Physics GA 090ZW UT WOS:000240996200004 ER PT J AU Idilbi, A Ji, XD Yuan, F AF Idilbi, Ahmad Ji, Xiangdong Yuan, Feng TI Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production SO NUCLEAR PHYSICS B LA English DT Article ID DEEP-INELASTIC SCATTERING; SOFT-GLUON RESUMMATION; BOSON PRODUCTION; CROSS-SECTION; WILSON COEFFICIENT; QCD CORRECTIONS; FORM-FACTOR; ORDER SOFT; QUARK; FACTORIZATION AB We apply the effective field theoretic (EFr) approach to resum the large perturbative logarithms arising when partonic hard scattering cross sections are taken to the threshold limit. We consider deep inelastic scattering, Drell-Yan lepton pair production and the standard model Higgs production through gluon-gluon fusion via a heavy-top quark loop. We demonstrate the equivalence of the EFT approach with the more conventional, factorization-based methods to all logarithmic accuracies and to all orders in perturbation theory. Specific EFr results are shown for the resummation up to next-to-next-to-next-to leading logarithmic accuracy for the above-mentioned processes. We emphasize the relative simplicity by which we derive most of the results and more importantly their clear physical origin. We find a new relation between the functions f((q,g)) in the quark and gluon form factors and the matching coefficients in Drell-Yan and Higgs production, which may explain their universality believed to hold to all orders in perturbation theory. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Beijing Univ, Dept Phys, Beijing 100871, Peoples R China. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Idilbi, A (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM idilbi@physics.umd.edu; xji@physics.umd.edu; fyuan@quark.phy.bnl.gov RI Yuan, Feng/N-4175-2013 NR 49 TC 71 Z9 71 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD OCT 2 PY 2006 VL 753 IS 1-2 BP 42 EP 68 DI 10.1016/j.nuclphysb.2006.07.002 PG 27 WC Physics, Particles & Fields SC Physics GA 084TK UT WOS:000240557100003 ER PT J AU Kirchner, MS Fortier, TM Bartels, A Diddams, SA AF Kirchner, M. S. Fortier, T. M. Bartels, A. Diddams, S. A. TI A low-threshold self-referenced Ti: Sapphire optical frequency comb SO OPTICS EXPRESS LA English DT Article ID REPETITION-RATE; LASER SYSTEM; FEMTOSECOND; SPECTROSCOPY; STABILIZATION AB We demonstrate an octave-spanning, self-referenced optical frequency comb produced with a high-repetition- rate (frep=585 MHz) femtosecond Ti:Sapphire laser that requires less than 1 W of 532 nm pump power. The frequency comb was stabilized to a CW laser as required for optical clocks and low noise frequency synthesis. These results should be relevant for applications that require more-compact and efficient frequency combs. (c) 2006 Optical Society of America C1 Natl Inst Stand & Technol, Boulder, CO 80305 USA. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. Gigaopt GMBH, D-78462 Constance, Germany. RP Kirchner, MS (reprint author), Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80305 USA. EM mkirchne@boulder.nist.gov RI Bartels, Albrecht/B-3456-2009; Kirchner, Matthew/F-9020-2010; Diddams, Scott/L-2819-2013 NR 21 TC 7 Z9 8 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 2 PY 2006 VL 14 IS 20 BP 9531 EP 9536 DI 10.1364/OE.14.009531 PG 6 WC Optics SC Optics GA 090VP UT WOS:000240981000070 PM 19529340 ER PT J AU Paxson, V AF Paxson, Vern TI End-to-end routing behavior in the Internet SO ACM SIGCOMM COMPUTER COMMUNICATION REVIEW LA English DT Article ID ALGORITHM; NETWORKS; ARPANET AB The large-scale behavior of routing in the Internet has gone virtually without any formal study, the exception being Chinoy's analysis of the dynamics of Internet routing information [Ch93]. We report on an analysis of 40,000 end-to-end route measurements conducted using repeated "traceroutes" between 37 Internet sites. We analyze the routing behavior for pathological conditions, routing stability, and routing symmetry. For pathologies, we characterize the prevalence of routing loops, erroneous routing, infrastructure failures, and temporary outages. We find that the likelihood of encountering a major routing pathology more than doubled between the end of 1994 and the end of 1995, rising from 1.5% to 3.4%. For routing stability, we define two separate types of stability, "prevalence," meaning the overall likelihood that a particular route is encountered, and "persistence," the likelihood that a route remains unchanged over a long period of time. We find that Internet paths are heavily dominated by a single prevalent route, but that the time periods over which routes persist show wide variation, ranging from seconds up to days. About 2/3's of the Internet paths had routes persisting for either days or weeks. For routing symmetry, we look at the likelihood that a path through the Internet visits at least one different city in the two directions. At the end of 1995, this was the case half the time, and at least one different autonomous system was visited 30% of the time. C1 Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Paxson, V (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM vern@ee.lbl.gov NR 46 TC 6 Z9 6 U1 1 U2 3 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0146-4833 EI 1943-5819 J9 ACM SIGCOMM COMP COM JI ACM SIGCOMM Comp. Commun. Rev. PD OCT PY 2006 VL 36 IS 5 BP 43 EP 56 PG 14 WC Computer Science, Information Systems SC Computer Science GA 096RA UT WOS:000241393300008 ER PT J AU Balakrishna, AM Tan, YYW Mok, HYK Saxena, AM Swaminathan, K AF Balakrishna, Asha M. Tan, Yvonne Yih-Wan Mok, Henry Yu-Keung Saxena, Anand M. Swaminathan, Kunchithapadam TI Crystallization and preliminary X-ray diffraction analysis of Salmonella typhi PilS SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID AERUGINOSA PAK PILIN; RECEPTOR-BINDING; PROTEINS; MODE AB The structure determination of PilS, a type IV pilin, by X-ray crystallography is reported. The recombinant protein from Salmonella typhi was overexpressed, purified and crystallized. The crystals belong to space group P2(1)2(1)2, with unit-cell parameters a = 77.88, b = 114.53, c = 31.75 angstrom. The selenomethionine derivative of the PilS protein was overexpressed, purified and crystallized in the same space group. Data sets have been collected to 2.1 angstrom resolution from the selenomethionine-derivative crystal using synchrotron radiation for multi-wavelength anomalous dispersion (MAD) phasing. C1 Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. Brookhaven Natl Lab, Upton, NY 11973 USA. Natl Univ Singapore, Inst Mol & Cell Biol, Singapore 138673, Singapore. RP Swaminathan, K (reprint author), Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. EM dbsks@nus.edu.sg RI ASTAR, IMCB/E-2320-2012 NR 14 TC 2 Z9 2 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD OCT PY 2006 VL 62 BP 1024 EP 1026 DI 10.1107/S174430910603661X PN 10 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 089WO UT WOS:000240912700024 PM 17012803 ER PT J AU Pereloma, EV Timokhina, IB Jonas, JJ Miller, MK AF Pereloma, E. V. Timokhina, I. B. Jonas, J. J. Miller, M. K. TI Fine-scale microstructural investigations of warm rolled low-carbon steels with and without Cr, P, and B additions SO ACTA MATERIALIA LA English DT Article DE ferritic steels; three-dimensional atom probe; dynamic strain aging; dislocations; segregation ID 2.25 CR-1MO STEEL; ATOM-PROBE; SEGREGATION; CHROMIUM; METALS; BORON AB Carbide formation solute clustering, and solute segregation to dislocations and boundaries were studied in warm rolled, low-carbon steels. Transmission electron microscopy and atom probe tomography (APT) were employed on materials with and without Cr, P, and B alloying additions. These investigations revealed C and P segregation to the ferrite boundaries and depletion in Mn and in some cases in Cr. The exact nature of the solute segregation depends on the composition of the steel and the nature of the boundary. The formation of fine C-Cr-Fe clusters (15-50 atoms) in all the steels was detected by APT. A detailed analysis of the Cottrell atmospheres formed on multiple dislocations was performed using APT. Atmospheres containing C atoms were observed in all the steels. Some weak P segregation to dislocations was also detected in the Cr-P alloyed steel. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Monash Univ, Dept Mat Engn, Monash, Vic 3800, Australia. McGill Univ, Dept Engn Met, Montreal, PQ H3A 2B2, Canada. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pereloma, EV (reprint author), Monash Univ, Dept Mat Engn, POB 69M, Monash, Vic 3800, Australia. EM elena.pereloma@eng.monash.edu.au RI Jonas, John/A-2773-2008 OI Jonas, John/0000-0001-7291-6673 NR 44 TC 30 Z9 33 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2006 VL 54 IS 17 BP 4539 EP 4551 DI 10.1016/j.actamat.2006.05.040 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 092ZR UT WOS:000241137300014 ER PT J AU Adharapurapu, RR Jiang, FC Vecchio, KS Gray, GT AF Adharapurapu, Raghavendra R. Jiang, Fengchun Vecchio, Kenneth S. Gray, George T., III TI Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension-compression asymmetry SO ACTA MATERIALIA LA English DT Article DE shape memory alloy; thermomechanical behavior; high strain rate; stress-induced martensite; compression-tension asymmetry ID INDUCED MARTENSITIC-TRANSFORMATION; HOPKINSON PRESSURE BAR; POLYCRYSTALLINE NITI; DETWINNING PROCESS; SINGLE-CRYSTALS; DEFORMATION; BEHAVIOR; STRESS; TINI; ANISOTROPY AB A systematic experimental investigation into the effects of temperature on the stress-strain response of NiTi (55.6 wt.% Ni) shape memory alloy at high strain rate was conducted and compared with the behavior at quasi-static strain rate. Dynamic compression and tension tests, to total strains of 16-24%, were performed at high strain rate (similar to 1200/s) and under quasi-static conditions at temperatures from -196 to 400 degrees C. Since the superelastic range for the NiTi alloy used in this work is A(f) (2 degrees C) < T < M-d (150 degrees C), it was possible to study the high strain rate deformation of both the austenite phase (where stress-induced martensite transformation occurs) at temperatures > 0 degrees C and the (thermally induced) martensite phase at lower temperatures. The results indicate differences in the stress-strain response of thermally induced martensite and stress-induced martensite, in terms of plateau stress characteristics and critical stress (as determined by 0.2% strain offset). The observations illustrate a complex interplay of test temperature, stress state (compression and tension) and martensite type (thermally induced vs. stress induced) that lead to the asymmetry in compression vs. tension response of the shape memory alloy in both quasi-static and dynamic loading conditions. This asymmetry was captured in the variation of critical stress with temperature that exhibited a three-stage character, with the critical stress being higher in compression than in tension. These findings have significant implications for the understanding and exploitation of the underlining functional characteristics of shape memory alloys, especially at high strain rates. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Vecchio, KS (reprint author), Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA. EM kvecchio@ucsd.edu RI Wagner, Martin/A-6880-2008; Vecchio, Kenneth/F-6300-2011 OI Vecchio, Kenneth/0000-0003-0217-6803 NR 53 TC 52 Z9 54 U1 3 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2006 VL 54 IS 17 BP 4609 EP 4620 DI 10.1016/j.actamat.2006.05.047 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 092ZR UT WOS:000241137300020 ER EF