FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Joly, AG Chen, W Zhang, J Wang, SP AF Joly, Alan G. Chen, Wei Zhang, Jun Wang, Shaopeng TI Electronic energy relaxation and luminescence decay dynamics of Eu3+ in Zn2SiO4 : Eu3+ phosphors SO JOURNAL OF LUMINESCENCE LA English DT Article DE luminescence; energy transfer; relaxation dynamics; phosphors; intra-state; Eu3+; nanoparticles ID NANOCRYSTALS; EXCITATION; CRYSTALS; IONS; MN2+ AB Electronic energy relaxation and decay dynamics of Eu3+ in Zn2SiO4:Eu3+ phosphors display evidence of intra-ion energy transfer from the D-5(1) to the D-5(0) manifold. The energy transfer timescale does not depend on Eu3+ concentration, or the addition of Mn2+ as a co-dopant and is estimated to be about 11 mu s in Zn2SiO4. Evidence for intra-ion Eu3+ electronic energy transfer has also been observed in Eu-doped MgS as well as Eu3+ encapsulated in zeolite-Y. The energy transfer timescale in these other materials is shorter than in Zn2SiO4, most likely due to differences in Eu3+ surroundings or site symmetry. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Texas, Dept Phys, Arlington, TX 76019 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Inner Mongolia Univ, Coll Chem & Chem Engn, Hohhot, Inner Mongolia, Peoples R China. Nomad Inc, Stillwater, OK 74074 USA. RP Chen, W (reprint author), Univ Texas, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM weichen@uta.edu NR 17 TC 29 Z9 29 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD OCT PY 2007 VL 126 IS 2 BP 491 EP 496 DI 10.1016/j.jlumin.2006.09.004 PG 6 WC Optics SC Optics GA 181AU UT WOS:000247409900037 ER PT J AU Bang, J Yang, H Abrams, B Holloway, PH AF Bang, Jungsik Yang, Heesun Abrams, Billie Holloway, Paul H. TI Effects of electron beam current density and temperature on peak height ratios D-5(j)/D-5(0) for cathodoluminescence of Ln(2)O(2)S : Eu3+ SO JOURNAL OF LUMINESCENCE LA English DT Article DE cathodoluminescent; Ln(2)O(2)S : Eu3+; D-5(j)/D-5(0); current density; thermal quenching ID ENERGY-TRANSFER; PHOSPHORS; MECHANISM AB The change in the initial and steady state (similar to 0 and 5 s after initiation of electron beam irradiation) peak heights from the D-5(2) double right arrow F-7(3), D-5(1) double right arrow F-7(3) and D-5(0) double right arrow F-7(2) cathodoluminescent transitions from Eu3+ have been studied for Ln(2)O(2)S:Eu3+ (Ln = La, Gd) phosphors. Specifically, the intensity ratio of these transitions, designated as D-5(1)/D-5(0), increased and then decreased for both La2O2S:Eu3+ (0.1 mole%) and Gd2O2S:Eu3+ (0.4mole%), as the current density was changed from 10 towards a 1000 mu A/cm(2). These effects were shown to be consistent with feeding from the higher D-5(2) excited state to the lower energy D-5(1) excited state, resulting in an increase of the D-5(1)/D-5(0) ratio at low current densities. At higher current densities, energy was funneled from the D-5(1)-D-5(0) states, resulting in a decrease of the D-5(1)/D-5(0) ratio. These effects of feeding versus funneling were dependent on both the Eu3+ concentration and current density, and changed with time (i.e., approached a steady state after similar to 5 s) due to increased activator interactions from induced internal electric fields. The magnitude of thermal quenching versus interaction quenching was investigated using changes of the peak height ratios of D-5(2)/D-5(0) and D-5(1)/D-5(0). (c) 2006 Elsevier B.V. All rights reserved. C1 Hongik Univ, Dept Mat Sci & Engn, Seoul 121791, South Korea. Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Yang, H (reprint author), Hongik Univ, Dept Mat Sci & Engn, 72-1 Sangsu Dong,Mapo Gu, Seoul 121791, South Korea. EM hyang@hongik.ac.kr RI Abrams, Billie/C-1668-2012 NR 22 TC 3 Z9 3 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD OCT PY 2007 VL 126 IS 2 BP 629 EP 635 DI 10.1016/j.jlumin.2006.10.020 PG 7 WC Optics SC Optics GA 181AU UT WOS:000247409900059 ER PT J AU Muenchausen, RE Jacobsohn, LG Bennett, BL McKigney, EA Smith, JF Valdez, JA Cooke, DW AF Muenchausen, R. E. Jacobsohn, L. G. Bennett, B. L. McKigney, E. A. Smith, J. F. Valdez, J. A. Cooke, D. W. TI Effects of Tb doping on the photoluminescence of Y2O3 : Tb nanophosphors SO JOURNAL OF LUMINESCENCE LA English DT Article DE Y2O3 : Tb; nanophosphor; photoluminescence; concentration quenching ID NITRATE COMBUSTION SYNTHESIS; YTTRIUM-OXIDE; LUMINESCENCE PROPERTIES; RARE-EARTHS; NANOCRYSTALS; PARTICLE; POWDERS; SIZE; EFFICIENCY; PHOSPHORS AB The effects of Tb doping on the photoluminescence (PL) of Y2O3:Tb nanophosphors have been investigated. Nanophosphors were prepared by the glycine-nitrate solution combustion technique using yttria and terbia powders as precursors. PL excitation spectra at room temperature consist of two overlapping bands centered at 277 and 304 nm, whereas emission spectra comprise several groups of lines corresponding to the D-5(4) -> F-7(J) (J = 1-6) 4f electronic transitions of the Tb+3 ions. A direct comparison of nanophosphor and bulk concentration-quenching curves was obtained by annealing the nanophosphor powder and converting it to bulk material without altering the Tb concentration. The peak in the nanophosphor concentration-quenching curve occurs at a concentration similar to 3 times higher than that of the bulk. (c) 2007 Published by Elsevier B.V. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Muenchausen, RE (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, MS E-546, Los Alamos, NM 87545 USA. EM rossm@lanl.gov OI Jacobsohn, Luiz/0000-0001-8991-3903 NR 31 TC 47 Z9 47 U1 7 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 EI 1872-7883 J9 J LUMIN JI J. Lumines. PD OCT PY 2007 VL 126 IS 2 BP 838 EP 842 DI 10.1016/j.jlumin.2006.12.004 PG 5 WC Optics SC Optics GA 181AU UT WOS:000247409900093 ER PT J AU Jacob, RE Laicher, G Minard, KR AF Jacob, Richard E. Laicher, Gernot Minard, Kevin R. TI 3D MRI of non-Gaussian He-3 gas diffusion in the rat lung SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE hyperpolarized He-3; 3D projection reconstruction; lung; MRI; non-gaussian diffusion ID HYPERPOLARIZED NOBLE-GASES; MAGNETIC-RESONANCE; IN-VIVO; APPARENT DIFFUSION; EMPHYSEMA; COEFFICIENT; MODEL; VENTILATION; HEALTHY; ECHOES AB In He-3 magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted He-3 MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only similar to 1 L of hyperpolarized He-3 gas. Diffusion weighting ranges from 0 s/crn(2) to 40 s/cm(2). Results show that the non-Gaussian effects of He-3 gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal. (C) 2007 Elsevier Inc. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Utah, Salt Lake City, UT 84112 USA. RP Jacob, RE (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,MS P7-58, Richland, WA 99352 USA. EM richardjacob@pnl.gov FU NHLBI NIH HHS [R01 HL073598] NR 42 TC 18 Z9 18 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD OCT PY 2007 VL 188 IS 2 BP 357 EP 366 DI 10.1016/j.jmr.2007.08.014 PG 10 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 225RV UT WOS:000250536000019 PM 17827044 ER PT J AU Jiang, WH Liu, FX Jiang, F Qiu, KQ Choo, H Liaw, PK AF Jiang, W. H. Liu, F. X. Jiang, F. Qiu, K. Q. Choo, H. Liaw, P. K. TI Strain-rate dependence of hardening and softening in compression of a bulk-metallic glass SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID DEFORMATION-INDUCED NANOCRYSTALLIZATION; TRANSMISSION ELECTRON-MICROSCOPY; SERRATED FLOW; AMORPHOUS ALLOY; NANOINDENTATION; TEMPERATURE; BEHAVIOR; AL90FE5GD5; TENSION AB We investigated the effect of strain rate on the plastic-flow stress of a Zr-based bulk-metallic glass in quasistatic compression. The results indicate that the plastic-flow stress is dependent on the strain rate: an increase in the strain rate leads to a decrease in the plastic-flow stress, and vice versa. However, simply loading, unloading, and reloading at a constant strain rate do not change the plastic-flow stress. This strain-rate dependence of the plastic-flow stress may be related to shear-banding operations. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110023, Peoples R China. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Jiang, WH (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wjiang5@utk.edu RI Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 NR 28 TC 9 Z9 9 U1 1 U2 8 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2007 VL 22 IS 10 BP 2655 EP 2658 DI 10.1557/JMR.2007.0351 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 218RY UT WOS:000250033800003 ER PT J AU Kewalramani, S Kim, K Evmenenko, G Zschack, P Karapetrova, E Bai, J Dutta, P AF Kewalramani, Sumit Kim, Kyungil Evmenenko, Guennadi Zschack, Paul Karapetrova, Evguenia Bai, Jianming Dutta, Pulak TI Mechanisms for species-selective oriented crystal growth at organic templates SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID LANGMUIR MONOLAYERS; CRYSTALLIZATION; INTERFACE; BAF2 AB Langmuir monolayers floating on supersaturated aqueous subphases can act as templates for the growth of oriented inorganic films-a "bioinspired" nucleation process. We have performed in situ grazing incidence x-ray diffraction studies of the selective nucleation of BaCIF and BaF2 under fatty acid monolayers. The arrangement of the fatty acid headgroups, the monolayer charge, and ion-specific effects all play important roles in selecting the inorganic species. When the monolayer is in a neutral state, both BaCIF and BaF2 nucleate at the interface and are well aligned, but when the monolayer headgroup is deprotonated, only oriented BaF2 grows at the interface. We also observe an enhanced alignment of BaF2 crystals during growth from highly supersaturated solutions, presumably due to reorganization of preformed crystals at the organic template. These results show that a delicate interplay between multiple factors governs the oriented growth of inorganic films at organic templates. C1 Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Dutta, P (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. EM pdutta@northwestern.edu RI Bai, Jianming/O-5005-2015 NR 16 TC 0 Z9 0 U1 0 U2 3 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2007 VL 22 IS 10 BP 2785 EP 2790 DI 10.1557/JMR.2007.0347 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 218RY UT WOS:000250033800020 ER PT J AU Gillispie, MA van Hest, MFAM Dabney, MS Perkins, JD Ginley, DS AF Gillispie, Meagen A. van Hest, Maikel F. A. M. Dabney, Matthew S. Perkins, John D. Ginley, David S. TI Sputtered Nb- and Ta-doped TiO2 transparent conducting oxide films on glass SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID ANATASE THIN-FILMS AB Radio frequency (rf) magnetron sputtering is used to deposit Ti0.85Nb0.15O2 and Ti0.8Ta0.2O2 films on glass substrates at substrate temperatures (T-s) ranging from similar to 250 to 400 degrees C. The most conducting Nb-doped TiO2 films were deposited at T-S = 370 degrees C, with conductivities of similar to 60 S/cm, carrier concentrations of 1.5 x 10(21) cm(-3) and mobilities <1 cm(2)/V.s. The conductivity of the films was limited by the mobility, which was more than 10 times lower than the mobility for films deposited epitaxially on SrTiO3. The difference in properties is likely caused by the randomly oriented crystal structure of the films deposited on glass compared with biaxially textured films deposited on SrTiO3. The anatase phase could not be stabilized in the Ta-doped TiO2 films, likely because of the high dopant concentration. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Iowa State Univ, Ames, IA 50011 USA. RP Perkins, JD (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM john_perkins@nrel.gov NR 23 TC 30 Z9 31 U1 3 U2 24 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2007 VL 22 IS 10 BP 2832 EP 2837 DI 10.1557/JMR.2007.0353 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 218RY UT WOS:000250033800026 ER PT J AU Brennecka, GL Tuttle, BA AF Brennecka, Geoff L. Tuttle, Bruce A. TI Fabrication of ultrathin film capacitors by chemical solution deposition SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID FERROELECTRIC THIN-FILMS; BARIUM-TITANATE; OXIDE; INSTABILITY; NANOSCALE AB A facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of >= 1 mm(2) and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Thus, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nm but are still macroscopically addressable with specific capacitance values >160 nF/mm(2). C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brennecka, GL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM glbrenn@sandia.gov RI Brennecka, Geoff/J-9367-2012 OI Brennecka, Geoff/0000-0002-4476-7655 NR 27 TC 29 Z9 29 U1 0 U2 10 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2007 VL 22 IS 10 BP 2868 EP 2874 DI 10.1557/JMR.2007.0371 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 218RY UT WOS:000250033800032 ER PT J AU Buchheit, TE Tandon, R AF Buchheit, T. E. Tandon, R. TI Measuring residual stress in glasses and ceramics using instrumented indentation SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID DEPTH SENSING INDENTATION; MECHANICAL-PROPERTIES; SHARP INDENTATION; SPHERICAL INDENTATION; STRAIN FIELDS; NANOINDENTATION; LOAD; BEHAVIOR; HARDNESS AB Instrumented indentation has yielded mixed results when used to measure surface residual stresses in metal films. Relative to metals, many glasses and ceramics have a low modulus-to-yield strength (E/sigma(y)) ratio. The advantage of this characteristic for measuring residual stress using instrumented indentation is demonstrated by a series of comparative spherical and conical tip finite element simulations. Two cases are considered: (i) a material with E/sigma(y) = 24-similar to glass and (ii) a material with E/sigma(y) = 120-similar to metal films. In both cases, compressive residual stress shifts the simulated load-displacement response toward increasing hardness, irrespective of tip geometry. This shift is shown to be entirely due to pile up for the "metal" case, but primarily due to the direct influence of the residual stress for the "glass" case. Hardness changes and load-displacement curve shifts are explained by using the spherical cavity model. Supporting experimental results on stressed glasses are provided. C1 Sandia Natl Labs, Mat & Proc Sci Ctr, Albuquerque, NM 87185 USA. RP Buchheit, TE (reprint author), Sandia Natl Labs, Mat & Proc Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM tebuchh@sandia.gov NR 31 TC 7 Z9 7 U1 2 U2 12 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2007 VL 22 IS 10 BP 2875 EP 2887 DI 10.1557/JMR.2007.0358 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA 218RY UT WOS:000250033800033 ER PT J AU Stradins, P Teplin, CW Young, DL Yan, Y Branz, HM Wang, Q AF Stradins, P. Teplin, C. W. Young, D. L. Yan, Y. Branz, H. M. Wang, Q. TI Crystallization of thin-film Si monitored in real time by in-situ spectroscopic techniques SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article; Proceedings Paper CT International Conference on Optical and Optelectronic Properties of Materials and Applications CY JUL 16-21, 2006 CL Darwin, AUSTRALIA SP Charles Darwin Univ, Australian Res Council Nanotechnol Network, Springer, Wiley, OzOpt, Perkin Elmer ID HYDROGENATED AMORPHOUS-SILICON; CHEMICAL-VAPOR-DEPOSITION; GLASS AB We have developed optical techniques for real-time, in-situ monitoring of crystallization and epitaxial growth of silicon. Real-time spectroscopic ellipsometry is used for evaluating epitaxial growth during hot-wire CVD (HWCVD) reveals the thickness at which epitaxy fails and amorphous cones start to nucleate. To distinguish the various processes related to solid phase crystallization of amorphous silicon, we employ, instead, an in-situ real-time reflectance spectroscopy technique, which is simpler and less expensive. Here, we demonstrate the sensitivity of reflectivity spectroscopy to key changes in materials properties. By analyzing reflectance in strongly absorbing UV and transparent IR spectral regions, we distinguish and study the: (1) crystallization mode (random crystallization or solid-phase epitaxy); (2) nucleation location (uniformly in bulk, near film-substrate interface, or film surface); and (3) hydrogen effusion prior to crystallization. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Stradins, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Pauls_Stradins@nrel.gov NR 16 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD OCT PY 2007 VL 18 SU 1 BP S309 EP S313 DI 10.1007/s10854-007-9222-8 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 201AG UT WOS:000248803300061 ER PT J AU Dickrell, DJ Dugger, MT Hamilton, MA Sawyer, WG AF Dickrell, Daniel J., III Dugger, Michael T. Hamilton, Matthew A. Sawyer, W. Gregory TI Direct contact-area computation for MEMS using real topographic surface data SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE contact mechanical factors; contacts; friction AB Direct computation of interfacial contact area for microelectromechanical-system applications was performed numerically using the measured device surface topography and the material hardness to define the flow stress of an individual element. The simulation results compared well with the established contact-area determination methods and also introduced new capabilities that enabled the visualization of the spatial distribution of contact spots to be computationally mapped and rendered directly onto device surfaces. C1 Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. Sandia Natl Labs, Microsyst Mat Dept, Albuquerque, NM 87185 USA. RP Dickrell, DJ (reprint author), Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. EM djd3@ufl.edu RI Sawyer, Wallace/A-7983-2008 OI Sawyer, Wallace/0000-0002-4461-7227 NR 12 TC 12 Z9 12 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD OCT PY 2007 VL 16 IS 5 BP 1263 EP 1268 DI 10.1109/JMEMS.2007.901120 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 219EV UT WOS:000250068400030 ER PT J AU Choudhury, A Hesketh, PJ Thundat, T Hu, ZY AF Choudhury, Arnab Hesketh, Peter J. Thundat, Thomas Hu, Zhiyu TI A piezoresistive microcantilever array for surface stress measurement: curvature model and fabrication SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article ID INDUCED DEFLECTIONS; FORCE MICROSCOPE; SILICON; CANTILEVERS; SENSORS; DESIGN AB This paper presents a procedure for the fabrication of a piezoresistive microcantilever array for surface-stress-based chemical and biochemical sensing applications. All existing microcantilever surface stress sensors that are based on single-crystal silicon use p-doped piezoresistors. In this work, the advantages of using n-doped silicon piezoresistors for surface stress sensing have been demonstrated. Further, a new model for surface-stress-sensitive cantilevers, based on classical laminated plate theory, is presented. This model allows for the estimation of the deformation and piezoresistive response of a multilayered microcantilever to surface stresses during analyte measurement and residual stresses in the structural layers due to fabrication processes. Also, the model accounts for bending-stretching coupling in the microcantilever response to the stresses. The utility of the model as a design tool for control of cantilever curvature during the fabrication process has been demonstrated. C1 Georgia Inst Technol, GW Sch Mech Engn, Atlanta, GA 30332 USA. Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Choudhury, A (reprint author), Georgia Inst Technol, GW Sch Mech Engn, Atlanta, GA 30332 USA. EM peter.hesketh@me.gatech.edu; huzn@ornl.gov RI Hu, Zhiyu/J-7742-2013 NR 41 TC 22 Z9 22 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 EI 1361-6439 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD OCT PY 2007 VL 17 IS 10 BP 2065 EP 2076 DI 10.1088/0960-1317/17/10/019 PG 12 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 215LV UT WOS:000249810800020 ER PT J AU Holmes, MA Mackay, ME Giunta, RK AF Holmes, Melissa A. Mackay, Michael E. Giunta, Rachel K. TI Nanoparticles for dewetting suppression of thin polymer films used in chemical sensors SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE C60; fullerene; chemical sensors; dewetting; nanoparticles; polymer films; solvent annealing ID GRAFTED POLYSTYRENE BRUSHES; LIQUID-FILMS; DYNAMICS; RUPTURE; SURFACE; FORCES; INSTABILITY; NUCLEATION; DEFECTS; TOLUENE AB Addition of fullerenes (C-60 or buckyballs) to a linear polymer has been found to eliminate dewetting when a thin (similar to 50 nm) film is exposed to solvent vapor. Based on neutron reflectivity measurements, it is found that the fullerenes form a coherent layer approximately 2 nm thick at the substrate - polymer film interface during the spin-coating process. The thickness and relative fullerene concentration (similar to 29 vol%) is not altered during solvent vapor annealing and it is thought this layer forms a solid-like buffer shielding the adverse van der Waals forces promoted by the underlying substrate. Several polymer films produced by spin- or spray-coating were tested on both silicon wafers and live surface acoustic wave sensors demonstrating fullerenes stabilize many different polymer types, prepared by different procedures and on various surfaces. Further, the fullerenes drastically improve sensor performance since dewetted films produce a sensor that is effectively inoperable. C1 Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. Sandia Natl Labs, Mat Organ Lab, Albuquerque, NM 87123 USA. RP Mackay, ME (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, 2527 Engn Bldg, E Lansing, MI 48824 USA. EM mackay@egr.msu.edu NR 41 TC 36 Z9 36 U1 3 U2 26 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD OCT PY 2007 VL 9 IS 5 BP 753 EP 763 DI 10.1007/s11051-006-9118-1 PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 181YE UT WOS:000247471500005 ER PT J AU Fowler, JS Kroll, C Ferrieri, R Alexoff, D Logan, J Dewey, SL Schiffer, W Schlyer, D Carter, P King, P Shea, C Xu, YW Muench, L Benveniste, H Vaska, P Volkow, ND AF Fowler, Joanna S. Kroll, Carsten Ferrieri, Richard Alexoff, David Logan, Jean Dewey, Stephen L. Schiffer, Wynne Schlyer, David Carter, Pauline King, Payton Shea, Colleen Xu, Youwen Muench, Lisa Benveniste, Helene Vaska, Paul Volkow, Nora D. TI PET studies of d-methamphetamine pharmacokinetics in primates: Comparison with l-methamphetamine and (-)-cocaine SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE PET; methamphetamine; C-11; brain; peripheral organs ID EMISSION-TOMOGRAPHY PET; C-11 METHAMPHETAMINE; BRAIN DISTRIBUTION; COCAINE; BINDING; RADIOTRACERS; ASSOCIATION; MONKEYS; BABOON; MICE AB The methamphetamine molecule has a chiral center and exists as 2 enantiomers, d-methamphetamine (the more active enantiomer) and 1-methamphetamine (the less active enantiomer). d-Methamphetamine is associated with more intense stimulant effects and higher abuse liability. The objective of this study was to measure the pharmacokinetics of d-methamphetamine for comparison with both l-methamphetamine and (-)-cocaine in the baboon brain and peripheral organs and to assess the saturability and pharmacologic specificity of binding. Methods: d- and l-methamphetamine and (-)-cocaine were labeled with C-11 via alkylation of the norprecursors with C-11-methyl iodide using literature methods. Six different baboons were studied in 11 PET sessions at which 2 radiotracer injections were administered 2-3 h apart to determine the distribution and kinetics of C-11-d-methamphetamine in brain and peripheral organs. Saturability and pharmacologic specificity were assessed using pretreatment with d-methamphetamine, methylphenidate, and tetrabenazine. C-11-d-Methamphetamine pharmacokinetics were compared with C-11-l-methamphetamine and C-11-(-)-cocaine in both brain and peripheral organs in the same animal. Results: C-11-d- and l-methamphetamine both showed high uptake and widespread distribution in the brain. Pharmacokinetics did not differ between enantionners, and the cerebellum peaked earlier and cleared more quickly than the striatum for both. C-11-d-Methamphetamine distribution volume ratio was not substantially affected by pretreatment with methamphetamine, methylphenidate, or tetrabenazine. Both enantiomers showed rapid, high uptake and clearance in the heart and lungs and slower uptake and clearance in the liver and kidneys. A comparison of 11C-d-methamphetamine and C-11-(-)-cocaine showed that C-11-d-methamphetamine peaked later in the brain than did C-11-(-)-cocaine and cleared more slowly. The 2 drugs showed similar behavior in all peripheral organs examined except the kidneys and pancreas, which showed higher uptake for C-11-d-methamphetamine. Conclusion: Brain pharmacokinetics did not differ between d-and l-methamphetamine and thus cannot account for the more intense stimulant effects of d-methamphetamine. Lack of pharmacologic blockade by methamphetamine indicates that the PET image represents nonspecific binding, though the fact that methamphetamine is both a transporter substrate and an inhibitor may also play a role. A comparison of C-11-d-methamphetamine and C-11-(-)-cocaine in the same animal showed that the slower clearance of methamphetamine is likely to contribute to its previously reported longer-lasting stimulant effects relative to those of (-)-cocaine. High kidney uptake of d-methamphetamine or its labeled metabolites may account for the reported renal toxicity of d-methamphetamine in humans. C1 [Fowler, Joanna S.; Ferrieri, Richard; Alexoff, David; Logan, Jean; Dewey, Stephen L.; Schiffer, Wynne; Schlyer, David; Carter, Pauline; King, Payton; Shea, Colleen; Xu, Youwen; Benveniste, Helene; Vaska, Paul] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Fowler, Joanna S.] Mt Sinai Sch Med, New York, NY USA. [Fowler, Joanna S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Kroll, Carsten] Johannes Gutenberg Univ Mainz, Mainz, Germany. [Muench, Lisa; Volkow, Nora D.] NIAAA, Rockville, MD 20852 USA. [Benveniste, Helene] SUNY Stony Brook, Hlth Sci Ctr, Dept Anesthesiol, Stony Brook, NY 11794 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Rockville, MD USA. RP Fowler, JS (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 555,POB 5000, Upton, NY 11973 USA. EM fowler@bnl.gov OI Logan, Jean/0000-0002-6993-9994 FU NIDA NIH HHS [K05 DA020001, K05 DA020001-03, K05DA020001] NR 40 TC 26 Z9 26 U1 4 U2 11 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD OCT PY 2007 VL 48 IS 10 BP 1724 EP 1732 DI 10.2967/jnumed.107.040279 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 258UK UT WOS:000252894800044 PM 17873134 ER PT J AU Zhang, S AF Zhang, S. TI A simple bi-convex refractive laser beam shaper SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS LA English DT Article DE geometric optics; optical design; laser beam shaping; aspherics ID SYSTEMS; IRRADIANCE; DESIGN AB This paper describes a novel bi-convex single aspheric lens that converts a spatially non-uniform laser beam into one with a uniform intensity distribution. The basis for this new lens is derived theoretically and lens performance is evaluated using detailed simulation under different conditions. This new design leads to a simple single-aspheric-lens configuration that substantially reduces fabrication difficulty. A method for compensating profile distortion induced by non-ideal factors is introduced. In addition, the limitations for practical applications are also discussed. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Zhang, S (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. NR 10 TC 8 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1464-4258 J9 J OPT A-PURE APPL OP JI J. Opt. A-Pure Appl. Opt. PD OCT PY 2007 VL 9 IS 10 BP 945 EP 950 DI 10.1088/1464-4258/9/10/027 PG 6 WC Optics SC Optics GA 214KA UT WOS:000249735200027 ER PT J AU Singh, J AF Singh, Jai TI Radiative lifetime of excitons in chalcogenide glasses SO JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS LA English DT Article; Proceedings Paper CT 3rd International conference on Amorphous and Nanostructured Chalcogenides CY JUL 02-06, 2007 CL Brasov, ROMANIA DE chalcogenide glasses; excitons; radiative recombination ID NON-GEMINATE PAIRS; AMORPHOUS-SEMICONDUCTORS; PHOTOLUMINESCENCE; PHOSPHORESCENCE; RECOMBINATION; LUMINESCENCE; CRYSTALS; SILICON AB The radiative lifetime of triplet excitons, is studied here for the first time theoretically in chalcogenide glasses. A new time-dependent exciton-spin-orbit-photon interaction operator is derived and rates of radiative recombination of triplet excitons and corresponding radiative lifetimes are calculated in three chalcogenide glasses, a-As2S3, a-As2Se3 and a-Se. Results agree quite well with the experimental results. The theory is quite general and can be applied to any amorphous materials, including organics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Singh, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jai.singh@cdu.edu.au NR 34 TC 5 Z9 5 U1 0 U2 0 PU NATL INST OPTOELECTRONICS PI BUCHAREST-MAGURELE PA 1 ATOMISTILOR ST, PO BOX MG-5, BUCHAREST-MAGURELE 76900, ROMANIA SN 1454-4164 J9 J OPTOELECTRON ADV M JI J. Optoelectron. Adv. Mater. PD OCT PY 2007 VL 9 IS 10 BP 3013 EP 3020 PG 8 WC Materials Science, Multidisciplinary; Optics; Physics, Applied SC Materials Science; Optics; Physics GA 228EZ UT WOS:000250711500007 ER PT J AU Middleton, JF Arthur, C Van Ruth, P Ward, TM McClean, JL Maltrud, ME Gill, P Levings, A Middleton, S AF Middleton, John F. Arthur, Craig Van Ruth, Paul Ward, Tim M. McClean, Julie L. Maltrud, Mathew E. Gill, Peter Levings, Andrew Middleton, Sue TI El Nino effects and upwelling off South Australia SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID SEA-LEVEL; OCEAN; CURRENTS; SHELVES; COAST; CIRCULATION; BOUNDARY; WIND; ENSO; WAVE AB To determine the possible importance of ENSO events along the coast of South Australia, an exploratory analysis is made of meteorological and oceanographic data and output from a global ocean model. Long time series of coastal sea level and wind stress are used to show that while upwelling favorable winds have been more persistent since 1982, ENSO events ( i) are largely driven by signals from the west Pacific Ocean shelf/slope waveguide and not local meteorological conditions, ( ii) can account for 10-cm changes in sea level, and ( iii) together with wind stress, explain 62% of the variance of annual-averaged sea level. Thus, both local winds and remote forcing from the west Pacific are likely important to the low-frequency shelf edge circulation. Evidence also suggests that, since 1983, wintertime downwelling during the onset of an El Nino is reduced and the following summertime upwelling is enhanced. In situ data show that during the 1998 and 2003 El Nino events anomalously cold ( 10.5 degrees - 11.5 degrees C) water is found at depths of 60 - 120 m and is more than two standard deviations cooler than the mean. A regression showed that averaged sea level can provide a statistically significant proxy for these subsurface temperature changes and indicates a 2.2 degrees C decrease in temperature for the 10-cm decrease in sea level that was driven by the 1998 El Nino event. Limited current-meter observations, long sea level records, and output from a global ocean model were also examined and provide support for the hypothesis that El Nino events substantially reduce wintertime ( but not summertime) shelf-edge currents. Further research to confirm this asymmetric response and its cause is required. C1 Aquat Sci Ctr, Henley Beach, SA 5024, Australia. S Australian Res & Dev Inst, W Beach, SA, Australia. Univ New S Wales, Sch Math, Sydney, NSW, Australia. Univ Adelaide, Sch Math, Adelaide, SA 5005, Australia. Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Los Alamos, NM USA. Deakin Univ, Warrnambool, Vic, Australia. RP Middleton, JF (reprint author), Aquat Sci Ctr, POB 120, Henley Beach, SA 5024, Australia. EM middleton.john@saugov.sa.gov.au OI Mark, Timothy/0000-0002-9003-2772 NR 28 TC 25 Z9 27 U1 2 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD OCT PY 2007 VL 37 IS 10 BP 2458 EP 2477 DI 10.1175/JPO3119.1 PG 20 WC Oceanography SC Oceanography GA 228NS UT WOS:000250737200006 ER PT J AU Dunford, RW Holt, RJ AF Dunford, R. W. Holt, R. J. TI Parity violation in hydrogen revisited SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID WEAK NEUTRAL CURRENTS; NON-CONSERVATION; ATOMIC-HYDROGEN; 1S-2S TRANSITION; NONCONSERVATION; SCATTERING; THALLIUM; PHYSICS; CESIUM; LASER AB We reconsider parity violation experiments in atomic hydrogen and deuterium in the light of existing tests of the Electroweak interactions, and assess whether new experiments, using improved experimental techniques, could make useful contributions to testing the Standard Model (SM). We find that, if parity experiments in hydrogen can be done, they remain highly desirable because there is negligible atomic-physics uncertainty, and low-energy tests of weak neutral current interactions are needed to probe for new physics beyond the SM. Of particular interest would be a measurement of the nuclear spin independent coupling C-1D for the deuteron at a combined error (theory + experiment) of 0.3%. This would provide a factor of 3 improvement to the precision on sin(2) theta W at very lowmomentum transfer provided by heavy atom atomic parity violation (APV) experiments. Also, experiments in H and D could provide precise measurements of three other electron-nucleon, weak-neutral-current coupling constants: C-1p, C-2p and C-2D, which have not been accurately determined to date. Analysis of a generic APV experiment in deuterium indicates that a 0.3% measurement of C-1D requires development of a slow (77 K) metastable beam of approximate to 5 x 10(14) D(2S) s(-1) per hyperfine component. The advent of UV radiation from free electron laser (FEL) technology could allow production of such a beam. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Dunford, RW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dunford@anl.gov RI Holt, Roy/E-5803-2011 NR 67 TC 13 Z9 13 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD OCT PY 2007 VL 34 IS 10 BP 2099 EP 2118 DI 10.1088/0954-3899/34/10/001 PG 20 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 209MN UT WOS:000249392700002 ER PT J AU Matevosyan, HH Thomas, AW Tandy, PC AF Matevosyan, Hrayr H. Thomas, Anthony W. Tandy, Peter C. TI Consequences of fully dressing quark-gluon vertex function with two-point gluon lines SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID AMPLITUDES AB We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only two-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number. C1 Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Kent State Univ, Ctr Nucl Res, Dept Phys, Kent, OH 44242 USA. RP Matevosyan, HH (reprint author), Louisiana State Univ, Dept Phys & Astron, 202 Nicholson Hall,Tower Dr, Baton Rouge, LA 70803 USA. OI Matevosyan, Hrayr/0000-0002-4074-7411; Thomas, Anthony/0000-0003-0026-499X NR 18 TC 8 Z9 8 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD OCT PY 2007 VL 34 IS 10 BP 2153 EP 2164 DI 10.1088/0954-3899/34/10/005 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 209MN UT WOS:000249392700006 ER PT J AU Lagomarsino, RJ Latner, N AF Lagomarsino, R. J. Latner, N. TI Measurement of low levels of radioactivity with a large well germanium detector SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID AMERICIUM; PLUTONIUM; URANIUM; SAMPLES; AM-241 AB Described is the application of a state- of- the- art germanium detector containing a 25.4- mm diameter by 50- mm deep well for low- level activity gamma- spectrometry measurements. Detector calibration with examples of absolute efficiency curves at different in- well sample heights and the results of experiments to determine the effect of sample matrices to gamma- ray adsorption are presented. Radioanalytical methods described include the measurements of Am-241,Am-243: (1) in water samples after preconcentration and ( 2) in dissolved neodymium fluoride ( NdF3) microprecipitates. These procedures were achievable because of the well detector's ability to accommodate a relatively large sample volume. A rapid method for the dissolution of NdF3 microprecipitates for gamma counting is also described. C1 US DOE, Environm Measurements Lab, New York, NY 10014 USA. RP Lagomarsino, RJ (reprint author), US DOE, Environm Measurements Lab, 201 Varick St, New York, NY 10014 USA. NR 16 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2007 VL 274 IS 1 BP 39 EP 43 DI 10.1007/s10967-006-6891-3 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 219YI UT WOS:000250123700005 ER PT J AU Xia, YX Friese, JI Moore, DA Bachelor, PP Rao, L AF Xia, Y. X. Friese, J. I. Moore, D. A. Bachelor, P. P. Rao, L. TI Complexation of plutonium(IV) with sulfate at variable temperatures SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID SOLVENT-EXTRACTION; STABILITY-CONSTANTS; AQUEOUS-SOLUTIONS; IONIC-STRENGTH; PU(IV); NP(IV) AB The complexation of plutonium( IV) with sulfate at variable temperatures has been investigated by solvent extraction method. A NaBrO3 solution was used as holding oxidant to maintain the plutonium( IV) oxidation state throughout the experiments. The distribution ratio of Pu( IV) between the organic and aqueous phases was found to decrease as the concentrations of sulfate were increased. Stability constants of the 1 : 1 and 1 : 2 Pu( IV)HSO4 - complexes, dominant in the aqueous phase, were calculated from the effect of [ HSO4 -] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures using the Van't Hoff equation. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Xia, YX (reprint author), Pacific NW Natl Lab, PO Box 999, Richland, WA 99352 USA. EM yuanxian@pnl.gov NR 23 TC 5 Z9 5 U1 2 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2007 VL 274 IS 1 BP 79 EP 86 DI 10.1007/s10967-006-6907-z PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 219YI UT WOS:000250123700012 ER PT J AU Chen, XY Luo, WQ Liu, YS Liu, GK AF Chen Xueyuan Luo Wenqin Liu Yongsheng Liu Guokui TI Recent progress on Spectroscopy of lanthanide ions incorporated in semiconductor nanocrystals SO JOURNAL OF RARE EARTHS LA English DT Article DE lanthanides; photoluminescence; semiconductor nanocrystals; energy transfer; rare earths ID UP-CONVERSION PROPERTIES; RARE-EARTH IONS; QUANTUM DOTS; ENERGY-TRANSFER; DOPED NANOCRYSTALS; REVERSE MICELLES; ZNO NANOCRYSTALS; NANOPARTICLES; LUMINESCENCE; FLUORESCENCE AB Doping luminescent lanthanide ions into semiconductor nanocrystals is an ideal approach for developing nanodevices for various applications. Quantum confinement effects are expected for lanthanide ions doped in small semiconductor nanocrystals. The most recent progress on the synthesis and spectroscopy of lanthanide ions in various semiconductor nanocry stals such as II-VI, III-V and IV-VI families were systematically reviewed, focusing on our recent findings on the optical spectroscopy of Eu(3+) doped in ZnO and TiO(2), nanocrystals by wet chemical synthesis. The energy transfer from the band-gap excitation to lanthanides further confirmed that lanthanide ions could be successfully incorporated into the lattice sites in spite of the mismatch in ionic radii. C1 Chinese Acad Sci, Fujian Inst Res Struct Matter, Natl Engn Res Ctr Optoelect Crystalline Mat, State Key Lab Struct Chem, Fujian 350002, Peoples R China. Chinese Acad Sci, Fujian Inst Res Struct Matter, Natl Engn Res Ctr Optoelect Crystalline Mat, Key Lab Mat Chem & Phys, Fujian 350002, Peoples R China. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Chen, XY (reprint author), Chinese Acad Sci, Fujian Inst Res Struct Matter, Natl Engn Res Ctr Optoelect Crystalline Mat, State Key Lab Struct Chem, Fujian 350002, Peoples R China. EM xchen@fjirsm.ac.cn RI Chen, Xueyuan/C-5613-2012; Liu, Yongsheng/G-7003-2014 OI Chen, Xueyuan/0000-0003-0493-839X; Liu, Yongsheng/0000-0001-6222-5641 NR 47 TC 23 Z9 25 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1002-0721 J9 J RARE EARTH JI J. Rare Earths PD OCT PY 2007 VL 25 IS 5 BP 515 EP 525 PG 11 WC Chemistry, Applied SC Chemistry GA 227XT UT WOS:000250691900001 ER PT J AU Bobev, S Bauer, ED Ronning, F Thompson, JD Sarrao, JL AF Bobev, Svilen Bauer, Eric D. Ronning, Filip Thompson, Joe D. Sarrao, John L. TI Synthesis, structure and physical properties of the new uranium ternary phase U3Co2Ge7 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE crystal structure; heavy-fermions; La3Co2Sn7; magnetic measurements; U3Co2Ge7; uranium intermetallics ID HEAVY-FERMION COMPOUNDS; CRYSTAL-STRUCTURE; MAGNETIC-STRUCTURE; RESISTIVE ANOMALIES; ELECTRON METALS; SUPERCONDUCTIVITY; UCO2GE2; SYSTEM; HYBRIDIZATION; BEHAVIOR AB A new ternary compound, U3Co2Ge7, has been synthesized from the corresponding elements by a high temperature reaction using molten tin flux. It crystallizes in the orthorhombic La3Co2Sn7-type (Pearson's symbol oC24, space group 07in7m, No. 65) with lattice parameters determined from single-crystal X-ray diffraction as follows: a = 4.145(2) angstrom; b = 24.920(7); c = 4.136(2) angstrom V= 427.2(3) angstrom(3). Structure refinements confirm all ordered structure having two crystallographically inequivalent uranium atoms, occupying sites with dissimilar coordination. U3Co2Ge7 orders ferromagnetically below 40 K and undergoes a consecutive magnetic transition at 20 K. These results have been obtained from temperature- and field-dependent magnetization, resistivity and heat-capacity measurements. The estimated Sommerfeld coefficient gamma = 87 mJ/mol-U K-2 suggests U3Co2Ge7 to be a moderately heavy-fermion material. (C) 2007 Elsevier Inc. All rights reserved. C1 Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. Los Alamos Natl Lab, Mat Phys & Applicat Div MPA 10, Los Alamos, NM 87545 USA. RP Bobev, S (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM bobev@udel.edu RI Bauer, Eric/D-7212-2011; OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 NR 57 TC 10 Z9 10 U1 1 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD OCT PY 2007 VL 180 IS 10 BP 2830 EP 2837 DI 10.1016/j.jssc.2007.07.032 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 238QJ UT WOS:000251462100024 ER PT J AU Zhang, Z Gibson, P Clark, SB Tian, G Zanonato, PL Rao, L AF Zhang, Zhicheng Gibson, Paul Clark, Sue B. Tian, Guoxin Zanonato, Pier Luigi Rao, Linfeng TI Lactonization and protonation of gluconic acid: A thermodynamic and kinetic study by potentiometry, NMR and ESI-MS SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE gluconic acid; protonation; lactonization; NMR; ESI-MS ID COMPLEX-FORMATION; CARBOXYLIC-ACIDS; AQUEOUS-SOLUTION; HYDROLYSIS; CONSTANTS; ISOSACCHARINATE; COORDINATION; EQUILIBRIA; LACTONE AB In acidic aqueous solutions, the protonation of gluconate is coupled with the lactonization of gluconic acid. With a decrease of pC(H), two lactones (delta-and gamma-) are sequentially formed. The delta-lactone forms more readily than the gamma-lactone. In 0.1 mol.L-1 gluconate solutions, if pC (H)> 2.5 then only the delta-lactone is generated. When the pC (H) is decreased below 2.0, formation of the gamma-lactone is observed although the delta-lactone still predominates. In solutions with I=0.1 mol.L-1 NaClO4 and room temperature, the deprotonation constant of the carboxylic group was determined to be log(10) K-a=3.30 +/- 0.02 using the NMR technique, and the delta-lactonization constant obtained by batch potentiometric titrations was log(10) K-L=-(0.54 +/- 0.04). Using ESI-MS, the rate constants for the delta-lactonization and the reverse hydrolysis reaction at pC(H) approximate to 5.0 were estimated to be k(1)=3.2x10(-5) s(-1) and k(-1)=1.1x10(-4) s(-1), respectively. C1 Washington State Univ, Pullman, WA 99164 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Padua, Dipartimento Sci Chim, Padua 35131, Italy. RP Clark, SB (reprint author), Washington State Univ, Pullman, WA 99164 USA. EM s_clark@wsu.edu RI Zhang, Zhicheng/B-3887-2010 NR 28 TC 26 Z9 26 U1 5 U2 25 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD OCT PY 2007 VL 36 IS 10 BP 1187 EP 1200 DI 10.1007/s10953-007-9182-x PG 14 WC Chemistry, Physical SC Chemistry GA 213FQ UT WOS:000249652100001 ER PT J AU Rai, D Moore, DA Hess, NJ Rosso, KM Rao, L Heald, SM AF Rai, Dhanpat Moore, Dean A. Hess, Nancy J. Rosso, Kevin M. Rao, Linfeng Heald, Steve M. TI Chromium(III) hydroxide solubility in the aqueous K+-H+-OH--CO2-HCO3--CO32--H2O system: A thermodynamic model SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Thermodynamics; Cr(OH)(3)(am); solubility; carbonate complexes; ion-interaction parameters; Cr(III)-carbonate complexes; Cr(OH)(CO3)(2)(2-); Cr(OH)(4)CO33-; quantum mechanics ID HYDROLYSIS CONSTANTS; BETA-CROOH; ION; ISOTOPE; PRODUCT; OXIDES; BONDS; NAOH AB Chromium(III)-carbonate reactions are expected to be important in managing high-level radioactive wastes. Extensive studies on the solubility of amorphous Cr(III) hydroxide solid in a wide range of pH (3-13) at two different fixed partial pressures of CO2(g) (0.003 or 0.03 atm.), and as functions of K2CO3 concentrations (0.01 to 5.8 mol.kg(-1)) in the presence of 0.01 mol.dm(-3) KOH and KHCO3 concentrations (0.001 to 0.826 mol.kg(-1)) at room temperature (22 +/not superset of 2 degrees C) were carried out to obtain reliable thermodynamic data for important Cr(III)-carbonate reactions. A combination of techniques (XRD, XANES, EXAFS, UV-Vis-NIR spectroscopy, thermodynamic analyses of solubility data, and quantum mechanical calculations) was used to characterize the solid and aqueous species. The Pitzer ion-interaction approach was used to interpret the solubility data. Only two aqueous species [Cr(OH)(CO3)(2)(-2) and Cr(OH)(4)CO33-] are required to explain Cr(III)-carbonate reactions in a wide range of pH, CO2(g) partial pressures, and bicarbonate and carbonate concentrations. Calculations based on density functional theory support the existence of these species. The log(10) K degrees values of reactions involving these species [{Cr(OH)(3)(am) + 2CO(2)(g) reversible arrow Cr(OH)(CO3)(2)(-2) + 2H(+)} and {Cr(OH)(3)(am)+ OH-+ CO32- reversible arrow Cr(OH)(4)CO33-}] were found to be-(19.07 +/not superset of 0.41) and-(4.19 +/not superset of 0.19), respectively. No other data on any Cr(III)carbonato complexes are available for comparisons. C1 Rai Enviro Chem LLC, Yachats, OR 97498 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Lawrence Berkeley Natl Lab, Berkeley, CA USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Rai, D (reprint author), Rai Enviro Chem LLC, POB 784, Yachats, OR 97498 USA. EM dhan.rai@raienvirochem.com OI Hess, Nancy/0000-0002-8930-9500 NR 42 TC 17 Z9 17 U1 2 U2 26 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD OCT PY 2007 VL 36 IS 10 BP 1261 EP 1285 DI 10.1007/s10953-007-9179-5 PG 25 WC Chemistry, Physical SC Chemistry GA 213FQ UT WOS:000249652100006 ER PT J AU Rard, JA Albright, JG AF Rard, Joseph A. Albright, John G. TI Congratulations to Dr. Donald G. Miller on his 80(th) birthday SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Biographical-Item C1 Lawrence Livermore Natl Lab, Energy Environm Directorate, Livermore, CA 94550 USA. Texas Christian Univ, Dept Chem, Ft Worth, TX 76129 USA. RP Rard, JA (reprint author), Lawrence Livermore Natl Lab, Energy Environm Directorate, Livermore, CA 94550 USA. EM rard@llnl.gov; j.albright@tcu.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD OCT PY 2007 VL 36 IS 10 BP 1331 EP 1333 DI 10.1007/s10953-007-9187-5 PG 3 WC Chemistry, Physical SC Chemistry GA 213FQ UT WOS:000249652100011 ER PT J AU Castain, RH Squyres, JM AF Castain, Ralph H. Squyres, Jeffrey M. TI Creating a transparent, distributed, and resilient computing environment: the OpenRTE project SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE fault tolerance; runtime systems; resilience; distributed computing ID PERFORMANCE; MANAGEMENT; SYSTEMS AB Meeting the future computing needs of the scientific community will likely require the development of petascale computing environments based on the integration of significant numbers of processors into large-scale clusters, and the (possibly heterogeneous) aggregation of multiple clusters for use by individual and/or synchronized applications. Despite the best of efforts, such complex systems dictate that applications must expect to encounter failures of their computing resources and/or networks during the course of execution. The Open Run-Time Environment (OpenRTE) has been designed to support high-performance computing applications in such environments. Gaining acceptance by the user community requires that OpenRTE not only meet basic functional requirements, but must also provide users with (a) a transparent interface that avoids the need to customize applications when moving between specific computing and/or communication resources; (b) effective strategies that can be selected at run-time for dealing with faults; (c) transparent support for inter-process communication, resource discovery and allocation, and process launch across a variety of platforms; and (d) the ability to launch their applications remotely from their desktop, disconnect from them, and reconnect at a later time to monitor progress. This paper provides an updated description of OpenRTE and discusses its relation to the current grid protocols. In addition, we introduce the concept of resilient computing-a next-generation approach to fault tolerance-and describe how OpenRTE will utilize this concept in the future. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. Cisco Syst Inc, San Jose, CA 95134 USA. RP Castain, RH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM rhc@lanl.gov NR 23 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 J9 J SUPERCOMPUT JI J. Supercomput. PD OCT PY 2007 VL 42 IS 1 BP 107 EP 123 DI 10.1007/s11227-006-0040-1 PG 17 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 202MV UT WOS:000248906800007 ER PT J AU Migliori, A Pantea, C Ledbetter, H Stroe, I Betts, JB Mitchell, JN Ramos, M Freibert, F Dooley, D Harrington, S Mielke, CH AF Migliori, A. Pantea, C. Ledbetter, H. Stroe, I. Betts, J. B. Mitchell, J. N. Ramos, M. Freibert, F. Dooley, D. Harrington, S. Mielke, C. H. TI Alpha-plutonium's polycrystalline elastic moduli over its full temperature range SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID ACTINIDE ELEMENTS; HEAT-CAPACITY; PHASE-TRANSITION; METAL; DEPENDENCE; CONSTANTS; THERMODYNAMICS; ULTRASOUND; RADIATION; CRYSTALS AB alpha-plutonium's volume-corrected polycrystal elastic moduli were measured between 18 K and the upper limit of its occurrence, near 400 K. The two independent moduli for a polycrystal-bulk and shear-behave smoothly, indicating no phase transition. Both moduli show the same 50% increase on cooling, an order of magnitude larger than in other metals. The Debye temperature obtained from low-temperature elastic moduli, 207 K, significantly exceeds most previous estimates. The Gruneisen parameter gamma=5.3, obtained from the temperature dependence of the bulk modulus, is intermediate among previous estimates using other approaches, a-plutonium's Poisson ratio V is low: 0.18, nearly temperature independent, and its small decrease on warming opposes usual behavior. The high gamma, large but equal bulk modulus and shear modulus fractional stiffening on cooling, and near-temperature- invariant v are attributed to a single mechanism: 5-f electron localization-delocalization. (C) 2007 Acoustical Society of America. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Migliori, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM migliori@cybermesa.com RI Pantea, Cristian/D-4108-2009; Stroe, Izabela/B-3790-2010; Mielke, Charles/S-6827-2016; OI Mielke, Charles/0000-0002-2096-5411; Pantea, Cristian/0000-0002-0805-8923; Freibert, Franz/0000-0003-4434-3446; Mitchell, Jeremy/0000-0001-7109-3505 NR 63 TC 13 Z9 13 U1 1 U2 16 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD OCT PY 2007 VL 122 IS 4 BP 1994 EP 2001 DI 10.1121/1.2767419 PG 8 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 218PI UT WOS:000250027000015 PM 17902836 ER PT J AU Hall, NA Okandan, M Littrell, R Bicen, B Degertekin, FL AF Hall, Neal A. Okandan, Murat Littrell, Robert Bicen, Baris Degertekin, F. Levent TI Micromachined optical microphone structures with low thermal-mechanical noise levels SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID DISPLACEMENT DETECTION; FORCE MICROSCOPY; CANTILEVERS; SENSOR AB Micromachined microphones with diffraction-based optical displacement detection have been introduced previously [Hall et al., J. Acoust. Soc. Am. 118, 3000-3009 (2005)]. The approach has the advantage of providing high displacement detection resolution of the microphone diaphragm independent of device size and capacitance-creating an unconstrained design space for the mechanical structure itself. Micromachined microphone structures with 1.5-mm-diam polysilicon diaphragms and monolithically integrated diffraction grating electrodes are presented in this work with backplate architectures that deviate substantially from traditional perforated plate designs. These structures have been designed for broadband frequency response and low thermal mechanical noise levels. Rigorous experimental characterization indicates a diaphragm displacement detection resolution of 20 fm/ /root Hz and a thermal mechanical induced diaphragm displacement noise density of 60 fm/ /root Hz, corresponding to an A-weighted sound pressure level detection limit of 24 dB(A) for these structures. Measured thermal mechanical displacement noise spectra are in excellent agreement with simulations based on system parameters derived from dynamic frequency response characterization measurements, which show a diaphragm resonance limited bandwidth of approximately 20 kHz. These designs are substantial improvements over initial prototypes presented previously. The high performance-to- size ratio achievable with this technology is expected to have an impact on a variety of instrumentation and hearing applications. (C) 2007 Acoustical Society of America. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP Hall, NA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nahall@alumni.utexas.net FU NIDCD NIH HHS [1R01DC005762-02A1] NR 19 TC 15 Z9 15 U1 3 U2 11 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD OCT PY 2007 VL 122 IS 4 BP 2031 EP 2037 DI 10.1121/1.2769615 PG 7 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 218PI UT WOS:000250027000019 PM 17902840 ER PT J AU Lough, GC Christensen, CG Schauer, JJ Tortorelli, J Mani, E Lawson, DR Clark, NN Gabele, PA AF Lough, Glynis C. Christensen, Charles G. Schauer, James J. Tortorelli, James Mani, Erin Lawson, Douglas R. Clark, Nigel N. Gabele, Peter A. TI Development of molecular marker source profiles for emissions from on-road gasoline and diesel vehicle fleets SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article ID AIR-POLLUTION SOURCES; PARTICULATE MATTER; ORGANIC-COMPOUNDS; MOTOR-VEHICLES; EXHAUST; AEROSOL; CARBON; TRUCKS; PHASE; RATES AB As part of the Gasoline/Diesel PM Split Study, relatively large fleets of gasoline vehicles(53) and diesel vehicles(34) were tested on a chassis dynamometer to develop chemical source profiles for source attribution of atmospheric particulate matter in California's South Coast Air Basin. Gasoline vehicles were tested in cold-start and warm-start conditions, and diesel vehicles were tested through several driving cycles. Tailpipe emissions of particulate matter were analyzed for organic tracer compounds, including hopanes, steranes, and polycyclic aromatic hydrocarbons. Large intervehicle variation was seen in emission rate and composition, and results were averaged to examine the impacts of vehicle ages, weight classes, and driving cycles on the variation. Average profiles, weighted by mass emission rate, had much lower uncertainty than that associated with intervehicle variation. Mass emission rates and elemental carbon/organic carbon (EC/OC) ratios for gasoline vehicle age classes were influenced most by use of cold-start or warm-start driving cycle (factor of 2-7). Individual smoker vehicles had a large range of mass and EC/OC (factors of 40 and 625, respectively). Gasoline vehicle age averages, data on vehicle ages and miles traveled in the area, and several assumptions about smoker contributions were used to create emissions profiles representative of on-road vehicle fleets in the Los Angeles area in 2001. In the representative gasoline fleet profiles, variation was further reduced, with cold-start or warm-start and the representation of smoker vehicles making a difference of approximately a factor of two in mass emission rate and EC/OC. Diesel vehicle profiles were created on the basis of vehicle age, weight class, and driving cycle. Mass emission rate and EC/OC for diesel averages were influenced by vehicle age (factor of 2-5), weight class (factor of 2-7), and driving cycle (factor of 10-20). Absolute and relative emissions of molecular marker compounds showed levels of variation similar to those of mass and EC/OC. C1 Univ Wisconsin, Madison, WI 53705 USA. Wisconsin State Lab Hyg, Madison, WI USA. Natl Renewable Energy Lab, Golden, CO USA. W Virginia Univ, Morgantown, WV 26506 USA. US EPA, Res Triangle Pk, NC 27711 USA. RP Schauer, JJ (reprint author), Univ Wisconsin, Madison, WI 53705 USA. EM jjschauer@wisc.edu OI Lough, Glynis/0000-0002-9152-6520 NR 21 TC 72 Z9 72 U1 10 U2 41 PU AIR & WASTE MANAGEMENT ASSOC PI PITTSBURGH PA ONE GATEWAY CENTER, THIRD FL, PITTSBURGH, PA 15222 USA SN 1047-3289 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PD OCT PY 2007 VL 57 IS 10 BP 1190 EP 1199 DI 10.3155/1047-3289.57.10.1190 PG 10 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 220MK UT WOS:000250160600005 PM 17972764 ER PT J AU Eatough, DJ Mangelson, NF Anderson, RR Martello, DV Pekney, NJ Davidson, CI Modey, WK AF Eatough, Delbert J. Mangelson, Nolan F. Anderson, Richard R. Martello, Donald V. Pekney, Natalie J. Davidson, Cliff I. Modey, William K. TI Apportionment of ambient primary and secondary fine particulate matter during a 2001 summer intensive study at the CMU supersite and NETL Pittsburgh site SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article ID AIR-QUALITY; PM2.5; AEROSOL; SAMPLER AB Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO2, and O-3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in, the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local activity involving organic Pollutants in the metropolitan area. In contrast, the major local secondary sources were dominated by organic material. C1 Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Martello, DV (reprint author), Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. EM donald.martello@netl.doe.gov NR 26 TC 2 Z9 2 U1 1 U2 3 PU AIR & WASTE MANAGEMENT ASSOC PI PITTSBURGH PA ONE GATEWAY CENTER, THIRD FL, PITTSBURGH, PA 15222 USA SN 1047-3289 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PD OCT PY 2007 VL 57 IS 10 BP 1251 EP 1267 DI 10.3155/1047-3289.57.10.1251 PG 17 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 220MK UT WOS:000250160600011 PM 17972770 ER PT J AU Varga, T Navrotsky, A Moats, JL Morcos, RM Poli, F Muller, K Sahay, A Raj, R AF Varga, Tamas Navrotsky, Alexandra Moats, Julianna L. Morcos, R. Michelle Poli, Fabrizia Mueller, Klaus Sahay, Atanu Raj, Rishi TI Thermodynamically stable SixOyCz polymer-like amorphous ceramics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SILICON OXYCARBIDE GLASSES; HIGH-TEMPERATURE CALORIMETRY; STRUCTURAL CHARACTERIZATION; THERMOCHEMISTRY; BEHAVIOR; SYSTEM; CARBON; SICO; DIRECTIONS; PRECURSORS AB Carbon can be used to create unusual nanostructures of Si-C-O by controlled pyrolysis of silsesquioxane organics. Unlike silica, these ceramics resist crystallization at ultrahigh temperatures. Their structure has been compared with that of polymers, where crosslinked chains of polymers in organics are replaced by crosslinked networks of graphene in the ceramics. The network sequesters nanoscale domains of SiO4 tetrahedra. The resistance to crystallization of these nanodomain networks has been attributed to kinetic factors, namely obstruction of long-range diffusion of silica. In this work, we identify a thermodynamic hindrance to crystallization. Calorimetric measurements of heats of dissolution in a molten oxide solvent show that these ceramics possess a negative enthalpy relative to their crystalline constituents (silicon carbide, cristobalite, and graphite). The thermodynamic stability of the nanodomain structure is explained by a low free energy of the graphene-silica interfaces, perhaps related to the presence of mixed bonds of silicon bonded to both carbon and oxygen. C1 Univ Calif Davis, Thermochem Facil, Davis, CA 95616 USA. Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. Univ Stuttgart, Dept Phys Chem, D-70569 Stuttgart, Germany. Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. RP Varga, T (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tvarga@anl.gov OI RAJ, RISHI/0000-0001-8556-9797 NR 39 TC 60 Z9 60 U1 8 U2 37 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2007 VL 90 IS 10 BP 3213 EP 3219 DI 10.1111/j.1551-2916.2007.01874.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 213JL UT WOS:000249663000028 ER PT J AU McCarthy, BP Pederson, LR Anderson, HU Zhou, XD Singh, P Coffey, GW Thomsen, EC AF McCarthy, Benjamin P. Pederson, Larry R. Anderson, Harlan U. Zhou, Xiao-Dong Singh, Prabhakar Coffey, Gregory W. Thomsen, Edwin C. TI Enhanced shrinkage of lanthanum strontium manganite (La0.90Sr0.10MnO3+delta) resulting from thermal and oxygen partial pressure cycling SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID OXIDATION-REDUCTION BEHAVIOR; SR-DOPED LAMNO3; DEFECT CHEMISTRY; PEROVSKITES; NONSTOICHIOMETRY; STOICHIOMETRY; EXPANSION; CERAMICS; 0-LESS-THAN-OR-EQUAL-TO-X-LESS-THAN-OR-EQUAL-TO-0.1; CONDUCTIVITY AB Exposure of (La0.90Sr0.10)(0.98)MnO3+delta (LSM-10) to repeated oxygen partial pressure cycles (air/10 ppm O-2) resulted in enhanced densification rates, similar to behavior shown previously due to thermal cycling. Shrinkage rates in the temperature range 700 degrees-1000 degrees C were orders of magnitude higher than Makipirtti-Meng model estimations based on stepwise isothermal dilatometry results at a high temperature. A maximum in enhanced shrinkage due to oxygen partial pressure cycling occurred at 900 degrees C. Shrinkage was the greatest when LSM-10 bars that were first equilibrated in air were exposed to gas flows of lower oxygen fugacity than in the reverse direction. The former creates transient cation and oxygen vacancies well above the equilibrium concentration, resulting in enhanced mobility. These vacancies annihilate as Schottky equilibria are reestablished, whereas the latter condition does not lead to excess vacancy concentrations. C1 Univ Missouri, Rolla, MO 65409 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Pederson, LR (reprint author), Univ Missouri, Rolla, MO 65409 USA. EM larry.pederson@pnl.gov RI Singh, Prabhakar/M-3186-2013 NR 29 TC 5 Z9 5 U1 0 U2 8 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2007 VL 90 IS 10 BP 3255 EP 3262 DI 10.1111/j.1551-2916.2007.01890.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 213JL UT WOS:000249663000035 ER PT J AU Hinkelman, LM Evans, KF Clothiaux, EE Ackerman, TP Stackhouse, PW AF Hinkelman, Laura M. Evans, K. Franklin Clothiaux, Eugene E. Ackerman, Thomas P. Stackhouse, Paul W., Jr. TI The effect of cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rates SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID INDEPENDENT PIXEL APPROXIMATION; RADIATIVE-TRANSFER; STRATOCUMULUS CLOUDS; ALBEDO; MODELS AB Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce 20 three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-averaged transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction (i.e., the cloud fraction with respect to the solar beam direction). C1 Natl Inst Aerosp, Hampton, VA 23666 USA. Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Hinkelman, LM (reprint author), Natl Inst Aerosp, 100 Explorat Way,Rm 214, Hampton, VA 23666 USA. EM l.m.hinkelman@larc.nasa.gov RI Hinkelman, Laura/L-8964-2016 OI Hinkelman, Laura/0000-0001-6477-9648 NR 32 TC 12 Z9 14 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD OCT PY 2007 VL 64 IS 10 BP 3499 EP 3520 DI 10.1175/JAS4032.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 220QE UT WOS:000250171000007 ER PT J AU Yoo, DH Hong, KS Hong, TE Eastman, JA Yang, HS AF Yoo, Dae-Hwang Hong, K. S. Hong, T. E. Eastman, J. A. Yang, Ho-Soon TI Thermal conductivity of Al2O3/water nanofluids SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 16th Symposium on Dielectric and Advanced Matter Physics/8th Workshop on High-Dielectric and Ferroelectric Devices/Materials CY FEB 11-13, 2007 CL Muju, SOUTH KOREA DE nanofluid; thermal conductivity; hot-wire method ID HOT-WIRE METHOD; ENHANCEMENT; NANOPARTICLES; SUSPENSIONS AB Nanofluids, fluids with suspended nanoparticles, are of interest as a novel material for improving heat transfer efficiency. The conventional theory of two-component mixtures cannot explain the large enhancement of thermal conductivity of nanofluids. It is to be expected that the thermal conductivity of nanofluids is related with many factors, such as that effect of surfactants, dispersion of particles, convection or Brownian motion of nanoparticles, etc. but the mechanism is not known. Thermal conductivity of Al2O3 nanofluids is studied in this work and compared with that of Fe nanofluids. To study the effect of pH of the base fluid on thermal conductivity, we measured the thermal conductivity of Al2O3 nanofluids with different pH values. Al2O3 nanoparticles were dispersed in water of pH values such as 7.0, 9.65 and 10.94. Nanoparticles have a tendency to form clusters, due to van der Waals interaction resulting in reduction of thermal conductivity. It is understood from the variation of thermal conductivity as the pH value of base fluids varies that the pH of base fluids affects clustering of nanoparticles. C1 Pusan Natl Univ, Res Ctr Dielect & Adv Matter Phys, Pusan 609735, South Korea. Korea Basic Sci Inst, Busan Ctr, Pusan 609735, South Korea. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. RP Yang, HS (reprint author), Pusan Natl Univ, Res Ctr Dielect & Adv Matter Phys, Pusan 609735, South Korea. EM hsyang@pusan.ac.kr RI Eastman, Jeffrey/E-4380-2011 NR 18 TC 10 Z9 10 U1 0 U2 5 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD OCT PY 2007 VL 51 SU 2 BP S84 EP S87 PG 4 WC Physics, Multidisciplinary SC Physics GA 228TQ UT WOS:000250755900006 ER PT J AU Marchesini, S AF Marchesini, Stefano TI Phase retrieval and saddle-point optimization SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID RECONSTRUCTION; PROJECTIONS; REFLECTIONS; ALGORITHM; IMAGE AB Iterative algorithms with feedback are among the most powerful and versatile optimization methods for phase retrieval. Among these, the hybrid input-output algorithm has demonstrated practical solutions to giga-element nonlinear phase retrieval problems, escaping local minima and producing images at resolutions beyond the capabilities of lens-based optical methods. Here the input-output iteration is improved by a lower-dimensional subspace saddle-point optimization. (c) 2007 Optical Society of America. C1 Univ Calif Davis, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Marchesini, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM smarchesini@lbl.gov RI Marchesini, Stefano/A-6795-2009 NR 34 TC 33 Z9 34 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD OCT PY 2007 VL 24 IS 10 BP 3289 EP 3296 DI 10.1364/JOSAA.24.003289 PG 8 WC Optics SC Optics GA 227UC UT WOS:000250682300041 PM 17912322 ER PT J AU Biswas, R Neginhal, S Ding, CG Puscasu, I Johnson, E AF Biswas, R. Neginhal, S. Ding, C. G. Puscasu, I. Johnson, E. TI Mechanisms underlying extraordinary transmission enhancement in subwavelength hole arrays SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID OPTICAL-TRANSMISSION; PHOTONIC CRYSTALS; SURFACE-PLASMONS; DIFFRACTION; EMISSION; GRATINGS; LIGHT AB Extraordinary transmission in subwavelength hole arrays has been interpreted by surface-plasmon models and diffraction-based models. To understand controversial mechanisms of transmission enhancement, we simulate hole arrays, using a rigorous Fourier-space scattering matrix simulation. At the enhanced transmission maximum there are large evanescent diffracted fields above the metal surface. These evanescent fields are decomposed into longitudinal and transverse components. Both components are comparable in magnitude. The longitudinal field is 15%-20% larger in the square lattice. Transverse fields are slightly larger in the triangular lattice. The longitudinal and transverse evanescent surface fields are related to bound surface modes of the hole array. C1 Iowa State Univ, Dept Phys & Astron, Ctr Microelect Res, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Elect, Ctr Microelect Res, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Comp Engn, Ctr Microelect Res, Ames Lab, Ames, IA 50011 USA. ICx Photon, Ion Opt Inc, Billerica, MA 01821 USA. RP Biswas, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ctr Microelect Res, Ames Lab, Ames, IA 50011 USA. EM biswasr@iastate.edu NR 31 TC 12 Z9 12 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD OCT PY 2007 VL 24 IS 10 BP 2589 EP 2596 DI 10.1364/JOSAB.24.002589 PG 8 WC Optics SC Optics GA 223TZ UT WOS:000250396500017 ER PT J AU McMasters, RL Dinwiddie, RB Haji-Sheikh, A AF McMasters, Robert L. Dinwiddie, Ralph B. Haji-Sheikh, A. TI Estimating the thermal conductivity of a film on a known substrate SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT AIAA/ASME 9th Joint Thermophysics and Heat Transfer Conference CY JUN 05-08, 2006 CL San Francisco, CA SP AIAA, ASME ID FLASH METHOD; DIFFUSIVITY AB Estimating the thermal conductivity of a film on a substrate of known thermal properties is examined in this research. The laser flash method, commonly used in the measurement of thermal diffusivity, is applied to a composite sample, which has a film deposited on a substrate. The laser flash is applied to the substrate and subsequent temperature measurements are recorded from the film side of the sample. Both the thermal conductivity and the volumetric heat capacity of the substrate must be known. Additionally, the volumetric heat capacity of the film must be known. The parameter estimation method used includes nonlinear regression of a transient conduction model in the solid material, which includes allowance for convective heat losses. The thermal conductivity is estimated simultaneously with the magnitude of the flash and the convection coefficient. The direct solution model is a two-layer exact solution which brings about very rapid computation, in contrast to numerical solutions. Several experiments are analyzed, with samples having various values of thermal conductivity, demonstrating the range over which the method can be used. C1 Virginia Mil Inst, Dept Mech Engn, Lexington, VA 24450 USA. Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. Univ Texas, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA. RP McMasters, RL (reprint author), Virginia Mil Inst, Dept Mech Engn, Lexington, VA 24450 USA. NR 10 TC 8 Z9 8 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT-DEC PY 2007 VL 21 IS 4 BP 681 EP 687 DI 10.2514/1.25854 PG 7 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 222FQ UT WOS:000250281900002 ER PT J AU Berry, IM Ribeiro, R Kothari, M Athreya, G Daniels, M Lee, HY Bruno, W Leitner, T AF Berry, Irina Maljkovic Ribeiro, Ruy Kothari, Moulik Athreya, Gayathri Daniels, Marcus Lee, Ha Youn Bruno, William Leitner, Thomas TI Unequal evolutionary rates in the human immunodeficiency virus type I (HIV-1) pandemic: The evolutionary rate of HIV-1 slows down when the epidemic rate increases SO JOURNAL OF VIROLOGY LA English DT Article ID INJECTING DRUG-USERS; FORMER SOVIET-UNION; LOW GENETIC DIVERSITY; SUBTYPE-B VIRUSES; MOLECULAR EPIDEMIOLOGY; SOUTHERN UKRAINE; ENV GENES; TRANSMISSION; SEQUENCES; INFECTION AB HIV-1 sequences in intravenous drug user (IDU) networks are highly homogenous even after several years, while this is not observed in most sexual epidemics. To address this disparity, we examined the human immunodeficiency virus type I (HIV-1) evolutionary rate on the population level for IDU and heterosexual transmissions. All available HIV-1 env V3 sequences from IDU outbreaks and heterosexual epidemics with known sampling dates were collected from the Los Alamos HIV sequence database. Evolutionary rates were calculated using phylogenetic trees with a t test root optimization of dated samples. The evolutionary rate of HIV-1 subtype A1 was found to be 8.4 times lower in fast spread among IDUs in the former Soviet Union (FSU) than in slow spread among heterosexual individuals in Africa. Mixed epidemics (IDU and heterosexual) showed intermediate evolutionary rates, indicating a combination of fast- and slow-spread patterns. Hence, if transmissions occur repeatedly during the initial stage of host infection, before selective pressures of the immune system have much impact, the rate of HIV-1 evolution on the population level will decrease. Conversely, in slow spread, where HIV-1 evolves under the pressure of the immune system before a donor infects a recipient, the virus evolution at the population level will increase. Epidemiological modeling confirmed that the evolutionary rate of HIV-1 depends on the rate of spread and predicted that the HIV-1 evolutionary rate in a fast-spreading epidemic, e.g., for IDUs in the FSU, will increase as the population becomes saturated with infections and the virus starts to spread to other risk groups. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Swedish Inst Infect Dis Control, Dept Virol, SE-17182 Solna, Sweden. Karolinska Inst, Dept Microbiol Tumor & Cell Biol, SE-17177 Stockholm, Sweden. RP Berry, IM (reprint author), Los Alamos Natl Lab, T-10,MS K710, Los Alamos, NM 87545 USA. EM inam@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 NR 68 TC 39 Z9 42 U1 3 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD OCT PY 2007 VL 81 IS 19 BP 10625 EP 10635 DI 10.1128/JVI.00985-07 PG 11 WC Virology SC Virology GA 212SP UT WOS:000249617400042 ER PT J AU Zhang, Y Liu, AP Pint, BA AF Zhang, Y. Liu, A. P. Pint, B. A. TI Interdiffusional degradation of oxidation-resistant aluminide coatings on Fe-base alloys SO MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION LA English DT Article ID CR-AL ALLOYS; WATER-VAPOR; DIFFUSION COATINGS; STAINLESS-STEELS; FERRITIC STEELS; POWER-PLANTS; IRON; BEHAVIOR; TEMPERATURE; CORROSION AB One of the potential degradation modes of oxidation-resistant iron aluminide coatings is the loss of Al from the coatings into Fe-base substrate alloys that typically contain no Al. To address this issue, interdiffusion between aluminide coatings and steel substrates was studied for times up to 10,000 h in the temperature range of 500-800 degrees C. Coatings were synthesized in a laboratory chemical vapor deposition (CVD) reactor on representative commercial ferritic alloy Fe-9Cr-1Mo and type 304L austenitic stainless steel. The microstructural and compositional changes after diffusion anneals were examined in detail. An initial attempt to model the interdiffusion behavior was carried out by applying an existing software program COSIM (coating oxidation and substrate interdiffusion model). Complementary work was conducted using a simple mathematic model developed by Heckel et al. Reasonable agreement was observed between the simulated and experimental composition profiles for the aluminide coatings on ferritic alloys. Model results were then applied to predict coating lifetime. C1 Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, Y (reprint author), Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. EM yzhang@tntech.edu RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 35 TC 18 Z9 18 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0947-5117 J9 MATER CORROS JI Mater. Corros. PD OCT PY 2007 VL 58 IS 10 BP 751 EP 761 DI 10.1002/maco.200704057 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 228NJ UT WOS:000250736300002 ER PT J AU Trimm, M John, PG AF Trimm, Marvin John, Paw Gee TI Can local sections help improve the NDT workforce? SO MATERIALS EVALUATION LA English DT Editorial Material C1 Savannah River Natl Lab, Aiken, SC 29803 USA. RP Trimm, M (reprint author), Savannah River Natl Lab, 730-A Room 102, Aiken, SC 29803 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD OCT PY 2007 VL 65 IS 10 BP 955 EP 956 PG 2 WC Materials Science, Characterization & Testing SC Materials Science GA 218KX UT WOS:000250015500001 ER PT J AU Chu, YH Martin, LW Holcomb, MB Ramesh, R AF Chu, Ying-Hao Martin, Lane W. Holcomb, Mikel B. Ramesh, Ramamoorthy TI Controlling magnetism with multiferroics SO MATERIALS TODAY LA English DT Article ID BIFEO3 THIN-FILMS; CHEMICAL-VAPOR-DEPOSITION; ANTIFERROMAGNETIC DOMAINS; ELECTRIC POLARIZATION; ENHANCED POLARIZATION; EXCHANGE BIAS; CRYSTAL; PHASE; FERROELECTRICITY; TEMPERATURE AB Multiferroics, materials combining multiple order parameters, offer an exciting way of coupling phenomena such as electronic and magnetic order. Using epitaxial growth and heteroepitaxy, researchers have grown high-quality thin films and heterostructures of the multiferroic BiFeO3. The ferroelectric and antiferromagnetic domain structure and coupling between these two order parameters in BiFeO3 is now being studied. We describe the evolution of our understanding of the connection between structure, properties, and new functionalities (including electrical control of magnetism) using BiFeO3 as a model system. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Chu, YH (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM yhchu@lbl.gov RI Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Holcomb, Mikel/0000-0003-2111-3410 NR 62 TC 138 Z9 143 U1 2 U2 81 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 J9 MATER TODAY JI Mater. Today PD OCT PY 2007 VL 10 IS 10 BP 16 EP 23 DI 10.1016/S1369-7021(07)70241-9 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 219GQ UT WOS:000250073100022 ER PT J AU Oh, SH Suh, JH Park, CG AF Oh, Sang Ho Suh, Ju Hyung Park, Chan Gyung TI Defects in strained epitaxial SrRuO3 films on STiO3 substrates SO MATERIALS TRANSACTIONS LA English DT Article; Proceedings Paper CT Symposium on Advances in Electron Microscopy for Materials Characterization CY NOV 15-17, 2006 CL Sendai, JAPAN DE transmission electron microscopy; strontium ruthenium oxide; misfit dislocation; anti-phase boundary; orthorhombic domain ID THIN-FILMS; SRTIO3; DISLOCATIONS; SURFACE AB Transmission electron microscopy (TEM) analyses of the defects formed in epitaxial SrRuO3 films on SrTiO3 (001) substrates are reported. With preparing three different forms of TEM specimens, i.e. plan-view, cross-sectional and free-standing specimens, various TEM techniques were implemented with placing emphasis on the effect of misfit strain on the defect formation. With in-situ TEM heating observations, the present TEM results provide insights into the formation mechanism of misfit dislocations, the occurrence of anti-phase boundary ribbons near the misfit dislocations, and the structural phase transitions of epitaxial perovskite films. C1 Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea. RP Oh, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM shoh@ornl.gov NR 15 TC 0 Z9 0 U1 4 U2 11 PU JAPAN INST METALS PI SENDAI PA 1-14-32, ICHIBANCHO, AOBA-KU, SENDAI, 980-8544, JAPAN SN 1345-9678 EI 1347-5320 J9 MATER TRANS JI Mater. Trans. PD OCT PY 2007 VL 48 IS 10 BP 2556 EP 2562 DI 10.2320/matertrans.MD200713 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 233GH UT WOS:000251077900004 ER PT J AU Yellapragada, LS Phan, AV Kaplan, T AF Yellapragada, L. S. Phan, A. -V. Kaplan, T. TI A sequential fluid-solid weak coupling analysis of the SPE in stressed Si layers SO MECHANICS RESEARCH COMMUNICATIONS LA English DT Article DE solid phase epitaxy; fluid-solid interaction; crystal growth; interface growth instability ID GROWTH INSTABILITY; FRONTS AB The kinetically driven growth instability in stressed solids has been a subject of recent investigation as there is an increasing interest in the effects of non-hydrostatic stresses on crystal growth processes. Recent experimental and modeling work have shown that the effect of stress on the solid phase epitaxy (SPE) growth of crystalline silicon from the amorphous phase is responsible for the roughening of its amorphous-crystalline interface. Although our previous model (Phan, A.-V., Kaplan, T., Gray, L.J., Adalsteinsson, D., Sethian, J.A., Barvosa-Carter, W., Aziz, M.J., 2001. Modelling a growth instability in a stressed solid. Modelling and Simulation in Materials Science and Engineering 9, 309-325.) has been able to explain the observed interfacial instability during the crystal growth of intrinsic silicon, it has not been very successful when extended to the SPE growth process of doped silicon. In an effort to identify the sources that may improve the accuracy and robustness of the previously proposed model, we present in this paper a new approach for modeling the crystal growth in stressed Si layers. The technique is based upon the coupling of finite element analysis, the sequentially weak coupling analysis for fluid-solid interaction, and the marker particle method. (c) 2007 Elsevier Ltd. All rights reserved. C1 Univ S Alabama, Dept Mech Engn, Mobile, AL 36688 USA. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Phan, AV (reprint author), Univ S Alabama, Dept Mech Engn, Mobile, AL 36688 USA. EM vphan@jaguarl.usouthal.edu NR 12 TC 0 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0093-6413 J9 MECH RES COMMUN JI Mech. Res. Commun. PD OCT-DEC PY 2007 VL 34 IS 7-8 BP 545 EP 552 DI 10.1016/j.mechrescom.2007.07.003 PG 8 WC Mechanics SC Mechanics GA 238WF UT WOS:000251478200006 ER PT J AU Lu, H Kadolkar, P Nakazawa, K Ando, T Blue, CA AF Lu, H. Kadolkar, P. Nakazawa, K. Ando, T. Blue, C. A. TI Precipitation behavior of AA2618 SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID AL-CU-MG; AGED AL-CU-MG-(AG) ALLOYS; MAGNESIUM ALLOY; SI-CU; LATTICE-PARAMETER; AL(CUMG) ALLOY; SILICON; S'; ADDITIONS; PHASE AB The precipitation behavior of AA2618 was studied by a multitude of characterization techniques: microhardness testing, lattice parameter measurement through X-ray diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and atom probe field ion microscopy (APFIM). The matrix lattice parameter increased during the first 20 hours of natural aging, due to the formation of Cu clusters and decreased over the next 24 hours, due to the formation of Mg-rich clusters. Prior natural aging weakened subsequent artificial aging hardening at 180 degrees C, 200 degrees C, and 230 degrees C, due to the cluster reversion that delayed the precipitation of strengthening phases. The matrix lattice parameter exhibited erratic changes during artificial aging that corresponded to the formation and partial dissolution of Guinier-Preston-Bagaryatsky (GPB) zones, the transformation of GPB zones to GPB2 zones, and the precipitation of S'. The structural changes during the artificial aging of AA2618 occur in this sequence: supersaturated solid solution -> clusters + GPB -> GPB + GPB2 -> GPB2 + S' -> S'+ S -> S. C1 Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02210 USA. Contech Metal Forge, Oak Ridge Natl Lab, Mat Sci & Technol Div, Clarksville, TN 37040 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Lu, H (reprint author), Northeastern Univ, Dept Mech & Ind Engn, 451 D St, Boston, MA 02210 USA. NR 50 TC 7 Z9 7 U1 2 U2 11 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2007 VL 38A IS 10 BP 2379 EP 2388 DI 10.1007/s11661-007-9295-2 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 220IL UT WOS:000250150300003 ER PT J AU Carr, DG Holden, TM Ripley, MI Brown, D Vogel, SC AF Carr, D. G. Holden, T. M. Ripley, M. I. Brown, D. Vogel, S. C. TI Investigation of grain-scale stresses and modeling of tensile deformation in a ZIRCALOY-4 weldment SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID RESIDUAL-STRESSES; ROD TEXTURE; STRAIN; POLYCRYSTALS; COMPOSITES; BEHAVIOR; TUBES AB Tensile tests and neutron diffraction measurements of the residual elastic strain response to applied uniaxial stress have been made on samples taken from a ZIRCALOY-4 (Zr-4) weld in the as-welded condition. The samples were taken from the parent plate, and the weld metal and time-of-flight neutron diffraction measurements were made parallel and perpendicular to the applied stress direction, which corresponds to the weld direction and the transverse direction in the plane of the plate. Measurements were made on all crystallographic reflections permitted by the texture, and this allowed strains to be measured over the entire of the stereographic projection. The strains can be understood qualitatively in terms of what is already known for other zirconium alloys and with the aid of the elasto-plastic self-consistent model. C1 Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia. No Stress Technol, Deep River, ON K0J 1P0, Canada. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Carr, DG (reprint author), Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia. EM dgc@ansto.gov.au RI Carr, David/G-2530-2010; Lujan Center, LANL/G-4896-2012; OI Carr, David/0000-0003-1134-5496; Vogel, Sven C./0000-0003-2049-0361 NR 22 TC 4 Z9 4 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2007 VL 38A IS 10 BP 2410 EP 2418 DI 10.1007/s11661-007-9270-y PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 220IL UT WOS:000250150300006 ER PT J AU Vianco, PT Martin, JJ Wright, RD Hlava, PF AF Vianco, Paul T. Martin, Joseph J. Wright, Robert D. Hlava, Paul F. TI Solid-state interface reactions between silver and 95.5Sn-3.9Ag-0.6Cu and 63Sn-37Pb solders SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID DIFFUSION; COATINGS; COPPER; TIN AB The microstructure and rate kinetics were investigated for solid-state intermetallic compound (IMC) layer growth in Sn-Ag-Cu/Ag and Sn-Pb/Ag couples. The aging temperatures were 55 degrees C to 205 degrees C and 70 degrees C to 170 degrees C, respectively. The aging times were I day to 400 days. The Sn-Ag-Cu/Ag IMC layer included the phases: Ag3Sn (dominant), the zeta phase, and a solid-solution phase, xAg-ySn, (94 to 96 at. pct Ag). Void formation was observed at the solder/IMC (Ag3Sn) interface, which was attributed to the Kirkendall effect. The rate kinetics of IMC layer growth were expressed through t(n)exp(-Delta H/RT). The values of n and Delta H for the IMC layer phases were: (1) zeta + xAg-ySn, n = 0.68 +/- 0.23, Delta H = 59 +/- 15 kJ/mol; (2) Ag3Sn, n = 0.22 +/- 0.05, Delta H = 28 +/- 2 kJ/mol; and (3) total layer, n = 0.34 +/- 0.06, Delta H = 45 +/- 3 kJ/mol. The very low Delta H value for Ag3Sn suggested a very fast, fast-diffusion mechanism. The IMC layer of Sr-Pb/Ag couples was predominantly the Ag3Sn stoichiometry. The IMC layer growth was accompanied by the development of a Pb-rich phase layer at the solder/IMC interface. There was insignificant void development in these couples. The rate kinetics parameters, n and AH, were 0.44 +/- 0.06 and 51 +/- 4 kJ/mol, respectively, indicating a traditional fast-diffusion mechanism. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Vianco, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ptvianc@sandia.gov NR 22 TC 6 Z9 6 U1 0 U2 3 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2007 VL 38A IS 10 BP 2488 EP 2502 DI 10.1007/s11661-007-9289-0 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 220IL UT WOS:000250150300014 ER PT J AU Battaile, CC Counts, WA Wellman, GW Buchheit, TE Holm, EA AF Battaile, C. C. Counts, W. A. Wellman, G. W. Buchheit, T. E. Holm, E. A. TI Simulating grain growth in a deformed polycrystal by coupled finite-element and microstructure evolution modeling SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID STATIC RECRYSTALLIZATION; COMPUTER-SIMULATION; CRYSTALS; KINETICS AB The interplay between deformation and microstructure evolution can be strong and is the basis of a large majority of thermomechanical processing techniques for metals. We present simulations of this interplay, using a sharp-interface front tracking model for grain growth and a finite-element polycrystal plasticity model of deformation that includes anisotropic linear elasticity. The two approaches are iteratively coupled, so that grain growth affects the deformation behavior, and vice versa. Analyses of both purely elastic and of elastic-plastic materials are presented through coupled simulations of static loading of model polycrystalline microstructures. In the elastic case, stored elastic energies can reach relatively high values, and the mechanical driving force can locally exceed the curvature driving force, causing boundaries to assume noncompact (rippled) shapes. These large driving forces also serve to accelerate the grain growth process. In the elastic-plastic case, under relatively low strains, plasticity provides a stress relief mechanism that prohibits the generation of large stored elastic energies; thus, substantial deviations from compact interface morphologies were not observed, and growth kinetics did not accelerate substantially. C1 Sandia Natl Labs, Albuquerque, NM 87111 USA. Max Planck Inst Eisenforsch GmbH, D-4000 Dusseldorf, Germany. RP Battaile, CC (reprint author), Sandia Natl Labs, Albuquerque, NM 87111 USA. EM ccbatta@sandia.gov RI Holm, Elizabeth/S-2612-2016 OI Holm, Elizabeth/0000-0003-3064-5769 NR 17 TC 9 Z9 9 U1 1 U2 13 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2007 VL 38A IS 10 BP 2513 EP 2522 DI 10.1007/s11661-007-9267-6 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 220IL UT WOS:000250150300016 ER PT J AU Jull, AJT Lal, D Taylor, S Wieler, R Grimberg, A Vacher, L McHargue, LR Freeman, SPHT Maden, C Schnabel, C Xu, S Finkel, RC Kim, KJ Marti, K AF Jull, A. J. T. Lal, D. Taylor, S. Wieler, R. Grimberg, A. Vacher, L. McHargue, L. R. Freeman, S. P. H. T. Maden, C. Schnabel, C. Xu, S. Finkel, R. C. Kim, K. J. Marti, K. TI He-3, Ne-20,Ne-21,Ne-22, C-14, Be-10, (26)AI, and (CI)-C-36 in magnetic fractions of cosmic dust from Greenland and Antarctica SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID SOLAR ENERGETIC PARTICLES; INTERPLANETARY DUST; NOBLE-GASES; EXTRATERRESTRIAL ORIGIN; STRATOSPHERIC PARTICLES; EXPOSURE HISTORY; ACCRETION RATE; EXCESS HE-3; SOUTH-POLE; SPHERULES AB We report on studies of the concentrations of cosmogenic nuclides in the magnetic fraction of cosmic dust particles recovered from the South Pole Water Well (SPWW) and from Greenland. Our results confirm that cosmic dust material from these locations contains measurable amounts of cosmogenic nuclides. The Antarctic particles (and possibly those from Greenland as well) also contain minor amounts of solar Ne. Concentrations of cosmogenic nuclides are consistent with irradiation of this material as small objects in space, with exposure ages similar to the expected Poynting-Robertson (P-R) lifetimes of 50-200 kyr for particles 25-100 mu m in size. C1 [Jull, A. J. T.; McHargue, L. R.] Univ Arizona, NSF Arizona AMS Lab, Tucson, AZ 85721 USA. [Lal, D.; Vacher, L.] Univ Calif San Diego, Scripps Inst Oceanog, Div Geol Res, La Jolla, CA 92093 USA. [Taylor, S.] Cold Reg Res Lab, Hanover, NH 03755 USA. [Wieler, R.; Grimberg, A.] ETH, NW C84, CH-8092 Zurich, Switzerland. [McHargue, L. R.; Freeman, S. P. H. T.; Maden, C.; Schnabel, C.; Xu, S.] Scottish Univ Environm Res Ctr, E Kilbride G75 0QF, Lanark, Scotland. [Finkel, R. C.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Marti, K.] Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA. [Kim, K. J.] Korea Inst Geosci & Mineral Resources, Taejon 305350, South Korea. RP Jull, AJT (reprint author), Univ Arizona, NSF Arizona AMS Lab, Phys Bldg,1118 E 4th St, Tucson, AZ 85721 USA. EM jull@email.arizona.edu RI Wieler, Rainer/A-1355-2010; Freeman, Stewart/C-3290-2012 OI Wieler, Rainer/0000-0001-5666-7494; Freeman, Stewart/0000-0001-6148-3171 NR 59 TC 2 Z9 2 U1 0 U2 7 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT PY 2007 VL 42 IS 10 BP 1831 EP 1840 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 253PI UT WOS:000252529700011 ER PT J AU Haik, Y Kilani, M Hendrix, J Al Rifai, O Galambos, P AF Haik, Yousef Kilani, Mohammad Hendrix, Jason Al Rifai, Omar Galambos, Paul TI Flow field analysis in a spiral viscous micropump SO MICROFLUIDICS AND NANOFLUIDICS LA English DT Article DE spiral micropump; stream function formulation; numerical simulation; viscous micropump AB The paper presents a stream function solution and a computational analysis for the flow field of a viscous spiral pump, which employs a rotating spiral channel to achieve pumping action. This pump is fabricated using surface micromachining technology. The stream function solution employs a simplified 2D model for the flow field in its spiral channel that neglects the curvature of the spiral, and replaces it with an equivalent straight channel. The effect of spiral wall height on flow rate is analyzed and discussed. 3D computational analyses are obtained and are compared with analytical predictions. C1 Florida State Univ, Ctr Nanomagnet & Biotechnol, Tallahassee, FL 32310 USA. United Arab Emirates Univ, Dept Engn Mech, Al Ain, U Arab Emirates. Univ Jordan, Dept Mech Engn, Amman, Jordan. Sandia Natl Labs, Intelligent Micromachine Dept, Albuquerque, NM 87185 USA. RP Haik, Y (reprint author), Florida State Univ, Ctr Nanomagnet & Biotechnol, Tallahassee, FL 32310 USA. EM haik@eng.fsu.edu OI Kilani, Mohammad/0000-0003-0482-7761 NR 10 TC 5 Z9 5 U1 0 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1613-4982 EI 1613-4990 J9 MICROFLUID NANOFLUID JI Microfluid. Nanofluid. PD OCT PY 2007 VL 3 IS 5 BP 527 EP 535 DI 10.1007/s10404-006-0143-2 PG 9 WC Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas SC Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 208OM UT WOS:000249329100002 ER PT J AU Altare, CR Bowman, RSB Katz, LE Kinney, KA Sullivan, EJ AF Altare, Craig R. Bowman, Robert S. B. Katz, Lynn E. Kinney, Kerry A. Sullivan, Enid J. TI Regeneration and long-term stability of surfactant-modified zeolite for removal of volatile organic compounds from produced water SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article; Proceedings Paper CT 7th International Conference on Occurrence Properties and Utilization of Natural Zeolites CY JUL 16-21, 2006 CL New Mexico Inst Mining & Technol, Socorro, NM SP Int Nat Zeolite Assoc HO New Mexico Inst Mining & Technol DE sorption; BTEX; water treatment; remediation; organic pollutants ID PERCHLOROETHYLENE; COMPONENTS; SORPTION AB We report the results of laboratory-scale evaluation of a produced-water treatment system. The system used surfactant-modified zeolite (SMZ) to strip the volatile organic compounds benzene, toluene, ethylbenzene, and p-, m- and o-xylene (BTEX) from produced water generated as a byproduct of oil and gas recovery. We used laboratory column studies to (1) investigate how different airflow rates impact regeneration of BTEX-saturated SMZ and (2) perform long-term tests to determine the chemical and physical stability of SMZ in a produced-water treatment system. Varying the airflow rate from 1.3 to 10 pore volumes (PV) per minute did not significantly affect BTEX removal rates. Rather, BTEX removal was controlled by the total number of PV that passed through the SMZ bed, suggesting only minor kinetic effects on regeneration. BTEX sorption and SMZ regeneration profiles varied little over 50 sorption/regeneration cycles. Each cycle consisted of BTEX sorption from 100 PV of produced water followed by regeneration with approximately 2000 PV of air. A weakly decreasing trend was observed for the BTEX distribution coefficients (K(d)), indicating only a small loss in sorption affinity after 50 cycles. The sorption affinity for BTEX was maintained even though 24% of the original surfactant was washed off the SMZ by 5000 PV of produced water. The hydraulic conductivity of the SMZ decreased by roughly 30% after 50 cycles. Most of the hydraulic conductivity loss was likely caused by particle attrition. The results suggest that SMZ is a viable sorbent for removal of volatile organics from oil- and gas-field wastewaters. (c) 2007 Elsevier Inc. All rights reserved. C1 New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. Univ Texas, Dept Civil Engn, Austin, TX 78712 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Bowman, RSB (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. EM bowman@nmt.edu NR 28 TC 26 Z9 27 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD OCT 1 PY 2007 VL 105 IS 3 BP 305 EP 316 DI 10.1016/j.micromeso.2007.04.001 PG 12 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 221TV UT WOS:000250251100014 ER PT J AU Suree, N Jung, ME Clubb, RT AF Suree, N. Jung, M. E. Clubb, R. T. TI Recent advances towards new anti-infective agents that inhibit cell surface protein anchoring in Staphylococcus aureus and other Gram-Positive pathogens SO MINI-REVIEWS IN MEDICINAL CHEMISTRY LA English DT Review DE sortase; antibiotic; anti-infective; Staphylococcus aureus; gram-positive bacteria; inhibitor; SrtA ID SORTASE TRANSPEPTIDASE-SRTA; SORTING SIGNAL BINDING; IMIDAZOLIUM ION-PAIR; ACTIVE-SITE; LPXTG MOTIF; LISTERIA-MONOCYTOGENES; BACILLUS-ANTHRACIS; KINETIC MECHANISM; MEDICINAL-PLANTS; WALL ENVELOPE AB Sortase enzymes are attractive targets for the development of new anti-infective agents against Gram-positive pathogens because they covalently anchor virulence factors to the cell wall. Here we review what is known about the mechanism of sortase mediated protein anchoring and discuss recently identified inhibitors of this new important enzyme family. C1 Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, DOE Inst Genom & Proteom, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Jung, ME (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90095 USA. EM mej@chem.ucia.edu; rclubb@mbi.ucla.edu FU NIAID NIH HHS [AI52217, R01 AI052217] NR 76 TC 40 Z9 41 U1 0 U2 6 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1389-5575 J9 MINI-REV MED CHEM JI Mini-Rev. Med. Chem. PD OCT PY 2007 VL 7 IS 10 BP 991 EP 1000 DI 10.2174/138955707782110097 PG 10 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 216HM UT WOS:000249869100002 PM 17979801 ER PT J AU Elmustafa, AA AF Elmustafa, A. A. TI Pile-up/sink-in of rate-sensitive nanoindentation creeping solids SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID ELASTIC-PLASTIC SOLIDS; SPHERICAL INDENTATION; IMPRESSION CREEP; HARDNESS; STRESS AB Pile-ups and sink-ins influence the measurement of the contact area in indentation hardness testing particularly when the indent size becomes significantly small, i.e. in nanoindentation. In this paper, we study the effect of strain rate and work hardening on pile-ups and sink-ins of creeping solids during the indentation process. We use a strain hardening creeping constitutive relation available in the ABAQUS finite element analysis commercial code. The simulations were performed for a work hardening exponent, chi = partial derivative ln sigma/partial derivative ln epsilon of 0.1-0.3 and a strain rate sensitivity of von Mises stress v(sigma) = partial derivative ln sigma/partial derivative ln epsilon of 0.04-0.16. We report that strain rate sensitivity and work hardening influence the measure of pile-ups and sink-ins. It is reported in the literature that rate-insensitive materials undergo sink-in with the increase in the work hardening exponent and tend to pile-up in the absence of work hardening. In this research for rate-sensitive materials, we observe similar behavior but the effect is less profound. We also depict similar results for pile-up. C1 Old Dominion Univ, Dept Engn Mech, Norfolk, VA 23529 USA. Old Dominion Univ, Jefferson Lab, Appl Res Ctr, Newport News, VA 23606 USA. RP Elmustafa, AA (reprint author), Old Dominion Univ, Dept Engn Mech, Norfolk, VA 23529 USA. NR 27 TC 12 Z9 12 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD OCT PY 2007 VL 15 IS 7 BP 823 EP 834 DI 10.1088/0965-0393/15/7/008 PG 12 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 220ER UT WOS:000250140200008 ER PT J AU Micic, M Holley-Bockelmann, K Sigurdsson, S Abel, T AF Micic, Miroslav Holley-Bockelmann, Kelly Sigurdsson, Steinn Abel, Tom TI Supermassive black hole growth and merger rates from cosmological N-body simulations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational waves ID FREQUENCY GRAVITATIONAL-WAVES; X-RAY-SOURCES; GALAXY FORMATION; HIERARCHICAL-MODELS; GALACTIC HALOES; SIGMA RELATION; MASS FUNCTION; 1ST STARS; MILKY-WAY; EVOLUTION AB Understanding how seed black holes ( BHs) grow into intermediate- mass and supermassive black holes ( IMBHs and SMBHs, respectively) has important implications for the duty cycle of active galactic nuclei ( AGN), galaxy evolution and gravitational wave astronomy. Most studies of the cosmological growth and merger history of BHs have used semianalytic models and have concentrated on SMBH growth in luminous galaxies. We have developed a `hybrid method' that combines high- resolution cosmological N- body simulations for the haloes' merger history, with semi- analytical recipes for BH pair dynamics and BH gas accretion. We track the assembly of BHs over a large range of final masses - from seed BHs to SMBHs - over widely varying dynamical histories. We used the dynamics of dark matter haloes to track the evolution of seed BHs in three different gas accretion scenarios. We have found that growth of a Sagittarius A* - size of SMBH reaches its maximum mass M-SMBH = similar to 10(6)M(circle dot) at z similar to 6 through early gaseous accretion episodes, after which it stays at near constant mass. At the same redshift, the duty cycle of the host AGN ends, hence redshift z = 6 marks the transition from an AGN to a starburst galaxy which eventually becomes the Milky Way. By tracking BH growth as a function of time and mass, we estimate that the IMBH merger rate reaches a maximum of R-max = 55 yr(-1) at z = 11. From IMBH merger rates we calculate N-ULX = 7 per Milky Way type galaxy per redshift in redshift range 2 less than or similar to z less than or similar to 6. C1 Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. Penn State Univ, IGPG, University Pk, PA 16802 USA. Stanford Univ, SLAC, Menlo Pk, CA USA. RP Micic, M (reprint author), Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. EM micic@astro.psu.edu; kellyhb@gravity.psu.edu; steinn@astro.psu.edu; tabel@slac.stanford.edu OI Sigurdsson, Steinn/0000-0002-8187-1144 NR 57 TC 26 Z9 26 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 1 PY 2007 VL 380 IS 4 BP 1533 EP 1540 DI 10.1111/j.1365-2966.2007.12162.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 218IW UT WOS:000250010200019 ER PT J AU Ford, RG AF Ford, Renee G. TI Conductive carbon coatings enhance the performance of lithium ion batteries SO MRS BULLETIN LA English DT News Item C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Transfer Dept, Berkeley, CA 94720 USA. RP Ford, RG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Transfer Dept, MS 62R0100, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD OCT PY 2007 VL 32 IS 10 BP 755 EP 755 PG 1 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 227LJ UT WOS:000250657900005 ER PT J AU Talapin, DV Nelson, JH Shevchenko, EV Aloni, S Sadtler, B Alivisatos, AP AF Talapin, Dmitri V. Nelson, James H. Shevchenko, Elena V. Aloni, Shaul Sadtler, Bryce Alivisatos, A. Paul TI Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies SO NANO LETTERS LA English DT Article ID COLLOIDAL NANOCRYSTAL HETEROSTRUCTURES; SEMICONDUCTOR NANOCRYSTALS; ORGANOMETALLIC SYNTHESIS; CDTE NANOCRYSTALS; NANOPARTICLES; SYSTEM; CDS AB We have demonstrated that seeded growth of nanocrystals offers a convenient way to design nanoheterostructures with complex shapes and morphologies by changing the crystalline structure of the seed. By using Use nanocrystals with wurtzite and zinc blende structure as seeds for growth of US nanorods, we synthesized CdSe/CdS heterostructure nanorods and nanotetrapods, respectively. Both of these structures showed excellent luminescent properties, combining high photoluminescence efficiency (similar to 80 and similar to 50% for nanorods and nanotetrapods, correspondingly), giant extinction coefficients (similar to 2 x 10(7) and similar to 1.5 x 10(8) M-1 cm(-1) at 350 nm for nanorods and nanotetrapods, correspondingly), and efficient energy transfer from the US arms into the emitting CdSe core. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Talapin, DV (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dvtalapin@uchicago.odu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 NR 33 TC 445 Z9 448 U1 22 U2 203 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 2951 EP 2959 DI 10.1021/nl072003g PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400003 PM 17845068 ER PT J AU Sivasankar, S Chu, S AF Sivasankar, Sanjeevi Chu, Steven TI Optical bonding using silica nanoparticle sol-gel chemistry SO NANO LETTERS LA English DT Article ID INTERFACIAL ENERGY; COLLOIDAL SILICA; TEMPERATURE; MORPHOLOGY; CERAMICS; PRESSURE; ADHESION; SURFACES; CONTACT; PHYSICS AB A simple method is described to bond optical components using silica nanoparticle sol-gel chemistry. The silica nanoparticles polymerize into highly branched networks that link the surfaces together. The nanoparticle mediated bonding has several advantages to currently used optical joining technologies. The bonding is a room-temperature process and does not require any clean room facilities. The bonded interface has a high mechanical strength and low scattering. The bonding is resistant to organic solvents on silylation with hydrophobic surface groups. This method achieves 100% successful bonding rates between soda-lime glass slides. The bond-setting time can be tailored to allow time for precision optical alignment. C1 Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Univ Calif Berkeley, Dept Phys, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chu, S (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. NR 24 TC 6 Z9 6 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3031 EP 3034 DI 10.1021/nl071492h PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400017 PM 17854226 ER PT J AU Chen, IC Chen, LH Orme, CA Jin, S AF Chen, I-Chen Chen, Li-Han Orme, Christine A. Jin, Sungho TI Control of curvature in highly compliant probe cantilevers during carbon nanotube growth SO NANO LETTERS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; ION-INDUCED DAMAGE; SILICON; STRESS; FABRICATION; DIFFUSION; OXIDATION; OXYGEN; BEAM; NITRIDATION AB Direct growth of a sharp carbon nanotube (CNT) probe on a very thin and highly flexible cantilever by plasma-enhanced chemical vapor deposition (PECVD) is desirable for atomic force microscopy (AFM) of nanoscale features on soft or fragile materials. Plasma-induced surface stresses in such fabrication processes, however, tend to cause serious bending of these cantilevers, which makes the CNT probe unsuitable for AFM measurements. Here, we report a new tunable CNT growth technique that controls cantilever bending during deposition, thereby enabling the creation of either flat or deliberately curved AFM cantilevers containing a CNT probe. By introducing hydrogen gas to the (acetylene + ammonia) feed gas during CNT growth and adjusting the ammonia to hydrogen flow ratio, the cantilever surface stress can be altered from compressive to tensile stress, and in doing so controlling the degree of cantilever bending. The CNT probes grown under these conditions have high aspect ratios and are robust. Contact-mode imaging has been demonstrated using these probe tips. Such CNT probes can be useful for bio-imaging involving DNA and other delicate biological features in a liquid environment. C1 Univ Calif San Diego, La Jolla, CA 92093 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Jin, S (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM jin@ucsd.edu RI Orme, Christine/A-4109-2009 NR 22 TC 11 Z9 11 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3035 EP 3040 DI 10.1021/nl071490x PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400018 PM 17887798 ER PT J AU Zhang, YB Kanungo, M Ho, AJ Freimuth, P van der Lelie, D Chen, M Khamis, SM Datta, SS Johnson, ATC Misewich, JA Wong, SS AF Zhang, Yian-Biao Kanungo, Mandakini Ho, Alexander J. Freimuth, Paul van der Lelie, Daniel Chen, Michelle Khamis, Samuel M. Datta, Sujit S. Johnson, A. T. Charlie Misewich, James A. Wong, Stanislaus S. TI Functionalized carbon nanotubes for detecting viral proteins SO NANO LETTERS LA English DT Article ID DIIMIDE-ACTIVATED AMIDATION; BIOSENSORS; IMMOBILIZATION; RECOGNITION; RECEPTOR; ELEMENTS; DEVICES; BINDING; MEMORY AB We investigated the biocompatibility, specificity, and activity of a ligand-receptor-protein system covalently bound to oxidized single-walled carbon nanotubes (SWNTs) as a model proof-of-concept for employing such SWNTs as biosensors. SWNTs were functionalized under ambient conditions with either the Knob protein domain from adenovirus serotype 12 (Ad 12 Knob) or its human cellular receptor, the CAR protein, via diimide-activated amidation. We confirmed the biological activity of Knob protein immobilized on the nanotube surfaces by using its labeled conjugate antibody and evaluated the activity and specificity of bound CAR on SWNTs, first, in the presence of fluorescently labeled Knob, which interacts specifically with CAR, and second, with a negative control protein, YieF, which is not recognized by biologically active CAR proteins. In addition, current-gate voltage (I-V-g) measurements on a dozen nanotube devices explored the effect of protein binding on the intrinsic electronic properties of the SWNTs, and also demonstrated the devices' high sensitivity in detecting protein activity. All data showed that both Knob and CAR immobilized on SWNT surfaces fully retained their biological activities, suggesting that SWNT-CAR complexes can serve as biosensors for detecting environmental adenoviruses.. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat, Upton, NY 11973 USA. SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP van der Lelie, D (reprint author), Brookhaven Natl Lab, Dept Biol, Bldg 463, Upton, NY 11973 USA. EM vdlelied@bnl.gov; cjohnson@physics.upenn.edu; misewich@bnl.gov; sswong@notes.cc.sunysb.edu NR 24 TC 74 Z9 76 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3086 EP 3091 DI 10.1021/nl071572l PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400026 PM 17894517 ER PT J AU Bratlie, KM Lee, H Komvopoulos, K Yang, PD Somorjai, GA AF Bratlie, Kaitlin M. Lee, Hyunjoo Komvopoulos, Kyriakos Yang, Peidong Somorjai, Gabor A. TI Platinum nanoparticle shape effects on benzene hydrogenation selectivity SO NANO LETTERS LA English DT Article ID GENERATION VIBRATIONAL SPECTROSCOPY; ETHYLENE HYDROGENATION; CATALYTIC-PROPERTIES; SURFACE; PT(111); CLUSTERS; PT(100); SIZE AB Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide (TTAB). Infrared spectroscopy indicated that TTAB binds to the Pt surface through weak C-H center dot center dot center dot Pt bond of the alkyl chain. The catalytic selectivity was found to be strongly affected by the nanoparticle shape. Both cyclohexane and cyclohexene product molecules were formed on cuboctahedral nanoparticles, whereas only cyclohexane was produced on cubic nanoparticles, These results are the same as the product selectivities obtained on Pt(111) and Pt(100) single crystals in earlier studies. The apparent activation energy for cyclohexane production on cubic nanoparticles is 10.9 +/- 0.4 kcal/mol, while for cuboctahedral nanoparticles, the apparent activation energies for cyclohexane and cyclohexene production are 8.3 +/- 0.2 and 12.2 +/- 0.4 kcal/mol, respectively. These activati on energies are lower, and corresponding turnover rates are three times higher than those obtained with single-crystal Pt surfaces. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM kmbratlie@lbl.gov; somorjai@socrates.berkeley.edu RI Bratlie, Kaitlin/A-1133-2009; Lee, Hyunjoo/G-8034-2012 OI Lee, Hyunjoo/0000-0002-4538-9086 NR 17 TC 538 Z9 548 U1 50 U2 415 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3097 EP 3101 DI 10.1021/nl0716000 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400028 PM 17877408 ER PT J AU Li, S Zhang, K Yang, JM Lin, LW Yang, H AF Li, Sha Zhang, Kai Yang, Jui-Ming Lin, Liwei Yang, Haw TI Single quantum dots as local temperature markers SO NANO LETTERS LA English DT Article ID FLUORESCENCE INTERMITTENCY; INSTRUMENTATION; SEMICONDUCTORS; NANOCRYSTALS; DEPENDENCE AB This work describes noncontact, local temperature measurements using wavelength shifts of CdSe quantum dots (QDs). Individual QDs are demonstrated to be capable of sensing temperature variations and reporting temperature changes remotely through optical readout. Temperature profiles of a microheater under different input voltages are evaluated based on the spectral shift of QDs on the heater, and results are consistent with a one-dimensional electrothermal model. The theoretical resolution of this technique could go down to the size of a single quantum dot using far-field optics for temperature characterizations of micro/nanostructures. C1 Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Dept Engn Mech, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Phys Biosci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Yang, JM (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Dept Engn Mech, Berkeley, CA 94720 USA. EM juimingy@berkeley.edu RI Zhang, Kai/G-6437-2010 OI Zhang, Kai/0000-0002-6687-4558 NR 26 TC 119 Z9 119 U1 2 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3102 EP 3105 DI 10.1021/nl071606p PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400029 PM 17727300 ER PT J AU Yang, L Cohen, ML Louie, SG AF Yang, Li Cohen, Marvin L. Louie, Steven G. TI Excitonic effects in the optical spectra of graphene nanoribbons SO NANO LETTERS LA English DT Article ID QUASI-PARTICLE ENERGIES; GRAPHITE; SEMICONDUCTORS; TRANSPORT; EDGE; GAS AB We present a first-principles calculation of the optical properties of armchair-edged graphene nanoribbons (AGNRs) with many-electron effects included. The reduced dimensionality of the AGNRs gives rise to an enhanced electron-hole binding energy for both bright and dark exciton states (0.8-1.4 eV for GNRs with width similar to 1.2 nm) and dramatically changes the optical spectra owing to a near complete transfer of oscillator strength to the exciton states from the continuum transitions. The characteristics of the excitons of the three distinct families of AGNRs are compared and discussed. The enhanced excitonic effects found here are expected to be of importance in optoelectronic applications of graphene-based nanostructures. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Louie, SG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu NR 31 TC 153 Z9 154 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3112 EP 3115 DI 10.1021/nl0716404 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400031 PM 17824720 ER PT J AU Luo, W Pennycook, SJ Pantelides, ST AF Luo, Weidong Pennycook, Stephen J. Pantelides, Sokrates T. TI s-electron ferromagnetism on gold and silver nanoclusters SO NANO LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; CLUSTERS; MAGNETISM; POLARIZATION; BULK; 4D AB Ferromagnetic (FM) ordering in transition-metal systems (solids, surface layers, nanoparticles) arises from partially filled d shells. Thus, recent observations of FM Au nanoclusters was unexpected, and an explanation has remained elusive. Here we report first-principles density-functional spin-polarized calculations for Au and Ag nanoclusters. We find that the highest-occupied level is highly degenerate and partially filled by s electrons with spins aligned according to Hund's rule. The nanoclusters behave like "superatoms", with the spin-aligned electrons being itinerant on the outer shell of atoms. C1 Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Luo, W (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM wdluo@ornl.gov RI Luo, Weidong/A-8418-2009 OI Luo, Weidong/0000-0003-3829-1547 NR 17 TC 52 Z9 52 U1 6 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3134 EP 3137 DI 10.1021/nl071688h PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400035 PM 17867717 ER PT J AU Wang, YJ Zhang, JZ Zhao, YS AF Wang, Yuejian Zhang, Jianzhong Zhao, Yusheng TI Strength weakening by nanocrystals in ceramic materials SO NANO LETTERS LA English DT Article ID HIGH-PRESSURE; MECHANICAL-BEHAVIOR; YIELD STRENGTH; ANATASE TIO2; DEFORMATION; TEMPERATURE; STRESS; METALS; MODEL AB A key question in nanomechanics concerns the grain size effects on materials' strength. Correct solution to this question is critical to design and tailor the properties of materials for particular applications. The full map of grain sizes-hardness/yield stress relationship in metals has been built. However, for ceramic materials, the similar studies and understandings are really lacking. Here we employed a novel technique to comparatively study the mechanical features of titanium dioxide (TiO2) with different crystallite sizes. On the basis of peak profile analysis of the X-ray diffraction data, we determined yield strength for nanocrystalline and bulk TiO2. Our results reveal a remarkable reduction in yield strength as the grain size decreases from 30-40 mu m to similar to 10 nm, providing the only evidence of a strength weakening by nanocrystals relative to their bulk counterparts. This finding infers an inverse Hall-Petch effect, the first of its kind for ceramic materials, and a dramatic strength weakening after the breakdown of classic Hall-Petch relation below a characteristic grain size. C1 Los Alamos Neutron Scattering Ctr, Univ Calif Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, YJ (reprint author), Los Alamos Neutron Scattering Ctr, Univ Calif Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM yuejianw@lanl.gov; yzhao@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Zhang, Jianzhong/0000-0001-5508-1782 NR 40 TC 20 Z9 20 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3196 EP 3199 DI 10.1021/nl0718723 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400045 PM 17854230 ER PT J AU Demchenko, DO Wang, LW AF Demchenko, Denis O. Wang, Lin-Wang TI Localized electron states near a metal/semiconductor nanocontact SO NANO LETTERS LA English DT Article ID QUANTUM DOTS; SINGLE; HETEROSTRUCTURES; NANOCRYSTAL; TRANSISTOR; TRANSPORT; NANOWIRES; NANORODS; GROWTH; ENERGY AB The electronic structure of nanowires in contact with metallic electrodes of experimentally relevant sizes is calculated by incorporating the electrostatic image potential into the atomistic single particle Schrodinger equation. We show that the presence of an electrode produces localized electron/hole states near the electrode. We found a strong nanowire size dependence of this localization effect. We calculate several electrode/nanowire geometries, with varying contact depths and nanowire radii. We demonstrate the change in the band gap of up to 0.5 eV in 3 nm diameter CdSe nanowires and calculate the magnitude of the applied electric field necessary to overcome the localization. C1 Lawrence Berkeley Natl Lab, Comp Res Div, Berkeley, CA 94720 USA. RP Demchenko, DO (reprint author), Lawrence Berkeley Natl Lab, Comp Res Div, Berkeley, CA 94720 USA. EM dodemchenko@lbl.gov NR 21 TC 13 Z9 13 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2007 VL 7 IS 10 BP 3219 EP 3222 DI 10.1021/nl072027n PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 220FU UT WOS:000250143400050 PM 17887719 ER PT J AU Kim, SH Asay, DB Dugger, MT AF Kim, Seong H. Asay, David B. Dugger, Michael T. TI Nanotribology and MEMS SO NANO TODAY LA English DT Article ID ATOMIC-FORCE MICROSCOPY; SELF-ASSEMBLED MONOLAYERS; PULL-OFF FORCES; MICROELECTROMECHANICAL SYSTEMS MEMS; FRICTIONAL-PROPERTIES; SILICON SURFACES; THIN-FILMS; ALKYL MONOLAYERS; SCALE FRICTION; CARBON-FILMS AB The tribological phenomena of adhesion, friction, and wear arise when solid objects make contact. As the size of devices shrinks to micro- and nanoscales, the surface-to-volume ratio increases and the effects of body forces (gravity and inertia) become insignificant compared with those of surface forces (van der Waals, capillary, electrostatic, and chemical bonding). In microelectromechanical systems (MEMS), tribological and static interfacial forces are comparable with forces driving device motion. In this situation, macroscale lubrication and wear mitigation methods, such as the use of bulk fluids and micrometer thick coatings, are ineffective; new nano-engineering approaches must be employed for MEMS devices with moving structures. We review fundamental tribological problems related to micro- and nanoscale mechanical contacts and developments in MEMS lubrications. C1 Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM shkim@engr.psu.edu NR 93 TC 173 Z9 179 U1 9 U2 77 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1748-0132 EI 1878-044X J9 NANO TODAY JI Nano Today PD OCT PY 2007 VL 2 IS 5 BP 22 EP 29 DI 10.1016/S1748-0132(07)70140-8 PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 224VO UT WOS:000250475300012 ER PT J AU Zhao, Y Shen, TD Zhang, JZ AF Zhao, Yusheng Shen, T. D. Zhang, Jianzhong TI High P-T nano-mechanics of polycrystalline nickel SO NANOSCALE RESEARCH LETTERS LA English DT Review DE nano-mechanics; polycrystalline nickel; high pressure and high temperature ID HALL-PETCH RELATION; NANOCRYSTALLINE MATERIALS; HIGH-PRESSURE; GRAIN-SIZE; YIELD STRENGTH; SEMICONDUCTOR NANOCRYSTALS; PLASTIC-DEFORMATION; PARTICLE-SIZE; ELASTIC PROPERTIES; SILICON-NITRIDE AB We have conducted high P-T synchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume-pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify "micro/local'' yield due to high stress concentration at the grain-to-grain contacts and "macro/bulk'' yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under high P-T conditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 T-m) hardens nanocrystalline Ni, leading to an inverse Hall-Petch relationship. We explain this abnormal Hall-Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni. C1 [Zhao, Yusheng; Zhang, Jianzhong] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. [Shen, T. D.] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. RP Zhao, YS (reprint author), Los Alamos Natl Lab, LANSCE LC, POB 1663, Los Alamos, NM 87545 USA. EM yzhao@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Zhang, Jianzhong/0000-0001-5508-1782 NR 84 TC 8 Z9 8 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1931-7573 J9 NANOSCALE RES LETT JI Nanoscale Res. Lett. PD OCT PY 2007 VL 2 IS 10 BP 476 EP 491 DI 10.1007/s11671-007-9095-z PG 16 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 269NL UT WOS:000253655700002 PM 21794186 ER PT J AU Jones, AR Miller, M Aebersold, R Apweiler, R Ball, CA Brazma, A DeGreef, J Hardy, N Hermjakob, H Hubbard, SJ Hussey, P Igra, M Jenkins, H Julian, RK Laursen, K Oliver, SG Paton, NW Sansone, SA Sarkans, U Stoeckert, CJ Taylor, CF Whetzel, PL White, JA Spellman, P Pizarro, A AF Jones, Andrew R. Miller, Michael Aebersold, Ruedi Apweiler, Rolf Ball, Catherine A. Brazma, Alvis DeGreef, James Hardy, Nigel Hermjakob, Henning Hubbard, Simon J. Hussey, Peter Igra, Mark Jenkins, Helen Julian, Randall K., Jr. Laursen, Kent Oliver, Stephen G. Paton, Norman W. Sansone, Susanna-Assunta Sarkans, Ugis Stoeckert, Christian J., Jr. Taylor, Chris F. Whetzel, Patricia L. White, Joseph A. Spellman, Paul Pizarro, Angel TI The Functional Genomics Experiment model (FuGE): an extensible framework for standards in functional genomics SO NATURE BIOTECHNOLOGY LA English DT Article ID PROTEIN ABUNDANCE; MESSENGER-RNA; OBJECT MODEL; PROTEOMICS; REPRESENTATION; COMMUNITY; ONTOLOGY; SCALE AB The Functional Genomics Experiment data model (FuGE) has been developed to facilitate convergence of data standards for high-throughput, comprehensive analyses in biology. FuGE models the components of an experimental activity that are common across different technologies, including protocols, samples and data. FuGE provides a foundation for describing entire laboratory workflows and for the development of new data formats. The Microarray Gene Expression Data society and the Proteomics Standards Initiative have committed to using FuGE as the basis for defining their respective standards, and other standards groups, including the Metabolomics Standards Initiative, are evaluating FuGE in their development efforts. Adoption of FuGE by multiple standards bodies will enable uniform reporting of common parts of functional genomics workflows, simplify data-integration efforts and ease the burden on researchers seeking to fulfill multiple minimum reporting requirements. Such advances are important for transparent data management and mining in functional genomics and systems biology. C1 Univ Penn, Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA. Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England. Rosetta Biosoftware, Seattle, WA 98109 USA. Inst Mol Syst Biol, HPT E 78, CH-8093 Zurich, Switzerland. Univ Zurich, Fac Sci, CH-8006 Zurich, Switzerland. Swiss Fed Inst Technol, Ctr Syst Physiol & Metab Dis, Zurich, Switzerland. Inst Syst Biol, Seattle, WA 98103 USA. European Bioinformat Inst, Cambridge CB10 1SD, England. Stanford Univ, Sch Med, Dept Biochem, CCSR, Stanford, CA 94305 USA. GenoLog Life Sci Software, Victoria, BC V8Z 7X8, Canada. Aberystwyth Univ, Dept Comp Sci, Aberystwyth SY23 3DB, Dyfed, Wales. LabKey Software, Seattle, WA 98103 USA. Indigo BioSyst Inc, Carmel, IN 46032 USA. Univ Penn, Ctr Bioinformat, Dept Genet, Philadelphia, PA 19104 USA. Dana Farber Canc Inst, Boston, MA 02115 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pizarro, A (reprint author), Univ Penn, Inst Translat Med & Therapeut, 421 Curie Blvd, Philadelphia, PA 19104 USA. EM angel@mail.med.upenn.edu RI Hubbard, Simon/B-9006-2009; Smith, Barry/A-9525-2011; OI Sansone, Susanna-Assunta/0000-0001-5306-5690; Smith, Barry/0000-0003-1384-116X; Hermjakob, Henning/0000-0001-8479-0262; Apweiler, Rolf/0000-0001-7078-200X; Pizarro, Angel/0000-0003-2263-2255; Paton, Norman/0000-0003-2008-6617; Taylor, Christopher/0000-0002-9666-798X; Brazma, Alvis/0000-0001-5988-7409; Sarkans, Ugis/0000-0001-9227-8488; Hubbard, Simon/0000-0002-8601-9524; Jones, Andrew/0000-0001-6118-9327 FU Biotechnology and Biological Sciences Research Council [BB/E025080/1, BBS/B/12407, BBS/B/17204]; NHGRI NIH HHS [1P41HG003619] NR 22 TC 63 Z9 66 U1 1 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD OCT PY 2007 VL 25 IS 10 BP 1127 EP 1133 DI 10.1038/nbt1347 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 221KQ UT WOS:000250226600023 PM 17921998 ER PT J AU Zhou, SY Gweon, GH Fedorov, AV First, PN De Heer, WA Lee, DH Guinea, F Castro Neto, AH Lanzara, A AF Zhou, S. Y. Gweon, G.-H. Fedorov, A. V. First, P. N. De Heer, W. A. Lee, D.-H. Guinea, F. Castro Neto, A. H. Lanzara, A. TI Substrate-induced bandgap opening in epitaxial graphene SO NATURE MATERIALS LA English DT Article ID DIRAC FERMIONS; GRAPHITE; MICROSCOPY; FILMS; GAS AB Graphene has shown great application potential as the host material for next-generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is the lack of an energy gap in its electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphene's electronic spectra, they all require complex engineering of the graphene layer. Here, we show that when graphene is epitaxially grown on SiC substrate, a gap of approximate to 0.26 eV is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe that our results highlight a promising direction for bandgap engineering of graphene. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Bekeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Lanzara, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM Alanzara@lbl.gov RI Zhou, Shuyun/A-5750-2009; Guinea, Francisco/A-7122-2008; Castro Neto, Antonio/C-8363-2014 OI Guinea, Francisco/0000-0001-5915-5427; Castro Neto, Antonio/0000-0003-0613-4010 NR 29 TC 1300 Z9 1321 U1 23 U2 439 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD OCT PY 2007 VL 6 IS 10 BP 770 EP 775 DI 10.1038/nmat2003 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 216GO UT WOS:000249866700025 PM 17828279 ER PT J AU Gansen, EJ Rowe, MA Greene, MB Rosenberg, D Harvey, TE Su, MY Hadfield, RH Nam, SW Mirin, RP AF Gansen, E. J. Rowe, M. A. Greene, M. B. Rosenberg, D. Harvey, T. E. Su, M. Y. Hadfield, R. H. Nam, S. W. Mirin, R. P. TI Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor SO NATURE PHOTONICS LA English DT Article AB Detectors with the capability to directly measure the photon number of a pulse of light(1-3) enable linear optics quantum computing(4), affect the security of quantum communications(5), and can be used to characterize(6-8) and herald(9) non-classical states of light. Here, we demonstrate the photon-number-resolving capabilities of a quantum-dot, optically gated, field-effect transistor that uses quantum dots as optically addressable floating gates in a GaAs/Al0.2Ga0.8As delta-doped field-effect transistor. When the active area of the detector is illuminated, photo-generated carriers trapped by quantum dots screen the gate field, causing a persistent change in the channel current that is proportional to the number of confined carriers. Using weak laser pulses, we show that discrete numbers of trapped carriers produce well resolved changes in the channel current. We demonstrate that for a mean photon number of 1.1, decision regions can be defined such that the field-effect transistor determines the number of detected photons with a probability of accuracy greater than 83%. C1 Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80305 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland. RP Gansen, EJ (reprint author), Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80305 USA. EM gansen@boulder.nist.gov RI Hadfield, Robert/L-8081-2013; OI Hadfield, Robert/0000-0002-8084-4187; Mirin, Richard/0000-0002-4472-4655 NR 15 TC 65 Z9 67 U1 4 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD OCT PY 2007 VL 1 IS 10 BP 585 EP 588 DI 10.1038/nphoton.2007.173 PG 4 WC Optics; Physics, Applied SC Optics; Physics GA 224GV UT WOS:000250436400017 ER PT J AU Glenzer, SH Froula, DH Divol, L Dorr, M Berger, RL Dixit, S Hammel, BA Haynam, C Hittinger, JA Holder, JP Jones, OS Kalantar, DH Landen, OL Langdon, AB Langer, S MacGowan, BJ Mackinnon, AJ Meezan, N Moses, EI Niemann, C Still, CH Suter, LJ Wallace, RJ Williams, EA Young, BKF AF Glenzer, S. H. Froula, D. H. Divol, L. Dorr, M. Berger, R. L. Dixit, S. Hammel, B. A. Haynam, C. Hittinger, J. A. Holder, J. P. Jones, O. S. Kalantar, D. H. Landen, O. L. Langdon, A. B. Langer, S. MacGowan, B. J. Mackinnon, A. J. Meezan, N. Moses, E. I. Niemann, C. Still, C. H. Suter, L. J. Wallace, R. J. Williams, E. A. Young, B. K. F. TI Experiments and multiscale simulations of laser propagation through ignition-scale plasmas SO NATURE PHYSICS LA English DT Article ID STIMULATED BRILLOUIN-SCATTERING; 1ST EXPERIMENTS; PHASE PLATE; FACILITY; FILAMENTATION; SUPPRESSION; PERFORMANCE; FUSION; TARGET; BEAMS AB With the next generation of high-power laser facilities for inertial fusion coming online(1,2), ensuring laser beam propagation through centimetre-scale plasmas is a key physics issue for reaching ignition. Existing experimental results(3-5) including the most recent one(6) are limited to small laser spots, low-interaction laser beam energies and small plasma volumes of 1-2 mm. Here, we demonstrate the propagation of an intense, high-energy, ignition-size laser beam through fusion-size plasmas on the National Ignition Facility (NIF) and find the experimental measurements to agree with full-scale modelling. Previous attempts to apply computer modelling as a predictive capability have been limited by the inherently multiscale description of the full laser-plasma interaction processes(7-11). The findings of this study validate supercomputer modelling as an essential tool for the design of future ignition experiments. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Calif Los Angeles, Elect Engn Dept, Los Angeles, CA 90095 USA. RP Glenzer, SH (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. EM glenzer1@llnl.gov RI MacKinnon, Andrew/P-7239-2014 OI MacKinnon, Andrew/0000-0002-4380-2906 NR 30 TC 35 Z9 37 U1 0 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD OCT PY 2007 VL 3 IS 10 BP 716 EP 719 DI 10.1038/nphys709 PG 4 WC Physics, Multidisciplinary SC Physics GA 217FN UT WOS:000249933900020 ER PT J AU MacRae, IJ Zhou, K Doudna, JA AF MacRae, Ian J. Zhou, Kaihong Doudna, Jennifer A. TI Structural determinants of RNA recognition and cleavage by Dicer SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID DOUBLE-STRANDED-RNA; COLI RIBONUCLEASE-III; PROTEIN; INTERFERENCE; INITIATION; MECHANISM; SUBSTRATE; SEQUENCE; COMPLEX; BINDING AB A hallmark of RNA interference is the production of short double-stranded RNA ( dsRNA) molecules 21-28 nucleotides in length by the specialized RNase III protein Dicer. Dicer enzymes uniquely generate RNA products of specific lengths by mechanisms that have not been fully elucidated. Here we show that the PAZ domain responsible for dsRNA end recognition confers this measuring ability through both its structural position and RNA-binding specificity. Point mutations define the dsRNA-binding surface and reveal a protein loop important for cleavage of substrates containing perfect or imperfect base pairing. On the basis of these results, we reengineered Dicer with a U1A RNA-binding domain in place of the PAZ domain to create an enzyme with altered end-recognition specificity and RNA product length. These results explain how Dicer functions as a molecular ruler and provide a structural basis for modifying its activity in cells. C1 Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM doudna@berkeley.edu FU NIGMS NIH HHS [5R01GM073794-02] NR 28 TC 144 Z9 148 U1 1 U2 22 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD OCT PY 2007 VL 14 IS 10 BP 934 EP 940 DI 10.1038/nsmb1293 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 221KR UT WOS:000250226700016 PM 17873886 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear data sheets for A=137 SO NUCLEAR DATA SHEETS LA English DT Review ID DELAYED-NEUTRON EMISSION; HIGH-SPIN STATES; SEPARATED FISSION-PRODUCTS; ISOBARIC ANALOG RESONANCES; HIGHLY-DEFORMED BANDS; CONVERSION-COEFFICIENT MEASUREMENTS; BEAM-LASER SPECTROSCOPY; GAMMA-RAY SPECTROSCOPY; HALF-LIFE MEASUREMENTS; SHORT-LIVED XENON AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reactions for all isobars with mass number A=137. C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Browne, E (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. NR 314 TC 46 Z9 46 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD OCT PY 2007 VL 108 IS 10 BP 2173 EP + DI 10.1016/j.nds.2007.09.002 PG 145 WC Physics, Nuclear SC Physics GA 229AM UT WOS:000250773700002 ER PT J AU Chen, HJ Chen, YT Hsieh, HT Zhang, JS AF Chen, Huajun Chen, Yitung Hsieh, Hsuan-Tsung Zhang, Jinsuo TI A lattice Boltzmann modeling of corrosion behavior and oxygen transport in the natural convection lead-alloy flow SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID LIQUID LEAD; STEEL CORROSION; BISMUTH; SYSTEMS; CAVITY; TURBULENCE; COOLANT; FLUIDS; GAS AB Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) or liquid lead as a nuclear coolant in accelerator-driven systems and advanced reactors. Actively controlling the oxygen concentration in LBE has been proved to be effective to mitigate corrosion under certain conditions. For mixing the oxygen uniformly and quickly, natural convection is proposed to enhance the oxygen transport. In the present study, a lattice Boltzmman simulation of coupled natural convection and lead bismuth eutectic flow in a simplified container was carried out to study characteristics of the oxygen transport and corrosion behaviors. It is assumed that the corrosion product (mainly iron) concentration is at its equilibrium level at the wall. The wall boundary condition for the mass transfer of corrosion production was taken based on the active-oxygen-control model. To examine the effect of different nature convection flow patterns on corrosion behavior and oxygen transport, three heating cases, which correspond to one-, two- and four-vortex flow patterns, are examined. Both of the local and average Sherwood number at the wall, distribution of corrosion product and oxygen, and oxygen diffusion time are analyzed. Some useful information was obtained to understand the mechanism of corrosion behavior and oxygen transport in the LBE system. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. Los Alamos Natl Lab, Nucl Design & Risk Anal Grp, Los Alamos, NM 87545 USA. RP Chen, YT (reprint author), Univ Nevada, Dept Mech Engn, 4505 Maryland Pkwy,Box 454027, Las Vegas, NV 89154 USA. EM uuchen@nscee.edu RI Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 NR 26 TC 1 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2007 VL 237 IS 18 BP 1987 EP 1998 DI 10.1016/j.nucengdes.2007.01.016 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 215LK UT WOS:000249809700002 ER PT J AU Fink, SD Restivo, ML Peters, TB Fowley, MD Burns, DB Smith, WM Fondeur, FF Crump, SL Norato, MA Herman, DT Nash, CA AF Fink, S. D. Restivo, M. L. Peters, T. B. Fowley, M. D. Burns, D. B. Smith, W. M., Jr. Fondeur, F. F. Crump, S. L. Norato, M. A. Herman, D. T. Nash, C. A. TI Caustic solutions SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 Savannah River Ecol Lab, Aiken, SC 29808 USA. RP Fink, SD (reprint author), Savannah River Ecol Lab, Aiken, SC 29808 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD OCT PY 2007 VL 52 IS 639 BP 22 EP 23 PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 221WJ UT WOS:000250257800006 ER PT J AU Gates-Anderson, D Rasmussen, C Fischer, R Viani, B Hu, QH Sutton, M McNab, W AF Gates-Anderson, Dianne Rasmussen, Chris Fischer, Robert Viani, Brian Hu, Qinhong Sutton, Mark McNab, Walt TI Dirty bomb fallout SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gates-Anderson, D (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. RI Hu, Qinhong/C-3096-2009 OI Hu, Qinhong/0000-0002-4782-319X NR 0 TC 1 Z9 1 U1 0 U2 3 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD OCT PY 2007 VL 52 IS 639 BP 28 EP 29 PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 221WJ UT WOS:000250257800008 ER PT J AU Baluc, N Abe, K Boutard, JL Chernov, VM Diegele, E Jitsukawa, S Kimura, A Klueh, RL Kohyama, A Kurtz, RJ Lasser, R Matsui, H Moslang, A Muroga, T Odette, GR Tran, MQ Van der Schaaf, B Wu, Y Yu, I Zinkle, SJ AF Baluc, N. Abe, K. Boutard, J. L. Chernov, V. M. Diegele, E. Jitsukawa, S. Kimura, A. Klueh, R. L. Kohyama, A. Kurtz, R. J. Lasser, R. Matsui, H. Moslang, A. Muroga, T. Odette, G. R. Tran, M. Q. Van der Schaaf, B. Wu, Y. Yu, I. Zinkle, S. J. TI Status of R&D activities on materials for fusion power reactors SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 21st IAEA Fusion Energy Conference CY OCT 16-21, 2006 CL Chengdu, PEOPLES R CHINA SP IAEA, SW Inst Phys, Chengdu Municipal Govt ID FERRITIC-MARTENSITIC STEELS; LOW-ACTIVATION MATERIALS; NEUTRON PULSE OPERATION; LI2TIO3 PEBBLE BED; STRUCTURAL-MATERIALS; FERRITIC/MARTENSITIC STEELS; VANADIUM ALLOYS; DISPLACEMENT CASCADES; MECHANICAL-PROPERTIES; MOLECULAR-DYNAMICS AB Current R&D activities on materials for fusion power reactors are mainly focused on plasma facing, structural and tritium breeding materials for plasma facing (first wall, divertor) and breeding blanket components. Most of these activities are being performed in Europe, Japan, the People's Republic of China, Russia and the USA. They relate to the development of new high temperature, radiation resistant materials, the development of coatings that will act as erosion, corrosion, permeation and/or electrical/MHD barriers, characterization of candidate materials in terms of mechanical and physical properties, assessment of irradiation effects, compatibility experiments, development of reliable joints, and development and/or validation of design rules. Priorities defined worldwide in the field of materials for fusion power reactors are summarized, as well as the main achievements obtained during the last few years and the near-term perspectives in the different investigation areas. C1 EPFL, CRPP, Villigen, Switzerland. Tohoku Univ, Dept Quantum Sci & Energy Engn, Sendai, Miyagi 980, Japan. EFDA CSU, Garching, Germany. AA Bochvar Inorgan Mat Res Inst, Moscow, Russia. JAEA, Tokyo, Japan. Kyoto Univ, IAE, Kyoto, Japan. ORNL, Oak Ridge, TN USA. Pacific NW Natl Lab, Washington, DC USA. Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan. IMF 1, FZK, Karlsruhe, Germany. UCSB, Santa Barbara, CA USA. CRPP EPFL, Lausanne, Switzerland. NRG, Petten, Netherlands. Acad Sinica, Inst Plasma Phys, Hefei 230031, Peoples R China. CIAE, Beijing, Peoples R China. RP Baluc, N (reprint author), EPFL, CRPP, Villigen, Switzerland. EM nadine.baluc@psi.ch RI Chernov, Vyacheslav/F-1470-2014; OI Zinkle, Steven/0000-0003-2890-6915 NR 222 TC 68 Z9 71 U1 1 U2 27 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2007 VL 47 IS 10 BP S696 EP S717 DI 10.1088/0029-5515/47/10/S18 PG 22 WC Physics, Fluids & Plasmas SC Physics GA 226SZ UT WOS:000250610100019 ER PT J AU Lloyd, B Akers, RJ Alladio, F Andrew, Y Appel, LC Applegate, D Axon, KB Ben Ayed, N Bunting, C Butteryl, RJ Carolan, PG Chapman, I Ciric, D Connor, JW Conway, NJ Cox, M Counsell, GF Cunningham, G Darke, A Delchambre, E Dendy, RO Dowling, J Dudson, B Dunstan, M Field, AR Foster, A Gee, S Garzotti, L Gryaznevich, MP Gurchenko, A Gusakov, E Hawkes, NC Helander, P Hender, TC Hnat, B Howell, DF Joiner, N Keeling, D Kirk, A Koch, B Kuldkepp, M Lisgo, S Lott, F Maddison, GP Maingi, R Mancuso, A Manhood, SJ Martin, R McArdle, GJ McCone, J Meyer, H Micozzi, P Morris, AW Muir, DG Nelson, M O'Brien, MR Patel, A Pinches, S Preinhaelter, J Price, MN Rachlew, E Roach, CM Rozhansky, V Saarelma, S Saveliev, A Scannell, R Sharapov, SE Shevchenko, V Shibaev, S Stammers, K Storrs, J Surkov, A Sykes, A Tallents, S Taylor, D Thomas-Davies, N Turnyanskiy, MR Urban, J Valovic, M Vann, RGL Volpe, F Voss, G Walsh, MJ Warder, SEV Watkins, R Wilson, HR Wisse, M AF Lloyd, B. Akers, R. J. Alladio, F. Andrew, Y. Appel, L. C. Applegate, D. Axon, K. B. Ben Ayed, N. Bunting, C. Butteryl, R. J. Carolan, P. G. Chapman, I. Ciric, D. Connor, J. W. Conway, N. J. Cox, M. Counsell, G. F. Cunningham, G. Darke, A. Delchambre, E. Dendy, R. O. Dowling, J. Dudson, B. Dunstan, M. Field, A. R. Foster, A. Gee, S. Garzotti, L. Gryaznevich, M. P. Gurchenko, A. Gusakov, E. Hawkes, N. C. Helander, P. Hender, T. C. Hnat, B. Howell, D. F. Joiner, N. Keeling, D. Kirk, A. Koch, B. Kuldkepp, M. Lisgo, S. Lott, F. Maddison, G. P. Maingi, R. Mancuso, A. Manhood, S. J. Martin, R. McArdle, G. J. McCone, J. Meyer, H. Micozzi, P. Morris, A. W. Muir, D. G. Nelson, M. O'Brien, M. R. Patel, A. Pinches, S. Preinhaelter, J. Price, M. N. Rachlew, E. Roach, C. M. Rozhansky, V. Saarelma, S. Saveliev, A. Scannell, R. Sharapov, S. E. Shevchenko, V. Shibaev, S. Stammers, K. Storrs, J. Surkov, A. Sykes, A. Tallents, S. Taylor, D. Thomas-Davies, N. Turnyanskiy, M. R. Urban, J. Valovic, M. Vann, R. G. L. Volpe, F. Voss, G. Walsh, M. J. Warder, S. E. V. Watkins, R. Wilson, H. R. Wisse, M. TI Overview MAST SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 21st IAEA Fusion Energy Conference CY OCT 16-21, 2006 CL Chengdu, PEOPLES R CHINA SP IAEA, SW Inst Phys, Chengdu Municipal Govt ID INTERNAL KINK MODE; TOROIDAL PLASMA ROTATION; SPHERICAL TOKAMAK; PELLET; INSTABILITIES; STABILIZATION; CONFINEMENT; ACCESS; BETA; JET AB Substantial advances have been made on the Mega Ampere Spherical Tokamak (MAST). The parameter range of the MAST confinement database has been extended and it now also includes pellet-fuelled discharges. Good pellet retention has been observed in H-mode discharges without triggering an ELM or an H/L transition during peripheral ablation of low speed pellets. Co-ordinated studies on MAST and DIII-D demonstrate a strong link between the aspect ratio and the beta scaling of H-mode energy confinement, consistent with that obtained when MAST data were merged with a subset of the ITPA database. Electron and ion ITBs are readily formed and their evolution has been investigated. Electron and ion thermal diffusivities have been reduced to values close to the ion neoclassical level. Error field correction coils have been used to determine the locked mode threshold scaling which is comparable to that in conventional aspect ratio tokamaks. The impact of plasma rotation on sawteeth has been investigated and the results have been well-modelled using the MISHKA-F code. Alfven cascades have been observed in discharges with reversed magnetic shear. Measurements during off-axis NBCD and heating are consistent with classical fast ion modelling and indicate efficient heating and significant driven current. Central electron Bernstein wave heating has been observed via the O-X-B mode conversion process in special magnetically compressed plasmas. Plasmas with low pedestal collisionality have been established and further insight has been gained into the characteristics of filamentary structures at the plasma edge. Complex behaviour of the divertor power loading during plasma disruptions has been revealed by high resolution infra-red measurements. C1 UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. EURATOM, ENEA Sulla Fus, Rome, Italy. Univ London Imperial Coll Sci Technol & Med, London, England. Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. AF Ioffe Phys Tech Inst, St Petersburg, Russia. Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. Univ Berlin, Inst Phys Humboldt, Berlin, Germany. EURATOM VR Assoc, Dept Phys, KTH, SE-10691 Stockholm, Sweden. Univ Toronto, Inst Aerosp Studies, N York, ON M3H 5T6, Canada. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Dublin City Univ, EURATOM Assoc, Univ Coll, Cork, Ireland. Queens Univ Belfast, Dept Phys, Belfast BT7 1NN, Antrim, North Ireland. EURATOM, IPPCR Fus, Prague, Czech Republic. St Petersburg State Polytech Univ, St Petersburg, Russia. RP Lloyd, B (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. EM brian.lloyd@ukaea.org.uk RI Dendy, Richard/A-4533-2009; Volpe, Francesco/D-2994-2009; Roach, Colin/C-4839-2011; Saveliev, Alexander/C-1095-2014; Preinhaelter, Josef/H-1394-2014; Gurchenko, Alexey/C-1496-2014 OI Urban, Jakub/0000-0002-1796-3597; Volpe, Francesco/0000-0002-7193-7090; NR 39 TC 15 Z9 16 U1 0 U2 15 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2007 VL 47 IS 10 BP S658 EP S667 DI 10.1088/0029-5515/47/10/SI4 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 226SZ UT WOS:000250610100015 ER PT J AU Menard, JE Bell, MG Bell, RE Bernabei, S Bialek, J Biewer, T Blanchard, W Boedo, J Bush, CE Carter, MD Choe, W Crocker, NA Darrow, DS Davis, W Delgado-Aparicio, L Diem, S Domier, CW D'Ippolito, DA Ferron, J Field, A Foley, J Fredrickson, ED Gates, DA Gibney, T Harvey, R Hatcher, RE Heidbrink, W Hill, KW Hosea, JC Jarboe, TR Johnson, DW Kaita, R Kaye, SM Kessel, CE Kubota, S Kugel, HW Lawson, J LeBlanc, BP Lee, KC Levinton, FM Luhmann, NC Maingi, R Majeski, RP Manickam, J Mansfield, DK Maqueda, R Marsala, R Mastrovito, D Mau, TK Mazzucato', E Meyer, MH Mikkelseni, DR Mueller, D Munsat, T Kessel, CE Kubota, S Kugel, HW Lawson, J LeBlanc, BP Lee, KC Levinton, FM Luhmann, NC Maingi, R Majeski, RP Manickam, J Mansfield, DK Maquedal, R Marsala, R Mastrovito, D Mau, TK Mazzucato', E Meyer, MH Mikkelsen, DR Mueller, D Munsat, T Myra, JR Nelson, BA Neumeyer, C Nishino, N Ono, M Park, HK Park, W Paul, SF Peebles, T Peng, M Phillips, C Pigarov, A Pinsker, R Ramakrishnan, ARS Rasmussen, D Redi, M Rensink, M Rewoldt, G Robinson, J Roney, P Roquemore, AL Ruskov, E Ryan, R Sabbagh, SA Skinner, CH Smith, DR Sontag, A Soukhanovskii, V Stevenson, T Stotler, D Stratton, BC Stutman, D Swain, D Synakowski, E Takase, Y Taylor, G Tritz, K Von Halle, A Wade, M White, R Wilgen, J Williams, M J, RW Yuh, H Zakharov, LE Zhu, W Zweben, SJ Akers, R Beiersdorfer, P Betti, R Bigelow, T Bitter, M Bonoli, P Bourdelle, C Chang, CS Chrzanowski, J Dudek, L Efthimion, PC Finkenthal, M Fredd, E Fu, GY Glasser, A Goldston, RJ Greenough, NL Grisham, LR Gorelenkov, N GuaZZotto, L Hawryluk, RJ Hogan, J Houlberg, W Humphreys, D Jaeger, F Kalish, M Krasheninnikov, S Lao, LL Lawrence, J Leuerl, J Liu, D Oliaro, G Pacella, D Parsellsi, R Schaffer, M Semenov, I Shaing, KC Shapiro', MA Shinohara, K Sichta, P Tang, X Vero, R Walker, M Wampler, W AF Menard, J. E. Bell, M. G. Bell, R. E. Bernabei, S. Bialek, J. Biewer, T. Blanchard, W. Boedo, J. Bush, C. E. Carter, M. D. Choe, W. Crocker, N. A. Darrow, D. S. Davis, W. Delgado-Aparicio, L. Diem, S. Domier, C. W. D'Ippolito, D. A. Ferron, J. Field, A. Foley, J. Fredrickson, E. D. Gates, D. A. Gibney, T. Harvey, R. Hatcher, R. E. Heidbrink, W. Hill, K. W. Hosea, J. C. Jarboe, T. R. Johnson, D. W. Kaita, R. Kaye, S. M. Kessel, C. E. Kubota, S. Kugel, H. W. Lawson, J. LeBlanc, B. P. Lee, K. C. Levinton, F. M. Luhmann, N. C., Jr. Maingi, R. Majeski, R. P. Manickam, J. Mansfield, D. K. Maqueda, R. Marsala, R. Mastrovito, D. Mau, T. K. Mazzucato', E. Meyer, Medleyl H. Mikkelseni, D. R. Mueller, D. Munsat, T. Kessel, C. E. Kubota, S. Kugel, H. W. Lawson, J. LeBlanc, B. P. Lee, K. C. Levinton, F. M. Luhmann, N. C., Jr. Maingi, R. Majeski, R. P. Manickam, J. Mansfield, D. K. Maquedal, R. Marsala, R. Mastrovito, D. Mau, T. K. Mazzucato', E. Meyer, Medleyl H. Mikkelsen, D. R. Mueller, D. Munsat, T. Myra, J. R. Nelson, B. A. Neumeyer, C. Nishino, N. Ono, M. Park, H. K. Park, W. Paul, S. F. Peebles, T. Peng, M. Phillips, C. Pigarov, A. Pinsker, R. Ramakrishnan, A. Ram S. Rasmussen, D. Redi, M. Rensink, M. Rewoldt, G. Robinson, J. Roney, P. Roquemore, A. L. Ruskov, E. Ryan, R. Sabbagh, S. A. Skinner, C. H. Smith, D. R. Sontag, A. Soukhanovskii, V. Stevenson, T. Stotler, D. Stratton, B. C. Stutman, D. Swain, D. Synakowski, E. Takase, Y. Taylor, G. Tritz, K. Von Halle, A. Wade, M. White, R. Wilgen, J. Williams, M. J., R. Wilson Yuh, H. Zakharov, L. E. Zhu, W. Zweben, S. J. Akers, R. Beiersdorfer, P. Betti, R. Bigelow, T. Bitter, M. Bonoli, P. Bourdelle, C. Chang, C. S. Chrzanowski, J. Dudek, L. Efthimion, P. C. Finkenthal, M. Fredd, E. Fu, G. Y. Glasser, A. Goldston, R. J. Greenough, N. L. Grisham, L. R. Gorelenkov, N. Guazzotto, L. Hawryluk, R. J. Hogan, J. Houlberg, W. Humphreys, D. Jaeger, F. Kalish, M. Krasheninnikov, S. Lao, L. L. Lawrence, J. Leuerl, J. Liu, D. Oliaro, G. Pacella, D. Parsellsi, R. Schaffer, M. Semenov, I. Shaing, K. C. Shapiro', M. A. Shinohara, K. Sichta, P. Tang, X. Vero, R. Walker, M. Wampler, W. TI Overview of recent physics results from the national spherical torus experiment (NSTX) SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 21st IAEA Fusion Energy Conference CY OCT 16-21, 2006 CL Chengdu, PEOPLES R CHINA SP IAEA, SW Inst Phys, Chengdu Municipal Govt ID POWER-PLANT; PLASMAS; TOKAMAK; CONFINEMENT; REGIME; MODES AB The National Spherical Torus Experiment (NSTX) has made considerable progress in advancing the scientific understanding of high performance long-pulse plasmas needed for future spherical torus (ST) devices and ITER. Plasma durations up to 1.6 s (five current redistribution times) have been achieved at plasma currents of 0.7 MA with non-inductive current fractions above 65% while simultaneously achieving beta(T) and beta(N) values of 17% and 5.7 (%m T MA(-1)), respectively. A newly available motional Stark effect diagnostic has enabled validation of current-drive sources and improved the understanding of NSTX 'hybrid'-like scenarios. In MHD research, ex-vessel radial field coils have been utilized to infer and correct intrinsic EFs, provide rotation control and actively stabilize the n = 1 resistive wall mode at ITER-relevant low plasma rotation values. In transport and turbulence research, the low aspect ratio and a wide range of achievable in the NSTX provide unique data for confinement scaling studies, and a new microwave scattering diagnostic is being used to investigate turbulent density fluctuations with wavenumbers extending from ion to electron gyro-scales. In energetic particle research, cyclic neutron rate drops have been associated with the destabilization of multiple large toroidal Alfven eigenmodes (TAEs) analogous to the 'sea-of-TAE' modes predicted for ITER, and three-wave coupling processes have been observed for the first time. In boundary physics research, advanced shape control has enabled studies of the role of magnetic balance in H-mode access and edge localized mode stability. Peak divertor heat flux has been reduced by a factor of 5 using an H-mode-compatible radiative divertor, and lithium conditioning has demonstrated particle pumping and results in improved thermal confinement. Finally, non-solenoidal plasma start-up experiments have achieved plasma currents of 160 kA on closed magnetic flux surfaces utilizing coaxial helicity injection. C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. Univ Calif San Diego, San Diego, CA 92103 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. Univ Calif Los Angeles, Los Angeles, CA USA. Johns Hopkins Univ, Baltimore, MD USA. Univ Calif Davis, Davis, CA 95616 USA. Lodestar Res Corp, Boulder, CO USA. Gen Atom Co, San Diego, CA USA. UKAEA Euratom Fus Assoc, Culham Lab, Abingdon OX14 3DB, Oxon, England. Comp X, Del Mar, CA USA. Univ Calif Irvine, Irvine, CA USA. Univ Washington, Seattle, WA 98195 USA. Nova Photon, Princeton, NJ USA. Univ Colorado, Boulder, CO 80309 USA. Hiroshima Univ, Hiroshima, Japan. MIT, Cambridge, MA 02139 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. Univ Tokyo, Tokyo, Japan. Univ Rochester, Rochester, NY USA. CEA, Cadarache, France. NYU, New York, NY USA. Los Alamos Natl Lab, Los Alamos, NM USA. Princeton Sci Instruments, Princeton, NJ USA. ENEA, Frascati, Italy. Kurchatov Inst, Moscow, Russia. Univ Wisconsin, Madison, WI USA. JAERI, Naka, Ibaraki, Japan. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Menard, JE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Sabbagh, Steven/C-7142-2011; Nishino, Nobuhiro/D-6390-2011; Choe, Wonho/C-1556-2011; White, Roscoe/D-1773-2013; Stotler, Daren/J-9494-2015; Stutman, Dan/P-4048-2015; Liu, Deyong/Q-2797-2015; OI White, Roscoe/0000-0002-4239-2685; Stotler, Daren/0000-0001-5521-8718; Liu, Deyong/0000-0001-9174-7078; Davis, William/0000-0003-0666-7247; Menard, Jonathan/0000-0003-1292-3286; Walker, Michael/0000-0002-4341-994X NR 52 TC 29 Z9 29 U1 2 U2 12 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2007 VL 47 IS 10 BP S645 EP S657 DI 10.1088/0029-5515/47/10/S13 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 226SZ UT WOS:000250610100014 ER PT J AU Sanchez, J Acedo, M Alonso, A Alonso, J Alvarez, P De Aragon, F Ascasibar, E Baciero, A Balbin, R Barrera, L Blanco, E Botija, J Branas, B De la Cal, E Calderon, E Calvo, I Cappa, A Carmona, JA Carreras, BA Carrasco, R Castejon, F Catalan, G Chmyga, AA Dreval, NB Chamorro, M Eguilior, S Encabo, J Eliseev, L Estrada, T Fernandez, A Fernandez, R Ferreira, JA Fontdecaba, JM Fuentes, C De la Gama, J Garcia, A Garcia, L Garcia-Cortes, I Garcia-Regana, JM Goncalves, B Guasp, J Herranz, J Hidalgo, A Hidalgo, C Jimenez-Gomez, R Jimenez, JA Jimenez, D Kirpitchev, I Komarov, AD Kozachok, AS Krupnik, L Lapayese, F Liniers, M Lopez-Bruna, D Lopez-Fraguas, A Lopez-Razola, J Lopez-Sanchez, A De la Luna, E Marcon, G Martin, F Martinez-Fresno, L McCarthy, KJ Medina, F Medrano, M Melnikov, AV Mendez, P Mirones, E Van Milligen, B Nedzelskiy, IS Ochando, M Olivares, J Orozco, R Ortiz, P De Pablos, JL Pacios, L Pastor, I Pedrosa, MA De la Pena, A Pereira, A Perez-Riscol, D Petrov, A Petrov, S Portas, A Rapisarda, D Rios, L Rodriguez, C Rodriguez-Rodrigo, L Rodriguez-Solano, E Romero, J Ros, A Salas, A Sanchez, E Sanchez, M Sanchez-Sarabia, E Sarasola, X Sarksian, K Silva, C Schchepetov, S Skvortsova, N Soleto, A Tabares, F Tafalla, D Tera, J Tolkachev, A Tribaldos, V Vargas, VI Vega, J Velasco, G Weber, M Wolfers, G Zweben, SJ Zurro, B AF Sanchez, J. Acedo, M. Alonso, A. Alonso, J. Alvarez, P. De Aragon, F. Ascasibar, E. Baciero, A. Balbin, R. Barrera, L. Blanco, E. Botija, J. Branas, B. De la Cal, E. Calderon, E. Calvo, I. Cappa, A. Carmona, J. A. Carreras, B. A. Carrasco, R. Castejon, F. Catalan, G. Chmyga, A. A. Dreval, N. B. Chamorro, M. Eguilior, S. Encabo, J. Eliseev, L. Estrada, T. Fernandez, A. Fernandez, R. Ferreira, J. A. Fontdecaba, J. M. Fuentes, C. De la Gama, J. Garcia, A. Garcia, L. Garcia-Cortes, I. Garcia-Regana, J. M. Goncalves, B. Guasp, J. Herranz, J. Hidalgo, A. Hidalgo, C. Jimenez-Gomez, R. Jimenez, J. A. Jimenez, D. Kirpitchev, I. Komarov, A. D. Kozachok, A. S. Krupnik, L. Lapayese, F. Liniers, M. Lopez-Bruna, D. Lopez-Fraguas, A. Lopez-Razola, J. Lopez-Sanchez, A. De la Luna, E. Marcon, G. Martin, F. Martinez-Fresno, L. McCarthy, K. J. Medina, F. Medrano, M. Melnikov, A. V. Mendez, P. Mirones, E. Van Milligen, B. Nedzelskiy, I. S. Ochando, M. Olivares, J. Orozco, R. Ortiz, P. De Pablos, J. L. Pacios, L. Pastor, I. Pedrosa, M. A. De la Pena, A. Pereira, A. Perez-Riscol, D. Petrov, A. Petrov, S. Portas, A. Rapisarda, D. Rios, L. Rodriguez, C. Rodriguez-Rodrigo, L. Rodriguez-Solano, E. Romero, J. Ros, A. Salas, A. Sanchez, E. Sanchez, M. Sanchez-Sarabia, E. Sarasola, X. Sarksian, K. Silva, C. Schchepetov, S. Skvortsova, N. Soleto, A. Tabares, F. Tafalla, D. Tera, J. Tolkachev, A. Tribaldos, V. Vargas, V. I. Vega, J. Velasco, G. Weber, M. Wolfers, G. Zweben, S. J. Zurro, B. TI Overview of TJ-II experiments SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 21st IAEA Fusion Energy Conference CY OCT 16-21, 2006 CL Chengdu, PEOPLES R CHINA SP IAEA, SW Inst Phys, Chengdu Municipal Govt ID RATIONAL MAGNETIC-SURFACES; ECRH PLASMAS; STELLARATOR; CONFINEMENT; TRANSPORT; CORE; TURBULENCE; DEVICES; REGIME AB This paper presents an overview of experimental results and progress made in investigating the link between magnetic topology, electric fields and transport in the TJ-II stellarator. The smooth change from positive to negative electric field observed in the core region as the density is raised is correlated with global and local ttansport data. A statistical description of transport is emerging as a new way to describe the coupling between profiles, plasma flows and turbulence. TJ-II experiments show that the location of rational surfaces inside the plasma can, in some circumstances, provide a trigger for the development of core transitions, providing a critical test for the various models that have been proposed to explain the appearance of transport barriers in relation to magnetic topology. In the plasma core, perpendicular rotation is strongly coupled to plasma density, showing a reversal consistent with neoclassical expectations. In contrast, spontaneous sheared flows in the plasma edge appear to be coupled strongly to plasma turbulence, consistent with the expectation for turbulent driven flows. The local injection of hydrocarbons through a mobile limiter and the erosion produced by plasmas with well-known edge parameters opens the possibility of performing carbon transport studies, relevant for understanding co-deposit formation in fusion devices. C1 EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. Oak Ridge Natl Lab, Oak Ridge, TN USA. NSC KIPT, Inst Plasma Phys, Kharkov, Ukraine. RNC Kurchatov Inst, Inst Nucl Fus, Moscow, Russia. Univ Carlos III Madrid, Madrid, Spain. EURATOM, IST, Ctr Fusao Nucl, Lisbon, Portugal. AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. Russian Acad Sci, Inst Gen Phys, Moscow, Russia. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sanchez, J (reprint author), EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. EM Joaquin.sanchez@ciemat.es RI Calvo, Ivan/B-3444-2009; Sanchez, Edilberto/D-4620-2009; Jimenez-Rey, David/H-5557-2011; Rapisarda, David/K-6241-2013; Silva, Carlos/L-6490-2013; Nedzelskiy, Igor/N-1596-2013; Petrov, Sergei/D-1701-2014; Baciero, Alfonso/B-4942-2008; Alonso, Juan Arturo/K-9009-2014; Zurro, Bernardo/L-2199-2014; Castejon, Francisco/L-7341-2014; Lopez-Fraguas, Antonio/L-8104-2014; Garcia, Luis/A-5344-2015; Liniers, Macarena/C-4593-2017; Hidalgo, Carlos/H-6109-2015; Cappa, Alvaro/C-5614-2017; Ascasibar, Enrique/B-7498-2014; TRIBALDOS, VICTOR/K-4299-2012; Vega, Jesus/H-1530-2015; van Milligen, Boudewijn/H-5121-2015; Skvortsova, Nina/Q-2506-2015; Lopez Bruna, Daniel/L-6539-2014; Garcia-Cortes, Isabel/H-3341-2015; Blanco, Emilio/F-8893-2016; Vargas Blanco, Ivan/H-4341-2016; Goncalves, Bruno/H-8679-2012; Jimenez, Juan/A-5245-2017; Solano, Emilia/A-1212-2009; Balbin, Rosa/F-8210-2010; Tafalla, David/C-3925-2017; Pastor, Ignacio/C-4279-2017; OI Calvo, Ivan/0000-0003-3118-3463; Sanchez, Edilberto/0000-0003-1062-7870; Jimenez-Rey, David/0000-0003-1559-2179; Silva, Carlos/0000-0001-6348-0505; Nedzelskiy, Igor/0000-0002-8730-5792; Alonso, Juan Arturo/0000-0001-6863-8578; Castejon, Francisco/0000-0002-4654-0542; Lopez-Fraguas, Antonio/0000-0002-0277-8137; Garcia, Luis/0000-0002-0492-7466; Liniers, Macarena/0000-0003-2101-0112; Cappa, Alvaro/0000-0002-2250-9209; Ascasibar, Enrique/0000-0001-8124-0994; TRIBALDOS, VICTOR/0000-0002-8683-9338; Vega, Jesus/0000-0002-1622-3984; Estrada, Teresa/0000-0001-6205-2656; Fontdecaba Climent, Josep Maria/0000-0001-7678-0240; Sarasola, Xabier/0000-0003-2430-6939; van Milligen, Boudewijn/0000-0001-5344-6274; Skvortsova, Nina/0000-0003-0991-3845; Garcia-Cortes, Isabel/0000-0002-5223-391X; Blanco, Emilio/0000-0002-1323-7547; Vargas Blanco, Ivan/0000-0001-9568-1598; Goncalves, Bruno/0000-0003-0670-1214; Jimenez, Juan/0000-0003-3453-2470; Solano, Emilia/0000-0002-4815-3407; Balbin, Rosa/0000-0001-5231-1300; Tafalla, David/0000-0001-5669-1419; Pastor, Ignacio/0000-0003-0891-0941; Tabares, Francisco/0000-0001-7045-8672 NR 33 TC 7 Z9 7 U1 1 U2 9 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2007 VL 47 IS 10 BP S677 EP S685 DI 10.1088/0029-5515/47/10/S16 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 226SZ UT WOS:000250610100017 ER PT J AU Sangster, TC McCrory, RL Goncharov, VN Harding, DR Loucks, SJ McKenty, PW Meyerhofer, DD Skupsky, S Yaakobi, B MacGowan, BJ Atherton, LJ Hammel, BA Lindl, JD Moses, EI Porter, JL Cuneo, ME Matzen, MK Barnes, CW Fernandez, JC Wilson, DC Kilkenny, JD Bernat, TP Nikroo, A Logan, BG Yu, S Petrasso, RD Sethian, JD Obenschain, S AF Sangster, T. C. McCrory, R. L. Goncharov, V. N. Harding, D. R. Loucks, S. J. McKenty, P. W. Meyerhofer, D. D. Skupsky, S. Yaakobi, B. MacGowan, B. J. Atherton, L. J. Hammel, B. A. Lindl, J. D. Moses, E. I. Porter, J. L. Cuneo, M. E. Matzen, M. K. Barnes, C. W. Fernandez, J. C. Wilson, D. C. Kilkenny, J. D. Bernat, T. P. Nikroo, A. Logan, B. G. Yu, S. Petrasso, R. D. Sethian, J. D. Obenschain, S. TI Overview of inertial fusion research in the United States SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 21st IAEA Fusion Energy Conference CY OCT 16-21, 2006 CL Chengdu, PEOPLES R CHINA SP IAEA, SW Inst Phys, Chengdu Municipal Govt ID NATIONAL IGNITION FACILITY; PINCH-DRIVEN HOHLRAUM; DRY WALL CHAMBERS; LASER FUSION; CAPSULE IMPLOSIONS; ICF CAPSULE; TARGETS; ENERGY; OMEGA; REACTOR AB The inertial confinement fusion (ICF) programme, the high-average-power lasers (HAPL) programme, and the heavy ion fusion (HIF) programme are making long-term investments to establish the scientific and technical basis for an economically and environmentally attractive fusion power source. In the near term, the National Ignition Campaign is expected to establish the scientific and technical basis for ignition and gain on the National Ignition Facility. The results of these experiments and the implications for target design will be incorporated into the long-term efforts to develop a viable power-plant concept including target production, chamber dynamics and driver. C1 Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Gen Atom Co, San Diego, CA 92186 USA. Lawerence Berkeley Natl Lab, Berkeley, CA 94720 USA. MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Naval Res Lab, Washington, DC 20375 USA. RP Sangster, TC (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM csan@l1e.rochester.edu RI Goncharov, Valeri/H-4471-2011; Fernandez, Juan/H-3268-2011; OI Fernandez, Juan/0000-0002-1438-1815; Barnes, Cris/0000-0002-3347-0741 NR 58 TC 15 Z9 15 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2007 VL 47 IS 10 BP S686 EP S695 DI 10.1088/0029-5515/47/10/S17 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 226SZ UT WOS:000250610100018 ER PT J AU Scott, S Bader, A Bakhtiaril, M Basse, N Beck, W Biewer, T Bernabei, S Bonoli, P Bose, B Bravenec, R Bespamyatnov, I Childs, R Cziegler, I Doerner, R Edlund, E Ernst, D Fasoli, A Ferrara, M Fiore, C Fredian, T Graf, A Graves, T Granetz, R Greenough, N Greenwald, M Grimes, M Grulke, O Gwinn, D Harvey, R Harrison, S Hender, TC Hosea, J Howell, DF Hubbard, AE Hughes, JW Hutchinson, I Ince-Cushman, A Irby, J Jernigan, T Johnson, D Ko, J Koert, P LaBombard, B Kanojia, A Lin, L Lin, Y Lipschultz, B Liptac, J Lynn, A MacGibbon, P Marmar, E Marr, K May, M Mikkelsen, DR McDermott, R Parisot, A Parker, R Phillips, CK Phillips, P Porkolab, M Reinke, M Rice, J Rowan, W Sampsell, M Schilling, G Sclmidt, A Smick, N Smirnov, A Snipes, J Stotler, D Stillerman, J Tang, V Terry, D Terry, J Ulrickson, M Vieira, R Wallace, G Whyte, D Wilson, JR Wright, G Wright, J Wolfe, S Wukitch, S Wurden, G Yuh, H Zhurovich, K Zaks, J Zweben, S AF Scott, S. Bader, A. Bakhtiaril, M. Basse, N. Beck, W. Biewer, T. Bernabei, S. Bonoli, P. Bose, B. Bravenec, R. Bespamyatnov, I. Childs, R. Cziegler, I. Doerner, R. Edlund, E. Ernst, D. Fasoli, A. Ferrara, M. Fiore, C. Fredian, T. Graf, A. Graves, T. Granetz, R. Greenough, N. Greenwald, M. Grimes, M. Grulke, O. Gwinn, D. Harvey, R. Harrison, S. Hender, T. C. Hosea, J. Howell, D. F. Hubbard, A. E. Hughes, J. W. Hutchinson, I. Ince-Cushman, A. Irby, J. Jernigan, T. Johnson, D. Ko, J. Koert, P. LaBombard, B. Kanojia, A. Lin, L. Lin, Y. Lipschultz, B. Liptac, J. Lynn, A. MacGibbon, P. Marmar, E. Marr, K. May, M. Mikkelsen, D. R. McDermott, R. Parisot, A. Parker, R. Phillips, C. K. Phillips, P. Porkolab, M. Reinke, M. Rice, J. Rowan, W. Sampsell, M. Schilling, G. Sclmidt, A. Smick, N. Smirnov, A. Snipes, J. Stotler, D. Stillerman, J. Tang, V. Terry, D. Terry, J. Ulrickson, M. Vieira, R. Wallace, G. Whyte, D. Wilson, J. R. Wright, G. Wright, J. Wolfe, S. Wukitch, S. Wurden, G. Yuh, H. Zhurovich, K. Zaks, J. Zweben, S. TI Overview of the alcator C-MOD research programme SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 21st IAEA Fusion Energy Conference CY OCT 16-21, 2006 CL Chengdu, PEOPLES R CHINA SP IAEA, SW Inst Phys, Chengdu Municipal Govt ID SCRAPE-OFF LAYER; EDGE PLASMA; TRITIUM RETENTION; ALFVEN EIGENMODES; ICRF ANTENNAS; DIII-D; TRANSPORT; TOKAMAK; JET; CONFINEMENT AB \Alcator C-MOD has compared plasma performance with plasma-facing components (PFCs) coated with boron to all-metal PFCs to assess projections of energy confinement from current experiments to next-generation burning tokamak plasmas. Low-Z coatings reduce metallic impurity influx and diminish radiative losses leading to higher H-mode pedestal pressure that improves global energy confinement through profile stiffness. RF sheath rectification along flux tubes that intersect the RF antenna is found to be a major cause of localized boron erosion and impurity generation. Initial lower hybrid current drive (LHCD) experiments (P-LH < 900kW) in preparation for future advanced-tokamak studies have demonstrated fully non-inductive current drive at I-p similar to 1.0 MA with good efficiency, I-drive = 0.4P(LH)/n(eo)R (MA, MW, 10(20) m(-3),m). The potential to mitigate disruptions in ITER through massive gas-jet impurity puffing has been extended to significantly higher plasma pressures and shorter disruption times. The fraction of total plasma energy radiated increases with the Z of the impurity gas, reaching 90% for krypton. A positive major-radius scaling of the error field threshold for locked modes (B-th/B alpha R0.68 +/- 0.19) is inferred from its measured variation with B-T that implies a favourable threshold value for ITER. A phase contrast imaging diagnostic has been used to study the structure of Alfven cascades and turbulent density fluctuations in plasmas with an internal transport barrier. Understanding the mechanisms responsible for regulating the H-mode pedestal height is also crucial for projecting performance in ITER. Modelling of H-mode edge fuelling indicates high self-screening to neutrals in the pedestal and scrape-off layer (SOL), and reproduces experimental density pedestal response to changes in neutral source, including a weak variation of pedestal height and constant width. Pressure gradients in the near SOL of Ohmic L-mode plasmas are observed to scale consistently as I-p(2), and show a significant dependence on X-point topology. Fast camera images of intermittent turbulent structures at the plasma edge show they travel coherently through the SOL with a broad radial velocity distribution having a peak at about 1% of the ion sound speed, in qualitative agreement with theoretical models. Fast D,, diagnostics during gas puff imaging show a complex behaviour of discrete ELMs, starting with an n approximate to 10 precursor oscillation followed by a rapid primary ejection as the pedestal crashes and then multiple, slower secondary ejections. C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Univ Wisconsin, Madison, WI 53706 USA. Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. Univ Texas, Austin, TX 78712 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Confederat Suisse Ecole Polytech Fed, Ctr Rech Phys Plasmas Assoc EURATOM, CH-1015 Lausanne, Switzerland. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. Bagley Assoc, Lowell, MA 01851 USA. CompX, Del Mar, CA 92014 USA. UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. Lawrence Livermore Natl Lab, Livermore, CA USA. Sandia Natl Labs, Fus Energy Sci Program, Albuquerque, NM 87185 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Nova Photon Inc, Princeton, NJ 08540 USA. RP Scott, S (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM sscott@pppl.gov RI Lin, Yijun/B-5711-2009; Hutchinson, Ian/D-1136-2009; Ernst, Darin/A-1487-2010; Lin, Liang/H-2255-2011; Lipschultz, Bruce/J-7726-2012; Bespamyatnov, Igor/C-1200-2013; Smirnov, Alexander /A-4886-2014; Stotler, Daren/J-9494-2015; Wurden, Glen/A-1921-2017 OI Basse, Nils/0000-0002-4513-8869; Hutchinson, Ian/0000-0003-4276-6576; Greenwald, Martin/0000-0002-4438-729X; Ernst, Darin/0000-0002-9577-2809; Lipschultz, Bruce/0000-0001-5968-3684; Stotler, Daren/0000-0001-5521-8718; Wurden, Glen/0000-0003-2991-1484 NR 52 TC 7 Z9 7 U1 1 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2007 VL 47 IS 10 BP S598 EP S607 DI 10.1088/0029-5515/47/10/S09 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 226SZ UT WOS:000250610100010 ER PT J AU Chinowski, W Goldschmidt, A Nygren, D Bernstein, A Heffner, M Millaud, J AF Chinowski, W. Goldschmidt, A. Nygren, D. Bernstein, A. Heffner, M. Millaud, J. TI Ionization imaging - A new method to search for 0-v beta beta decay SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 3rd International Conference on Imaging Techniques in Subatomic Physics, Astrophysics, Medicine, Biology and Industry CY JUN 27-30, 2006 CL Stockholm, SWEDEN SP Noble Inst Phys, Secta Mamea DE double beta decay; xenon; tracking; ion mobility; ion detection ID XENON; MOBILITIES; READOUT AB We present a new method to search for 0-v PP decay in Xe-136, the Ionization Imaging Chamber. This concept is based on 3-D track reconstruction by detection of ionization, without avalanche gain, in a novel time projection chamber (TPC) geometry. The rejection efficiency of external charged particle backgrounds is optimized by the realization of a maximal, fully active, closed, and ex post facto variable fiducial surface. Event localization within the fiducial volume and detailed event reconstruction mitigate external neutral particle backgrounds; larger detectors offer higher rejection efficiencies. Energy resolution at the Q-value of 2.5 MeV is expected to be better than 1% FWHM, reducing the potential impact of allowed 2-v Pp decays. Scaling from similar to 25 kg prototype to 1000 + kg target mass is graceful. A new possible methodology for the identification of the daughter barium nucleus is also described. Published by Elsevier B.V. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. RP Nygren, D (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 50-208, Berkeley, CA 94720 USA. EM drnygren@lbl.gov NR 16 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2007 VL 580 IS 2 BP 829 EP 835 DI 10.1016/j.nima.2007.06.032 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 219ZZ UT WOS:000250128000002 ER PT J AU Tremsin, AS Lebedev, GV Siegmund, OHW Vallerga, JV Hull, JS McPhate, JB Jozwiak, C Chen, Y Guo, JH Shen, ZX Hussain, Z AF Tremsin, A. S. Lebedev, G. V. Siegmund, O. H. W. Vallerga, J. V. Hull, J. S. McPhate, J. B. Jozwiak, C. Chen, Y. Guo, J. H. Shen, Z. X. Hussain, Z. TI High spatial and temporal resolution photon/electron counting detector for synchrotron radiation research SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 3rd International Conference on Imaging Techniques in Subatomic Physics, Astrophysics, Medicine, Biology and Industry CY JUN 27-30, 2006 CL Stockholm, SWEDEN SP Noble Inst Phys, Secta Mamea DE event counting detectors; high spatial and temporal resolution; synchrotron instrumentation AB This paper reports on the development of a high resolution electron/photon/ion imaging system which detects events with a timing accuracy of < 160ps FWHM and a two-dimensional spatial accuracy of similar to 50 mu m FWHM. The event counting detector uses microchannel plates for signal amplification and can sustain counting rates exceeding 1.5 MHz for evenly distributed events (0.4 MHz with 10% dead time for randomly distributed events). The detector combined with a time-of-flight angular resolved photoelectron energy analyzer was tested at a synchrotron beamline. The results of these measurements illustrate the unique capabilities of the analytical system, allowing simultaneous imaging of photoelectrons in momentum space and measurement of the energy spectrum, as well as filtering the data in user defined temporal and/or spatial windows. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Stanford Univ, Dept Phys, Appl Phys & Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Tremsin, AS (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM ast@ssl.berkeley.edu RI Chen, Yulin/C-1918-2012 NR 5 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2007 VL 580 IS 2 BP 853 EP 857 DI 10.1016/j.nima.2007.06.085 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 219ZZ UT WOS:000250128000006 ER PT J AU Moses, WW AF Moses, William W. TI Recent advances and future advances in time-of-flight PET SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 3rd International Conference on Imaging Techniques in Subatomic Physics, Astrophysics, Medicine, Biology and Industry CY JUN 27-30, 2006 CL Stockholm, SWEDEN SP Noble Inst Phys, Secta Mamea DE positron emission mammography; breast cancer; PEM camera design and optimization ID POSITRON-EMISSION-TOMOGRAPHY; GAMMA-RAY SPECTROSCOPY; TIMING PROPERTIES; BAF2 CRYSTALS; TOF PET; RESOLUTION; SCINTILLATOR; DETECTOR; CE; PERFORMANCE AB Simple theory predicts that the statistical noise variance in positron emission tomography (PET) can be reduced by an order of magnitude by using time-of-flight (TOF) information. This reduction can be obtained by improving the coincidence timing resolution, and so would be achievable in clinical, whole-body studies using with PET systems that differ little from existing cameras. The potential impact of this development is large, especially for oncology studies in large patients, where it is sorely needed. TOF PET was extensively studied in the 1980s but died away in the 1990s, as it was impossible to reliably achieve sufficient timing resolution without sacrificing other important PET performance aspects, such as spatial resolution and efficiency. Recent advances in technology (scintillators, photodetectors, and high-speed electronics) have renewed interest in TOF PET, which is experiencing a rebirth. However, there is still much to be done, both in instrumentation development and evaluating the true benefits of TOF in modern clinical PET. This paper looks at what has been accomplished and what needs to be done before TOF PET can reach its full potential. Published by Elsevier B.V. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Moses, WW (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wwmoses@lbl.gov FU NIBIB NIH HHS [R33 EB001928, R33 EB001928-04] NR 44 TC 104 Z9 107 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2007 VL 580 IS 2 BP 919 EP 924 DI 10.1016/j.nima.2007.06.038 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 219ZZ UT WOS:000250128000020 PM 18836513 ER PT J AU Bleif, HJ Clemens, D Eads, A Fox, W Gebauer, B Geevers, M Herbach, CM Lozowoski, W Mezei, F Peters, J Sokol, P Solberg, K Vanderwerp, J Visser, G Wilpert, T Wulf, F AF Bleif, H. J. Clemens, D. Eads, A. Fox, W. Gebauer, B. Geevers, M. Herbach, C. M. Lozowoski, W. Mezei, F. Peters, J. Sokol, P. Solberg, K. Vanderwerp, J. Visser, G. Wilpert, Th. Wulf, F. TI Square single-wire detectors for neutron diffraction studies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 3rd International Conference on Imaging Techniques in Subatomic Physics, Astrophysics, Medicine, Biology and Industry CY JUN 27-30, 2006 CL Stockholm, SWEDEN SP Noble Inst Phys, Secta Mamea DE neutron scattering; detector; He-3; proportional counters; tube detectors; gaseous detector AB The construction of new neutron facilities in Europe, Japan and the United States signals the need for many kinds of neutron detectors. In order to address a portion of this need, we are developing low-cost, reliable, medium-resolution (1-2.5 cm), single-wire-pertube neutron gaseous detectors for moderate counting rates of about 10(6) counts/m(2)/s that are capable of being used in a vacuum environment. The detectors are fabricated with square tubes in order to avoid the efficiency problems of round tubes. Components used on the interior of the detector are chosen to have low outgassing rates. The detectors are baked while attached to a vacuum pumping station in order to assure a long lifetime without changing the gas. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Indonesia, Cyclotron Facil, Bloomington, IN 47408 USA. Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Grenoble 1, F-38400 St Martin Dheres, France. Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. Inst Biol Struct, F-38027 Grenoble, France. RP Solberg, K (reprint author), Univ Indonesia, Cyclotron Facil, Bloomington, IN 47408 USA. EM ksolberg@indiana.edu RI D20, Diffractometer/O-3123-2013 OI D20, Diffractometer/0000-0002-1572-1367 NR 4 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2007 VL 580 IS 2 BP 1110 EP 1114 DI 10.1016/j.nima.2007.06.114 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 219ZZ UT WOS:000250128000059 ER PT J AU Metwally, WA Gardner, RP Sood, A AF Metwally, W. A. Gardner, R. P. Sood, A. TI Using gamma-gamma coincidence measurements to validate Monte Carlo generated detector response functions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 6th Topic Meeting on Industrial Radiation and Radioisotope Measurement Applications CY JUN 20-24, 2005 CL Hamilton, CANADA DE PGNAA; gamma-gamma coincidence; detector response functions (DRF's) AB Monte Carlo simulation of gamma-ray transport for the purpose of performing elemental analysis of bulk samples requires the tracking of gamma rays in the sample and also in the detector(s) used. Detector response functions (DRF's) are an efficient and accurate variance reduction technique that greatly decreases the simulation time by substituting the tracking of gamma rays inside the detector by predefined single energy gamma-ray spectra. These spectra correspond to the average response of the detector for incident gamma rays. DRY's are generated by Monte Carlo methods and are benchmarked with experimental data. In this work, prompt gamma-gamma coincidence measurements are presented as a way to validate DRF's for high-energy gamma rays. (C) 2007 Elsevier B.V. All rights reserved. C1 UAE Univ, Fac Sci, Dept Phys, Al Ain, U Arab Emirates. N Carolina State Univ, CEAR, Raleigh, NC 27695 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Metwally, WA (reprint author), Global Nucl Fuel, POB 780,M-C F12, Wilmington, NC 28402 USA. EM Walid.Metwally@gnf.com NR 8 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD OCT PY 2007 VL 263 IS 1 BP 50 EP 53 DI 10.1016/j.nimb.2007.04.137 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 229JB UT WOS:000250798000010 ER PT J AU Tan, H Mitra, S Fallu-Labruyere, A Hennig, W Chu, YX Wielopolski, L Warburton, WK AF Tan, H. Mitra, S. Fallu-Labruyere, A. Hennig, W. Chu, Y. X. Wielopolski, L. Warburton, W. K. TI A digital spectrometer approach to obtaining multiple time-resolved gamma-ray spectra for pulsed spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 6th Topic Meeting on Industrial Radiation and Radioisotope Measurement Applications CY JUN 20-24, 2005 CL Hamilton, CANADA DE pulsed neutrons; non-intrusive and non-destructive analysis; digital signal processing; digital gamma spectroscopy ID NEUTRON; ACTIVATION AB Neutron-induced gamma-ray emission and its detection using a pulsed neutron generator system is an established analytical technique for quantitative multi-element analysis. Traditional gamma-ray spectrometers used for this type of analysis are normally operated either in coincidence mode - for counting prompt gamma-rays following inelastic neutron scattering (INS) events when the neutron generator is ON, or in anti-coincidence mode - for counting prompt gamma-rays from thermal neutron capture (TNC) processes when the neutron generator is OFF. We have developed a digital gamma-ray spectrometer for concurrently measuring both the INS and TNC gamma-rays using a 14 MeV pulsed neutron generator. The spectrometer separates the gamma-ray counts into two independent spectra together with two separate sets of counting statistics based on the external gate level. Because the TNC gamma-ray yields are time dependent, additional accuracy in analyzing the data can be obtained by acquiring multiple time-resolved gamma-ray spectra at finer time intervals than simply ON or OFF. For that purpose we are developing a multi-gating system that will allow gamma-ray spectra to be acquired concurrently in real time with up to 16 time slots. The conceptual system design is presented, especially focusing on considerations for tracking counting statistics in multiple time slots and on the placement of pulse heights into multiple spectra in real time. (C) 2007 Elsevier B.V. All rights reserved. C1 XIA LLC, Hayward, CA 94544 USA. Brookhaven Natl Lab, Earth Syst Sci Div, Dept Environm Sci, Upton, NY 11973 USA. RP Tan, H (reprint author), XIA LLC, 31057 Genstar Rd, Hayward, CA 94544 USA. EM htan@xia.com NR 7 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD OCT PY 2007 VL 263 IS 1 BP 63 EP 66 DI 10.1016/j.nimb.2007.04.061 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 229JB UT WOS:000250798000013 ER PT J AU Logan, J Off, DA Kriplani, A AF Logan, Jean Off, David Alex. Kriplani, Aarti TI Simplifications in analyzing positron emission tomography data: effects on outcome measures SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article; Proceedings Paper CT Workshop on After Bench to Bedside - Impact on Cllinical Outcome CY 2007 CL La Jolla, CA DE FDG [IIC] raclopride; PET; tracer kinetic modeling ID INDEPENDENT COMPONENT ANALYSIS; MONOAMINE-OXIDASE; F-18-FDG PET; GRAPHICAL ANALYSIS; FDG PET; REGRESSION-ANALYSIS; GLUCOSE-METABOLISM; ALZHEIMERS-DISEASE; PERIPHERAL ORGANS; BRAIN-TUMORS AB Initial validation studies of new radiotracers generally involve kinetic models that require a measured arterial input function. This allows for the separation of tissue binding from delivery and blood flow effects. However, when using a tracer in a clinical setting, it is necessary to eliminate arterial blood sampling due to its invasiveness and the extra burden of counting and analyzing the blood samples for metabolites. In some cases, it may also be necessary to replace dynamic scanning with a shortened scanning period some time after tracer injection, as is done with FDG (F-18 fluorodcoxyglucose). These approximations represent loss of information. In this work, we considered several questions related to this: (1) Do differences in experimental conditions (drug treatments) or populations affect the input function, and what effect, if any, does this have on the final outcome measure? (2) How do errors in metabolite measurements enter into results? (3) What errors are incurred if the uptake ratio is used in place of the distribution volume ratio? (4) Is one- or two-point blood sampling any better for FDG data than the standardized uptake value? and (5) If blood sampling is necessary, what altenatives are there to arterial blood sampling? The first three questions were considered in terms of data from human dynamic positron emission tomography (PET) studies under conditions of baseline and drug pretreatment. Data from [C-11]raclopride studies and those from the norepinephrine transporter tracer (S,S)-[C-11]O-i-nethyl reboxetine were used. Calculation of a metabolic rate for FDG using the operational equation requires a measured input function. We tested a procedure based on two blood samples to estimate the plasma integral and convolution that occur in the operational equation. There are some tracers for which blood sampling is necessary. Strategies for brain studies involve using the internal carotids in estimating the radioactivity after correcting for partial volume and spillover in order to eliminate arterial sampling. Some venous blood samples are still required for metabolite measurements. The ultimate solution to the problem of arterial sampling may be a wrist scanner, which acts as a small PET camera for imaging the arteries in the wrist. This is currently under development. (C) 2007 Published by Elsevier Inc. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Logan, J (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM logan@bnl.gov NR 52 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD OCT PY 2007 VL 34 IS 7 BP 743 EP 756 DI 10.1016/j.nucmedbio.2007.06.003 PG 14 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 222WI UT WOS:000250328100006 PM 17921027 ER PT J AU Schiffer, WK Liebling, CNB Patel, V Dewey, SL AF Schiffer, Wynne K. Liebling, Courtney N. B. Patel, Vinal Dewey, Stephen L. TI Targeting the treatment of drug abuse with molecular imaging SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article; Proceedings Paper CT Workshop on After Bench to Bedside - Impact on Cllinical Outcome CY 2007 CL La Jolla, CA DE drug abuse; molecular imaging; positron emission tomography; inhalant abuse ID GAMMA-VINYL-GABA; POSITRON-EMISSION-TOMOGRAPHY; CONDITIONED PLACE PREFERENCE; DOPAMINE TRANSPORTER OCCUPANCY; STRIATAL DOPAMINE; SYNAPTIC DOPAMINE; C-11 RACLOPRIDE; NUCLEUS-ACCUMBENS; HUMAN-BRAIN; METHAMPHETAMINE ABUSERS AB Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which ail abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences. Published by Elsevier Inc. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Schiffer, WK (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM wynne@bnl.gov FU NIDA NIH HHS [DA15082, DA16025, DA15041] NR 130 TC 3 Z9 3 U1 4 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD OCT PY 2007 VL 34 IS 7 BP 833 EP 847 DI 10.1016/j.nucinedbio.2007.05.004 PG 15 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 222WI UT WOS:000250328100013 PM 17921034 ER PT J AU Michel, N Nazarewicz, W Ploszajczak, M AF Michel, N. Nazarewicz, W. Ploszajczak, M. TI Continuum coupling and single-nucleon overlap integrals SO NUCLEAR PHYSICS A LA English DT Article DE shell model; continuum; Gamow shell model; spectroscopic factors; overlap integrals; exotic nuclei ID R-MATRIX THEORY; ELASTIC SCATTERING; COMPLEX POTENTIALS; EXPECTATION VALUE; RESONANT STATES; CROSS-SECTIONS; EXOTIC NUCLEI; SHELL-MODEL; THRESHOLD; D,P AB The presence of a particle continuum, both of a resonant and non-resonant character, can significantly impact spectroscopic properties of weakly bound nuclei and excited nuclear states close to, and above, the particle emission threshold. In the framework of the continuum shell model in the complex momentum-plane, the so-called Gamow shell model, we discuss salient effects of the continuum coupling on the one-neutron overlap integrals and the associated spectroscopic factors in neutron-rich helium and oxygen nuclei. In particular, we demonstrate a characteristic near-threshold energy dependence of the spectroscopic factors for different e-waves. We show also that the realistic radial overlap functions, which are needed for the description of transfer reactions, can be generated by single-particle wave functions of the appropriately chosen complex potential. (C) 2007 Elsevier B.V. All rights reserved. C1 CEA DSM, CNRS, IN2P3, Grand Accelerateur Natl Ions Lourds, F-14076 Caen, France. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan. Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. RP Ploszajczak, M (reprint author), CEA DSM, CNRS, IN2P3, Grand Accelerateur Natl Ions Lourds, BP 55027, F-14076 Caen, France. EM ploszajczak@ganil.fr NR 67 TC 24 Z9 24 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 1 PY 2007 VL 794 IS 1-2 BP 29 EP 46 DI 10.1016/j.nuclphysa.2007.07.004 PG 18 WC Physics, Nuclear SC Physics GA 223LE UT WOS:000250370900003 ER PT J AU Beane, SR Bedaque, PF Luu, TC Orginos, K Pallante, E Parreno, A Savage, MJ AF Beane, Silas R. Bedaque, Paulo F. Luu, Thomas C. Orginos, Kostas Pallante, Elisabetta Parreno, Assumpta Savage, Martin J. TI Hyperon-nucleon scattering from fully-dynamical lattice QCD SO NUCLEAR PHYSICS A LA English DT Article ID EFFECTIVE-FIELD THEORY; CROSS-SECTION; THRESHOLD; POTENTIALS; DEPENDENCE; EXCHANGE; PHYSICS; LAMBDA AB We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for it A scattering in both spin-channels at pion masses of 350, 490 and 590 MeV, and for n Sigma(-) scattering in both spin channels at pion masses of 490 and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, staggered gauge configurations with a lattice spacing of b similar to 0.125 fm. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Lawrence Livermore Natl Lab, Div N, Livermore, CA 94551 USA. Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. Jefferson Lab, Newport News, VA 23606 USA. Univ Groningen, Inst Theoret Phys, NL-9747 AG Groningen, Netherlands. Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Beane, SR (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM silas@physics.unh.edu NR 54 TC 62 Z9 62 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 1 PY 2007 VL 794 IS 1-2 BP 62 EP 72 DI 10.1016/j.nuclphysa.2007.07.006 PG 11 WC Physics, Nuclear SC Physics GA 223LE UT WOS:000250370900005 ER PT J AU Korn, A AF Korn, Andreas CA Collaborat, AP TI Overview and status of the ATLAS pixel detector SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 10th Topical Seminar on Innovative Particle and Radiation Detectors CY OCT 01-05, 2006 CL Siena, ITALY ID DESIGN AB The ATLAS experiment at the Large Hadron Collider will use a Pixel Detector as the innermost part of its tracking detector. The Pixel detector is designed to operate with a 40 MHz bunch crossing frequency, a high particle flux density and an unprecedented extreme radiation environment. The Pixel detector will consist of 1744 modules, arranged in three layers in the barrel part and three disks at each of the two forward regions. The total active area will cover about 1.7 m(2) with over 80 million pixel cells. An overview of the project is given and the construction experience illustrated. C1 [Korn, Andreas] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Korn, A (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS50B6222, Berkeley, CA 94720 USA. NR 7 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD OCT PY 2007 VL 172 BP 67 EP 70 DI 10.1016/j.nuclphysbps.2007.07.026 PG 4 WC Physics, Particles & Fields SC Physics GA 242PE UT WOS:000251736900018 ER PT J AU Ballerini, M Cisbani, E Cusanno, F Garibaldi, F Magliozzi, ML Majewski, S Mok, GSP Torrioli, S Tsui, BMW Wang, Y AF Ballerini, M. Cisbani, E. Cusanno, F. Garibaldi, F. Magliozzi, M. L. Majewski, S. Mok, G. S. P. Torrioli, S. Tsui, B. M. W. Wang, Y. TI Gamma detectors for molecular imaging with radionuclides: design and applications SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 10th Topical Seminar on Innovative Particle and Radiation Detectors CY OCT 01-05, 2006 CL Siena, ITALY AB A submillimeter resolution SPECT detector, based on conventional components, with high sensitivity (at the level of 20 cps/mu Ci) is under design and implementation for atherosclerotic plaque study and stem cell homing monitoring on mice. A GEANT4 simulation is carried out to optimize the detector configuration. First measurements have been conducted on a transgenic mouse at JHU. Details of the ongoing activities and target applications are presented. C1 [Ballerini, M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Magliozzi, M. L.; Majewski, S.; Torrioli, S.] Ist Super Sanita, Ist Nazl Fis Nucl, I-00161 Rome, Italy. [Majewski, S.] Jefferson Lab, Newport News, VA 23606 USA. [Mok, G. S. P.; Tsui, B. M. W.; Wang, Y.] Johns Hopkins Univ, Baltimore, MD 21287 USA. RP Cisbani, E (reprint author), Ist Super Sanita, Ist Nazl Fis Nucl, Viale Regina Elena 299, I-00161 Rome, Italy. RI Cisbani, Evaristo/C-9249-2011; OI Cisbani, Evaristo/0000-0002-6774-8473; Wang, Yuchuan/0000-0001-5111-6562 NR 6 TC 2 Z9 2 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD OCT PY 2007 VL 172 BP 88 EP 91 DI 10.1016/j.nuclphysbps.2007.07.020 PG 4 WC Physics, Particles & Fields SC Physics GA 242PE UT WOS:000251736900023 ER PT J AU Heilbronn, L Zeitlin, CJ Iwata, Y Murakami, T Iwase, H Nakamura, T Nunomiya, T Sato, H Yashima, H Ronningen, RM Ieki, K AF Heilbronn, L. Zeitlin, C. J. Iwata, Y. Murakami, T. Iwase, H. Nakamura, T. Nunomiya, T. Sato, H. Yashima, H. Ronningen, R. M. Ieki, K. TI Secondary neutron-production cross sections from heavy-ion interactions between 230 and 600 MeV/nucleon SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID NEON IONS; TRANSPORT CODE; CARBON; COLLISIONS; ALUMINUM; URANIUM; HELIUM; YIELDS; SPACE; WATER AB Secondary neutron-production cross sections have been measured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400 MeV/nucleon Kr 400 MeV/nucleon Xe, 500 MeV/ nucleon Fe, and 600 MeV/nucleon Ne interacting in a variety of elemental and composite targets. We report the double-differential production cross sections, angular distributions, energy spectra, and total cross sections from all systems. Neutron energies were measured using the time-of-flight technique and were measured at laboratory angles between 5 and 80 deg. The spectra exhibit behavior previously reported in other heavy-ion-induced neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential spectra are fitted with a moving-source parameterization. Observations on the dependence of the total cross sections on target and projectile mass are discussed. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Natl Inst Radiol Sci Hosp, Dept Accelerat Phys & Engm, Chiba 263, Japan. Tohoku Univ, Ctr Cyclotron & Radioisotope, Sendai, Miyagi 980, Japan. Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. Rikkyo Univ, Dept Phys, Tokyo 171, Japan. Gesell Schwerionenforsch mbH, Darmstadt, Germany. Fuji Elect Syst Company Ltd, Radiat Equip Dept, Tokyo Factory, Tokyo 1918502, Japan. Toshiba Co Ltd, Isogo Nucl Engn Ctr, Yokohama, Kanagawa 235, Japan. Kyoto Univ, Inst Res Reactor, Osaka, Japan. RP Heilbronn, L (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM lhheilbronn@lbl.gov RI Heilbronn, Lawrence/J-6998-2013 OI Heilbronn, Lawrence/0000-0002-8226-1057 NR 37 TC 4 Z9 4 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD OCT PY 2007 VL 157 IS 2 BP 142 EP 158 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 216DL UT WOS:000249858200003 ER PT J AU Whitney, SM Biegalski, S Buchholz, B AF Whitney, Scott M. Biegalski, Steven Buchholz, Bruce TI Analyzing nuclear fuel cycles from isotopic ratios of waste products applicable to measurement by accelerator mass spectrometry SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID LEVEL; AMS AB An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the pressurized water reactor, boiling water reactor, Canada deuterium uranium reactor, and liquid-metal fast breeder reactor were simulated for this work with the ORIGEN-ARP and ORIGEN2.2 codes. The spent-fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios Sm-151/Sm-146, Sm-149/Sm-146, and Cm-244/Cm-246 were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy. C1 Univ Texas, JJ Pickle Res Campus, Nucl Engn Teaching Lab, Austin, TX 78741 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. RP Biegalski, S (reprint author), Univ Texas, JJ Pickle Res Campus, Nucl Engn Teaching Lab, 1 Univ Stn Stop R9000, Austin, TX 78741 USA. EM biegalski@mail.utexas.edu RI Biegalski, Steven/A-7765-2010 NR 13 TC 4 Z9 4 U1 1 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD OCT PY 2007 VL 157 IS 2 BP 200 EP 209 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 216DL UT WOS:000249858200006 ER PT J AU Dryja, M Tu, XM AF Dryja, Maksymilian Tu, Xuemin TI A domain decomposition discretization of parabolic problems SO NUMERISCHE MATHEMATIK LA English DT Article AB In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. C1 Warsaw Univ, Dept Math, PL-02097 Warsaw, Poland. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA. RP Dryja, M (reprint author), Warsaw Univ, Dept Math, Banacha 2, PL-02097 Warsaw, Poland. EM dryja@mimuw.edu.pl; xuemin@math.berkeley.edu RI Tu, Xuemin/D-9928-2011 NR 7 TC 13 Z9 14 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0029-599X J9 NUMER MATH JI Numer. Math. PD OCT PY 2007 VL 107 IS 4 BP 625 EP 640 DI 10.1007/s00211-007-0103-0 PG 16 WC Mathematics, Applied SC Mathematics GA 215IQ UT WOS:000249802300005 ER PT J AU Liu, Q Chen, K Martin, M Wintenberg, A Lenarduzzi, R Panjehpour, M Overholt, BF Vo-Dinh, T AF Liu, Quan Chen, Kui Martin, Matthew Wintenberg, Alan Lenarduzzi, Roberto Panjehpour, Masoud Overholt, Bergein F. Vo-Dinh, Tuan TI Development of a synchronous fluorescence imaging system and data analysis methods SO OPTICS EXPRESS LA English DT Article ID LUMINESCENCE SPECTROSCOPY; TISSUES; DIAGNOSIS; ADDUCTS; CELLS; DNA AB Although conventional autofluorescence spectroscopy, in which fluorescence emission spectra are recorded for fixed excitation wavelengths, has demonstrated good performance in tissue diagnosis, it suffers from prolonged data acquisition time and broad-band fluorescence features. Synchronous spectroscopy has been proposed to overcome the limitations of conventional fluorescence spectroscopy but has not been applied to imaging for tissue diagnosis in vivo. Our group has developed a synchronous fluorescence imaging system to combine the great diagnostic potential of synchronous spectroscopy and the large field of view of imaging for cancer diagnosis. This system has been tested in a mouse skin model to capture synchronous fluorescence images. A simple discriminant analysis method and a more complicated multi-variate statistical method have been developed to generate a single diagnostic image from a large number of raw fluorescence images. Moreover, it was demonstrated that the diagnostic image generated from synchronous data is comparable to that generated from full spectral data in classification accuracy. (C) 2007 Optical Society of America. C1 Duke Univ, Fitzpatrick Inst Photon, Durham, NC 27708 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Thompson Canc Survival Ctr, Knoxville, TN 37916 USA. RP Vo-Dinh, T (reprint author), Duke Univ, Fitzpatrick Inst Photon, Durham, NC 27708 USA. EM tuan.vodinh@duke.edu RI Liu, Quan/G-6208-2010 NR 30 TC 18 Z9 18 U1 1 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 1 PY 2007 VL 15 IS 20 BP 12583 EP 12594 DI 10.1364/OE.15.012583 PG 12 WC Optics SC Optics GA 218HN UT WOS:000250006700003 PM 19550526 ER PT J AU Wu, JH Bolton, PR Murphy, JB Wang, KL AF Wu, Juhao Bolton, Paul R. Murphy, James B. Wang, Kelin TI ABCD formalism and attosecond few-cycle pulse via chirp manipulation of a seeded free electron laser SO OPTICS EXPRESS LA English DT Article ID OPTICS AB An ABCD formalism is identified to characterize a seeded Free Electron Laser (FEL) with three chirps: an initial frequency chirp in the seed Laser, an energy chirp in the electron bunch, and an intrinsic frequency chirp due to the FEL process. A scheme of generating attosecond few-cycle pulses is proposed by invoking an FEL seeded by high-order harmonic generation (HHG) from an infrared laser. The HHG seed has generic attosecond structure. It is possible to manipulate these three chirps to maintain the attosecond structure via post-undulator chirped pulse compression. (C) 2007 Optical Society of America. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. Univ Sci & Technol China, Dept Modern Phys, Anhua 230026, Peoples R China. Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Peoples R China. RP Wu, JH (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM jhwu@slac.stanford.edu NR 15 TC 10 Z9 10 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 1 PY 2007 VL 15 IS 20 BP 12749 EP 12754 DI 10.1364/OE.15.012749 PG 6 WC Optics SC Optics GA 218HN UT WOS:000250006700020 PM 19550543 ER PT J AU Subramania, G Lee, YJ Brener, I Luk, TS Clem, PG AF Subramania, G. Lee, Y-J. Brener, I. Luk, T. S. Clem, P. G. TI Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal SO OPTICS EXPRESS LA English DT Article ID BAND-GAPS; COLLOIDAL SYSTEMS; EMISSION; LIGHT; TEMPLATES AB Photonic crystals (PC) have emerged as important types of structures for light manipulation. Ultimate control of light is possible by creating PCs with a complete three dimensional (3D) gap [1, 2]. This has proven to be a considerable challenge in the visible and ultraviolet frequencies mainly due to complications in integrating transparent, high refractive index (n) materials with fabrication techniques to create similar to 100nm features with long range translational order. In this letter, we demonstrate a nano-lithography approach based on a multilevel electron beam direct write and physical vapor deposition, to fabricate four-layer titania woodpile PCs that potentially exhibit complete 3D gap at visible wavelengths. We achieved a short wavelength bandedge of 525nm with a 300nm lattice constant PC. Due to the nanoscale precision and capability for defect control, the nanolithography approach represents an important step toward novel visible photonic devices for lighting, lasers, sensing and biophotonics. (C) 2007 Optical Society of America. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Subramania, G (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gssubra@sandia.gov RI Brener, Igal/G-1070-2010 OI Brener, Igal/0000-0002-2139-5182 NR 30 TC 25 Z9 25 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 1 PY 2007 VL 15 IS 20 BP 13049 EP 13057 DI 10.1364/OE.15.013049 PG 9 WC Optics SC Optics GA 218HN UT WOS:000250006700051 PM 19550574 ER PT J AU Lee, AWM Qin, Q Kumar, S Williams, BS Hu, Q Reno, JL AF Lee, Alan Wei Min Qin, Qi Kumar, Sushil Williams, Benjamin S. Hu, Qing Reno, John L. TI High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides SO OPTICS LETTERS LA English DT Article AB A metal-metal waveguide quantum cascade laser with an abutted silicon hyperhemispherical lens is demonstrated at similar to 4.1 THz. The device produced 145 mW of peak pulsed power at 5 K with a wall-plug power efficiency of 0.7%, lasing up to a maximum operating temperature of 160 K. The far-field beam pattern has a full width at half-maximum value of similar to 4.8 degrees in the H plane. The same device produced similar to 26 mW of peak power using a Winston cone instead of a lens, lasing up to 165 K. The large increase in output power is mainly attributed to an increase in collection efficiency. (c) 2007 Optical Society of America. C1 MIT, Cambridge, MA 02139 USA. Sandia Natl Labs, Dept 1123, Albuquerque, NM 87185 USA. RP Lee, AWM (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM awmlee@mit.edu RI Qin, Qi/G-9373-2013; Williams, Benjamin/B-4494-2013 OI Williams, Benjamin/0000-0002-6241-8336 NR 15 TC 80 Z9 81 U1 2 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD OCT 1 PY 2007 VL 32 IS 19 BP 2840 EP 2842 PG 3 WC Optics SC Optics GA 225EM UT WOS:000250499900025 ER PT J AU Black, MR Chavez, C Brosha, E AF Black, M. R. Chavez, C. Brosha, E. TI Exciton diffusion length of tris (dibenzoylmethane) mono (phenanthroline) europium (III) measured by photocurrent and absorption as a function of wavelength SO ORGANIC ELECTRONICS LA English DT Article DE exciton; photovoltaics; metal-organic; diffusion length; solar cell; organo-metallic ID ORGANIC THIN-FILMS; ENERGY-TRANSFER; HETEROJUNCTION; SPECTRA; SINGLET; CELLS AB Ideally, the exciton diffusion length in an organic photovoltaic is comparable to the optical penetration depth, i.e., the inverse of the absorption coefficient. In most organic materials, the exciton diffusion length is up to several orders of magnitude smaller than the absorption penetration depth - resulting in lower energy conversion efficiencies. In metal-organic materials, the exciton lifetime has been predicted to be large due to strong spin orbit coupling. This increased lifetime may lead to increased exciton diffusion. One particular metal-organic material, tris (dibenzoylmethane) mono (phenanthroline) europium (III) or Eu-DM, is especially interesting for photovoltaic applications as it is soluble in toluene and therefore can be spun-on and processed inexpensively. Using photocurrent and optical absorption as a function of wavelength, the exciton diffusion length of spun-on Eu-DM was measured to be 250 8 A, for optical excitation wavelengths in the range 350 nm < L < 450 nm. A long tail in the photocurrent and absorption spectra indicate a weakly allowed transition in this energy range. Possible implications of this tail are discussed. (C) 2007 Published by Elsevier B.V. C1 Los Alamos Natl Lab, Int Space & Response Div, Los Alamos, NM 87545 USA. RP Black, MR (reprint author), Los Alamos Natl Lab, Int Space & Response Div, POB 1663, Los Alamos, NM 87545 USA. EM marcie@alum.mit.edu NR 15 TC 2 Z9 2 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 J9 ORG ELECTRON JI Org. Electron. PD OCT PY 2007 VL 8 IS 5 BP 601 EP 605 DI 10.1016/j.orgel.2007.04.011 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 224VL UT WOS:000250474800018 ER PT J AU Monnard, PA AF Monnard, Pierre-Alain TI Does the RNA-World still retain its appeal after 40 years of research? SO ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES LA English DT Article; Proceedings Paper CT International School of Complexity CY OCT 01-06, 2006 CL Erice, ITALY DE RNA-world; RNA polymerization; Nano-environment supported polymerization; Non-enzymatic catalysis ID CATALYSIS; ORIGIN; LIFE AB Forty years after its formulation, the hypothesis of the RNA-World remains rather controversial even though studies of RNA catalysis in cellular processes (for example, in the ubiquitous ribosomal peptide-bond formation) have clearly lent increased plausibility to the idea that an RNA-World existed at some point in the evolution leading to the emergence of cellular life. Indeed, several issues remain that weaken the concept: the synthesis of the RNA monomers under prebiotic conditions, their subsequent, efficient polymerization to yield ribozymes that specifically catalyze their own replication. This communication summarizes existing studies of the RNA polymerization from monomers. In our opinion, the recent developments show that given time plausible answers to some of the issues facing the RNA-World hypothesis will be found. C1 Los Alamos Natl Lab, Earth & Environm Sci EES 6, Los Alamos, NM 87545 USA. RP Monnard, PA (reprint author), Los Alamos Natl Lab, Earth & Environm Sci EES 6, POB 1663, Los Alamos, NM 87545 USA. EM pmonnard@lanl.gov NR 12 TC 5 Z9 7 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-6149 J9 ORIGINS LIFE EVOL B JI Orig. Life Evol. Biosph. PD OCT PY 2007 VL 37 IS 4-5 BP 387 EP 390 DI 10.1007/s11084-007-9099-9 PG 4 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 202MF UT WOS:000248905100016 PM 17611815 ER PT J AU Monnard, PA Ziock, HJ AF Monnard, Pierre-Alain Ziock, H.-J. TI Prospects for the construction of artificial cells or protocells SO ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES LA English DT Article; Proceedings Paper CT International School of Complexity CY OCT 01-06, 2006 CL Erice, ITALY DE artificial cells; protocells; origins of Life; self-replicating chemical systems ID SELF-REPRODUCING VESICLES; LIVING MATTER; PROTEIN; RNA AB The construction of artificial cells or protocells that are a simplified version of contemporary cells will have implications for both the understanding of the origins of cellular Life and the design of "cell-like" chemical factories. In this short communication, we discuss the progress and remaining issues related to the construction of protocells from metabolic products. We further outline the de novo design of a simple chemical system that mimics the functional properties of a living cell without being composed of molecules of biological origin, thereby addressing issues related to Life's origins. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Monnard, PA (reprint author), Los Alamos Natl Lab, EES 6, Los Alamos, NM 87545 USA. EM pmonnard@lanl.gov NR 11 TC 3 Z9 5 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-6149 J9 ORIGINS LIFE EVOL B JI Orig. Life Evol. Biosph. PD OCT PY 2007 VL 37 IS 4-5 BP 469 EP 472 DI 10.1007/s11084-007-9081-6 PG 4 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 202MF UT WOS:000248905100032 PM 17616833 ER PT J AU Chang, H Yang, Q Parvin, B AF Chang, Hang Yang, Qing Parvin, Bahram TI Segmentation of heterogeneous blob objects through voting and level set formulation SO PATTERN RECOGNITION LETTERS LA English DT Article DE segmentation; voting level set; voronoi; subcellular localization; nuclear segmentation; 3D cell culture assay ID IMAGE SEGMENTATION; ACTIVE CONTOURS; LOCALIZATION AB Blob-like structures occur often in nature, where they aid in cueing and the pre-attentive process. These structures often overlap, form perceptual boundaries, and are heterogeneous in shape, size, and intensity. In this paper, voting, Voronoi tessellation, and level set methods are combined to delineate blob-like structures. Voting and subsequent Voronoi tessellation provide the initial condition and the boundary constraints for each blob, while curve evolution through level set formulation provides refined segmentation of each blob within the Voronoi region. The paper concludes with the application of the proposed method to a dataset produced from cell based fluorescence assays and stellar data. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Chang, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM hchang@lbl.gov FU NCI NIH HHS [U54 CA112970-029002] NR 13 TC 28 Z9 28 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8655 J9 PATTERN RECOGN LETT JI Pattern Recognit. Lett. PD OCT 1 PY 2007 VL 28 IS 13 BP 1781 EP 1787 DI 10.1016/j.patrec.2007.05.008 PG 7 WC Computer Science, Artificial Intelligence SC Computer Science GA 201VI UT WOS:000248860300019 PM 19774202 ER PT J AU Thanos, PK Michaelides, M Benveniste, H Wang, GJ Volkow, ND AF Thanos, Panayotis K. Michaelides, Michael Benveniste, Helene Wang, Gene Jack Volkow, Nora D. TI Effects of chronic oral methylphenidate on cocaine self-administration and striatal dopamine D2 receptors in rodents SO PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR LA English DT Article DE psychostimulant; addiction; impulsivity; dopamine transporters; attention deficit hyperactivity disorder; drug abuse ID DEFICIT HYPERACTIVITY DISORDER; POSITRON-EMISSION-TOMOGRAPHY; ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; GLUCOSE-METABOLISM; AUTOMATED ALGORITHM; NONHUMAN-PRIMATES; HARDERIAN GLANDS; ADOLESCENT RATS; GENE-REGULATION; HUMAN BRAIN AB Background: Methylphenidate (MP) and amphetamine, which are the mainstay for the treatment of ADHD, have raised concerns because of their reinforcing effects and the fear that their chronic use during childhood or adolescence could induce changes in the brain that could facilitate drug abuse in adulthood. Methods: Here we measured the effects of chronic treatment (8 months) with oral MP (1 or 2 mg/kg), which was initiated in periadolescent rats (postnatal day 30). Following this treatment, rats were tested on cocaine self-administration. In addition at 2 and 8 months of treatment we measured dopamine D2 receptor (D2R) availability in the striatum using [C-11]raclopride microPET (mu PET) imaging. Results: Animals treated for 8 months with 2 mg/kg of MP showed significantly reduced rates of cocaine self-administration at adulthood than vehicle treated rats. D2R availability in the striatum was significantly lower in rats after 2 months of treatment with MP (I and 2 mg/kg) but significantly higher after 8 months of MP treatment than in the vehicle treated rats. In vehicle treated rats D2R availability decreased with age whereas it increased in rats treated with MP. Because low D2R levels in the striatum are associated with a propensity for self-administration of drugs both in laboratory animals and in humans, this effect could underlie the lower rates of cocaine self-administration observed in the rats given 8 months of treatment with MP. Conclusions: Eight month treatment with oral MP beginning in adolescence decreased cocaine-self administration (I mg/kg) during adulthood which could reflect the increases in D2R availability observed at this life stage since D2R increases are associated with reduced propensity for cocaine self administration. In contrast, two month treatment with MP started also at adolescence decreased D2R availability, which could raise concern that at this life stage short treatments could possibly increase vulnerability to drug abuse during adulthood. These findings indicate that MP effects on D2R expression in the striatum are sensitive not only to length of treatment but also to the developmental stage at which treatment is given. Future studies evaluating the effects of different lengths of treatment on drug self-administration are required to assess optimal duration of treatment regimes to minimize adverse effects on the propensity for drug self administration. (c) 2007 Published by Elsevier Inc. C1 Brookhaven Natl Lab, Dept Med, Behav Neuropharmacol & NeuroImaging Lab, Upton, NY 11973 USA. NIAAA, Lab Neuroimaging, NIH, Dept Hlth & Human Serv, Bethesda, MD 20892 USA. RP Thanos, PK (reprint author), Brookhaven Natl Lab, Dept Med, Behav Neuropharmacol & NeuroImaging Lab, Bldg 490, Upton, NY 11973 USA. EM thanos@bnl.gov RI Michaelides, Michael/K-4736-2013 OI Michaelides, Michael/0000-0003-0398-4917 FU Intramural NIH HHS NR 58 TC 57 Z9 57 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0091-3057 J9 PHARMACOL BIOCHEM BE JI Pharmacol. Biochem. Behav. PD OCT PY 2007 VL 87 IS 4 BP 426 EP 433 DI 10.1016/j.pbb.2007.05.020 PG 8 WC Behavioral Sciences; Neurosciences; Pharmacology & Pharmacy SC Behavioral Sciences; Neurosciences & Neurology; Pharmacology & Pharmacy GA 208QD UT WOS:000249333400006 PM 17599397 ER PT J AU Gundogdu, TF Gokkavas, M Guven, K Kafesaki, M SoukouhS, CM Ozbay, E AF Gundogdu, T. F. Goekkavas, Mutlu Gueven, Kaan Kafesaki, M. SoukouhS, C. M. Ozbay, Ekmel TI Simulation and micro-fabrication of optically switchable split ring resonators SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article DE left handed materials; split ring resonators; photoconductive; simulation ID NEGATIVE INDEX; METAMATERIALS; REFRACTION; TRANSMISSION AB The effect of conductivity variation as a proposed method for the investigation of photoconductive switching properties of split ring resonators (SRRs) is simulated. Three different systems that are applicable under certain fabrication and/or optical excitation conditions are described. The simulated transmission spectrum indicates that for a large range of dark conductivity values, complete switching of the SRR resonance is possible. One of the simulated systems, involving split ring resonators on Si substrate, was fabricated and characterized. The transmission spectrum of that system was measured, with the Si in its high-resistivity state, and a -60 dB dip between 108 and 115 GHz, due to SRRs magnetic resonance, was observed. (C) 2007 Published by Elsevier B.V. C1 Univ Crete, Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Rethimnon 73100, Greece. Univ Crete, Dept Mat Sci & Technol, Rethimnon 73100, Greece. Bilkent Univ, Dept Elect & Elect Engn, Dept Phys, Nanotechnol Res Ctr, TR-06800 Ankara, Turkey. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. US DOE, Ames Lab, Ames, IA 50011 USA. RP Gundogdu, TF (reprint author), Univ Crete, Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Rethimnon 73100, Greece. EM tamara@iesi.forth.gr RI Ozbay, Ekmel/B-9495-2008; Kafesaki, Maria/E-6843-2012 OI Kafesaki, Maria/0000-0002-9524-2576 NR 16 TC 15 Z9 15 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD OCT PY 2007 VL 5 IS 2-3 BP 106 EP 112 DI 10.1016/j.photonics.2007.07.001 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 228QT UT WOS:000250745300010 ER PT J AU Barat, K AF Barat, Ken TI Laser safety and the optical table SO PHOTONICS SPECTRA LA English DT Article C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Natl Ignit Facil Directorate, Livermore, CA USA. RP Barat, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM kbarat@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU LAURIN PUBL CO INC PI PITTSFIELD PA BERKSHIRE COMMON PO BOX 1146, PITTSFIELD, MA 01202 USA SN 0731-1230 J9 PHOTONIC SPECTRA JI Photon. Spect. PD OCT PY 2007 VL 41 IS 10 BP 81 EP 82 PG 2 WC Optics SC Optics GA 220AU UT WOS:000250130100016 ER PT J AU Makarova, VV Kosourov, S Krendeleva, TE Semin, BK Kukarskikh, GP Rubin, AB Sayre, RT Ghirardi, ML Seibert, M AF Makarova, Valeria V. Kosourov, Sergey Krendeleva, Tatiana E. Semin, Boris K. Kukarskikh, Galina P. Rubin, Andrei B. Sayre, Richard T. Ghirardi, Maria L. Seibert, Michael TI Photoproduction of hydrogen by sulfur-deprived C-reinhardtii mutants with impaired Photosystem II photochemical activity SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Chlamydomonas reinhardtii; D1-ARG323; site-directed mutagenesis; H-2 photoproduction; photosystem II; sulfur deprivation; starch; fermentation products; algae ID SYNECHOCYSTIS SP PCC-6803; OXYGEN-EVOLVING APPARATUS; MANGANESE CLUSTER; GREEN-ALGA; PHOTOSYNTHETIC ORGANISMS; CHLOROPHYLL FLUORESCENCE; FE-HYDROGENASE; D1 PROTEIN; SITE; MUTAGENESIS AB Photoproduction of H-2 was examined in a series of sulfur-deprived Chlamydomonas reinhardtii D1-R323 mutants with progressively impaired PSII photochemical activity. In the R323H, R323D, and R323E D1 mutants, replacement of arginine affects photosystem II (PSII) function, as demonstrated by progressive decreases in O-2-evolving activity and loss of PSII photochemical activity. Significant changes in PSII activity were found when the arginine residue was replaced by negatively charged amino acid residues (R323D and R323E). However, the R323H (positively charged or neutral, depending on the ambient pH) mutant had minimal changes in PSII activity. The R323H, R323D, and R323E mutants and the pseudo-wild-type (pWt) with restored PSII function were used to study the effects of sulfur deprivation on H-2-production activity. All of these mutants exhibited significant changes in the normal parameters associated with the H-2-photoproduction process, such as a shorter aerobic phase, lower accumulation of starch, a prolonged anaerobic phase observed before the onset of H-2-production, a shorter duration of H-2-production, lower H-2 yields compared to the pWt control, and slightly higher production of dark fermentation products such as acetate and formate. The more compromised the PSII photochemical activity, the more dramatic was the effect of sulfur deprivation on the H-2-production process, which depends both on the presence of residual PSII activity and the amount of stored starch. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Moscow MV Lomonosov State Univ, Moscow 119899, Russia. RAS, Inst Basic Biol Problems, Pushchino 142290, Moscow Region, Russia. Ohio State Univ, Columbus, OH 43210 USA. RP Seibert, M (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM mike_seibert@nrel.gov RI Kosourov, Sergey/C-6682-2009; Kosourov, Sergey/A-1659-2016; OI Kosourov, Sergey/0000-0003-4025-8041; Kosourov, Sergey/0000-0003-4025-8041; Sayre, Richard/0000-0002-3153-7084 NR 45 TC 37 Z9 39 U1 0 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 J9 PHOTOSYNTH RES JI Photosynth. Res. PD OCT PY 2007 VL 94 IS 1 BP 79 EP 89 DI 10.1007/s11120-007-9219-4 PG 11 WC Plant Sciences SC Plant Sciences GA 202OR UT WOS:000248913400008 PM 17701084 ER PT J AU Connaughton, C Rajesh, R Zaboronski, O AF Connaughton, Colm Rajesh, R. Zaboronski, Oleg TI Constant flux relation for aggregation models with desorption and fragmentation SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT International Conference on Statistical Physics CY JAN 05-09, 2007 CL Raichak, INDIA SP Saha Inst Nucl Phys, Ctr Appl Math & Computat Sci, Univ Calcutta DE aggregation; chemical reactions; Kolmogorov 4/5 law ID FORCE FLUCTUATIONS; PHASE-TRANSITION; BEAD PACKS; KINETICS AB We study mass fluxes in aggregation models where mass transfer to large scales by aggregation occurs alongside desorption or fragmentation. Two models are considered: (1) a system of diffusing, aggregating particles with influx and outflux of particles (in-out model); and (2) a system of diffusing aggregating particles with fragmentation (chipping model). Both these models can exist in phases where probability distributions are power laws. In these power law phases, we argue that the two point correlation function should have a certain homogeneity exponent. These arguments are based on the exact constant flux scaling valid for simple aggregation with input. Predictions are compared with Monte Carlo simulations. (C) 2007 Elsevier B.V. All rights reserved. C1 Inst Math Sci, Madras 600113, Tamil Nadu, India. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England. RP Rajesh, R (reprint author), Inst Math Sci, CIT Campus, Madras 600113, Tamil Nadu, India. EM rrajesh@imsc.res.in RI Connaughton, Colm/E-8796-2011; OI Connaughton, Colm/0000-0003-4137-7050; Zaboronski, Oleg/0000-0001-7530-6643 NR 21 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD OCT 1 PY 2007 VL 384 IS 1 BP 108 EP 114 DI 10.1016/j.physa.2007.04.074 PG 7 WC Physics, Multidisciplinary SC Physics GA 216FA UT WOS:000249862700021 ER PT J AU Nakayama, K Dobashi, T Sato, T Takahashi, T Kondo, T Takeuchi, T Kudo, K Kobayashi, N AF Nakayama, K. Dobashi, T. Sato, T. Takahashi, T. Kondo, T. Takeuchi, T. Kudo, K. Kobayashi, N. TI Origin of shadow bands in high-T-c cuprate superconductors studied by high-resolution angle-resolved photoemission spectroscopy SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 19th International Symposium on Superconductivity CY OCT 30-NOV 01, 2006 CL Nagoya, JAPAN SP Int Superconduct Technol Ctr DE electronic structure; ARPES; high-T-c superconductor ID BI2SR2CACU2O8+DELTA AB We report high-resolution angle-resolved photoemission spectroscopy on single-layered cuprate superconductor (Bi,Pb)(2)(Sr,La)2CuO(6/6) as a function of temperature and doping level, to elucidate the origin of shadow band (SB). We found that the intensity of SB is invariable with respect to temperature, doping, and substitution constituents of block layers, indicating that antiferromagnetic correlation is not responsible for the emergence of SB. Observation of similar SB in Bi2Sr2CaCu2O8+delta and La1.85Sr0.15CuO4, but not in YBa2Cu3O7-delta further supports the structural origin of SB. (C) 2007 Elsevier B.V. All rights reserved. C1 Tohoku Univ, Dept Phys, Aoba Ku, Photoemiss Solid State Phys Lab, Sendai, Miyagi 9808578, Japan. CREST, Japan Sci & Technol Agcy, Kawaguchi 3320012, Japan. Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. Nagoya Univ, Eco Topia Sci Inst, Nagoya, Aichi 4648603, Japan. Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan. Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. RP Sato, T (reprint author), Tohoku Univ, Dept Phys, Aoba Ku, Photoemiss Solid State Phys Lab, Aramaki Aza Aoba 6-3, Sendai, Miyagi 9808578, Japan. EM t-sato@arpes.phys.tohoku.ac.jp RI Kobayashi, Norio/C-1909-2009; Sato, Takafumi/E-5094-2010; Tohoku, Arpes/A-4890-2010; Takahashi, Takashi/E-5080-2010; Nakayama, Kosuke/F-7897-2011; KUDO, Kazutaka/B-1468-2011; Kondo, Takeshi/H-2680-2016 NR 15 TC 0 Z9 0 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD OCT 1 PY 2007 VL 463 BP 48 EP 51 DI 10.1016/j.physc.2007.04.227 PG 4 WC Physics, Applied SC Physics GA 223TU UT WOS:000250396000013 ER PT J AU Kato, T Shibauchi, T Matsuda, Y Thompson, JR Krusin-Elbaum, L AF Kato, T. Shibauchi, T. Matsuda, Y. Thompson, J. R. Krusin-Elbaum, L. TI Interlayer coherence in Bi2Sr2CaCu2O8+y with splayed columnar defects SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 19th International Symposium on Superconductivity CY OCT 30-NOV 01, 2006 CL Nagoya, JAPAN SP Int Superconduct Technol Ctr DE columnar defects; splayed glass; Josephson plasma resonance; Bi fission ID JOSEPHSON PLASMA RESONANCE; VORTEX-LIQUID; COUPLING TRANSITION; PHASE COHERENCE; STATE; SUPERCONDUCTORS; FREQUENCY; CRYSTALS AB By using the Josephson plasma resonance, we investigate the interlayer phase coherence (IPC) in the vortex states of GeV-proton-irradiated Bi2Sr2CaCu2O8+y crystals containing splayed columnar defects, which are introduced by Bi fission. At high temperatures in the vortex liquid state, we observe an enhancement of IPC in a field range beginning well below the matching field B-phi, in close correspondence with the recoupling crossover observed near B-phi/3 in the heavy-ion irradiated Bi2Sr2CaCu2O8+y. At low temperatures in the vortex solid state, a reentrant behavior of the resonance field is found in the zero-field-cooling condition, which has not been observed in pristine samples. This behavior suggests strongly suppressed IPC in this system, which may be explained by the vortex entanglement induced by the columnar defects in the splayed glass state. (C) 2007 Elsevier B.V. All rights reserved. C1 Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Shibauchi, T (reprint author), Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. EM shibauchi@scphys.kyoto-u.ac.jp RI Shibauchi, Takasada/B-9349-2008 OI Shibauchi, Takasada/0000-0001-5831-4924 NR 22 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD OCT 1 PY 2007 VL 463 BP 240 EP 244 DI 10.1016/j.physc.2007.01.042 PG 5 WC Physics, Applied SC Physics GA 223TU UT WOS:000250396000061 ER PT J AU Duckworth, RC List, FA Paranthaman, MP Rupich, MW Zhang, W Xie, YY Selvamanickam, V AF Duckworth, R. C. List, F. A., III Paranthaman, M. P. Rupich, M. W. Zhang, W. Xie, Y. Y. Selvamanickam, V. TI Low ac loss geometries in YBCO coated conductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 19th International Symposium on Superconductivity CY OCT 30-NOV 01, 2006 CL Nagoya, JAPAN SP Int Superconduct Technol Ctr DE Ac loss; YBCO tapes; filamentization; conductor stability ID STRIATED YBCO; REDUCTION AB Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Amer Supercond, Westborough, MA 01581 USA. SuperPower, Schenectady, NY 12304 USA. RP Duckworth, RC (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008,MS-6305, Oak Ridge, TN 37831 USA. EM duckworthrc@ornl.gov RI Paranthaman, Mariappan/N-3866-2015 OI Paranthaman, Mariappan/0000-0003-3009-8531 NR 13 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD OCT 1 PY 2007 VL 463 BP 755 EP 760 DI 10.1016/j.physc.2007.03.499 PG 6 WC Physics, Applied SC Physics GA 223TU UT WOS:000250396000174 ER PT J AU Naser, B Ferry, DK Heeren, J Reno, JL Bird, JP AF Naser, B. Ferry, D. K. Heeren, J. Reno, J. L. Bird, J. P. TI Investigations of the non-linear transient response of quantum point contacts using pulsed excitation with sub-nanosecond time resolution SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT International Seminar and Workshop on Quantum Coherence, Noise and Decoherence in Nanostructures CY MAY 15-26, 2006 CL Max Planck Inst Phys Complex Syst, Dresden, GERMANY HO Max Planck Inst Phys Complex Syst DE quantum point contact; non-linear transport; transient conductance ID ENERGY RELAXATION; PHASE BREAKING; HIGH-BIAS; CONDUCTANCE; ADMITTANCE; TRANSPORT; WIRE AB We review recent work where we have investigated the non-linear transient response of quantum point contacts (QPCs) using pulsed excitation with sub-nanosecond time resolution. The transient response of these devices is shown to be dominated by a large parallel capacitance that is independent of the QPC conductance and pulse amplitude. These characteristics lead us to suggest that the capacitance is associated with charging of the two-dimensional reservoirs that source and sink current to the QPC. Our investigations also show that the transient conductance of the QPC must develop very quickly as the voltage pulse is applied, at least on a time scale shorter than the fastest rise time (2 ns) used in the experiments. We also find the existence of a characteristic fixed point in the non-linear conductance, at which its value is bias independent. The fixed point appears to correspond to the situation where the unbiased QPC is almost depopulated and can be accounted for by considering the unidirectional population of QPC subbands by the voltage bias. To discuss the behavior of the transient conductance away from the fixed point, we find that it should be necessary to consider the influence of the applied bias on the QPC profile and electron-phonon scattering. (c) 2007 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA. Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA. Gen Dynam C4 Syst, Scottsdale, AZ 85257 USA. Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA. RP Bird, JP (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA. EM jbird@buffalo.edu RI Bird, Jonathan/G-4068-2010 OI Bird, Jonathan/0000-0002-6966-9007 NR 24 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD OCT PY 2007 VL 40 IS 1 BP 84 EP 91 DI 10.1016/j.physe.2007.05.013 PG 8 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 238HT UT WOS:000251438900011 ER PT J AU Berrah, N Bilodeau, RC Bozek, JD Dumitriu, I Toffoli, D Lucchese, RR AF Berrah, N. Bilodeau, R. C. Bozek, J. D. Dumitriu, I. Toffoli, D. Lucchese, R. R. TI Shape resonances in K-shell photodetachment of small size-selected clusters: Experiment and theory SO PHYSICAL REVIEW A LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; BOND LENGTHS; HIGH-RESOLUTION; NEGATIVE-IONS; PHOTOIONIZATION; DYNAMICS; MOLECULES; SPECTRA; ANIONS; DECAY AB K-shell photodetachment of size-selected B(2)(-) and B(3)(-) cluster anions has been measured and calculated. The experimental absolute photodetachment cross sections exhibit bound resonances below threshold and two shape resonances above the K-shell threshold. Similar results were obtained for all of the cationic products observed, B(+) and B(2)(+) from B(2)(-), as well as B(+), B(2)(+), and B(3)(+) from B(3)(-). The overall agreement between measured and calculated photodetachment cross sections is very good. However, the theoretical study yielded additional bound resonances not observed in the experimental data. C1 [Berrah, N.; Bilodeau, R. C.; Dumitriu, I.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Bilodeau, R. C.; Bozek, J. D.; Dumitriu, I.] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Toffoli, D.; Lucchese, R. R.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. RP Berrah, N (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010; Lucchese, Robert/O-4452-2014; Toffoli, Daniele/G-4897-2011; OI Bozek, John/0000-0001-7486-7238; Lucchese, Robert/0000-0002-7200-3775; Toffoli, Daniele/0000-0002-8225-6119; Bilodeau, Rene/0000-0001-8607-2328 NR 41 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2007 VL 76 IS 4 AR 042709 DI 10.1103/PhysRevA.76.042709 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 226WR UT WOS:000250619700103 ER PT J AU Chantler, CT Laming, JM Dietrich, DD Hallett, WA McDonald, R Silver, JD AF Chantler, C. T. Laming, J. M. Dietrich, D. D. Hallett, W. A. McDonald, R. Silver, J. D. TI Hydrogenic Lamb shift in iron Fe(25+) and fine-structure Lamb shift SO PHYSICAL REVIEW A LA English DT Article ID X-RAY-IRRADIATION; HELIUM-LIKE IONS; QUANTUM ELECTRODYNAMICS; PHOTOGRAPHIC RESPONSE; PRECISION-MEASUREMENT; ENERGY-LEVELS; LASER SPECTROSCOPY; BRAGG GEOMETRY; BENT CRYSTALS; FORM-FACTORS AB 1s-2p Lyman alpha transitions in hydrogenic iron Fe(25+) have been observed from a beam-foil source in fourth-order diffraction off ADP 101 and PET 002 crystals, simultaneously with the n=2 to n=4 Balmer beta transitions diffracted in first order. Calibration of the local dispersion relation of the spectrometer using Balmer beta lines provides measurements of Lyman alpha wavelengths. The approach of fitting the full two-dimensional dispersion relation, including other members of Balmer and Lyman series, limits random and systematic correlation of parameters, and reveals a major systematic due to dynamical diffraction depth penetration into a curved crystal. The development of a theory of x-ray diffraction from mosaic crystals was necessary for the accurate interpretation of the experimental data. Photographic theory was also developed in the process of this research. Several systematics are discussed and quantified for the first time for these medium-Z QED comparisons. 2s-1s and 4f-2p satellites are explicitly investigated, and a dominant systematic is uncovered, which is due to the variable location of spectral emission downstream of the beam-foil target. 1s-2p(3/2), 1s-2p(1/2) iron Lamb shifts are measured to be 35 376 +/- 1900 cm(-1) and 35 953 +/- 1800 cm(-1). These agree with but lie higher than theory. This represents a 5.7% measurement of the hydrogenic 1s-2p(1/2) Lamb shift in iron. The technique also reports the iron 2p(3/2)-2p(1/2) fine structure as 171 108 cm(-1)+/- 180 cm(-1), which represents a 51% measurement of the hydrogenic iron fine-structure Lamb shift, and reports measurements of secondary lines. C1 [Chantler, C. T.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Laming, J. M.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dietrich, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hallett, W. A.] Hammersmith Hosp, Imperial Coll, GSK Clin Imaging Ctr, London, England. [McDonald, R.] Lawrence Berkeley Lab, Berkeley, CA 94270 USA. [Silver, J. D.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. RP Chantler, CT (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. EM chantler@physics.unimelb.edu.au RI Chantler, Christopher/D-4744-2013 OI Chantler, Christopher/0000-0001-6608-0048 NR 69 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2007 VL 76 IS 4 AR 042116 DI 10.1103/PhysRevA.76.042116 PG 19 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 226WR UT WOS:000250619700032 ER PT J AU Fontes, CJ Zhang, HL AF Fontes, Christopher J. Zhang, Hong Lin TI Relativistic plane-wave Born theory and its application to electron-impact excitation SO PHYSICAL REVIEW A LA English DT Article ID HIGHLY-CHARGED IONS; CROSS-SECTIONS; IONIZATION; PARTICLES; STRENGTHS; ATOMS AB An exact treatment of the relativistic plane-wave Born (RPWB) cross section for electron-impact excitation is provided for an arbitrary atom or ion. This result represents an improvement over the cross section obtained from the widely used Bethe high-energy theory developed in the 1930s. The results obtained from this RPWB approach can be applied to a broad class of problems in fundamental electron-impact scattering theory. As an illustration, the approach is used to approximate the high-l, partial-wave contribution in more accurate calculations of the excitation cross section, a problem which has been lacking a fully relativistic treatment for more than 20 years. C1 [Fontes, Christopher J.; Zhang, Hong Lin] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Fontes, CJ (reprint author), Los Alamos Natl Lab, Div Appl Phys, POB 1663, Los Alamos, NM 87545 USA. EM cjf@lanl.gov NR 24 TC 14 Z9 14 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2007 VL 76 IS 4 AR 040703 DI 10.1103/PhysRevA.76.040703 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 226WR UT WOS:000250619700010 ER PT J AU Hau-Riege, SP AF Hau-Riege, Stefan P. TI X-ray atomic scattering factors of low-Z ions with a core hole SO PHYSICAL REVIEW A LA English DT Article ID IONIZATION ENERGIES; WAVE-FUNCTIONS AB Short and intense x-ray pulses may be used for atomic-resolution diffraction imaging of single biological molecules. One of the dominant damage mechanisms is atomic ionization, resulting in a large fraction of atoms with core holes. We calculated the atomic scattering factor of atoms with atomic charge numbers between 3 and 10 in different ionization states with and without a core hole. Our results show that orbital occupation and the change of the orbitals upon core ionization (core relaxation) have a significant impact on the diffraction pattern. C1 [Hau-Riege, Stefan P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, PO Box 808, Livermore, CA 94551 USA. EM hauriege1@llnl.gov NR 23 TC 28 Z9 28 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2007 VL 76 IS 4 AR 042511 DI 10.1103/PhysRevA.76.042511 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 226WR UT WOS:000250619700091 ER PT J AU Ohlinger, L Forrey, RC Lee, TG Stancil, PC AF Ohlinger, L. Forrey, R. C. Lee, Teck-Ghee Stancil, P. C. TI H(2) dissociation due to collisions with He SO PHYSICAL REVIEW A LA English DT Article ID VIBRATIONAL-RELAXATION; SUDDEN APPROXIMATION; HE+H-2 COLLISIONS; QUASIBOUND STATES; RECOMBINATION; H&H&M->H2&M; RESONANCES; SCATTERING; SPECTRUM; HYDROGEN AB Cross sections for dissociation of H(2) due to collision with He are calculated for highly excited rovibrational states using the quantum-mechanical coupled-states approximation. An L(2) Sturmian basis set with multiple length scales is used to provide a discrete representation of the H(2) continuum which includes orbiting resonances and a nonresonant background. Cross sections are given over a range of translational energies for both resonant and nonresonant dissociation together with the most important bound-state transitions for many different initial states. The results demonstrate that it is possible to compute converged quantum-mechanical cross sections using basis sets of modest size. It is found that collision-induced dissociation competes with inelastic scattering as a depopulation mechanism for the highly excited states. The relevance of the present calculations to astrophysical models is discussed. C1 Penn State Univ, Dept Phys, Reading, PA 19610 USA. Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Georgia, Ctr Simulat Phys, Dept Phys & Astron, Athens, GA 30602 USA. RP Ohlinger, L (reprint author), Penn State Univ, Dept Phys, Reading, PA 19610 USA. RI Lee, Teck Ghee/D-5037-2012 OI Lee, Teck Ghee/0000-0001-9472-3194 NR 31 TC 7 Z9 7 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2007 VL 76 IS 4 AR 042712 DI 10.1103/PhysRevA.76.042712 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 226WR UT WOS:000250619700106 ER PT J AU Palacios, A McCurdy, CW Rescigno, TN AF Palacios, A. McCurdy, C. W. Rescigno, T. N. TI Extracting amplitudes for single and double ionization from a time-dependent wave packet SO PHYSICAL REVIEW A LA English DT Article ID ONE-PHOTON IONIZATION; DIFFERENTIAL CROSS-SECTIONS; ORDER HARMONIC-GENERATION; ATOMIC-HYDROGEN; 2-PHOTON IONIZATION; DOUBLE PHOTOIONIZATION; HELIUM; THRESHOLD; BREAKUP; H-2 AB A method is described for extracting double ionization amplitudes from a quantum wave packet for an atom after a short radiation pulse, but while the electrons are still interacting. The procedure involves the use of exterior complex scaling to effectively propagate the field-free solution to infinite times, and allows the use of existing integral formulas for double ionization amplitudes for two electron atoms and molecules. C1 [Palacios, A.; McCurdy, C. W.; Rescigno, T. N.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Dept Chem, Davis, CA 95616 USA. RP Palacios, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Palacios, Alicia/J-6823-2012 OI Palacios, Alicia/0000-0001-6531-9926 NR 37 TC 33 Z9 33 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2007 VL 76 IS 4 AR 043420 DI 10.1103/PhysRevA.76.043420 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 226WR UT WOS:000250619700137 ER PT J AU Smirnov, GV van Buerck, U Arthur, J Brown, GS Chumakov, AI Baron, AQR Petry, W Ruby, SL AF Smirnov, G. V. van Buerck, U. Arthur, J. Brown, G. S. Chumakov, A. I. Baron, A. Q. R. Petry, W. Ruby, S. L. TI Currents and fields reveal the propagation of nuclear polaritons through a resonant target SO PHYSICAL REVIEW A LA English DT Article ID SYNCHROTRON-RADIATION; QUANTUM BEATS; SCATTERING; FE-57; TIME; EXCITATION; EMISSION; CRYSTAL; PULSES; STATES AB Nuclear resonant scattering of synchrotron radiation was investigated simultaneously in the spatially incoherent (4 pi) and in the spatially coherent (forward) scattering channels. A theory is presented which describes the main contributions to the scattering picture. To observe the 4 pi scattering, a nuclear target (spectator) was employed which was mounted downstream of another target (emitter). Emitter and spectator formed a combined scattering system. The time evolutions of the 4 pi scattering from the spectator and of the forward scattering from the combined system were measured and compared for different thicknesses of emitter and spectator. These observations and the analysis of the obtained time evolutions reveal how nuclear polaritons propagate through a scattering system. C1 [Smirnov, G. V.; Chumakov, A. I.] Russian Res Ctr, Kurchatov Inst, Moscow 123182, Russia. [van Buerck, U.; Petry, W.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Arthur, J.; Baron, A. Q. R.; Ruby, S. L.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Brown, G. S.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Chumakov, A. I.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Smirnov, GV (reprint author), Russian Res Ctr, Kurchatov Inst, Moscow 123182, Russia. EM smirnov@polyn.kiae.su RI Petry, Winfried/K-4998-2016 OI Petry, Winfried/0000-0001-5208-7070 NR 29 TC 10 Z9 10 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2007 VL 76 IS 4 AR 043811 DI 10.1103/PhysRevA.76.043811 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 226WR UT WOS:000250619700180 ER PT J AU Southworth, SH Arms, DA Dufresne, EM Dunford, RW Ederer, DL Hohr, C Kanter, EP Krassig, B Landahl, EC Peterson, ER Rudati, J Santra, R Walko, DA Young, L AF Southworth, S. H. Arms, D. A. Dufresne, E. M. Dunford, R. W. Ederer, D. L. Hoehr, C. Kanter, E. P. Kraessig, B. Landahl, E. C. Peterson, E. R. Rudati, J. Santra, R. Walko, D. A. Young, L. TI K-edge x-ray-absorption spectroscopy of laser-generated Kr(+) and Kr(2+) SO PHYSICAL REVIEW A LA English DT Article ID ADVANCED-PHOTON-SOURCE; IONIZATION; SYNCHROTRON; MICROPROBE; ENERGIES; WIDTHS AB Tunable, polarized, microfocused x-ray pulses were used to record x-ray absorption spectra across the K edges of Kr(+) and Kr(2+) produced by laser ionization of Kr. Prominent 1s -> 4p and 5p excitations are observed below the 1s ionization thresholds in accord with calculated transition energies and probabilities. Due to alignment of 4p hole states in the laser-ionization process, the Kr(+) 1s -> 4p cross section varies with respect to the angle between the laser and x-ray polarization vectors. This effect is used to determine the Kr(+) 4p(3/2) and 4p(1/2) quantum state populations, and these are compared with results of an adiabatic strong-field ionization theory that includes spin-orbit coupling. C1 [Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Hoehr, C.; Kanter, E. P.; Kraessig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J.; Santra, R.; Walko, D. A.; Young, L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Southworth, SH (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Landahl, Eric/A-1742-2010; Santra, Robin/E-8332-2014 OI Santra, Robin/0000-0002-1442-9815 NR 42 TC 19 Z9 19 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2007 VL 76 IS 4 AR 043421 DI 10.1103/PhysRevA.76.043421 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 226WR UT WOS:000250619700138 ER PT J AU Aga, RS Fu, CL Krcmar, M Morris, JR AF Aga, Rachel S. Fu, C. L. Krcmar, Maja Morris, James R. TI Theoretical investigation of the effect of graphite interlayer spacing on hydrogen absorption SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; MONTE-CARLO SIMULATIONS; WAVE BASIS-SET; MOLECULAR-HYDROGEN; CARBON NANOTUBES; STORAGE; ADSORPTION; DYNAMICS; NANOSTRUCTURES; SURFACE AB We investigate the absorption of hydrogen molecules between graphite layers using both first-principles calculations and classical grand-canonical Monte Carlo simulations. While a recent theoretical study showed that graphite layers have high storage capacity at room temperature, previous simulation results on hydrogen-graphite systems showed otherwise. Our first-principles calculations suggest that it is possible to store hydrogen molecules between the graphite layers if the energetically unfavorable initial absorption stage could be overcome. The barrier to the initial absorption originates from the large lattice strain required for H(2) absorption: small amounts of initial absorption cause an interlayer expansion of more than 60%. To determine if significant storage is indeed possible at finite temperature (and pressure), we performed grand-canonical Monte Carlo H(2)-absorption simulations with variable graphite interlayer spacing. Using two different potentials for the H(2)-C interaction, we found low-H(2)-mass uptake at room temperature and moderate pressures (e.g., close to 2 wt % at 298 K and 5 MPa). Our results suggest that a pore width or interlayer spacing around 6 A in the graphite layers has the optimum absorption capacity. C1 [Aga, Rachel S.; Fu, C. L.; Morris, James R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Krcmar, Maja] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. [Morris, James R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Aga, RS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 NR 31 TC 42 Z9 42 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 16 AR 165404 DI 10.1103/PhysRevB.76.165404 PG 7 WC Physics, Condensed Matter SC Physics GA 226XA UT WOS:000250620600090 ER PT J AU An, JM Franceschetti, A Zunger, A AF An, J. M. Franceschetti, A. Zunger, Alex TI Pauli blocking versus electrostatic attenuation of optical transition intensities in charged PbSe quantum dots SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; NANOCRYSTALS AB Quantum dots can be charged selectively by electrons or holes. This leads to changes in the intensity of interband and intraband optical transitions. Using atomistic pseudopotential calculations, we show that (i) when carriers are injected into dot-interior quantum-confined states, the intensity of interband transitions that have those states as their initial or final states is attenuated ("Pauli blocking") and (ii) when carriers are injected into localized states near the surface of the dots, the electrostatic field set up by these charges attenuates all optically allowed interband transitions. We describe and explain these two mechanisms of intensity attenuation in the case of charged PbSe quantum dots. In addition, this study reveals a new assignment of the peaks in the absorption spectrum. The absorption spectrum of charged PbSe dots was previously interpreted assuming that all injected electrons reside in dot-interior states. This assumption has led to the suggestion that the second absorption peak originates from S(h)-P(e) and P(h)-S(e) optical transitions, despite the fact that such transitions are expected to be dipole forbidden. Our results show that the observed bleaching of absorption peaks upon electron or hole charging does not imply that the S(h)-P(e) or P(h)-S(e) transitions are allowed. Instead, the observed bleaching sequence is consistent with charging of both dot-interior and surface-localized states and with the assignment of the second absorption peak to the allowed P(h)-P(e) transition. C1 [An, J. M.; Franceschetti, A.; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP An, JM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Zunger, Alex/A-6733-2013 NR 30 TC 13 Z9 13 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 16 AR 161310 DI 10.1103/PhysRevB.76.161310 PG 4 WC Physics, Condensed Matter SC Physics GA 226XA UT WOS:000250620600016 ER PT J AU Beckman, SP Chrzan, DC AF Beckman, S. P. Chrzan, D. C. TI Reconstruction energies of partial dislocations in cubic semiconductors SO PHYSICAL REVIEW B LA English DT Article ID 90-DEGREES PARTIAL DISLOCATION; WAVE BASIS-SET; AB-INITIO; 1ST-PRINCIPLES CALCULATIONS; DEFORMATION POTENTIALS; CORE STRUCTURE; SILICON; DIAMOND; GAAS; RESOLUTION AB The relative stability of the single period and double period reconstructions in the 90 degrees partial dislocation core is investigated across the cubic-semiconductor family. The effect of pressure on the phase stability is investigated for the elemental semiconductors. The relative phase stability of the reconstructions is correlated to the bulk crystal's propensity for bond bending versus bond stretching. It is observed that when the Kleinman parameter [Phys. Rev. 128, 2614 (1962)] of a crystal is less than 0.6, the double period reconstruction is favored. C1 [Beckman, S. P.] Univ Texas Austin, Inst Computat Engn & Sci, Dept Phys & Chem Engn, Ctr Computat Mat, Austin, TX 78712 USA. [Chrzan, D. C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chrzan, D. C.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Beckman, SP (reprint author), Univ Texas Austin, Inst Computat Engn & Sci, Dept Phys & Chem Engn, Ctr Computat Mat, Austin, TX 78712 USA. NR 39 TC 5 Z9 5 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 14 AR 144110 DI 10.1103/PhysRevB.76.144110 PG 5 WC Physics, Condensed Matter SC Physics GA 226WX UT WOS:000250620300030 ER PT J AU Biener, MM Biener, J Hodge, AM Hamza, AV AF Biener, Monika M. Biener, Juergen Hodge, Andrea M. Hamza, Alex V. TI Dislocation nucleation in bcc Ta single crystals studied by nanoindentation SO PHYSICAL REVIEW B LA English DT Article ID STRESS-STRAIN CURVES; PLASTIC-DEFORMATION; YIELD-POINT; TANTALUM; INDENTATION; METALS; SIMULATIONS; TEMPERATURE; MECHANISMS; ALUMINUM AB The study of dislocation nucleation in close-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic (bcc) metals using low index Ta single crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity, which is distinctly different from that of close-packed metals. Most noticeably, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in the context of the characteristic plastic deformation behavior of bcc metals. C1 [Biener, Monika M.; Biener, Juergen; Hodge, Andrea M.; Hamza, Alex V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, POB 808, Livermore, CA 94550 USA. NR 40 TC 50 Z9 50 U1 2 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 16 AR 165422 DI 10.1103/PhysRevB.76.165422 PG 6 WC Physics, Condensed Matter SC Physics GA 226XA UT WOS:000250620600108 ER PT J AU Blanter, YM Martin, I AF Blanter, Ya. M. Martin, Ivar TI Transport through normal-metal-graphene contacts SO PHYSICAL REVIEW B LA English DT Article ID CONDUCTIVITY; FILMS AB Conductance of zigzag interfaces between a graphene sheet and a normal metal is investigated in the tight-binding approximation. Boundary conditions, valid for a variety of scattering problems, are constructed and applied to the normal-metal-graphene-normal-metal junctions. At the Dirac point, the conductance is determined solely by the evanescent modes and is inversely proportional to the length of the junction. It is also independent of the interface resistance. Away from the Dirac point, the propagating modes' contribution dominates. We also observe that even in the junctions with high interface resistance, for certain modes, ideal transmission is possible via Fabry-Perot-like resonances. C1 [Blanter, Ya. M.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Martin, Ivar] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Blanter, YM (reprint author), Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands. NR 20 TC 74 Z9 74 U1 3 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 15 AR 155433 DI 10.1103/PhysRevB.76.155433 PG 6 WC Physics, Condensed Matter SC Physics GA 226WY UT WOS:000250620400132 ER PT J AU Chaudhuri, S Budhani, RC He, JQ Zhu, YM AF Chaudhuri, S. Budhani, R. C. He, Jiaqing Zhu, Yimei TI Scaled frequency-dependent transport in the mesoscopically phase-separated colossal magnetoresistive manganite La0.625-yPryCa0.375MnO3 SO PHYSICAL REVIEW B LA English DT Article ID PERCOLATION-THRESHOLD; PHYSICS AB We address the issue of massive phase separation (PS) in the manganite family of doped Mott insulators through ac conductivity measurements on La0.625-yPryCa0.375MnO3 (0.375 <= y <= 0.275), and establish the applicability of the scaling theory of percolation in the critical regime of the PS. Measurements of dc resistivity, magnetization [M(T)], and electron diffraction show incomplete growth of a ferromagnetic (FM) metallic component on cooling the high temperature charge-ordered (CO) phase well below the CO temperature. The impedance parallel to Z(T,f)parallel to measured over a frequency (f) range of 10 Hz-10 MHz in the critical regime follows a universal scaling of the form approximate to R(T,0)g(f xi(2+theta)), with theta approximate to 0.86 and the normalized correlation length varying from 1 to 4, suggesting anomalous diffusion of holes in percolating FM clusters. C1 [Chaudhuri, S.; Budhani, R. C.] Indian Inst Technol, Dept Phys, Condensed Matter Low Dimens Syst Lab, Kanpur 208016, Uttar Pradesh, India. [He, Jiaqing; Zhu, Yimei] Brookhaven Natl Lab, Dept Nanosci, Upton, NY 11973 USA. RP Budhani, RC (reprint author), Indian Inst Technol, Dept Phys, Condensed Matter Low Dimens Syst Lab, Kanpur 208016, Uttar Pradesh, India. RI He, Jiaqing/A-2245-2010; Chaudhuri, Saumyadip/C-6883-2011 NR 23 TC 14 Z9 14 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 13 AR 132402 DI 10.1103/PhysRevB.76.132402 PG 4 WC Physics, Condensed Matter SC Physics GA 226WS UT WOS:000250619800005 ER PT J AU Choi, HJ Cohen, ML Louie, SG AF Choi, Hyoung Joon Cohen, Marvin L. Louie, Steven G. TI First-principles scattering-state approach for nonlinear electrical transport in nanostructures SO PHYSICAL REVIEW B LA English DT Article ID LOCALIZED SCATTERERS; METALLIC CONDUCTION; NANOTUBE JUNCTIONS; SPATIAL VARIATION; ATOMIC WIRES; TOTAL-ENERGY; CARBON; PSEUDOPOTENTIALS; RESISTANCE; TRANSISTOR AB We present an ab initio scattering-state method for calculating the electrical transport properties of nanostructures at a finite bias voltage. A typical system of interest consists of two semi-infinite crystalline metal probes and a nanostructure (e.g., an atomic wire or a molecule) placed between the probes. The two metal probes have different chemical potentials at a finite bias voltage. The electronic structure of the system is described by the Kohn-Sham density functional method, with appropriate boundary conditions imposed on the electronic density and potential inside the metal probes. We expand the electronic wave functions with pseudoatomic orbitals and directly solve the self-consistent Kohn-Sham equation to obtain the transmission probabilities of electrons incident from either of the probes. The current through the molecule or nanostructure is then obtained by integrating the transmission between the two chemical potentials. Our scattering-state method provides stable and efficient algorithms for the complex bands, scattering-state wave functions, and the nonequilibrium steady-state electron density. As illustrations of the method, we present the calculated electrical transport properties of a defective carbon nanotube, a four-carbon atomic chain, and a benzene-dithiol molecular junction. C1 [Choi, Hyoung Joon] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Choi, Hyoung Joon] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cohen, Marvin L.; Louie, Steven G.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Choi, HJ (reprint author), Yonsei Univ, Dept Phys, Seoul 120749, South Korea. EM h.j.choi@yonsei.ac.kr RI Choi, Hyoung Joon/N-8933-2015 OI Choi, Hyoung Joon/0000-0001-8565-8597 NR 43 TC 46 Z9 46 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 15 AR 155420 DI 10.1103/PhysRevB.76.155420 PG 14 WC Physics, Condensed Matter SC Physics GA 226WY UT WOS:000250620400119 ER PT J AU Essin, AM Moore, JE AF Essin, Andrew M. Moore, J. E. TI Topological insulators beyond the Brillouin zone via Chern parity SO PHYSICAL REVIEW B LA English DT Article ID QUANTIZED HALL CONDUCTANCE; MAGNETIC-FIELD; LOCALIZATION; TRANSITION; PHYSICS; MODEL AB The topological insulator is an electronic phase stabilized by spin-orbit coupling that supports propagating edge states and is not adiabatically connected to the ordinary insulator. In several ways it is a spin-orbit-induced analog in time-reversal-invariant systems of the integer quantum Hall effect (IQHE). This paper studies the topological insulator phase in disordered two-dimensional systems, using a model graphene Hamiltonian introduced by Kane and Mele [Phys. Rev. Lett. 95, 226801 (2005)] as an example. The nonperturbative definition of a topological insulator given here is distinct from previous efforts in that it involves boundary phase twists that couple only to charge, does not refer to edge states, and can be measured by pumping cycles of ordinary charge. In this definition, the phase of a Slater determinant of electronic states is determined by a Chern parity analogous to Chern number in the IQHE case. Numerically, we find, in agreement with recent network model studies, that the direct transition between ordinary and topological insulators that occurs in band structures is a consequence of the perfect crystalline lattice. Generically, these two phases are separated by a metallic phase, which is allowed in two dimensions when spin-orbit coupling is present. The same approach can be used to study three-dimensional topological insulators. C1 [Essin, Andrew M.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, J. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Essin, AM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 40 TC 60 Z9 60 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 16 AR 165307 DI 10.1103/PhysRevB.76.165307 PG 11 WC Physics, Condensed Matter SC Physics GA 226XA UT WOS:000250620600070 ER PT J AU Fluegel, B Mascarenhas, A Ptak, AJ Tixier, S Young, EC Tiedje, T AF Fluegel, B. Mascarenhas, A. Ptak, A. J. Tixier, S. Young, E. C. Tiedje, T. TI E(+) transition in GaAs(1-x)N(x) and GaAs(1-x)Bi(x) due to isoelectronic-impurity-induced perturbation of the conduction band SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; ANTICROSSING MODEL; TIGHT-BINDING; ALLOYS; PRESSURE; GAAS; GAP; GAN(X)AS1-X; GANXAS1-X; GAINNAS AB An above-band-gap transition E(+) is experimentally observed in the dilute GaAs(1-x)Bi(x) alloy. Precise measurements at very low dilutions are made of the above-band-gap transition E(+) that is observed in GaAs(1-x)N(x), making it possible to compare the behavior of the different isoelectronic traps Bi and N in the common host GaAs with respect to their perturbation to the host electronic structure. We suggest that the origin of the E(+) level observed in GaAs is not the isolated isoelectronic impurity level N(x), as is presumed in the band-anticrossing model, but rather the isoelectronic-impurity-induced perturbation of the conduction band L(6)(c). C1 [Fluegel, B.; Mascarenhas, A.; Ptak, A. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Tixier, S.; Young, E. C.; Tiedje, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Fluegel, B (reprint author), Natl Renewable Energy Lab, 1617 Cole Boulevard, Golden, CO 80401 USA. RI Young, Erin/J-5786-2013 NR 37 TC 7 Z9 7 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 15 AR 155209 DI 10.1103/PhysRevB.76.155209 PG 5 WC Physics, Condensed Matter SC Physics GA 226WY UT WOS:000250620400069 ER PT J AU Franceschetti, A AF Franceschetti, A. TI First-principles calculations of the temperature dependence of the band gap of Si nanocrystals SO PHYSICAL REVIEW B LA English DT Article ID ENERGY-GAP; FINITE-TEMPERATURE; SILICON; SEMICONDUCTORS; SPECTRA; ISOTOPE; GE AB The temperature dependence of the band gap of hydrogen-passivated Si nanocrystals of radius R=0.7 and 1.1 nm has been calculated from first principles using constant-temperature molecular-dynamics simulations. The band-gap change with temperature Delta E(g)(R,T)=E(g)(R,T)-E(g)(R,0) is obtained by averaging over the configurations sampled during the molecular-dynamics simulation. We find that Delta E(g)(R,T) depends strongly on the nanocrystal size. At room temperature, the calculated Delta E(g)(R,T) is approximately -150 meV for R=1.1 nm nanocrystals, and -210 meV for R=0.7 nm nanocrystals, significantly larger in magnitude than in the case of bulk Si. We also find that in Si nanocrystals the band-gap deformation potential is positive, but smaller than in bulk Si. C1 [Franceschetti, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 30 TC 24 Z9 25 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 16 AR 161301 DI 10.1103/PhysRevB.76.161301 PG 4 WC Physics, Condensed Matter SC Physics GA 226XA UT WOS:000250620600007 ER PT J AU Giustino, F Cohen, ML Louie, SG AF Giustino, Feliciano Cohen, Marvin L. Louie, Steven G. TI Electron-phonon interaction using Wannier functions SO PHYSICAL REVIEW B LA English DT Article ID STRONG-COUPLED SUPERCONDUCTORS; SELF-CONSISTENT CALCULATION; TRANSITION-TEMPERATURE; PERTURBATION-THEORY; TOTAL-ENERGY; PSEUDOPOTENTIALS; METALS; CRYSTAL; DIAMOND; ORIGIN AB We introduce a technique based on the spatial localization of electron and phonon Wannier functions to perform first-principles calculations of the electron-phonon interaction with an ultradense sampling of the Brillouin zone. After developing the basic theory, we describe the practical implementation within a density-functional framework. The proposed method is illustrated by considering a virtual crystal model of boron-doped diamond. For this test case, we first discuss the spatial localization of the electron-phonon matrix element in the Wannier representation. Then, we assess the accuracy of the Wannier-Fourier interpolation in momentum space. Finally, we study the convergence of the electron-phonon self-energies with the sampling of the Brillouin zone by calculating the electron and phonon linewidths, the Eliashberg spectral function, and the mass enhancement parameter of B-doped diamond. We show that more than 10(5) points in the irreducible wedge of the Brillouin zone are needed to achieve convergence. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Giustino, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Giustino, Feliciano/F-6343-2013; OI Giustino, Feliciano/0000-0001-9293-1176 NR 83 TC 113 Z9 113 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 16 AR 165108 DI 10.1103/PhysRevB.76.165108 PG 19 WC Physics, Condensed Matter SC Physics GA 226XA UT WOS:000250620600030 ER PT J AU Heinonen, OG Schreiber, DK Petford-Long, AK AF Heinonen, O. G. Schreiber, D. K. Petford-Long, A. K. TI Micromagnetic modeling of spin-wave dynamics in exchange-biased permalloy disks SO PHYSICAL REVIEW B LA English DT Article ID CYLINDRICAL DOTS; MODES; ARRAYS AB The magnetization dynamics in exchange-biased 12 nm thick micron-sized permalloy disks have been studied using micromagnetic modeling. The magnetization in the permalloy and in the adjacent antiferromagnetic layer are set in a vortex configuration, and the disk is equilibrated in an applied field, which is then released. The behavior of the magnetization has been modeled as a function of both exchange bias strength and applied field, in both the time and frequency domains. We show that the exchange bias increases the curvature of the effective potential confining the vortex and that the gyrotropic frequency of the vortex core motion increases linearly with exchange bias. The eigenmodes of the spin waves to which the field couples are either azimuthal (for an in-plane field) or circularly symmetric (for a perpendicular field), with several orders of modes being visible. For the cicularly symmetric modes, the increase in frequency with exchange bias is in good agreement with an analytical model. C1 [Heinonen, O. G.] Record Heads Operat Seagate Technol, Bloomington, MN 55435 USA. [Schreiber, D. K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Schreiber, D. K.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Heinonen, OG (reprint author), Record Heads Operat Seagate Technol, 7801 Comp Ave, Bloomington, MN 55435 USA. RI Petford-Long, Amanda/P-6026-2014; OI Petford-Long, Amanda/0000-0002-3154-8090; Heinonen, Olle/0000-0002-3618-6092 NR 24 TC 17 Z9 18 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 14 AR 144407 DI 10.1103/PhysRevB.76.144407 PG 8 WC Physics, Condensed Matter SC Physics GA 226WX UT WOS:000250620300057 ER PT J AU Jeon, B Kress, JD Gronbech-Jensen, N AF Jeon, Byoungseon Kress, Joel D. Gronbech-Jensen, Niels TI Thiol density-dependent classical potential for methyl thiol on a Au(111) surface SO PHYSICAL REVIEW B LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; FUNCTIONAL THEORY; BASIS-SET; ADSORPTION; ALKANETHIOLS; METALS; MODEL AB A classical potential for methyl thiol on a Au(111) surface has been developed using density functional theory electronic structure calculations. Energy surfaces between methyl thiol and a gold surface were investigated in terms of symmetry sites and thiol density. Geometrical optimization was employed over all the configurations, while minimum energy and thiol height were determined. Finally, an interatomic potential has been generated as a function of thiol density, and applications to coarse-grained simulations are presented. C1 [Jeon, Byoungseon; Gronbech-Jensen, Niels] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Jeon, Byoungseon; Kress, Joel D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Jeon, B (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RI Jeon, ByoungSeon/D-2281-2012 NR 25 TC 6 Z9 6 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 15 AR 155120 DI 10.1103/PhysRevB.76.155120 PG 7 WC Physics, Condensed Matter SC Physics GA 226WY UT WOS:000250620400052 ER PT J AU Kim, YJ Hill, JP Wakimoto, S Birgeneau, RJ Chou, FC Motoyama, N Kojima, KM Uchida, S Casa, D Gog, T AF Kim, Young-June Hill, J. P. Wakimoto, S. Birgeneau, R. J. Chou, F. C. Motoyama, N. Kojima, K. M. Uchida, S. Casa, D. Gog, T. TI Observations on the resonant inelastic x-ray scattering cross section in copper oxide compounds SO PHYSICAL REVIEW B LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; CHARGE-TRANSFER EXCITATIONS; MOMENTUM DEPENDENCE; SR2CUO2CL2; SPECTRA; ND2CUO4; SOLIDS AB We report properties of the resonant inelastic x-ray scattering (RIXS) cross section in a number of cuprates. We find that the observed spectra have the periodicity of the underlying crystal lattice, that is, the excitations are a function of reduced momentum q and not the total momentum Q=G+q, where G is a reciprocal lattice vector. Measurements with two different incident photon polarizations show that the line shape and momentum dependence of the observed spectra are independent of the particular state the 4p photoelectron resides in the intermediate state. These latter results support theoretical approaches in which the 4p is taken to be a spectator in the RIXS process. In addition, a discussion is presented of what might be expected to be generic features of the RIXS cross section with the aid of some crude models, and a comparison is made between RIXS and electron energy loss data for a number of cuprates both at q=0 and at finite q. Taken together, there is a suggestion in the data that RIXS measures an S(q,omega)-like response. C1 [Kim, Young-June; Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wakimoto, S.; Birgeneau, R. J.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Hill, J. P.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Chou, F. C.] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA. [Motoyama, N.; Kojima, K. M.; Uchida, S.] Univ Tokyo, Grad Sch Frontier Sci, Bunkyo Ku, Tokyo 1138656, Japan. [Casa, D.; Gog, T.] Argonne Natl Lab, Adv Photon Source, CMC, XOR, Argonne, IL 60439 USA. RP Kim, YJ (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Casa, Diego/F-9060-2016; Hill, John/F-6549-2011; Kim, Young-June /G-7196-2011 OI Kim, Young-June /0000-0002-1172-8895 NR 39 TC 14 Z9 14 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 15 AR 155116 DI 10.1103/PhysRevB.76.155116 PG 7 WC Physics, Condensed Matter SC Physics GA 226WY UT WOS:000250620400048 ER PT J AU Kuhn, T Anghel, DV Galperin, YM Manninen, M AF Kuehn, T. Anghel, D. V. Galperin, Y. M. Manninen, M. TI Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes SO PHYSICAL REVIEW B LA English DT Article ID LOW-TEMPERATURES; GLASSES AB Using a generalized model of interaction between a two-level system (TLS) and an arbitrary deformation of the material, we calculate the interaction of Lamb modes with TLSs in amorphous nanoscopic membranes. We compare the mean free paths of the Lamb modes of different symmetries and calculate the heat conductivity kappa. In the limit of an infinitely wide membrane, the heat conductivity is divergent. Nevertheless, the finite size of the membrane imposes a lower cutoff for the phonon frequencies, which leads to the temperature dependence kappa proportional to T(a+b ln T). This temperature dependence is a hallmark of the TLS-limited heat conductance at low temperature. C1 [Kuehn, T.; Manninen, M.] Univ Jyvaskyla, Nanosci Ctr, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Anghel, D. V.] Natl Inst Phys & Nucl Engn, Dept Theoret Phys, R-077125 Bucharest, Romania. [Anghel, D. V.] Joint Inst Nucl Res Dubna, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia. [Galperin, Y. M.] Univ Oslo, Ctr Adv Mat & Nanotechnol, Dept Phys, N-0316 Oslo, Norway. [Galperin, Y. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Galperin, Y. M.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Kuhn, T (reprint author), Univ Jyvaskyla, Nanosci Ctr, Dept Phys, PO Box 35, FIN-40014 Jyvaskyla, Finland. RI Anghel, Dragos-Victor/A-3940-2008; OI Anghel, Dragos-Victor/0000-0003-4809-0482 NR 16 TC 9 Z9 9 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 16 AR 165425 DI 10.1103/PhysRevB.76.165425 PG 8 WC Physics, Condensed Matter SC Physics GA 226XA UT WOS:000250620600111 ER PT J AU Lee, B Cartoixa, X Trivedi, N Martin, RM AF Lee, Byounghak Cartoixa, Xavier Trivedi, Nandini Martin, Richard M. TI Disorder-enhanced spin polarization in diluted magnetic semiconductors SO PHYSICAL REVIEW B LA English DT Article ID FERROMAGNETISM; SUPERLATTICES; IMPURITIES AB We present a theoretical study of diluted magnetic semiconductors that includes spin-orbit coupling within a realistic host band structure and treats explicitly the effects of disorder due to randomly substituted Mn ions. While spin-orbit coupling reduces the spin polarization by mixing different spin states in the valence bands, we find that disorder from Mn ions enhances the spin polarization due to formation of ferromagnetic impurity clusters and impurity bound states. The disorder leads to large effects on the hole carriers which form impurity bands as well as hybridizing with the valence band. For Mn doping 0.01 less than or similar to x less than or similar to 0.04, the system is metallic with a large effective mass and low mobility. C1 [Lee, Byounghak] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Cartoixa, Xavier] Univ Autonoma Barcelona, Dept Elect Engn, Bellaterra 08193, Spain. [Trivedi, Nandini] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Martin, Richard M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Lee, B (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM bhlee@lbl.gov NR 29 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 15 AR 155208 DI 10.1103/PhysRevB.76.155208 PG 5 WC Physics, Condensed Matter SC Physics GA 226WY UT WOS:000250620400068 ER PT J AU Lee, DR Freeland, JW Choi, Y Srajer, G Metlushko, V Ilic, B AF Lee, Dong Ryeol Freeland, John W. Choi, Yongseong Srajer, George Metlushko, Vitali Ilic, Bojan TI X-ray resonant magnetic scattering study of magnetization reversals in a nanoscale spin-valve array SO PHYSICAL REVIEW B LA English DT Article ID TUNNEL-JUNCTIONS; EXCHANGE SCATTERING; MEMORY; MAGNETORESISTANCE; DOMAINS; ELEMENT; FILMS AB We present an x-ray resonant magnetic scattering study that uses the periodicity of a patterned array of trilayer (Co/Cu/NiFe) elements to determine not only layer-dependent magnetic hysteresis, but, more importantly, to extract the magnetization reversal in different sections of the picture-frame-shaped structure. Spatially resolved and layer-resolved magnetization measurements have revealed that magnetic switching mechanism is very distinct in different regions of the structure and results from a balancing of the shape anisotropy and strong interlayer dipolar coupling. These results demonstrate how spatially averaged measurements are not sufficient to resolve the nature of the reversal mechanism within the structure. C1 [Lee, Dong Ryeol] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea. [Freeland, John W.; Srajer, George] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Choi, Yongseong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Metlushko, Vitali] Univ Illinois Chicago, Dept Elect & Comp Engn, Chicago, IL 60607 USA. [Ilic, Bojan] Cornell Univ, Cornell Nanofabric Facil, Ithaca, NY 14853 USA. RP Lee, DR (reprint author), Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea. RI Ilic, Rob/N-1359-2014 NR 31 TC 5 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 14 AR 144425 DI 10.1103/PhysRevB.76.144425 PG 5 WC Physics, Condensed Matter SC Physics GA 226WX UT WOS:000250620300075 ER PT J AU Lee, GD Wang, CZ Yu, J Yoon, E Hwang, NM Ho, KM AF Lee, Gun-Do Wang, Cai-Zhuang Yu, Jaejun Yoon, Euijoon Hwang, Nong-Moon Ho, Kai-Ming TI Formation of carbon nanotube semiconductor-metal intramolecular junctions by self-assembly of vacancy defects SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRONIC-PROPERTIES AB Atomistic processes of carbon nanotube semiconductor-metal intramolecular junction formation are investigated by tight-binding molecular dynamics simulations and first-principles total energy calculations. We show that the junctions can be formed by reconstruction of vacancy clusters through a series of generalized Stone-Wales transformations [Chem. Phys. Lett. 128, 501 (1986)]. Our simulations suggest a mechanism for synthesis of carbon nanotube semiconductor-metal intramolecular junctions with specific locations and controlled sizes and show the possibility of application to nanoelectronic devices. Our simulations study also provides a microscopic explanation to the superplastic deformation in single-wall carbon nanotubes. C1 [Lee, Gun-Do; Yoon, Euijoon] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. [Lee, Gun-Do; Yoon, Euijoon] Seoul Natl Univ, ISRC, Seoul 151742, South Korea. [Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Yu, Jaejun] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Yu, Jaejun] Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Seoul 151747, South Korea. [Hwang, Nong-Moon] Seoul Natl Univ, Natl Res Lab Charged Nanoparticles, Seoul 151742, South Korea. [Hwang, Nong-Moon] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. RP Lee, GD (reprint author), Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. RI Lee, Gun-Do/L-1259-2013 OI Lee, Gun-Do/0000-0001-8328-8625 NR 28 TC 28 Z9 28 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 16 AR 165413 DI 10.1103/PhysRevB.76.165413 PG 5 WC Physics, Condensed Matter SC Physics GA 226XA UT WOS:000250620600099 ER PT J AU Lee, HO Jo, YJ Balicas, L Schlottmann, P Condron, CL Sidorov, VA Klavins, P Kauzlarich, SM Thompson, JD Fisk, Z AF Lee, Han-Oh Jo, Youn-Jung Balicas, Luis Schlottmann, P. Condron, Cathie L. Sidorov, V. A. Klavins, Peter Kauzlarich, Susan M. Thompson, J. D. Fisk, Z. TI Unique f-level resonant state within the gap in Ce(3)Au(3)Sb(4) single crystals: Magnetic, thermal, and transport properties SO PHYSICAL REVIEW B LA English DT Article ID ENERGY-GAP; SEMICONDUCTOR; CHARGE; SYSTEM; CE3BI4PT3; SM3SE4 AB The magnetic, thermal, and transport properties of single crystals of the narrow gap semiconductor Ce(3)Au(3)Sb(4) have been studied. Transport data are consistent with an exponential activation and variable range hopping at low temperatures, which is characteristic of weak disorder and localization. The specific heat and the magnetic susceptibility data suggest the existence of a large density of states of localized states in the gap. The physics is then different from standard Kondo insulators. From its unique physical properties, we propose a three band model (valence, conduction, and f bands) with weak disorder that explains most of the experimental findings. C1 [Lee, Han-Oh; Klavins, Peter; Fisk, Z.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, Han-Oh; Sidorov, V. A.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jo, Youn-Jung; Balicas, Luis; Schlottmann, P.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Schlottmann, P.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Condron, Cathie L.; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Sidorov, V. A.] Russian Acad Sci, Vereshchagin Inst High Pressure Phys, Troitsk 142190, Russia. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Lee, HO (reprint author), Univ Calif Davis, Dept Phys, 1 Sheilds Ave, Davis, CA 95616 USA. RI Balicas, Luis/A-3110-2008; Schlottmann, Pedro/G-1579-2013; Kauzlarich, Susan/H-1439-2011 NR 36 TC 4 Z9 4 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 15 AR 155204 DI 10.1103/PhysRevB.76.155204 PG 8 WC Physics, Condensed Matter SC Physics GA 226WY UT WOS:000250620400064 ER PT J AU Liu, W Li, BS Wang, LP Zhang, JZ Zhao, YS AF Liu, Wei Li, Baosheng Wang, Liping Zhang, Jianzhong Zhao, Yusheng TI Elasticity of omega-phase zirconium SO PHYSICAL REVIEW B LA English DT Article ID S-D TRANSITION; HIGH-PRESSURE; CRYSTAL-STRUCTURES; X-RADIATION; ZR; HF; TRANSFORMATION; CONJUNCTION; VELOCITY; TITANIUM AB Compressional (V(P)) and shear wave (V(S)) velocities as well as unit-cell volumes of the omega phase of Zr have been measured at high pressure (6.9-10.9 GPa) at room temperature using ultrasonic interferometry in conjunction with synchrotron x radiation. Both V(P) and V(S) as well as the adiabatic bulk (K(S)) and shear (G) moduli exhibit monotonic increase with increasing pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli and their pressure derivatives are derived from the directly measured velocities and densities, yielding K(S0)=104.0 (16) GPa, G(0)=45.1 (9) GPa, K(S0)(')=2.8 (2), and G(0)(')=0.6 (1) independent of pressure calibration. The low pressure dependence of K(S0) and G(0) may be attributed to the pressure-induced progressive s-d electron transfer in the omega-Zr as suggested by previous Raman studies as well as static compressions at high pressure. C1 [Liu, Wei; Li, Baosheng; Wang, Liping] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. RP Liu, W (reprint author), SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. RI Lujan Center, LANL/G-4896-2012; Li, Baosheng/C-1813-2013; OI Zhang, Jianzhong/0000-0001-5508-1782 NR 33 TC 21 Z9 21 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 14 AR 144107 DI 10.1103/PhysRevB.76.144107 PG 4 WC Physics, Condensed Matter SC Physics GA 226WX UT WOS:000250620300027 ER PT J AU Maier, TA Macridin, A Jarrell, M Scalapino, DJ AF Maier, T. A. Macridin, A. Jarrell, M. Scalapino, D. J. TI Systematic analysis of a spin-susceptibility representation of the pairing interaction in the two-dimensional Hubbard model SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-SYSTEMS; SUPERCONDUCTIVITY; APPROXIMATION; PHASE; UPT3 AB A dynamic cluster quantum Monte Carlo algorithm is used to study a spin-susceptibility representation of the pairing interaction for the two-dimensional Hubbard model with an on-site Coulomb interaction equal to the bandwidth for various doping levels. We find that the pairing interaction is well approximated by 3/2 (U) over bar (T)(2)chi(K-K(')), with an effective temperature and doping dependent coupling (U) over bar (T) and the numerically calculated spin susceptibility chi(K-K(')). We show that at low temperatures, (U) over bar may be accurately determined from a corresponding spin-susceptibility based calculation of the single-particle self-energy. We conclude that the strength of the d-wave pairing interaction, characterized by the mean-field transition temperature, can be determined from a knowledge of the dressed spin susceptibility and the nodal quasiparticle spectral weight. This has important implications with respect to the questions of whether spin fluctuations are responsible for pairing in the high-T(c) cuprates. C1 [Maier, T. A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Maier, T. A.; Scalapino, D. J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Macridin, A.; Jarrell, M.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Maier, TA (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM maierta@ornl.gov; macridin@physics.uc.edu; jarrell@physics.uc.edu; djs@physics.ucsb.edu RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 21 TC 31 Z9 31 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 14 AR 144516 DI 10.1103/PhysRevB.76.144516 PG 5 WC Physics, Condensed Matter SC Physics GA 226WX UT WOS:000250620300099 ER PT J AU Matveev, KA Furusaki, A Glazman, LI AF Matveev, K. A. Furusaki, A. Glazman, L. I. TI Bosonization of strongly interacting one-dimensional electrons SO PHYSICAL REVIEW B LA English DT Article ID HUBBARD-MODEL; LUTTINGER-LIQUID; SPECTRAL FUNCTIONS; CONDUCTANCE QUANTIZATION; MOMENTUM DISTRIBUTION; QUANTUM FLUIDS; WAVE-FUNCTION; FERMI GAS; EXCITATIONS; SEPARATION AB Strong repulsive interactions in a one-dimensional electron system suppress the exchange coupling J of electron spins to a value much smaller than the Fermi energy E(F). The conventional theoretical description of such systems based on the bosonization approach and the concept of Tomonaga-Luttinger liquid is applicable only at energies below J. In this paper, we develop a theoretical approach valid at all energies below the Fermi energy, including a broad range of energies between J and E(F). The method involves bosonization of the charge degrees of freedom, while the spin excitations are treated exactly. We use this technique to calculate the spectral functions of strongly interacting electron systems at energies in the range J 0. The magnetic behavior is highly anisotropic, and the H-T phase diagrams are quite rich, with seven distinct phases observed. C1 [Morosan, E.; Fleitman, J.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Klimczuk, T.] Los Alamos Natl Lab, Div Thermal Phys, Los Alamos, NM 87545 USA. [Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. RP Morosan, E (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Klimczuk, Tomasz/M-1716-2013 OI Klimczuk, Tomasz/0000-0003-2602-5049 NR 13 TC 12 Z9 12 U1 4 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 14 AR 144403 DI 10.1103/PhysRevB.76.144403 PG 5 WC Physics, Condensed Matter SC Physics GA 226WX UT WOS:000250620300053 ER PT J AU Murphy, PG Moore, JE AF Murphy, P. G. Moore, J. E. TI Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires SO PHYSICAL REVIEW B LA English DT Article ID CONDUCTANCE; QUANTUM; DYNAMICS; CONDUCTIVITY; LOCALIZATION; ELECTRON; SYSTEMS; WIRES AB The thermal conductance by phonons of a quasi-one-dimensional solid with isotope or defect scattering is studied using the Landauer formalism for thermal transport. The conductance shows a crossover from localized to Ohmic behavior, just as for electrons; however, the nature of this crossover is modified by delocalization of phonons at low frequency. A scalable numerical transfer-matrix technique is developed and applied to model quasi-one-dimensional systems in order to confirm simple analytic predictions. We argue that existing thermal conductivity data on semiconductor nanowires, showing an unexpected linear temperature dependence, can be understood through a model that combines incoherent surface scattering for short-wavelength phonons with nearly ballistic long-wavelength phonons. It is also found that even when strong phonon localization effects would be observed if defects are distributed throughout the wire, localization effects are much weaker when defects are only at the boundary, as in current experiments. C1 [Murphy, P. G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Murphy, PG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 27 TC 53 Z9 53 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 15 AR 155313 DI 10.1103/PhysRevB.76.155313 PG 11 WC Physics, Condensed Matter SC Physics GA 226WY UT WOS:000250620400083 ER PT J AU Namilae, S Nicholson, DM Nukala, PKVV Gao, CY Osetsky, YN Keffer, DJ AF Namilae, S. Nicholson, D. M. Nukala, P. K. V. V. Gao, C. Y. Osetsky, Y. N. Keffer, D. J. TI Absorbing boundary conditions for molecular dynamics and multiscale modeling SO PHYSICAL REVIEW B LA English DT Article ID WAVE-EQUATION; SIMULATIONS; MECHANICS AB We present an application of differential equation based local absorbing boundary conditions to molecular dynamics. The absorbing boundary conditions result in the absorbtion of the majority of waves incident perpendicular to the bounding surface. We demonstrate that boundary conditions developed for the wave equation can be applied to molecular dynamics. Comparisons with damping material boundary conditions are discussed. The concept is extended to the formulation of an atomistic-continuum multiscale scheme with handshaking between the regions based on absorbing boundary conditions. The multiscale model is effective in minimizing spurious reflections at the interface. C1 [Namilae, S.; Nicholson, D. M.; Nukala, P. K. V. V.; Osetsky, Y. N.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Gao, C. Y.; Keffer, D. J.] Univ Tennessee, Dept Chem Engn, Knoxville, TN 37996 USA. RP Namilae, S (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RI Keffer, David/C-5133-2014; OI Keffer, David/0000-0002-6246-0286; Osetskiy, Yury/0000-0002-8109-0030 NR 31 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 14 AR 144111 DI 10.1103/PhysRevB.76.144111 PG 8 WC Physics, Condensed Matter SC Physics GA 226WX UT WOS:000250620300031 ER PT J AU Ouyang, ZW Pecharsky, VK Gschneidner, KA Schlagel, DL Lograsso, TA AF Ouyang, Z. W. Pecharsky, V. K. Gschneidner, K. A., Jr. Schlagel, D. L. Lograsso, T. A. TI Field step size and temperature effects on the character of the magnetostructural transformation in a Gd(5)Ge(4) single crystal SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION; GD-5(SIXGE1-X)(4); GD-5(SI2GE2); GE AB The critical magnetic fields required to induce the magnetostructural transformation below similar to 30 K in Gd(5)Ge(4) are dependent on the size of the magnetic-field step employed during isothermal measurements of magnetization: the smaller the step, the lower the critical field. The influence of the magnetic-field step size on the character of the magnetostructural transition in Gd(5)Ge(4) diminishes as temperature increases, nearly disappearing above similar to 30 K. Decreasing the size of the field step also leads to the formation of multiple steps in the magnetization. The steps are reproducible in the same sample at low temperatures (below similar to 9 K) but they become stochastic and irreproducible at high temperatures (above similar to 20 K). The varying dynamics of both the magnetization and demagnetization processes is associated with approaching true equilibrium states and, therefore, reduction of the size of the magnetic-field step at low temperatures plays a role similar to the dominant role of thermal fluctuations at high temperatures. Similar phenomena are expected to occur in other martensiticlike systems, e.g., the manganites. C1 [Ouyang, Z. W.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, Ames Lab, US DOE, Mat & Engn Phys Program, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Ouyang, ZW (reprint author), Iowa State Univ, Ames Lab, US DOE, Mat & Engn Phys Program, Ames, IA 50011 USA. NR 37 TC 15 Z9 16 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2007 VL 76 IS 13 AR 134406 DI 10.1103/PhysRevB.76.134406 PG 9 WC Physics, Condensed Matter SC Physics GA 226WS UT WOS:000250619800064 ER PT J AU Ouyang, ZW Pecharsky, VK Gschneidner, KA Schlagel, DL Lograsso, TA AF Ouyang, Z. W. Pecharsky, V. K. Gschneidner, K. A., Jr. Schlagel, D. L. Lograsso, T. A. TI Angular dependence of the spin-flop transition and a possible structure of the spin-flop phase of Gd(5)Ge(4) SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-SCATTERING; MNF2; ANTIFERROMAGNET; MAGNETIZATION; DIAGRAM AB The angular dependence of the spin-flop transition in Gd(5)Ge(4) has been examined by magnetization measurements of a single crystal. When the magnetic field vector is tilted away from the antiferromagnetic easy axis (c axis) toward the b axis, the spin-flop transition always remains first order in nature. However, when the field vector is tilted away from the c axis toward the a axis, the first order spin-flop transition is only observed over a narrow range of tilt angles (0 K+ Lambda reaction at backward angles SO PHYSICAL REVIEW C LA English DT Article AB Cross sections for the gamma p -> K+Lambda reaction were measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction was measured for the first time at backward angles. The Lambda was detected at forward angles in the LEPS spectrometer via its decay to p pi(-) and the K+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics. C1 [Hicks, K.; Mibe, T.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Sumihama, M.; Ahn, D. S.; Ejiri, H.; Fujiwara, M.; Hasegawa, S.; Hosaka, A.; Hotta, T.; Kato, Y.; Kino, K.; Kohri, H.; Matsuoka, N.; Morita, M.; Muramatsu, N.; Nakano, T.; Ozaki, S.; Shagin, P. M.; Shimizu, A.; Yosoi, M.] Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. [Ahn, D. S.; Ahn, J. K.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Akimune, H.; Yonehara, K.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Asano, Y.] Japan Atom Energy Res Inst, Synchrotron Radiat Res Ctr, Mikazuki, Hyogo 6795198, Japan. [Chang, W. C.; Oshuev, D. S.; Wang, C. W.; Wang, S. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Date, S.; Ejiri, H.; Kumagai, N.; Ohashi, Y.; Ohkuma, H.; Toyokawa, H.; Yorita, T.] Japan Synchrotron Radiat Res Ctr, Mikazuki, Hyogo 6795198, Japan. [Fukui, S.; Miyachi, Y.] Nagoya Univ, Dept Phys & Astrophys, Aichi 4648602, Japan. [Fujimura, H.; Ishikawa, T.; Miyabe, M.; Niiyama, M.; Sasaki, T.; Yosoi, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Fujimura, H.; Kim, Z. Y.] Seoul Natl Univ, Sch Phys, Seoul 151747, South Korea. [Fujiwara, M.] Japan Atom Energy Agcy, Kansai Photon Sci Inst, Kizu, Kyoto 6190215, Japan. [Ishikawa, T.; Shimizu, H.] Tohoku Univ, Nucl Sci Lab, Sendai, Miyagi 9820826, Japan. [Iwata, T.] Yamagata Univ, Dept Phys, Yamagata 9908560, Japan. [Julia-Diaz, B.] Dept Estructura & Constituents Mat, Barcelona 08028, Spain. [Kawai, H.; Ooba, T.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Makino, S.] Wakayama Med Univ, Wakayama 6418509, Japan. [Matsuda, T.; Toi, Y.] Miyazaki Univ, Dept Appl Phys, Miyazaki 8892192, Japan. [Matsumura, T.] Natl Def Acad, Dept Appl Phys, Yokosuka, Kanagawa 2398686, Japan. [Nomachi, M.; Sakaguchi, A.; Sugaya, Y.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Rangacharyulu, C.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Sugaya, Y.] Japan Atom Energy Res Inst, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Wakai, A.] Nagoya Univ, Ctr Integrated Res Sci & Engn, Aichi 4648603, Japan. [Yoshimura, M.] Osaka Univ, Inst Prot Res, Suita, Osaka 5650871, Japan. [Zegers, R. G. T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RP Hicks, K (reprint author), Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. RI Zegers, Remco/A-6847-2008; Ahn, Jung Keun/C-1293-2008; Julia-Diaz, Bruno/E-5825-2010; kino, koichi/D-6173-2012 OI Julia-Diaz, Bruno/0000-0002-0145-6734; NR 13 TC 26 Z9 26 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2007 VL 76 IS 4 AR 042201 DI 10.1103/PhysRevC.76.042201 PG 6 WC Physics, Nuclear SC Physics GA 226XD UT WOS:000250620900010 ER PT J AU Hoteling, N Walters, WB Tomlin, BE Mantica, PF Pereira, J Becerril, A Fleckenstein, T Hecht, AA Lorusso, G Quinn, M Pinter, JS Stoker, JB AF Hoteling, N. Walters, W. B. Tomlin, B. E. Mantica, P. F. Pereira, J. Becerril, A. Fleckenstein, T. Hecht, A. A. Lorusso, G. Quinn, M. Pinter, J. S. Stoker, J. B. TI Onset of isomers in (125,126,127,128)Cd and weakened neutron-neutron interaction strength SO PHYSICAL REVIEW C LA English DT Article ID CD-ISOTOPES; NUCLEI; BEAMS AB The presence of isomeric levels with half-lives in the microsecond range has been identified in (125,126,127,128)Cd. Neutron-rich Cd isotopes were produced from the fragmentation of a 120 MeV/nucleon (136)Xe beam and uniquely identified through their time-of-flight, energy loss, and total kinetic energy. gamma rays from these isomeric levels were measured with an array of Ge detectors that were gated for 15 mu s by a particle implantation trigger from a stack of Si detectors. The gamma rays observed in the decay of (126,128)Cd isomers populate low-energy levels previously identified in the beta decay of (126,128)Ag. The gamma rays found in the decay of (125,127)Cd isomers are consistent with expected yrast structures observed in lighter, odd-mass Cd isotopes. The appearance of these isomers at the point where N/Z exceeds 1.6 is interpreted as an indication of the onset of a weakened neutron-neutron interaction that has been proposed for (134)Sn, whose N/Z also exceeds 1.6. C1 [Hoteling, N.; Walters, W. B.; Hecht, A. A.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Hoteling, N.; Hecht, A. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Tomlin, B. E.; Mantica, P. F.; Pereira, J.; Becerril, A.; Lorusso, G.; Pinter, J. S.; Stoker, J. B.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. [Tomlin, B. E.; Mantica, P. F.; Pinter, J. S.; Stoker, J. B.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Pereira, J.; Fleckenstein, T.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Becerril, A.; Lorusso, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Quinn, M.] Univ Notre Dame, Dept Phys, South Bend, IN 46556 USA. RP Hoteling, N (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. NR 26 TC 19 Z9 19 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2007 VL 76 IS 4 AR 044324 DI 10.1103/PhysRevC.76.044324 PG 8 WC Physics, Nuclear SC Physics GA 226XD UT WOS:000250620900039 ER PT J AU Jenkins, DG Fulton, BR Marley, P Fox, SP Glover, R Wadsworth, R Watson, DL Courtin, S Haas, F Lebhertz, D Beck, C Papka, P Rousseau, M Zafra, ASI Hutcheon, DA Davis, C Ottewell, D Pavan, MM Pearson, J Ruiz, C Ruprecht, G Slater, J Trinczek, M D'Auria, J Lister, CJ Chowdhury, P Andreoiu, C Valiente-Dobon, JJ Moon, S AF Jenkins, D. G. Fulton, B. R. Marley, P. Fox, S. P. Glover, R. Wadsworth, R. Watson, D. L. Courtin, S. Haas, F. Lebhertz, D. Beck, C. Papka, P. Rousseau, M. Sanchez i Zafra, A. Hutcheon, D. A. Davis, C. Ottewell, D. Pavan, M. M. Pearson, J. Ruiz, C. Ruprecht, G. Slater, J. Trinczek, M. D'Auria, J. Lister, C. J. Chowdhury, P. Andreoiu, C. Valiente-Dobon, J. J. Moon, S. TI Decay strength distributions in (12)C((12)C,gamma) radiative capture SO PHYSICAL REVIEW C LA English DT Article ID QUASI-MOLECULAR RESONANCES; INELASTIC-SCATTERING; CLUSTER MODEL; LIGHT-NUCLEI; MEV PROTONS; MG-24; FISSION; STATES; C-12; EXCITATION AB The heavy-ion radiative capture reaction, (12)C((12)C,gamma), has been investigated at energies both on- and off-resonance, with a particular focus on known resonances at E(c.m.)=6.0, 6.8, 7.5, and 8.0 MeV. Gamma rays detected in a BGO scintillator array were recorded in coincidence with (24)Mg residues at the focal plane of the DRAGON recoil separator at TRIUMF. In this manner, the relative strength of all decay pathways through excited states up to the particle threshold could be examined for the first time. Isovector M1 transitions are found to be a important component of the radiative capture from the E(c.m.)=6.0 and 6.8 MeV resonances. Comparison with Monte Carlo simulations suggests that these resonances may have either J=0 or 2, with a preference for J=2. The higher energy resonances at E(c.m.)=7.5 and 8.0 MeV have a rather different decay pattern. The former is a clear candidate for a J=4 resonance, whereas the latter has a dominant J=4 character superposed on a J=2 resonant component underneath. The relationship between these resonances and the well-known quasimolecular resonances as well as resonances in breakup and electrofission of (24)Mg into two (12)C nuclei are discussed. C1 [Jenkins, D. G.; Fulton, B. R.; Marley, P.; Fox, S. P.; Glover, R.; Wadsworth, R.; Watson, D. L.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Courtin, S.; Haas, F.; Lebhertz, D.; Beck, C.; Papka, P.; Rousseau, M.; Sanchez i Zafra, A.] Univ Strasbourg 1, IPHC, CNRS, IN2P3, F-67037 Strasbourg 2, France. [Hutcheon, D. A.; Davis, C.; Ottewell, D.; Pavan, M. M.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Slater, J.; Trinczek, M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [D'Auria, J.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Lister, C. J.; Chowdhury, P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Andreoiu, C.; Valiente-Dobon, J. J.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Moon, S.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. RP Jenkins, DG (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. NR 43 TC 21 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2007 VL 76 IS 4 AR 044310 DI 10.1103/PhysRevC.76.044310 PG 14 WC Physics, Nuclear SC Physics GA 226XD UT WOS:000250620900025 ER PT J AU Jones, GA Regan, PH Walker, PM Podolyak, Z Stevenson, PD Carpenter, MP Carroll, JJ Chakrawarthy, RS Chowdhury, P Garnsworthy, AB Janssens, RVF Khoo, TL Kondev, FG Lane, GJ Liu, Z Seweryniak, D Thompson, NJ Zhu, S Williams, SJ AF Jones, G. A. Regan, P. H. Walker, P. M. Podolyak, Zs. Stevenson, P. D. Carpenter, M. P. Carroll, J. J. Chakrawarthy, R. S. Chowdhury, P. Garnsworthy, A. B. Janssens, R. V. F. Khoo, T. L. Kondev, F. G. Lane, G. J. Liu, Z. Seweryniak, D. Thompson, N. J. Zhu, S. Williams, S. J. TI Identification of a high-spin isomer in (99)Mo SO PHYSICAL REVIEW C LA English DT Article ID COINCIDENCE DATA SETS; CD-105 AB A previously unreported isomer has been identified in (99)Mo at an excitation energy of E(x) = 3010 keV, decaying with a half-life of T(1/2) = 8(2) ns. The nucleus of interest was produced following fusion-fission reactions between a thick (27)Al target frame and a (178)Hf beam at a laboratory energy of 1150 MeV. This isomeric state is interpreted as an energetically favored, maximally aligned configuration of nu h (11/2) circle times pi(g (9/2))(2). C1 [Jones, G. A.; Regan, P. H.; Walker, P. M.; Podolyak, Zs.; Stevenson, P. D.; Garnsworthy, A. B.; Liu, Z.; Thompson, N. J.; Williams, S. J.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Carroll, J. J.] Dept Phys & Astron, Youngstown, OH 44555 USA. [Chakrawarthy, R. S.; Williams, S. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Chowdhury, P.] Univ Massachusetts Lowell, Lowell, MA 01854 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. Australian Natl Univ, RSPhysSE, Dept Nucl Phys, Canberra, ACT 0200, Australia. RP Jones, GA (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. EM G.Jones@Surrey.ac.uk RI Lane, Gregory/A-7570-2011; Stevenson, Paul/B-9016-2012; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Stevenson, Paul/0000-0003-2645-2569; Carpenter, Michael/0000-0002-3237-5734 NR 19 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2007 VL 76 IS 4 AR 047303 DI 10.1103/PhysRevC.76.047303 PG 4 WC Physics, Nuclear SC Physics GA 226XD UT WOS:000250620900082 ER PT J AU Miernik, K Dominik, W Janas, Z Pfutzner, M Bingham, CR Czyrkowski, H Cwiok, M Darby, IG Dabrowski, R Ginter, T Grzywacz, R Karny, M Korgul, A Kusmierz, W Liddick, SN Rajabali, M Rykaczewski, K Stolz, A AF Miernik, K. Dominik, W. Janas, Z. Pfutzner, M. Bingham, C. R. Czyrkowski, H. Cwiok, M. Darby, I. G. Dabrowski, R. Ginter, T. Grzywacz, R. Karny, M. Korgul, A. Kusmierz, W. Liddick, S. N. Rajabali, M. Rykaczewski, K. Stolz, A. TI First observation of beta-delayed three-proton emission in (45)Fe SO PHYSICAL REVIEW C LA English DT Article ID TIME PROJECTION CHAMBER; 2-PROTON DECAY; RADIOACTIVITY; PROTON; NUCLEI; AR-31 AB The decay of extremely neutron deficient (45)Fe has been studied by means of a new type of a gaseous detector in which a technique of digital imaging was used to record tracks of charged particles. The beta(+) decay channels accompanied by proton emission were clearly identified. In addition to beta-delayed one-proton and beta-delayed two-proton decays, beta-delayed three-proton emission was recorded which represents the first direct and unambiguous observation of this decay channel. The branching ratio for the beta decay of (45)Fe and the corresponding partial half-life are found to be 0.30 +/- 0.04 and T(1/2)(beta)=8.7 +/- 1.3 ms, respectively. C1 [Miernik, K.; Dominik, W.; Janas, Z.; Pfutzner, M.; Czyrkowski, H.; Cwiok, M.; Dabrowski, R.; Karny, M.; Korgul, A.; Kusmierz, W.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Bingham, C. R.; Darby, I. G.; Grzywacz, R.; Liddick, S. N.; Rajabali, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ginter, T.; Stolz, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Grzywacz, R.; Rykaczewski, K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Miernik, K (reprint author), Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. NR 17 TC 25 Z9 25 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2007 VL 76 IS 4 AR 041304 DI 10.1103/PhysRevC.76.041304 PG 4 WC Physics, Nuclear SC Physics GA 226XD UT WOS:000250620900004 ER PT J AU Park, Y Kim, KI Song, T Lee, SH Wong, CY AF Park, Yongjae Kim, Kyung-II Song, Taesoo Lee, Su Houng Wong, Cheuk-Yin TI Widths of quarkonia in quark gluon plasma SO PHYSICAL REVIEW C LA English DT Article ID SHORT-DISTANCE ANALYSIS; LATTICE QCD; SUPPRESSION; COLLISIONS; SYSTEMS AB Recent lattice calculations showed that heavy quarkonia will survive beyond the phase-transition temperature and will dissolve at different temperatures depending on the type of the quarkonium. In this work, we calculate the thermal width of a quarkonium at finite temperature before it dissolves into open heavy quarks. The input of the calculation are the parton quarkonium dissociation cross section to next-to-leading order in quantum chromodynamics (QCD), the quarkonium wave function in a temperature-dependent potential from lattice QCD, and a thermal distribution of partons with thermal masses. We find that for the J/psi, the total thermal width above 1.4T(c) becomes larger than 100 to 250 MeV, depending on the effective thermal masses of the quark and gluon, which we take between 400 and 600 MeV. Such a width corresponds to an effective dissociation cross section by gluons between 1.5 and 3.5 mb and by quarks 1 to 2 mb at 1.4T(c). However, at similar temperatures, we find a much smaller thermal width and effective cross section for the Upsilon. C1 [Park, Yongjae; Kim, Kyung-II; Song, Taesoo; Lee, Su Houng] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. [Wong, Cheuk-Yin] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Park, Y (reprint author), Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. EM sfy@yonsei.ac.kr; hellmare@yonsei.ac.kr; songtsoo@yonsei.ac.kr; suhoung@phya.yonsei.ac.kr; cyw@ornl.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 NR 26 TC 35 Z9 35 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2007 VL 76 IS 4 AR 044907 DI 10.1103/PhysRevC.76.044907 PG 6 WC Physics, Nuclear SC Physics GA 226XD UT WOS:000250620900062 ER PT J AU Thomas, JS Arbanas, G Bardayan, DW Blackmon, JC Cizewski, JA Dean, DJ Fitzgerald, RP Greife, U Gross, CJ Johnson, MS Jones, KL Kozub, RL Liang, JF Livesay, RJ Ma, Z Moazen, BH Nesaraja, CD Shapira, D Smith, MS Visser, DW AF Thomas, J. S. Arbanas, G. Bardayan, D. W. Blackmon, J. C. Cizewski, J. A. Dean, D. J. Fitzgerald, R. P. Greife, U. Gross, C. J. Johnson, M. S. Jones, K. L. Kozub, R. L. Liang, J. F. Livesay, R. J. Ma, Z. Moazen, B. H. Nesaraja, C. D. Shapira, D. Smith, M. S. Visser, D. W. TI Single-neutron excitations in neutron-rich Ge-83 and Se-85 SO PHYSICAL REVIEW C LA English DT Article ID ASTROPHYSICAL R-PROCESS; RADIATIVE-CAPTURE; INCIDENT ENERGIES; NUCLEAR-STRUCTURE; COULOMB BARRIER; CONTINUUM; SYSTEMS; MODELS; PB-208 AB The H-2(Ge-82,p)Ge-83 and H-2(Se-84,p)Se-85 reactions were studied with radioactive beams of Ge-82 and Se-84 at beam energies of E-beam=330 and 380 MeV, respectively. Excitation energies, proton angular distributions, and asymptotic normalization coefficients have been determined for the lowest lying states of Ge-83 and Se-85. Spectroscopic factors have also been extracted under normal assumptions of the bound-state potential properties in the distorted waves Born approximation analysis. However, the peripheral character of the measurements leads to large uncertainties in this extraction. Shell-model calculations have been performed in the region above Ni-78, comparing the single-particle properties of the even-Z,N=51 nuclei up to Zr-91 and including Ge-83 and Se-85. Direct-semidirect neutron capture calculations to Ge-83 and Se-85 have also been performed using the spectroscopic input from these (d,p) reaction measurements. C1 [Thomas, J. S.; Cizewski, J. A.; Johnson, M. S.; Jones, K. L.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Arbanas, G.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Bardayan, D. W.; Blackmon, J. C.; Dean, D. J.; Gross, C. J.; Liang, J. F.; Nesaraja, C. D.; Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Fitzgerald, R. P.; Visser, D. W.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Greife, U.; Livesay, R. J.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Kozub, R. L.; Moazen, B. H.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Ma, Z.; Nesaraja, C. D.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Thomas, JS (reprint author), Univ Surrey, Sch Elect & Phys Sci, Guildford GU2 7XH, Surrey, England. RI Visser, Dale/A-8117-2009; Jones, Katherine/B-8487-2011; Fitzgerald, Ryan/H-6132-2016 OI Visser, Dale/0000-0002-2891-4731; Jones, Katherine/0000-0001-7335-1379; NR 45 TC 45 Z9 45 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2007 VL 76 IS 4 AR 044302 DI 10.1103/PhysRevC.76.044302 PG 11 WC Physics, Nuclear SC Physics GA 226XD UT WOS:000250620900017 ER PT J AU Voinov, AV Grimes, SM Brune, CR Hornish, MJ Massey, TN Salas, A AF Voinov, A. V. Grimes, S. M. Brune, C. R. Hornish, M. J. Massey, T. N. Salas, A. TI Test of nuclear level density inputs for Hauser-Feshbach model calculations SO PHYSICAL REVIEW C LA English DT Article ID SPECTRA AB The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+(59)Co and (3)He+(58)Fe reactions leading to the same compound nucleus, (61)Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculations using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parametrizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as (60)Ni, (60)Co, and (57)Fe. C1 [Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Hornish, M. J.; Massey, T. N.; Salas, A.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Salas, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Voinov, AV (reprint author), Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. EM voinov@ohio.edu NR 27 TC 21 Z9 21 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2007 VL 76 IS 4 AR 044602 DI 10.1103/PhysRevC.76.044602 PG 9 WC Physics, Nuclear SC Physics GA 226XD UT WOS:000250620900044 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Amerio, S Amidei, D Anastassov, A Anikeev, K Antos, J Aoki, M Apollinari, G Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, E Budd, HS Budd, S Brukett, K Busetto, G Bussey, P Buzato, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carrillo, S Carlsmith, D Carosi, R Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Cuenca Almenar, C Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Delli Paoli, F Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Dorr, C Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Guimaraes da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, M Krumnack, N Kruse, M Krutelyvov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, RL Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manoudakis, A Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamota, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Movilla Fernandez, P Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Neilsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, K Zhou, J Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Antos, J. Aoki, M. Apollinari, G. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, E. Budd, H. S. Budd, S. Brukett, K. Busetto, G. Bussey, P. Buzato, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carrillo, S. Carlsmith, D. Carosi, R. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Delli Paoli, F. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Doerr, C. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, M. Krumnack, N. Kruse, M. Krutelyvov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, R. L. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manoudakis, A. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamota, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Neilsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Vollrath, I. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, K. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of the p(p)over-bar -> t(t)over-bar production cross section and the top quark mass at root s=1.96 TeV in the all-hadronic decay mode SO PHYSICAL REVIEW D LA English DT Article ID PLUS JETS EVENTS; P(P)OVER-BAR COLLISIONS; ELECTROMAGNETIC CALORIMETER; PARTON DISTRIBUTIONS; PBARP COLLISIONS; PAIR PRODUCTION; FERMILAB; DETECTOR; PHYSICS AB We report the measurements of the t (t) over bar production cross section and of the top quark mass using 1.02 fb(-1) of p (p) over bar data collected with the CDF II detector at the Fermilab Tevatron. We select events with six or more jets on which a number of kinematical requirements are imposed by means of a neural network algorithm. At least one of these jets must be identified as initiated by a b-quark candidate by the reconstruction of a secondary vertex. The cross section is measured to be sigma(t (t) over bar)=8.3 +/- 1.0(stat)(-1.5)(+2.0)X(syst)+/- 0.5(lumi) pb, which is consistent with the standard model prediction. The top quark mass of 174.0 +/- 2.2(stat)+/- 4.8(syst) GeV/c(2) is derived from a likelihood fit incorporating reconstructed mass distributions representative of signal and background. C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, Bellaterra, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis Lib, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Dept Chem, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3 CNRS, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Udine, Ist Nazl Fis Nucl, Udine, Italy. Univ Trieste, Ist Nazl Fis Nucl, Trieste, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015 OI Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133 NR 39 TC 27 Z9 27 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 072009 DI 10.1103/PhysRevD.76.072009 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200014 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, S Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carillo, S Carlsmith, D Carosi, R Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Delli Paoli, F Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Dorr, C Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, S. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carillo, S. Carlsmith, D. Carosi, R. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Delli Paoli, F. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Doerr, C. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Vollrath, I. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Searches for direct pair production of supersymmetric top and supersymmetric bottom quarks in p(p)over-tilde collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID SCALAR TOP; ELECTROMAGNETIC CALORIMETER; HADRON COLLIDERS; STANDARD MODEL; DETECTOR; PHYSICS; DECAYS; PERFORMANCE AB We search for direct pair production of supersymmetric top quarks and supersymmetric bottom quarks in proton-antiproton collisions at root s=1.96 TeV, using 295 pb(-1) of data recorded by the Collider Detector at Fermilab (CDF II) experiment. The supersymmetric top (supersymmetric bottom) quarks are selected by reconstructing their decay into a charm (bottom) quark and a neutralino, which is assumed to be the lightest supersymmetric particle. The signature of such processes is two energetic heavy-flavor jets and missing transverse energy. The number of events that pass our selection for each search process is consistent with the expected standard model background. By comparing our results to the theoretical production cross sections of the supersymmetric top and supersymmetric bottom quarks in the minimal supersymmetric standard model, we exclude, at a 95% confidence level in the frame of that model, a supersymmetric top quark mass up to 132 GeV/c(2) for a neutralino mass of 48 GeV/c(2), and a supersymmetric bottom quark mass up to 193 GeV/c(2) for a neutralino mass of 40 GeV/c(2). C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Glasgow Univ, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. SungKyunKwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3 CNRS, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Trieste, Italy. Univ Udine, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; messina, andrea/C-2753-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Warburton, Andreas/0000-0002-2298-7315; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 51 TC 31 Z9 31 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 072010 DI 10.1103/PhysRevD.76.072010 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200015 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carrillo, S Carlsmith, D Carosi, R Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Delli Paoli, F Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Dorr, C Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Guimaraes da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leono, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P Mac Queen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Movilla Fernandez, P Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, S Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidel, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Dennis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S Wicklund, E AF Aaltonen, T. Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carrillo, S. Carlsmith, D. Carosi, R. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Delli Paoli, F. Demortier,, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Doerr, C. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell,, J. L. Ginsburg, C. Giokaris,, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski,, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans,, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leono, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. Mac Queen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Movilla Fernandez, P. Mulmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, S. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidel, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St Dennis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. Wicklund, E. CA CDF Collaboration TI Search for new particles leading to Z plus jets final states in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID CENTRAL ELECTROMAGNETIC CALORIMETER; Z(0) BOSON; CDF-II; DETECTOR; UPGRADE; PERFORMANCE; FERMILAB; PHYSICS AB We present the results of a search for new particles that lead to a Z boson plus jets in p (p) over bar collisions at root s=1.96 TeV using the Collider Detector at Fermilab (CDF II). A data sample with a luminosity of 1.06 fb(-1) collected using Z boson decays to ee and mu mu is used. We describe a completely data-based method to predict the dominant background from standard model Z + jet events. This method can be similarly applied to other analyses requiring background predictions in multijet environments, as shown when validating the method by predicting the background from W + jets in t (t) over bar production. No significant excess above the background prediction is observed, and a limit is set using a fourth generation quark model to quantify the acceptance. Assuming BR(b(')-> bZ)=100% and using a leading-order calculation of the b(') cross section, b(') quark masses below 268 GeV/c(2) are excluded at 95% confidence level. C1 [Chen, Y. C.; Hou, S.; Lu, R.-S.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Spain. [Dittmann, J. R.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.] Univ Calif Davis Lib, Davis, CA 95616 USA. [Dong, P.; Hauser, J.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S.-C.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Affolder, T.; Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Casal, B.; Cuevas, J.; Gomez, G.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Furic, I.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.] Inst Expt Phys, Kosice, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris,, N.; Glagolev, V.; Nachtman, J.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Coca, M.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Anikeev, K.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Chlachidze, G.; Chlebana, F.; Culbertson, R.; Datta, M.; Dagenhart, D.; Derwent, P. F.; Eusebi, R.; Ginsburg, C.; Glenzinski,, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lin, C. S.; Lindgren, M.; Litvintsev, D. O.; Lukens, P.; Madrak, R.; Maeshima, K.; Marginean, R.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Goldschmidt, N.; Jindariani, S.; Klimenko, S.; Konigsberg, J.; Korytov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Campanelli, M.; Clark, A.; Hamilton, A.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; D'Auria, S.; Davies, T.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Holloway, A.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Budd, S.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Abulencia, A.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Doerr, C.; Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kemp, Y.; Kerzel, U.; Kreps, M.; Kuhr, T.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.] Sungkyunkwan Univ, Dept Chem, Suwon 440746, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.] Ernest Orlando Lawrence Berkley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Belloni, A.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; Lai, S.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; Lai, S.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Huston, J.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.] Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Goldstein, J.; Harper, S.; Hays, C.; Huffman, B. T.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; DaRonco, S.; Delli Paoli, F.; Donini, J.; Dorigo, T.; Gresele, A.] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR 7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kraan, A. C.; Kroll, J.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Cilijak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.] Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Cilijak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.] Univ Siena, Scuola Normale Superiore, Siena, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell,, J. L.; Han, B.-Y.; Han, J. Y.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Convery, M. E.; Demortier,, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans,, D.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Jang, D.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Kulkarni, N. P.] Texas A&M Univ, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Di Ruzza, B.; Giordani, M.] Univ Trieste, Ist Nazl Fis Nucl, Trieste, Italy. [Casarsa, M.; Cauz, D.; Di Ruzza, B.; Giordani, M.] Univ Udine, I-33100 Udine, Italy. [Akimoto, T.; Aoki, M.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Gay, C.; Husemann, U.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; messina, andrea/C-2753-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; NR 39 TC 34 Z9 34 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 072006 DI 10.1103/PhysRevD.76.072006 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200011 ER PT J AU Abazov, VM Abbott, B Aboline, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Assis Jesus, ACS Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, M Corcoran, M Couderc, F Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G De, K de Jong, P de Jong, S De La Cruz-Burelo, E De Olivera Martins, C Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Flithaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, A Gay, P Geist, W Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfed, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, D Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Karzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lam, D Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Mailk, S Malyshev, VL Mao, HS Maravin, Y McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemenn, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Oguri, V Oliveira, N Onoprienko, D Oshima, N Osta, J Otec, R Otero y Garzon, GJ Owen, M Padely, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Potter, C Prado da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Ritzatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Szajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, B Tokmenin, VV Tomoto, M Toole, T Torchiani, I Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ van Eijk, B van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimat, JR von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinsko, M Zieminska, D Zieminski, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminska, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Aboline, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, M. Corcoran, M. Couderc, F. Cousinou, M.-C. Cox, B. Crepe-Renaudin, S, Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. De, K. de Jong, P. de Jong, S. De La Cruz-Burelo, E. De Olivera Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Flithaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, A. Gay, P. Geist, W. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J.-F. Grohsjean, A. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfed, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, D. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Karzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J.-P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A.-C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Mailk, S. Malyshev, V. L. Mao, H. S. Maravin, Y. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemenn, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Oguri, V. Oliveira, N. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padely, P. Pangilinan, M. Parashar, N. Park, S.-J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M.-A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M.-E. Pompos, A. Pope, B. G. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Ritzatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Szajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, B. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. van Eijk, B. van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimat, J.-R. von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, W. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinsko, M. Zieminska, D. Zieminski, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminska, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of the p(p)over-bar -> t(t)over-bar + X production cross section at root s=1.96 TeV in the fully hadronic decay channel SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB A measurement of the top quark pair production cross section in proton antiproton collisions at an interaction energy of root s=1.96 TeV is presented. This analysis uses 405 +/- 25 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. Fully hadronic t (t) over bar decays with final states of six or more jets are separated from the multijet background using secondary vertex tagging and a neural network. The t (t) over bar cross section is measured as sigma(t (t) over bar)=4.5(-1.9)(+2.0)(stat)(-1.1)(+1.4)(syst)+/- 0.3(lumi) pb for a top quark mass of m(t)=175 GeV/c(2). C1 Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC, Canada. York Univ, Toronto, ON, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Partilce Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, Lab Phys Corpusculaire, IN2P3 CNRS, Clermont Ferrand, France. Univ Grenoble 1, Lab Phys Subatom & Cosmol, IN2P3 CNRS, Grenoble, France. Univ Aix Marseille 2, CPPM, IN2P3 CNRS, Marseille, France. IN2P3 CNRS, Lab Accelerateur Lineaire, Orsay, France. Univ Paris 11, Orsay, France. Univ Paris 06, LPNHE, IN2P3 CNRS, Paris, France. Univ Paris 07, Paris, France. CEA, DAPNIA, Derv Phya Particules, Saclay, France. Univ Louis Pasteur, IPHC, IN2P3 CNRS, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, Inst Phys Nucl Lyon, IN2P3 CNRS, Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. Univ Bonn, Inst Phys, Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh, India. Univ Delhi, Delhi, India. Tata Inst Fundamental Res, Mumbai, India. Univ Coll Dublin, Dublin, Ireland. Korea Univ, Korea Detector Lab, Seoul, South Korea. Sungkyunkwan Univ, Dept Chem, Suwon, South Korea. CINVESTAV, Mexico City, DF, Mexico. NIKHEF H, FOM Inst, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Exptl Phys, Moscow, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Imperial Coll, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012 OI De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805 NR 12 TC 18 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 072007 DI 10.1103/PhysRevD.76.072007 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200012 ER PT J AU Adamson, P Andreopoulos, C Arms, KE Armstrong, R Auty, DJ Avvakumov, S Ayres, DS Baller, B Barish, B Barnes, PD Barr, G Barrett, WL Beall, E Becker, BR Belias, A Bergfeld, T Bernstein, RH Bhattacharya, D Bishai, M Blake, A Bock, B Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Border, PM Bower, C Buckley-Geer, E Cabrera, A Chapman, JD Cherdack, D Childress, S Choudhary, BC Cobb, JH Coleman, SJ Culling, AJ De Jong, JK De Santo, A Dierckxsens, M Diwan, MV Dorman, M Drakoulakos, D Durkin, T Erwin, AR Escobar, CO Evans, JJ Harris, EF Feldman, GJ Fields, TH Fitzpatrick, T Ford, R Frohne, MV Gallagher, HR Giurgiu, GA Godley, A Gogos, J Goodman, MC Gouffon, P Gran, R Grashorn, EW Grossman, N Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hartouni, EP Hatcher, R Heller, K Holin, A Howcroft, C Hylen, J Indurthy, D Irwin, GM Ishitsuka, M Jaffe, DE James, C Jenner, L Jensen, D Joffe-Minor, T Kafka, T Kang, HJ Kasahara, SMS Kim, MS Koizumi, G Kopp, S Kordosky, M Koskinen, DJ Kotelnikov, SK Kreymer, A Kumaratunga, S Lang, K Lebedev, A Lee, R Ling, J Liu, J Litchfield, PJ Litchfield, RP Lucas, P Luebke, W Mann, WA Marchionni, A Marino, AD Marshak, ML Marshall, JS Mayer, N McGowan, AM Meier, JR Merzon, GI Messier, MD Michael, DG Milburn, RH Miller, JL Miller, WH Mishra, SR Mislivec, A Miyagawa, PS Moore, CD Morfin, J Mualem, L Mufson, S Murgia, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, WP Osiecki, T Ospanov, R Paley, J Paolone, V Para, A Patzak, T Pavlovic, Z Pearce, GF Peck, CW Perry, C Peterson, EA Petyt, DA Ping, H Piteira, R Pittam, R Plunkett, RK Rahman, D Rameika, RA Raufer, TM Rebel, B Reichenbacher, J Reyna, DE Rosenfeld, C Rubin, HA Ruddick, K Ryabov, VA Saakyan, R Sanchez, MC Saoulidou, N Saranen, D Schneps, J Schreiner, P Semenov, VK Seun, SM Shanahan, P Smart, W Smirnitsky, V Smith, C Sousa, A Speakman, B Stamoulis, P Symes, PA Tagg, N Talaga, RL Tetteh-Lartey, E Thomas, J Thompson, J Thomson, MA Thron, JL Tinti, G Trostin, I Tsarev, VA Tzanakos, G Urheim, J Vahle, P Verebryusov, V Viren, B Ward, CP Ward, DR Watabe, M Weber, A Webb, RC Wehmann, A West, N White, C Wojcicki, SG Wright, DM Wu, QK Yang, T Yumiceva, FX Zheng, H Zois, M Zwaska, R AF Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. Auty, D. J. Avvakumov, S. Ayres, D. S. Baller, B. Barish, B. Barnes, P. D., Jr. Barr, G. Barrett, W. L. Beall, E. Becker, B. R. Belias, A. Bergfeld, T. Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. Bock, B. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Border, P. M. Bower, C. Buckley-Geer, E. Cabrera, A. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Coleman, S. J. Culling, A. J. De Jong, J. K. De Santo, A. Dierckxsens, M. Diwan, M. V. Dorman, M. Drakoulakos, D. Durkin, T. Erwin, A. R. Escobar, C. O. Evans, J. J. Harris, E. Falk Feldman, G. J. Fields, T. H. Fitzpatrick, T. Ford, R. Frohne, M. V. Gallagher, H. R. Giurgiu, G. A. Godley, A. Gogos, J. Goodman, M. C. Gouffon, P. Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hartouni, E. P. Hatcher, R. Heller, K. Holin, A. Howcroft, C. Hylen, J. Indurthy, D. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. James, C. Jenner, L. Jensen, D. Joffe-Minor, T. Kafka, T. Kang, H. J. Kasahara, S. M. S. Kim, M. S. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. Kotelnikov, S. K. Kreymer, A. Kumaratunga, S. Lang, K. Lebedev, A. Lee, R. Ling, J. Liu, J. Litchfield, P. J. Litchfield, R. P. Lucas, P. Luebke, W. Mann, W. A. Marchionni, A. Marino, A. D. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Meier, J. R. Merzon, G. I. Messier, M. D. Michael, D. G. Milburn, R. H. Miller, J. L. Miller, W. H. Mishra, S. R. Mislivec, A. Miyagawa, P. S. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Murgia, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. Pavlovic, Z. Pearce, G. F. Peck, C. W. Perry, C. Peterson, E. A. Petyt, D. A. Ping, H. Piteira, R. Pittam, R. Plunkett, R. K. Rahman, D. Rameika, R. A. Raufer, T. M. Rebel, B. Reichenbacher, J. Reyna, D. E. Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. Saakyan, R. Sanchez, M. C. Saoulidou, N. Saranen, D. Schneps, J. Schreiner, P. Semenov, V. K. Seun, S. -M. Shanahan, P. Smart, W. Smirnitsky, V. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Symes, P. A. Tagg, N. Talaga, R. L. Tetteh-Lartey, E. Thomas, J. Thompson, J. Thomson, M. A. Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Verebryusov, V. Viren, B. Ward, C. P. Ward, D. R. Watabe, M. Weber, A. Webb, R. C. Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Wu, Q. K. Yang, T. Yumiceva, F. X. Zheng, H. Zois, M. Zwaska, R. TI Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam SO PHYSICAL REVIEW D LA English DT Article ID MUON VELOCITIES; SEARCH; MASS; SN1987A; BURST AB The velocity of a similar to 3 GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (nu - c)/c=5.1 +/- 2.9 x 10(-5) (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of m(nu)50 MeV/c(2) (99% C.L.). C1 [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Milburn, R. H.; Oliver, W. P.; Schneps, J.; Sousa, A.; Tagg, N.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Ayres, D. S.; Beall, E.; Fields, T. H.; Giurgiu, G. A.; Goodman, M. C.; Joffe-Minor, T.; McGowan, A. M.; Reichenbacher, J.; Reyna, D. E.; Talaga, R. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Drakoulakos, D.; Stamoulis, P.; Tzanakos, G.; Zois, M.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Frohne, M. V.; Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Bishai, M.; Dierckxsens, M.; Diwan, M. V.; Jaffe, D. E.; Viren, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, B.; Howcroft, C.; Michael, D. G.; Mualem, L.; Newman, H. B.; Ochoa-Ricoux, J. P.; Peck, C. W.; Zheng, H.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Chapman, J. D.; Culling, A. J.; Marshall, J. S.; Thomson, M. A.; Ward, C. P.; Ward, D. R.] Univ Cambridge, Cavevdish Lab, Cambridge CB3 0HE, England. [Escobar, C. O.] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil. [Patzak, T.; Piteira, R.] Univ Paris 07, APC, F-75205 Paris, France. [Adamson, P.; Baller, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Boehm, J.; Feldman, G. J.; Lebedev, A.; Lee, R.; Sanchez, M. C.; Seun, S. -M.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [De Jong, J. K.; Luebke, W.; Rubin, H. A.; White, C.] IIT, Chicago, IL 60616 USA. [Armstrong, R.; Bower, C.; Ishitsuka, M.; Messier, M. D.; Mufson, S.; Musser, J.; Paley, J.] Indiana Univ, Bloomington, IN 47405 USA. [Semenov, V. K.] Inst High Energy Phys, RU-140284 Moscow, Russia. [Smirnitsky, V.; Trostin, I.] Inst Theoret & Expt Phys, High Energy Expt Phys Dept, Moscow 117218, Russia. [Miller, J. L.] James Madison Univ, Dept Phys, Harrisonburg, VA 22807 USA. [Kotelnikov, S. K.; Merzon, G. I.; Ryabov, V. A.; Tsarev, V. A.] PN Lebedev Phys Inst, Dept Nucl Phys, Moscow 117924, Russia. [Barnes, P. D., Jr.; Hartouni, E. P.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Adamson, P.; Dorman, M.; Holin, A.; Jenner, L.; Kordosky, M.; Koskinen, D. J.; Nichol, R. J.; Saakyan, R.; Smith, C.; Vahle, P.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Arms, K. E.; Beall, E.; Becker, B. R.; Border, P. M.; Gogos, J.; Grashorn, E. W.; Kasahara, S. M. S.; Litchfield, P. J.; Marshak, M. L.; McGowan, A. M.; Meier, J. R.; Miller, W. H.; Ruddick, K.; Speakman, B.] Univ Minnesota, Minneapolis, MN 55455 USA. [Bock, B.; Gran, R.; Grashorn, E. W.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Cabrera, A.; Cobb, J. H.; Evans, J. J.; Grzelak, K.; Litchfield, R. P.; Miyagawa, P. S.; Perry, C.; Sousa, A.; Tagg, N.; Weber, A.; West, N.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Kim, M. S.; Naples, D.; Thompson, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Andreopoulos, C.; Belias, A.; Dorman, M.; Hartnell, J.; Pearce, G. F.; Weber, A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315 Sao Paulo, Brazil. [Bergfeld, T.; Godley, A.; Kang, H. J.; Ling, J.; Mishra, S. R.; Rosenfeld, C.; Wu, Q. K.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Avvakumov, S.; Irwin, G. M.; Kang, H. J.; Murgia, S.; Wojcicki, S. G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Harris, E. Falk; Harris, P. G.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Tetteh-Lartey, E.; Watabe, M.; Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Indurthy, D.; Kopp, S.; Lang, K.; Liu, J.; Osiecki, T.; Ospanov, R.] Univ Texas, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Milburn, R. H.; Schneps, J.; Sousa, A.; Tagg, N.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Barrett, W. L.] Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. [Coleman, S. J.; Nelson, J. K.; Yumiceva, F. X.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Ping, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Tagg, N (reprint author), Tufts Univ, Dept Phys, Medford, MA 02155 USA. RI Nichol, Ryan/C-1645-2008; Tinti, Gemma/I-5886-2013; Ryabov, Vladimir/E-1281-2014; Koskinen, David/G-3236-2014; Merzon, Gabriel/N-2630-2015; Evans, Justin/P-4981-2014; Kotelnikov, Sergey/A-9711-2014; Gouffon, Philippe/I-4549-2012; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Semenov, Vitaliy/E-9584-2017; OI Koskinen, David/0000-0002-0514-5917; Evans, Justin/0000-0003-4697-3337; Kotelnikov, Sergey/0000-0002-8027-4612; Tagg, Nathaniel/0000-0001-5820-643X; Gouffon, Philippe/0000-0001-7511-4115; Ling, Jiajie/0000-0003-2982-0670; Marchionni, Alberto/0000-0003-3039-9537; Thomson, Mark/0000-0002-2654-9005; Hartnell, Jeffrey/0000-0002-1744-7955; Bernstein, Robert/0000-0002-7610-950X; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Hartouni, Edward/0000-0001-9869-4351 NR 19 TC 93 Z9 94 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 072005 DI 10.1103/PhysRevD.76.072005 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200010 ER PT J AU Aharony, O Buchel, A Kerner, P AF Aharony, Ofer Buchel, Alex Kerner, Patrick TI Black hole in the throat: Thermodynamics of strongly coupled cascading gauge theories SO PHYSICAL REVIEW D LA English DT Article ID GRAVITY DUALS; STRING THEORY; SINGULARITY AB We numerically construct black hole solutions corresponding to the deconfined, chirally symmetric phase of strongly coupled cascading gauge theories at various temperatures. We compute the free energy as a function of the temperature, and we show that it becomes positive below some critical temperature, indicating the possibility of a first order phase transition at which the theory deconfines and restores the chiral symmetry. C1 [Aharony, Ofer] Weizmann Inst Sci, Dept Particules Phys, IL-76100 Rehovot, Israel. [Aharony, Ofer] Stanford Univ, SITP, Dept Phys, Stanford, CA 94305 USA. [Aharony, Ofer] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Buchel, Alex; Kerner, Patrick] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada. [Buchel, Alex] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada. RP Aharony, O (reprint author), Weizmann Inst Sci, Dept Particules Phys, IL-76100 Rehovot, Israel. EM Ofer.Aharony@weizmann.ac.il; abuchel@uwo.ca; patrick.kerner@uni-ulm.de NR 37 TC 87 Z9 87 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 8 AR 086005 DI 10.1103/PhysRevD.76.086005 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XI UT WOS:000250621400110 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Eigen, G Ofte, I Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Tackmann, K Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Fisher, PH Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Perez, A Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Eigen, G. Ofte, I. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. Davier, M. Grosdidier, G. Hocker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Fisher, P. H. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. TI Search for the decay B+-> (K)over-bar*(0)(892)K+ SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We report on a search for the process B+ -> (K) over bar*(0)(892)K+ using 232 X 10(6) Y(4S) -> B (B) over bar B decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. From a signal yield of 25 +/- 13[stat] +/- 7[syst] B+ -> (K) over bar*(0)(892)(-> K-pi(+))K+ events, we place an upper limit on the branching fraction B(B+ -> (K) over bar*(0)(892)K+) of 1.1 X 10(-6), at the 90% confidence level. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Ofte, I.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Schroeder, T.; Steinke, M.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Boyd, J. T.; Burke, J. P.; Cottingham, W. N.; Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Bruinsma, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Dvoretskii, A.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Chen, A.; Eckhart, E. A.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Brandt, T.; Klose, V.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Menges, W.; Sacco, R.] Univ London, Queen Mary, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Jackson, P. S.; McMahon, T. R.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Fisher, P. H.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.] MIT, Nucl Phys Lab, Cambridge, MA 02139 USA. [Kim, H.; Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Ter-Antonyan, R.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Hartfiel, B. L.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Haire, M.] Prairie View A&M Univ, Prairie View, TX 77446 USA. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Aleksan, R.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Halyo, V.; Hast, C.; Hryn'ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; van Bakel, N.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Bugg, W.; Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Yu, Z.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Pappagallo, M.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Bellini, Fabio/D-1055-2009; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Lista, Luca/C-5719-2008; Neri, Nicola/G-3991-2012; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Forti, Francesco/H-3035-2011; Roe, Natalie/A-8798-2012; Frey, Raymond/E-2830-2016; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015 OI Bellini, Fabio/0000-0002-2936-660X; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Forti, Francesco/0000-0001-6535-7965; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826 NR 27 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 071103 DI 10.1103/PhysRevD.76.071103 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200003 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Ronan, MT Tackmann, K Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Hryn'ova, T Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. Davier, M. Grosdidier, G. Hocker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Hryn'ova, T. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Search for prompt production of chi(c) and X(3872) in e(+)e(-) annihilations SO PHYSICAL REVIEW D LA English DT Article ID E&E ANNIHILATION AB We have searched for prompt production of chi(c1), chi(c2) and X(3872) in continuum e(+) e(-) annihilation using a 386 fb(-1) data sample collected around root s = 10.6 GeV with the BABAR detector using the gamma J/psi decay mode. After accounting for the feed-down from psi( 2S) -> gamma chi(c1,2), no significant signal for prompt chi(c1),(2) production is observed. We present improved upper limits at 90% confidence level on the production cross sections of 77 fb for chi(c1) and 79 fb for chi(c2), for events where the chi(c) momentum exceeds 2.0 GeVand there are at least three additional charged tracks. These limits are consistent with NRQCD predictions. We also set an upper limit on the prompt production of X(3872) through the decay X(3872) -> gamma J/psi. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74991 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74991 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.; Martinez-Vidal, F.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Schroeder, T.; Steinke, M.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Brandt, T.; Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Phys Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Menges, W.; Sacco, R.] Univ London, Queen Mary, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, G.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Haire, M.] Prairie View A&M Univ, Prairie View, TX 77446 USA. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Aleksan, R.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Hryn'ova, T.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; van Bakel, N.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Bugg, W.; Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Back, J. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Pappagallo, M.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74991 Annecy Le Vieux, France. RI Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Neri, Nicola/G-3991-2012; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Forti, Francesco/H-3035-2011; Roe, Natalie/A-8798-2012; Bellini, Fabio/D-1055-2009; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Lista, Luca/C-5719-2008 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Lanceri, Livio/0000-0001-8220-3095; Corwin, Luke/0000-0001-7143-3821; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Forti, Francesco/0000-0001-6535-7965; Bellini, Fabio/0000-0002-2936-660X; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; NR 22 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 071102 DI 10.1103/PhysRevD.76.071102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200002 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hocker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Measurements of the branching fractions of B-0 ->(KK+K-)-K-*0, B-0 -> K-*0 pi K-+(-), B-0 ->(KK+)-K-*0 pi(-), and B-0 -> K-*0 pi(+)pi(-) SO PHYSICAL REVIEW D LA English DT Article ID B-MESONS; DECAYS AB Branching fraction measurements of charmless B-0 -> K(*0)h(1)(+)h(2)(-) (h(1,2) = K, pi) decays are presented, using a data sample of 383 X 10(6) Y(4S)-> B (B) over tilde decays collected with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. The results are B(B-0 ->(KK+K-)-K-*0)=(27.5 +/- 1.3 +/- 2.2)X 10(-6), B(B-0 -> K-*0 pi K-+(-))=(4.6 +/- 1.1 +/- 0.8)X10(-6), and B(B-0 -> K-*0 pi(+)pi(-))=(54.5 +/- 2.9 +/- 4.3)X 10(-6). The first errors quoted are statistical and the second are systematic. An upper limit is set for B(B-0 -> K*K-0(+)pi(-))< 2.2X10(-6) at 90% confidence level. We also present measurements of CP-violating asymmetries for the observed decays. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Klose, V.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchen Phys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Imperial Coll London, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, IN2P3 CNRS, Ctr Sci Orsay, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Queen Mary Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Bailey, D.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, Mississippi State, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Quebec City, PQ H3C 3JT, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 06 & 07, IN2P3 CNRS, Lab Phys Nucl Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dept Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Buzzo, A.; Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Univ Savoie, IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Bellini, Fabio/D-1055-2009; Oyanguren, Arantza/K-6454-2014; Neri, Nicola/G-3991-2012; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Lista, Luca/C-5719-2008; Patrignani, Claudia/C-5223-2009; Forti, Francesco/H-3035-2011; Della Ricca, Giuseppe/B-6826-2013; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Bellini, Fabio/0000-0002-2936-660X; Oyanguren, Arantza/0000-0002-8240-7300; Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Patrignani, Claudia/0000-0002-5882-1747; Forti, Francesco/0000-0001-6535-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 NR 15 TC 11 Z9 11 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 071104 DI 10.1103/PhysRevD.76.071104 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200004 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Tackmann, K Wenzel, WA Sanchez, PD Barrett, M Harrison, TJ Hart, AJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Voena, C Ebert, M Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Mellado, B Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Harrison, T. J. Hart, A. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. TI Measurement of CP asymmetry in B-0 -> K-s(0)pi(0)pi(0) decays SO PHYSICAL REVIEW D LA English DT Article ID B DECAYS; VIOLATION; PHYSICS AB We present a measurement of the time-dependent CP asymmetry for the neutral B-meson decay into the CP = +1 final state K-S(0)pi(0)pi(0), with K-S(0)->pi(+)pi(-). We use a sample of approximately 227 million B-meson pairs recorded at the Upsilon(4S) resonance with the BABAR detector at the PEP-II B-Factory at SLAC. From an unbinned maximum likelihood fit, we extract the mixing-induced CP-violation parameter S=0.72 +/- 0.71 +/- 0.08 and the direct CP-violation parameter C=0.23 +/- 0.52 +/- 0.13, where the first uncertainty is statistical and the second systematic. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Palano, A.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Eigen, G.; Ofte, I.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Barrett, M.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schroeder, T.; Steinke, M.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Boyd, J. T.; Burke, J. P.; Cottingham, W. N.; Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Kyberd, P.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Hill, E. J.; Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Dvoretskii, A.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Chen, A.; Eckhart, E. A.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Brandt, T.; Klose, V.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Menges, W.; Sacco, R.] Univ London, Queen Mary, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Jackson, P. S.; McMahon, T. R.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Chen, C.; Hulsbergen, W. D.; Jawahery, A.; Lae, C. K.; Roberts, D. A.; Simi, G.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Kim, H.; Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Paolucci, P.; Piccolo, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Paolucci, P.; Piccolo, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Ter-Antonyan, R.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Hartfiel, B. L.; Leruste, Ph.; Malcles, J.; Ocariz, J.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Haire, M.] Prairie View A&M Univ, Prairie View, TX 77446 USA. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Bellini, F.; Cavoto, G.; D'Orazio, A.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Bellini, F.; Cavoto, G.; D'Orazio, A.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Aleksan, R.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Halyo, V.; Hast, C.; Hryn'ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; van Bakel, N.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Bugg, W.; Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.; Band, H. R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Mellado, B.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Yu, Z.] Univ Wisconsin, Madison, WI 53706 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Band, H. R.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Peters, Klaus/C-2728-2008; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012 OI Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756 NR 29 TC 6 Z9 6 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 071101 DI 10.1103/PhysRevD.76.071101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200001 ER PT J AU Basak, S Edwards, RG Fleming, GT Juge, KJ Lichtl, A Morningstar, C Richards, DG Sato, I Wallace, SJ AF Basak, Subhasish Edwards, R. G. Fleming, G. T. Juge, K. J. Lichtl, A. Morningstar, C. Richards, D. G. Sato, I. Wallace, S. J. TI Lattice QCD determination of patterns of excited baryon states SO PHYSICAL REVIEW D LA English DT Article ID GAUGE-THEORY; QUARKS; MASSES AB Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G(2) irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group. C1 [Basak, Subhasish] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Edwards, R. G.; Richards, D. G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Fleming, G. T.] Yale Univ, New Haven, CT 06520 USA. [Juge, K. J.] Univ Pacific, Dept Phys, Stockton, CA 95211 USA. [Lichtl, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Morningstar, C.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Sato, I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Wallace, S. J.] Univ Maryland, College Pk, MD 20742 USA. RP Basak, S (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. RI Fleming, George/L-6614-2013; Morningstar, Colin/N-6925-2014 OI Fleming, George/0000-0002-4987-7167; Morningstar, Colin/0000-0002-0607-9923 NR 28 TC 64 Z9 64 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 074504 DI 10.1103/PhysRevD.76.074504 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200070 ER PT J AU Bauer, CW Schwartz, MD AF Bauer, Christian W. Schwartz, Matthew D. TI Event generation from effective field theory SO PHYSICAL REVIEW D LA English DT Article ID JET CROSS-SECTIONS; HIGHER-ORDER CORRECTIONS; E&E-ANNIHILATION; E+E ANNIHILATION; PARTON SHOWERS; QCD; ALGORITHM; COHERENT AB A procedure is developed for using soft collinear effective theory (SCET) to generate fully exclusive events, which can then be compared to data from collider experiments. We show that SCET smoothly interpolates between QCD for hard emissions, and the parton shower for soft emissions, while resumming all large logarithms. In SCET, logarithms are resummed using the renormalization group, instead of classical Sudakov factors, so subleading logarithms can be resummed as well. In addition, all loop effects of QCD can be reproduced in SCET, which allows the effective theory to incorporate next-to-leading and higher-order effects. We also show through SCET that in the soft/collinear limit, successive branchings factorize, a fact which is essential to parton showers, and that the splitting functions of QCD are reproduced. Finally, combining these results, we present an example of an algorithm that incorporates the SCET results into an event generator which is systematically improvable. C1 [Bauer, Christian W.; Schwartz, Matthew D.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bauer, CW (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cwbauer@lbl.gov; mdschwartz@lbl.gov OI SCHWARTZ, MATTHEW/0000-0001-6344-693X NR 50 TC 37 Z9 37 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 074004 DI 10.1103/PhysRevD.76.074004 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200035 ER PT J AU Berger, EL Qiu, JW Rodriguez-Pedraza, RA AF Berger, Edmond L. Qiu, Jian-Wei Rodriguez-Pedraza, Ricardo A. TI Transverse momentum dependence of the angular distribution of the Drell-Yan process SO PHYSICAL REVIEW D LA English DT Article ID LEPTON-PAIR PRODUCTION; DEEPLY INELASTIC-SCATTERING; MUON PAIRS; HADRONIC COLLISIONS; BOSON PRODUCTION; NEGATIVE PIONS; CROSS-SECTIONS; QCD; DILEPTONS; PREDICTION AB We calculate the transverse momentum Q(perpendicular to) dependence of the helicity structure functions for the hadroproduction of a massive pair of leptons with pair invariant mass Q. These structure functions determine the angular distribution of the leptons in the pair rest frame. Unphysical behavior in the region Q(perpendicular to)-> 0 is seen in the results of calculations done at fixed order in QCD perturbation theory. We use current conservation to demonstrate that the unphysical inverse-power and ln(Q/Q(perpendicular to)) logarithmic divergences in three of the four independent helicity structure functions share the same origin as the divergent terms in fixed-order calculations of the angular-integrated cross section. We show that the resummation of these divergences to all orders in the strong coupling strength alpha(s) can be reduced to the solved problem of the resummation of the divergences in the angular-integrated cross section, resulting in well-behaved predictions in the small Q(perpendicular to) region. Among other results, we show the resummed part of the helicity structure functions preserves the Lam-Tung relation between the longitudinal and double spin-flip structure functions as a function of Q(perpendicular to) to all orders in alpha(s). C1 [Berger, Edmond L.; Qiu, Jian-Wei] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Qiu, Jian-Wei; Rodriguez-Pedraza, Ricardo A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM berger@anl.gov; jwq@iastate.edu; rirodri@iastate.edu NR 57 TC 30 Z9 30 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 074006 DI 10.1103/PhysRevD.76.074006 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200037 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Jechow, M Pavel, N Molina, AGY Antonelli, S Antonioli, P Bari, G Basile, M Bellagamba, L Bindi, M Boscherini, D Bruni, A Bruni, G Cifarelli, L Cindolo, F Contin, A Corradi, M De Pasquale, S Iacobucci, G Margotti, A Nania, R Polini, A Sartorelli, G Zichichi, A Bartsch, D Brock, I Goers, S Hartmann, H Hilger, E Jakob, HP Jungst, M Kind, OM Nuncio-Quiroz, AE Paul, E Renner, R Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ma, KJ Ibrahim, ZA Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Gil, M Olkiewicz, K Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Adler, V Behrens, U Bloch, I Blohm, C Bonato, A Borras, K Ciesielski, R Coppola, N Dossanov, A Drugakov, V Fourletova, J Geiser, A Gladkov, D Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Horn, C Huttmann, A Kahle, B Katkov, II Klein, U Koetz, U Kowalski, H Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Rinaldi, L Roloff, P Rubinsky, I Santamarta, R Schneekloth, U Spiridonov, A Stadie, H Szuba, D Szuba, J Theedt, T Wolf, G Wrona, K Youngman, C Zeuner, W Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Ferrando, J Forrest, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Gosau, T Holm, U Klanner, R Lohrmann, E Perrey, H Salehi, H Schleper, P Schorner-Sadenius, T Sztuk, J Wichmann, K Wick, K Foudas, C Fry, C Long, KR Tapper, AD Kataoka, M Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Son, D De Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L Del Peso, J Ron, E Soares, M Terron, J Zambrana, M Corriveau, F Liu, C Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Zotkin, SA Abt, I Buttner, C Caldwell, A Kollar, D Schmidke, WB Sutiak, J Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Cottrell, A Devenish, RCE Foster, B Korcsak-Gorzo, K Patel, S Roberfroid, V Robertson, A Straub, PB Uribe-Estrada, C Walczak, R Bellan, P Bertolin, A Brugnera, R Carlin, R Dal Corso, F Dusini, S Garfagnini, A Limentani, S Longhin, A Stanco, L Turcato, M Oh, BY Raval, A Ukleja, J Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Gabareen, A Ingbir, R Kananov, S Levy, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Ferrero, MI Monaco, V Sacchi, R Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Boutle, SK Butterworth, JM Gwenlan, C Jones, TW Loizides, JH Sutton, MR Targett-Adams, C Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Tymieniecka, T Ukleja, J Zarnecki, AF Adamus, M Plucinski, P Eisenberg, Y Giller, I Hochman, D Karshon, U Rosin, M Brownson, E Danielson, T Everett, A Kcira, D Reeder, DD Ryan, P Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Jechow, M. Pavel, N. Molina, A. G. Yagues Antonelli, S. Antonioli, P. Bari, G. Basile, M. Bellagamba, L. Bindi, M. Boscherini, D. Bruni, A. Bruni, G. Cifarelli, L. Cindolo, F. Contin, A. Corradi, M. De Pasquale, S. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Goers, S. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Kind, O. M. Nuncio-Quiroz, A. E. Paul, E. Renner, R. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ma, K. J. Ibrahim, Z. A. Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Gil, M. Olkiewicz, K. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Adler, V. Behrens, U. Bloch, I. Blohm, C. Bonato, A. Borras, K. Ciesielski, R. Coppola, N. Dossanov, A. Drugakov, V. Fourletova, J. Geiser, A. Gladkov, D. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Horn, C. Huettmann, A. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Rinaldi, L. Roloff, P. Rubinsky, I. Santamarta, R. Schneekloth, U. Spiridonov, A. Stadie, H. Szuba, D. Szuba, J. Theedt, T. Wolf, G. Wrona, K. Youngman, C. Zeuner, W. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Ferrando, J. Forrest, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Gosau, T. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Salehi, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Wichmann, K. Wick, K. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Kataoka, M. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Son, D. De Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. Del Peso, J. Ron, E. Soares, M. Terron, J. Zambrana, M. Corriveau, F. Liu, C. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Zotkin, S. A. Abt, I. Buettner, C. Caldwell, A. Kollar, D. Schmidke, W. B. Sutiak, J. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Cottrell, A. Devenish, R. C. E. Foster, B. Korcsak-Gorzo, K. Patel, S. Roberfroid, V. Robertson, A. Straub, P. B. Uribe-Estrada, C. Walczak, R. Bellan, P. Bertolin, A. Brugnera, R. Carlin, R. Dal Corso, F. Dusini, S. Garfagnini, A. Limentani, S. Longhin, A. Stanco, L. Turcato, M. Oh, B. Y. Raval, A. Ukleja, J. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Gabareen, A. Ingbir, R. Kananov, S. Levy, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Ferrero, M. I. Monaco, V. Sacchi, R. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Boutle, S. K. Butterworth, J. M. Gwenlan, C. Jones, T. W. Loizides, J. H. Sutton, M. R. Targett-Adams, C. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Tymieniecka, T. Ukleja, J. Zarnecki, A. F. Adamus, M. Plucinski, P. Eisenberg, Y. Giller, I. Hochman, D. Karshon, U. Rosin, M. Brownson, E. Danielson, T. Everett, A. Kcira, D. Reeder, D. D. Ryan, P. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. TI High-E-T dijet photoproduction at HERA SO PHYSICAL REVIEW D LA English DT Article ID JET CROSS-SECTIONS; CENTRAL TRACKING DETECTOR; PHYSICS EVENT GENERATION; ZEUS BARREL CALORIMETER; PARTON DISTRIBUTIONS; HADRON-COLLISIONS; LEADING ORDER; PHOTON; ENERGY; CONSTRUCTION AB The cross section for high-E-T dijet production in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb(-1). The events were required to have a virtuality of the incoming photon, Q(2), of less than 1 GeV2 and a photon-proton center-of-mass energy in the range 142 < W-gamma p < 293 GeV. Events were selected if at least two jets satisfied the transverse-energy requirements of E-T(jet1)> 20 GeV and E-T(jet2)> 15 GeV and pseudorapidity (with respect to the proton beam direction) requirements of -1 (D*+D*-KS0) decays SO PHYSICAL REVIEW D LA English DT Article ID B-MESONS; VIOLATION; BELLE; DETECTOR AB We present a measurement of the branching fraction and time-dependent CP violation parameters for B-0 ->(D*+D*-KS0) decays. These results are obtained from a 414 fb(-1) data sample that contains 449x10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. We obtain the branching fraction, B(B-0 ->(D*+D*-KS0))=[3.4 +/- 0.4(stat)+/- 0.7(syst)]x10(-3), which is in agreement with the current world average. We also obtain an upper limit on the product branching fraction for a possible two-body decay, B(B-0 -> D-s1(+)(2536)D*-)B(D-s1(+)(2536)->(D*+KS0))< 7.1x10(-4) (90% CL). In the traditional 2-parameter time-dependent CP analysis, we measure the CP violation parameters, A(CP)=-0.01(-0.28)(+0.28)(stat)+/- 0.09(syst), Dsin2 phi(1)=0.06(-0.44)(+0.45)(stat)+/- 0.06(syst). No evidence for either mixing-induced or direct CP violation is found. In a 3-parameter fit sensitive to cos2 phi(1) performed in the half-Dalitz spaces, s(-)<= s(+) and s(-)> s(+), where s(+/-)equivalent to m(2)((DKS0)-K-*+/-), we extract the CP violation parameters, J(c)/J(0)=0.60(-0.28)(+0.25)(stat)+/- 0.08(syst), 2J(s1)/J(0)sin2 phi(1)=-0.17(-0.42)(+0.42)(stat)+/- 0.09(syst), 2J(s2)/J(0)cos2 phi(1)=-0.23(-0.41)(+0.43)(stat)+/- 0.13(syst). A large value of J(c)/J(0) would indicate a significant resonant contribution from a broad unknown D-s(**+) state. Although the sign of the factor, 2J(s2)/J(0), can be deduced from theory, no conclusion can be drawn regarding the sign of cos2 phi(1) given the errors. C1 [Dalseno, J.; Moloney, G. R.; Sevior, M. E.; Taylor, G. N.; Urquijo, P.; Wedd, R.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Eidelman, S.; Kuzmin, A.; Vinokurova, A.; Zhilich, V.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Kawai, H.] Chiba Univ, Chiba, Japan. [Drutskoy, A.; Kinoshita, K.; Somov, A.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Kim, Y. J.] Grad Univ Adv Studies, Hayama, Japan. [Cheon, B. G.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Li, J.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Bracko, M.; Hazumi, M.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Krokovny, P.; Limosani, A.; Nakao, M.; Nishida, S.; Ozaki, H.; Sakai, Y.; Schuemann, J.; Sumisawa, K.; Takasaki, F.; Tanaka, M.; Tsukamoto, T.; Uehara, S.; Uno, S.; Yamaguchi, A.] High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Seidl, R.] Univ Illinois, Urbana, IL 61801 USA. [Mandl, F.; Mitaroff, W.] Inst High Energy Phys, Vienna, Austria. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino, Russia. [Aushev, T.; Balagura, V.; Chistov, R.; Danilov, M.; Liventsev, D.; Medvedeva, T.; Pakhlov, P.; Pakhlova, G.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bitenc, U.; Bizjak, I.; Bracko, M.; Krizan, P.; Pestotnik, R.; Staric, M.; Zupanc, A.] Jozef Stefan Inst, Ljubljana, Slovenia. [Okuno, S.] Kanagawa Univ, Yokohama, Kanagawa, Japan. [Ha, H.; Won, E.] Korea Univ, Seoul 136701, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, H. J.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Aushev, T.; Bay, A.; Schneider, O.; Villa, S.] Swiss Fed Inst Technol, EPFL, CH-1015 Lausanne, Switzerland. [Bracko, M.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Hayasaka, K.; Hokuue, T.; Inami, K.; Ohshima, T.; Senyo, K.] Nagoya Univ, Nagoya, Aichi, Japan. [Sekiya, A.] Nara Womens Univ, Nara 630, Japan. [Chen, A.; Go, A.; Kuo, C. C.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Chao, Y.; Lin, S. -W.; Ueno, K.; Wang, C. C.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Bozek, A.; Kapusta, P.; Lesiak, T.; Ostrowicz, W.] Nippon Dent Univ, Niigata, Japan. [Yamashita, Y.] Niigata Univ, Niigata, Japan. [Kawasaki, T.; Miyata, H.] Univ Nova Gorica, Nova Gorica, Portugal. [Stanic, S.] Osaka City Univ, Osaka 558, Japan. [Nakano, E.; Teramoto, Y.] Osaka Univ, Osaka, Japan. [Heffernan, D.; Miyake, H.] Panjab Univ, Chandigarh, India. [Kumar, R.; Singh, J. B.] Peking Univ, Beijing 100871, Peoples R China. [Tian, X. C.] RIKEN, Brookhaven Natl Lab, Res Ctr, Upton, NY 11973 USA. [Onuki, Y.] Univ Sci & Technol, Hefei, Peoples R China. [Zhang, Z. P.] Seoul Natl Univ, Seoul, South Korea. [Lee, S. E.] Sungkyunkwan Univ, Suwon, South Korea. [Choi, Y.; Choi, Y. K.; Lee, J. S.; Park, C. W.; Park, K. S.] Univ Sydney, Sydney, NSW 2006, Australia. [Bakich, A. M.; McOnie, S.; Stoeck, H.; Yabsley, B. D.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Joshi, N. J.] Toho Univ, Funabashi, Chiba 274, Japan. [Ogawa, S.; Shibuya, H.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Yamaguchi, A.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Aihara, H.; Ishikawa, A.; Iwasaki, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Ishino, H.; Watanabe, Y.] Tokyo Metropolitan Univ, Tokyo 158, Japan. [Matsumoto, T.; Sumiyoshi, T.] Tokyo Univ Agr & Technol, Tokyo, Japan. [Nitoh, O.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Dash, M.; Piilonen, L. E.] Yonsei Univ, Seoul 120749, South Korea. [Cho, I. -S.; Kang, J. H.] Univ Ljubljana, Ljubljana, Slovenia. RP Dalseno, J (reprint author), Univ Melbourne, Melbourne, Vic 3010, Australia. RI Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Tian, Xinchun/L-2060-2013; Ishino, Hirokazu/C-1994-2015; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014 OI Moloney, Glenn/0000-0002-3539-3233; Krizan, Peter/0000-0002-4967-7675; Aihara, Hiroaki/0000-0002-1907-5964; Tian, Xinchun/0000-0002-6246-0470; Ishino, Hirokazu/0000-0002-8623-4080; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022 NR 21 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 072004 DI 10.1103/PhysRevD.76.072004 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200009 ER PT J AU de Florian, D Vogelsang, W AF de Florian, Daniel Vogelsang, Werner TI Resummed cross section for jet production at hadron colliders SO PHYSICAL REVIEW D LA English DT Article ID QCD HARD SCATTERING; LARGE-X; HIGHER ORDERS; RESUMMATION; COLLISIONS; GLUONS; EVENTS; QUARKS; O(ALPHA-S(3)); DISTRIBUTIONS AB We study the resummation of large logarithmic perturbative corrections to the single-inclusive jet cross section at hadron colliders. The corrections we address arise near the threshold for the partonic reaction, when the incoming partons have just enough energy to produce the high-transverse-momentum final state. The structure of the resulting logarithmic corrections is known to depend crucially on the treatment of the invariant mass of the produced jet at threshold. We allow the jet to have a nonvanishing mass at threshold, which most closely corresponds to the situation in experiment. Matching our results to available semianalytical next-to-leading-order calculations, we derive resummed results valid to next-to-leading-logarithmic accuracy. We present numerical results for the resummation effects at Tevatron and RHIC energies. C1 [de Florian, Daniel] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [Vogelsang, Werner] Brookhaven Natl Lab, BNL Nucl Theory, Upton, NY 11973 USA. RP de Florian, D (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Pabellon 1 Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. RI de Florian, Daniel/B-6902-2011 OI de Florian, Daniel/0000-0002-3724-0695 NR 64 TC 29 Z9 29 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 074031 DI 10.1103/PhysRevD.76.074031 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200062 ER PT J AU Field, B Reina, L Jackson, CB AF Field, B. Reina, L. Jackson, C. B. TI Higgs boson production with one bottom quark including higher-order soft-gluon corrections SO PHYSICAL REVIEW D LA English DT Article ID SMALL TRANSVERSE-MOMENTUM; TO-BACK JETS; HADRONIC COLLISIONS; LOGARITHMIC CORRECTIONS; QCD; RESUMMATION; COLLIDERS; LHC; PHENOMENOLOGY AB A Higgs boson produced in association with one or more bottom quarks is of great theoretical and experimental interest to the high-energy community. A precise prediction of its total and differential cross section can have a great impact on the discovery of a Higgs boson with large bottom-quark Yukawa coupling, like the scalar (h(0) and H-0) and pseudoscalar (A(0)) Higgs bosons of the minimal supersymmetric standard model in the region of large tan beta. In this paper we apply the threshold resummation formalism to determine both differential and total cross sections for bg -> b Phi (where Phi=h(0),H-0), including up to next-to-next-to-next-to-leading order soft plus virtual QCD corrections at next-to-leading logarithmic accuracy. We present results for both the Fermilab Tevatron and the CERN Large Hadron Collider. C1 [Field, B.; Reina, L.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Jackson, C. B.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Field, B (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. EM bfield@hep.fsu.edu; reina@hep.fsu.edu; jackson@quark.phy.bnl.gov OI Field, Bryan/0000-0003-2582-6979 NR 53 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 074008 DI 10.1103/PhysRevD.76.074008 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200039 ER PT J AU Fox, PJ Rajaraman, A Shirman, Y AF Fox, Patrick J. Rajaraman, Arvind Shirman, Yuri TI Bounds on unparticles from the Higgs sector SO PHYSICAL REVIEW D LA English DT Article ID ELECTRIC-MAGNETIC DUALITY; GAUGE-THEORIES; PHYSICS AB We study supersymmetric QCD in the conformal window as a laboratory for unparticle physics, and analyze couplings between the unparticle sector and the Higgs sector. These couplings can lead to the unparticle sector being pushed away from its scale invariant fixed point. We show that this implies that low energy experiments will not be able to see unparticle physics, and the best hope of seeing unparticles is in high energy collider experiments such as the Tevatron and the LHC. We also demonstrate how the breaking of scale invariance could be observed at these experiments. C1 [Fox, Patrick J.] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Rajaraman, Arvind; Shirman, Yuri] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Fox, PJ (reprint author), Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. NR 15 TC 107 Z9 107 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 075004 DI 10.1103/PhysRevD.76.075004 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200078 ER PT J AU Habib, S Heitmann, K Higdon, D Nakhleh, C Williams, B AF Habib, Salman Heitmann, Katrin Higdon, David Nakhleh, Charles Williams, Brian TI Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background SO PHYSICAL REVIEW D LA English DT Article ID DIGITAL SKY SURVEY; INFLATIONARY UNIVERSE; MASS FUNCTION; ANISOTROPY; MODELS; BARYONS; FLUCTUATIONS; GALAXIES; HALOS; PEAK AB Several cosmological measurements have attained significant levels of maturity and accuracy over the past decade. Continuing this trend, future observations promise measurements of the cosmic mass distribution at an accuracy level of 1% out to spatial scales with k similar to 10h Mpc(-1) and even smaller, entering highly nonlinear regimes of gravitational instability. In order to interpret these observations and extract useful cosmological information from them, such as the equation of state of dark energy, very costly high precision, multiphysics simulations must be performed. We have recently implemented a new statistical framework with the aim of obtaining accurate parameter constraints from combining observations with a limited number of simulations. The key idea is the replacement of the full simulator by a fast emulator with controlled error bounds. In this paper, we provide a detailed description of the methodology and extend the framework to include joint analysis of cosmic microwave background and large-scale structure measurements. Our framework is especially well suited for upcoming large-scale structure probes of dark energy such as baryon acoustic oscillations and, especially, weak lensing, where percent level accuracy on nonlinear scales is needed. C1 [Habib, Salman; Heitmann, Katrin; Higdon, David; Nakhleh, Charles; Williams, Brian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Habib, S (reprint author), Los Alamos Natl Lab, T-8,MS B285, Los Alamos, NM 87545 USA. OI Williams, Brian/0000-0002-3465-4972 NR 62 TC 44 Z9 44 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 8 AR 083503 DI 10.1103/PhysRevD.76.083503 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XI UT WOS:000250621400023 ER PT J AU Hooper, D Finkbeiner, DP Dobler, G AF Hooper, Dan Finkbeiner, Douglas P. Dobler, Gregory TI Possible evidence for dark matter annihilations from the excess microwave emission around the center of the Galaxy seen by the Wilkinson Microwave Anisotropy Probe SO PHYSICAL REVIEW D LA English DT Article ID GAMMA-RAYS; HALOS AB The Wilkinson Microwave Anisotropy Probe (WMAP) experiment has revealed an excess of microwave emission from the region around the center of our Galaxy. It has been suggested that this signal, known as the "WMAP haze," could be synchrotron emission from relativistic electrons and positrons generated in dark matter annihilations. In this article, we revisit this possibility. We find that the angular distribution of the WMAP haze matches the prediction for dark matter annihilations with a cusped density profile, rho(r) proportional to r(-1.2) in the inner kiloparsecs. Comparing the intensity in different WMAP frequency bands, we find that a wide range of possible weakly interacting massive particle (WIMP) annihilation modes are consistent with the spectrum of the haze for a WIMP with a mass in the 100 GeV to multi-TeV range. Most interestingly, we find that to generate the observed intensity of the haze, the dark matter annihilation cross section is required to be approximately equal to the value needed for a thermal relic, sigma v similar to 3 x 10(-26) cm(3)/s. No boost factors are required. If dark matter annihilations are in fact responsible for the WMAP haze, and the slope of the halo profile continues into the inner Galaxy, GLAST is expected to detect gamma rays from the dark matter annihilations in the galactic center if the WIMP mass is less than several hundred GeV. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Finkbeiner, Douglas P.; Dobler, Gregory] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 28 TC 158 Z9 158 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 8 AR 083012 DI 10.1103/PhysRevD.76.083012 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XI UT WOS:000250621400020 ER PT J AU Kribs, GD Plehn, T Spannowsky, M Tait, TMP AF Kribs, Graham D. Plehn, Tilman Spannowsky, Michael Tait, Tim M. P. TI Four generations and Higgs physics SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL FAMILIES; 4TH GENERATION; RADIATIVE-CORRECTIONS; MAJORANA NEUTRINOS; EXTRA GENERATIONS; B-DECAYS; BOSON; QUARK; LHC; PARTICLES AB In the light of the LHC, we revisit the implications of a fourth generation of chiral matter. We identify a specific ensemble of particle masses and mixings that are in agreement with all current experimental bounds as well as minimize the contributions to electroweak precision observables. Higgs masses between 115-315 (115-750) GeV are allowed by electroweak precision data at the 68% and 95% C.L. Within this parameter space, there are dramatic effects on Higgs phenomenology: production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified, and Higgs pairs can be observed. We also identify exotic signals, such as Higgs decay to same-sign dileptons. Finally, we estimate the upper bound on the cutoff scale from vacuum stability and triviality. C1 [Kribs, Graham D.] Univ Oregon, Inst Theoret Sci, Dept Phys, Eugene, OR 97403 USA. [Plehn, Tilman] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland. [Spannowsky, Michael] Univ Munich, Dept Phys, ASC, D-80333 Munich, Germany. [Tait, Tim M. P.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Kribs, GD (reprint author), Univ Oregon, Inst Theoret Sci, Dept Phys, Eugene, OR 97403 USA. NR 79 TC 304 Z9 305 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 075016 DI 10.1103/PhysRevD.76.075016 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200090 ER PT J AU Qiu, JW Vogelsang, W Yuan, F AF Qiu, Jian-Wei Vogelsang, Werner Yuan, Feng TI Single transverse-spin asymmetry in hadronic dijet production SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; POLARIZED PROTON-BEAM; QCD HARD SCATTERING; DRELL-YAN PROCESSES; TO-BACK JETS; PARTON DISTRIBUTIONS; CROSS-SECTIONS; QUANTUM CHROMODYNAMICS; SIVERS ASYMMETRIES AB We study the single-transverse-spin asymmetry for dijet production in hadronic collisions in both the collinear QCD factorization approach and the Brodsky-Hwang-Schmidt model. We show that a nonvanishing asymmetry is generated by both initial-state and final-state interactions, and that the final-state interactions dominate. We find that in the leading kinematic region where the transverse momentum imbalance of the two jets, (q) over right arrow (perpendicular to)=(P) over right arrow (1 perpendicular to)+(P) over right arrow (2 perpendicular to), is much less than the momentum of either jet, the contribution from the lowest nontrivial perturbative order to both the spin-averaged and the spin-dependent dijet cross sections can be factorized into a hard part that is a function only of the averaged jet momentum (P) over right arrow (perpendicular to)=((P) over right arrow (1 perpendicular to)-(P) over right arrow (2 perpendicular to))/2, and perturbatively generated transverse momentum dependent (TMD) parton distributions. We show that the spin asymmetry at this nontrivial perturbative order can be described by the TMD parton distributions defined in either semi-inclusive deep inelastic scattering or the Drell-Yan process. We derive the same hard parts from both the collinear factorization approach and in the context of the Brodsky-Hwang-Schmidt model, verifying that they are not sensitive to details of the factorized long-distance physics. C1 [Qiu, Jian-Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Qiu, Jian-Wei; Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Qiu, JW (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM jwq@iastate.edu; vogelsan@quark.phy.bnl.gov; fyuan@quark.phy.bnl.gov RI Yuan, Feng/N-4175-2013 NR 79 TC 36 Z9 36 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 7 AR 074029 DI 10.1103/PhysRevD.76.074029 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XG UT WOS:000250621200060 ER PT J AU Schmidt, F Liguori, M Dodelson, S AF Schmidt, Fabian Liguori, Michele Dodelson, Scott TI Galaxy-CMB cross-correlation as a probe of alternative models of gravity SO PHYSICAL REVIEW D LA English DT Article ID FORS DEEP FIELD; COSMOLOGICAL CONSTANT; LUMINOSITY FUNCTIONS; HIGH-REDSHIFT; DARK ENERGY; PERTURBATIONS; EVOLUTION; DYNAMICS; BANDS AB Bekenstein's alternative to general relativity, TeVeS, reduces to modified Newtonian dynamics in the galactic limit. On cosmological scales, the (potential well< - >overdensity) relationship is quite different than in standard general relativity. Here we investigate the possibility of cross-correlating galaxies with the cosmic microwave background (CMB) to probe this relationship. At redshifts of order 2, the sign of the CMB-galaxy correlation differs in TeVeS from that in general relativity. We show that this effect is detectable and hence can serve as a powerful discriminator of these two models of gravity. C1 [Schmidt, Fabian; Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Schmidt, Fabian; Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Liguori, Michele] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. [Dodelson, Scott] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Schmidt, F (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. OI Schmidt, Fabian/0000-0002-6807-7464 NR 37 TC 32 Z9 32 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 8 AR 083518 DI 10.1103/PhysRevD.76.083518 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XI UT WOS:000250621400038 ER PT J AU Sefusatti, E Komatsu, E AF Sefusatti, Emiliano Komatsu, Eiichiro TI Bispectrum of galaxies from high-redshift galaxy surveys: Primordial non-Gaussianity and nonlinear galaxy bias SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; 3-POINT CORRELATION-FUNCTION; PROBE WMAP OBSERVATIONS; LUMINOUS RED GALAXIES; POWER-SPECTRUM; INITIAL CONDITIONS; DARK ENERGY; COSMOLOGICAL PERTURBATIONS; ACOUSTIC-OSCILLATIONS; REAL-SPACE AB The greatest challenge in the interpretation of galaxy clustering data from any surveys is galaxy bias. Using a simple Fisher matrix analysis, we show that the bispectrum provides an excellent determination of linear and nonlinear bias parameters of intermediate and high-z galaxies, when all measurable triangle configurations down to mildly nonlinear scales, where perturbation theory is still valid, are included. The bispectrum is also a powerful probe of primordial non-Gaussianity. The planned galaxy surveys at z greater than or similar to 2 should yield constraints on non-Gaussian parameters, f(NL)(loc.) and f(NL)(eq.), that are comparable to, or even better than, those from cosmic microwave background experiments. We study how these constraints improve with volume and redshift range, as well as the number density of galaxies. Finally, we show that a halo occupation distribution may be used to improve these constraints further by lifting degeneracies between gravity, bias, and primordial non-Gaussianity. C1 [Sefusatti, Emiliano] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Komatsu, Eiichiro] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Sefusatti, E (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM emiliano@fnal.gov RI Komatsu, Eiichiro/A-4361-2011; OI Sefusatti, Emiliano/0000-0003-0473-1567 NR 73 TC 129 Z9 129 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 8 AR 083004 DI 10.1103/PhysRevD.76.083004 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XI UT WOS:000250621400012 ER PT J AU Shapiro, C Dodelson, S AF Shapiro, Charles Dodelson, Scott TI Combining weak lensing tomography with halo clustering to probe dark energy SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL PARAMETERS; POWER SPECTRA; CONSTRAINTS; MATTER AB Two methods of constraining the properties of dark energy are weak lensing tomography and cluster counting. Uncertainties in mass calibration of clusters can be reduced by using the properties of halo clustering (the clustering of clusters). However, within a single survey, weak lensing and halo clustering probe the same density fluctuations. We explore the question of whether this information can be used twice-once in weak lensing and then again in halo clustering to calibrate cluster masses-or whether the combined dark energy constraints are weaker than the sum of the individual constraints. For a survey like the Dark Energy Survey (DES), we find that the cosmic shearing of source galaxies at high redshifts is indeed highly correlated with halo clustering at lower redshifts. Surprisingly, this correlation does not degrade cosmological constraints for a DES-like survey, and in fact, constraints are marginally improved since the correlations themselves act as additional observables. This considerably simplifies the analysis for a DES-like survey: when weak lensing and halo clustering are treated as independent experiments, the combined dark energy constraints (cluster counts included) are accurate if not slightly conservative. Our findings mirror those of Takada and Bridle, who investigated correlations between the cosmic shear and cluster counts. C1 [Shapiro, Charles] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Shapiro, Charles; Dodelson, Scott] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Dodelson, Scott] Ctr Particle Astrophys, Fermi Natl Accelerator Lab, Batavia, IL 60510 USA. [Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Shapiro, C (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. NR 23 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2007 VL 76 IS 8 AR 083515 DI 10.1103/PhysRevD.76.083515 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226XI UT WOS:000250621400035 ER PT J AU Benoit, J Saxena, A AF Benoit, Jerome Saxena, Avadh TI Spherical vesicles distorted by a grafted latex bead: An exact solution SO PHYSICAL REVIEW E LA English DT Article ID FLUID MEMBRANES; HEISENBERG SPINS; SHAPE; INCLUSIONS; CURVATURE; BILAYERS; FRUSTRATION; PARTICLES; SOLITONS; MODELS AB We present an exact solution to the problem of the global shape description of a spherical vesicle distorted by a grafted latex bead. This solution is derived by treating the nonlinearity in bending elasticity through the (topological) Bogomol'nyi decomposition technique and elastic compatibility. We recover the "hat-model" approximation in the limit of a small latex bead and find that the region antipodal to the grafted latex bead flattens. We also derive the appropriate shape equation using the variational principle and relevant constraints. C1 [Benoit, Jerome] Natl Cent Univ, Grad Inst Biophys, Jhongli 320, Taoyuan, Taiwan. [Benoit, Jerome] Natl Cent Univ, Ctr Complex Syst, Jhongli 320, Taoyuan, Taiwan. [Benoit, Jerome] Univ Crete, Dept Phys, GR-71003 Iraklion, Crete, Greece. [Benoit, Jerome] Fdn Res & Technol Hellas, GR-71003 Iraklion, Crete, Greece. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Benoit, J (reprint author), Natl Cent Univ, Grad Inst Biophys, 300 Jhongda Rd, Jhongli 320, Taoyuan, Taiwan. EM jgmbenoit@mailsnare.net; avadh@lanl.gov NR 42 TC 10 Z9 10 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 041912 DI 10.1103/PhysRevE.76.041912 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XN UT WOS:000250621900112 PM 17995031 ER PT J AU Berthier, L Jack, RL AF Berthier, Ludovic Jack, Robert L. TI Structure and dynamics of glass formers: Predictability at large length scales SO PHYSICAL REVIEW E LA English DT Article ID SUPERCOOLED LIQUIDS; HETEROGENEOUS DYNAMICS; TRANSITION; MODEL; PACKING AB Dynamic heterogeneity in glass formers has been related to their static structure using the concept of dynamic propensity. We reexamine this relationship by analyzing dynamical fluctuations in two atomistic glass formers and two theoretical models. We introduce quantitative statistical indicators which show that the dynamics of individual particles cannot be predicted on the basis of the propensity or by any structural indicator. However, the spatial structure of the propensity field does have predictive power for the spatial correlations associated with dynamic heterogeneity. Our results suggest that the quest for a connection between the static and dynamic properties of glass formers at the particle level is in vain, but they demonstrate that such a connection does exist on larger length scales. C1 [Berthier, Ludovic] Argonne Natl Lab, Joint Theory Inst, Chicago, IL 60637 USA. [Berthier, Ludovic] Univ Chicago, Chicago, IL 60637 USA. [Jack, Robert L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Berthier, Ludovic] Univ Montpellier 2, UMR 5587, Lab Colloides Verres & Nanomat, F-34095 Montpellier, France. [Berthier, Ludovic] CNRS, F-34095 Montpellier, France. RP Berthier, L (reprint author), Argonne Natl Lab, Joint Theory Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Berthier, Ludovic/I-7104-2012; Jack, Robert/M-4096-2014 NR 41 TC 57 Z9 57 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 041509 DI 10.1103/PhysRevE.76.041509 PN 1 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XN UT WOS:000250621900077 PM 17994996 ER PT J AU Cartea, A del-Castillo-Negrete, D AF Cartea, A. del-Castillo-Negrete, D. TI Fluid limit of the continuous-time random walk with general Levy jump distribution functions SO PHYSICAL REVIEW E LA English DT Article ID ANOMALOUS DIFFUSION; STOCHASTIC-PROCESS; ULTRASLOW CONVERGENCE; FRACTIONAL DIFFUSION; PLASMA TURBULENCE; FLIGHT; TRANSPORT; EQUATIONS; DYNAMICS; MODELS AB The continuous time random walk (CTRW) is a natural generalization of the Brownian random walk that allows the incorporation of waiting time distributions psi(t) and general jump distribution functions eta(x). There are two well-known fluid limits of this model in the uncoupled case. For exponential decaying waiting times and Gaussian jump distribution functions the fluid limit leads to the diffusion equation. On the other hand, for algebraic decaying waiting times psi similar to t(-(1+beta)) and algebraic decaying jump distributions eta similar to x(-(1+alpha)) corresponding to Levy stable processes, the fluid limit leads to the fractional diffusion equation of order alpha in space and order beta in time. However, these are two special cases of a wider class of models. Here we consider the CTRW for the most general Levy stochastic processes in the Levy-Khintchine representation for the jump distribution function and obtain an integrodifferential equation describing the dynamics in the fluid limit. The resulting equation contains as special cases the regular and the fractional diffusion equations. As an application we consider the case of CTRWs with exponentially truncated Levy jump distribution functions. In this case the fluid limit leads to a transport equation with exponentially truncated fractional derivatives which describes the interplay between memory, long jumps, and truncation effects in the intermediate asymptotic regime. The dynamics exhibits a transition from superdiffusion to subdiffusion with the crossover time scaling as tau(c)similar to lambda(-alpha/beta), where 1/lambda is the truncation length scale. The asymptotic behavior of the propagator (Green's function) of the truncated fractional equation exhibits a transition from algebraic decay for t <>tau(c). C1 [Cartea, A.] Univ London Birkbeck Coll, London WC1E 7HX, England. [del-Castillo-Negrete, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cartea, A (reprint author), Univ London Birkbeck Coll, London WC1E 7HX, England. OI del-Castillo-Negrete, Diego/0000-0001-7183-801X NR 29 TC 73 Z9 73 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 041105 DI 10.1103/PhysRevE.76.041105 PN 1 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XN UT WOS:000250621900015 PM 17994934 ER PT J AU Dalle-Ferrier, C Thibierge, C Alba-Simionesco, C Berthier, L Biroli, G Bouchaud, JP Ladieu, F L'Hote, D Tarjus, G AF Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, C. Berthier, L. Biroli, G. Bouchaud, J. -P. Ladieu, F. L'Hote, D. Tarjus, G. TI Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence SO PHYSICAL REVIEW E LA English DT Article ID GLASS-FORMING LIQUIDS; MODE-COUPLING THEORY; SUPERCOOLED LIQUIDS; LENGTH SCALE; HETEROGENEOUS DYNAMICS; NONLINEAR SUSCEPTIBILITY; MICROSCOPIC DYNAMICS; RELAXATION PROCESSES; ALPHA-RELAXATION; ORTHO-TERPHENYL AB We use recently introduced three-point dynamic susceptibilities to obtain an experimental determination of the temperature evolution of the number of molecules N-corr that are dynamically correlated during the structural relaxation of supercooled liquids. We first discuss in detail the physical content of three-point functions that relate the sensitivity of the averaged two-time dynamics to external control parameters (such as temperature or density), as well as their connection to the more standard four-point dynamic susceptibility associated with dynamical heterogeneities. We then demonstrate that these functions can be experimentally determined with good precision. We gather available data to obtain the temperature dependence of N-corr for a large number of supercooled liquids over a wide range of relaxation time scales from the glass transition up to the onset of slow dynamics. We find that N-corr systematically grows when approaching the glass transition. It does so in a modest manner close to the glass transition, which is consistent with an activation-based picture of the dynamics in glassforming materials. For higher temperatures, there appears to be a regime where N-corr behaves as a power-law of the relaxation time. Finally, we find that the dynamic response to density, while being smaller than the dynamic response to temperature, behaves similarly, in agreement with theoretical expectations. C1 [Dalle-Ferrier, C.; Alba-Simionesco, C.] Univ Paris 11, UMR 8000, Chim Phys Lab, F-91405 Orsay, France. [Dalle-Ferrier, C.; Alba-Simionesco, C.] CNRS, F-91405 Orsay, France. [Thibierge, C.; Bouchaud, J. -P.; Ladieu, F.; L'Hote, D.] CEA Saclay, DSM DRECAM SPEC, Serv Phys Etat Condense, CNRS,MIPPU,URA 2464, F-91191 Gif Sur Yvette, France. [Berthier, L.] Argonne Natl Lab, Joint Theory Inst, Chicago, IL 60637 USA. [Berthier, L.] Univ Chicago, Chicago, IL 60637 USA. [Biroli, G.] CEA Saclay, Serv Phys Theor Orme Merisiers, F-91191 Gif Sur Yvette, France. [Bouchaud, J. -P.] Sci & Finance, F-75009 Paris, France. [Tarjus, G.] Univ Paris 06, UMR 7600, LPTMC, F-75252 Paris 05, France. [Tarjus, G.] CNRS, F-75252 Paris 05, France. [Berthier, L.] Univ Montpellier 2, UMR 5587, Lab Colloides Verres & Nanomat, F-34095 Montpellier, France. [Berthier, L.] CNRS, F-34095 Montpellier, France. RP Dalle-Ferrier, C (reprint author), Univ Paris 11, UMR 8000, Chim Phys Lab, Batiment 349, F-91405 Orsay, France. RI biroli, giulio/C-2086-2008; Berthier, Ludovic/I-7104-2012; christiane, alba-simionesco/D-2678-2012 NR 86 TC 162 Z9 162 U1 0 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 041510 DI 10.1103/PhysRevE.76.041510 PN 1 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XN UT WOS:000250621900078 PM 17994997 ER PT J AU De Lorenzi-Venneri, G Wallace, DC AF De Lorenzi-Venneri, Giulia Wallace, Duane C. TI Single-random-valley approximation in vibration-transit theory of liquid dynamics SO PHYSICAL REVIEW E LA English DT Article ID POTENTIAL-ENERGY LANDSCAPE; NONEQUILIBRIUM MOLECULAR-DYNAMICS; GLASS-FORMING LIQUID; SUPERCOOLED LIQUIDS; INHERENT-STRUCTURE; SHEAR VISCOSITY; THERMODYNAMIC PROPERTIES; CONFIGURATIONAL ENTROPY; DENSITY FLUCTUATIONS; MODEL GLASS AB The first goal of vibration-transit theory is to be able to calculate from a tractable partition function and without adjustable parameters the thermodynamic properties of the elemental monatomic liquids. The key hypothesis is that the random class of potential energy valleys dominates the statistical mechanics of the liquid at temperatures above melting T greater than or similar to T(m) and that these valleys are macroscopically uniform in the thermodynamic limit. This allows us to use a single random valley to calculate the vibrational contribution to liquid properties, exactly in the thermodynamic limit, and as an approximation at finite number of particles N. This approximation is tested here for liquid Na with a physically realistic potential based on electronic structure theory. Steepest descent quenches were made from the molecular dynamics equilibrium liquid (N=500) at temperatures from 0.90T(m) to 3.31T(m), and six potential parameters were calculated for each structure, namely, the potential energy and five principal moments of the vibrational frequency distribution. The results show temperature-independent means and small standard deviations for all potential parameters, consistent with random valley uniformity at N ->infinity, and with finite-N broadening at N=500. The expected error in the single random valley approximation for Na at N=500 and T greater than or similar to T(m) is 0.1% for the entropy and 0.5% for the internal energy, negligible in the current development of liquid dynamics theory. In related quench studies of recent years, the common finding of nearly temperature-independent means of structural potential energy properties at T greater than or similar to T(m) suggests that the single random valley approximation might also apply to systems more complicated than the elemental liquids. C1 [De Lorenzi-Venneri, Giulia; Wallace, Duane C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP De Lorenzi-Venneri, G (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 64 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 041203 DI 10.1103/PhysRevE.76.041203 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XN UT WOS:000250621900054 PM 17994973 ER PT J AU Dimonte, G Ramaprabhu, P Andrews, M AF Dimonte, Guy Ramaprabhu, Praveen Andrews, Malcolm TI Rayleigh-Taylor instability with complex acceleration history SO PHYSICAL REVIEW E LA English DT Article ID RICHTMYER-MESHKOV INSTABILITIES; VARIABLE ACCELERATION; MODEL; SIMULATIONS; DEPENDENCE; TRANSPORT; LAWS AB Experiments and numerical simulations are performed on the Rayleigh-Taylor instability with a complex acceleration history g(t) consisting of consecutive periods of acceleration, deceleration, and acceleration. The dominant bubbles and spikes that grow in the initial unstable phase are found to be shredded by the trailing structures during the stable deceleration phase. This reduces their diameter at the front and increases the atomic mixing such that the growth during the final unstable acceleration is retarded. The simulations are able to describe the bubble evolution only if broadband initial perturbations are assumed. Such a complex g(t) is useful for validating mix models. C1 [Dimonte, Guy; Ramaprabhu, Praveen; Andrews, Malcolm] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ramaprabhu, Praveen] Univ N Carolina, Charlotte, NC 28223 USA. RP Dimonte, G (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 27 TC 14 Z9 16 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 046313 DI 10.1103/PhysRevE.76.046313 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XP UT WOS:000250622100067 PM 17995112 ER PT J AU Ferer, M Bromhal, GS Smith, DH AF Ferer, M. Bromhal, Grant S. Smith, Duane H. TI Crossover from fractal capillary fingering to compact flow: The effect of stable viscosity ratios SO PHYSICAL REVIEW E LA English DT Article ID 2-DIMENSIONAL POROUS-MEDIA; INVASION PERCOLATION; 2-PHASE FLOW; IMMISCIBLE DISPLACEMENT; SIMULATIONS; DYNAMICS; MODELS; INTERFACES; LATTICES; FLUIDS AB Using a standard pore-level model, which includes both viscous and capillary forces, we have studied the injection of a viscous, nonwetting fluid into a two-dimensional porous medium saturated with a less viscous, wetting fluid, i.e., drainage with favorable viscosity ratios, M >= 1. We have observed a crossover from fractal capillary fingering to standard compact flow at a characteristic time, which decreases with increased capillary number and/or viscosity ratio. We have tested an earlier prediction for the dependence of this crossover upon viscosity ratio and capillary number using our data for a wide-but-physical range of capillary numbers and viscosity ratios. We find good agreement between the predicted behavior and our results from pore-level modeling. Furthermore, we show that this agreement is not affected by changes in the random distribution of pore throat radii or by changes in the coordination number, suggesting that the prediction is universal, i.e., valid for any porous medium structure, as expected from the general nature of the derivation of the prediction. Furthermore, this agreement indicates that the prediction correctly accounts for dependence of the flow upon capillary number and viscosity ratios, thereby enabling predictions for interfacial advance and width as well as saturation and fractional flow profiles. Also this agreement supports the validity of the general theoretical development lending credence to the three-dimensional predictions. C1 [Ferer, M.; Bromhal, Grant S.; Smith, Duane H.] US DOE, Natl Energy Technol Ctr, Morgantown, WV 26507 USA. RP Ferer, M (reprint author), US DOE, Natl Energy Technol Ctr, POB 880, Morgantown, WV 26507 USA. NR 37 TC 11 Z9 11 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 046304 DI 10.1103/PhysRevE.76.046304 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XP UT WOS:000250622100058 PM 17995103 ER PT J AU Greenbaum, BD Habib, S Shizume, K Sundaram, B AF Greenbaum, Benjamin D. Habib, Salman Shizume, Kosuke Sundaram, Bala TI Semiclassics of the chaotic quantum-classical transition SO PHYSICAL REVIEW E LA English DT Article ID CORRESPONDENCE PRINCIPLE; PHASE-SPACE; MECHANICS; DYNAMICS; STOCHASTICITY; DECOHERENCE; OSCILLATOR; SYSTEMS AB We elucidate the basic physical mechanisms responsible for the quantum-classical transition in one-dimensional, bounded chaotic systems subject to unconditioned environmental interactions. We show that such a transition occurs due to the dual role of noise in regularizing the semiclassical Wigner function and averaging over fine structures in classical phase space. The results are interpreted in the context of applying recent advances in the theory of measurement and open systems to the semiclassical quantum regime. We use these methods to show how a local semiclassical picture is stabilized and can then be approximated by a classical distribution at later times. The general results are demonstrated explicitly via high-resolution numerical simulations of the quantum master equation for a chaotic Duffing oscillator. C1 [Greenbaum, Benjamin D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Habib, Salman] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Shizume, Kosuke] Univ Tsukuba, Inst Library & Informat Sci, Tsukuba, Ibaraki 3058550, Japan. [Sundaram, Bala] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA. RP Greenbaum, BD (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RI Sundaram, Bala/A-6532-2010 OI Sundaram, Bala/0000-0002-1728-704X NR 58 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 046215 DI 10.1103/PhysRevE.76.046215 PN 2 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XP UT WOS:000250622100045 PM 17995090 ER PT J AU Hau-Riege, SP London, RA Chapman, HN Bergh, M AF Hau-Riege, Stefan P. London, Richard A. Chapman, Henry N. Bergh, Magnus TI Soft-x-ray free-electron-laser interaction with materials SO PHYSICAL REVIEW E LA English DT Article ID DENSE MATTER; SIMULATION; INTENSITY; RADIATION; TARGETS; MIRRORS; NM AB Soft-x-ray free-electron lasers have enabled materials studies in which structural information is obtained faster than the relevant probe-induced damage mechanisms. We present a continuum model to describe the damage process based on hot-dense plasma theory, which includes a description of the energy deposition in the samples, the subsequent dynamics of the sample, and the detector signal. We compared the model predictions with experimental data and mostly found reasonable agreement. In view of future free-electron-laser performance, the model was also used to predict damage dynamics of samples and optical elements at shorter wavelengths and larger photon fluences than currently available. C1 [Hau-Riege, Stefan P.; London, Richard A.; Chapman, Henry N.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Bergh, Magnus] Uppsala Univ, Biomed Ctr, SE-75123 Uppsala, Sweden. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hauriege1@llnl.gov RI Chapman, Henry/G-2153-2010 OI Chapman, Henry/0000-0002-4655-1743 NR 30 TC 33 Z9 33 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 046403 DI 10.1103/PhysRevE.76.046403 PN 2 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XP UT WOS:000250622100073 PM 17995118 ER PT J AU Hudson, SR AF Hudson, S. R. TI Steady-state solutions to the advection-diffusion equation and ghost coordinates for a chaotic flow SO PHYSICAL REVIEW E LA English DT Article ID PERTURBED MAGNETIC-FIELDS; GUIDING CENTER MOTION; AREA-PRESERVING MAPS; TWIST MAPS; VARIATIONAL-PRINCIPLES; HAMILTONIAN-SYSTEMS; 2-DIMENSIONAL MAPS; INVARIANT SURFACES; PERIODIC-ORBITS; TRANSPORT AB Steady-state solutions to the advection-diffusion equation for a passive scalar, with a chaotic divergence-free flow, are determined using a discrete-time, finite-difference model. The physical system studied is a density of particles diffusing across a chaotic layer. The impact of the advective structures on the solutions is illustrated, with special attention given to the cantori. It is argued that cantori play an important role in restricting transport and that coordinates adapted to cantori, called ghost coordinates, provide a natural framework about which the dynamics may be organized; for example, the averaged density profile becomes a smoothed devil's staircase in ghost coordinates. C1 [Hudson, S. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hudson, SR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 NR 51 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 046211 DI 10.1103/PhysRevE.76.046211 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XP UT WOS:000250622100041 PM 17995086 ER PT J AU Pau, GSH AF Pau, George S. H. TI Reduced-basis method for band structure calculations SO PHYSICAL REVIEW E LA English DT Article ID PARTIAL-DIFFERENTIAL-EQUATIONS; REAL-TIME SOLUTION; BASIS APPROXIMATIONS; WANNIER FUNCTIONS; BRILLOUIN-ZONE; ERROR; INTERPOLATION; WIDTHS; SPACES; BOUNDS AB We describe the application of the reduced-basis method in rapid and accurate determination of band energies in band structure calculations. The method is well suited for problems requiring repetitive evaluations of the band energies, especially in the many-query limit. We demonstrate the efficacy of the method in the determination of the spectral properties of crystalline silicon. C1 [Pau, George S. H.] MIT, Cambridge, MA 02139 USA. RP Pau, GSH (reprint author), Lawrence Berkeley Natl Lab, MS 50A-1488,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gpau@lbl.gov RI Pau, George Shu Heng/F-2363-2015 OI Pau, George Shu Heng/0000-0002-9198-6164 NR 40 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 046704 DI 10.1103/PhysRevE.76.046704 PN 2 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XP UT WOS:000250622100091 PM 17995136 ER PT J AU Purvis, M Grava, J Filevich, J Marconi, MC Dunn, J Moon, SJ Shlyaptsev, VN Jankowska, E Rocca, JJ AF Purvis, Mike Grava, Jonathan Filevich, Jorge Marconi, Mario C. Dunn, James Moon, Stephen J. Shlyaptsev, Vyacheslav N. Jankowska, Elizabeth Rocca, Jorge J. TI Dynamics of converging laser-created plasmas in semicylindrical cavities studied using soft x-ray laser interferometry SO PHYSICAL REVIEW E LA English DT Article ID NATIONAL IGNITION FACILITY; COLLIDING PLASMAS; HYDRA SIMULATIONS; INTERPENETRATION; COLLISION; EVOLUTION; MODEL AB The evolution of dense aluminum and carbon plasmas produced by laser irradiation of 500-mu m-diam semicylindrical targets was studied using soft x-ray laser interferometry. Plasmas created heating the cavity walls with 120-ps-duration optical laser pulses of similar to 1 x 10(12) W cm(-2) peak intensity were observed to expand and converge on axis to form a localized high-density plasma region. Electron density maps were measured using a 46.9-nm-wavelength tabletop capillary discharge soft x-ray laser probe in combination with an amplitude division interferometer based on diffraction gratings. The measurements show that the plasma density on axis exceeds 1 x 10(20) cm(-3). The electron density profiles are compared with simulations conducted using the hydrodynamic code HYDRA, which show that the abrupt density increase near the axis is dominantly caused by the convergence of plasma generated at the bottom of the groove during laser irradiation. C1 [Purvis, Mike; Grava, Jonathan; Filevich, Jorge; Marconi, Mario C.; Rocca, Jorge J.] Colorado State Univ, Dept Elect & Comp Engn, NSF, ERC Extreme Ultaviolet Sci & Yechnol, Ft Collins, CO 80523 USA. [Filevich, Jorge; Rocca, Jorge J.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Dunn, James] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Shlyaptsev, Vyacheslav N.] Univ Calif Davis Livermore, Dept Appl Sci, Livermore, CA 94551 USA. [Jankowska, Elizabeth] Wroclaw Univ Technol, Wroclaw, Poland. RP Purvis, M (reprint author), Colorado State Univ, Dept Elect & Comp Engn, NSF, ERC Extreme Ultaviolet Sci & Yechnol, Ft Collins, CO 80523 USA. NR 22 TC 22 Z9 23 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 046402 DI 10.1103/PhysRevE.76.046402 PN 2 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XP UT WOS:000250622100072 PM 17995117 ER PT J AU Saiz, E Tomsia, AP Rauch, N Scheu, C Ruehle, M Benhassine, M Seveno, D de Coninck, J Lopez-Esteban, S AF Saiz, E. Tomsia, A. P. Rauch, N. Scheu, C. Ruehle, M. Benhassine, M. Seveno, D. de Coninck, J. Lopez-Esteban, S. TI Nonreactive spreading at high temperature: Molten metals and oxides on molybdenum SO PHYSICAL REVIEW E LA English DT Article ID MONITORED OXYGEN ACTIVITY; DYNAMIC CONTACT ANGLES; SURFACE-TENSION; WETTABILITY CHARACTERIZATION; COMPOUND FORMATION; EXPERIMENTAL SETUP; CERAMIC SYSTEMS; SOLID-SURFACE; TRIPLE LINE; SN SYSTEM AB The spontaneous spreading of small liquid metal (Cu, Ag, Au) and oxide drops on Mo substrates has been studied using a drop transfer setup combined with high-speed video. Under the experimental conditions used in this work, spreading occurs in the absence of interfacial reactions or ridging. The analysis of the spreading data indicates that dissipation at the triple junction (that can be described in terms of a triple-line friction) is playing a dominant role in the movement of the liquid front. This is due, in part, to the much stronger atomic interactions in high-temperature systems when compared to organic liquids. As a result of this analysis, a comprehensive view of spreading emerges in which the strength of the atomic interactions (solid-liquid, liquid-liquid) determines the relative roles of viscous impedance and dissipation at the triple junction in spreading kinetics. C1 [Saiz, E.; Tomsia, A. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Rauch, N.; Scheu, C.; Ruehle, M.] Max Planck Inst Met Res, Stuttgart, Germany. [Benhassine, M.; Seveno, D.; de Coninck, J.] Univ Mons, Ctr Res Mol Modeling, B-7000 Mons, Belgium. [Lopez-Esteban, S.] CSIC, Inst Ciencia Mat, Dept Mat Particulados, Madrid, Spain. RP Saiz, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. NR 91 TC 22 Z9 22 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2007 VL 76 IS 4 AR 041602 DI 10.1103/PhysRevE.76.041602 PN 1 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 226XN UT WOS:000250621900080 PM 17994999 ER PT J AU Sefkow, AB Davidson, RC AF Sefkow, Adam B. Davidson, Ronald C. TI Advanced numerical studies of the neutralized drift compression of intense ion beam pulses SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID INERTIAL FUSION; TRANSPORT; ACCELERATOR; TRANSVERSE; SIMULATION; DESIGN; CHARGE AB Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects of focusing aberration in both directions are presented. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sefkow, AB (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. NR 26 TC 9 Z9 9 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2007 VL 10 IS 10 AR 100101 DI 10.1103/PhysRevSTAB.10.100101 PG 21 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 239SE UT WOS:000251537200001 ER PT J AU Venturini, M AF Venturini, Marco TI Microbunching instability in single-pass systems using a direct two-dimensional Vlasov solver SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID SIMULATION AB We apply a recently developed Vlasov solver to the study of the microbunching instability generated by shot noise in the beam delivery systems of x-ray free electron lasers (FELs). We discuss two lattices presently under consideration for the FEL Fermi project at Elettra and show that at least one of the two lattices appears capable of delivering a beam with the desired quality in the longitudinal phase space. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Venturini, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mventurini@lbl.gov NR 21 TC 26 Z9 26 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2007 VL 10 IS 10 AR 104401 DI 10.1103/PhysRevSTAB.10.104401 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 239SE UT WOS:000251537200008 ER PT J AU Wang, CX Kim, KJ Ferrario, M Wang, A AF Wang, Chun-xi Kim, Kwang-Je Ferrario, Massimo Wang, An TI Criteria for emittance compensation in high-brightness photoinjectors SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A critical process in high-brightness photoinjectors is emittance compensation, which brings under control the correlated transverse emittance growth due to the linear space-charge force. Although emittance compensation has been used and studied for almost two decades, the exact criteria to achieve emittance compensation is not as clear as it should be. In this paper, a perturbative analysis of slice envelopes and emittance evolution close to any reference envelope is developed, via which space-charge and chromatic effects are investigated. A new criterion for emittance compensation is found, which is complementary to the well-known matching condition for the invariant envelope and agrees very well with simulations. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Sci & Technol China, Hefei 230026, Peoples R China. RP Wang, CX (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wangcx@aps.anl.gov NR 12 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2007 VL 10 IS 10 AR 104201 DI 10.1103/PhysRevSTAB.10.104201 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 239SE UT WOS:000251537200006 ER PT J AU Antao, SM Hassan, I AF Antao, Sytle M. Hassan, Ishmael TI BaCO3: high-temperature crystal structures and the Pmcn -> R3m phase transition at 811 degrees C SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE barium carbonate; BaCO3; witherite; high-temperature structures; phase transition; rietveld refinements; synchrotron radiation ID SODIUM-NITRATE; ARAGONITE; CARBONATE; TRANSFORMATION; STRONTIUM; WITHERITE; MAGNESITE; CACO3 AB The temperature (T) evolution of the barium carbonate (BaCO3) structure was studied using Rietveld structure refinements based on synchrotron X-ray diffraction and a powdered synthetic sample. BaCO3 transforms from an orthorhombic, Pmcn, alpha phase to a trigonal, R3m, beta phase at 811 degrees C. The orthorhombic BaCO3 structure is isotypic with aragonite, CaCO3. In trigonal R3m BaCO3, the CO3 group occupies one orientation and shows no rotational disorder. The average < Ba-O > distances increase while the < C-O > distances decrease linearly with T in the orthorhombic phase. After the 811 degrees C phase transition, the < Ba-O > distances increase while C-O distances decrease. There is also a significant volume change of 2.8% at the phase transition. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Univ W Indies, Dept Chem, Kingston 7, Jamaica. RP Antao, SM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM sytle.antao@anl.gov NR 24 TC 26 Z9 27 U1 1 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD OCT PY 2007 VL 34 IS 8 BP 573 EP 580 DI 10.1007/s00269-007-0172-8 PG 8 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 214IU UT WOS:000249732000007 ER PT J AU Chapyak, EJ Godwin, RP Blewett, PJ AF Chapyak, E. J. Godwin, R. P. Blewett, P. J. TI The effect of acoustic radiation on the development of instabilities in convergent spherical liquid-gas systems SO PHYSICS OF FLUIDS LA English DT Article ID VIOLENTLY COLLAPSING BUBBLES; RAYLEIGH-TAYLOR; DYNAMICS AB We extend previous analytical work on instability growth in spherically convergent fluid systems by characterizing linear perturbation dynamics on the collapse of a gas-filled spherical cavity surrounded by an incompressible fluid. We also investigate energy damping mechanisms related to fluid compressibility and provide estimates of the conditions under which dynamic compressibility significantly affects modal behavior. The number of modes affected by compressibility is a function of the maximum radial Mach number achieved during the cavity collapse. At a maximum Mach number (M-m) of about 0.04 only the radial mode (spherical harmonic n=0) is affected. At M-m about 0.4, modes with n <= 4 are affected and at M-m greater than about 0.5 all modes are strongly influenced. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Dept Appl Phys, Los Alamos, NM 87544 USA. RP Chapyak, EJ (reprint author), Los Alamos Natl Lab, Dept Appl Phys, POB 1663, Los Alamos, NM 87544 USA. NR 21 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD OCT PY 2007 VL 19 IS 10 AR 104102 DI 10.1063/1.2773766 PG 6 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 226LC UT WOS:000250589600035 ER PT J AU Chertkov, M Kolokolov, I Lebedev, V AF Chertkov, M. Kolokolov, I. Lebedev, V. TI Strong effect of weak diffusion on scalar turbulence at large scales SO PHYSICS OF FLUIDS LA English DT Letter ID PASSIVE SCALAR; VELOCITY-FIELD; STATISTICS AB Passive scalar turbulence forced steadily is characterized by the velocity correlation scale L, injection scale l, and diffusive scale r(d). The scales are well separated if the diffusivity is small, r(d)<<,L, and one normally says that effects of diffusion are confined to smaller scales, r << r(d). However, if the velocity is single scale, one finds that a weak dependence of the scalar correlations on the molecular diffusivity persists to even larger scales, e.g., l >> r >> r(d) (E. Balkovsky et al., Pis'ma Zh. Eksp. Teor. Fiz. 61, 1012 (1995) [JETP Lett. 61, 1049 (1995)]). We consider the case of L >> l and report a counterintuitive result, namely the emergence of a new range of large scales, L >> r >> l(2)/r(d), where the diffusivity shows a strong effect on scalar correlations. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. LD Landau Theoret Phys Inst, Moscow 119334, Russia. RP Chertkov, M (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Chertkov, Michael/O-8828-2015; OI Chertkov, Michael/0000-0002-6758-515X; Kolokolov, Igor/0000-0002-7961-8588 NR 14 TC 4 Z9 4 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD OCT PY 2007 VL 19 IS 10 AR 101703 DI 10.1063/1.2793145 PG 4 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 226LC UT WOS:000250589600003 ER PT J AU Tartakovsky, AM Ward, AL Meakin, P AF Tartakovsky, Alexandre M. Ward, Andy L. Meakin, Paul TI Pore-scale simulations of drainage of heterogeneous and anisotropic porous media SO PHYSICS OF FLUIDS LA English DT Article ID SMOOTHED PARTICLE HYDRODYNAMICS; LATTICE-BOLTZMANN; FLOW; MODEL; SPH; INSTABILITY; FRACTURES; SOILS AB A numerical model, based on smoothed particle hydrodynamics, was used to simulate pore-scale liquid and gas flow in synthetic two-dimensional porous media consisting of nonoverlapping grains. The model was used to study the effects of pore-scale heterogeneity and anisotropy on the relationship between the average saturation and the Bond number (strength of the gravitational field acting on fluid density differences relative to capillary forces). Pore-scale anisotropy was created by using co-oriented nonoverlapping elliptical grains, and heterogeneity was created by inserting a microfracture in the middle of the porous domain consisting of nonoverlapping circular grains. The effect of the wetting fluid properties on drainage was also investigated. It is shown that pore-scale heterogeneity and anisotropy can give rise to saturation/Bond number relationships and entry (bubbling) pressures that depend on the flow direction, suggesting that these properties should be described by tensor rather than scalar quantities. C1 Pacific NW Natl Lab, Computat Math Tech Grp, Computat & Informat Sci Directorate, Richland, WA 99352 USA. Pacific NW Natl Lab, Hydrol Tech Grp, Environm Technol Directorate, Richland, WA 99352 USA. Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, Computat Math Tech Grp, Computat & Informat Sci Directorate, Richland, WA 99352 USA. EM Tartakovsky@pnl.gov; Andy.Ward@pnl.gov; Paul.Meakin@inl.gov NR 28 TC 22 Z9 23 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD OCT PY 2007 VL 19 IS 10 AR 103301 DI 10.1063/1.2772529 PG 8 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 226LC UT WOS:000250589600026 ER PT J AU Agostini, M Zweben, SJ Cavazzana, R Scarin, P Serianni, G Maqueda, RJ Stotler, DP AF Agostini, M. Zweben, S. J. Cavazzana, R. Scarin, P. Serianni, G. Maqueda, R. J. Stotler, D. P. TI Study of statistical properties of edge turbulence in the National Spherical Torus Experiment with the gas puff imaging diagnostic SO PHYSICS OF PLASMAS LA English DT Article ID SCRAPE-OFF-LAYER; ALCATOR C-MOD; ELECTROSTATIC TURBULENCE; 2-DIMENSIONAL TURBULENCE; DOUBLE CASCADES; TRANSPORT; PLASMA; TOKAMAK; INTERMITTENCY; FLUCTUATIONS AB An investigation is presented of the edge turbulence in the National Spherical Torus Experiment [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Control. Fusion, 45, A335 (2003)] based on the optical gas puff imaging (GPI) diagnostic. First of all, the edge fluctuations are characterized for the low confinement mode (L-mode) discharges as a function of the radius. The probability distribution function of the fluctuations is shown to be non-Gaussian for all the radial positions studied, but the deviation from the normal distribution is greater outside the separatrix; in this region the area occupied by the edge structures ("blobs") is greater than inside the separatrix, and this is correlated with the decrease of the logarithmic radial derivative of the pressure gradient. Then the difference between the L- mode and the high confinement mode (H-mode) is studied. With the continuous wavelet transform technique the intense bursts in the GPI signal can be detected; their number decreases in the H-mode with respect to the L-mode, with no significant change in the poloidal velocities. The difference between the two regimes is also observed in the poloidal wavenumber spectra: L-mode and H-mode have two different injection scales for the energy, and different cascades take place. Only in the L- mode the energy flows toward the small wavenumber feeding the bigger blobs. (C) 2007 American Institute of Physics. C1 Assoc EURATOM Enea Sulla Fusione, Consorzio RFX, I-35127 Padua, Italy. Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. Nova Photon, Princeton, NJ 08540 USA. Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Agostini, M (reprint author), Assoc EURATOM Enea Sulla Fusione, Consorzio RFX, C so Stat Unit 4, I-35127 Padua, Italy. EM matteo.agostini@igi.cnr.it RI Stotler, Daren/J-9494-2015 OI Stotler, Daren/0000-0001-5521-8718 NR 55 TC 33 Z9 33 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102305 DI 10.1063/1.2776912 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700023 ER PT J AU Ampleford, DJ Lebedev, SV Bland, SN Bott, SC Chittenden, JP Jennings, CA Kantsyrev, VL Safronova, AS Ivanov, VV Fedin, DA Laca, PJ Yilmaz, MF Nalajala, V Shrestha, I Williamson, K Osborne, G Haboub, A Ciardi, A AF Ampleford, D. J. Lebedev, S. V. Bland, S. N. Bott, S. C. Chittenden, J. P. Jennings, C. A. Kantsyrev, V. L. Safronova, A. S. Ivanov, V. V. Fedin, D. A. Laca, P. J. Yilmaz, M. F. Nalajala, V. Shrestha, I. Williamson, K. Osborne, G. Haboub, A. Ciardi, A. TI Dynamics of conical wire array Z-pinch implosions SO PHYSICS OF PLASMAS LA English DT Article ID JET DEFLECTION; RADIATION; PHYSICS; GENERATOR; PLASMAS; INSTABILITIES; PLANAR; ARGON AB A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators-the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell , Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer , in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P. Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations. (C) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ London Imperial Coll Sci Technol & Med, London SW7 2BW, England. Univ Nevada, Reno, NV 89557 USA. LERMA, Observ Paris, F-92195 Meudon, France. RP Ampleford, DJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM damplef@sandia.gov NR 53 TC 31 Z9 31 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102704 DI 10.1063/1.2795129 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700053 ER PT J AU Borovsky, JE Hesse, M AF Borovsky, Joseph E. Hesse, Michael TI The reconnection of magnetic fields between plasmas with different densities: Scaling relations SO PHYSICS OF PLASMAS LA English DT Article ID DAYSIDE MAGNETOPAUSE; EARTHS MAGNETOPAUSE; LAYER; MAGNETOSPHERE; ENVIRONMENT; CHALLENGE AB Using two-dimensional compressible-magnetohydrodynamic computer simulations, the reconnection of magnetic fields between two plasmas with different mass densities is examined. Antiparallel, undriven merging is studied from a Harris-sheet initial condition with the sheet separating the two different plasmas. Reconnection is initiated with a resistive spot in the center of the Harris sheet. Density ratios from 1 to 320 are simulated. It is found that the rate of magnetic-field reconnection R is give approximately as R=0.07 upsilon(Ah), where upsilon(Ah)=B/[4 pi(0.5 rho(1)+0.5 rho(1))](1/2) is a hybrid Alfven speed constructed by averaging the densities of the two plasmas. In the symmetric-density case, plasma jetting speeds are equal to the local ExB velocity; in the asymmetric-density cases, the plasma jetting speeds exceed the local ExB velocity. In the asymmetric cases, plasma jetting tends to be parallel to the local magnetic field. In the symmetric-density case the plasma jetting arises from the site of the X-line and resides in the region of magnetic-field reversal; in the asymmetric case, jetting tends to reside in the lower-density plasma. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, Mail Stop D466, Los Alamos, NM 87545 USA. RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 33 TC 48 Z9 48 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102309 DI 10.1063/1.2772619 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700027 ER PT J AU Chen, SN Gregori, G Patel, PK Chung, HK Evans, RG Freeman, RR Saiz, EG Glenzer, SH Hansen, SB Khattak, FY King, JA Mackinnon, AJ Notley, MM Pasley, JR Riley, D Stephens, RB Weber, RL Wilks, SC Beg, FN AF Chen, S. N. Gregori, G. Patel, P. K. Chung, H.-K. Evans, R. G. Freeman, R. R. Saiz, E. Garcia Glenzer, S. H. Hansen, S. B. Khattak, F. Y. King, J. A. Mackinnon, A. J. Notley, M. M. Pasley, J. R. Riley, D. Stephens, R. B. Weber, R. L. Wilks, S. C. Beg, F. N. TI Creation of hot dense matter in short-pulse laser-plasma interaction with tamped titanium foils SO PHYSICS OF PLASMAS LA English DT Article ID FAST-ELECTRON TRANSPORT; X-RAY SPECTROSCOPY; TARGETS; TEMPERATURE; EMISSION; ALUMINUM; CURRENTS; W/CM(2); ALPHA AB Dense titanium plasma has been heated to an electron temperature up to 1300 eV with a 100 TW, high intensity short-pulse laser. The experiments were conducted using Ti foils (5 mu m thick) sandwiched between layers of either aluminum (1 or 2 mu m thick) or plastic (2 mu m thick) to prevent the effects of prepulse. Targets of two different sizes, i.e., 250 x 250 mu m(2) and 1 x 1 mm(2) were used. Spectral measurements of the Ti inner-shell emission, in the region between 4 and 5 keV, were taken from the front-side (i.e., the laser illuminated side) of the target. The data show large shifts in the K alpha emission from open-shell ions, suggesting bulk heating of the sample at near solid density, which was largest for reduced mass targets. Comparison with collisional radiative and 2D radiation hydrodynamics codes indicates a peak temperature of T-e,T-peak=1300 eV of solid titanium plasma in similar to 0.2 mu m thin layer. Higher bulk temperature (T-e,T-bulk=100 eV) for aluminum tamped compared to CH tamped targets (T-e,T-bulk=40 eV) was observed. A possible explanation for this difference is described whereby scattering due to the nuclear charge of the tamping material leads to modified electron transport behavior. (C) 2007 American Institute of Physics. C1 Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. Ohio State Univ, Columbus, OH 43215 USA. Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. Gen Atom Co, San Diego, CA 92186 USA. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Gregori, G (reprint author), Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. EM gregori@rl.ac.uk RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; KHATTAK, Fida Younus/L-2404-2015; Brennan, Patricia/N-3922-2015; OI MacKinnon, Andrew/0000-0002-4380-2906; chen, sophia n./0000-0002-3372-7666; Stephens, Richard/0000-0002-7034-6141 NR 34 TC 26 Z9 26 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102701 DI 10.1063/1.2777118 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700050 ER PT J AU Cohen, BI Williams, EA Vu, HX AF Cohen, B. I. Williams, E. A. Vu, H. X. TI Kinetic-ion simulations addressing whether ion trapping inflates stimulated Brillouin backscattering reflectivities SO PHYSICS OF PLASMAS LA English DT Article ID DRIVEN PARAMETRIC-INSTABILITIES; IN-CELL SIMULATIONS; ACOUSTIC-WAVES; NONLINEAR SATURATION; FREQUENCY-SHIFT; SCATTERING; PLASMAS AB An investigation of the possible inflation of stimulated Brillouin backscattering (SBS) due to ion kinetic effects is presented using electromagnetic particle simulations and integrations of three-wave coupled-mode equations with linear and nonlinear models of the nonlinear ion physics. Electrostatic simulations of linear ion Landau damping in an ion acoustic wave, nonlinear reduction of damping due to ion trapping, and nonlinear frequency shifts due to ion trapping establish a baseline for modeling the electromagnetic SBS simulations. Systematic scans of the laser intensity have been undertaken with both one-dimensional particle simulations and coupled-mode-equations integrations, and two values of the electron-to-ion temperature ratio (to vary the linear ion Landau damping) are considered. Three of the four intensity scans have evidence of SBS inflation as determined by observing more reflectivity in the particle simulations than in the corresponding three-wave mode-coupling integrations with a linear ion-wave model, and the particle simulations show evidence of ion trapping. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. RP Cohen, BI (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 32 TC 7 Z9 7 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102707 DI 10.1063/1.2784449 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700056 ER PT J AU Fredrickson, ED Crocker, NA Gorelenkov, NN Heidbrink, WW Kubota, S Levinton, FM Yuh, H Menard, JE Bell, RE AF Fredrickson, E. D. Crocker, N. A. Gorelenkov, N. N. Heidbrink, W. W. Kubota, S. Levinton, F. M. Yuh, H. Menard, J. E. Bell, R. E. TI beta suppression of alfven cascade modes in the national spherical torus experiment SO PHYSICS OF PLASMAS LA English DT Article ID DIII-D TOKAMAK; EIGENMODES; NSTX AB Alfven cascade modes have been found in low density, low beta plasmas on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. An extension of the theory of cascade modes which includes the coupling to geodesic acoustic modes [Breizman , Phys. Plasmas 12, 112506 (2005)] is shown to imply their absence for typical spherical tokamak ratios of electron thermal to magnetic energy, beta. A scan in electron beta confirmed a threshold for suppression of cascade modes in good agreement with theoretical predictions. (C) 2007 American Institute of Physics. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Univ Calif Irvine, Irvine, CA 92697 USA. Novo Photon, Princeton, NJ 08543 USA. RP Fredrickson, ED (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Menard, Jonathan/0000-0003-1292-3286 NR 15 TC 24 Z9 24 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102510 DI 10.1063/1.2768038 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700046 ER PT J AU Gomberoff, K Fajans, J Friedman, A Grote, D Vay, JL Wurtele, JS AF Gomberoff, K. Fajans, J. Friedman, A. Grote, D. Vay, J.-L. Wurtele, J. S. TI Simulations of plasma confinement in an antihydrogen trap SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON-PLASMA; PARTICLE; ATOMS AB The three-dimensional particle-in-cell (3-D PIC) simulation code WARP is used to study positron confinement in antihydrogen traps. The magnetic geometry is close to that of a UC Berkeley experiment conducted, with electrons, as part of the ALPHA collaboration [W. Bertsche et al., AIP Conf. Proc. 796, 301 (2005)]. In order to trap antihydrogen atoms, multipole magnetic fields are added to a conventional Malmberg- Penning trap. These multipole fields must be strong enough to confine the antihydrogen, leading to multipole field strengths at the trap wall comparable to those of the axial magnetic field. Numerical simulations reported here confirm recent experimental measurements of reduced particle confinement when a quadrupole field is added to a Malmberg- Penning trap. It is shown that, for parameters relevant to various antihydrogen experiments, the use of an octupole field significantly reduces the positron losses seen with a quadrupole field. A unique method for obtaining a 3- D equilibrium of the positrons in the trap with a collisionless PIC code was developed especially for the study of the antihydrogen trap; however, it is of practical use for other traps as well. (C) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Technion, Dept Phys, IL-32000 Haifa, Israel. RP Gomberoff, K (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Fajans, Joel/J-6597-2016; wurtele, Jonathan/J-6278-2016 OI Fajans, Joel/0000-0002-4403-6027; wurtele, Jonathan/0000-0001-8401-0297 NR 23 TC 12 Z9 12 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102111 DI 10.1063/1.2778420 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700015 ER PT J AU Grisham, LR AF Grisham, L. R. TI Lithium jet neutralizer to improve negative hydrogen neutral beam systems SO PHYSICS OF PLASMAS LA English DT Article ID INJECTION SYSTEM; JT-60U; IONS; OPERATION; ATOMS; GAS AB Hydrogen isotope neutral beam systems for heating and current drive in magnetic fusion energy devices have always used gas cells of the beam isotope to convert a portion of the energetic ions into neutral atoms. In the design of negative-ion based neutral beams for the ITER tokamak [R. Aymar V. A. Chuyanov, M. Huguet et al., Nuclear Fusion 41, 1301 (2001)], or for future fusion reactors, the large gas load from a traditional neutralizer cell causes many problems, including increased heat loads on the accelerator and ion source, reduced beam efficiency due to premature neutralization in the accelerator and reionization after the neutralizer, and the need to stop the beam for regeneration of the cryopanels, reducing the attractiveness of beams for reactors. We explore several approaches to decrease the neutralizer gas throughput, and conclude that a supersonic lithium vapor jet neutralizer is the most appropriate, and also affords a higher neutralization efficiency than does a hydrogen isotope gas cell. (C) 2007 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Grisham, LR (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 25 TC 4 Z9 4 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102509 DI 10.1063/1.2792331 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700045 ER PT J AU LoDestro, LL AF LoDestro, L. L. TI Comment on "Paleoclassical transport in low-collisionality toroidal plasmas" [Phys. Plasmas 12, 092512 (2005)] SO PHYSICS OF PLASMAS LA English DT Editorial Material ID MOTION; LINES C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP LoDestro, LL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 5 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 104701 DI 10.1063/1.2787502 PG 3 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700107 ER PT J AU Loureiro, NF Schekochihin, AA Cowley, SC AF Loureiro, N. F. Schekochihin, A. A. Cowley, S. C. TI Instability of current sheets and formation of plasmoid chains SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC RECONNECTION; TEARING INSTABILITY; ISLANDS; COALESCENCE; RESISTIVITY AB Current sheets formed in magnetic reconnection events are found to be unstable to high-wavenumber perturbations. The instability is very fast: its maximum growth rate scales as S-1/4 upsilon(A)/L-CS, where L-CS is the length of the sheet, upsilon(A) the Alfven speed, and S the Lundquist number. As a result, a chain of plasmoids (secondary islands) is formed, whose number scales as S-3/8. (C) 2007 American Institute of Physics. C1 Univ Maryland, Ctr Multiscale Plasma Dyanm, College Pk, MD 20742 USA. Princeton Univ, Plasma Phys Lab, Princeton, NJ 08453 USA. Univ Cambridge, Univ London Kings Coll, Cambridge CB2 1TN, England. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Loureiro, NF (reprint author), Univ Maryland, Ctr Multiscale Plasma Dyanm, College Pk, MD 20742 USA. RI Schekochihin, Alexander/C-2399-2009; Loureiro, Nuno/E-8719-2011 OI Loureiro, Nuno/0000-0001-9755-6563 NR 30 TC 231 Z9 235 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 100703 DI 10.1063/1.2783986 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700003 ER PT J AU Spizzo, G White, RB Cappello, S AF Spizzo, G. White, R. B. Cappello, S. TI Chaos generated pinch effect in toroidal confinement devices SO PHYSICS OF PLASMAS LA English DT Article ID REVERSED-FIELD PINCH; ANOMALOUS TRANSPORT; PARTICLE-TRANSPORT; MAGNETIC-FIELD; HEAT-TRANSPORT; SCALING LAWS; RFX; BEHAVIOR; PLASMAS; MODEL AB Particle transport in a toroidal plasma confinement device is shown to be nondiffusive when magnetic chaos is present. A phenomenological fit to density profiles gives a diffusion constant and also a pinch velocity directed up the density gradient. We show that the combination of diffusion and pinch is actually an expression of the nonlocal, subdiffusive nature of the transport. The effect is illustrated by numerical modelling of the magnetic structure and associated particle transport in conditions relevant for the reversed-field pinch experiment at the Consorzio RFX, Padova, Italy [G. Rostagni, Fusion Eng. Des. 25, 301 (1995)]. The relevance of this result is quite general, and could be applied also to other systems with chaos induced particle transport, such as electron transport in the tokamak. (C) 2007 American Institute of Physics. C1 Euratom ENEA Associat, Consorzio RFX, I-35127 Padua, Italy. Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Spizzo, G (reprint author), Euratom ENEA Associat, Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy. EM gianluca.spizzo@igi.cnr.it RI White, Roscoe/D-1773-2013; Spizzo, Gianluca/B-7075-2009; Cappello, Susanna/H-9968-2013 OI White, Roscoe/0000-0002-4239-2685; Spizzo, Gianluca/0000-0001-8586-2168; Cappello, Susanna/0000-0002-2022-1113 NR 37 TC 11 Z9 11 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102310 DI 10.1063/1.2776907 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700028 ER PT J AU Svidzinski, VA AF Svidzinski, Vladimir A. TI Plasma confinement by circularly polarized electromagnetic field in toroidal geometry SO PHYSICS OF PLASMAS LA English DT Article ID EXTERNAL KINK MODES; PONDEROMOTIVE STABILIZATION; RADIOFREQUENCY WAVES; RESISTIVE WALL; FREQUENCY AB A novel plasma confinement concept based on plasma confinement by electromagnetic pressure of circularly polarized electromagnetic fields is proposed. Practical implementation of this concept in a toroidal device is suggested. In this concept the confining field frequency is in the lower range such that the size of the device is much smaller than the vacuum wavelength. Most of the previous radio-frequency (rf) confinement concepts of unmagnetized plasma were related to confinement in rf cavities which operated at high frequency for which the size of the cavity is comparable to the wavelength. Operation at lower frequencies simplifies rf design, reduces Ohmic losses in the conducting walls and probably makes application of superconductors for wall materials more feasible. It is demonstrated that circular (or nearly circular) polarization of the electromagnetic field is required for confinement from both the equilibrium and stability considerations. Numerical analysis of plasma confinement for magnetohydrodynamic plasma model in two-dimensional toroidal geometry is performed. Within this model plasma is confined by the applied rf fields and its equilibrium is stable. Technically feasible compact and medium size toroidal plasma confinement devices based on this concept are proposed. Application of this approach to the fusion reactor requires use of superconducting materials for the toroidal shell to reduce the Ohmic losses. Further theoretical and experimental studies are required for a more reliable conclusion about the attractiveness of this plasma confinement concept. (C) 2007 American Institute of Physics. C1 Univ Wisconsin, Madison, WI 53706 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Svidzinski, VA (reprint author), Univ Wisconsin, Madison, WI 53706 USA. NR 24 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 102512 DI 10.1063/1.2771144 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700048 ER PT J AU Tang, XZ Boozer, AH AF Tang, X. Z. Boozer, A. H. TI Scale-up of spherical tokamak solenoid-free startup by coaxial helicity injection SO PHYSICS OF PLASMAS LA English DT Article ID CURRENT DRIVE; SUSTAINMENT; AMPLIFICATION; SPHEROMAKS; PLASMA; TORUS AB Current multiplication and flux amplification are two critical measures in assessing the usefulness of magnetic helicity injection for forming the plasma confining magnetic field in laboratory spheromak and spherical tokamak (ST) experiments. While the two concepts are closely related for spheromaks, they are independent for a Taylor-relaxed ST plasma, and negatively correlated for a more realistic, partially relaxed ST plasma. An important application of this understanding leads to the so-called relaxed transient coaxial helicity injection scheme for solenoid-free ST startup, which can deliver reactor-grade high current multiplication and flux amplification. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Tang, XZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 24 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 100704 DI 10.1063/1.2798052 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700004 ER PT J AU Wang, ZH Ticos, CM Wurden, GA AF Wang, Zhehui Ticos, Catalin M. Wurden, Glen A. TI Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas SO PHYSICS OF PLASMAS LA English DT Article ID BEAM INJECTION; PARTICLES; PHYSICS; GRAINS; GAS AB Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 1015 m(-3) electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas (similar to 10 eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM zwang@lanl.gov RI Ticos, Catalin/F-1677-2011; Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 NR 42 TC 14 Z9 15 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2007 VL 14 IS 10 AR 103701 DI 10.1063/1.2778416 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 226LD UT WOS:000250589700092 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical point gravitation SO PHYSICS WORLD LA English DT Editorial Material C1 SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. NR 0 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD OCT PY 2007 VL 20 IS 10 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 221VQ UT WOS:000250255900022 ER PT J AU Visel, A Carson, J Oldekamp, J Warnecke, M Jakubcakuva, V Zhou, X Shaw, CA Alvarez-Bolado, G Eichele, G AF Visel, Axel Carson, James Oldekamp, Judit Warnecke, Marei Jakubcakuva, Vladimira Zhou, Xunlei Shaw, Chad A. Alvarez-Bolado, Gonzalo Eichele, Gregor TI Regulatory pathways analysis by high-throughput in Situ hybridization SO PLOS GENETICS LA English DT Article ID GENE-EXPRESSION; NERVOUS-SYSTEM; TRANSCRIPTION FACTOR; CEREBRAL-CORTEX; GENOME BROWSER; R-CADHERIN; PAX GENES; MOUSE; BRAIN; ATLAS AB Automated in situ hybridization enables the construction of comprehensive atlases of gene expression patterns in mammals. Such atlases can become Web-searchable digital expression maps of individual genes and thus offer an entryway to elucidate genetic interactions and signaling pathways. Towards this end, an atlas housing; 1,000 spatial gene expression patterns of the midgestation mouse embryo was generated. Patterns were textually annotated using a controlled vocabulary comprising.90 anatomical features. Hierarchical clustering of annotations was carried out using distance scores calculated from the similarity between pairs of patterns across all anatomical structures. This process ordered hundreds of complex expression patterns into a matrix that reflects the embryonic architecture and the relatedness of patterns of expression. Clustering yielded 12 distinct groups of expression patterns. Because of the similarity of expression patterns within a group, members of each group may be components of regulatory cascades. We focused on the group containing Pax6, an evolutionary conserved transcriptional master mediator of development. Seventeen of the 82 genes in this group showed a change of expression in the developing neocortex of Pax6-deficient embryos. Electromobility shift assays were used to test for the presence of Pax6-paired domain binding sites. This led to the identification of 12 genes not previously known as potential targets of Pax6 regulation. These findings suggest that cluster analysis of annotated gene expression patterns obtained by automated in situ hybridization is a novel approach for identifying components of signaling cascades. C1 Max Planck Inst Biophys Chem, Dept Genes & Behav, Gottingen, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. Pacific NW Natl Lab, Biol Monitoring & Modeling Dept, Richland, WA 99352 USA. Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. RP Eichele, G (reprint author), Max Planck Inst Biophys Chem, Dept Genes & Behav, Gottingen, Germany. EM Gregor.Eichele@mpibpc.mpg.de RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 NR 61 TC 40 Z9 40 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD OCT PY 2007 VL 3 IS 10 BP 1867 EP 1883 DI 10.1371/journal.pgen.0030178 PG 17 WC Genetics & Heredity SC Genetics & Heredity GA 233EJ UT WOS:000251072900008 PM 17953485 ER PT J AU Darling, SB AF Darling, S. B. TI Directing the self-assembly of block copolymers SO PROGRESS IN POLYMER SCIENCE LA English DT Review DE block copolymers; nanostructures; nanomaterials; directed self-assembly; graphoepitaxy; alignment ID LAMELLAR DIBLOCK COPOLYMER; AMPLITUDE OSCILLATORY SHEAR; ORDER-DISORDER TRANSITION; ELECTRIC-FIELD ALIGNMENT; ATOMIC-FORCE MICROSCOPY; GRAIN-BOUNDARY MORPHOLOGY; STYRENE-ISOPRENE-STYRENE; SBS TRIBLOCK COPOLYMER; CENTERED-CUBIC PHASE; X-RAY-SCATTERING AB Recently, a new spotlight has been focused on block copolymers, thoroughly studied for nearly half a century, because of their potential use in numerous nanotechnologies. This renewed interest is a consequence of the self-assembled microdomains characteristic of these materials. The size, shape, and arrangement of these nanoscopic structures are all tunable through synthetic chemistry of the constituent molecules. Capturing the vast technological potential of block copolymers will, in many cases, require precise control over the orientation and alignment of the microdomains. This review summarizes extant applications and alignment techniques and provides an outlook toward the future. In an effort to provide a practical resource for researchers, the article is structured to identify the reported alignment approaches for a given polymer morphology rather than sorting by alignment technique. Specific materials have also been deemphasized because the alignment methods, with few exceptions, are general to a specific morphology or set of morphologies. In addition to a detailed summary of traditional methodologies, some very recent results such as optical alignment of liquid crystalline block copolymers, lithographic chemical patterning, and alignment in pores are highlighted. (c) 2007 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM darling@anl.gov NR 442 TC 571 Z9 576 U1 42 U2 523 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6700 J9 PROG POLYM SCI JI Prog. Polym. Sci. PD OCT PY 2007 VL 32 IS 10 BP 1152 EP 1204 DI 10.1016/j.progpolymsci.2007.05.004 PG 53 WC Polymer Science SC Polymer Science GA 227EO UT WOS:000250640200002 ER PT J AU Kolker, E Hogan, JM Higdon, R Kolker, N Landorf, E Yakunin, AF Collart, FR van Belle, G AF Kolker, Eugene Hogan, Jason M. Higdon, Roger Kolker, Natali Landorf, Elizabeth Yakunin, Alexander F. Collart, Frank R. van Belle, Gerald TI Development of BIATECH-54 standard mixtures for assessment of protein identification and relative expression SO PROTEOMICS LA English DT Article DE HTP proteomics; mass spectrometry; protein identification; relative (differential); protein expression; standard (test) mixtures ID MASS-SPECTROMETRY; SEQUENCE DATABASES; LARGE-SCALE; PEPTIDE; SEARCH; TANDEM; PROTEOMICS; MS/MS AB Mixtures of known proteins have been very useful in the assessment and validation of methods for high-throughput (HTP) MS (MS/MS) proteornics experiments. However, these test mixtures have generally consisted of few proteins at near equal concentration or of a single protein at varied concentrations. Such mixtures are too simple to effectively assess the validity of error rates for protein identification arid differential expression in HTP MS/MS studies. This work aimed at overcoming these limitations and simulating studies of complex biological samples. We introduced a pair of 54-protein standard mixtures of variable concentrations with up to a 1000-fold dynamic range in concentration and up to ten-fold expression ratios with additional negative controls (infinite expression ratios). These test mixtures comprised 16 off-the-shelf Sigma-Aldrich proteins and 38 Shewanella oneidensis proteins produced in-house. The standard proteins were systematically distributed into three main concentration groups (high, medium, and low) and then the concentrations were varied differently for each mixture within the groups to generate different expression ratios. The mixtures were analyzed with both low mass accuracy LCQ and high mass accuracy FT-LTQ instruments. In addition, these 54 standard proteins closely follow the molecular weight distributions of both bacterial and human proteomes. As a result, these new standard mixtures allow for a much more realistic assessment of approaches for protein identification and label-free differential expression than previous mixtures. Finally, methodology and experimental design developed in this work can be readily applied in future to development of more complex standard mixtures for HTP proteomics studies. C1 Seattle Childrens Hosp & Reg Med Ctr, Res Inst, Seattle, WA 98101 USA. BIATECH Inst, Bothell, WA USA. Univ Washington, Dept Med Educ & Biomed Informat, Div Biomed & Hlth Informat, Seattle, WA 98195 USA. Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. Univ Toronto, Banting & Best Dept Med Res, Toronto, ON, Canada. Univ Washington, Dept Biostat, Seattle, WA 98195 USA. Univ Washington, Dept Environm Hlth & Occupat Sci, Seattle, WA 98195 USA. RP Kolker, E (reprint author), Seattle Childrens Hosp & Reg Med Ctr, Res Inst, 1900 9th Ave,Rm 911, Seattle, WA 98101 USA. EM eugene.kolker@seattlechildrens.org RI Kolker, Eugene/C-6711-2008; Yakunin, Alexander/J-1519-2014; OI Yakunin, Alexander/0000-0003-0813-6490; Collart, Frank/0000-0001-6942-4483 FU NIGMS NIH HHS [GM076680-01A1] NR 16 TC 9 Z9 9 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD OCT PY 2007 VL 7 IS 20 BP 3693 EP 3698 DI 10.1002/pmic.200700088 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 227FB UT WOS:000250641500006 PM 17890649 ER PT J AU Stubbs, CW High, FW George, MR DeRose, KL Blondin, S Tonry, JL Chambers, KC Granett, BR Burke, DL Smith, RC AF Stubbs, Christopher W. High, F. William George, Matthew R. DeRose, Kimberly L. Blondin, Stephane Tonry, John L. Chambers, Kenneth C. Granett, Benjamin R. Burke, David L. Smith, R. Chris TI Toward more precise survey photometry for PanSTARRS and LSST: measuring directly the optical transmission spectrum of the atmosphere SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID RAMAN-SCATTERING; TELLURIC LINES; PAN-STARRS; CALIBRATION; EXTINCTION; AEROSOL; AERONET AB Motivated by the recognition that variation in the optical transmission of the atmosphere is probably the main limitation to the precision of ground-based CCD measurements of celestial fluxes, we review the physical processes that attenuate the passage of light through Earth's atmosphere. The next generation of astronomical surveys, such as PanSTARRS and LSST, will greatly benefit from dedicated apparatus to obtain atmospheric transmission data that can be associated with each survey image. We review and compare various approaches to this measurement problem, including photometry, spectroscopy, and LIDAR. In conjunction with careful measurements of instrumental throughput, atmospheric transmission measurements should allow next-generation imaging surveys to produce photometry of unprecedented precision. Our primary concerns are the real-time determination of aerosol scattering and absorption by water along the line of sight, both of which can vary over the course of a night's observations. C1 Harvard Univ, Harvard Smithsonian Ctr Astrophys, Dept Phys, Cambridge, MA 02138 USA. Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Palo Alto, CA USA. Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Tucson, AZ 85726 USA. RP Stubbs, CW (reprint author), Harvard Univ, Harvard Smithsonian Ctr Astrophys, Dept Phys, Cambridge, MA 02138 USA. RI Stubbs, Christopher/C-2829-2012; OI Stubbs, Christopher/0000-0003-0347-1724; Chambers, Kenneth /0000-0001-6965-7789 NR 48 TC 34 Z9 35 U1 0 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD OCT PY 2007 VL 119 IS 860 BP 1163 EP 1178 DI 10.1086/522208 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 231QY UT WOS:000250965300010 ER PT J AU Kalinin, SV Rodriguez, BJ Jesse, S Proksch, R AF Kalinin, Sergei V. Rodriguez, Brian J. Jesse, Stephen Proksch, Roger TI A biased view of the nanoworld: Electromechanical imaging SO R&D MAGAZINE LA English DT Article C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483 NR 0 TC 4 Z9 4 U1 0 U2 1 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0746-9179 J9 R&D MAG JI R D Mag. PD OCT PY 2007 VL 49 IS 10 BP 34 EP 36 PG 3 WC Engineering, Industrial; Multidisciplinary Sciences SC Engineering; Science & Technology - Other Topics GA 226EV UT WOS:000250571300014 ER PT J AU Helton, JC Johnson, JD Oberkampf, WL AF Helton, J. C. Johnson, J. D. Oberkampf, W. L. TI Verification of the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE aleatory uncertainty; competing failure; competing risk; epistemic uncertainty; fire environment; high consequence system; probability of loss of assured safety; reliability; strong link; verification; weak link ID COMPUTATIONAL FLUID-DYNAMICS; SAMPLING-BASED METHODS; SENSITIVITY-ANALYSIS; RISK ANALYSIS; COMPLEX-SYSTEMS; PERFORMANCE ASSESSMENTS; EPISTEMIC UNCERTAINTY; VALIDATION; PROPAGATION; MODELS AB Two approaches to the calculation of probability of loss of assured safety (PLOAS) in temperature dependent weak link/strong link systems are described and compared on the basis of three test problems. The approaches differ in that the first approach permits a separation of epistemic and aleatory uncertainty in the calculation of PLOAS and the second approach combines epistemic and aleatory uncertainty before the calculation of PLOAS. A discrepancy in the results obtained with the test problems led to the identification of an implementation error for one of the approaches. The importance and efficacy of well-designed verification test problems are demonstrated. (C) 2006 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Dept 1544, Albuquerque, NM 87185 USA. Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. ProStat, Mesa, AZ 85204 USA. RP Helton, JC (reprint author), Sandia Natl Labs, Dept 1544, POB 5800, Albuquerque, NM 87185 USA. EM jchelto@sandia.gov RI ming-jui, chang/F-9294-2015 NR 49 TC 4 Z9 4 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD OCT PY 2007 VL 92 IS 10 BP 1363 EP 1373 DI 10.1016/j.ress.2006.09.005 PG 11 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 198LC UT WOS:000248628600009 ER PT J AU Helton, JC Johnson, JD Oberkampf, WL AF Helton, J. C. Johnson, J. D. Oberkampf, W. L. TI Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE aleatory uncertainty; competing failure; competing risk; epistemic uncertainty; fire environment; high consequence system; probability of loss of assured safety; reliability; strong link; verification; weak link ID COMPUTATIONAL FLUID-DYNAMICS; HIGHLY DEPENDABLE SYSTEMS; SAMPLING-BASED METHODS; SENSITIVITY-ANALYSIS; COMPLEX-SYSTEMS; RISK ANALYSIS; PERFORMANCE ASSESSMENTS; UNCERTAINTY; VALIDATION; SIMULATION AB Four verification test problems are presented for checking the conceptual development and computational implementation of calculations to determine the probability of loss of assured safety (PLOAS) in temperature-dependent systems with multiple weak links (WLs) and strong links (SLs). The problems are designed to test results obtained with the following definitions of loss of assured safety: (i) failure of all SLs before failure of any WE, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The test problems are based on assuming the same failure properties for all links, which results in problems that have the desirable properties of fully exercising the numerical integration procedures required in the evaluation of PLOAS and also possessing simple algebraic representations for PLOAS that can be used for verification of the analysis. (C) 2007 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Dept 1544, Albuquerque, NM 87185 USA. Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. ProStat, Mesa, AZ 85204 USA. RP Helton, JC (reprint author), Sandia Natl Labs, Dept 1544, POB 5800, Albuquerque, NM 87185 USA. EM jchelto@sandia.gov RI ming-jui, chang/F-9294-2015 NR 43 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD OCT PY 2007 VL 92 IS 10 BP 1374 EP 1387 DI 10.1016/j.ress.2006.11.010 PG 14 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 198LC UT WOS:000248628600010 ER PT J AU Wilson, AG Huzurbazar, AV AF Wilson, Alyson G. Huzurbazar, Aparna V. TI Bayesian networks for multilevel system reliability SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Bayesian belief network; system reliability; Bayesian reliability ID FAULT-TREES; INFORMATION AB Bayesian networks have recently found many applications in systems reliability; however, the focus has been on binary outcomes. In this paper we extend their use to multilevel discrete data and discuss how to make joint inference about all of the nodes in the network. These methods are applicable when system structures are too complex to be represented by fault trees. The methods are illustrated through four examples that are structured to clarify the scope of the problem. (C) 2006 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. RP Wilson, AG (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM agw@lanl.gov OI Wilson, Alyson/0000-0003-1461-6212 NR 7 TC 42 Z9 49 U1 2 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD OCT PY 2007 VL 92 IS 10 BP 1413 EP 1420 DI 10.1016/j.ress.2006.09.003 PG 8 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 198LC UT WOS:000248628600013 ER PT J AU Graves, TL Hamada, MS Klamann, R Koehler, A Martz, HF AF Graves, T. L. Hamada, M. S. Klamann, R. Koehler, A. Martz, H. F. TI A fully Bayesian approach for combining multi-level information in multi-state fault tree quantification SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Dirichlet distribution; Markov chain Monte Carlo AB This paper presents a fully Bayesian approach that simultaneously combines non-overlapping (in time) basic event and higher-level event failure data in fault tree quantification with multi-state events. Such higher-level data often correspond to train, subsystem or system failure events. The fully Bayesian approach also automatically propagates the highest-level data to lower levels in the fault tree. A simple example illustrates our approach. (C) 2006 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Grp CCS 6, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Grp CCS 6, POB 1663, Los Alamos, NM 87545 USA. EM hamada@lanl.gov NR 14 TC 25 Z9 26 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD OCT PY 2007 VL 92 IS 10 BP 1476 EP 1483 DI 10.1016/j.ress.2006.11.001 PG 8 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 198LC UT WOS:000248628600020 ER PT J AU Dames, C Chen, S Harris, CT Huang, JY Ren, ZF Dresselhaus, MS Chen, G AF Dames, C. Chen, S. Harris, C. T. Huang, J. Y. Ren, Z. F. Dresselhaus, M. S. Chen, G. TI A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SINGLE-WALLED NANOTUBES; CARBON NANOTUBES; YOUNGS MODULUS; CONDUCTIVITY; CONDUCTANCE; DEPOSITION AB A hot wire probe has been developed for use inside a transmission electron microscope to measure the thermal resistance of individual nanowires, nanotubes, and their contacts. No microfabrication is involved. The probe is made from a platinum Wollaston wire and is pretensioned to minimize the effects of thermal expansion, intrinsic thermal vibrations, and Lorentz forces. An in situ nanomanipulator is used to select a particular nanowire or nanotube for measurement, and contacts are made with liquid metal droplets or by electron-beam induced deposition. Detailed thermal analysis shows that for best sensitivity, the thermal resistance of the hot-wire probe should be four times that of the sample, but a mismatch of more than two orders of magnitude may be acceptable. Data analysis using the ratio of two ac signals reduces the experimental uncertainty. The range of detectable sample thermal resistances spans from approximately 10(3) to 10(9) K/W. The probe can also be adapted for measurements of the electrical conductance and Seebeck coefficient of the same sample. The probe was used to study a multiwalled carbon nanotube with liquid Ga contacts. The measured thermal resistance of 3.3x10(7) K/W had a noise level of approximately +/- 3% and was repeatable to within +/- 10% upon breaking and re-making the contact. (C) 2007 American Institute of Physics. C1 Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA. MIT, Dept Mech Engn, Cambridge, MA 02139 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. MIT, Dept Phys, Cambridge, MA 02139 USA. MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. RP Dames, C (reprint author), Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA. RI Huang, Jianyu/C-5183-2008; Chen, Shuo/H-2491-2011; Ren, Zhifeng/B-4275-2014; Chen, Gang/J-1325-2014 OI Chen, Shuo/0000-0002-7145-1269; Chen, Gang/0000-0002-3968-8530 NR 31 TC 33 Z9 33 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2007 VL 78 IS 10 AR 104903 DI 10.1063/1.2785848 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 226LE UT WOS:000250589800051 PM 17979450 ER PT J AU Kim, JS Zhao, L Cluggish, BP Pardo, R AF Kim, Jin-Soo Zhao, L. Cluggish, B. P. Pardo, Richard TI Ion beam capture and charge breeding in electron cyclotron resonance ion source plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TRANSPORT AB Beam capture of injected ions and charge breeding in electron cyclotron resonance (ECR) charge breeder ion source plasmas has been investigated utilizing an ECR plasma modeling code, the generalized ECR ion source model, and a Monte Carlo beam capture code. Beam capturing dynamics, charge breeding in the plasma, and the extracted charged ion states are described. Optimization of ion beam energy is performed for (1) high beam capture efficiency and (2) high charge state ion beam extractions. A sample case study for ANL-ECR has been performed. Ions entering ECR ion source plasma are slowed down mostly by the background ions. Assuming Maxwellian plasma ions, maximum beam energy loss occurs when the beam velocity is around the background thermal velocity in magnitude. It is also found that beam capture location affects charge state distribution. For instance, with a majority of beam ions captured near the middle of the device higher currents for higher charge states are obtained. The beam ions captured near the entry have a higher probability of backstreaming after they are captured. For this reason, the optimum beam energy of the injected Ar+ beam ions for charge breeding is generally higher than the optimum input beam energy for maximum beam energy loss. (C) 2007 American Institute of Physics. C1 Far Tech Inc, San Diego, CA 92121 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, JS (reprint author), Far Tech Inc, San Diego, CA 92121 USA. EM kim@far-tech.com OI Pardo, Richard/0000-0002-8264-9430 NR 17 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2007 VL 78 IS 10 AR 103503 DI 10.1063/1.2785844 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 226LE UT WOS:000250589800016 PM 17979415 ER PT J AU Smoot, GF AF Smoot, George F. TI Nobel Lecture: Cosmic microwave background radiation anisotropies: Their discovery and utilization SO REVIEWS OF MODERN PHYSICS LA English DT Review ID BLACK-BODY RADIATION; LARGE-SCALE ANISOTROPY; 2.7 K RADIATION; TEMPERATURE-MEASUREMENTS; ABSOLUTE TEMPERATURE; PRECISE MEASUREMENT; PECULIAR VELOCITY; RELIC RADIATION; LAMBDA=3.3 MM; SKY MAPS C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Space Sci Lab, Dept Phys, Berkeley, CA 94720 USA. RP Smoot, GF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Space Sci Lab, Dept Phys, Berkeley, CA 94720 USA. NR 136 TC 16 Z9 16 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD OCT-DEC PY 2007 VL 79 IS 4 BP 1349 EP 1379 DI 10.1103/RevModPhys.79.1349 PG 31 WC Physics, Multidisciplinary SC Physics GA 233RK UT WOS:000251107800007 ER PT J AU Sorek, R AF Sorek, Rotem TI The birth of new exons: Mechanisms and evolutionary consequences SO RNA-A PUBLICATION OF THE RNA SOCIETY LA English DT Review DE alternative splicing; exonization ID SPLICE-MEDIATED INSERTION; VERTEBRATE GENOMES; MESSENGER-RNA; ALU SEQUENCE; PROTEIN; GENE; EXONIZATION; ELEMENTS; JUNK; SELECTION AB A significant amount of literature was dedicated to hypotheses concerning the origin of ancient introns and exons, but accumulating evidence indicates that new exons are also constantly being added to evolving genomes. Several mechanisms contribute to the creation of novel exons in metazoan genomes, including whole gene and single exon duplications, but perhaps the most intriguing are events of exonization, where intronic sequences become exons de novo. Exonizations of intronic sequences, particularly those originating from repetitive elements, are now widely documented in many genomes including human, mouse, dog, and fish. Such de novo appearance of exons is very frequently associated with alternative splicing, with the new exon-containing variant typically being the rare one. This allows the new variant to be evolutionarily tested without compromising the original one, and provides an evolutionary strategy for generation of novel functions with minimum damage to the existing functional repertoire. This review discusses the molecular mechanisms leading to exonization, its extent in vertebrate genomes, and its evolutionary implications. C1 Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Sorek, R (reprint author), Lawrence Berkeley Lab, Genom Div, 1 Cyclotron Rd, Berkeley, CA 94703 USA. EM rsorek@lbl.gov NR 37 TC 92 Z9 95 U1 1 U2 9 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 1355-8382 J9 RNA JI RNA-Publ. RNA Soc. PD OCT PY 2007 VL 13 IS 10 BP 1603 EP 1608 DI 10.1261/rna.682507 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 217AL UT WOS:000249920600001 PM 17709368 ER PT J AU Li, SX Yin, TM AF Li, ShuXian Yin, TongMing TI Map and analysis of microsatellites in the genome of Populus: The first sequenced perennial plant SO SCIENCE IN CHINA SERIES C-LIFE SCIENCES LA English DT Article DE poplar genome; microsatellite; length diversification; GC-content; genic and nongenic regions ID GENETIC-VARIATION; MUTATION; REPEATS; TREE; TRICHOCARPA; BIOLOGY; DNA AB We mapped and analyzed the microsatellites throughout 284295605 base pairs of the unambiguously assembled sequence scaffolds along 19 chromosomes of the haploid poplar genome. Totally, we found 150985 SSRs with repeat unit lengths between 2 and 5 bp. The established microsatellite physical map demonstrated tl at SSRs were distributed relatively evenly across the genome of Populus. On average, These SSRs occurred every 1883 bp within the poplar genome and the SSR densities in intergenic regions, introns, exons and UTRs were 85.4%,10.7%, 2.7% and 1.2%, respectively. We took di-, tri-, tetraand pentamers as the four classes of repeat units and found that the density of each class of SSRs decreased with the repeat unit lengths except for the tetranucleotide repeats. It was noteworthy that the length diversification of microsatellite sequences was negatively correlated with their repeat unit length and the SSRs with shorter repeat units gained repeats faster than the SSRs with longer repeat units. We also found that the GC content of poplar sequence significantly correlated with densities of SSRs with uneven repeat unit lengths (tri- and penta-), but had no significant correlation with densities of SSRs with even repeat unit lengths (di- and tetra-). In poplar genome, there were evidences that the occurrence of different microsatellites was under selection and the GC content in SSR sequences was found to significantly relate to the functional importance of microsatellites. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Nanjing Forestry Univ, Coll Environm Forest Resources, Nanjing 210037, Peoples R China. RP Yin, TM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM tmyin@njfu.com.cn NR 28 TC 3 Z9 15 U1 0 U2 6 PU SCIENCE CHINA PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1006-9305 J9 SCI CHINA SER C JI Sci. China Ser. C-Life Sci. PD OCT PY 2007 VL 50 IS 5 BP 690 EP 699 DI 10.1007/s11427-007-0073-6 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 226IS UT WOS:000250583300017 PM 17879069 ER PT J AU Plesiewicz, J Suski, T Dmowski, L Walukiewicz, W Yu, KM Korman, A Ratajczak, R Stonert, A Lu, H Schaff, W AF Plesiewicz, J. Suski, T. Dmowski, L. Walukiewicz, W. Yu, K. M. Korman, A. Ratajczak, R. Stonert, A. Lu, Hai Schaff, W. TI Towards identification of localized donor states in InN SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID III-NITRIDE ALLOYS; DEPENDENCE AB Transport studies of as-grown and proton-irradiated n-InN have been performed aiming at verification of the nature of localized donor states resonant with the InN conduction band. These resonant donor states (RDS) show a clear contribution to the electrical conduction in low electron concentration InN epitaxial layers. We used proton irradiation to increase the number of incorporated native point defects of donor character in InN layers. Then, the performed studies of pressure dependence of the Hall electron concentration clearly show no increase in the number of RDS in samples exposed to irradiation in spite of the increase in the conducting electron concentration. C1 PAS, Inst High Pressure Phys, PL-01142 Warsaw, Poland. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Andrzej Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. Cornell Univ, Ithaca, NY 14853 USA. RP Plesiewicz, J (reprint author), PAS, Inst High Pressure Phys, Sokolowska 29-37, PL-01142 Warsaw, Poland. EM jples@o2.pl RI Schaff, William/B-5839-2009; Yu, Kin Man/J-1399-2012; Stonert, Anna/D-2902-2013; Ratajczak, Renata/A-3103-2016 OI Yu, Kin Man/0000-0003-1350-9642; NR 12 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD OCT PY 2007 VL 22 IS 10 BP 1161 EP 1164 DI 10.1088/0268-1242/22/10/014 PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 214RO UT WOS:000249756000014 ER PT J AU Grobelny, E Bueno, D Troxel, I George, AD Vetter, JS AF Grobelny, Eric Bueno, David Troxel, Ian George, Alan D. Vetter, Jeffrey S. TI FASE: A framework for scalable performance prediction of HPC systems and applications SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE performance prediction; application characterization; high-performance computing; discrete-event simulation ID PARALLEL AB As systems of computers become more complex in terms of their architecture, interconnect and heterogeneity, the optimum configuration and utilization of these machines becomes a major challenge. To reduce the penalties caused by poorly configured systems, simulation is often used to predict the performance of key applications to be executed on the new systems. Simulation provides the capability to observe component and system characteristics (e.g. performance and power) in order to make vital design decisions. However, simulating high-fidelity models can be very time consuming and even prohibitive when evaluating large-scale systems. The Fast and Accurate Simulation Environment (FASE) framework seeks to support large-scale system simulation by using high-fidelity models to capture the behavior of only the performance-critical components while employing abstraction techniques to capture the effects of those components with little impact on the system. In order to achieve this balance of accuracy and simulation speed, FASE provides a methodology and associated toolset to evaluate numerous architectural options. This approach allows users to make system design decisions based on quantifiable demands of their key applications rather than using manual analysis which can be error prone and impractical for large systems. The framework accomplishes this evaluation through a novel approach of combining discrete-event simulation with an application characterization scheme in order to remove unnecessary details while focusing on components critical to the performance of the application. In this paper, we present the methodology and techniques behind FASE and include several case studies validating systems constructed using various applications and interconnects. C1 [Grobelny, Eric; Bueno, David; Troxel, Ian; George, Alan D.] Univ Florida, High Performance Comp & Simulat Res Lab, Gainesville, FL 32611 USA. [Vetter, Jeffrey S.] Oak Ridge Natl Lab, Future Technol Grp, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Grobelny, E (reprint author), Univ Florida, High Performance Comp & Simulat Res Lab, Gainesville, FL 32611 USA. EM grobelny@hcs.ufl.edu NR 22 TC 11 Z9 11 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD OCT PY 2007 VL 83 IS 10 BP 721 EP 745 DI 10.1177/0037549707084939 PG 25 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA 242NE UT WOS:000251731300004 ER PT J AU Maye, MM Nykypanchuk, D van der Lelie, D Gang, O AF Maye, Mathew M. Nykypanchuk, Dmytro van der Lelie, Daniel Gang, Oleg TI DNA-Regulated micro- and nanoparticle assembly SO SMALL LA English DT Article DE colloids; DNA; interparticle interactions; nanoparticles; self-assembly ID GOLD NANOPARTICLES; PROTEIN SOLUTIONS; LIGHT-SCATTERING; THERMODYNAMICS; COLLOIDS; INTERFACES; POLYMERS; SURFACE; ARRAYS; MODEL C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735, Upton, NY 11973 USA. EM ogang@bnt.gov NR 34 TC 61 Z9 61 U1 2 U2 27 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD OCT PY 2007 VL 3 IS 10 BP 1678 EP 1682 DI 10.1002/smll.200700357 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 218BX UT WOS:000249992100003 PM 17849379 ER PT J AU Huang, JY Ding, F Jiao, K Yakobson, BI AF Huang, Jian-Yu Ding, Feng Jiao, Kun Yakobson, Boris I. TI Self-templated growth of carbon-nanotube walls at high temperatures SO SMALL LA English DT Article DE carbon nanotubes; noncatatytic growth; conductivity; templates ID FORMATION MECHANISM; FIELD-EMISSION C1 Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. Rice Univ, Dept Mech Engn & Mat Sci, Dept Chem, Houston, TX 77251 USA. RP Huang, JY (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov RI Ding, Feng/D-5938-2011; Huang, Jianyu/C-5183-2008 OI Ding, Feng/0000-0001-9153-9279; NR 36 TC 11 Z9 11 U1 2 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD OCT PY 2007 VL 3 IS 10 BP 1735 EP 1739 DI 10.1002/smll.200700105 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 218BX UT WOS:000249992100014 PM 17763513 ER PT J AU Del Valle, SY Hyman, JM Hethcote, HW Eubank, SG AF Del Valle, S. Y. Hyman, J. M. Hethcote, H. W. Eubank, S. G. TI Mixing patterns between age groups in social networks SO SOCIAL NETWORKS LA English DT Article DE infectious diseases; mathematical models; network epidemiology; contact patterns; EpiSimS; WAIFW matrix ID SEXUALLY-TRANSMITTED-DISEASES; INFECTIOUS-DISEASES; CONTACT PATTERNS; HETEROGENEOUS POPULATIONS; TRANSMISSION MODELS; SPREAD; HIV; SMALLPOX; DYNAMICS; PREVALENCE AB We present a method for estimating transmission matrices that describe the mixing and the probability of infection between age groups. Transmission matrices can be used to estimate age-dependent forces of infection in age-structured, compartmental models for the study of infectious diseases. We analyze the social network generated by the synthetic population of Portland and extract mixing patterns. Our results show that the mixing within the population consists of two groups, children and adults. Children interact most frequently with other children close to their own age, while adults interact with a wider range of age groups and the durations of typical adult contacts are shorter than typical contacts between children. Furthermore, the transmission matrix shows that children are more likely to acquire infection than adults. (C) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Iowa, Dept Appl Math & Computat Sci, Iowa City, IA 52242 USA. RP Del Valle, SY (reprint author), Los Alamos Natl Lab, D-3,Syst Engn & Integrat MS B262, Los Alamos, NM 87545 USA. EM sdelvall@lanl.gov RI Eubank, Stephen/D-7497-2011 OI Eubank, Stephen/0000-0002-7177-309X NR 49 TC 49 Z9 49 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-8733 J9 SOC NETWORKS JI Soc. Networks PD OCT PY 2007 VL 29 IS 4 BP 539 EP 554 DI 10.1016/j.socnet.2007.04.005 PG 16 WC Anthropology; Sociology SC Anthropology; Sociology GA 231QT UT WOS:000250964800005 ER PT J AU Garten, CT Kang, S Brice, DJ Schadt, CW Zhou, J AF Garten, Charles T., Jr. Kang, Sanghoon Brice, Deanne J. Schadt, Christopher W. Zhou, Jizhong TI Variability in soil properties at different spatial scales (1 m-1 km) in a deciduous forest ecosystem SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE spatial analysis; soil C; soil N; soil C-to-N ratio; particulate organic matter; mineral-associated organic matter ID TEMPORAL VARIABILITY; PATTERNS; NITROGEN AB The purpose of this research was to test the hypothesis that variability in I I soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the I I soil properties measured over a 0.5-kM2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50, 250, and 500 in distances from a center point along transects in a north, south, cast, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P <= 0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral -associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the I I variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH4-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n <= 25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be indicative of variation at larger scales. (c) 2007 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6038, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov RI Schadt, Christopher/B-7143-2008; Brice, Deanne/B-9048-2012; OI Schadt, Christopher/0000-0001-8759-2448; Kang, Sanghoon/0000-0002-3504-7955 NR 19 TC 42 Z9 44 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD OCT PY 2007 VL 39 IS 10 BP 2621 EP 2627 DI 10.1016/j.soilbio.2007.04.033 PG 7 WC Soil Science SC Agriculture GA 201HQ UT WOS:000248822500020 ER PT J AU Stoupin, S Chattopadhyay, S Bolin, T Segre, CU AF Stoupin, S. Chattopadhyay, S. Bolin, T. Segre, C. U. TI High concentration manganese doping of ferroelectric PbTiO3 SO SOLID STATE COMMUNICATIONS LA English DT Article DE ferroelectrics; X-ray diffraction; XANES; phase transitions ID ELECTRON-SPIN-RESONANCE; CRYSTALS; SYSTEM; LEAD; MN; FE AB It is well-known that certain solid solutions of 3d transition elements in ferroelectric materials with perovskite structure reveal interesting magnetoelectric effects. First used in the 1950s, this approach remains valid in the search for new multiferroic materials suitable for device applications. In this work, a solid solution of Mn replacing Ti in PbTiO3 has been prepared using metalorganic precursors. The solubility limit has been found to be 20 mol% and the material remains tetragonally distorted. The ferroelectric transition temperature decreases with Mn concentration and the transition becomes more diffuse, consistent with the behavior of solid solutions. X-ray Absorption Spectroscopy confirms the presence of Mn3+ and Mn4+ oxidation states. The material at the solubility limit was found to be ferromagnetic, below 50 K. (C) 2007 Elsevier Ltd. All rights reserved. C1 IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stoupin, S (reprint author), IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. EM stousta@iit.edu RI Segre, Carlo/B-1548-2009; ID, MRCAT/G-7586-2011 OI Segre, Carlo/0000-0001-7664-1574; NR 16 TC 10 Z9 11 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD OCT PY 2007 VL 144 IS 1-2 BP 46 EP 49 DI 10.1016/j.ssc.2007.07.023 PG 4 WC Physics, Condensed Matter SC Physics GA 217FQ UT WOS:000249934200011 ER PT J AU Zhang, XG Wang, Y Han, XF AF Zhang, X. -G. Wang, Yan Han, X. F. TI Simple models for electron and spin transport in barrier-conductor-barrier devices SO SOLID-STATE ELECTRONICS LA English DT Article; Proceedings Paper CT 3rd Nano and Giga Forum CY 2007 CL Arizona State Univ, Tempe, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publ, City Tempe, STMicroelect, Quarles & Brady LLP, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ DE spin-dependent tunneling; nanodots; conductivity mismatch; organic light emitting diodes ID MAGNETIC TUNNEL-JUNCTIONS; MAGNETORESISTANCE; STATES AB We use two simple models, a phase accumulation model for quantum well (QW) resonances and a two-current circuit model, to study electron and spin transport in nanoscale systems consisting of barrier-conductor-barrier structures. Such structures include double barrier tunnel junctions, and long chain molecules with weak contacts to two electrodes. The phase accumulation model is applied to QW states in ultrathin films and nanodots sandwiched between two barriers. This model is used to illustrate the difference in the QW confinement effect between thin films and nanodots, and justifies circuit model which describes sequential tunneling. The circuit model for spin transport leads to a generalization of the well-known Julliere's formula and accounts for the conductivity mismatch. The circuit model is also applied to organic light-emitting diodes and yields a simple formula for the quantum efficiency. The results yield excellent agreement with experiment. (C) 2007 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Comp Sci Math Div, Oak Ridge, TN 37831 USA. Chinese Acad Sci, Inst Phys, State Key Lab Magnet, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. RP Zhang, XG (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Comp Sci Math Div, Oak Ridge, TN 37831 USA. EM xgz@ornl.gov RI Wang, Yan/G-8061-2011 OI Wang, Yan/0000-0002-8648-2172 NR 19 TC 1 Z9 1 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1101 EI 1879-2405 J9 SOLID STATE ELECTRON JI Solid-State Electron. PD OCT PY 2007 VL 51 IS 10 BP 1344 EP 1350 DI 10.1016/j.sse.2007.08.006 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied; Physics, Condensed Matter SC Engineering; Physics GA 231QS UT WOS:000250964700011 ER PT J AU Yoo, S Potscavage, WJ Domercq, B Han, SH Li, TD Jones, SC Szoszkiewicz, R Levi, D Riedo, E Marder, SR Kippelen, B AF Yoo, Seunghyup Potscavage, William J., Jr. Domercq, Benoit Han, Sung-Ho Li, Tai-De Jones, Simon C. Szoszkiewicz, Robert Levi, Dean Riedo, Elisa Marder, Seth R. Kippelen, Bernard TI Analysis of improved photovoltaic properties of pentacene/C-60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing SO SOLID-STATE ELECTRONICS LA English DT Article; Proceedings Paper CT 3rd Nano and Giga Forum CY 2007 CL Arizona State Univ, Tempe, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publ, City Tempe, STMicroelect, Quarles & Brady LLP, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ DE organic solar cells; pentacene; fullerene; exciton; spectral modeling; annealing ID THIN-FILM TRANSISTORS; HETEROJUNCTIONS; EFFICIENCY; DEVICES; PERFORMANCE; MORPHOLOGY AB We report on the photovoltaic properties of organic solar cells based on pentacene and C-60 thin films with a focus on their spectral responses and the effect of thermal annealing. Spectra of external quantum efficiency (EQE) are measured and analyzed with a one-dimensional exciton diffusion model dependent upon the complex optical functions of pentacene films, which are measured by spectroscopic ellipsometry. An improvement in EQE is observed when the thickness of the bathocuproine (BCP) layer is decreased from 12 nm to 6 nm. Detailed analysis of the EQE spectra indicates that large exciton diffusion lengths in the pentacene films are responsible for the overall high EQE values near wavelengths of 668 nm. Analysis also shows that improvement in the EQE of devices with the thinner BCP layer can be attributed to a net gain in optical field distribution and improvernent in carrier collection efficiency. An improvement in open-circuit voltage (V-OC) is also achieved through a thermal annealing process, leading to a net increase in power conversion efficiency. Integration of the EQE spectrum with an AM 1.5 G spectrum yields a predicted power conversion efficiency of 1.8 +/- 0.2%. The increase in V-OC is attributed to a significant reduction in the diode reverse saturation current upon annealing. (C) 2007 Elsevier Ltd. All rights reserved. C1 Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea. Sch Elect & Comp Engn, Georgia Inst Technol, Atlanta, GA USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. RP Kippelen, B (reprint author), Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea. EM kippelen@ece.gatech.edu RI Han, Sung-Ho/B-7678-2008; Yoo, Seunghyup/C-1656-2011; Li, Tai-De/F-8222-2012; Domercq, Benoit/B-7403-2008; Kippelen, Bernard/I-4058-2013; Szoszkiewicz, Robert/I-3910-2013 OI Kippelen, Bernard/0000-0002-8417-7051; Szoszkiewicz, Robert/0000-0002-2770-8848 NR 30 TC 89 Z9 89 U1 2 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1101 J9 SOLID STATE ELECTRON JI Solid-State Electron. PD OCT PY 2007 VL 51 IS 10 BP 1367 EP 1375 DI 10.1016/j.sse.2007.07.038 PG 9 WC Engineering, Electrical & Electronic; Physics, Applied; Physics, Condensed Matter SC Engineering; Physics GA 231QS UT WOS:000250964700014 ER PT J AU Moridis, GJ Kowalsky, MB Pruess, K AF Moridis, George J. Kowalsky, Michael B. Pruess, Karsten CA Lawrence Berkeley Nat Lab TI Depressurization-induced gas production from class 1 hydrate deposits SO SPE RESERVOIR EVALUATION & ENGINEERING LA English DT Article ID MACKENZIE DELTA; MALLIK SITE; FROST HEAVE; MODEL; DECOMPOSITION; PERMEABILITY; BEHAVIOR; CANADA AB Class 1 hydrate deposits are characterized by a hydrate-bearing layer underlain by a two-phase zone involving mobile gas. Two kinds of deposits are investigated. The first involves water and hydrate in the hydrate zone (Class I W), while the second involves gas and hydrate (Class 1G). We introduce new models to describe the effect of the presence of hydrates on the wettability properties of porous media. We determine that large volumes of gas can be readily produced at high rates for long times from Class 1 gashydrate accumulations by means of depressurization-induced dissociation using conventional technology. Dissociation in Class 1W deposits proceeds in distinct stages, while it is continuous in Class 1G deposits. To avoid blockage caused by hydrate formation in the vicinity of the well, wellbore heating is a necessity in production from Class I hydrates. Class 1W hydrates are shown to contribute up to 65% of the production rate and up to 45% of the cumulative volume of produced gas; the corresponding numbers for Class I G hydrates are 75% and 54%. Production from both Class 1W and Class 1G deposits leads to the emergence of a second dissociation front (in addition to the original ascending hydrate interface) that forms at the top of the hydrate interval and advances downward. In both kinds of deposits, capillary pressure effects lead to hydrate lensing (i.e., the emergence of distinct banded structures of alternating high/low hydrate saturation, which form channels and shells and have a significant effect on production). C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Hydrogeol, Berkeley, CA 94720 USA. RP Moridis, GJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Hydrogeol, Berkeley, CA 94720 USA. EM K_Pruess@lbl.gov NR 30 TC 67 Z9 71 U1 2 U2 32 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1094-6470 J9 SPE RESERV EVAL ENG JI SPE Reserv. Eval. Eng. PD OCT PY 2007 VL 10 IS 5 BP 458 EP 481 PG 24 WC Energy & Fuels; Engineering, Petroleum; Geosciences, Multidisciplinary SC Energy & Fuels; Engineering; Geology GA 226EB UT WOS:000250569200003 ER PT J AU Pradeep, L Kurinov, I Ealick, SE Scheraga, HA AF Pradeep, Lovy Kurinov, Igor Ealick, Steven E. Scheraga, Harold A. TI Implementation of a k/k(0) method to identify long-range structure in transition states during conformational folding/unfolding of proteins SO STRUCTURE LA English DT Article ID PANCREATIC RIBONUCLEASE-A; EXTRINSIC CROSS-LINK; DENATURED STATES; FOLDING PATHWAY; UNFOLDED STATE; KINETICS; BONDS; UREA; ISOMERIZATION; INTERMEDIATE AB A previously introduced kinetic-rate constant (k/k(0)) method, where k and k(0) are the folding (unfolding) rate constants in the mutant and the wild-type forms, respectively, of a protein, has been applied to obtain qualitative information about structure in the transition state ensemble (TSE) of bovine pancreatic ribonuclease A (RNase A), which contains four native disulfide bonds. The method compares the folding (unfolding) kinetics of RNase A, with and without a covalent crosslink and tests whether the crosslinked residues are associated in the folding (unfolding) transition state (TS) of the non-crosslinked version. To confirm that the fifth disulfide bond has not introduced a significant structural perturbation, we solved the crystal structure of the V43C-R85C mutant to 1.6 A resolution. Our findings suggest that residues Va143 and Arg85 are not associated, and that residues Ala4 and Val118 may form nonnative contacts, in the folding (unfolding) TSE of RNase A. C1 Cornell Univ, Baker Lab Chem & Chem Biol, Ithaca, NY 14853 USA. Argonne Natl Lab, NE CAT, Adv Photon Source, Argonne, IL 60439 USA. RP Scheraga, HA (reprint author), Cornell Univ, Baker Lab Chem & Chem Biol, Ithaca, NY 14853 USA. EM has5@cornell.edu FU NCRR NIH HHS [P41 RR015301, RR-15301]; NIGMS NIH HHS [R01 GM024893, R01 GM024893-36, GM-24893] NR 54 TC 3 Z9 3 U1 0 U2 0 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD OCT PY 2007 VL 15 IS 10 BP 1178 EP 1189 DI 10.1016/j.str.2007.08.003 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 221NZ UT WOS:000250235900006 PM 17937908 ER PT J AU Goodman, DW Peden, CHF Chen, MS AF Goodman, D. W. Peden, C. H. F. Chen, M. S. TI CO oxidation on ruthenium: The nature of the active catalytic surface SO SURFACE SCIENCE LA English DT Article DE CO oxidation; ruthenium; ruthenium oxide; ru(0001); RuO2(110) ID RICH RU(0001) SURFACES; CARBON-MONOXIDE; STEADY-STATE; RUO2(110) SURFACE; PRESSURE GAP; ATOMIC-SCALE; KINETICS; DEACTIVATION; PLATINUM; METALS C1 Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Goodman, DW (reprint author), Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842 USA. EM goodman@mail.chem.tamu.edu RI Chen, Mingshu/G-4590-2010; OI Peden, Charles/0000-0001-6754-9928 NR 29 TC 60 Z9 60 U1 3 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT 1 PY 2007 VL 601 IS 19 BP L124 EP L126 DI 10.1016/j.susc.2007.08.003 PG 3 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 225FA UT WOS:000250501300003 ER PT J AU Stumpf, R AF Stumpf, Roland TI Nano-faceting of fcc(110) surfaces controlled by adsorbates and atom deposition or removal SO SURFACE SCIENCE LA English DT Article DE epitaxy; a1; facet; surfactant; fcc(110); adsorbate; surface energy ID ENERGY; SIZE; HYDROGEN; METALS; GROWTH; FILMS; AL; RECONSTRUCTIONS; CRYSTALLINE; ADSORPTION AB (110) surfaces of most fec metals are only marginally stable against faceting into (111) orientations. Trace concentrations of adsorbates (surfactants) that prefer (111) over (110) facets can tip the balance and favor faceting of all or part of the (110) surface. The growth of such facets is impeded by island and vacancy-island nucleation barriers. However, during atom deposition or etching these barriers are reduced. Growth or removal conditions and facet stabilizing surfactant concentrations control the evolving faceted nanopatterns. Recent observations of hut-shaped nanocrystals formation on Al(110) are consistent with this model. (c) 2007 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Stumpf, R (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM rrstump@sandia.gov NR 41 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT 1 PY 2007 VL 601 IS 19 BP L115 EP L119 DI 10.1016/j.susc.2007.07.017 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 225FA UT WOS:000250501300001 ER PT J AU Roeske, JC Nunez, L Hoggarth, M Labay, E Weichselbaum, RR AF Roeske, John C. Nunez, Luis Hoggarth, Mark Labay, Edwardine Weichselbaum, Ralph R. TI Characterization of the theorectical radiation dose enhancement from nanoparticles SO TECHNOLOGY IN CANCER RESEARCH & TREATMENT LA English DT Article DE nanoparticles; dose enhancement; dosimetry; modeling ID X-RAY; MONTE-CARLO; GOLD NANOPARTICLES; PHOTON-ACTIVATION; FLATTENING FILTER; THERAPY; CANCER; AGENTS; DRUG; RADIOTHERAPY AB Recently, nanoparticles have been considered as a method of providing radiation dose enhancement in tumors. In order to quantify this affect, a dose enhancement factor (DEF) is defined that represents the ratio of the dose deposited in tumor with nanoparticles, divided by the dose deposited in the tumor without nanoparticles. Materials with atomic numbers (Z) ranging from 25 to 90 are considered in this analysis. In addition, the energy spectrum for a number of external beam x-ray sources and common radionuclides are evaluated. For a nanoparticle concentration of 5 mg/ml, the DEF is < 1.05 for Co-60, Ir-192, Au-198, Cs-137, 6, 18, and 25 MV x-rays for all materials considered. However, relatively large increases in the DEF are observed for 50, 80, 100, and 140 KVp x-rays as well as Pd-103 and 1-125. The DEF increases for all sources as Z varies from 25-35. From Z = 40-60, the DEF plateaus or slightly decreases. For higher Z materials (Z > 70), the DEF increases and is a maximum for the highest Z materials. High atomic number nanoparticles coupled with low energy external beam x-rays or brachytherapy sources offer the potential of significantly enhancing the delivered dose. C1 Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. De Paul Univ, Dept Phys, Chicago, IL 60614 USA. RP Roeske, JC (reprint author), Univ Chicago, Dept Radiat & Cellular Oncol, 5758 S Maryland Ave,MC 9006, Chicago, IL 60637 USA. EM jroeske@radonc.uchicago.edu NR 44 TC 45 Z9 51 U1 0 U2 15 PU ADENINE PRESS PI SCHENECTADY PA 2066 CENTRAL AVE, SCHENECTADY, NY 12304 USA SN 1533-0346 J9 TECHNOL CANCER RES T JI Technol. Cancer Res. Treat. PD OCT PY 2007 VL 6 IS 5 BP 395 EP 401 PG 7 WC Oncology SC Oncology GA 221FA UT WOS:000250211600004 PM 17877427 ER PT J AU Coblentz, DD Libarkin, JC Chasec, CG Sussman, AJ AF Coblentz, David D. Libarkin, J. C. Chasec, C. G. Sussman, A. J. TI Paleolithospheric structure revealed by continental geoid anomalies SO TECTONOPHYSICS LA English DT Article DE Colorado plateau; geoid; lithospheric deformation; uplift mechanisms ID WESTERN UNITED-STATES; SPHERICAL HARMONIC REPRESENTATION; GRAVITATIONAL POTENTIAL-ENERGY; COLORADO PLATEAU; CRUSTAL STRUCTURE; LITHOSPHERIC STRUCTURE; SEISMIC-REFRACTION; MANTLE STRUCTURE; BASIN; UPLIFT AB Lithospheric geoid anomalies record changes in elevation and potential energy experienced by continental lithosphere. Estimates of local isostatic equilibration and potential energy, in tandem with lithosphere-related geoid anomalies, can be used to estimate paleolithospheric thickness, providing a clearer understanding of how and why continental topography is developed. We employ several simplifying assumptions about the crustal and mantle lithosphere density and structure (and readily acknowledge that our results are therefore first-order approximations) to predict the pre-orogenic structure of the lithosphere. At the outset we emphasize that while this approach does not provide an exhaustive evaluation of the deformation mechanism, it does serve to quantify the relative role played by the variations in the crustal and upper mantle components of the lithosphere. In this way we are able to use independent measurement of lithospheric geoid anomalies, current (post-orogenic) elevation and lithospheric structure, and palcoelevation information to estimate topographic development and structural support over time. Application of this technique to the southwestern United States indicates that the uplift of the Colorado Plateau is the result of processes in both the crust and mantle lithosphere and that the lithosphere of the pre-orogenic Southern Basin and Range was thinned relative to the Northern Basin and Range and Colorado Plateau. Although we use the southwestern U.S. as an example, this method can help constrain uplift mechanisms for any region for which the structure and geoid anomaly of the modem lithosphere is well understood. (C) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. RP Coblentz, DD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM coblentz@lanl.gov RI Libarkin, Julie/H-2316-2011 NR 61 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 EI 1879-3266 J9 TECTONOPHYSICS JI Tectonophysics PD OCT 1 PY 2007 VL 443 IS 1-2 BP 106 EP 120 DI 10.1016/j.tecto.2007.06.003 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 223QT UT WOS:000250388100007 ER PT J AU Tokmakov, IV Wagner, AF Minkoff, M Thompson, DL AF Tokmakov, Igor V. Wagner, Albert F. Minkoff, Michael Thompson, Donald L. TI Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article DE interpolating moving least squares; potential energy surface; polynomial fitting ID NO DERIVATIVES; SCATTERED DATA; DENSITY; APPROXIMATION; CONVERGENCE; SYSTEM; DYNAMICS; EXCHANGE; FORMULA; POINTS AB We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%. C1 Univ Missouri, Dept Chem, Columbia, MO 65211 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Thompson, DL (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM thompsondon@missouri.edu NR 45 TC 7 Z9 7 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD OCT PY 2007 VL 118 IS 4 BP 755 EP 767 DI 10.1007/s00214-007-0358-7 PG 13 WC Chemistry, Physical SC Chemistry GA 220ET UT WOS:000250140400002 ER PT J AU Evans, RD Nixon, HP Darragh, CV Howe, JY Coffey, DW AF Evans, R. D. Nixon, H. P. Darragh, C. V. Howe, J. Y. Coffey, D. W. TI Effects of extreme pressure additive chemistry on rolling element bearing surface durability SO TRIBOLOGY INTERNATIONAL LA English DT Article; Proceedings Paper CT 33rd Leeds-Lyon Symposium on Tribology CY SEP 12-15, 2006 CL Trinity & All Saints Coll, Leeds, ENGLAND HO Trinity & All Saints Coll DE rolling element bearings; extreme pressure additives; transmission electron microscopy (TEM) ID TRANSMISSION ELECTRON-MICROSCOPY; MINERAL-OIL LUBRICANT; BOUNDARY LUBRICATION; PHOSPHORUS-COMPOUNDS; SULFUR; STEEL AB Lubricant additives have been known to affect rolling element bearing surface durability for many years. Tapered roller bearings were used in fatigue testing of lubricants formulated with gear oil type additive systems. These systems have sulfur- and phosphorus-containing compounds used for gear protection as well as bearing lubrication. Several variations of a commercially available base additive formulation were tested having modified sulfur components. The variations represent a range of "active" extreme pressure (EP) chemistries. The bearing fatigue test results were compared with respect to EP formulation and test conditions. Inner ring near-surface material in selected test bearings was evaluated on two scales: the micrometer scale using optical metallography and the nanometer scale using transmission electron microscopy (TEM). Focused-ion beam (FIB) techniques were used for TEM specimen preparation. Imaging and chemical analysis of the bearing samples revealed near-surface material and tribofilm characteristics. These results are discussed with respect to the relative fatigue lives. (c) 2007 Elsevier Ltd. All rights reserved. C1 Timken Co, Canton, OH 44706 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Evans, RD (reprint author), Timken Co, Canton, OH 44706 USA. EM ryan.evans@timken.corn RI Howe, Jane/G-2890-2011; OI Evans, Ryan/0000-0003-4549-8247 NR 12 TC 12 Z9 14 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD OCT-DEC PY 2007 VL 40 IS 10-12 BP 1649 EP 1654 DI 10.1016/j.triboint.2007.01.012 PG 6 WC Engineering, Mechanical SC Engineering GA 216KY UT WOS:000249878100028 ER PT J AU Sullivan, CJ Venkataraman, S Retterer, ST Allison, DP Doktycz, MJ AF Sullivan, C. J. Venkataraman, S. Retterer, S. T. Allison, D. P. Doktycz, M. J. TI Comparison of the indentation and elasticity of E-coli and its spheroplasts by AFM SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 8th International Conference on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 03-06, 2006 CL Montpellier, FRANCE DE atomic force microscopy; bacteria; E. coli; spheroplast; elasticity ID ATOMIC-FORCE MICROSCOPY; CYTOPLASMIC MEMBRANE; BACTERIAL ADHESION; ENDOTHELIAL-CELLS; MICROBIAL-CELLS; SURFACE; INDUCTION; MYCOBACTERIA; CALIBRATION; PENICILLIN AB Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given the similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study. (c) 2007 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. Agilent Technol, Tempe, AZ 85282 USA. RP Doktycz, MJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM doktyczmj@ornl.gov RI Retterer, Scott/A-5256-2011; Doktycz, Mitchel/A-7499-2011 OI Retterer, Scott/0000-0001-8534-1979; Doktycz, Mitchel/0000-0003-4856-8343 NR 50 TC 27 Z9 28 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2007 VL 107 IS 10-11 BP 934 EP 942 DI 10.1016/j.ultramic.2007.04.017 PG 9 WC Microscopy SC Microscopy GA 205VL UT WOS:000249142600011 PM 17574761 ER PT J AU Evans, PG Passian, A Ferrella, TL AF Evans, P. G. Passian, A. Ferrella, T. L. TI A spectroscopic investigation of the shape dependency of gold nanoparticles grown on roughened surfaces SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 8th International Conference on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 03-06, 2006 CL Montpellier, FRANCE DE shape dependency; surface roughness; nanoparticle growth; glancing angle deposition ID GLANCING-ANGLE DEPOSITION; THIN-FILMS; METAL-FILMS; PARTICLES; NANOSTRUCTURE; LITHOGRAPHY; FABRICATION; RESOLUTION; SPECTRA; GLASS AB We present an investigation of the optical excitation of surface plasmons on Au films deposited on roughened surfaces by using a glancing angle deposition technique. By adjusting the deposition parameters of calcium fluoride and An thin films, the spectral position of the surface plasmon resonances can be shifted through the green and into the near infrared region. In particular, we find that a rougher surface with obliquely deposited Au produces distinct spheroid-shaped nanoparticles (NPs). This results in stronger resonances with narrower linewidths, whereas smoother films result in broad red-shifted absorption. Imaging with an atomic force microscope and a scanning electron microscope provides information of NP geometry which are used as inputs for theoretical simulations of the observed spectra. The consequence of geometry distributions and inter-particle interactions are discussed. The ability to control the shape, therefore the optical response, of An NPs over an arbitrarily large active area is of paramount importance in nano-science, especially in biological sensing applications and surface enhanced Raman scattering. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Evans, PG (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM phil.evans@utk.edu FU NIAAA NIH HHS [N01AA23012] NR 33 TC 4 Z9 4 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2007 VL 107 IS 10-11 BP 1012 EP 1019 DI 10.1016/j.ultramic.2007.05.006 PG 8 WC Microscopy SC Microscopy GA 205VL UT WOS:000249142600024 PM 17590274 ER PT J AU Yi, D Passian, A Lereu, AL Thundat, T AF Yi, D. Passian, A. Lereu, A. L. Thundat, T. TI An experimental investigation of analog delay generation for dynamic control of microsensors and atomic force microscopy SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 8th International Conference on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 03-06, 2006 CL Montpellier, FRANCE DE atomic force microscopy; delayed oscillations; dynamic control; feedback ID MICROCANTILEVER SENSORS; KNUDSEN FORCES; AMPLIFICATION; MANIPULATION; CANTILEVERS; REGIME AB We present an implementation of pure-time-delay generation in analog signals located in the kilo-Hertz frequency band. The controlled constant delays that are produced engage in a feedback system to investigate the dynamic response of microcantilevers. Delayed systems offer a vast richness of eigenvalues resulting in the possibility of excitations at frequencies other than that of the fundamental mode. Different cantilever actuation and delay generation approaches are investigated and compared, and detailed experimental observation of the dynamic response of the system is presented. Based on our results, an acoustic excitation is devised that may be used as an efficient sensor. (c) 2007 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Passian, A (reprint author), Oak Ridge Natl Lab, Bldg 4500 S MS 6123,Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov RI Lereu, Aude/P-6414-2016 OI Lereu, Aude/0000-0001-7390-7832 NR 25 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2007 VL 107 IS 10-11 BP 1020 EP 1026 DI 10.1016/j.ultramic.2007.03.013 PG 7 WC Microscopy SC Microscopy GA 205VL UT WOS:000249142600025 PM 17576037 ER PT J AU Dareing, DW Yi, D Thundat, T AF Dareing, Don W. Yi, Dechang Thundat, Thomas TI Vibration response of microcantilevers bounded by a confined fluid SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 8th International Conference on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 03-06, 2006 CL Montpellier, FRANCE DE microcantilever vibration; viscosity; confined fluid ID ATOMIC-FORCE MICROSCOPY; CANTILEVERS; VISCOSITY AB Hydrodynamic predictions of fluid velocity and pressure distribution are made for fluid in a confined space bounded by a vibrating microcantilever and a fixed surface. The results are used to quantify damping factors and predict frequency response amplitudes of a microcantilever vibrating near a fixed surface. The theoretical predictions of vibration response compare favorably with experimental data. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dareing, DW (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM ddareing@utk.edu NR 15 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2007 VL 107 IS 10-11 BP 1105 EP 1110 DI 10.1016/j.ultramic.2007.02.048 PG 6 WC Microscopy SC Microscopy GA 205VL UT WOS:000249142600037 PM 17574760 ER PT J AU Carver, AM Hinton, TG Fjeld, RA Kaplan, DI AF Carver, Adina M. Hinton, Thomas G. Fjeld, Robert A. Kaplan, Daniel I. TI Reduced plant uptake of Cs-137 grown in illite-amended sediments SO WATER AIR AND SOIL POLLUTION LA English DT Article DE cesium; illite; clay; concentration ratio; bioavailability; soil remediation; mobility; sorption ID ROOT UPTAKE; RADIOCESIUM; FIXATION; SORPTION; SOIL; REMEDIATION; CESIUM-137; MINERALS; CLAY AB Sediments native to the US Department of Energy's Savannah River Site in Aiken, South Carolina are ineffective at binding Cs-137, allowing it to remain available for biological uptake. Unlike the native sediments, illite has inherent characteristics that increase its propensity to sorb Cs-137 in a nearly irreversible manner. The objectives of this study were to determine if the addition of illite to Cs-137-contaminated, native sediments would effectively reduce plant uptake of Cs-137, and to establish the illite concentration most effective in achieving that result. Two plant species, corn and soybean, were grown in native sediments amended with illite at concentrations ranging from 0 to 5%. The illite amendment effectively decreased plant uptake of Cs-137, as concentration ratios (CR; Cs-plant/Cs-soil) for both plants decreased with increasing illite concentration. The 5%-illite treatment induced corn CRs to decrease by 29% and soybean CRs to decrease by 42%. The greatest incremental benefit was observed with an illite amendment of approximately 0.5%. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. Clemson Univ, CH2M HILL, Virginia Beach, VA 23462 USA. Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Clemson Univ, Clemson, SC 29634 USA. RP Kaplan, DI (reprint author), Savannah River Natl Lab, Bldg 773 43A,Room 215, Aiken, SC 29808 USA. EM daniel.kaplan@srnl.doe.gov NR 30 TC 3 Z9 3 U1 1 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD OCT PY 2007 VL 185 IS 1-4 BP 255 EP 263 DI 10.1007/s11270-007-9447-4 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA 212ZN UT WOS:000249635700022 ER PT J AU Malene, SH Park, YD Olson, DL AF Malene, S. H. Park, Y. D. Olson, D. L. TI Response of exothermic additions to the flux cored arc welding electrode - Part 1 SO WELDING JOURNAL LA English DT Article ID PRODUCTIVITY AB Flux cored arc (FCA) welding electrodes were fabricated with mixtures of magnesium and hematite flux. The heat input of welds from these electrodes were calorimetrically evaluated at several melting rates and resulted in peaks in heat input values. Exothermic reaction additions to the flux of the FCA welding consumable electrode demonstrated significant increases in arc process efficiency. The maximum efficiency was shown to occur at approximately 30 wt-% magnesium addition. The FCA welding process has shown higher measured heat input than the shielded metal arc (SMA) welding process for all of the wt-% ranges studied (10-50% in steps of 10%). Exothermic additions to the flux in the FCA welding process corrected the problem of uncontrolled chemical reaction as experienced with similar additions to the electrode coating of the SMA welding process. An exothermic addition at 30 wt-% Mg plus hematite, which replaced the iron powder of a baseline flux formulation, reduced the electrical dependence of the welding process by 50%. Studies in Part I showed the promise of exothermic-assisted FCA welding consumables and identified the upper limit in the melting rate for effective use of this exothermic-FCA welding electrode as being near 200 in./min (85 mm/s) for the fixed set of weld schedule parameters used. Part 2, investigation of exothermically reacting stoichiometric mixtures of aluminum, magnesium, and a 50150 wt% aluminum/magnesium flux additions in the FCA welding process, will be described in the following paper. C1 Savannah River Natl Lab, Aiken, SC USA. Dong Eui Univ, Dept Adv Mat Engn, Pusan, South Korea. Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. RP Malene, SH (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 8 TC 1 Z9 1 U1 1 U2 2 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD OCT PY 2007 VL 86 IS 10 BP 293S EP 302S PG 10 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 217SS UT WOS:000249968200015 ER PT J AU Veiseh, M Veiseh, O Martin, MC Ertozzi, CB Zhang, MQ AF Veiseh, Mandana Veiseh, Omid Martin, Michael C. Ertozzi, Carolyn B. Zhang, Miqin TI Single-cell-based sensors and synchrotron FTIR spectroscopy: A hybrid system towards bacterial detection SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE biosensors; cell adhesion; FTIR; BioMEMS; cell-based sensors ID ADVANCED LIGHT-SOURCE; INFRARED MICROSPECTROSCOPY; PERITONEAL-MACROPHAGES; LIPOPOLYSACCHARIDE; RECEPTOR; PROTEIN; ACTIVATION; MECHANISMS; SILICON; STIMULATION AB Microarrays of single macrophagecell-based sensors were developed and demonstrated for potential real-time bacterium detection by synchrotron FTIR microscopy. The cells were patterned on gold electrodes of silicon oxide substrates by a surface engineering technique, in which the gold electrodes were immobilized with fibronectin to mediate cell adhesion and the silicon oxide background was passivated with polyethylene glycol (PEG) to resist protein adsorption and cell adhesion. Cell morphology and IR spectra of single, double, and triple cells on gold electrodes exposed to lipopolysaccharide (LPS) of different concentrations were compared to reveal the detection capability of this cell-based sensing platform. The single-cell-based system was found to generate the most significant and consistent IR spectrum shifts upon exposure to LPS, thus providing the highest detection sensitivity. Changes in cell morphology and IR shifts upon cell exposure to LPS were found to be dependent on the LPS concentration and exposure time, which established a method for the identification of LPS concentration and infected cell population. Possibility of using this single-cell system with conventional IR spectroscopy as well as its limitation was investigated by comparing IR spectra of single-cell arrays with gold electrode surface areas of 25, 100, and 400 mu m(2) using both synchrotron and conventional FTIR spectromicroscopes. This cell-based platform may potentially provide real-time, label-free, and rapid bacterial detection, and allow for high-throughput statistical analyses, and portability. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Zhang, MQ (reprint author), Univ Washington, Dept Mat Sci & Engn, 302L Roberts Hall, Seattle, WA 98195 USA. EM mzhang@u.washington.edu RI Veiseh, Omid/A-9972-2012; Zhang, Miqin/F-5537-2010 OI Zhang, Miqin/0000-0001-8974-1494 FU NIGMS NIH HHS [R01 GM075095-02, R01 GM075095] NR 35 TC 13 Z9 13 U1 1 U2 21 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD SEP 30 PY 2007 VL 23 IS 2 BP 253 EP 260 DI 10.1016/j.bios.2007.04.010 PG 8 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 220WL UT WOS:000250187900014 PM 17560777 ER PT J AU Gherardi, F Xu, TF Pruess, K AF Gherardi, Fabrizio Xu, Tianfu Pruess, Karsten TI Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir SO CHEMICAL GEOLOGY LA English DT Article DE CO2 geological storage; caprock sealing; reactive chemical transport modelling ID PARTIAL MOLAL PROPERTIES; CARBON-DIOXIDE; TRANSPORT-PROPERTIES; REACTIVE TRANSPORT; HIGH-PRESSURES; GEOLOGIC SEQUESTRATION; HYDROTHERMAL SYSTEMS; ROCK INTERACTIONS; AQUIFER DISPOSAL; GREENHOUSE GASES AB This paper presents numerical simulations of reactive transport which may be induced in the caprock of an on-shore depleted gas reservoir by the geological sequestration of carbon dioxide. The objective is to verify that CO2 geological disposal activities currently being planned for the study area are safe and do not induce any undesired environmental impact. In our model, fluid flow, mass transport and mineral alteration are induced in the caprock by penetration of high CO2 concentrations from the underlying reservoir, where it was assumed that large amounts Of CO2 have already been injected at depth. The main focus is on the potential effect of precipitation and dissolution processes on the sealing efficiency of caprock formations. Concerns that some leakage may occur in the investigated system arise because the seal is made up of potentially highly-reactive rocks, consisting of carbonate-rich shales (calcite+ dolomite averaging up to more than 30% of solid volume fraction). Batch simulations and multi-dimensional 1D and 2D modeling have been used to investigate multicomponent geochemical processes. Numerical simulations account for multiphase advection, aqueous diffusion, fracture-matrix interactions (advective and diffusive exchange of species between fractures and matrix rock), gas phase participation in multiphase fluid flow and geochemical reactions, and kinetics of fluid-rock interactions. The sensitivity Of CO2 concentrations to geochemical processes and parameters is investigated by conceptualizing different mass transport mechanisms (i.e. diffusion and mixed advection +diffusion). The most relevant mineralogical transformations occurring in the caprock are described, and the feedback of these geochemical processes on physical properties such as porosity is examined to evaluate how the sealing capacity of the caprock could evolve in time. The simulations demonstrate that the occurrence of some gas leakage from the reservoir may have a strong influence on the geochemical evolution of the caprock. In fact, when a free CO2-dominated phase migrates into the caprock through pre-existing fractures, or through zones with high initial porosity acting as preferential flow paths for reservoir fluids, low pH values are predicted, accompanied by significant calcite dissolution and porosity enhancement. in contrast, when fluid-rock interactions occur under fully liquid-saturated conditions and a diffusion-controlled regime, pH will be buffered at higher values, and some calcite precipitation is predicted which leads to further sealing of the storage reservoir. (C) 2007 Elsevier B.V. All rights reserved. C1 CNR, Ist Geosci Georisorse, I-56124 Pisa, Italy. Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Gherardi, F (reprint author), CNR, Ist Geosci Georisorse, I-56124 Pisa, Italy. EM f.gherardi@igg.cnr.it OI , Fabrizio/0000-0002-7273-7779 NR 54 TC 105 Z9 111 U1 8 U2 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD SEP 30 PY 2007 VL 244 IS 1-2 BP 103 EP 129 DI 10.1016/j.chemgeo.2007.06.009 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 219XU UT WOS:000250122300007 ER PT J AU Kolb, TE Agee, JK Fule, PZ McDowell, NG Pearson, K Sala, A Waring, RH AF Kolb, T. E. Agee, J. K. Fule, P. Z. McDowell, N. G. Pearson, K. Sala, A. Waring, R. H. TI Perpetuating old ponderosa pine SO FOREST ECOLOGY AND MANAGEMENT LA English DT Review DE bark beetle; forest management; fire; Pinus ponderosa; prescribed burn; restoration; thinning ID MIXED-CONIFER FOREST; HYDRAULIC LIMITATION HYPOTHESIS; BURNING RESTORATION TREATMENTS; PINE/DOUGLAS-FIR FORESTS; PEARSON-NATURAL-AREA; AGE-RELATED DECLINE; NORTHERN ARIZONA; PRESCRIBED-FIRE; TREE MORTALITY; STAND DENSITY AB We review current knowledge about the use of management treatments to reduce human-induced threats to old ponderosa pine (Pinus ponderosa) trees. We address the following questions: Are fire-induced damage and mortality greater in old than younger trees? Can management treatments ameliorate the detrimental effects of fire, competition-induced stress, and drought on old trees? Can management increase resistance of old trees to bark beetles? We offer the following recommendations for the use of thinning and burning treatments in old-growth ponderosa pine forests. Treatments should be focused on high-value stands where fire exclusion has increased fuels and competition and where detrimental effects of disturbance during harvesting can be minimized. Fuels should be reduced in the vicinity of old trees prior to prescribed bums to reduce fire intensity, as old trees are often more prone to dying after burning than younger trees. Raking the forest floor beneath old trees prior to burning may not only reduce damage from smoldering combustion under certain conditions but also increase fine-root mortality. Thinning of neighboring trees often increases water and carbon uptake of old trees within I year of treatment, and increases radial growth within several years to two decades after treatment. However, stimulation of growth of old trees by thinning can be negated by severe drought. Evidence from young trees suggests that management treatments that cause large increases in carbon allocation to radial xylem growth also increase carbon allocation to constitutive resin defenses against bark beetle attacks, but evidence for old trees is scarce. Prescribed, low-intensity burning may attract bark beetles and increase mortality of old trees from beetle attacks despite a stimulation of bole resin production. (c) 2007 Elsevier B.V. All rights reserved. C1 No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. Univ Washington, Coll Forest Resources, Seattle, WA 98195 USA. No Arizona Univ, Ecol Restorat Inst, Flagstaff, AZ 86011 USA. Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Univ Montana, Div Biol Sci, Missoula, MT 59812 USA. Oregon State Univ, Dept Forest Sci, Corvallis, OR 97331 USA. RP Kolb, TE (reprint author), No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. EM tom.kolb@nau.edu RI Waring, Richared/C-4796-2014 OI Waring, Richared/0000-0003-2533-3664 NR 163 TC 72 Z9 73 U1 6 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 EI 1872-7042 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD SEP 30 PY 2007 VL 249 IS 3 BP 141 EP 157 DI 10.1016/j.foreco.2007.06.002 PG 17 WC Forestry SC Forestry GA 216EJ UT WOS:000249861000001 ER PT J AU Wang, XR Sun, ZZ Zhang, Z AF Wang, X. R. Sun, Z. Z. Zhang, Zhenyu TI A possible new route to chaos via semiconductor superlattices SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT International Conference on Frontiers of Nonlinear and Complex Systems CY MAY 24-26, 2006 CL Hong Kong, PEOPLES R CHINA DE chaos; limit cycle; superlattice ID DOPED GAAS/ALAS SUPERLATTICE; CURRENT SELF-OSCILLATION; TRANSITION AB Our current understanding of routes to chaos is mainly based on torus bifurcation where new periods are generated, the period-doubling mechanism revealed in the logistic map, and intermittency where periodic and burst motion appear alternatively. We present a possible new route to chaos based on our geometric picture of the frequency-locking of limit-cycles in semiconductor superlattices. In the period-double route and/or its variations, the period increases exponentially with bifurcation order, whereas the period in the new route increases linearly with the order of bifurcations. C1 [Wang, X. R.; Sun, Z. Z.] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Zhang, Zhenyu] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA. RP Wang, XR (reprint author), Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Hong Kong, Hong Kong, Peoples R China. RI Sun, Zhouzhou/E-8966-2014 OI Sun, Zhouzhou/0000-0001-6860-0799 NR 14 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD SEP 30 PY 2007 VL 21 IS 23-24 BP 3967 EP 3974 DI 10.1142/S0217979207045037 PG 8 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 246HG UT WOS:000251997500014 ER PT J AU Kafri, U Goldman, M Lyakhovsky, V Scholl, C Helwig, S Tezkan, B AF Kafri, U. Goldman, M. Lyakhovsky, V. Scholl, C. Helwig, S. Tezkan, B. TI The configuration of the fresh-saline groundwater interface within the regional Judea Group carbonate aquifer in northern Israel between the Mediterranean and the Dead Sea base levels as delineated by deep geoelectromagnetic soundings SO JOURNAL OF HYDROLOGY LA English DT Article DE Jordan rift valley; groundwater; salination; base levels; geoelectromagnetic methods ID DOMAIN ELECTROMAGNETIC METHOD; GALILEE; SPRINGS; MODELS AB A combined high resolution short offset transient electromagnetic (SHOTEM) and deep sounding, tong offset (LOTEM) survey has been carried out along two traverses between the Mediterranean Sea and the Jordan-Dead Sea Rift (DSR). The DSR is located in the study area some 200-250 m below sea level. The measurements detected a deep conductor, the top of which exhibited a regular behavior along the both traverses, declining from the Mediterranean to the DSR base level.. The geometry of this geoelectric boundary coincides fairly well with the configuration of a supposed fresh/saline groundwater interface as also obtained by both numerical and physical modeling for the known hydrogeological conditions in the study area. Therefore the detected geoelectric boundary is identified with the interface, supporting the hypothesis of current seawater intrusion into the deep regional aquifers between the Mediterranean and the DSR base levels. The intrusion causes the salination of fresh groundwater within the aquifers as well as the salination of the Sea of Galilee. (C) 2007 Elsevier B.V. All rights reserved. C1 Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. Geol Survey Israel, IL-95501 Jerusalem, Israel. Geophys Inst Israel, IL-71100 Lod, Israel. Univ Cologne, D-50923 Cologne, Germany. Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Goldman, M (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM uri.kafri@gsi.gov.it; mark@gii.co.il; vladi@gsi.gov.il; cscholl@physics.utoronto.ca; helwig@geo.uni-koeln.de; tezkan@geo.uni-koeln.de RI Helwig, Stefan/C-8023-2011 NR 24 TC 9 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD SEP 30 PY 2007 VL 344 IS 1-2 BP 123 EP 134 DI 10.1016/j.jhydrol.2007.07.003 PG 12 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 218PE UT WOS:000250026600010 ER PT J AU Stetcu, I Barrett, BR van Kolck, U AF Stetcu, I. Barrett, B. R. van Kolck, U. TI No-core shell model in an effective-field-theory framework SO PHYSICS LETTERS B LA English DT Article ID FEW-NUCLEON SYSTEMS; ENERGY-LEVELS; LIGHT-NUCLEI; TRITON; EXPANSION AB We present a new approach to the construction of effective interactions suitable for many-body calculations by means of the no-core shell model (NCSM). We consider an effective field theory (EFT) with only nucleon fields directly in the NCSM model spaces. In leading order, we obtain the strengths of the three contact interactions from the condition that in each model space the experimental ground-state energies of H-2, H-3 and He-4 be exactly reproduced. The first (0(+); 0) excited state of He-4 and the ground state of Li-6 are then obtained by means of NCSM calculations in several spaces and frequencies. After we remove the harmonic-oscillator frequency dependence, we predict for He-4 an energy level for the first (0+; 0) excited state in remarkable agreement with the experimental value. The corresponding Li-6 binding energy is about 70% of the experimental value, consistent with the expansion parameter of the EFT. (C) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Stetcu, I (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM istet@lanl.gov NR 32 TC 59 Z9 59 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 30 PY 2007 VL 653 IS 2-4 BP 358 EP 362 DI 10.1016/j.physletb.2007.07.065 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219GZ UT WOS:000250074000039 ER PT J AU Gonzalez, JJ Liu, CY Wen, SB Mao, XL Russo, RE AF Gonzalez, Jhanis J. Liu, Chunyi Wen, Sy-Bor Mao, Xianglei Russo, Richard E. TI Metal particles produced by laser ablation for ICP-MS measurements SO TALANTA LA English DT Article DE laser ablation; particles; metal; ICP-MS ID INDUCTIVELY-COUPLED PLASMA; MATRIX MATCHED CALIBRATION; NEAR-IR FEMTOSECOND; ELEMENTAL FRACTIONATION; MASS SPECTROMETRY; GENERATED AEROSOLS; SOLID PARTICLES; SILICATE GLASS; SIZE; NANOSECOND AB Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm(-2). Characterization of particles and correlation with inductively coupled plasma mass spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of similar to 50 and similar to 12 for Is versus ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the 66 Zn transient signal by a factor of 10 compared to nanosecond laser pulses. Published by Elsevier B.V. C1 Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Russo, RE (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov NR 33 TC 44 Z9 45 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD SEP 30 PY 2007 VL 73 IS 3 BP 567 EP 576 DI 10.1016/j.talanta.2007.04.029 PG 10 WC Chemistry, Analytical SC Chemistry GA 218PC UT WOS:000250026400025 PM 19073072 ER PT J AU Gonzalez, JJ Liu, C Wen, SB Mao, X Russo, RE AF Gonzalez, Jhanis J. Liu, Chunyi Wen, Sy-Bor Mao, Xianglei Russo, Richard E. TI Glass particles produced by laser ablation for ICP-MS measurements SO TALANTA LA English DT Article DE laser ablation; glass; particles; ICP-MS AB Pulsed laser ablation (266 nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm(-2). Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloy samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns- and fs-laser ablation than for metal alloys. Published by Elsevier B.V. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Russo, RE (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov NR 12 TC 31 Z9 32 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD SEP 30 PY 2007 VL 73 IS 3 BP 577 EP 582 DI 10.1016/j.talanta.2007.04.028 PG 6 WC Chemistry, Analytical SC Chemistry GA 218PC UT WOS:000250026400026 PM 19073073 ER PT J AU Williams, KH Hubbard, SS Banfield, JF AF Williams, Kenneth H. Hubbard, Susan S. Banfield, Jillian F. TI Galvanic interpretation of self-potential signals associated with microbial sulfate-reduction SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID THICK GLACIAL OVERBURDEN; REDOX CONDITIONS; FUEL-CELLS; SULFIDE; MINERALIZATION; GROUNDWATER; NANOWIRES; PROPERTY; DEPOSITS; PH AB We have evaluated the usefulness of the self-potential (SP) geophysical method to track the onset and location of microbial sulfate-reduction in saturated sediments during organic carbon amendment. Following stimulation of sulfate-reducing bacteria (SRB) by addition of lactate, anomalous voltages exceeding 600 mV correlated in space and time with the accumulation of dissolved sulfide. Abiotic experiments in which the sulfide concentration at the measurement electrode was systematically varied showed a positive correlation between the magnitude of the SP anomaly and differences in the half-cell potential associated with the measurement and reference electrodes. Thus, we infer that the SP anomalies resulted from electrochemical differences that developed between sulfide-rich regions and areas having higher oxidation potential. In neither experiment did generation of an SP anomaly require the presence of an in situ electronic conductor, as is required by other models. These findings emphasize the importance of incorporation of electrochemical effects at electrode surfaces in interpretation of SP data from geophysical studies. We conclude that SP measurements provide a minimally invasive means for monitoring stimulated sulfate-reduction within saturated sediments. C1 Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Williams, KH (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. EM khwilliams@lbl.gov RI Williams, Kenneth/O-5181-2014; Hubbard, Susan/E-9508-2010 OI Williams, Kenneth/0000-0002-3568-1155; NR 25 TC 14 Z9 14 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD SEP 29 PY 2007 VL 112 IS G3 AR G03109 DI 10.1029/2007JG000440 PG 8 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 216BK UT WOS:000249852600001 ER PT J AU Bertucci, C Achilleos, N Mazelle, C Hospodarsky, GB Thomsen, M Dougherty, MK Kurth, W AF Bertucci, C. Achilleos, N. Mazelle, C. Hospodarsky, G. B. Thomsen, M. Dougherty, M. K. Kurth, W. TI Low-frequency waves in the foreshock of Saturn: First results from Cassini SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS BOW SHOCK; ION-BEAMS; ELECTROMAGNETIC-WAVES; ULF WAVES; PLASMA; UPSTREAM; INSTABILITIES; FLOW AB We present the first characterization of low- frequency upstream waves associated with Saturn's foreshock from observations by the Cassini spacecraft. A classification based on their frequency in the spacecraft frame ( s/ c) yields two groups: ( 1) a large majority of waves with frequencies below the local proton cyclotron frequency Omega(H+) and ( 2) waves with frequencies above Omega(H+). The waves within the first group are usually phase steepened and have a left- hand polarization in the spacecraft frame. In addition, they present left-hand-polarized ( s/ c) dispersive wave packets attached to the steepening front. An analysis of these waves suggests that these are sunward propagating ion/ ion resonant right- hand mode waves that steepen and emit a whistler precursor to stop the steepening. These waves seem to populate the deep ion foreshock. Within the second group we find quasi-monochromatic and steepened waves with a right- hand polarization ( s/ c). Among the first we find noncompressive and slightly compressive waves, whereas the steepened ones are very compressive, show oblique propagation, and also display dispersive wave packets. Assuming that these packets are also whistlers, we suggest that these waves could be generated by the ion/ ion resonant left- hand mode. Then, during the nonlinear regime they would become compressive and eventually steepen, emitting a whistler precursor. However, we are unable to provide evidence for hot ion beams that could be related to this instability. This is the first time that such waves are observed at Saturn, and observations confirm that these waves contribute to Saturn's quasi- parallel shock reformation. C1 Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London SW7 2BZ, England. Univ Toulouse 3, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bertucci, C (reprint author), Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, Prince Consort Rd, London SW7 2BZ, England. EM c.bertucci@imperial.ac.uk RI Achilleos, Nicholas/C-1647-2008; OI Bertucci, Cesar/0000-0002-2540-5384; Kurth, William/0000-0002-5471-6202; Hospodarsky, George/0000-0001-9200-9878; Achilleos, Nicholas/0000-0002-5886-3509 NR 36 TC 5 Z9 5 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 29 PY 2007 VL 112 IS A9 AR A09219 DI 10.1029/2006JA012098 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 216CH UT WOS:000249854900001 ER PT J AU Tang, M Cecconi, C Bustamante, C Rio, DC AF Tang, Mei Cecconi, Ciro Bustamante, Carlos Rio, Donald C. TI Analysis of P element transposase protein-DNA interactions during the early stages of transposition SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID SYNAPTIC COMPLEX; DROSOPHILA-MELANOGASTER; MU-TRANSPOSASE; V(D)J RECOMBINATION; IN-VITRO; BINDING; ARCHITECTURE; TN5; CATALYSIS; COFACTOR AB P elements are a family of transposable elements found in Drosophila that move by using a cut-and-paste mechanism and that encode a transposase protein that uses GTP as a cofactor for transposition. Here we used atomic force microscopy to visualize the initial interaction of transposase protein with P element DNA. The transposase first binds to one of the two P element ends, in the presence or absence of GTP, prior to synapsis. In the absence of GTP, these complexes remain stable but do not proceed to synapsis. In the presence of GTP or nonhydrolyzable GTP analogs, synapsis happens rapidly, whereas DNA cleavage is slow. Both atomic force microscopy and standard biochemical methods have been used to show that the P element transposase exists as a pre-formed tetramer that initially binds to either one of the two P element ends in the absence of GTP prior to synapsis. This initial single end binding may explain some of the aberrant P element-induced rearrangements observed in vivo, such as hybrid end insertion. The allosteric effect of GTP in promoting synapsis by P element transposase may be to orient a second site-specific DNA binding domain in the tetramer allowing recognition of a second high affinity transposase-binding site at the other transposon end. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Div Genet Genomics & Dev, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Integrat Genomics, Div Biochem & Mol Biol, Berkeley, CA 94720 USA. Univ Modena & Reggio Emilia, CNR, INFM, S3, I-41100 Modena, Italy. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Rio, DC (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Genet Genomics & Dev, Berkeley, CA 94720 USA. EM don_rio@berkeley.edu RI Cecconi, Ciro/K-5028-2016 OI Cecconi, Ciro/0000-0002-6101-2609 FU NIGMS NIH HHS [R01GM61987] NR 56 TC 14 Z9 14 U1 0 U2 2 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD SEP 28 PY 2007 VL 282 IS 39 BP 29002 EP 29012 DI 10.1074/jbc.M704106200 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 213BY UT WOS:000249642100074 PM 17644523 ER PT J AU Curtiss, LA Redfern, PC Raghavachari, K AF Curtiss, Larry A. Redfern, Paul C. Raghavachari, Krishnan TI Gaussian-4 theory using reduced order perturbation theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORIES; CORRELATED MOLECULAR CALCULATIONS; ZERO-POINT ENERGIES; COMPLETE BASIS-SET; AB-INITIO THERMOCHEMISTRY; COMPUTATIONAL THERMOCHEMISTRY; ATOMIZATION ENERGIES; 2ND-ROW COMPOUNDS; MODEL CHEMISTRY; ATOMS ALUMINUM AB Two modifications of Gaussian-4 (G4) theory [L. A. Curtiss , J. Chem. Phys. 126, 084108 (2007)] are presented in which second- and third-order perturbation theories are used in place of fourth-order perturbation theory. These two new methods are referred to as G4(MP2) and G4(MP3), respectively. Both methods have been assessed on the G3/05 test set of accurate experimental data. The average absolute deviation from experiment for the 454 energies in this test set is 1.04 kcal/mol for G4(MP2) theory and 1.03 kcal/mol for G4(MP3) theory compared to 0.83 kcal/mol for G4 theory. G4(MP2) is slightly more accurate for enthalpies of formation than G4(MP3) (0.99 versus 1.04 kcal/mol), while G4(MP3) is more accurate for ionization potentials and electron affinities. Overall, the G4(MP2) method provides an accurate and economical method for thermochemical predictions. It has an overall accuracy for the G3/05 test set that is much better than G3(MP2) theory (1.04 versus 1.39 kcal/mol) and even better than G3 theory (1.04 versus 1.13 kcal/mol). In addition, G4(MP2) does better for challenging hypervalent systems such as H2SO4 and for nonhydrogen species than G3(MP2) theory. (C) 2007 American Institute of Physics. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Indiana Univ, Dept Chem, Bloomington, IN 47401 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 50 TC 227 Z9 230 U1 2 U2 62 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2007 VL 127 IS 12 AR 124105 DI 10.1063/1.2770701 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 215DA UT WOS:000249787300007 PM 17902891 ER PT J AU Jiang, DE Sumpter, BG Dai, S AF Jiang, De-En Sumpter, Bobby G. Dai, Sheng TI First principles study of magnetism in nanographenes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GRAPHENE NANORIBBONS; ELECTRONIC-STRUCTURE; BASIS-SET; RIBBONS; DENSITY; EDGE; STATE AB Magnetism in nanographenes [also known as polycyclic aromatic hydrocarbons (PAHs)] is studied with first principles density functional calculations. We find that an antiferromagnetic (AFM) phase appears as the PAH reaches a certain size. This AFM phase in PAHs has the same origin as the one in infinitely long zigzag-edged graphene nanoribbons, namely, from the localized electronic state at the zigzag edge. The smallest PAH still having an AFM ground state is identified. With increased length of the zigzag edge, PAHs approach an infinitely long ribbon in terms of (1) the energetic ordering and difference among the AFM, ferromagnetic, and nonmagnetic phases and (2) the average local magnetic moment at the zigzag edges. These PAHs serve as ideal targets for chemical synthesis of nanographenes that possess magnetic properties. Moreover, our calculations support the interpretation that experimentally observed magnetism in activated carbon fibers originates from the zigzag edges of the nanographenes. (C) 2007 American Institute of Physics. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Sumpter, Bobby/C-9459-2013; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Sumpter, Bobby/0000-0001-6341-0355; Dai, Sheng/0000-0002-8046-3931 NR 52 TC 124 Z9 124 U1 5 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2007 VL 127 IS 12 AR 124703 DI 10.1063/1.2770722 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 215DA UT WOS:000249787300043 PM 17902927 ER PT J AU Kerisit, S Rosso, KM AF Kerisit, Sebastien Rosso, Kevin M. TI Kinetic Monte Carlo model of charge transport in hematite (alpha-Fe2O3) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SHEWANELLA-PUTREFACIENS MR-1; ELECTRON-TRANSFER; IRON-OXIDE; REDUCTIVE DISSOLUTION; ATOMISTIC SIMULATION; MOLECULAR-DYNAMICS; OUTER-MEMBRANE; POLARON MOTION; AB-INITIO; SURFACES AB The mobility of electrons injected into iron oxide minerals via abiotic and biotic electron transfer processes is one of the key factors that control the reductive dissolution of such minerals. Building upon our previous work on the computational modeling of elementary electron transfer reactions in iron oxide minerals using ab initio electronic structure calculations and parametrized molecular dynamics simulations, we have developed and implemented a kinetic Monte Carlo model of charge transport in hematite that integrates previous findings. The model aims to simulate the interplay between electron transfer processes for extended periods of time in lattices of increasing complexity. The electron transfer reactions considered here involve the II/III valence interchange between nearest-neighbor iron atoms via a small polaron hopping mechanism. The temperature dependence and anisotropic behavior of the electrical conductivity as predicted by our model are in good agreement with experimental data on hematite single crystals. In addition, we characterize the effect of electron polaron concentration and that of a range of defects on the electron mobility. Interaction potentials between electron polarons and fixed defects (iron substitution by divalent, tetravalent, and isovalent ions and iron and oxygen vacancies) are determined from atomistic simulations, based on the same model used to derive the electron transfer parameters, and show little deviation from the Coulombic interaction energy. Integration of the interaction potentials in the kinetic Monte Carlo simulations allows the electron polaron diffusion coefficient and density and residence time around defect sites to be determined as a function of polaron concentration in the presence of repulsive and attractive defects. The decrease in diffusion coefficient with polaron concentration follows a logarithmic function up to the highest concentration considered, i.e., similar to 2% of iron(III) sites, whereas the presence of repulsive defects has a linear effect on the electron polaron diffusion. Attractive defects are found to significantly affect electron polaron diffusion at low polaron to defect ratios due to trapping on nanosecond to microsecond time scales. This work indicates that electrons can diffuse away from the initial site of interfacial electron transfer at a rate that is consistent with measured electrical conductivities, but that the presence of certain kinds of defects will severely limit the mobility of donated electrons. (C) 2007 American Institute of Physics. C1 Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99354 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99354 USA. EM sebastien.kerisit@pnl.gov NR 49 TC 35 Z9 35 U1 4 U2 50 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2007 VL 127 IS 12 AR 124706 DI 10.1063/1.2768522 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 215DA UT WOS:000249787300046 PM 17902930 ER PT J AU Knappenberger, KL Lerch, EBW Wen, P Leone, SR AF Knappenberger, Kenneth L., Jr. Lerch, Eliza-Beth W. Wen, Patrick Leone, Stephen R. TI Stark-assisted population control of coherent CS2 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PULSED-FIELD IONIZATION; MULTIPHOTON IONIZATION; CARBON-DISULFIDE; QUANTUM CONTROL; RESOLUTION; STATES; PHOTOIONIZATION; MICROSCOPY; DYNAMICS; SPECTRUM AB A two-color (3+1') pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS2*). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (1/2) or lower (3/2) spin-orbit components of CS2+. The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GW/cm(2) to 10 TW/cm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS2 with excitation power densities up to 10 TW/cm(2) without significant fragmentation. The exponential 1/e population decay (T-1) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay (approximate to 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region. (C) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Knappenberger, KL (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 40 TC 3 Z9 3 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2007 VL 127 IS 12 AR 124318 DI 10.1063/1.2771165 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 215DA UT WOS:000249787300030 PM 17902914 ER PT J AU Gritti, F Guiochon, G AF Gritti, Fabrice Guiochon, Georges TI Comparative study of the performance of columns packed with several new fine silica particles Would the external roughness of the particles affect column properties? SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE column performance; mass transfer mechanism; RP-HPLC; HETP; axial diffusion; eddy dispersion; film mass transfer; trans-particle mass transfer; Luna-C-18; Atlantis-C-18; Halo-C-18; Zorbax-C-18; naphthalene; insulin; bovine serum albumin ID MASS-TRANSFER KINETICS; LIQUID-CHROMATOGRAPHY; SEPARATION; EXCHANGERS; SHELL AB We measured and compared the characteristics and performance of columns packed with particles of five different C-18-bonded silica, 3 and 5 mu m Luna, 3 mu m Atlantis, 3.5 mu m Zorbax, and 2.7 mu m Halo. The average particle size of each material was derived from the SEM pictures of 200 individual particles. These pictures contrast the irregular morphology of the external surface of the Zorbax and Halo particles and the smooth surface of the Luna and Atlantis particles. In a wide range of mobile phase velocities (from 0.010 to 3 mL/min) and at ambient temperature, we measured the first and second central moments of the peaks of naphthalene, insulin, and bovine serum albumin (BSA). These moments were corrected for the contributions of the extra-column volumes to calculate the reduced HETPs. The C-terms of naphthalene and insulin are largest for the Halo and Zorbax. materials and the A-term smallest for the Halo-packed column. The Halo column performs the best for the low molecular weight compound naphthalene (minimum reduced HETP, 1.4) but is not as good as the Atlantis or Luna columns for the large molecular weight compound insulin. The Zorbax column is the least efficient column because of its large C-term. The lowest sample diffusivity through these particles, alone, does not account for the results. It is most likely that the roughness of the external surface of the Halo and Zorbax particles limit the performance of these columns at high flow rates generating an unusually high film mass transfer resistance. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 24 TC 73 Z9 73 U1 5 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD SEP 28 PY 2007 VL 1166 IS 1-2 BP 30 EP 46 DI 10.1016/j.chroma.2007.06.064 PG 17 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 214OV UT WOS:000249748900005 PM 17719592 ER PT J AU Gritti, F Guiochon, G AF Gritti, Fabrice Guiochon, Georges TI Consequences of the radial heterogeneity of the column temperature at high mobile phase velocity SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE chromatographic column; mobile phase friction; heat effects; longitudinal temperature gradients; pressure drop; radial temperature gradients; column; efficiency; C-18-bonded silica ID PRESSURE LIQUID-CHROMATOGRAPHY; MASS-TRANSFER; DIFFUSION; DISSIPATION; DEPENDENCE; PARTICLES; VISCOSITY; GRADIENTS; EQUATION; SOLUTE AB When a high velocity stream of mobile phase percolates through a chromatographic column, the bed cannot remain isothermal. Due to the mobile phase decompression, heat is generated along the column. Longitudinal and radial temperature gradients take place along and across its bed. The various consequences of this thermal heterogeneity are calculated and their effects on the column efficiency investigated for a 0.46 cm x 25 cm stainless steel column packed with 5 mu m particles. The maximum pressure drop applied was varied from 0.1 to 2 kbar. The amplitude of the longitudinal temperature gradient can be estimated on the basis of the integral heat balance equation applied to the whole column and of measurements of the eluent temperature at the column exit. Assuming that the radial gradient is parabolic and the longitudinal gradient linear, the amplitude of the radial gradient can be determined on the basis of the energy balance across the column and of direct measurements of the radial gradient at high inlet pressures. A radial temperature gradient causes a radial distribution of the eluent viscosity, hence of its local velocity. The result is that bands move faster in their center than along the wall, become warped, hence a radial concentration gradient, similar in origin to the one observed in open cylindrical tubes. Diffusion relaxes this gradient. If there is only a longitudinal temperature gradient, the column efficiency would be 30% smaller for a 2 kbar pressure drop than if there is no longitudinal temperature gradient. However, when both a longitudinal and a radial temperature gradient coexist, there is a large loss of efficiency. If the influence of the diffusive relaxation of the radial concentration gradient is neglected, the peak shape would be broad and exhibit a marked shoulder. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 29 TC 38 Z9 38 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD SEP 28 PY 2007 VL 1166 IS 1-2 BP 47 EP 60 DI 10.1016/j.chroma.2007.06.067 PG 14 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 214OV UT WOS:000249748900006 PM 17720174 ER PT J AU Mattioli, M Mazzitelli, G Finkenthal, M Mazzotta, P Fournier, KB Kaastra, J Puiatti, ME AF Mattioli, M. Mazzitelli, G. Finkenthal, M. Mazzotta, P. Fournier, K. B. Kaastra, J. Puiatti, M. E. TI Updating of ionization data for ionization balance evaluations of atoms and ions for the elements hydrogen to germanium SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Review ID ELECTRON-IMPACT-IONIZATION; CROSS-SECTION MEASUREMENTS; OPTICALLY THIN PLASMAS; ENERGY-RESOLVED ELECTRONS; RARE-GAS ATOMS; LI-LIKE IONS; NA-LIKE IONS; MULTIPLE IONIZATION; SINGLE IONIZATION; RATE COEFFICIENTS AB Atomic data for electron impact ionization of all the elements from H to Ge are reviewed, the rates for these processes needing to be regularly updated following the publication of new experimental data and new theoretical calculations. Experimental cross sections, along with specific theoretical calculations when experimental data are missing, are fitted as functions of the electron energy, and from these fits ionization rate coefficients can be evaluated. It has been possible to take into account all elements but not all charge states of every element. Since the purpose of the paper is to update the ionization data evaluated and proposed in previous review papers, it is discussed if modifications are needed for the ions not considered. For highly ionized ions starting from the Ne- like iso- electronic sequence corrections do not appear necessary. On the other hand, except for Fe, for slightly ionized ions, specifically below the S- like iso- electronic sequence, the previously proposed data often underestimate the total ionization cross section, since only direct ionization channels have been considered and indirect processes have been neglected. Multiplicative correction coefficients are given to agree with recently published theoretical calculations. Experimental ionization data are considered, even when the presence of populated metastable levels ( related to the electron density inside the source) is reported in the ion beams involved in the cross- section data measurements. We deem such a procedure acceptable when the proposed rates have to be included in codes that simulate the impurity behaviour in magnetic- confinement fusion devices, i. e., when radial transport is added to ionization and recombination to predict spatially resolved charge- state distributions. On the other hand, for astrophysical plasmas the contributions of metastable levels to the experimental data may represent a serious problem since, generally, the values of the electron densities that are involved are much lower than those in the ion sources. However, we critically investigated this problem and we found that the presence of metastables does not significantly modify the rates of most of the ions apart from a dozen. For this set of ions we provide different, corrected rates. Recombination is not considered since a review has been recently published. C1 EURATOM, Enea Fus, Consorzio RFX, I-35127 Padua, Italy. EURATOM, Enea Fus, CR Frascati, I-00044 Frascati, Italy. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. SRON, Space Res Lab, NL-3584 CA Utrecht, Netherlands. RP Mattioli, M (reprint author), EURATOM, Enea Fus, Consorzio RFX, Uniti 4, I-35127 Padua, Italy. EM mario.mattioli@wanadoo.fr; mazzitelli@frascati.enea.it RI Mazzotta, Pasquale/B-1225-2016 OI Mazzotta, Pasquale/0000-0002-5411-1748 NR 133 TC 24 Z9 24 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD SEP 28 PY 2007 VL 40 IS 18 BP 3569 EP 3599 DI 10.1088/0953-4075/40/18/002 PG 31 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 216FT UT WOS:000249864600004 ER PT J AU Minami, T Pindzola, MS Lee, TG Schultz, DR AF Minami, T. Pindzola, M. S. Lee, T-G Schultz, D. R. TI Numerical study of charge transfer in H++He+ and He2++Li2+ collisions SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DEPENDENT SCHRODINGER-EQUATION; ION-ATOM COLLISIONS; PROTON-HYDROGEN COLLISIONS; CLOSE-COUPLING METHOD; CROSS-SECTIONS; HE+ COLLISIONS; IONIZATION; CONVERGENCE; ANTIPROTONS; EXCITATION AB The lattice time-dependent Schrodinger equation ( LTDSE) and atomic orbital close coupling ( AOCC) methods are applied to calculate the charge transfer cross sections for H+ + He+ and He2+ + Li2+ collisions in the velocity range of 0.5 - 4.0 atomic units. The comparison of the results is made with those of other theoretical methods and with measurements. This analysis is used to provide a test of the accuracy of LTDSE and AOCC, and to help establish a consensus of theoretical results in comparison with the measurements for these ion - ion collisions. C1 Auburn Univ, Dept Phys, Auburn, AL 36849 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Minami, T (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Lee, Teck Ghee/D-5037-2012 OI Lee, Teck Ghee/0000-0001-9472-3194 NR 26 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD SEP 28 PY 2007 VL 40 IS 18 BP 3629 EP 3645 DI 10.1088/0953-4075/40/18/005 PG 17 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 216FT UT WOS:000249864600007 ER PT J AU Guhr, M McFarland, BK Farrell, JP Bucksbaum, PH AF Guhr, M. McFarland, B. K. Farrell, J. P. Bucksbaum, P. H. TI High harmonic generation for N-2 and CO2 beyond the two-point model SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID MOLECULAR-ORBITALS; INTENSE LIGHT; INTERFERENCE; FIELDS; LASER AB Strong field high harmonic generation ( HHG) can reveal the quantum structure of the source molecule. We calculate the effect of interference between the recombining photoelectron and the orbital from which it was field ionized in the single- active- electron standard picture of HHG in N-2 and CO2. We compare our results for the highest occupied molecular orbitals ( HOMO's) to the predictions of a popular two- point scattering model. For N2, we find an agreement for very large internuclear separations and no agreement for the ground- state internuclear distance. We reduce the arguments to the Fourier transform of the HOMO, which depends on the internuclear separation. For CO2, we distinguish between two geometries. For one of these, we find a perfect agreement with the two- point scattering model; however, the emitted radiation is not phase matched in this case. The experimentally accessible radiation does not agree with the simple model. C1 Stanford Univ, Dept Phys, Stanford PULSE Ctr, Stanford, CA 94305 USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Guhr, M (reprint author), Stanford Univ, Dept Phys, Stanford PULSE Ctr, Stanford, CA 94305 USA. EM mguehr@stanford.edu RI Guehr, Markus/B-7446-2015 OI Guehr, Markus/0000-0002-9111-8981 NR 22 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD SEP 28 PY 2007 VL 40 IS 18 BP 3745 EP 3755 DI 10.1088/0953-4075/40/18/013 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 216FT UT WOS:000249864600015 ER PT J AU Furis, M Smith, DL Kos, S Garlid, ES Reddy, KSM Palmstrom, CJ Crowell, PA Crooker, SA AF Furis, M. Smith, D. L. Kos, S. Garlid, E. S. Reddy, K. S. M. Palmstrom, C. J. Crowell, P. A. Crooker, S. A. TI Local Hanle-effect studies of spin drift and diffusion in n : GaAs epilayers and spin-transport devices SO NEW JOURNAL OF PHYSICS LA English DT Article ID ELECTRICAL DETECTION; GALLIUM-ARSENIDE; INJECTION; SEMICONDUCTOR; HETEROSTRUCTURE; FIELD AB In electron- doped GaAs, we use scanning Kerr- rotation microscopy to locally probe and spatially resolve the depolarization of electron spin distributions by transverse magnetic fields. The shape of these local Hanle-effect curves provides a measure of the spin lifetime as well as spin transport parameters including drift velocity, mobility and diffusion length. Asymmetries in the local Hanle data can be used to reveal and map out the effective magnetic fields due to spin - orbit coupling. Finally, using both spin imaging and local Hanle effect studies, we investigate the drift and diffusion of electrically- injected spins in lateral Fe/GaAs spin- detection devices, both within and outside the current path. C1 Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. RP Crooker, SA (reprint author), Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. EM crooker@lanl.gov RI Furis, Madalina/F-8090-2015; Kos, Simon/G-3289-2016; OI Furis, Madalina/0000-0001-9007-5492; Kos, Simon/0000-0003-1657-9793; Reddy, Kotha Sai Madhukar/0000-0003-2385-7827 NR 35 TC 40 Z9 40 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 28 PY 2007 VL 9 AR 347 DI 10.1088/1367-2630/9/9/347 PG 18 WC Physics, Multidisciplinary SC Physics GA 218YO UT WOS:000250052100007 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M Da Motta, H Das, A Davies, G De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kothari, B Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lam, D Lammers, S Landsberg, G Lazoflores, J Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Lesne, V Leveque, J Lewis, P Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJO Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohner, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Telford, P Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ van Eijk, B Van Kooten, R Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Von Toerne, E Voutilainen, M Vreeswijk, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Weerts, H Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A.-F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M.-C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, P. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J.-F. Grohsjean, A. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kafer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J.-P. Kopal, M. Korablev, V. M. Kothari, B. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Mattig, P. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero Y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S.-J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M.-A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M.-E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strohner, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Telford, P. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. van Eijk, B. Van Kooten, R. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Weerts, H. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for stopped gluinos from p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERSYMMETRY; DETECTOR AB Long-lived, heavy particles are predicted in a number of models beyond the standard model of particle physics. We present the first direct search for such particles' decays, occurring up to 100 h after their production and not synchronized with an accelerator bunch crossing. We apply the analysis to the gluino (g), predicted in split supersymmetry, which after hadronization can become charged and lose enough momentum through ionization to come to rest in dense particle detectors. Approximately 410 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected with the D0 detector during Run II of the Fermilab Tevatron collider are analyzed in search of such "stopped gluinos" decaying into a gluon and a neutralino ((chi) over tilde (0)(1)). Limits are placed on the (gluino cross section) x (probability to stop) x [BR((g) over tilde -> g (chi) over tilde (0)(1))] as a function of the gluino and (chi) over tilde (0)(1) masses, for gluino lifetimes from 30 mu s-100 h. C1 Joint Nucl Res Inst, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, CPPM, IN2P3, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 11, Orsay, France. Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. Univ Paris 07, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particules, Gif Sur Yvette, France. Univ Strasbourg 1, IPHC, Strasbourg, France. Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. Univ Lyon, Lyon, France. Rhein Westfal TH Aachen, Phys Inst 3A, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Royal Inst Technol, Stockholm, Sweden. Lund Univ, Lund, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Imperial Coll, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Nucl Res Inst, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; De, Kaushik/N-1953-2013; Mundim, Luiz/A-1291-2012; Nomerotski, Andrei/A-5169-2010; Novaes, Sergio/D-3532-2012; Fisher, Wade/N-4491-2013; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Shivpuri, R K/A-5848-2010; Telford, Paul/B-6253-2011; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; De, Kaushik/0000-0002-5647-4489; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311 NR 10 TC 29 Z9 29 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 131801 DI 10.1103/PhysRevLett.99.131801 PG 8 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700017 PM 17930574 ER PT J AU Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carillo, S Carlsmith, D Carosi, R Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Paoli, FD Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Dorr, C Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carillo, S. Carlsmith, D. Carosi, R. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Paoli, F. Delli Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Dorr, C. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Polarizations of J/psi and psi(2S) mesons produced in p(p)over-bar collisins at root s-1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID INELASTIC J/PSI; QUARKONIUM; HERA AB We have measured the polarizations of J/psi and psi(2S) mesons as functions of their transverse momentum p(T) when they are produced promptly in the rapidity range |y|< 0.6 with p(T)>= 5 GeV/c. The analysis is performed using a data sample with an integrated luminosity of about 800 pb(-1) collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as p(T) increases from 5 to 30 GeV/c. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of J/psi and psi(2S) mesons from B-hadron decays are also reported. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3, CNRS,UMR 7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. Univ Siena, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012 OI Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Warburton, Andreas/0000-0002-2298-7315; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; NR 17 TC 137 Z9 137 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 132001 DI 10.1103/PhysRevLett.99.132001 PG 7 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700020 PM 17930577 ER PT J AU Damski, B Zurek, WH AF Damski, Bogdan Zurek, Wojciech H. TI Dynamics of a quantum phase transition in a ferromagnetic Bose-Einstein condensate SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMOLOGICAL EXPERIMENTS; SYMMETRY-BREAKING; STRING FORMATION; SUPERFLUID HE-3; LIQUID-CRYSTALS; GASES AB We discuss dynamics of a slow quantum phase transition in a spin-1 Bose-Einstein condensate. We analytically determine the scaling properties of the system magnetization and verify them with numerical simulations in a one dimensional model. C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Damski, B (reprint author), Los Alamos Natl Lab, Div Theory, MS-B213, Los Alamos, NM 87545 USA. RI Damski, Bogdan/E-3027-2013 NR 31 TC 72 Z9 72 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 130402 DI 10.1103/PhysRevLett.99.130402 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700002 PM 17930559 ER PT J AU Evans-Lutterodt, K Stein, A Ablett, JM Bozovic, N Taylor, A Tennant, DM AF Evans-Lutterodt, K. Stein, A. Ablett, J. M. Bozovic, N. Taylor, A. Tennant, D. M. TI Using compound kinoform hard-x-ray lenses to exceed the critical angle limit SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-ENERGY ASTRONOMY; REFRACTIVE LENSES; FRESNEL; OPTICS AB We have fabricated and tested a compound lens consisting of an array of four kinoform lenses for hard x-ray photons of 11.3 keV. Our data demonstrate that it is possible to exceed the critical angle limit by using multiple lenses, while retaining lens function, and this suggests a route to practical focusing optics for hard x-ray photons with nanometer scale resolution and below. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Lucent Technol, Murray Hill, NJ 07974 USA. RP Evans-Lutterodt, K (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM kenne@bnl.gov NR 19 TC 43 Z9 44 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 134801 DI 10.1103/PhysRevLett.99.134801 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700040 PM 17930597 ER PT J AU Feng, Y Jaramillo, R Srajer, G Lang, JC Islam, Z Somayazulu, MS Shpyrko, OG Pluth, JJ Mao, HK Isaacs, ED Aeppli, G Rosenbaum, TF AF Feng, Yejun Jaramillo, R. Srajer, G. Lang, J. C. Islam, Z. Somayazulu, M. S. Shpyrko, O. G. Pluth, J. J. Mao, H.-k. Isaacs, E. D. Aeppli, G. Rosenbaum, T. F. TI Pressure-tuned spin and charge ordering in an itinerant antiferromagnet SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM CRITICAL-POINT; MAGNETIC EXCITATIONS; NEEL TRANSITION; DENSITY WAVES; CHROMIUM; ALLOYS; SCATTERING; HEAVY; TEMPERATURE; DEPENDENCE AB Elemental chromium orders antiferromagnetically near room temperature, but the ordering temperature can be driven to zero by applying large pressures. We combine diamond anvil cell and synchrotron x-ray diffraction techniques to measure directly the spin and charge order in the pure metal at the approach to its quantum critical point. Both spin and charge order are suppressed exponentially with pressure, well beyond the region where disorder cuts off such a simple evolution, and they maintain a harmonic scaling relationship over decades in scattering intensity. By comparing the development of the order parameter with that of the magnetic wave vector, it is possible to ascribe the destruction of antiferromagnetism to the growth in electron kinetic energy relative to the underlying magnetic exchange interaction. C1 Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. Univ Chicago, Dept Phys, Chicago, IL 60637 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. Univ Chicago, CARS, Chicago, IL 60637 USA. UCL, Dept Phys & Astron, London WC1E 6BT, England. UCL, Ctr Nanotechnol, London WC1E 6BT, England. RP Rosenbaum, TF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM tfr@uchicago.edu RI Shpyrko, Oleg/J-3970-2012; Feng, Yejun/A-5417-2009 OI Feng, Yejun/0000-0003-3667-056X NR 32 TC 24 Z9 24 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 137201 DI 10.1103/PhysRevLett.99.137201 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700070 PM 17930627 ER PT J AU Go, A Bay, A Abe, K Aihara, H Anipko, D Aulchenko, V Aushev, T Bakich, AM Barberio, E Belous, K Bitenc, U Bizjak, I Blyth, S Bozek, A Bracko, M Browder, TE Chang, P Chao, Y Chen, A Chen, KF Chen, WT Cheon, BG Chistov, R Choi, Y Choi, YK Cole, S Dalseno, J Danilov, M Dash, M Drutskoy, A Eidelman, S Epifanov, D Fratina, S Gabyshev, N Gershon, T Gokhroo, G Golob, B Gorisek, A Ha, H Hastings, NC Hayasaka, K Hayashii, H Hazumi, M Heffernan, D Hokuue, T Hoshi, Y Hou, S Hou, WS Iijima, T Ikado, K Imoto, A Inami, K Ishikawa, A Ishino, H Itoh, R Iwasaki, M Iwasaki, Y Jacoby, C Kang, JH Katayama, N Kawasaki, T Khan, HR Kichimi, H Kim, HJ Kim, SK Kim, YJ Kinoshita, K Korpar, S Krizan, P Krokovny, P Kulasiri, R Kumar, R Kuo, CC Kuzmin, A Kwon, YJ Lange, JS Lee, J Lee, MJ Lesiak, T Limosani, A Lin, SW Liu, Y Liventsev, D Matsumoto, T Matyja, A McOnie, S Mitaroff, W Miyake, H Miyata, H Miyazaki, Y Mizuk, R Mori, T Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Ogawa, S Ohshima, T Olsen, SL Onuki, Y Pakhlov, P Pakhlova, G Palka, H Park, CW Park, H Peak, LS Pestotnik, R Peters, M Piilonen, LE Sahoo, H Sakai, Y Satoyama, N Schietinger, T Schneider, O Schumann, J Schwartz, AJ Seidl, R Senyo, K Shapkin, M Shibuya, H Shwartz, B Singh, JB Somov, A Soni, N Stanic, S Staric, M Stoeck, H Sumiyoshi, T Takasaki, F Tanaka, M Taylor, GN Teramoto, Y Tian, XC Tikhomirov, I Trabelsi, K Tsuboyama, T Tsukamoto, T Uehara, S Uglov, T Ueno, K Unno, Y Uno, S Varner, G Villa, S Wang, CC Wang, CH Wang, MZ Watanabe, Y Wicht, J Won, E Xie, QL Yabsley, BD Yamaguchi, A Yamashita, Y Yamauchi, M Zhang, ZP Zhilich, V Zupanc, A AF Go, A. Bay, A. Abe, K. Aihara, H. Anipko, D. Aulchenko, V. Aushev, T. Bakich, A. M. Barberio, E. Belous, K. Bitenc, U. Bizjak, I. Blyth, S. Bozek, A. Bracko, M. Browder, T. E. Chang, P. Chao, Y. Chen, A. Chen, K.-F. Chen, W. T. Cheon, B. G. Chistov, R. Choi, Y. Choi, Y. K. Cole, S. Dalseno, J. Danilov, M. Dash, M. Drutskoy, A. Eidelman, S. Epifanov, D. Fratina, S. Gabyshev, N. Gershon, T. Gokhroo, G. Golob, B. Gorisek, A. Ha, H. Hastings, N. C. Hayasaka, K. Hayashii, H. Hazumi, M. Heffernan, D. Hokuue, T. Hoshi, Y. Hou, S. Hou, W.-S. Iijima, T. Ikado, K. Imoto, A. Inami, K. Ishikawa, A. Ishino, H. Itoh, R. Iwasaki, M. Iwasaki, Y. Jacoby, C. Kang, J. H. Katayama, N. Kawasaki, T. Khan, H. R. Kichimi, H. Kim, H. J. Kim, S. K. Kim, Y. J. Kinoshita, K. Korpar, S. Krizan, P. Krokovny, P. Kulasiri, R. Kumar, R. Kuo, C. C. Kuzmin, A. Kwon, Y.-J. Lange, J. S. Lee, J. Lee, M. J. Lesiak, T. Limosani, A. Lin, S.-W. Liu, Y. Liventsev, D. Matsumoto, T. Matyja, A. McOnie, S. Mitaroff, W. Miyake, H. Miyata, H. Miyazaki, Y. Mizuk, R. Mori, T. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Ogawa, S. Ohshima, T. Olsen, S. L. Onuki, Y. Pakhlov, P. Pakhlova, G. Palka, H. Park, C. W. Park, H. Peak, L. S. Pestotnik, R. Peters, M. Piilonen, L. E. Sahoo, H. Sakai, Y. Satoyama, N. Schietinger, T. Schneider, O. Schumann, J. Schwartz, A. J. Seidl, R. Senyo, K. Shapkin, M. Shibuya, H. Shwartz, B. Singh, J. B. Somov, A. Soni, N. Stanic, S. Staric, M. Stoeck, H. Sumiyoshi, T. Takasaki, F. Tanaka, M. Taylor, G. N. Teramoto, Y. Tian, X. C. Tikhomirov, I. Trabelsi, K. Tsuboyama, T. Tsukamoto, T. Uehara, S. Uglov, T. Ueno, K. Unno, Y. Uno, S. Varner, G. Villa, S. Wang, C. C. Wang, C. H. Wang, M.-Z. Watanabe, Y. Wicht, J. Won, E. Xie, Q. L. Yabsley, B. D. Yamaguchi, A. Yamashita, Y. Yamauchi, M. Zhang, Z. P. Zhilich, V. Zupanc, A. CA Belle Collaboration TI Measurement of Einstein-Podolsky-Rosen-type flavor entanglement in Y(4S) -> B-0(B)over-bar0 decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTICLE PHYSICS; QUANTUM-MECHANICS; BELL INEQUALITY; EPR EXPERIMENT; B-MESONS; VIOLATION; NONSEPARABILITY; INTERFERENCE; PHOTONS; SYSTEM AB The neutral B meson pair produced at the Y(4S) should exhibit a nonlocal correlation of the type discussed by Einstein, Podolsky, and Rosen. We measure this correlation using the time-dependent flavor asymmetry of semileptonic B-0 decays, which we compare with predictions from quantum mechanics and two local realistic models. The data are consistent with quantum mechanics, and inconsistent with the other models. Assuming that some B pairs disentangle to produce B-0 and (B) over tilde (0) with definite flavor, we find a decoherent fraction of 0.029 +/- 0.057, consistent with no decoherence. C1 Natl Cent Univ, Chungli 32054, Taiwan. Univ Cincinnati, Cincinnati, OH 45221 USA. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Giessen, Giessen, Germany. Hanyang Univ, Seoul 133791, South Korea. Univ Hawaii, Honolulu, HI 96822 USA. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. Univ Illinois, Urbana, IL 61801 USA. Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. Inst High Energy Phys, Vienna, Austria. Inst High Energy Phys, Protvino, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Jozef Stefan Inst, Ljubljana, Slovenia. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Ecole Polytech Fed Lausanne, Lausanne, Switzerland. Univ Ljubljana, Ljubljana, Slovenia. Univ Maribor, SLO-2000 Maribor, Slovenia. Univ Melbourne, Melbourne, Vic, Australia. Nagoya Univ, Nagoya, Aichi, Japan. Nara Womens Univ, Nara 630, Japan. Natl United Univ, Miaoli, Taiwan. Natl Taiwan Univ, Dept Phys, Taipei 10764, Taiwan. H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Nippon Dent Univ, Niigata, Japan. Niigata Univ, Niigata, Japan. Univ Nova Gorica, Nova Gorica, Slovenia. Osaka City Univ, Osaka 558, Japan. Osaka Univ, Osaka, Japan. Panjab Univ, Chandigarh 160014, India. Peking Univ, Beijing 100871, Peoples R China. Brookhaven Natl Lab, RIKEN, Res Ctr, Upton, NY 11973 USA. Univ Sci & Technol China, Hefei 230026, Peoples R China. Seoul Natl Univ, Seoul, South Korea. Shinshu Univ, Nagano, Japan. Sungkyunkwan Univ, Suwon, South Korea. Univ Sydney, Sydney, NSW 2006, Australia. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Toho Univ, Funabashi, Chiba 274, Japan. Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. Tohoku Univ, Sendai, Miyagi 980, Japan. Univ Tokyo, Dept Phys, Tokyo 113, Japan. Tokyo Inst Technol, Tokyo 152, Japan. Tokyo Metropolitan Univ, Tokyo 158, Japan. Tokyo Univ Agr & Technol, Tokyo, Japan. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yonsei Univ, Seoul 120749, South Korea. RP Go, A (reprint author), Natl Cent Univ, Chungli 32054, Taiwan. RI Krokovny, Pavel/G-4421-2016; Peters, Michael/B-4973-2009; Abe, Kazuo/F-6576-2010; Chistov, Ruslan/B-4893-2014; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Tian, Xinchun/L-2060-2013; Ishino, Hirokazu/C-1994-2015; Kim, Sun Kee/G-2042-2015; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014 OI Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Aihara, Hiroaki/0000-0002-1907-5964; Tian, Xinchun/0000-0002-6246-0470; Ishino, Hirokazu/0000-0002-8623-4080; Kim, Sun Kee/0000-0002-0013-0775; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022 NR 29 TC 29 Z9 29 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 131802 DI 10.1103/PhysRevLett.99.131802 PG 6 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700018 PM 17930575 ER PT J AU Meinhold, L Merzel, F Smith, JC AF Meinhold, Lars Merzel, Franci Smith, Jeremy C. TI Lattice dynamics of a protein crystal SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAY DIFFUSE-SCATTERING; TEMPERATURE HEAT-CAPACITY; BRILLOUIN SPECTROSCOPY; LYSOZYME CRYSTALS; SOUND-VELOCITY; L-ALANINE; TRANSITION; VIBRATIONS; BEHAVIOR; PROGRAM AB All-atom lattice-dynamical calculations are reported for a crystalline protein, ribonuclease A. The sound velocities, density of states, heat capacity (C-V) and thermal diffuse scattering are all consistent with available experimental data. C-V proportional to T-1.68 for T < 35 K, significantly deviating from a Debye solid. In Bragg peak vicinity, inelastic scattering of x rays by phonons is found to originate from acoustic mode scattering. The results suggest an approach to protein crystal physics combining all-atom lattice-dynamical calculations with experiments on next-generation neutron sources. C1 Univ Heidelberg, IWR, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany. Natl Inst Chem, Lab Mol Modeling, Ljubljana 1000, Slovenia. Natl Inst Chem, NMR, Ljubljana 1000, Slovenia. Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Meinhold, L (reprint author), Univ Heidelberg, IWR, Interdisciplinary Ctr Sci Comp, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. EM lars.meinhold@caltech.edu RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 NR 32 TC 22 Z9 22 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 138101 DI 10.1103/PhysRevLett.99.138101 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700083 PM 17930640 ER PT J AU Ravasio, A Gregori, G Benuzzi-Mounaix, A Daligault, J Delserieys, A Faenov, AY Loupias, B Ozaki, N le Gloahec, MR Pikuz, TA Riley, D Koenig, M AF Ravasio, A. Gregori, G. Benuzzi-Mounaix, A. Daligault, J. Delserieys, A. Faenov, A. Ya. Loupias, B. Ozaki, N. Rabec le Gloahec, M. Pikuz, T. A. Riley, D. Koenig, M. TI Direct observation of strong ion coupling in laser-driven shock-compressed targets SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXPERIMENTAL ASTROPHYSICS; PLASMAS; MATTER AB In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas. C1 Univ Paris 06, Ecole Polytech, CNRS UMR 7605, CEA,Lab Utilisat Lasers Intenses, F-91128 Palaiseau, France. Rutherford Appleton Lab, CCLRC, Didcot OX11 0QX, Oxon, England. Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. Russian Comm Stand, VNIIFTRI, Multicharged Ions Spectra Data Ctr, Moscow 141570, Russia. RP Ravasio, A (reprint author), Univ Paris 06, Ecole Polytech, CNRS UMR 7605, CEA,Lab Utilisat Lasers Intenses, F-91128 Palaiseau, France. RI Koenig, Michel/A-2167-2012 NR 27 TC 34 Z9 34 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 135006 DI 10.1103/PhysRevLett.99.135006 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700046 PM 17930603 ER PT J AU Reiman, A AF Reiman, A. TI Stabilization of the vertical mode in tokamaks by localized nonaxisymmetric fields SO PHYSICAL REVIEW LETTERS LA English DT Article ID HYDROMAGNETIC-STABILITY; STELLARATOR; EQUILIBRIA; PLASMAS AB Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively simple set of parallelogram-shaped coils. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Reiman, A (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 16 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 135007 DI 10.1103/PhysRevLett.99.135007 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700047 PM 17930604 ER PT J AU Sloutskin, E Sapir, Z Bain, CD Lei, Q Wilkinson, KM Tamam, L Deutsch, M Ocko, BM AF Sloutskin, E. Sapir, Z. Bain, C. D. Lei, Q. Wilkinson, K. M. Tamam, L. Deutsch, M. Ocko, B. M. TI Wetting, mixing, and phase transitions in Langmuir-Gibbs films SO PHYSICAL REVIEW LETTERS LA English DT Article ID AIR-WATER-INTERFACE; LIQUID NORMAL-ALKANES; NEUTRON REFLECTION; CHAIN MOLECULES; HEXADECYLTRIMETHYLAMMONIUM BROMIDE; SURFACTANT SOLUTIONS; MONOLAYERS; ADSORPTION; ENERGY AB Millimolar bulk concentrations of the surfactant cetyltrimethylammonium bromide (CTAB) induce spreading of alkanes, H(CH2)(n)H (denoted C-n) 12 <= n <= 21, on the water surface, which is not otherwise wet by these alkanes. The novel Langmuir-Gibbs film (LGF) formed is a liquidlike monolayer comprising both alkanes and CTAB tails. Upon cooling, an ordering transition occurs, yielding a hexagonally packed, quasi-2D crystal. For 11 <= n <= 17 this surface-frozen LGF is a crystalline monolayer. For 18 <= n <= 21 the LGF is a bilayer with a crystalline, pure-alkane, upper monolayer, and a liquidlike lower monolayer. The phase diagram and film structure were determined by x-ray, ellipsometry, and surface tension measurements. A thermodynamic theory accounts quantitatively for the observations. C1 Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. Univ Durham, Dept Chem, Durham DH1 3LE, England. Univ Oxford, Dept Chem, Oxford OX1 3TA, England. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Sloutskin, E (reprint author), Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. EM deutsch@mail.biu.ac.il RI Bain, Colin/I-2792-2012 NR 39 TC 27 Z9 27 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 136102 DI 10.1103/PhysRevLett.99.136102 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700055 PM 17930612 ER PT J AU Uberuaga, BP Hoagland, RG Voter, AF Valone, SM AF Uberuaga, B. P. Hoagland, R. G. Voter, A. F. Valone, S. M. TI Direct transformation of vacancy voids to stacking fault tetrahedra SO PHYSICAL REVIEW LETTERS LA English DT Article ID MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; SADDLE-POINTS; FCC METALS; CLUSTERS; STABILITY; DEFECTS AB Defect accumulation is the principal factor leading to the swelling and embrittlement of materials during irradiation. It is commonly assumed that, once defect clusters nucleate, their structure remains essentially constant while they grow in size. Here, we describe a new mechanism, discovered during accelerated molecular dynamics simulations of vacancy clusters in fcc metals, that involves the direct transformation of a vacancy void to a stacking fault tetrahedron (SFT) through a series of 3D structures. This mechanism is in contrast with the collapse to a 2D Frank loop which then transforms to an SFT. The kinetics of this mechanism are characterized by an extremely large rate prefactor, tens of orders of magnitude larger than is typical of atomic processes in fcc metals. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. RI Hoagland, Richard/G-9821-2012 NR 21 TC 68 Z9 68 U1 5 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 135501 DI 10.1103/PhysRevLett.99.135501 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700050 PM 17930607 ER PT J AU Wong, KL Kaye, S Mikkelsen, DR Krommes, JA Hill, K Bell, R LeBlanc, B AF Wong, K. L. Kaye, S. Mikkelsen, D. R. Krommes, J. A. Hill, K. Bell, R. LeBlanc, B. TI Microtearing instabilities and electron transport in the NSTX spherical tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID SHORT-WAVELENGTH FLUCTUATIONS; PLASMA TRANSPORT; MODES; STABILITY AB We report a successful quantitative account of the experimentally determined electron thermal conductivity chi(e) in a beam-heated H mode plasma by the magnetic fluctuations from microtearing instabilities. The calculated chi(e) based on existing nonlinear theory agrees with the result from transport analysis of the experimental data. Without using any adjustable parameter, the good agreement spans the entire region where there is a steep electron temperature gradient to drive the instability. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wong, KL (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. NR 23 TC 37 Z9 37 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 135003 DI 10.1103/PhysRevLett.99.135003 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700043 PM 17930600 ER PT J AU Yoon, Y Mourokh, L Morimoto, T Aoki, N Ochiai, Y Reno, JL Bird, JP AF Yoon, Y. Mourokh, L. Morimoto, T. Aoki, N. Ochiai, Y. Reno, J. L. Bird, J. P. TI Probing the microscopic structure of bound states in quantum point contacts SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPIN POLARIZATION; CONDUCTANCE AB Using an approach that allows us to probe the electronic structure of strongly pinched-off quantum point contacts (QPCs), we provide evidence for the formation of self-consistently realized bound states (BSs) in these structures. Our approach exploits the resonant interaction between closely coupled QPCs, and demonstrates that the BSs may give rise to a robust confinement of single spins, which show clear Zeeman splitting in a magnetic field. C1 SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA. CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. Chiba Univ, Grad Sch Sci & Technol, Inage Ku, Chiba 2638522, Japan. Chiba Univ, Grad Sch Adv Integrat Sci, Inage Ku, Chiba 2638522, Japan. Sandia Natl Labs, CINT Sci Dept, Albuquerque, NM 87175 USA. RP Yoon, Y (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. RI Bird, Jonathan/G-4068-2010 OI Bird, Jonathan/0000-0002-6966-9007 NR 23 TC 48 Z9 48 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 136805 DI 10.1103/PhysRevLett.99.136805 PG 4 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700065 PM 17930622 ER PT J AU Zhang, LM Zhang, ZP Adachi, I Aihara, H Aulchenko, V Aushev, T Bakich, AM Balagura, V Barberio, E Bay, A Belous, K Bitenc, U Bondar, A Bozek, A Bracko, M Brodzicka, J Browder, TE Chang, P Chao, Y Chen, A Chen, KF Chen, WT Cheon, BG Chiang, CC Cho, IS Choi, Y Choi, YK Dalseno, J Danilov, M Dash, M Drutskoy, A Eidelman, S Epifanov, D Fratina, S Gabyshev, N Gokhroo, G Golob, B Ha, H Haba, J Hara, T Hastings, NC Hayasaka, K Hayashii, H Hazumi, M Heffernan, D Hokuue, T Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Ikado, K Inami, K Ishikawa, A Ishino, H Itoh, R Iwasaki, M Iwasaki, Y Joshi, NJ Kah, DH Kaji, H Kajiwara, S Kang, JH Kawai, H Kawasaki, T Kichimi, H Kim, HJ Kim, HO Kim, SK Kim, YJ Kinoshita, K Korpar, S Krizan, P Krokovny, P Kumar, R Kuo, CC Kuzmin, A Kwon, YJ Lee, JS Lee, MJ Lee, SE Lesiak, T Li, J Limosani, A Lin, SW Liu, Y Liventsev, D Matsumoto, T Matyja, A McOnie, S Medvedeva, T Mitaroff, W Miyake, H Miyata, H Miyazaki, Y Mizuk, R Nagasaka, Y Nakamura, I Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Ogawa, S Ohshima, T Okuno, S Olsen, SL Onuki, Y Ostrowicz, W Ozaki, H Pakhlov, P Pakhlova, G Park, CW Park, H Peak, LS Pestotnik, R Piilonen, LE Poluektov, A Sahoo, H Sakai, Y Schneider, O Schumann, J Schwanda, C Schwartz, AJ Seidl, R Senyo, K Sevior, ME Shapkin, M Shibuya, H Shinomiya, S Shiu, JG Shwartz, B Singh, JB Sokolov, A Somov, A Soni, N Stanic, S Staric, M Stoeck, H Sumisawa, K Sumiyoshi, T Suzuki, S Tajima, O Takasaki, F Tamai, K Tamura, N Tanaka, M Taylor, GN Teramoto, Y Tian, XC Tikhomirov, I Tsuboyama, T Uehara, S Ueno, K Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Varner, G Vervink, K Villa, S Vinokurova, A Wang, CH Wang, MZ Wang, P Watanabe, Y Won, E Yabsley, BD Yamaguchi, A Yamashita, Y Yamauchi, M Yuan, CZ Zhang, CC Zhilich, V Zupanc, A AF Zhang, L. M. Zhang, Z. P. Adachi, I. Aihara, H. Aulchenko, V. Aushev, T. Bakich, A. M. Balagura, V. Barberio, E. Bay, A. Belous, K. Bitenc, U. Bondar, A. Bozek, A. Bracko, M. Brodzicka, J. Browder, T. E. Chang, P. Chao, Y. Chen, A. Chen, K.-F. Chen, W. T. Cheon, B. G. Chiang, C.-C. Cho, I.-S. Choi, Y. Choi, Y. K. Dalseno, J. Danilov, M. Dash, M. Drutskoy, A. Eidelman, S. Epifanov, D. Fratina, S. Gabyshev, N. Gokhroo, G. Golob, B. Ha, H. Haba, J. Hara, T. Hastings, N. C. Hayasaka, K. Hayashii, H. Hazumi, M. Heffernan, D. Hokuue, T. Hoshi, Y. Hou, W.-S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Ikado, K. Inami, K. Ishikawa, A. Ishino, H. Itoh, R. Iwasaki, M. Iwasaki, Y. Joshi, N. J. Kah, D. H. Kaji, H. Kajiwara, S. Kang, J. H. Kawai, H. Kawasaki, T. Kichimi, H. Kim, H. J. Kim, H. O. Kim, S. K. Kim, Y. J. Kinoshita, K. Korpar, S. Krizan, P. Krokovny, P. Kumar, R. Kuo, C. C. Kuzmin, A. Kwon, Y.-J. Lee, J. S. Lee, M. J. Lee, S. E. Lesiak, T. Li, J. Limosani, A. Lin, S.-W. Liu, Y. Liventsev, D. Matsumoto, T. Matyja, A. McOnie, S. Medvedeva, T. Mitaroff, W. Miyake, H. Miyata, H. Miyazaki, Y. Mizuk, R. Nagasaka, Y. Nakamura, I. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Ogawa, S. Ohshima, T. Okuno, S. Olsen, S. L. Onuki, Y. Ostrowicz, W. Ozaki, H. Pakhlov, P. Pakhlova, G. Park, C. W. Park, H. Peak, L. S. Pestotnik, R. Piilonen, L. E. Poluektov, A. Sahoo, H. Sakai, Y. Schneider, O. Schumann, J. Schwanda, C. Schwartz, A. J. Seidl, R. Senyo, K. Sevior, M. E. Shapkin, M. Shibuya, H. Shinomiya, S. Shiu, J.-G. Shwartz, B. Singh, J. B. Sokolov, A. Somov, A. Soni, N. Stanic, S. Staric, M. Stoeck, H. Sumisawa, K. Sumiyoshi, T. Suzuki, S. Tajima, O. Takasaki, F. Tamai, K. Tamura, N. Tanaka, M. Taylor, G. N. Teramoto, Y. Tian, X. C. Tikhomirov, I. Tsuboyama, T. Uehara, S. Ueno, K. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Varner, G. Vervink, K. Villa, S. Vinokurova, A. Wang, C. H. Wang, M.-Z. Wang, P. Watanabe, Y. Won, E. Yabsley, B. D. Yamaguchi, A. Yamashita, Y. Yamauchi, M. Yuan, C. Z. Zhang, C. C. Zhilich, V. Zupanc, A. CA Belle Collaboration TI Measurement of D-0-(D)over-bar(0) mixing parameters in D-0 -> K-s pi(+)pi(-) decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR AB We report a measurement of D-0-(D) over bar (0) mixing parameters in D-0 -> K-S(0)pi(+)pi(-) decays using a time-dependent Dalitz-plot analysis. We first assume CP conservation and subsequently allow for CP violation. The results are based on 540 fb(-1) of data accumulated with the Belle detector at the KEKB e(+)e(-) collider. Assuming negligible CP violation, we measure the mixing parameters x=(0.80 +/- 0.29(-0.07-0.14)(+0.09+0.10))% and y=(0.33 +/- 0.24(-0.12-0.08)(+0.08+0.06))%, where the errors are statistical, experimental systematic, and systematic due to the Dalitz decay model, respectively. Allowing for CP violation, we obtain the CP-violating parameters |q/p|=0.86(-0.29-0.03)(+0.30+0.06)+/- 0.08 and arg(q/p)=(-14(-18-3-4)(+16+5+2))degrees. C1 Univ Sci & Technol China, Hefei 230026, Peoples R China. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Chiba Univ, Chiba, Japan. Univ Cincinnati, Cincinnati, OH 45221 USA. Hanyang Univ, Seoul 133791, South Korea. Univ Hawaii, Honolulu, HI 96822 USA. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. Hiroshima Inst Technol, Hiroshima, Japan. Univ Illinois, Urbana, IL 61801 USA. Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. Inst High Energy Phys, Vienna, Austria. Inst High Energy Phys, Protvino, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Jozef Stefan Inst, Ljubljana, Slovenia. Kanagawa Univ, Yokohama, Kanagawa, Japan. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, CH-1015 Lausanne, Switzerland. Univ Ljubljana, Ljubljana, Slovenia. Univ Maribor, SLO-2000 Maribor, Slovenia. Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. Nagoya Univ, Nagoya, Aichi, Japan. Nara Womens Univ, Nara 630, Japan. Natl Cent Univ, Chungli 32054, Taiwan. Natl United Univ, Miaoli, Taiwan. Natl Taiwan Univ, Dept Phys, Taipei 10764, Taiwan. H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Nippon Dent Univ, Niigata, Japan. Niigata Univ, Niigata, Japan. Univ Nova Gorica, Nova Gorica, Slovenia. Osaka City Univ, Osaka 558, Japan. Osaka Univ, Osaka, Japan. Panjab Univ, Chandigarh 160014, India. Peking Univ, Beijing 100871, Peoples R China. Brookhaven Natl Lab, Res Ctr, RIKEN, Upton, NY 11973 USA. Saga Univ, Saga 840, Japan. Univ Sci & Technol China, Hefei 230026, Peoples R China. Seoul Natl Univ, Seoul, South Korea. Sungkyunkwan Univ, Suwon, South Korea. Univ Sydney, Sydney, NSW 2006, Australia. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Toho Univ, Funabashi, Chiba 274, Japan. Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. Tohoku Univ, Sendai, Miyagi 980, Japan. Univ Tokyo, Dept Phys, Tokyo 113, Japan. Tokyo Inst Technol, Tokyo 152, Japan. Tokyo Metropolitan Univ, Tokyo 158, Japan. Tokyo Univ Agr & Technol, Tokyo, Japan. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yonsei Univ, Seoul 120749, South Korea. RP Zhang, LM (reprint author), Univ Sci & Technol China, Hefei 230026, Peoples R China. RI Aihara, Hiroaki/F-3854-2010; Zhang, Liming/B-8122-2012; Pakhlova, Galina/C-5378-2014; Nitoh, Osamu/C-3522-2013; Tian, Xinchun/L-2060-2013; Ishino, Hirokazu/C-1994-2015; Kim, Sun Kee/G-2042-2015; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Drutskoy, Alexey/C-8833-2016 OI Aihara, Hiroaki/0000-0002-1907-5964; Pakhlova, Galina/0000-0001-7518-3022; Tian, Xinchun/0000-0002-6246-0470; Ishino, Hirokazu/0000-0002-8623-4080; Kim, Sun Kee/0000-0002-0013-0775; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Drutskoy, Alexey/0000-0003-4524-0422 NR 16 TC 62 Z9 64 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 28 PY 2007 VL 99 IS 13 AR 131803 DI 10.1103/PhysRevLett.99.131803 PG 6 WC Physics, Multidisciplinary SC Physics GA 215CU UT WOS:000249786700019 PM 17930576 ER PT J AU Cheng, YC Lee, H Fleming, GR AF Cheng, Yuan-Chung Lee, Hohjai Fleming, Graham R. TI Efficient simulation of three-pulse photon-echo signals with application to the determination of electronic coupling in a bacterial photosynthetic reaction center SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID NONLINEAR-OPTICAL RESPONSE; PEAK SHIFT SPECTROSCOPY; ENERGY-TRANSFER; RHODOBACTER-SPHAEROIDES; FEMTOSECOND SPECTROSCOPY; SOLVATION DYNAMICS; NONPERTURBATIVE APPROACH; TRANSFER SYSTEMS; 2-COLOR; EXCITON AB A time-nonlocal quantum master equation coupled with a perturbative scheme to evaluate the third-order polarization in the phase-matching direction k(s) = -k(1) + k(2) + k(3) is used to efficiently simulate three-pulse photon-echo signals. The present method is capable of describing photon-echo peak shifts including pulse overlap and bath memory effects. In addition, the method treats the non-Markovian evolution of the density matrix and the third-order polarization in a consistent manner, thus is expected to be useful in systems with rapid and complex dynamics. We apply the theoretical method to describe one- and two-color three-pulse photon-echo peak shift experiments performed on a bacterial photosynthetic reaction center and demonstrate that, by properly incorporating the pulse overlap effects, the method can be used to describe simultaneously all peak shift experiments and determine the electronic coupling between the localized Q(y) excitations on the bacteriopheophytin (BPhy) and accessory bateriochlorophyll (BChl) in the reaction center. A value of J 250 cm(-1) is found for the coupling between BPhy and BChl. C1 Univ Calif Berkeley, Dept Chem QB3 Inst, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem QB3 Inst, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Cheng, Yuan-Chung/A-6566-2008 OI Cheng, Yuan-Chung/0000-0003-0125-4267 NR 60 TC 25 Z9 25 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 27 PY 2007 VL 111 IS 38 BP 9499 EP 9508 DI 10.1021/jp0735177 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 213GT UT WOS:000249655600043 PM 17696328 ER PT J AU Contreras, MA Barnes, T van de Lagemaat, J Rumbles, G Coutts, TJ Weeks, C Glatkowski, P Levitsky, I Peltola, J Britz, DA AF Contreras, Miguel A. Barnes, Teresa van de lagemaat, Jao Rumbles, Garry Coutts, Timothy J. Weeks, Chris Glatkowski, Paul Levitsky, Igor Peltola, Jorma Britz, David A. TI Replacement of transparent conductive oxides by single-wall carbon nanotubes in Cu(In,Ga)Se-2-based solar cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article AB Thin films of single-wall carbon nanotubes were used as the transparent top electrical contact in Cu(In,Ga)Se-2-based solar cells. Specifically, we demonstrate that thin layers of carbon nanotubes in combination with insulating polymer layers can effectively replace the metal oxide layers typically used in polycrystalline thin-film solar cells. Replacing the standard n-type ZnO layer with a thin film of carbon nanotubes yielded energy conversion efficiencies up to 13%. The optical and electrical transport properties of the single-wall carbon nanotubes suggest that suitable applications for these materials include multiple-junction solar cells, thermophotovoltaics, and other applications benefiting from a p-type transparent conductor with high near-infrared transmission. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. EIKOS Inc, Franklin, TN USA. RP Contreras, MA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM contreras@nrel.gov RI van de Lagemaat, Jao/J-9431-2012; OI Rumbles, Garry/0000-0003-0776-1462 NR 11 TC 58 Z9 59 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 27 PY 2007 VL 111 IS 38 BP 14045 EP 14048 DI 10.1021/jp075507b PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 213GS UT WOS:000249655500004 ER PT J AU Talapin, DV Yu, H Shevchenko, EV Lobo, A Murray, CB AF Talapin, Dmitri V. Yu, Heng Shevchenko, Elena V. Lobo, Arun Murray, Christopher B. TI Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire-nanocrystal heterostructures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FIELD-EFFECT TRANSISTORS; SEMICONDUCTOR NANOWIRES; CORE/SHELL NANOCRYSTALS; GROWTH; NANOPARTICLES; CDSE; DEVICE; LOGIC AB The oriented attachment of PbSe nanocrystals results in single-crystal line colloidal PbSe nanowires. The addition of different surfactants allows tailoring nanowire morphology, choosing between straight, zigzag, helical, and branched nanowires. In this work, we studied the formation of coaxial PbSe/PbS core-shell heterostructures and observed Stranski-Krastanov growth regime of PbS shell on PbSe nanowires at low reaction temperature (150 degrees C) that switched to layer-by-layer epitaxial growth above 180 degrees C. The protection of PbSe nanowires with a PbS shell substantially improves the nanowire stability against oxidation. We also developed a technique for controllable decoration of colloidal PbSe nanowires with Au nanoparticles and found that the morphology of nanowire template had a strong effect on nucleation and growth of gold nanoparticles. C1 IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. DESY, HASYLAB, D-22603 Hamburg, Germany. RP Talapin, DV (reprint author), IBM Corp, Div Res, TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA. EM dvtalapin@uchicago.edu NR 40 TC 90 Z9 90 U1 7 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 27 PY 2007 VL 111 IS 38 BP 14049 EP 14054 DI 10.1021/jp074319i PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 213GS UT WOS:000249655500005 ER PT J AU Tucker, MC Lau, GY Jacobson, CP DeJonghe, LC Visco, SJ AF Tucker, Michael C. Lau, Grace Y. Jacobson, Craig P. DeJonghe, Lutgard C. Visco, Steven J. TI Performance of metal-supported SOFCs with infiltrated electrodes SO JOURNAL OF POWER SOURCES LA English DT Article DE solid oxide fuel cell; metal-support; infiltration ID OXIDE FUEL-CELLS AB Metal-supported solid oxide fuel cells (SOFCs) with thin YSZ electrolyte films and infiltrated Ni and LSM catalysts are operated in the temperature range 650-750 degrees C. A five-layer structure consisting of porous metal- support/porous YSZ interlayer/dense YSZ electrolyte film/porous YSZ interlayer/porous metal current collector is prepared at 1300 degrees C in reducing atmosphere. This cell structure is then sealed and joined to a cell housing/gas manifold using a commercially available braze. Finally, the porous YSZ interlayers are infiltrated with Ni and LSM catalyst precursor solutions at low temperature prior to cell testing. Infiltrating the catalysts after the high temperature sintering and brazing steps avoids undesirable decomposition of LSM, Ni coarsening, and interdiffusion between Ni catalyst and FeCr in the support. Maximum power densities of 233 and 332 mW cm(-2) were achieved at 650 and 700 degrees C, respectively, with air as oxidant. With pure oxygen as oxidant, power densities of 726, 993, and >1300 mW cm(-2) were achieved at 0.7 V at 650, 700, and 750 degrees C, respectively. Published by Elsevier B.V. C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Tucker, MC (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd,MS 62-203, Berkeley, CA 94720 USA. EM mctucker@ibi.gov NR 17 TC 102 Z9 104 U1 6 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 27 PY 2007 VL 171 IS 2 BP 477 EP 482 DI 10.1016/j.jpowsour.2007.06.076 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 219EG UT WOS:000250066900028 ER PT J AU Kuo, MC Limoges, BR Stanis, RJ Turner, JA Herring, AM AF Kuo, Mei-Chen Limoges, Bradford R. Stanis, Ronald J. Turner, John A. Herring, Andrew M. TI The use of the heteropoly acids, H5PMo10V2O40, H-7[P2W17O61(Fe-III center dot OH2) or H-12[(P2W15O56)(2)Fe-4(III)(H2O)(2)], in the anode catalyst layer of a proton exchange membrane fuel cell SO JOURNAL OF POWER SOURCES LA English DT Article DE PEM fuel cell; gas diffusion electrode; heteropoly acid; interfacial resistance; anode ID GAS-DIFFUSION ELECTRODES; HUMIDITY PEFC OPERATION; COMPOSITE MEMBRANES; ELECTROCATALYST MATERIALS; MASS-TRANSPORT; CONDUCTIVITY; COMPRESSION; PERFORMANCE; REDUCTION; IONOMER AB The use of heteropoly acids (HPAs) in PEM fuel cell anode catalyst layers was studied. To compare the doped electrodes with a control electrode in a meaningful way membrane electrode assemblies (MEAs) were prepared with two 1/2 anodes, one the undoped control and one the test electrode. This ensured that both the control and test electrode were subject to the same thermal and electrochemical history. After curve fitting the data using a least squares method the error was found to be 1% in E-0, 25% in the Tafel slope and 15% in the area specific resistance. The electrodes used were commercial electrodes of the Los Alamos type (ELATs). Doping a fuel cell anode with H5PMo10V2O40 resulted in a fourfold increase in the area specific resistance of the MEA, but the performance was not equivalent to that of an anode incorporating Nafion (R). Doping H5PMo10V2O40 in Nafion (R) painted ELATs resulted in negligible improvements in the performance compared to ELATs incorporating only Nafion (R). Much more impressive was the improvement in maximum power from doping the Nafion (R) painted ELAT with H-7[P2W17O61(Fe-III center dot OH2)] or H-12[(P2W15O56)(2)Fe-4(III)(H2O)(2)]. Eighty-five percent improvements in maximum power and 100% improvements in area specific resistance were observed from this HPA doped ELAT. (C) 2007 Elsevier B.V. All rights reserved. C1 Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. Natl Renewable Energy Lab, Hydrogen & Elect Syst & Infrastruct Grp, Golden, CO 80401 USA. RP Herring, AM (reprint author), Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. EM aherring@mines.edu RI Herring, Andy/E-7088-2010 NR 31 TC 8 Z9 8 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 27 PY 2007 VL 171 IS 2 BP 517 EP 523 DI 10.1016/j.jpowsour.2007.06.063 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 219EG UT WOS:000250066900035 ER PT J AU Wang, H Turner, JA Li, X Bhattacharya, R AF Wang, Heli Turner, John A. Li, Xiaonan Bhattacharya, Raghu TI SnO2 : F coated austenite stainless steels for PEM fuel cell bipolar plates SO JOURNAL OF POWER SOURCES LA English DT Article DE bipolar plate; stainless steel; Austenite; tin oxide; PEMFC ID ALLOYS AB Austenite stainless steels (316L, 317L, and 349 (TM)) have been coated with 0.6 mu m thick SnO2:F by low-pressure chemical vapor deposition and investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) environments. The results showed that substrate steel has a significant influence on the behavior of the coating. Coated 316L showed a steadily increasing anodic current in PEMFC environments, indicating that it is not suitable for this alloy/coating combination. Coated 349 (TM) showed a cathodic current in the PEMFC anode environment, demonstrating its stability in the PEMFC cathode environment. Coated 317L exhibited a stable anodic current after a current peak (at ca. 14 min) in the PEMFC anode environment, and showed an extremely stable low current in PEMFC cathode environment, suggesting the possibility of using SnO2:F coated 317L for PEMFC bipolar plate applications. ICP results on the corrosion solutions showed that the PEMFC anode environment is much more corrosive than the cathode one. Fresh 316L showed the highest Fe, Cr, and Ni dissolution rates, and coating with SnO2:F significantly reduced the dissolution. Coating the 317L also showed a significant beneficial effect on the corrosion resistance in the PEMFC environments. Coating 349 (TM) steel further improved the already excellent corrosion resistance of this alloy. Trace Sn ions were detected for all coated steels in PEMFC anode environment, but not in the cathode one. The influence Of SnO2:F on the interfacial contact resistance (ICR) is mixed. For 316L and 317L steels, a SnO2:F coating reduced the ICR. For 349 (TM) steel, the SnO2:F coating increased the ICR. Published by Elsevier B.V. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, H (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM heli_-wang@nrel.gov NR 23 TC 28 Z9 30 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 27 PY 2007 VL 171 IS 2 BP 567 EP 574 DI 10.1016/j.jpowsour.2007.03.086 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 219EG UT WOS:000250066900043 ER PT J AU Towne, S Viswanathan, V Holbery, J Rieke, P AF Towne, Silas Viswanathan, Vish Holbery, James Rieke, Peter TI Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology SO JOURNAL OF POWER SOURCES LA English DT Article DE inkjet; MEA; PEM; fuel cell; printing ID LOADING ELECTRODES; PLATINUM; PERFORMANCE AB Utilizing drop-on-demand technology, we have successfully fabricated hydrogen-air polymer electrolyte membrane fuel cells (PEMFC), demonstrated some of the processing advantages of this technology and have demonstrated that the performance is comparable to conventionally fabricated membrane electrode assemblies (MEAs). Commercial desktop inkjet printers were used to deposit the active catalyst electrode layer directly from print cartridges onto Nafion (R) polymer membranes in the hydrogen form. The layers were well-adhered and withstood simple tape peel, bending and abrasion tests and did so without any post deposition hot press step. The elimination of this processing step suggests that inkjet-based fabrication or similar processing technologies may provide a route to less expensive large-scale fabrication of PEMFCs. When tested in our experimental apparatus, open circuit voltages up to 0.87 V and power densities of up to 155 mW cm(-2) were obtained with a catalyst loading of 0.20 mg Pt cm(-2). A commercially available membrane under identical, albeit not optimized test conditions, showed about 7% greater power density. The objective of this work was to demonstrate some of the processing advantages of drop-on-demand technology for fabrication of MEAs. It remains to be determined if inkjet fabrication offers performance advantages or leads to more efficient utilization of expensive catalyst materials. (C) 2007 Published by Elsevier B.V. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Towne, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM silas.towne@pnl.gov NR 17 TC 32 Z9 32 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 27 PY 2007 VL 171 IS 2 BP 575 EP 584 DI 10.1016/j.jpowsour.2007.07.017 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 219EG UT WOS:000250066900044 ER PT J AU Trembly, JP Gemmen, RS Bayless, DJ AF Trembly, J. P. Gemmen, R. S. Bayless, D. J. TI The effect of coal syngas containing AsH3 on the performance of SOFCs: Investigations into the effect of operational temperature, current density and AsH3 concentration SO JOURNAL OF POWER SOURCES LA English DT Article DE solid oxide fuel cell; coal syngas; experimental performance; hydrogen chloride ID OXIDE FUEL-CELLS; METHANOL SYNTHESIS CATALYSTS; NICKEL-CATALYSTS; DEACTIVATION; ARSINE; TESTS; H2S AB The performance of solid oxide fuel cells (SOFCs) using simulated coal-derived syngas, with and without arsine (AsH3), was studied. Anode-supported SOFCs were tested galvanostatically at 0.25 and 0.5 A cm(-2) at 750 and 800 degrees C with simulated coal syngas containing 0.1, 1, and 2 ppm AsH3. The tests with simulated coal syngas containing 1 ppm AsH3 show little degradation over 100 h of operation. The tests with simulated coal syngas containing 2 ppm AsH3 show some signs of degradation, however no secondary arsenide phases were found. Extended trial testing with 0.1 ppm AsH3 showed degradation as well as the formation of a secondary nickel arsenide phase in the anode of the SOFC. Published by Elsevier B.V. C1 Natl Energy Technol Lab, Morgantown, WV 26507 USA. Ohio Univ, Dept Mech Engn, Stocker Ctr 248, Athens, OH 45701 USA. RP Trembly, JP (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM jtrembly@rti.org NR 16 TC 43 Z9 43 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 27 PY 2007 VL 171 IS 2 BP 818 EP 825 DI 10.1016/j.jpowsour.2007.06.087 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 219EG UT WOS:000250066900071 ER PT J AU Bengtsson, R Moller, P AF Bengtsson, Ragnar Moeller, Peter TI Nuclear physics - A non-disappearing magic trick SO NATURE LA English DT Editorial Material C1 Lund Univ, Lund Inst Technol, Div Math Phys, SE-22100 Lund, Sweden. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Bengtsson, R (reprint author), Lund Univ, Lund Inst Technol, Div Math Phys, Box 118, SE-22100 Lund, Sweden. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 NR 3 TC 0 Z9 0 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 27 PY 2007 VL 449 IS 7161 BP 411 EP + DI 10.1038/449411a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 214GQ UT WOS:000249724800028 PM 17898755 ER PT J AU Raty, JY Schwegler, E Bonev, SA AF Raty, Jean-Yves Schwegler, Eric Bonev, Stanimir A. TI Electronic and structural transitions in dense liquid sodium SO NATURE LA English DT Article ID MOLECULAR-DYNAMICS; PHASE-TRANSITION; HIGH-PRESSURES; ELEMENTS; LITHIUM; CESIUM; ORDER AB At ambient conditions, the light alkali metals are free-electron-like crystals with a highly symmetric structure. However, they were found recently to exhibit unexpected complexity under pressure(1-6). It was predicted from theory(1,2)-and later confirmed by experiment(3-5)-that lithium and sodium undergo a sequence of symmetry-breaking transitions, driven by a Peierls mechanism, at high pressures. Measurements of the sodium melting curve(6) have subsequently revealed an unprecedented (and still unexplained) pressure-induced drop in melting temperature from 1,000 K at 30 GPa down to room temperature at 120 GPa. Here we report results from ab initio calculations that explain the unusual melting behaviour in dense sodium. We show that molten sodium undergoes a series of pressure-induced structural and electronic transitions, analogous to those observed in solid sodium but commencing at much lower pressure in the presence of liquid disorder. As pressure is increased, liquid sodium initially evolves by assuming a more compact local structure. However, a transition to a lower-coordinated liquid takes place at a pressure of around 65 GPa, accompanied by a threefold drop in electrical conductivity. This transition is driven by the opening of a pseudogap, at the Fermi level, in the electronic density of states-an effect that has not hitherto been observed in a liquid metal. The lower-coordinated liquid emerges at high temperatures and above the stability region of a close-packed free-electron-like metal. We predict that similar exotic behaviour is possible in other materials as well. C1 Univ Liege, FNRS, B-4000 Sart Tilman Par Liege, Belgium. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Dalhousie Univ, Dept Phys, Halifax, NS B3H 3J5, Canada. RP Raty, JY (reprint author), Univ Liege, FNRS, B-4000 Sart Tilman Par Liege, Belgium. EM jyraty@ulg.ac.be; stanimir.bonev@dal.ca RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016 OI Schwegler, Eric/0000-0003-3635-7418 NR 28 TC 79 Z9 80 U1 6 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD SEP 27 PY 2007 VL 449 IS 7161 BP 448 EP 451 DI 10.1038/nature06123 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 214GQ UT WOS:000249724800037 PM 17898764 ER PT J AU McBryan, J Howlin, J Kenny, PA Shioda, T Martin, F AF McBryan, J. Howlin, J. Kenny, P. A. Shioda, T. Martin, F. TI ER alpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis SO ONCOGENE LA English DT Article DE mammary gland; puberty; development; CITEDI; ER alpha ID DUCTAL MORPHOGENESIS; BRANCHING MORPHOGENESIS; EPITHELIAL-CELLS; IN-VIVO; GROWTH; CITED1; TRANSCRIPTION; PROTEINS; REVEALS; DIFFERENTIATION AB Expression microarray analysis identified over 930 genes regulated during puberty in the mouse mammary gland. Most prominent were genes whose expression increased in parallel with pubertal development and remained high thereafter. Members of the Wnt, transforming growth factor-beta and oestrogen-signalling pathways were significantly overrepresented. Comparison to expression data from CITED1 knockout mice identified a subset of oestrogen-responsive genes displaying altered expression in the absence of CITED1. Included in this subset are stanniocalcin2 (Stc2) and amphiregulin (Areg). Chromatin immunoprecipitation revealed that ER alpha binds to oestrogen response elements in both the Stc2 and Areg genes in the mammary gland during puberty. Additionally, CITED1 and ER alpha localize to the same epithelial cells of the pubertal mammary gland, supporting a role for interaction of these two proteins during normal development. In a human breast cancer data set, expression of Stc2, Areg and CITED1 parallel that of ER alpha. Similar to ERa, CITED1 expression correlates with good outcome in breast cancer, implying that potential maintenance of the ER alpha-CITED1 co-regulated signalling pathwayin breast tumours can indicate good prognosis. C1 Univ Coll Dublin, Conway Inst, UCD Sch Biomol & Biomed Sci, Dublin 4, Ireland. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Massachusetts Gen Hosp, Ctr Canc, Lab Tumour Biol, Charlestown, MA USA. RP Martin, F (reprint author), Univ Coll Dublin, Conway Inst, UCD Sch Biomol & Biomed Sci, Dublin 4, Ireland. EM finian.martin@ucd.ie RI Kenny, Paraic/A-3120-2008; Howlin, Jill /G-9665-2011; OI Howlin, Jill /0000-0002-2766-3002; McBryan, Jean/0000-0002-7568-2208 NR 45 TC 32 Z9 32 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD SEP 27 PY 2007 VL 26 IS 44 BP 6406 EP 6419 DI 10.1038/sj.onc.1210468 PG 14 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 214KY UT WOS:000249737600005 PM 17486082 ER PT J AU Goodwin, MB Grant, PG Bench, G Holroyd, PA AF Goodwin, Mark B. Grant, Patrick G. Bench, Graham Holroyd, Patricia A. TI Elemental composition and diagenetic alteration of dinosaur bone: Distinguishing micron-scale spatial and compositional heterogeneity using PIXE SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE dinosaur bone; Mesozoic reptiles; diagenesis; trace elements; elemental composition; PIXE ID VERTEBRATE ASSEMBLAGES; CELLULAR PRESERVATION; ISOTOPIC COMPOSITION; TYRANNOSAURUS-REX; CHEMICAL-ANALYSIS; SOFT-TISSUE; FOSSIL BONE; MICROPROBE; ENAMEL; TRACE AB Proton Induced X-ray Emission (PIXE) analysis of thirteen Late Cretaceous (hadrosaurid, tyrarnnosaurid, and Tyrannosaurus) and Early Jurassic (Dilophosaurus) dinosaur bones, two Late Cretaceous crocodylians, one plesiosaur, and three modem archosaurs (Rhea and Caiman), documents micron-scale diagenetic patterns of elemental uptake and loss. PIXE detected Al, Si, P, S, Cl, K, Ca, Ba, Mn, Fe, Sr, Y, and Nd at levels > 1000 ppm; and Ti, Cr, Ni, Zn, As, Zr, and U at trace amounts < 1000 ppm. PIXE interrogation with a 1.5 gm diameter beam revealed a diagenetic pattern of significant Fe (180,000 ppm) and Mn (13,000 ppm) enrichment, with a corresponding loss of Ca and to a lesser degree P, within micron-scale regions in the Haversian system of compact dinosaur bone. Elemental composition of bone mineral immediately adjacent to the annuli surrounding a Haversian canal was depleted by approximately 90% in Fe and Mn, but showed a 50% increase in Ca ppm. Calcium levels in the fossils vary from 57% to 95% concentration of modem bone. Phosphorous levels in some dinosaur bone bioapatite are > 100% of modem. This enrichment may reflect the migration of Ca and P between the hydroxylapatite matrix and the surrounding sediment after death, resulting in early diagenetie loss followed by uptake and recrystallization on crystallite surfaces. The elemental composition of fossil bone from the Early Jurassic dinosaur Dilophosaurus is distinguished by elevated As ppm, generally not present in the Late Cretaceous dinosaurs. We suggest that As is adsorbed from the reductive dissolution of As-rich iron oxyhydroxides in the local aquifer and is not reflective of Mesozoic atmospheric conditions or arsenic toxicosis in dinosaurs. PIXE allows us to reaffirm that the histological structure, tissue density, and high surface area of the vascular canals of dinosaur Haversian bone affect postmortem elemental enrichment and depletion and to quantify these differences at scales as small as 1.5 gm. Published by Elsevier B.V. C1 Museum Paleontol, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Goodwin, MB (reprint author), Museum Paleontol, 1101 Valley Life Sci Bldg, Berkeley, CA 94720 USA. EM mark@berkeley.edu; pggrant@llnl.gov; bench1@llnl.gov; photroyd@berkeley.edu OI Holroyd, Patricia/0000-0003-1292-6356 NR 91 TC 23 Z9 24 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD SEP 27 PY 2007 VL 253 IS 3-4 BP 458 EP 476 DI 10.1016/j.palaeo.2007.06.017 PG 19 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA 221VL UT WOS:000250255400012 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Beaalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, I Cihangir, S Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimv, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grundahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanacaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Lashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafert, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasperb, J Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kothari, B Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lam, D Lammers, S Landsberg, G Lazoflores, J Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Lesne, V Leveque, J Lewis, P Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mdttig, P Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smimov, D Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Surnowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Telford, P Temple, J Tiller, B Tissandier, E Titov, M Tokmenin, VV Tornoto, M Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van den Berg, P Van Eiik, B van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Von Toerne, E Voutilainen, M Vreeswijk, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, A Weber, G Weber, A Weerts, H Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, I Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A.-F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Beaalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, I. Cihangir, S. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, P. de Jong, S. J. De la Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimv, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J.-F. Grohsjean, A. Gruendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanacaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Lashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefert, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasperb, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J.-P. Kopal, M. Korablev, V. M. Kothari, B. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Mdttig, P. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M.-A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M.-E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smimov, D. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Surnowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Telford, P. Temple, J. Tiller, B. Tissandier, E. Titov, M. Tokmenin, V. V. Tornoto, M. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, Pt van Eiik, B. van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, A. Weber, G. Weber, A. Weerts, H. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, I. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Z gamma production and limits on anomalous ZZ gamma and Z gamma gamma couplings in pp collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID GAUGE-BOSON COUPLINGS; HADRON COLLIDERS; LEP AB We present a study of eey and mu mu gamma events using 1109 (1009) pb-(1) of data in the electron (muon) channel, respectively. These data were collected with the DO detector at the Fermilab Tevatron pp collider at Is = 1.96 TeV. Having observed 453 (515) candidates in the eey (jtAy) final state, we measure the Z gamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta Rey > 0.7, and invariant mass of the di-lepton pair Mee > 30 GeV/(2)(c), to be 4.96 0.30(stat. + syst.) zE 0.30(lumi.) pb, in agreement with the Standard Model prediction of 4.74 0.22 pb. This is the most precise Zy cross section measurement at a hadron collider. We set limits on anomalous trilinear Zyy and ZZy gauge boson couplings of -0.085 < h(30)(y) < 0.084, -0.0053 < h(40)(y) < 0.0054 and -0.083 < h(30)(Z) < 0.082, 30 40 30 -0.0053 < h(40)(Z) < 0.0054 at the 95% C.L. for the form-factor scale A = 1.2 TeV. 40 Published by Elsevier B.V. C1 Kansas State Univ, Manhattan, KS 66506 USA. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. York Univ, Toronto, ON M3J 2R7, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Univ Alberta, Edmonton, AB, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ Prague, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, Phys Corpusculaire Lab, CNRS, IN2P3, Clermont Ferrand, France. Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. Univ Aix Marseille 2, CPPM, CNRS, IN2P3, Marseille, France. CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France. Univ Paris 11, Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. CEA Saclay, Serv Phys Particules, DAPNIA, Gif Sur Yvette, France. Univ Strasbourg 1, IPHC, Strasbourg, France. Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. Univ Lyon, Lyon, France. Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Inst NIKHEF, FOM, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Ferapontov, AV (reprint author), Kansas State Univ, Manhattan, KS 66506 USA. EM aferapon@fnal.gov RI Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Telford, Paul/B-6253-2011; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805 NR 21 TC 28 Z9 28 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 27 PY 2007 VL 653 IS 5-6 BP 378 EP 386 DI 10.1016/j.phvsletb.2007.08.035 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 222FT UT WOS:000250282200002 ER PT J AU Ligeti, Z Tackmann, FJ AF Ligeti, Zoltan Tackmann, Frank J. TI Precise predictions for B -> X(S)l(+)l(-) in the large q(2) region SO PHYSICS LETTERS B LA English DT Article ID UB-VERTICAL-BAR; INCLUSIVE SEMILEPTONIC-B; DILEPTON INVARIANT MASS; V-UB; NONPERTURBATIVE CORRECTIONS; STANDARD MODEL; EXCLUSIVE B; D DECAYS; QCD; LOGARITHMS AB The inclusive B ->-> X(s)e(+)e- decay rate in the large q(2) region (q(2) > m(2),) receives significant nonperturbative corrections. The resulting V/ uncertainties can be drastically reduced by normalizing the rate to the B ->-> X, e 0 rate with the same q2 cut, which allows for much improved tests of short distance physics. We calculate this ratio, including the order 1/m(b)(3) nonperturbative corrections and the analytically known NNLO perturbative corrections. Since in the large q2 region an inclusive measurement may be feasible via a sum over exclusive states, our results could be useful for measurements at LHCb and possibly for studies of B X-d(e)e+-. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ligeti, Z (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM zligeti@lbl.gov NR 63 TC 23 Z9 23 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 27 PY 2007 VL 653 IS 5-6 BP 404 EP 410 DI 10.1016/j.physletb.2007.07.070 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 222FT UT WOS:000250282200006 ER PT J AU Mukhopadhyay, S Tsang, YW Birkholzer, JT AF Mukhopadhyay, Sumit Tsang, Yvonne W. Birkholzer, Jens T. TI Estimation of field-scale thermal conductivities of unsaturated rocks from in situ temperature data SO WATER RESOURCES RESEARCH LA English DT Article ID HEAT-TRANSFER; FLOW AB A general approach is presented here that allows estimation of field-scale thermal properties of unsaturated rock using temperature data collected from in situ heater tests. The approach is used to determine the thermal conductivities of the host rock of the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST was designed to obtain thermal, hydrological, mechanical, and chemical (THMC) data at Yucca Mountain. Sophisticated numerical models have been developed to analyze these THMC data. However, though the objective of those models was to analyze "field-scale'' ( of the order of tens of meters) THMC data, thermal conductivities measured from "laboratory-scale'' core samples have been used as input parameters. While using laboratory-scale thermal conductivity values in field-scale models can be justified, such applications introduce uncertainties in model predictions. Temperature data from the DST provide an opportunity to resolve some of these uncertainties. These temperature data can be used to estimate the thermal conductivity of the DST rock, and given the large volume of rock affected by heating at the DST, such an estimate will be a reliable thermal conductivity value for field-scale application. An analytical solution is developed for the temperature rise in the DST rock; and using a nonlinear fitting routine, a best fit estimate of field-scale thermal conductivity is obtained. Temperature data from the DST show evidence of a below-boiling zone ( wet) and an above-boiling zone ( dry). Estimates of thermal conductivity for both these zones are obtained in this paper. Sensitivity of these estimates to the input heating power is also investigated. The estimated thermal conductivity values are compared with core measurements and those estimated from geostatistical simulations. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Mukhopadhyay, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM smukhopadhyay@lbl.gov RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 NR 25 TC 3 Z9 3 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 27 PY 2007 VL 43 IS 9 AR W09418 DI 10.1029/2006WR005283 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 216CX UT WOS:000249856600001 ER PT J AU Tomasi, D Goldstein, RZ Telang, F Maloney, T Alia-Klein, N Caparelli, EC Volkow, ND AF Tomasi, D. Goldstein, R. Z. Telang, F. Maloney, T. Alia-Klein, N. Caparelli, E. C. Volkow, N. D. TI Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence SO BRAIN RESEARCH LA English DT Article DE cocaine withdrawal; function MRI; PET ID POSITRON-EMISSION-TOMOGRAPHY; RAT PREFRONTAL CORTEX; CEREBRAL-BLOOD-FLOW; ACOUSTIC NOISE; DOPAMINERGIC MODULATION; NICOTINE WITHDRAWAL; PARKINSONS-DISEASE; DEPENDENT SUBJECTS; ATTENTION TASKS; 4 TESLA AB Cocaine abstinence is associated with impaired performance in cognitive functions including attention, vigilance and executive function. Here we test the hypothesis that cognitive dysfunction during cocaine abstinence reflects in part impairment of cortical and subcortical regions modulated by dopamine. We used functional magnetic resonance imaging (fMRI) to study brain activation to a verbal working memory task in cocaine abusers (n=16) and healthy controls (n=16). Compared to controls, cocaine abusers showed: (1) hypoactivation in the mesencephalon, where dopamine neurons are located, as well as the thalamus, a brain region involved in arousal; (2) larger deactivation in dopamine projection regions (putamen, anterior cingulate, parahippocampal gyrus, and amygdala); and (3) hyperactivation in cortical regions involved with attention (prefrontal and parietal cortices), which probably reflects increased attention and control processes as compensatory mechanisms. Furthermore, the working memory load activation was lower in the prefrontal and parietal cortices in cocaine abusers when compared with controls, which might reflect limited network capacity. These abnormalities were accentuated in the cocaine abusers with positive urines for cocaine at time of study (as compared to cocaine abusers with negative urines) suggesting that the deficits may reflect in part early cocaine abstinence. These findings provide evidence of impaired function of regions involved with executive control, attention and vigilance in cocaine abusers. This widespread neurofunctional disruption is likely to underlie the cognitive deficits during early cocaine abstinence and to reflect involvement of dopamine as well as other neurotransmitters. Published by Elsevier B.V. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. Natl Inst Drug Abuse, Bethesda, MD USA. RP Tomasi, D (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM tomasi@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU NCRR NIH HHS [GCRC 5 M01 RR10710, M01 RR010710]; NIDA NIH HHS [1 K23 DA15517-01, K23 DA015517, R03 DA017070, R03 DA017070-01] NR 47 TC 71 Z9 71 U1 4 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0006-8993 J9 BRAIN RES JI Brain Res. PD SEP 26 PY 2007 VL 1171 BP 83 EP 92 DI 10.1016/j.brainres.2007.06.102 PG 10 WC Neurosciences SC Neurosciences & Neurology GA 222IH UT WOS:000250289100009 PM 17765877 ER PT J AU Sanati, M West, D Albers, RC AF Sanati, M. West, D. Albers, R. C. TI First-principles study of omega-phase formation in the Ti3Al2V system SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AL-V ALLOYS; TI-AL; MOLECULAR-DYNAMICS; PSEUDOPOTENTIALS; METALS AB Using first-principles methods, the phase stability of the underlying bodycentered-cubic (bcc) structure of Ti3Al2V and slightly rearranged atomic structures are investigated. The calculated ground-state energies show an instability in the ternary Ti3Al2V alloy with respect to the omega structure-type atomic displacement. A Mulliken population analysis shows strong bonding between the transition metals and Al. It is shown that Ti-Al is the strongest bond and that omega-type displacements increase the population overlap for this bond and reduce the energy of the system. The first-principles calculations are extended to finite temperature and various contributions to the free energy are calculated within the quasiharmonic approximation. It is shown that, at high temperatures, the bcc structure is stabilized by the contribution of the low-energy modes to lattice entropy. In agreement with experiment and in contrast to the Ti-Al-Nb system, we find that the metastable B8(2) structure cannot form in this alloy. C1 Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sanati, M (reprint author), Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. RI West, Damien/F-8616-2012 OI West, Damien/0000-0002-4970-3968 NR 35 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 26 PY 2007 VL 19 IS 38 AR 386221 DI 10.1088/0953-8984/19/38/386221 PG 10 WC Physics, Condensed Matter SC Physics GA 207MO UT WOS:000249255400023 ER PT J AU Ivanov, SA Piryatinski, A Nanda, J Tretiak, S Zavadil, KR Wallace, WO Werder, D Klimov, VI AF Ivanov, Sergei A. Piryatinski, Andrei Nanda, Jagjit Tretiak, Sergei Zavadil, Kevin R. Wallace, William O. Werder, Don Klimov, Victor I. TI Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CORE-SHELL NANOCRYSTALS; QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; SHAPE CONTROL; STIMULATED-EMISSION; CDSE NANOCRYSTALS; OPTICAL GAIN; HETEROSTRUCTURES; CONFINEMENT; LIGHT AB We report a two-step synthesis of highly luminescent CdS/ZnSe core/shell nanocrystals (emission quantum yields up to 50%) that can produce efficient spatial separation of electrons and holes between the core and the shell (type-II localization regime). Our synthesis involves fabrication of cubic-singony CdS core particles that are subsequently overcoated with a layer of ZnSe in the presence of surfactant-ligands in a noncoordinating solvent. Studies of different growth regime of the ZnSe shell indicate that one approach to obtaining high emission efficiencies is through alloying the CdS/ZnSe interface with CdSe, which leads to the formation of an intermediate ZnCdSe layer with a graded composition. We perform theoretical modeling of these core/shell nanocrystals using effective mass approximation and applying first-order perturbation theory for treating both direct electron-hole coupling and the core/shell interface-polarization effects. Using this model we determine the range of geometrical parameters of the core/shell structures that result in a type-II localization regime. We further applied this model to evaluate the degree of electron-hole spatial separation (quantified in terms of the electron-hole overlap integral) based on measured emission wavelengths. We also discuss the potential applicability of these nanocrystals in lasing technologies and specifically the possibility of single-exciton optical gain in type-II nanostructures. C1 Los Alamos Natl Lab, C PCS, Div Chem, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ivanov, SA (reprint author), Los Alamos Natl Lab, C PCS, Div Chem, Los Alamos, NM 87545 USA. EM Ivanov@lanl.gov; Klimov@lanl.gov RI Piryatinski, Andrei/B-5543-2009; Ivanov, Sergei/B-5505-2011; Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; Klimov, Victor/0000-0003-1158-3179 NR 45 TC 239 Z9 246 U1 12 U2 139 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 26 PY 2007 VL 129 IS 38 BP 11708 EP 11719 DI 10.1021/ja068351m PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 213UY UT WOS:000249693800020 PM 17727285 ER PT J AU Beckstrom-Sternberg, SM Auerbach, RK Godbole, S Pearson, JV Beckstrom-Sternberg, JS Deng, ZM Munk, C Kubota, K Zhou, Y Bruce, D Noronha, J Scheuermann, RH Wang, AH Wei, XY Wang, JJ Hao, J Wagner, DM Brettin, TS Brown, N Gilna, P Keim, PS AF Beckstrom-Sternberg, Stephen M. Auerbach, Raymond K. Godbole, Shubhada Pearson, John V. Beckstrom-Sternberg, James S. Deng, Zuoming Munk, Christine Kubota, Kristy Zhou, Yan Bruce, David Noronha, Jyothi Scheuermann, Richard H. Wang, Aihui Wei, Xianying Wang, Jianjun Hao, Jicheng Wagner, David M. Brettin, Thomas S. Brown, Nancy Gilna, Paul Keim, Paul S. TI Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis SO PLOS ONE LA English DT Article AB Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred to as A.I and A.II. The biological significance of the A.I - A.II genetic differentiation is unknown, though there are suggestive ecological and epidemiological correlations. In order to understand the differentiation at the genomic level, we have determined the complete sequence of an A.II strain (WY96-3418) and compared it to the genome of Schu S4 from the A.I population. We find that this A.II genome is 1,898,476 bp in size with 1,820 genes, 1,303 of which code for proteins. While extensive genomic variation exists between "WY96'' and Schu S4, there is only one whole gene difference. This one gene difference is a hypothetical protein of unknown function. In contrast, there are numerous SNPs (3,367), small indels (1,015), IS element differences (7) and large chromosomal rearrangements (31), including both inversions and translocations. The rearrangement borders are frequently associated with IS elements, which would facilitate intragenomic recombination events. The pathogenicity island duplicated regions (DR1 and DR2) are essentially identical in WY96 but vary relative to Schu S4 at 60 nucleotide positions. Other potential virulence-associated genes (231) varied at 559 nucleotide positions, including 357 non-synonymous changes. Molecular clock estimates for the divergence time between A.I and A.II genomes for different chromosomal regions ranged from 866 to 2131 years before present. This paper is the first complete genomic characterization of a member of the A.II clade of Francisella tularensis subsp. tularensis. C1 [Beckstrom-Sternberg, Stephen M.; Hao, Jicheng; Keim, Paul S.] Translat Genom Res Inst, Pathogen Genom Div, Phoenix, AZ USA. [Beckstrom-Sternberg, Stephen M.; Auerbach, Raymond K.; Beckstrom-Sternberg, James S.; Wagner, David M.; Keim, Paul S.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Godbole, Shubhada; Noronha, Jyothi; Scheuermann, Richard H.] Univ Texas SW Med Ctr Dallas, BioHlth Base, Dallas, TX 75390 USA. [Pearson, John V.] Translat Genom Res Inst, Neurogenom Div, Phoenix, AZ USA. [Deng, Zuoming; Wang, Aihui; Wei, Xianying; Wang, Jianjun] Northrop Grumman Informat Technol, BioHealthBase, Rockville, MD USA. [Munk, Christine; Bruce, David; Brettin, Thomas S.; Brown, Nancy; Gilna, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Munk, Christine; Bruce, David; Brettin, Thomas S.; Brown, Nancy; Gilna, Paul] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Kubota, Kristy; Zhou, Yan] Ctr Dis Control & Prevent, Ft Collins, CO USA. RP Keim, PS (reprint author), Translat Genom Res Inst, Pathogen Genom Div, Phoenix, AZ USA. EM Paul.Keim@nau.edu RI Wagner, David/A-5125-2010; Keim, Paul/A-2269-2010; Gilna, Paul/I-3608-2016; Pearson, John/F-2249-2011; OI Gilna, Paul/0000-0002-6542-0191; Pearson, John/0000-0003-0904-4598; Scheuermann, Richard/0000-0003-1355-892X FU Cowden Endowment for Microbiology NAU; NIAID/NIH [HHSN266200400041C]; ADB [N01-AI-40041] FX PSK was supported by The Cowden Endowment for Microbiology NAU. SG, ZD, JN, RS, AW, XW, and JW were supported by NIAID/NIH Contract Number: HHSN266200400041C, ADB Contract Number: N01-AI-40041. Genome sequencing was funded by the Intelligence Technology Innovation Center. NR 40 TC 35 Z9 36 U1 1 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 26 PY 2007 VL 2 IS 9 AR e947 DI 10.1371/journal.pone.0000947 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V10HT UT WOS:000207455800026 PM 17895988 ER PT J AU Makarova, KS Omelchenko, MV Gaidamakova, EK Matrosova, VY Vasilenko, A Zhai, M Lapidus, A Copeland, A Kim, E Land, M Mavromatis, K Pitluck, S Richardson, PM Detter, C Brettin, T Saunders, E Lai, B Ravel, B Kemner, KM Wolf, YI Sorokin, A Gerasimova, AV Gelfand, MS Fredrickson, JK Koonin, EV Daly, MJ AF Makarova, Kira S. Omelchenko, Marina V. Gaidamakova, Elena K. Matrosova, Vera Y. Vasilenko, Alexander Zhai, Min Lapidus, Alla Copeland, Alex Kim, Edwin Land, Miriam Mavromatis, Konstantinos Pitluck, Samuel Richardson, Paul M. Detter, Chris Brettin, Thomas Saunders, Elizabeth Lai, Barry Ravel, Bruce Kemner, Kenneth M. Wolf, Yuri I. Sorokin, Alexander Gerasimova, Anna V. Gelfand, Mikhail S. Fredrickson, James K. Koonin, Eugene V. Daly, Michael J. TI Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks SO PLOS ONE LA English DT Article ID STRAND ANNEALING PROTEINS; ESCHERICHIA-COLI; IONIZING-RADIATION; DNA-DAMAGE; COMPARATIVE GENOMICS; RADIODURANS R1; TRANSCRIPTIONAL REGULATORS; TARGETED MUTAGENESIS; BACILLUS-SUBTILIS; CRYOELECTRON MICROSCOPY AB Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis. C1 [Makarova, Kira S.; Omelchenko, Marina V.; Wolf, Yuri I.; Sorokin, Alexander; Koonin, Eugene V.] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA. [Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Daly, Michael J.] Uniformed Serv Univ Hlth Sci, Dept Pathol, Bethesda, MD 20814 USA. [Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavromatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Detter, Chris; Brettin, Thomas; Saunders, Elizabeth] Los Alamos Natl Lab, US Dept Energy, Joint Genome Inst, Los Alamos, NM USA. [Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.] Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA. [Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Gerasimova, Anna V.] Res Inst Genet & Select Ind Microorganisms, Moscow, Russia. [Gelfand, Mikhail S.] RAS, Inst Informat Transmiss Problems, Moscow 117901, Russia. [Gelfand, Mikhail S.] Moscow MV Lomonosov State Univ, Fac Bioengn & Bioinformat, Moscow, Russia. [Fredrickson, James K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Makarova, KS (reprint author), NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bldg 10, Bethesda, MD 20892 USA. EM makarova@ncbi.nlm.nih.gov; mdaly@usuhs.mil RI Land, Miriam/A-6200-2011; Gelfand, Mikhail/F-3425-2012; Lapidus, Alla/I-4348-2013 OI Land, Miriam/0000-0001-7102-0031; Lapidus, Alla/0000-0003-0427-8731 FU National Institutes of Health; National Library of Medicine; USUHS [DE-FG02-04ER63918]; U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research; Environmental Remediation Sciences Program (ERSP); Air Force Office of Scientific Research [FA9550-07-1-0218]; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Howard Hughes Medical Institute [55005610]; INTAS [05-8028]; Molecular and Cellular Virology program of the Russian Academy of Sciences FX The work of KSM, MVO, YIW, AS, and EVK was supported by the Intramural Research Program of the National Institutes of Health, National Library of Medicine. The work at USUHS was supported by grant DE-FG02-04ER63918 to MJD from the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER), Environmental Remediation Sciences Program (ERSP); and by grant FA9550-07-1-0218 to MJD from the Air Force Office of Scientific Research. The work at the DOE-Joint Genome Institute was supported by the DOE Office of Science. Work at the Advanced Photon Source was supported by the DOE Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work of MSG and AVG was supported by grants from the Howard Hughes Medical Institute (55005610), INTAS (05-8028), and the Molecular and Cellular Virology program of the Russian Academy of Sciences. D. geothermalis was selected for genome sequencing by BER (http://www.science. doe.gov/ober/RFS-2.pdf) with MJD as the Principal Investigator. NR 171 TC 89 Z9 94 U1 4 U2 26 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 26 PY 2007 VL 2 IS 9 AR e955 DI 10.1371/journal.pone.0000955 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V10HT UT WOS:000207455800033 PM 17895995 ER PT J AU Schull, MA Ganguly, S Samanta, A Huang, D Shabanov, NV Jenkins, JP Chiu, JC Marshak, A Blair, JB Myneni, RB Knyazikhin, Y AF Schull, M. A. Ganguly, S. Samanta, A. Huang, D. Shabanov, N. V. Jenkins, J. P. Chiu, J. C. Marshak, A. Blair, J. B. Myneni, R. B. Knyazikhin, Y. TI Physical interpretation of the correlation between multi-angle spectral data and canopy height SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RADIATION; COVER; MODIS; MISR; INVARIANTS; SCALES; MODEL; LIDAR; LEAF AB Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally. C1 Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. NASA, Goddard Space Flight Ctr, Laser Remote Sensing Lab, Greenbelt, MD 20771 USA. Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. Univ New Hampshire, Complex Syst Res Ctr, Durham, NH 03824 USA. NASA, Goddard Space Flight Ctr, Climate & Radiat Branch, Greenbelt, MD 20771 USA. Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21201 USA. RP Schull, MA (reprint author), Boston Univ, Dept Geog & Environm, 675 Commonwealth Ave, Boston, MA 02215 USA. EM schull@bu.edu; sganguly@bu.edu; arindam@bu.edu; dhuang@bnl.gov; shabanov@bu.edu; julian.jenkins@unh.edu; cchiu@climate.gsfc.nasa.gov; alexander.marshak@nasa.gov; james.b.blair@nasa.gov; rmyneni@bu.edu; jknjazi@bu.edu RI Schull, Mitch/D-1663-2010; Samanta, Arindam/B-9550-2009; Khachadourian, Diana/C-8513-2012; Marshak, Alexander/D-5671-2012; Blair, James/D-3881-2013; Chiu, Christine/E-5649-2013; Huang, Dong/H-7318-2014; ganguly, sangram/B-5108-2010; Myneni, Ranga/F-5129-2012 OI Chiu, Christine/0000-0002-8951-6913; Huang, Dong/0000-0001-9715-6922; NR 28 TC 23 Z9 24 U1 3 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 25 PY 2007 VL 34 IS 18 AR L18405 DI 10.1029/2007GL031143 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 216AS UT WOS:000249850700004 ER PT J AU Mahon, PJ Feldberg, SHW AF Mahon, Peter J. Feldberg, Ste Hen W. TI Simulations of cyclic voltammetric and chronoamperometric electrode responses at a disk electrode using combinations of spherical and cylindrical electrode geometries SO LANGMUIR LA English DT Article ID ATTAINING EXPONENTIAL CONVERGENCE; FINITE-DIFFERENCE EQUATIONS; DIFFUSION-LIMITED CURRENT; MICRODISK ELECTRODES; STEADY-STATE; FLUX ERROR; ELECTROCHEMICAL PROCESSES; EFFICIENT SIMULATION; DIGITAL SIMULATIONS; CHEMICAL-REACTIONS AB Using geometric models based on one-dimensional transport at spheres and cylinders, three methods for improving the simulation of voltammetric behavior of a disk electrode have been explored. One method is based on the common assumption of equivalency between the limiting currents for a disk and a hemisphere under steady-state diffusion conditions. The second method involves the use of a partial-sphere geometry which is a better approximation that is suitable at the extreme diffusional limits achievable at a disk electrode of fully planar and steady-state transport. The third method, which is generally applicable, is a further refinement that uses a combination of appropriate one-dimensional spherical and cylindrical geometries. The results demonstrate that reasonably accurate approximations of disk behavior for several reaction mechanisms can be achieved in a fraction of the time required to compute the more rigorous two-dimensional model. We propose that the approximation serve primarily as a fast way to explore system behavior and establish approximate values of the relevant parameters. More accurate computations can then be performed using the two-dimensional model. C1 Swinburne Univ Technol, Fac Life & Social Sci, Hawthorn, Vic 3122, Australia. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Mahon, PJ (reprint author), Swinburne Univ Technol, Fac Life & Social Sci, Hawthorn, Vic 3122, Australia. EM pmahon@swin.edu.au RI Mahon, Peter/H-1967-2013 NR 50 TC 3 Z9 3 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 25 PY 2007 VL 23 IS 20 BP 10380 EP 10388 DI 10.1021/la701186k PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 211YL UT WOS:000249560100062 PM 17725370 ER PT J AU Daidone, I Ulmschneider, MB Di Nola, A Amadei, A Smith, JC AF Daidone, Isabella Ulmschneider, Martin B. Di Nola, Alfredo Amadei, Andrea Smith, Jeremy C. TI Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hydrophobicity; hydration density; molecular dynamics simulation; explicit and implicit solvent model; beta-hairpin ID MOLECULAR-DYNAMICS SIMULATIONS; GENERALIZED BORN MODELS; HYDROGEN-BOND DYNAMICS; ALPHA-HELICAL PEPTIDES; 3-STRANDED BETA-SHEET; FREE-ENERGY LANDSCAPE; PROTEIN DYNAMICS; HAIRPIN PEPTIDE; LIQUID WATER; MONTE-CARLO AB Recent work has shown that the nature of hydration of pure hydrophobic surfaces changes with the length scale considered: water hydrogen-bonding networks adapt to small exposed hydrophobic species, hydrating or "wetting" them at relatively high densities, whereas larger hydrophobic areas are "dewetted" [Chandler ID (2005), Nature 29:640-647]. Here we determine whether this effect is also present in peptides by examining the folding of a beta-hairpin (the 14-residue amyloidogenic prion protein H1 peptide), using microsecond time-scale molecular dynamics simulations. Two simulation models are compared, one explicitly including the water molecules, which may thus adapt locally to pepticle configurations, and the other using a popular continuum approximation, the generalized Born/surface area implicit solvent model. The results obtained show that, in explicit solvent, pepticle conformers with high solvent-accessible hydrophobic surface area indeed also have low hydration density around hydrophobic residues, whereas a concomitant higher hydration density around hydrophilic residues is observed. This dewetting effect stabilizes the fully folded p-hairpin state found experimentally. In contrast, the implicit solvent model destabilizes the fully folded hairpin, tending to cluster hydrophobic residues regardless of the size of the exposed hydrophobic surface. Furthermore, the rate of the conformational transitions in the implicit solvent simulation is almost doubled with respect to that of the explicit solvent. The results suggest that dehydration-cl riven solvent exposure of hydrophobic surfaces may be a significant factor determining pepticle conformational equilibria. C1 Univ Heidelberg, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany. Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy. Univ Roma Tor Vergata, Dept Chem Sci & Technol, I-00133 Rome, Italy. Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Smith, JC (reprint author), Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. EM smithjc@ornl.gov RI smith, jeremy/B-7287-2012; Ulmschneider, Martin/J-4374-2012; OI smith, jeremy/0000-0002-2978-3227; amadei, andrea/0000-0001-9488-0536 FU Wellcome Trust NR 64 TC 55 Z9 56 U1 1 U2 19 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 25 PY 2007 VL 104 IS 39 BP 15230 EP 15235 DI 10.1073/pnas.0701401104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 215KJ UT WOS:000249806900013 PM 17881585 ER PT J AU Santer, BD Mears, C Wentz, FJ Taylor, KE Gleckler, PJ Wigley, TML Barnett, TP Boyle, JS Bruggemann, W Gillett, NP Klein, SA Meehl, GA Nozawa, T Pierce, DW Stott, PA Washington, WM Wehner, MF AF Santer, B. D. Mears, C. Wentz, F. J. Taylor, K. E. Gleckler, P. J. Wigley, T. M. L. Barnett, T. P. Boyle, J. S. Brueggemann, W. Gillett, N. P. Klein, S. A. Meehl, G. A. Nozawa, T. Pierce, D. W. Stott, P. A. Washington, W. M. Wehner, M. F. TI Identification of human-induced changes in atmospheric moisture content SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE climate change; climate modeling; detection and attribution; water vapor ID WATER-VAPOR; CLIMATE; TEMPERATURE; FEEDBACK; PINATUBO; TRENDS; CYCLE AB Data from the satellite-based Special Sensor Microwave Imager (SSM/I) show that the total atmospheric moisture content over oceans has increased by 0.41 kg/m(2) per decade since 1988. Results from current climate models indicate that water vapor increases of this magnitude cannot be explained by climate noise alone. In a formal detection and attribution analysis using the pooled results from 22 different climate models, the simulated "fingerprint" pattern of anthropogenically caused changes in water vapor is identifiable with high statistical confidence in the SSM/I data. Experiments in which forcing factors are varied individually suggest that this fingerprint "match" is primarily due to human caused increases in greenhouse gases and not to solar forcing or recovery from the eruption of Mount Pinatubo. Our findings provide preliminary evidence of an emerging anthropogenic signal in the moisture content of earth's atmosphere. C1 Lawrence Livermore Natl Lab, Program Climat Model Diag & Intercomparison, Livermore, CA 94550 USA. Natl Ctr Atmospher Res, Boulder, CO 80307 USA. Remote Sensing Syst, Santa Rosa, CA 95401 USA. Scripps Inst Oceanog, La Jolla, CA 92037 USA. Univ Hamburg, Inst Unternehmensforsch, D-20146 Hamburg, Germany. Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. United Kingdom Meteorol, Hadley Ctr Climate Predict & Res, Exeter EX1 3PB, Devon, England. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Santer, BD (reprint author), Lawrence Livermore Natl Lab, Program Climat Model Diag & Intercomparison, Livermore, CA 94550 USA. EM santer1@llnl.gov RI Taylor, Karl/F-7290-2011; Santer, Benjamin/F-9781-2011; Gleckler, Peter/H-4762-2012; Klein, Stephen/H-4337-2016; Stott, Peter/N-1228-2016 OI Taylor, Karl/0000-0002-6491-2135; Gleckler, Peter/0000-0003-2816-6224; Klein, Stephen/0000-0002-5476-858X; Stott, Peter/0000-0003-4853-7686 NR 29 TC 138 Z9 144 U1 2 U2 36 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 25 PY 2007 VL 104 IS 39 BP 15248 EP 15253 DI 10.1073/pnas.0702872104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 215KJ UT WOS:000249806900016 PM 17881573 ER PT J AU Wilson, SD Li, SL Zhao, J Mu, G Wen, HH Lynn, JW Freeman, PG Regnault, LP Habicht, K Dai, PC AF Wilson, Stephen D. Li, Shiliang Zhao, Jun Mu, Gang Wen, Hai-Hu Lynn, Jeffrey W. Freeman, Paul G. Regnault, Louis-Pierre Habicht, Klaus Dai, Pengcheng TI Quantum spin correlations through the superconducting-to-normal phase transition in electron-doped superconducting Pr0.88LaCe0.12CuO4-delta SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE spin fluctuations; strongly correlated electron materials; superconductivity ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; MAGNETIC EXCITATIONS; NEUTRON-SCATTERING; MECHANISM; ENERGY; FIELD; CONDENSATION; RESONANCE AB The quantum spin fluctuations of the S = 1/2 Cu ions are important in determining the physical properties of high-transition-temperature (high T-c) copper oxide superconductors, but their possible role in the electron pairing of superconductivity remains an open question. The principal feature of the spin fluctuations in optimally doped high-T-c superconductors is a well defined magnetic resonance whose energy (E-R) tracks T-c (as the composition is varied) and whose intensity develops like an order parameter in the superconducting state. We show that the suppression of superconductivity and its associated condensation energy by a magnetic field in the electron-doped high-T-c superconductor Pr0.88LaCe0.12CuO4-delta (T-c = 24 K), is accompanied by the complete suppression of the resonance and the concomitant emergence of static antiferromagnetic order. Our results demonstrate that the resonance is intimately related to the superconducting condensation energy, and thus suggest that it plays a role in the electron pairing and superconductivity. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Chinese Acad Sci, Natl Lab Superconduct, Inst Phys, Beijing 100080, Peoples R China. Chinese Acad Sci, Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. CEA, Dept Rech Fondamentale Mat Condensee, Serv Phys Stat Magnetisme & Supraconduct, Lab Magnetisme & Diffract Neutron, F-38054 Grenoble 9, France. Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Zhao, Jun/A-2492-2010; Mu, Gang/G-9407-2011; Dai, Pengcheng /C-9171-2012; Freeman, Paul/F-5372-2014; Habicht, Klaus/K-3636-2013 OI Zhao, Jun/0000-0002-0421-8934; Mu, Gang/0000-0001-5676-4702; Dai, Pengcheng /0000-0002-6088-3170; Freeman, Paul/0000-0002-5376-8940; Habicht, Klaus/0000-0002-9915-7221 NR 35 TC 16 Z9 18 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 25 PY 2007 VL 104 IS 39 BP 15259 EP 15263 DI 10.1073/pnas.0704822104 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 215KJ UT WOS:000249806900018 PM 17884981 ER PT J AU Persson, S Paredez, A Carroll, A Palsdottir, H Doblin, M Poindexter, P Khitrov, N Auer, M Somerville, CR AF Persson, Staffan Paredez, Alexander Carroll, Andrew Palsdottir, Hildur Doblin, Monika Poindexter, Patricia Khitrov, Natalie Auer, Manfred Somerville, Chris R. TI Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE gametophytic lethal; isoforms; pollen; cellulose synthesis; mutant ID HIGHER-PLANTS; POLLEN DEVELOPMENT; THALIANA; BIOSYNTHESIS; RESISTANCE; ISOXABEN; MUTANTS; SYSTEMS AB higher plants, cellulose is synthesized at the plasma membrane by the cellulose synthase (CESA) complex. The catalytic core of the complex is believed to be composed of three types of CESA subunits. Indirect evidence suggests that the complex associated with primary wall cellulose deposition consists of CESA1, -3, and -6 in Arabidopsis thaliana. However, phenotypes associated with mutations in two of these genes, CESA1 and -6, suggest unequal contribution by the different CESAs to overall enzymatic activity of the complex. We present evidence that the primary complex requires three unique types of components, CESA1-, CESA3-, and CESA6-related, for activity. Removal of any of these components results in gametophytic lethality due to pollen defects, demonstrating that primary-wall cellulose synthesis is necessary for pollen development. We also show that the CESA6-related CESAs are partially functionally redundant. C1 Carnegie Inst Washington, Dept Plant Biol, Stanford, CA 94305 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA. Univ Melbourne, Cereal Funct Genom Ctr, Melbourne, Vic 3010, Australia. RP Somerville, CR (reprint author), Carnegie Inst Washington, Dept Plant Biol, 290 Panama St, Stanford, CA 94305 USA. EM crs@stanford.edu RI Somerville, Christopher/A-4048-2009; Paredez, Alexander/B-9799-2009; Paredez, Alexander/E-7171-2014; Persson, Staffan/S-8399-2016 OI Somerville, Christopher/0000-0003-4647-0094; Paredez, Alexander/0000-0002-9298-3264; Paredez, Alexander/0000-0002-9298-3264; Persson, Staffan/0000-0002-6377-5132 NR 30 TC 213 Z9 224 U1 6 U2 42 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 25 PY 2007 VL 104 IS 39 BP 15566 EP 15571 DI 10.1073/pnas.0706592104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 215KJ UT WOS:000249806900070 PM 17878302 ER PT J AU Cadoret, L Reuge, N Pannala, S Syamlal, M Coufort, C Caussat, B AF Cadoret, L. Reuge, N. Pannala, S. Syamlal, M. Coufort, C. Caussat, B. TI Silicon CVD on powders in fluidized bed: Experimental and multifluid Eulerian modelling study SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th European Conference on Chemical Vapor Deposition CY SEP 16-21, 2007 CL Hague, NETHERLANDS DE fluidized bed; silicon; silane; CFD; modelling ID KINETIC-THEORY; GRANULAR FLOW; DEPOSITION; PYROLYSIS; SILANE AB The Computational Fluid Dynamics code MFIX was used for transient simulations of silicon Fluidized Bed Chemical Vapor Deposition (FBCVD) from silane (SiH4) on coarse alumina powders. FBCVD experiments were first performed to obtain a reference database for modelling. Experimental thermal profiles existing along the bed were considered in the model. 3D simulations provide better results than 2D ones and predict silane conversion rate with a mean deviation of 9% compared to experimental values. The model can predict the temporal and spatial evolutions of local void fractions, gas and particle velocities, species gas fractions and silicon deposition rate. We aim at mid term to model FBCVD treatments of submicronic powders in a vibrated reactor since we have performed experiments proving the efficacy of the process to treat submicronic particles. (c) 2007 Elsevier B.V. All rights reserved. C1 ENSIACET, INPT, CNRS, Lab Genie Chim,UMR 5503, F-31106 Toulouse, France. Oak Ridge Natl Lab, Computat Math Grp, Oak Ridge, TN 37831 USA. Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Caussat, B (reprint author), ENSIACET, INPT, CNRS, Lab Genie Chim,UMR 5503, 5 Rue Paulin Talabot,BP 1301, F-31106 Toulouse, France. EM pannalas@oml.gov; Madhava.Syamlal@NETL.DOE.GOV; Caussat@ensiacet.fr RI Pannala, Sreekanth/F-9507-2010 NR 13 TC 15 Z9 19 U1 0 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD SEP 25 PY 2007 VL 201 IS 22-23 BP 8919 EP 8923 DI 10.1016/j.surfcoat.2007.04.119 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 208SV UT WOS:000249340400023 ER PT J AU Xia, B Chu, YS Gladfelter, WL AF Xia, Bin Chu, Yong S. Gladfelter, Wayne L. TI Use of a synchrotron X-ray microbeam to map composition and structure of multimetallic metal oxide films deposited by combinatorial chemical vapor deposition SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th European Conference on Chemical Vapor Deposition CY SEP 16-21, 2007 CL Hague, NETHERLANDS DE CVD; zirconia; haftna; tin oxide; combinatorial ID COMPOSITION-SPREAD APPROACH; REACTOR FLUID-DYNAMICS; TITANIUM(4) NITRATE; CRYSTAL-STRUCTURE; THIN-FILMS; CVD; DIELECTRICS; SYSTEM; DISCOVERY; KINETICS AB Using anhydrous metal nitrates as single source precursors, combinatorial chemical vapor deposition was used to create compositional gradients in the bimetallic ZrO2/HfO2 system and the trimetallic ZrO2/HfO2/SnO2, system. Composition and structural information were probed simultaneously by measuring the fluorescence and diffraction resulting from exposure of the film to a 30 mu m diameter X-ray beam at the Advanced Photon Source. The higher resolution made possible by the small beam size provided an accurate map of composition and structure. In the homologous zirconia-hafnia series a decrease in lattice constants and a change in film texture was observed as a function of increased Hf concentration. As reported elsewhere, at intermediate compositions, gradients involving ZrO2 and SnO2 or HfO2 and SnO2 give rise to a crystalline phase(alpha-PbO2 structure type) that differs from that found for either of the end members. The simultaneous measurement of fluorescence and diffraction coupled with the small spot X-ray source provides a more accurate correlation between composition and structure. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gladfelter, WL (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM gladfelt@chem.umn.edu NR 28 TC 7 Z9 7 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD SEP 25 PY 2007 VL 201 IS 22-23 BP 9041 EP 9045 DI 10.1016/j.surfcoat.2007.05.026 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 208SV UT WOS:000249340400046 ER PT J AU Feng, J Shin, HJ Nasiatka, JR Wan, W Young, AT Huang, G Comin, A Byrd, J Padmore, HA AF Feng, J. Shin, H. J. Nasiatka, J. R. Wan, W. Young, A. T. Huang, G. Comin, A. Byrd, J. Padmore, H. A. TI An x-ray streak camera with high spatio-temporal resolution SO APPLIED PHYSICS LETTERS LA English DT Article AB An x-ray streak camera with high resolution in both temporal and spatial dimensions has been developed. It is achieved by using extraction-mesh acceleration and a large opening aperture magnetic solenoid lens design. High resolutions in the temporal and spatial dimensions can be retained in a wide 53 ps time window. A temporal resolution of 233 fs and a spatial resolution of 10 mu m have been demonstrated using a Au photocathode. (c) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Feng, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM fjun@lbl.gov RI Comin, Alberto/A-3002-2011; Huang, Gang/I-7772-2013 OI Comin, Alberto/0000-0001-8744-3944; NR 13 TC 24 Z9 28 U1 5 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 24 PY 2007 VL 91 IS 13 AR 134102 DI 10.1063/1.2793191 PG 3 WC Physics, Applied SC Physics GA 215CX UT WOS:000249787000116 ER PT J AU Jani, O Ferguson, I Honsberg, C Kurtz, S AF Jani, Omkar Ferguson, Ian Honsberg, Christiana Kurtz, Sarah TI Design and characterization of GaN/InGaN solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID FUNDAMENTAL-BAND GAP; INN; POLARIZATION; ABSORPTION; ENERGY AB We experimentally demonstrate the III-V nitrides as a high-performance photovoltaic material with open-circuit voltages up to 2.4 V and internal quantum efficiencies as high as 60%. GaN and high-band gap InGaN solar cells are designed by modifying PC1D software, grown by standard commercial metal-organic chemical vapor deposition, fabricated into devices of variable sizes and contact configurations, and characterized for material quality and performance. The material is primarily characterized by x-ray diffraction and photoluminescence to understand the implications of crystalline imperfections on photovoltaic performance. Two major challenges facing the III-V nitride photovoltaic technology are phase separation within the material and high-contact resistances. C1 Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jani, O (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM jani@ece.gatech.edu NR 17 TC 328 Z9 339 U1 11 U2 143 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 24 PY 2007 VL 91 IS 13 AR 132117 DI 10.1063/1.2793180 PG 3 WC Physics, Applied SC Physics GA 215CX UT WOS:000249787000051 ER PT J AU Kim, H Luo, DW Link, D Weitz, DA Marquez, M Cheng, ZD AF Kim, Haejune Luo, Dawei Link, Darren Weitz, David A. Marquez, Manuel Cheng, Zhengdong TI Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device SO APPLIED PHYSICS LETTERS LA English DT Article ID DISINTEGRATION AB We describe a flexible emulsification method using an electric field to generate droplets in a hydrodynamic-flow-focusing geometry in microchannels. The droplet size is controlled by the ratio of inner and outer flow rates as well as by the electric field. As the voltage increases, the droplet size decreases. A Taylor cone is formed and generates very fine droplets, less than 1 mu m in diameter. Small inner flow rates and high electric fields are required to form a stable Taylor cone in a dc electric field. An ac electric field produces tiny droplets periodically. (C) 2007 American Institute of Physics. C1 Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA. Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. Harvard Univ, Dept Phys & SEAS, Cambridge, MA 02138 USA. Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Kim, H (reprint author), Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA. EM cheng@chemail.tamu.edu NR 24 TC 56 Z9 60 U1 6 U2 62 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 24 PY 2007 VL 91 IS 13 AR 133106 DI 10.1063/1.2790785 PG 3 WC Physics, Applied SC Physics GA 215CX UT WOS:000249787000084 ER PT J AU Li, WX Zhang, J Thompson, J Shen, TH AF Li, Wuxia Zhang, Jun Thompson, Jamie Shen, Tiehan H. TI Magnetic circular dichroism in Co(1-x)Pt(x) nanowire bundles at the Co L(2,3) edges SO APPLIED PHYSICS LETTERS LA English DT Article ID ARRAYS; ANISOTROPY; COBALT; SPIN AB Co(1-x)Pt(x) nanowire arrays embedded in anodic aluminum oxide templates were fabricated by an electrochemical route. X-ray magnetic circular dichroism (XMCD) measurements were conducted at the Co L(2,3) edges on samples with an array of nanowire bundles at the substrate surfaces. The ratios between the orbital and the spin moments R were estimated to be about 0.19 (+/- 0.03) and 0.07 (+/- 0.03) for 20 nm Co and 14 nm Co(91)Pt(9) nanowires, respectively. A strong temperature dependence of the R value was observed. The x-ray absorption spectra also indicated the presence of CoO, which did not contribute to the XMCD signals. (C) 2007 American Institute of Physics. C1 Univ Salford, Inst Mat Res, Joule Phys Lab, Salford M5 4WT, Lancs, England. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. UCL, London Ctr Nanotechnol, London WC1H 0AH, England. RP Shen, TH (reprint author), Univ Salford, Inst Mat Res, Joule Phys Lab, Salford M5 4WT, Lancs, England. EM t.shen@salford.ac.uk RI Li, Wuxia/A-4226-2009 NR 21 TC 4 Z9 4 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 24 PY 2007 VL 91 IS 13 AR 133111 DI 10.1063/1.2784186 PG 3 WC Physics, Applied SC Physics GA 215CX UT WOS:000249787000089 ER PT J AU Pasquale, M Sasso, CP Giudici, L Lograsso, T Schlagel, D AF Pasquale, M. Sasso, C. P. Giudici, L. Lograsso, T. Schlagel, D. TI Field-driven structural phase transition and sign-switching magnetocaloric effect in Ni-Mn-Sn SO APPLIED PHYSICS LETTERS LA English DT Article AB Depending on the starting equilibrium temperature, the application of a magnetic field on a sample of Ni-Mn-Sn produces sample heating or cooling during adiabatic experiments. The competition between endothermal and exothermal effects is observed close to the martensite-to-austenite magnetostructural phase transition. A model assuming the coexistence of two phases and a field dependence of their volume allows to compute the evolution of entropy and heat capacity during the phase transition. The correct fitting of the results suggests that the field-induced reduction of the martensite-to-austenite transition temperature is responsible for the observed sign switching of the magnetocaloric effect. C1 INRIM, DIv Elettromagnet, I-10135 Turin, Italy. Politecn Torino, Dept Phys, I-10129 Turin, Italy. Ames Lab, Ames, IA 50011 USA. RP Pasquale, M (reprint author), INRIM, DIv Elettromagnet, Strada Cacce 91, I-10135 Turin, Italy. EM pasquale@inrim.it RI Pasquale, Massimo/I-8390-2012; Sasso, Carlo/G-4591-2015 OI Pasquale, Massimo/0000-0002-8336-1391; Sasso, Carlo/0000-0002-5715-7688 NR 8 TC 19 Z9 19 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 24 PY 2007 VL 91 IS 13 AR 131904 DI 10.1063/1.2790829 PG 3 WC Physics, Applied SC Physics GA 215CX UT WOS:000249787000027 ER PT J AU Rose, V Cheng, XM Keavney, DJ Freeland, JW Buchanan, KS Ilic, B Metlushko, V AF Rose, V. Cheng, X. M. Keavney, D. J. Freeland, J. W. Buchanan, K. S. Ilic, B. Metlushko, V. TI The breakdown of the fingerprinting of vortices by hysteresis loops in circular multilayer ring arrays SO APPLIED PHYSICS LETTERS LA English DT Article AB Microscale single-layer ferromagnetic rings typically exhibit a magnetic vortex state at remanence, characterized by a flux-closed magnetic state with zero stray fields. Magnetic reversal in such systems yields a vanishing remanent magnetization. In contrast, the authors show that in individual layers in thin rings, which alternate magnetic and nonmagnetic materials (NiFe/Cu/Co), layer-resolved hysteresis loops, measured using x-ray resonant magnetic scattering, exhibit the characteristics of a vortex formation, although photoelectron emission microscopy and micromagnetic simulations clearly prove that multidomain states are formed. This result is of considerable importance for the development of pseudo-spin-valve-type structures for applications. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Ctr Nanoscale Mat, Argonne Natl Lab, Argonne, IL 60439 USA. Cornell Univ, Sch Appl & Engn Phys, Cornell Nanofabricat Facil, Ithaca, NY 14853 USA. Univ Illinois, Chicago, IL 60607 USA. RP Rose, V (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrose@anl.gov RI Rose, Volker/B-1103-2008; Cheng, Xuemei/D-2388-2010; Ilic, Rob/N-1359-2014; OI Rose, Volker/0000-0002-9027-1052; Cheng, Xuemei/0000-0001-6670-4316; Buchanan, Kristen/0000-0003-0879-0038 NR 14 TC 9 Z9 9 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 24 PY 2007 VL 91 IS 13 AR 132501 DI 10.1063/1.2786856 PG 3 WC Physics, Applied SC Physics GA 215CX UT WOS:000249787000053 ER PT J AU Suszka, AK Kinane, CJ Marrows, CH Hickey, BJ Arena, DA Dvorak, J Lamperti, A Tanner, BK Langridge, S AF Suszka, A. K. Kinane, C. J. Marrows, C. H. Hickey, B. J. Arena, D. A. Dvorak, J. Lamperti, A. Tanner, B. K. Langridge, S. TI Element specific separation of bulk and interfacial magnetic hysteresis loops SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-SCATTERING; SPIN-VALVE; MAGNETORESISTANCE; SURFACES AB We have studied the reversal of the bulk and interfacial magnetizations of the free layer of a spin valve using soft x-ray resonant magnetic scattering. By dusting the interface of the NiFe free layer with a few angstroms of Co, we were able to distinguish between the interfacial and bulk magnetisms by tuning the x-ray photon energy. We measured hysteresis loops of reflected x-ray intensity at selected points in reciprocal space. We find no difference in the switching fields, showing that in transition metal ferromagnets, the exchange interactions are sufficiently strong to prevent a separate interfacial coercivity from arising. C1 Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. Brookhaven Natl Lab, Upton, NY 11973 USA. Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. Univ Durham, Dept Phys, Durham DH1 3LE, England. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Suszka, AK (reprint author), Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. EM c.h.marrows@leeds.ac.uk RI Marrows, Christopher/D-7980-2011; Lamperti, Alessio/B-5637-2015; Hickey, B J/B-3333-2016; OI Lamperti, Alessio/0000-0003-2061-2963; Hickey, B J/0000-0001-8289-5618; Marrows, Christopher/0000-0003-4812-6393; Langridge, Sean/0000-0003-1104-0772 NR 29 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 24 PY 2007 VL 91 IS 13 AR 132510 DI 10.1063/1.2790492 PG 3 WC Physics, Applied SC Physics GA 215CX UT WOS:000249787000062 ER PT J AU Airapetian, A Akopov, N Akopov, Z Aschenauer, EC Augustyniak, W Avakian, R Avetissian, A Avetissian, E Bianchi, N Blok, HP Bottcher, H Bonomoi, C Borissov, A Brull, A Bryzgalov, V Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, R Deconinck, W De Leo, R Demey, M De Nardo, L De Sanctis, E Diefenthaler, M Di Nezza, P Dreschler, J Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Elschenbroich, U Fabbri, R Fantoni, A Frullani, S Gabbert, D Gapienko, G Gapienko, V Garibaldi, F Gavrilov, G Gharibyan, V Giordano, F Gliske, S Grigoryan, L Hadjidakis, C Hartig, M Hasch, D Hasegawa, T Hill, G Hillenbrand, A Hoek, M Hommez, B Hristova, I Imazu, Y Ivanilov, A Jackson, HE Kaiser, R Keri, T Kinney, E Kisselev, A Kopytin, M Korotkov, V Kravchenko, P Lagamba, L Lamb, R Lapikas, L Lehmann, I Lenisa, P Liebing, P Linden-Levy, LA Lorenzon, W Lu, S Lu, X Maiheu, B Makins, NCR Marianski, B Marukyan, H Mexner, V Miller, CA Miyachi, Y Muccifora, V Murray, M Mussgiller, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Pickert, N Raithel, M Reggiani, D Reimer, PE Reischl, A Reolon, AR Riedl, C Rith, K Rock, SE Rosner, G Rostomyan, A Rubacek, L Rubin, J Ryckbosch, D Salomatin, Y Schafer, A Schnell, G Seitz, B Shearer, C Shibata, TA Shutov, V Stancari, M Statera, M Steijger, JJM Stenzel, H Stewart, J Stinzing, F Streit, J Taroian, S Tchuiko, B Trzcinski, A Tytgat, M Vandenbroucke, A van der Nat, PBD van der Steenhoven, GD van Haarlem, Y van Hulse, C Varanda, M Veretennikov, D Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenko, S Ye, Y Ye, Z Ye, S Yu, W Zeiler, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Aschenauer, E. C. Augustyniak, W. Avakian, R. Avetissian, A. Avetissian, E. Bianchi, N. Blok, H. P. Boettcher, H. Bonomoi, C. Borissov, A. Bruell, A. Bryzgalov, V. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, Re Deconinck, W. De Leo, R. Demey, M. De Nardo, L. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dreschler, J. Duren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Elschenbroich, U. Fabbri, R. Fantoni, A. Frullani, S. Gabbert, D. Gapienko, G. Gapienko, V. Garibaldi, F. Gavrilov, G. Gharibyan, V. Giordano, F. Gliske, S. Grigoryan, L. Hadjidakis, C. Hartig, M. Hasch, D. Hasegawa, T. Hill, G. Hillenbrand, A. Hoek, M. Hommez, B. Hristova, I. Imazu, Y. Ivanilov, A. Jackson, H. E. Kaiser, R. Keri, T. Kinney, E. Kisselev, A. Kopytin, M. Korotkov, V. Kravchenko, P. Lagamba, L. Lamb, R. Lapikas, L. Lehmann, I. Lenisa, P. Liebing, P. Linden-Levy, L. A. Lorenzon, W. Lu, S. Lu, X. Maiheu, B. Makins, N. C. R. Marianski, B. Marukyan, H. Mexner, V. Miller, C. A. Miyachi, Y. Muccifora, V. Murray, M. Mussgiller, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W.-D. Pappalardo, L. L. Perez-Benito, R. Pickert, N. Raithel, M. Reggiani, D. Reimer, P. E. Reischl, A. Reolon, A. R. Riedl, C. Rith, K. Rock, S. E. Rosner, G. Rostomyan, A. Rubacek, L. Rubin, J. Ryckbosch, D. Salomatin, Y. Schaefer, A. Schnell, G. Seitz, B. Shearer, C. Shibata, T.-A. Shutov, V. Stancari, M. Statera, M. Steijger, J. J. M. Stenzel, H. Stewart, J. Stinzing, F. Streit, J. Taroian, S. Tchuiko, B. Trzcinski, A. Tytgat, M. Vandenbroucke, A. van der Nat, P. B. van der Steenhoven, G. van Haarlem, Y. van Hulse, C. Varanda, M. Veretennikov, D. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenko, S. Ye, Y. Ye, Z. Ye, S. Yu, W. Zeiler, D. Zihlmann, B. Zupranski, P. TI Hadronization in semi-inclusive deep-inelastic scattering on nuclei SO NUCLEAR PHYSICS B LA English DT Article DE nuclei; quarks; hadron production; hadronization; attenuation; A-dependence ID HIGH-ENERGY QUARKS; ELECTROMAGNETIC CORRECTIONS; HERMES EXPERIMENT; HADRON FORMATION; ATTENUATION; FRAGMENTATION; TARGETS; MATTER; MODEL; ELECTROPRODUCTION AB A series of semi-inclusive deep-inelastic scattering measurements on deuterium, helium, neon, krypton, and xenon targets has been performed in order to study hadronization. The data were collected with the HERMES detector at the DESY laboratory using a 27.6 GeV positron or electron beam. Hadron multiplicities on nucleus A relative to those on the deuteron, R-A(h) are presented for various hadrons (pi(+), pi(-), pi(0). K+, K-, p, and (p) over bar) as a function of the virtual-photon energy v, the fraction z of this energy transferred to the hadron, the photon virtuality Q(2), and the hadron transverse momentum squared P-1(2). The data reveal C1 DESY, D-15738 Zeuthen, Germany. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Ist Nazl Fis Nucl, I-70124 Bari, Italy. Peking Univ, Sch Phys, Beijing 100871, Peoples R China. Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. DESY, D-22603 Hamburg, Germany. Joint Inst Nucl Res, Dubna 141980, Russia. Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. Univ Ferrara, Sez Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. Univ Giessen, Inst Phys, D-35392 Giessen, Germany. Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. PN Lebedev Phys Inst, Moscow 117924, Russia. Natl Inst Kernfys Hoge Energiefys NIKHEF, NL-1009 DB Amsterdam, Netherlands. Petersburg Nucl Phys Inst, Gatchina 188350, Russia. Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. Ist Super Sanita, Phys Lab, I-00161 Rome, Italy. Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. TRIUMF, Vancouver, BC V6T 2A3, Canada. Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland. Yerevan Phys Inst, Yerevan 375036, Armenia. RP Stewart, J (reprint author), DESY, D-15738 Zeuthen, Germany. EM james.stewart@desy.de RI Deconinck, Wouter/F-4054-2012; Gavrilov, Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014; Cisbani, Evaristo/C-9249-2011; Lyu, Xiao-Rui/H-4080-2014; OI Hoek, Matthias/0000-0002-1893-8764; Gliske, Stephen/0000-0002-2259-2612; Cisbani, Evaristo/0000-0002-6774-8473; Deconinck, Wouter/0000-0003-4033-6716; Lyu, Xiao-Rui/0000-0001-5689-9578; Lagamba, Luigi/0000-0002-0233-9812 NR 54 TC 75 Z9 75 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD SEP 24 PY 2007 VL 780 IS 1-2 BP 1 EP 27 DI 10.1016/j.nuclphysb.2007.06.004 PG 27 WC Physics, Particles & Fields SC Physics GA 211GN UT WOS:000249512400001 ER PT J AU Jacobsen, GM Shoemaker, RK DuBois, MR DuBois, DL AF Jacobsen, George M. Shoemaker, R. K. DuBois, M. Rakowski DuBois, Daniel L. TI Syntheses and reactions of iron(II) complexes containing diphosphine ligands with pendant nitrogen bases SO ORGANOMETALLICS LA English DT Article ID HYDROGENASE ACTIVE-SITE; PROTON-TRANSFER; HYDRIDE; COORDINATION; RELAYS; MODEL AB A series of new iron(II)-hydride complexes that contain diphosphine ligands with pendant amine bases of the formula cis-[HFeL(PNP)(2)](+), where PNP = Et2PCH2NMeCH2PEt2 and L = CH3CN (3), CO (4), P(OEt)(3) (5), have been synthesized and characterized. Protonations of the pendant bases in the PNP complexes have been characterized, and for selected complexes, pK(a) values have been determined. The acidity of the PNHP ligand depends significantly on the electronic properties of the Fe center to which it is bound, ranging from <7.0 to 12.7, depending on the nature of the coligands present. Unlike the previously studied hydride complexes [HNi(PNP)(2)](+) and trans- [HFe(CH3CN)(PNP)(dmpm)](+) (where dmpm is bis(dimethylphosphino)methane), the new hydride complexes reported here do not show rapid intramolecular exchange between the protonated base of the diphosphine and the hydride ligand. This is attributed to steric interactions between ethyl substituents on the PNP ligands. C1 Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP DuBois, DL (reprint author), Pacific NW Natl Lab, Div Mat & Chem Sci, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM daniel.dubois@pnl.gov RI Shoemaker, Richard/M-7409-2013 OI Shoemaker, Richard/0000-0002-0805-1449 NR 26 TC 21 Z9 22 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD SEP 24 PY 2007 VL 26 IS 20 BP 4964 EP 4971 DI 10.1021/om700510b PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 211YJ UT WOS:000249559900017 ER PT J AU Jacobsen, GM Shoemaker, RK McNevin, MJ DuBois, MR DuBois, DL AF Jacobsen, George M. Shoemaker, Richard K. McNevin, Michael J. DuBois, M. Rakowski DuBois, Daniel L. TI Syntheses and structural characterizations of iron(II) complexes containing cyclic diphosphine ligands with positioned pendant nitrogen bases SO ORGANOMETALLICS LA English DT Article ID HYDROXYCYCLOPENTADIENYL RUTHENIUM HYDRIDE; HYDROGENASE ACTIVE-SITE; O-O ACTIVATION; PROTON-TRANSFER; ASYMMETRIC HYDROGENATION; STEREOSELECTIVE HYDROGENATION; HYDRIDOAMIDO COMPLEXES; COORDINATION SPHERE; HANGMAN PORPHYRINS; CATALYST PRECURSOR AB A series of new iron(II) complexes that contain cyclic diphosphine ligands with pendant amine bases, (P2N2R ')-N-R, have been synthesized and characterized (where (P2N2R)-N-R' are substituted 1,5-diaza-3,7-diphosphacyclooctanes). These compounds include [Fe((P2N2Ph)-N-Ph)(CH3CN)(4)](BF4)(2) (5), cis-[Fe((P2N2Ph)-N-Ph)(2)(CH3CN)(2)](BF4)(2) (6a), cis-[Fe((P2N2Bz)-N-Ph)(2)(CH3CN)(2)] (BF4)(2) (6b), cis-[Fe((P2N2Bz)-N-Cy)(2)(CH3CN)(2)](BF4)(2) (6c), trans[HFe((P2N2)-N-Ph (Ph))(2)(CH3CN)](BF4) (7), and cis-Fe((P2N2Ph)-N-Ph)(2)(Cl)(2) (8). The molecular structures of 5, 6b, and 7 have been confirmed by X-ray diffraction studies. For all complexes the cyclic diphosphine ligands contain one six-membered ring in a chair conformation and one six-membered ring in a boat conformation. For complex 7, the two rings that are in boat conformations result in N-H distances between the pendant amine nitrogens and the hydride ligand of 2.6 to 2.7 angstrom. Protonation of the pendant bases in complex 7 has been found to form several products. A structural assignment for a dominant protonated isomer has been assigned on the basis of H-1, P-31, and N-15 NMR spectroscopic techniques. C1 Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP DuBois, DL (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, 902 Batelle Blvd,POB 999, Richland, WA 99352 USA. EM Daniel.dubois@pnl.gov RI Shoemaker, Richard/M-7409-2013 OI Shoemaker, Richard/0000-0002-0805-1449 NR 64 TC 19 Z9 19 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD SEP 24 PY 2007 VL 26 IS 20 BP 5003 EP 5009 DI 10.1021/om700601h PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 211YJ UT WOS:000249559900021 ER PT J AU Barros, N Maynau, D Maron, L Eisenstein, O Zi, GF Andersen, RA AF Barros, Noemi Maynau, Daniel Maron, Laurent Eisenstein, Odile Zi, Guofu Andersen, Richard A. TI Single but stronger UO, double but weaker UNMe bonds: The tale told by Cp2UO and Cp2UNR SO ORGANOMETALLICS LA English DT Article ID AB-INITIO PSEUDOPOTENTIALS; URANYL-ION; PHOTOELECTRON-SPECTROSCOPY; DISSOCIATION ENTHALPIES; DISRUPTION ENTHALPIES; ACTINIDE CHEMISTRY; CORRELATION-ENERGY; FLUORINE EXCHANGE; IMIDO ANALOGS; CP-ASTERISK AB The free energies of reaction and the activation energies are calculated, with DFT (B3PW91) and small RECP (relativistic core potential) for uranium, for the reaction Of CP2UNMe and CP2UO with MeC cMe and H3Si-Cl that yields the corresponding addition products. CAS(2,7) and DFT calculations on CP2UO and CP2UNMe give similar results, which validates the use of DFT calculations in these cases. The calculated results mirror the experimental reaction of [1,2,4-(CMe3)(3)C-5 H-2](2)UNMe with dimethylacetylene and [1,2,4-(CMe3)(3)C5H2](2)UO with Me3SiCl. The net reactions are controlled by the change in free energy between the products and reactants, not by the activation energies, and therefore by the nature of the UO and UNMe bonds in the initial and final states. A NBO analysis indicates that the U-O interaction in CP2UO is composed of a single U-O sigma bond with three lone pairs of electrons localized on oxygen, leading to a polarized U-O fragment. In contrast, the U-NMe interaction in CP2UNMe is composed of a sigma and pi component and a lone pair of electrons localized on the nitrogen, resulting in a less polarized UNMe fragment, in accord with the lower electronegativity of NMe relative to O. The strongly polarized U(+)-O(-) bond is calculated to be about 70 kcal mol(-1) stronger than the less polarized U = NMe bond. C1 INSA Toulouse, CNRS UPS INSA, LPCNO, F-31077 Toulouse, France. Univ Montpellier 2, CNRS, Inst Charles Gerhardt, F-34095 Montpellier, France. CEA Valrho, DEN DRCP SCPS LCAM, F-30207 Bagnols Sur Ceze, France. Univ Toulouse 3, IRSAMC, CNRS, Lab Chim & Phys Quant, F-31064 Toulouse 04, France. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Maron, L (reprint author), INSA Toulouse, CNRS UPS INSA, LPCNO, 137 Ave Rangueil, F-31077 Toulouse, France. EM laurent.maron@irsamc.ups-tlse.fr; odile.eisenstein@univ-montp2.fr RI Eisenstein, Odile/I-1704-2016 OI Eisenstein, Odile/0000-0001-5056-0311 NR 59 TC 59 Z9 59 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD SEP 24 PY 2007 VL 26 IS 20 BP 5059 EP 5065 DI 10.1021/om700628e PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 211YJ UT WOS:000249559900027 ER PT J AU Wu, F Dioumaev, VK Szalda, DJ Hanson, J Bullock, RM AF Wu, Fan Dioumaev, Vladimir K. Szalda, David J. Hanson, Jonathan Bullock, R. Morris TI A tungsten complex with a bidentate, hemilabile N-heterocyclic carbene ligand, facile displacement of the weakly bound W-(C = C) bond, and the vulnerability of the NHC ligand toward catalyst deactivation during ketone hydrogenation SO ORGANOMETALLICS LA English DT Review ID C-H ACTIVATION; TRANSITION-METAL-COMPLEXES; RUTHENIUM HYDRIDE COMPLEXES; OLEFIN METATHESIS REACTIONS; X-RAY-STRUCTURE; OXIDATIVE ADDITION; STRUCTURAL-CHARACTERIZATION; REDUCTIVE ELIMINATION; IONIC HYDROGENATIONS; MIGRATORY INSERTION AB The initial reaction observed between the N-heterocyclic carbene IMes (lMes = 1,3-bis(2,4,6trimethylphenyl)imidazol-2-ylidene) and molybdenum and tungsten hydride complexes CpM(CO)(2)(PPh3)H (M = Mo, W) is deprotonation of the metal hydride by IMes, giving [(lMes)H](+)[CPM(CO)(2)(PPh3)](-). At longer reaction times and higher temperatures, the reaction of IMes with CPM(CO)2(PR3)H (M = Mo, W; R = Me, Ph) produces CPM(CO)(2)(IMes)H. Hydride transfer from CPW(CO)(2)(INes)H to Ph3C+B(C6F5)(4)(-) gives CPW(CO)(2)(lMes)B+(C6F5)(4)(-), which was crystal lographically characterized using X-ray radiation from a synchrotron. The IMes is bonded as a bidentate ligand, through the carbon of the carbene as well as forming a weak bond from the metal to a C=C bond of one mesityl ring. The weakly bound C=C ligand is hemilabile, being readily displaced by H-2, THF, ketones, or alcohols. Reaction Of CPW(CO)2(IMes)(+) with H2 gives the dihydride complex [CPW(CO)(2)(lMes)(H)(2)](+). Addition of Et2CH-OH to CPW(CO)(2)(IMes)B+(C6F5)(4) gives the alcohol complex [CPW(CO)(2)(lMes)(Et2CH-OH)](+)[B(C6F5)(4)](-), which was characterized by crystallography and exhibits no evidence for hydrogen bonding of the bound OH group. Addition of H2 to the ketone complex [CPW(CO)(2)(lMes)(Et2C=0)](+)[B(C6F5)(4)](-) produces an equilibrium with the dihydride [CPW(CO)(2)(lMes)(H)(2)](+) (K,, = 1.1 X 10(3) at 25 degrees C. The tungsten ketone complex [CPW(CO)(2)(IMes)(Et2C=0)](+)[B(C6F5)(4)](-) serves as a modest catalyst for hydrogenation of Et2C=O to Et2CH-OH in neat ketone solvent. Decomposition of the catalyst produces [H(IMes)]B+(C6F5)(4)(-), indicating that these catalysts with N-heterocyclic carbene ligands are vulnerable to decomposition by a reaction that produces a protonated imidazolium cation. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. RP Bullock, RM (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM morris.bullock@pnl.gov RI Hanson, jonathan/E-3517-2010; Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 NR 102 TC 45 Z9 45 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD SEP 24 PY 2007 VL 26 IS 20 BP 5079 EP 5090 DI 10.1021/om700694e PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 211YJ UT WOS:000249559900029 ER PT J AU Reddy, KM Benson, R Hays, J Thurber, A Engelhard, MH Shutthanandan, V Hanson, R Knowlton, WB Punnoose, A AF Reddy, K. M. Benson, R. Hays, J. Thurber, A. Engelhard, M. H. Shutthanandan, V. Hanson, R. Knowlton, W. B. Punnoose, A. TI On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by reactive co-sputtering SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article; Proceedings Paper CT Symposium on Photovoltaics, Solar Energy Materials and Thin Films held at the 2006 International Materials Research Congress CY AUG 20-24, 2006 CL Cancum, MEXICO DE ZnO thin films; semiconductors; spintronics; ferromagnetism ID DILUTED MAGNETIC SEMICONDUCTORS; EFFECTIVE IONIC-RADII; DOPED ZNO FILMS; OXIDE; CU; ADSORPTION; CHROMIUM; ORIGIN; SERIES; CR AB We report on the preparation and detailed characterization of ferromagnetic (FM) Zn1-xCrxO thin films deposited on Si substrates using reactive co-sputtering of Cr and Zn in controlled oxygen atmosphere. X-ray diffraction (XRD) data showed wurtzite ZnO peaks in the FM films prepared with lower Cr sputter powers, whose position and intensities are influenced by Cr doping. However, samples prepared with higher Cr powers did not show ferromagnetism but displayed evidence of Cr2O3 and ZnCr2O4 phases with no zinc oxide (ZnO) phase. The magnetization is higher (saturation magnetization M-s = 18 emu/cm(3)) for lower Cr concentrations and decreases for higher Cr doping. The samples were investigated extensively to understand the film composition, dopant distribution, homogeneity and potential origin of the observed ferromagnetism. Particle-induced X-ray emission (PIXE) studies were employed to determine the chemical composition as well as the Cr/Zn ratio in the films. Film uniformity and homogeneity, investigated using Rutherford backscattering spectrometry, showed a relatively uniform ZnO layer in the as-prepared samples but, in a sample annealed at 800 degrees C, showed some diffusion of Si from the substrate. X-ray photoelectron spectroscopy (XPS) studies indicated that Cr ions are in the oxidized state, but showed changes in the binding energy and Cr concentration when measured after removing 10 nm from the surface using Ar ion sputtering. Possible origins of the observed FM behavior are discussed based on the comprehensive characterization results. (c) 2007 Elsevier B.V. All rights reserved. C1 Boise State Univ, Dept Phys, Boise, ID 83725 USA. Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. RP Punnoose, A (reprint author), Boise State Univ, Dept Phys, Boise, ID 83725 USA. EM apunnoos@boisestate.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 NR 38 TC 17 Z9 17 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD SEP 22 PY 2007 VL 91 IS 15-16 SI SI BP 1496 EP 1502 DI 10.1016/j.solmat.2007.03.012 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 200OT UT WOS:000248773400026 ER PT J AU Gaillard, JF Chen, C Stonedahl, SH Lau, BLT Keane, DT Packman, AI AF Gaillard, Jean-Francois Chen, Cheng Stonedahl, Susa H. Lau, Boris L. T. Keane, Denis T. Packman, Aaron I. TI Imaging of colloidal deposits in granular porous media by X-ray difference micro-tomography SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID COMPUTED MICROTOMOGRAPHY; TRANSPORT AB High resolution synchrotron-based X-ray computed microtomography (X-CMT) was used to identify the morphology of colloidal deposits formed in porous media. We show that difference microtomography - whereby a tomographic reconstruction is performed across an absorption edge - provides valuable information on the nature and location of the aggregates formed by the deposition of colloidal particles. Column experiments were performed using an idealized porous medium consisting of glass beads through which colloidal ZrO(2) particles were transported. Tomographic reconstructions of the porous medium and of the aggregate structure provide an unique opportunity to observe colloidal particle deposits and of their morphology. These results show that the local pore geometry controls particle deposition and that deposits tend to form in a rather heterogeneous manner in the porous medium. C1 Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA. Adv Photon Source, DND CAT Synchrotron Res Ctr, Argonne, IL 60439 USA. RP Gaillard, JF (reprint author), Northwestern Univ, Dept Civil & Environm Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM jf-gaillard@northwestern.edu; c-chen11@northwestern.edu; s-stone2@northwestern.edu; boris-lau@northwestern.edu; dtkeane@northwestern.edu; a-packman@northwestern.edu RI Gaillard, Jean-Francois/B-6981-2009; Packman, Aaron/B-7085-2009; Stonedahl, Susa/B-6198-2011; Gaillard, Jean-Francois/E-9445-2013 OI Gaillard, Jean-Francois/0000-0002-8276-6418 NR 21 TC 27 Z9 29 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 21 PY 2007 VL 34 IS 18 AR L18404 DI 10.1029/2007GL030514 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 213RD UT WOS:000249683900002 ER PT J AU van Wonderen, JH Knight, C Oganesyan, VS George, SJ Zumft, WG Cheesman, MR AF van Wonderen, Jessica H. Knight, Christopher Oganesyan, Vasily S. George, Simon J. Zumft, Walter G. Cheesman, Myles R. TI Activation of the cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus - Reaction of oxidized enzyme with substrate drives a ligand switch at heme c SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; MAGNETIC CIRCULAR-DICHROISM; PSEUDOMONAS-AERUGINOSA; THIOSPHAERA-PANTOTROPHA; THIOBACILLUS-DENITRIFICANS; HORSERADISH-PEROXIDASE; OXIDE REDUCTASE; PURIFICATION; SPECTROSCOPY; EPR AB Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligainds except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P.pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fell, but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fell, heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe-III heme d(1) species in nitrite reduction. C1 Univ E Anglia, Sch Chem Sci & Pharm, Norwich NR4 7TJ, Norfolk, England. Univ E Anglia, Ctr Metalloprotein Spectroscopy & Biol, Sch Chem Sci & Pharm, Norwich NR4 7TJ, Norfolk, England. Univ Karlsruhe, Inst Appl Biosci, Div Mol Microbiol, D-76128 Karlsruhe, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cheesman, MR (reprint author), Univ E Anglia, Sch Chem Sci & Pharm, Norwich NR4 7TJ, Norfolk, England. EM m.cheesman@uea.ac.uk RI van Wonderen, Jessica/A-9728-2013 FU Wellcome Trust NR 58 TC 12 Z9 13 U1 1 U2 12 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD SEP 21 PY 2007 VL 282 IS 38 BP 28207 EP 28215 DI 10.1074/jbc.M701242200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 210KR UT WOS:000249455600070 PM 17623666 ER PT J AU Carre, A Berthier, L Horbach, J Ispas, S Kob, W AF Carre, Antoine Berthier, Ludovic Horbach, Juergen Ispas, Simona Kob, Walter TI Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COMPUTER-SIMULATION; VITREOUS SILICA; FORCE-FIELDS; EWALD SUMS; ALGORITHM; SYSTEMS; TRANSITION; SUMMATION; SURFACES; WATER AB We show that finite-range alternatives to the standard long-range pair potential for silica by van Beest [Phys. Rev. Lett. 64, 1955 (1990)] might be used in molecular dynamics simulations. We study two such models that can be efficiently simulated since no Ewald summation is required. We first consider the Wolf method, where the Coulomb interactions are truncated at a cutoff distance r(c) such that the requirement of charge neutrality holds. Various static and dynamic quantities are computed and compared to results from simulations using Ewald summations. We find very good agreement for r(c)approximate to 10 A. For lower values of r(c), the long-range structure is affected which is accompanied by a slight acceleration of dynamic properties. In a second approach, the Coulomb interaction is replaced by an effective Yukawa interaction with two new parameters determined by a force fitting procedure. The same trend as for the Wolf method is seen. However, slightly larger cutoffs have to be used in order to obtain the same accuracy with respect to static and dynamic quantities as for the Wolf method. (c) 2007 American Institute of Physics. C1 Univ Mainz, Inst Phys, D-55099 Mainz, Germany. Univ Montpellier 2, Lab Colloides Verres & Nanomat, UMR 5587, F-34095 Montpellier, France. CNRS, F-34095 Montpellier, France. Argonne Natl Lab, Joint Theory Inst, Argonne, IL 60439 USA. Univ Chicago, Chicago, IL 60637 USA. Deutsch Zentrum Luft & Raumfahrt, Inst Mat Phys Weltraum, D-51147 Cologne, Germany. RP Carre, A (reprint author), Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. RI Berthier, Ludovic/I-7104-2012; Kob, Walter/L-7010-2013 OI Kob, Walter/0000-0001-7405-2178 NR 52 TC 38 Z9 38 U1 2 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2007 VL 127 IS 11 AR 114512 DI 10.1063/1.2777136 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 213KZ UT WOS:000249667400047 PM 17887862 ER PT J AU Igumenshchev, KI Tretiak, S Chernyak, VY AF Igumenshchev, Kirill I. Tretiak, Sergei Chernyak, Vladimir Y. TI Excitonic effects in a time-dependent density functional theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID LIGHT-EMITTING-DIODES; PI-CONJUGATED POLYMERS; CHARGE-TRANSFER EXCITATIONS; EXCHANGE-CORRELATION KERNEL; FIELD-EFFECT TRANSISTORS; TRANSFER EXCITED-STATES; ELECTRONIC-STRUCTURE; OPTICAL-EXCITATIONS; ENERGY-TRANSFER; AB-INITIO AB Excited state properties of one-dimensional molecular materials are dominated by many-body interactions resulting in strongly bound confined excitons. These effects cannot be neglected or treated as a small perturbation and should be appropriately accounted for by electronic structure methodologies. We use adiabatic time-dependent density functional theory to investigate the electronic structure of one-dimensional organic semiconductors, conjugated polymers. Various commonly used functionals are applied to calculate the lowest singlet and triplet state energies and oscillator strengths of the poly(phenylenevinylene) and ladder-type (poly)(para-phenylene) oligomers. Local density approximations and gradient-corrected functionals cannot describe bound excitonic states due to lack of an effective attractive Coulomb interaction between photoexcited electrons and holes. In contrast, hybrid density functionals, which include long-range nonlocal and nonadiabatic corrections in a form of a fraction of Hartree-Fock exchange, are able to reproduce the excitonic effects. The resulting finite exciton sizes are strongly dependent on the amount of the orbital exchange included in the functional. (c) 2007 American Institute of Physics. C1 Univ Rochester, Dept Chem, Rochester, NY 14627 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Integrate Nanotechnol, Los Alamos, NM 87545 USA. RP Igumenshchev, KI (reprint author), Univ Rochester, Dept Chem, Rochester, NY 14627 USA. EM serg@lanl.gov RI Tretiak, Sergei/B-5556-2009; Chernyak, Vladimir/F-5842-2016 OI Tretiak, Sergei/0000-0001-5547-3647; Chernyak, Vladimir/0000-0003-4389-4238 NR 131 TC 43 Z9 43 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2007 VL 127 IS 11 AR 114902 DI 10.1063/1.2773727 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 213KZ UT WOS:000249667400060 PM 17887875 ER PT J AU Liu, J Miller, WH AF Liu, Jian Miller, William H. TI Linearized semiclassical initial value time correlation functions using the thermal Gaussian approximation: Applications to condensed phase systems SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LIQUID PARA-HYDROGEN; VIBRATIONAL-ENERGY RELAXATION; COMPLEX MOLECULAR-SYSTEMS; PROBABILITIES S-MATRIX; VALUE REPRESENTATION; RATE CONSTANTS; REACTIVE COLLISIONS; QUANTUM LIQUIDS; DYNAMICS; CLUSTERS AB The linearized approximation to the semiclassical initial value representation (LSC-IVR) has been used together with the thermal Gaussian approximation (TGA) (TGA/LSC-IVR) [J. Liu and W. H. Miller, J. Chem. Phys. 125, 224104 (2006)] to simulate quantum dynamical effects in realistic models of two condensed phase systems. This represents the first study of dynamical properties of the Ne-13 Lennard-Jones cluster in its liquid-solid phase transition region (temperature from 4 to 14 K). Calculation of the force autocorrelation function shows considerable differences from that given by classical mechanics, namely that the cluster is much more mobile (liquidlike) than in the classical case. Liquid para-hydrogen at two thermodynamic state points (25 and 14 K under nearly zero external pressure) has also been studied. The momentum autocorrelation function obtained from the TGA/LSC-IVR approach shows very good agreement with recent accurate path integral Monte Carlo results at 25 K [A. Nakayama and N. Makri, J. Chem. Phys. 125, 024503 (2006)]. The self-diffusion constants calculated by the TGA/LSC-IVR are in reasonable agreement with those from experiment and from other theoretical calculations. These applications demonstrate the TGA/LSC-IVR to be a practical and versatile method for quantum dynamics simulations of condensed phase systems. (c) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, KS Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Liu, J (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Liu, Jian/B-2274-2012 OI Liu, Jian/0000-0002-2906-5858 NR 85 TC 52 Z9 53 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2007 VL 127 IS 11 AR 114506 DI 10.1063/1.2774990 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 213KZ UT WOS:000249667400041 PM 17887856 ER PT J AU Tao, L Alexander, MH AF Tao, Liang Alexander, Millard H. TI Role of van der Waals resonances in the vibrational relaxation of HF by collisions with H atoms SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID QUANTUM REACTIVE SCATTERING; POTENTIAL-ENERGY SURFACE; F+H-2 REACTION; 3 DIMENSIONS; CHEMICAL-REACTIONS; TRANSITION-STATE; DYNAMICS; LASER; MOLECULE AB Vibrational relaxation of HF(v) in collisions with H atoms can occur by three pathways: inelastic scattering with and without H atom exchange, and, for v >= 3, the HF+H -> F+H-2 reaction. Fully quantum, reactive scattering calculations on the Stark-Werner FH2 potential energy surface reveal narrow peaks in the energy dependence of the integral cross sections for each of these processes. By means of an adiabatic-bender analysis, we show that each of these peaks corresponds to the position of quasibound HF-H vibrational states trapped in the weak van der Waals well. The width of these resonances indicates that the lifetime of the quasibound states is up to 30 periods of the HF-H van der Waals vibration. (c) 2007 American Institute of Physics. C1 Univ Maryland, Inst Phys Sci & Technol, Dept Chem & Biochem, College Pk, MD 20742 USA. Univ Maryland, Chem Phys Program, College Pk, MD 20742 USA. RP Tao, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mha@umd.edu NR 33 TC 10 Z9 10 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2007 VL 127 IS 11 AR 114301 DI 10.1063/1.2766716 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 213KZ UT WOS:000249667400016 PM 17887831 ER PT J AU Zhou, J Garand, E Neumark, DM AF Zhou, Jia Garand, Etienne Neumark, Daniel M. TI Vibronic structure in C2H and C2D from anion slow electron velocity-map imaging spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LASER KINETIC SPECTROSCOPY; MAGNETIC-RESONANCE-SPECTROSCOPY; HYPERFINE COUPLING-CONSTANTS; VIBRATIONALLY EXCITED C2H; ETHYNYL RADICAL C2H; INDUCED FLUORESCENCE; NEGATIVE-IONS; PHOTODETACHMENT SPECTROSCOPY; THEORETICAL CALCULATION; HOMOGENEOUS PYROLYSIS AB The C2H and C2D radicals are investigated by slow electron velocity-map imaging (SEVI) of the corresponding anions. This technique offers considerably higher resolution (< 0.5 meV) than photoelectron spectroscopy. As a result, SEVI spectra of the two isotopomers yield improved electron affinities and reveal many new structures that are particularly sensitive to vibronic coupling between the ground (2)Sigma(+) and low-lying excited (2)Pi states. These structures, which encompass more than 5000 cm(-1) of internal excitation, are assigned with the aid of previous experimental and theoretical work. We also show that SEVI can be applied to photodetachment transitions resulting in ejection of an electron with orbital angular momentum l=1, a p wave, in contrast to anion zero-electron kinetic energy spectroscopy which is restricted to s-wave detachment. (c) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 NR 66 TC 22 Z9 22 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2007 VL 127 IS 11 AR 114313 DI 10.1063/1.2768932 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 213KZ UT WOS:000249667400028 PM 17887843 ER PT J AU Iancu, CV Ding, HJ Morris, DM Dias, DP Gonzales, AD Martino, A Jensen, GJ AF Iancu, Cristina V. Ding, H. Jane Morris, Dylan M. Dias, D. Prabha Gonzales, Arlene D. Martino, Anthony Jensen, Grant J. TI The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE carboxysomes; electron cryotomography; bacterial ultrastructure; Calvin cycle ID CO2 CONCENTRATING MECHANISM; THIOBACILLUS-NEAPOLITANUS; CARBONIC-ANHYDRASE; SALMONELLA-ENTERICA; POLYHEDRAL BODIES; ORGANELLES; CYANOBACTERIUM; TOMOGRAPHY; SHELL; MICROSCOPY AB Carboxysomes are organelle-like polyhedral bodies found in cyanobacteria and many chemoautotrophic bacteria that are thought to facilitate carbon fixation. Carboxysomes are bounded by a proteinaceous outer shell and filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the first enzyme in the CO2 fixation pathway, but exactly how they enhance carbon fixation is unclear. Here we report the three-dimensional structure of purified carboxysomes from Synechococcus species strain WH8102 as revealed by electron cryotomography. We found that while the sizes of individual carboxysomes in this organism varied from 114 nm to 137 nm, surprisingly, all were approximately icosahedral. There were on average similar to 250 RuBisCOs per carboxysome, organized into three to four concentric layers. Some models of carboxysome function depend on specific contacts. between individual RuBisCOs and the shell, but no evidence of such contacts was found: no systematic patterns of connecting densities or RuBisCO positions against the shell's presumed hexagonal lattice could be discerned, and simulations showed that packing forces alone could account for the layered organization of RuBisCOs. C1 CALTECH, Div Biol, Pasadena, CA 91125 USA. Sandia Natl Labs, Biomol Anal & Imaging Dept, Albuquerque, NM 87185 USA. RP Jensen, GJ (reprint author), CALTECH, Div Biol, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM jensen@caltech.edu FU NIAID NIH HHS [R01 AI067548, R01 AI067548-01]; NIGMS NIH HHS [P01 GM066521, P01 GM066521-010002, P01 GM66521] NR 42 TC 69 Z9 71 U1 1 U2 13 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 21 PY 2007 VL 372 IS 3 BP 764 EP 773 DI 10.1016/j.jmb.2007.06.059 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 210ZT UT WOS:000249494800017 PM 17669419 ER PT J AU Rai, R Elmer, JW Palmer, TA DebRoy, T AF Rai, R. Elmer, J. W. Palmer, T. A. DebRoy, T. TI Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID ALLOYING ELEMENT VAPORIZATION; COMPLEX JOINTS; PHASE-CHANGE; PART II; PENETRATION; METAL; TEMPERATURE; SIMULATION; BEAM; PROFILE AB Because of the complexity of several simultaneous physical processes, most heat transfer models of keyhole mode laser welding require some simplifications to make the calculations tractable. The simplifications often limit the applicability of each model to the specific materials systems for which the model is developed. In this work, a rigorous, yet computationally efficient, keyhole model is developed and tested on tantalum, Ti-6Al-4V,304L stainless steel and vanadium. Unlike previous models, this one combines an existing model to calculate keyhole shape and size with numerical fluid flow and heat transfer calculations in the weld pool. The calculations of the keyhole profile involved a point-by-point heat balance at the keyhole walls considering multiple reflections of the laser beam in the vapour cavity. The equations of conservation of mass, momentum and energy are then solved in three dimensions assuming that the temperatures at the keyhole wall reach the boiling point of the different metals or alloys. A turbulence model based on Prandtl's mixing length hypothesis was used to estimate the effective viscosity and thermal conductivity in the liquid region. The calculated weld cross-sections agreed well with the experimental results for each metal and alloy system examined here. In each case, the weld pool geometry was affected by the thermal diffusivity, absorption coefficient, and the melting and boiling points, among the various physical properties of the alloy. The model was also used to better understand solidification phenomena and calculate the solidification parameters at the trailing edge of the weld pool. These calculations indicate that the solidification structure became less dendritic and coarser with decreasing weld velocities over the range of speeds investigated in this study. Overall, the keyhole weld model provides satisfactory simulations of the weld geometries and solidification sub-structures for diverse engineering metals and alloys. C1 Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. RP Rai, R (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RI DebRoy, Tarasankar/A-2106-2010 NR 65 TC 90 Z9 95 U1 11 U2 88 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 21 PY 2007 VL 40 IS 18 BP 5753 EP 5766 DI 10.1088/0022-3727/40/18/037 PG 14 WC Physics, Applied SC Physics GA 207MS UT WOS:000249255800049 ER PT J AU Barnas, MB AF Barnas, M. Brisudova TI Hybridgen: A model for the study of QCD hybrid states SO MODERN PHYSICS LETTERS A LA English DT Article DE hybrids; confinement; mesons; baryons ID FLUX TUBE; MESONS AB We study the mixing of excited states of a hydrogen atom in a cavity with de-excited states plus a confined photon as a model for the coupling of quark-antiquark and quark-antiquark-gluon hybrid states in QCD. For an interesting range of parameters, the results are analytic. We find a case for which wave functions (and hence decay patterns) may be at odds with mass with respect to identification of a state as hybrid or not. C1 Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47408 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Barnas, MB (reprint author), Indiana Univ, Ctr Nucl Theory, 2401 Milo B Sampson Lane, Bloomington, IN 47408 USA. EM brisuda@niobe.iucf.indiana.edu NR 12 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD SEP 21 PY 2007 VL 22 IS 29 BP 2175 EP 2189 PG 15 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 211XJ UT WOS:000249556300002 ER PT J AU Francis, MJ Lewis, GF Linder, EV AF Francis, Matthew J. Lewis, Geraint F. Linder, Eric V. TI Power spectra to 1 per cent accuracy between dynamical dark energy cosmologies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods : N-body simulations; methods : numerical; dark matter; large-scale structure of Universe ID MICROWAVE BACKGROUND ANISOTROPIES; HUBBLE-SPACE-TELESCOPE; WEAK-LENSING SURVEYS; MATTER; SIMULATIONS; BARYONS; MODELS; QUINTESSENCE; CONSTRAINTS; EVOLUTION AB For dynamical dark energy cosmologies we carry out a series of N-body gravitational simulations, achieving per cent level accuracy in the relative mass power spectra within 0. 1 < k < 3 at any redshift for values of the dark energy equation of state consistent with current observations. Such accuracy in the power spectrum is necessary for next generation cosmological mass probes. Our matching procedure reproduces the cosmic microwave background distance to last scattering and delivers sub-per cent level accuracy in the matter power spectra at z = 0 and approximate to 3. We discuss the physical implications for probing dark energy with surveys of large-scale structure. C1 Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. Univ Calif, Berkeley Lab, Berkeley, CA 94720 USA. RP Francis, MJ (reprint author), Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. EM mfrancis@physics.usyd.edu.au RI Lewis, Geraint/F-9069-2015 OI Lewis, Geraint/0000-0003-3081-9319 NR 39 TC 23 Z9 23 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2007 VL 380 IS 3 BP 1079 EP 1086 DI 10.1111/j.1365-2966.2007.12139.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 215YM UT WOS:000249844900019 ER PT J AU Kulisek, JA Hartwell, JK McIlwain, ME Gardner, RP AF Kulisek, J. A. Hartwell, J. K. McIlwain, M. E. Gardner, R. P. TI Design and preliminary Monte Carlo calculations of an active Compton-suppressed LaBr3(Ce) detector system for TRU assay in remote-handled wastes SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th International Symposium on Radiation Physics CY SEP 17-22, 2006 CL Univ Coimbra, Coimbra, PORTUGAL HO Univ Coimbra DE gamma-ray spectrometry; compton suppression; scintillation detectors; MCNP ID SPECTROMETER; SCINTILLATOR AB Recent studies indicate LaBr3(Ce) scintillating detectors have desirable attributes, such as room temperature operability and excellent energy resolution, which may make them viable alternatives as primary detectors (PD) in a Compton suppression spectrometer (CSS) used for remote-handled transuranic (RH-TRU) waste assay. A CSS with a LaBr3(Ce) PD has been designed and its expected performance evaluated using Monte Carlo analysis. These results indicate that this detector will have a relatively high Comptonsuppression capability, with greater suppression ability for large angle-scattered photons in the PD. (C) 2007 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. Ohio State Univ, Nucl Engn Program, Columbus, OH 43210 USA. N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. RP McIlwain, ME (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM michael.mcilwain@inl.gov NR 9 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2007 VL 580 IS 1 BP 226 EP 229 DI 10.1016/j.nima.2007.05.060 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 214MF UT WOS:000249741300059 ER PT J AU Lichtenberger, J Lee, D Iglesia, E AF Lichtenberger, Janine Lee, Doohwan Iglesia, Enrique TI Catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID LIQUID-PHASE OXIDATION; METHYL FORMATE; SELECTIVE OXIDATION; AEROBIC OXIDATION; FUELED VEHICLES; PALLADIUM; ALCOHOLS; ETHANOL; SURFACE; OXYGEN AB Supported Pd clusters catalyze methanol oxidation to methyl formate with high turnover rates and > 90% selectivity at near ambient temperatures (313 K). Metal clusters are much more reactive than PdO clusters and rates are inhibited by the reactant O-2. These data suggest that ensembles of I'd metal atoms on surfaces nearly saturated with chemisorbed oxygen are required for kinetically-relevant C-H bond activation in chemisorbed methoxide intermediates. Pd metal surfaces become more reactive with increasing metal particle size. The higher coordination of surface atoms on larger clusters leads to more weakly-bound chemisorbed species and to a larger number of Pd metal ensembles available during steady-state catalysis. Chemisorbed oxygen removes H-atoms formed in C-H bond activation steps and inhibits methoxide decomposition and CO2 formation, two functions essential for the high turnover rates and methyl formate selectivities reported here. C1 Univ Calif Berkeley, Div Chem Sci, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Div Chem Sci, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 NR 39 TC 35 Z9 38 U1 2 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD SEP 21 PY 2007 VL 9 IS 35 BP 4902 EP 4906 DI 10.1039/b707465d PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 212HZ UT WOS:000249588200015 PM 17912420 ER PT J AU Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carillo, S Carlsmith, D Carosi, R Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Paoli, FD Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Dorr, C Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carillo, S. Carlsmith, D. Carosi, R. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Paoli, F. Delli Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Doerr, C. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Search for heavy long-lived particles that decay to photons at CDF II SO PHYSICAL REVIEW LETTERS LA English DT Article ID E(+)E(-) COLLISIONS; COLLIDERS; PHYSICS; EVENTS; ENERGY; MASS AB We present the first search for heavy, long-lived particles that decay to photons at a hadron collider. We use a sample of gamma+jet+missing transverse energy events in p (p) over bar collisions at root s=1.96 TeV taken with the CDF II detector. Candidate events are selected based on the arrival time of the photon at the detector. Using an integrated luminosity of 570 pb(-1) of collision data, we observe 2 events, consistent with the background estimate of 1.3 +/- 0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross section limits in a supersymmetric model with (chi) over tilde (0)(1)->gamma(G) over tilde and place the world-best 95% C.L. lower limit on the (chi) over tilde (0)(1) mass of 101 GeV/c(2) at tau(0)((chi) over tilde1)=5 ns. C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernerst Orlando Lawrence Berkerley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. CIEMAT, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI St.Denis, Richard/C-8997-2012; Robson, Aidan/G-1087-2011; Punzi, Giovanni/J-4947-2012; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; messina, andrea/C-2753-2013; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Grinstein, Sebastian/N-3988-2014; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; OI Punzi, Giovanni/0000-0002-8346-9052; Warburton, Andreas/0000-0002-2298-7315; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Goldstein, Joel/0000-0003-1591-6014; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039 NR 24 TC 16 Z9 16 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 21 PY 2007 VL 99 IS 12 AR 121801 DI 10.1103/PhysRevLett.99.121801 PG 7 WC Physics, Multidisciplinary SC Physics GA 213LE UT WOS:000249668000020 PM 17930496 ER PT J AU Berg, E Fradkin, E Kim, EA Kivelson, SA Oganesyan, V Tranquada, JM Zhang, SC AF Berg, E. Fradkin, E. Kim, E.-A. Kivelson, S. A. Oganesyan, V. Tranquada, J. M. Zhang, S. C. TI Dynamical layer decoupling in a stripe-ordered High-T-c superconductor SO PHYSICAL REVIEW LETTERS LA English DT Article ID GROUND-STATE; LIQUIDS AB In the stripe-ordered state of a strongly correlated two-dimensional electronic system, under a set of special circumstances, the superconducting condensate, like the magnetic order, can occur at a nonzero wave vector corresponding to a spatial period double that of the charge order. In this case, the Josephson coupling between near neighbor planes, especially in a crystal with the special structure of La2-xBaxCuO4, vanishes identically. We propose that this is the underlying cause of the dynamical decoupling of the layers recently observed in transport measurements at x=1/8. C1 Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Yale Univ, Dept Phys, New Haven, CT 06520 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Berg, E (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RI Tranquada, John/A-9832-2009; Zhang, Shou-Cheng/B-2794-2010; Kim, Eun-Ah/K-6711-2012; Fradkin, Eduardo/B-5612-2013; OI Tranquada, John/0000-0003-4984-8857; Kim, Eun-Ah/0000-0002-9554-4443; Fradkin, Eduardo/0000-0001-6837-463X NR 26 TC 124 Z9 124 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 21 PY 2007 VL 99 IS 12 AR 127003 DI 10.1103/PhysRevLett.99.127003 PG 4 WC Physics, Multidisciplinary SC Physics GA 213LE UT WOS:000249668000068 PM 17930544 ER PT J AU Sutter, P Bennett, PA Flege, JI Sutter, E AF Sutter, P. Bennett, P. A. Flege, J. I. Sutter, E. TI Steering liquid Pt-Si nanodroplets on Si(100) by interactions with surface steps SO PHYSICAL REVIEW LETTERS LA English DT Article ID SILICON; SI(001); MIGRATION; SI(111) AB Liquid eutectic Pt-Si droplets, migrating across a Si(100) surface due to an applied temperature gradient, interact measurably with surface steps. An analysis of the interaction yields a critical size of hundreds of nanometers below which droplets are constrained to move parallel to monolayer steps. Bunches of closely spaced steps are capable of guiding larger, micron-sized droplets. This steering by steps or step bunches may be used for the controlled manipulation of liquid droplets on patterned surfaces, and affects fundamental surface processes such as coarsening. C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov RI Flege, Jan Ingo/J-6354-2012 OI Flege, Jan Ingo/0000-0002-8346-6863 NR 16 TC 8 Z9 8 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 21 PY 2007 VL 99 IS 12 AR 125504 DI 10.1103/PhysRevLett.99.125504 PG 4 WC Physics, Multidisciplinary SC Physics GA 213LE UT WOS:000249668000041 PM 17930517 ER PT J AU Tsetseris, L Kalfagiannis, N Logothetidis, S Pantelides, ST AF Tsetseris, L. Kalfagiannis, N. Logothetidis, S. Pantelides, S. T. TI Role of N defects on thermally induced atomic-scale structural changes in transition-metal nitrides SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUBSTOICHIOMETRIC TITANIUM NITRIDES; AUGMENTED-WAVE METHOD; ELASTIC PROPERTIES; ELECTRONIC-PROPERTIES; LAYERS; VACANCIES; NITROGEN; TIN; CARBONITRIDES; MORPHOLOGY AB Transition-metal nitrides (TMN) have exceptional stability, which underlies their use in various applications. Here, we study the role of N point defects on the stability of prototype TMNs using first-principles calculations. We find that distinct regimes for TMN changes relate to specific atomic-scale mechanisms, namely, diffusion of N interstitials (I-N), of I-N pairs, and of N vacancies. The activation of these processes occurs sequentially as the temperature is raised in a range of several hundreds of degrees, accounting for observed TMN changes under widely different conditions. C1 Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsetseris, L (reprint author), Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece. NR 35 TC 50 Z9 50 U1 2 U2 74 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 21 PY 2007 VL 99 IS 12 AR 125503 DI 10.1103/PhysRevLett.99.125503 PG 4 WC Physics, Multidisciplinary SC Physics GA 213LE UT WOS:000249668000040 PM 17930516 ER PT J AU Young, RD Carlini, RD Thomas, AW Roche, J AF Young, R. D. Carlini, R. D. Thomas, A. W. Roche, J. TI Testing the standard model by precision measurement of the weak charges of quarks SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOMENT; ATOMS AB In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The precision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the standard model. Consequently, this result improves the lower-bound on the scale of relevant new physics to similar to 1 TeV. C1 Jefferson Lab, Newport News, VA 23606 USA. Univ Adelaide, Special Res Ctr Subatom Sturct Matter, Adelaide, SA 5005, Australia. Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. Coll William & Mary, Williamsburg, VA 23187 USA. Ohio Univ, Athens, OH 45071 USA. RP Young, RD (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RI Thomas, Anthony/G-4194-2012; Young, Ross/H-8207-2012 OI Thomas, Anthony/0000-0003-0026-499X; NR 26 TC 84 Z9 84 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 21 PY 2007 VL 99 IS 12 AR 122003 DI 10.1103/PhysRevLett.99.122003 PG 4 WC Physics, Multidisciplinary SC Physics GA 213LE UT WOS:000249668000023 PM 17930499 ER PT J AU Zhang, Z Ge, Q Li, SC Kay, BD White, JM Dohnalek, Z AF Zhang, Zhenrong Ge, Qingfeng Li, Shao-Chun Kay, Bruce D. White, J. M. Dohnalek, Zdenek TI Imaging intrinsic diffusion of bridge-bonded oxygen vacancies on TiO2(110) SO PHYSICAL REVIEW LETTERS LA English DT Article ID TIO2 110; SURFACES; ADSORPTION; DISSOCIATION; PRINCIPLES; GOLD AB We report the first measurements and calculations of the intrinsic mobility of bridge-bonded oxygen (BBO) vacancies on a rutile TiO2(110). The sequences of isothermal (340-420 K) scanning tunneling microscope images show that BBO vacancies migrate along BBO rows. The hopping rate increases exponentially with increasing temperature with an experimental activation energy of 1.15 eV. Density functional theory calculations are in very good agreement giving an energy barrier for hopping of 1.03 eV. Both theory and experiment indicate repulsive interactions between vacancies on a given BBO row. C1 Inst Interfacial Catalysis, Div Chem Sci, Fundamental Sci Directorate, Pacific NW Natl Lab, Richland, WA 99352 USA. So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. Univ Texas, Ctr Mat Chem, Dept Chem & Biochem, Austin, TX 78712 USA. RP Dohnalek, Z (reprint author), Inst Interfacial Catalysis, Div Chem Sci, Fundamental Sci Directorate, Pacific NW Natl Lab, Richland, WA 99352 USA. EM Zdenek.Dohnalek@pnl.gov RI Ge, Qingfeng/A-8498-2009; OI Ge, Qingfeng/0000-0001-6026-6693; Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 NR 22 TC 59 Z9 60 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 21 PY 2007 VL 99 IS 12 AR 126105 DI 10.1103/PhysRevLett.99.126105 PG 4 WC Physics, Multidisciplinary SC Physics GA 213LE UT WOS:000249668000050 PM 17930526 ER PT J AU Lin, JF Vanko, G Jacobsen, SD Iota, V Struzhkin, VV Prakapenka, VB Kuznetsov, A Yoo, CS AF Lin, Jung-Fu Vanko, Gyoergy Jacobsen, Steven D. Iota, Valentin Struzhkin, Viktor V. Prakapenka, Vitali B. Kuznetsov, Alexei Yoo, Choong-Shik TI Spin transition zone in Earth's lower mantle SO SCIENCE LA English DT Article ID RAY-EMISSION SPECTROSCOPY; THERMODYNAMIC PARAMETERS; PEROVSKITE; IRON; STATE; TEMPERATURE; MAGNESIOWUSTITE; FERROPERICLASE; CONDUCTIVITY; STABILITY AB Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg, Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. European Synchrotron Radiat Facil, F-38043 Grenoble, France. Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Consortium Adv Radiat Sources, Chicago, IL 60637 USA. RP Lin, JF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RI Kuznetsov, Alexei/C-2274-2008; Lin, Jung-Fu/B-4917-2011; Vanko, Gyorgy/B-8176-2012; Struzhkin, Viktor/J-9847-2013; Jacobsen, Steven/F-3443-2013 OI Vanko, Gyorgy/0000-0002-3095-6551; Struzhkin, Viktor/0000-0002-3468-0548; Jacobsen, Steven/0000-0002-9746-958X NR 31 TC 117 Z9 124 U1 5 U2 38 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 21 PY 2007 VL 317 IS 5845 BP 1740 EP 1743 DI 10.1126/science.1144997 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 212HD UT WOS:000249585900045 PM 17885134 ER PT J AU Lu, M Fu, D AF Lu, Min Fu, Dax TI Structure of the zinc transporter YiiP SO SCIENCE LA English DT Article ID ESCHERICHIA-COLI; FUNCTIONAL-CHARACTERIZATION; METAL-BINDING; PROTEINS; CHEMISTRY; FAMILY; MICE; FIEF AB YiiP is a membrane transporter that catalyzes Zn2+/H+ exchange across the inner membrane of Escherichia coli. Mammalian homologs of YiiP play critical roles in zinc homeostasis and cell signaling. Here, we report the x-ray structure of YiiP in complex with zinc at 3.8 angstrom resolution. YiiP is a homodimer held together in a parallel orientation through four Zn2+ ions at the interface of the cytoplasmic domains, whereas the two transmembrane domains swing out to yield a Y-shaped structure. In each protomer, the cytoplasmic domain adopts a metallochaperone-like protein fold; the transmembrane domain features a bundle of six transmembrane helices and a tetrahedral Zn2+ binding site located in a cavity that is open to both the membrane outer leaflet and the periplasm. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Fu, D (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM dax@bnl.gov FU NIGMS NIH HHS [R01 GM065137] NR 26 TC 172 Z9 173 U1 0 U2 20 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 21 PY 2007 VL 317 IS 5845 BP 1746 EP 1748 DI 10.1126/science.1143748 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 212HD UT WOS:000249585900047 PM 17717154 ER PT J AU Lu, ZM Zhang, DX Robinson, BA AF Lu, Zhiming Zhang, Dongxiao Robinson, Bruce A. TI Explicit analytical solutions for one-dimensional steady state flow in layered, heterogeneous unsaturated soils under random boundary conditions SO WATER RESOURCES RESEARCH LA English DT Article ID STOCHASTIC-ANALYSIS; TRANSIENT FLOW; KIRCHHOFF TRANSFORMATION; HYDRAULIC CONDUCTIVITY; MEDIA; INFILTRATION; VARIABILITY; PARAMETERS; EQUATION AB In this study, we directly derive first-order analytical solutions to the pressure head moments ( mean and variance) for one-dimensional steady state unsaturated flow in randomly heterogeneous layered soil columns under various random boundary conditions. We assume that the constitutive relation between the unsaturated hydraulic conductivity and the pressure head follows an exponential model, and treat the saturated hydraulic conductivity K-s as a random function and the pore size distribution parameter a as a random constant. Unlike the solution given in Lu and Zhang ( 2004) in which Kirchhoff transformation was used and the solution to pressure head variance was presented as a function of (cross-)covariances related to the intermediate, Kirchhoff-transformed variable, the solution to the pressure head variance presented in this paper is an explicit function of the input variabilities. In addition, we also give analytical solutions to the statistics of the unsaturated hydraulic conductivity and the effective water content. These first-order analytical solutions are compared with those from Monte Carlo simulations. We also investigated the effect of uncertain boundary conditions, the relative contribution of input variabilities to the head variance, and the possible errors introduced by treating the correlated a field as a random constant in the analytical solutions. The results indicate that the uncertain constant head at the bottom of a deep soil column may not have a significant effect on predicting flow statistics in the upper portion of the column. Furthermore, it is found that treating a as a random constant is justified when the correlation length of a is relatively large as compared to the layer thickness. C1 Los Alamos Natl Lab, Hydrol & Geochem Grp EES 6, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Civilian Nucl Programs, Los Alamos, NM 87545 USA. Univ So Calif, Dept Civil & Environm Engn, Los Angeles, CA 90089 USA. Univ So Calif, Mork Family Dept Chem Engn Mat Sci, Los Angeles, CA 90089 USA. RP Lu, ZM (reprint author), Los Alamos Natl Lab, Hydrol & Geochem Grp EES 6, Los Alamos, NM 87545 USA. EM zhimimg@1anl.gov RI Robinson, Bruce/F-6031-2010; Zhang, Dongxiao/D-5289-2009; OI Zhang, Dongxiao/0000-0001-6930-5994; Lu, Zhiming/0000-0001-5800-3368 NR 28 TC 4 Z9 4 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 21 PY 2007 VL 43 IS 9 AR W09413 DI 10.1029/2005WR004795 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 213UB UT WOS:000249691500001 ER PT J AU Hix, WR Parete-Koon, ST Freiburghaus, C Thielemann, FK AF Hix, W. Raphael Parete-Koon, Suzanne T. Freiburghaus, Christian Thielemann, Friedrich-Karl TI The QSE-reduced nuclear reaction network for silicon burning SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods : numerical; nuclear reactions, nucleosynthesis, abundances; stars : evolution; supernovae : general ID CORE-COLLAPSE SUPERNOVAE; CHANDRASEKHAR-MASS MODELS; DELAYED-DETONATION MODEL; QUASI-EQUILIBRIUM; IA SUPERNOVAE; STELLAR HYDRODYNAMICS; ENERGY GENERATION; HIGH-TEMPERATURE; REACTION-RATES; NUCLEOSYNTHESIS AB Iron and neighboring nuclei are formed in massive stars shortly before core collapse and during their supernova outbursts, as well as during thermonuclear supernovae. Complete and incomplete silicon burning are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present a new hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. This allows accurate prediction of the nuclear abundance evolution, deleptonization, and energy generation at a greatly reduced computational cost when compared to a conventional nuclear reaction network. During silicon burning, the resultant QSE-reduced network is approximately an order of magnitude faster than the full network it replaces and requires the tracking of less than a third as many abundance variables, without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multidimensional applications. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Univ Basel, Dept Phys & Astron, CH-4056 Basel, Switzerland. RP Hix, WR (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. RI Hix, William/E-7896-2011 OI Hix, William/0000-0002-9481-9126 NR 64 TC 5 Z9 5 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2007 VL 667 IS 1 BP 476 EP 488 DI 10.1086/520672 PN 1 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 210KU UT WOS:000249455900041 ER PT J AU Leggett, SK Marley, MS Freedman, R Saumon, D Liu, MC Geballe, TR Golimowski, DA Stephens, DC AF Leggett, S. K. Marley, M. S. Freedman, R. Saumon, D. Liu, Michael C. Geballe, T. R. Golimowski, D. A. Stephens, D. C. TI Physical and spectral characteristics of the T8 and later type dwarfs SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared : stars; stars : individual (2MASS J04151954-0935066, 2MASS J09393548-2448279, 2MASS J11145133-2618235, HD 3651B; G1 570D); stars : low-mass, brown dwarfs ID SPITZER-SPACE-TELESCOPE; ALL-SKY SURVEY; INFRARED SPECTROGRAPH IRS; EXOPLANET HOST STAR; BROWN DWARF; GLIESE 570D; K-DWARF; METHANE; DISCOVERY; 2MASS AB We use newly observed and published near-infrared spectra, together with synthetic spectra obtained from model atmospheres, to derive physical properties of three of the latest type T dwarfs. A new R approximate to 1700 spectrum of the T7.5 dwarf HD 3651B, together with existing data, allows a detailed comparison to the well-studied and very similar dwarf Gl 570D. We find that HD 3651B has both higher gravity and higher metallicity than Gl 570D, with best-fit atmospheric parameters of T-eff 820-830 K, log g = 5.4-5.5, [m/ H] = +0.2, and K-zz 10(4) cm(2) s(-1). Its age is 8-12 Gyr, and its implied mass is 60-70 M-J. We perform a similar analysis of the T8 and T7.5 dwarfs 2MASS J09393548-2448279 and 2MASS J11145133-2618235 using published data, comparing them to the well-studied T8, 2MASS J04151954-0935066. We find that these two dwarfs have effectively the same T-eff as the reference dwarf, and similar or slightly higher gravities, but lower metallicities. The derived parameters are T-eff 725-775 K and [m/H] = -0.3; log g = 5.3 - 5.45 for 2MASS J09393548-2448279 and log g 5.0 - 5.3 for 2MASS J11145133-261823. The age and mass are similar to 10 Gyr and 60 M-J for 2MASS J09393548-2448279, and similar to 5 Gyr and 40 MJ for 2MASS J11145133-261823. A serious limitation to such analyses is the incompleteness of the line lists for transitions of CH4 and NH3 at lambda <= 1.7 mu m, which are also needed for synthesizing the spectrum of the later, cooler, Y type. Spectra of Saturn and Jupiter, and of laboratory CH4 and NH3 gas, suggest that NH3 features in the Y and J bands may be useful as indicators of the next spectral type, and not features in the H and K bands, as previously thought. However, until cooler objects are found, or the line lists improve, large uncertainties remain, as the abundance of NH3 is likely to be significantly below the chemical equilibrium value. Moreover, inclusion of laboratory NH3 opacities in our models predicts band shapes that are discrepant with existing data. It is possible that the T spectral class will have to be extended to temperatures around 400 K, when water clouds condense in the atmosphere and dramatically change the spectral energy distribution of the brown dwarf. C1 Gemini Observ, Hilo, HI 96720 USA. NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. SETI, Mountain View, CA 94043 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. RP Leggett, SK (reprint author), Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM dsaumon@lanl.gov OI Leggett, Sandy/0000-0002-3681-2989 NR 68 TC 61 Z9 61 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2007 VL 667 IS 1 BP 537 EP 548 DI 10.1086/519948 PN 1 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 210KU UT WOS:000249455900047 ER PT J AU Krumholz, MR Klein, RI Mckee, CF Bolstad, J AF Krumholz, Mark R. Klein, Richard I. McKee, Christopher F. Bolstad, John TI Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; methods : numerical; radiative transfer ID ADAPTIVE MESH REFINEMENT; SMOOTHED PARTICLE HYDRODYNAMICS; HEAT-CONDUCTION; GODUNOV METHODS; SIMULATIONS; FRAGMENTATION; COLLAPSE; APPROXIMATION; FLOWS; DISKS AB We analyze the mixed-frame equations of radiation hydrodynamics under the approximations of flux-limited diffusion and a thermal radiation field and derive the minimal set of evolution equations that includes all terms that are of leading order in any regime of nonrelativistic radiation hydrodynamics. Our equations are accurate to first order in v/c in the static diffusion regime. In contrast, we show that previous lower order derivations of these equations omit leading terms in at least some regimes. In comparison to comoving-frame formulations of radiation hydrodynamics, our equations have the advantage that they manifestly conserve total energy, making them very well suited to numerical simulations, particularly with adaptive meshes. For systems in the static diffusion regime, our analysis also suggests an algorithm that is both simpler and faster than earlier comoving-frame methods. We implement this algorithm in the Orion adaptive mesh refinement code and show that it performs well in a range of test problems. C1 Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. RP Krumholz, MR (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM krumholz@astro.princeton.edu; klein@astron.berkeley.edu; cmckee@astron.berkeley.edu; bolstad@llnl.gov OI Krumholz, Mark/0000-0003-3893-854X NR 37 TC 73 Z9 73 U1 0 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2007 VL 667 IS 1 BP 626 EP 643 DI 10.1086/520791 PN 1 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 210KU UT WOS:000249455900055 ER PT J AU Croft, S de Vries, W Becker, RH AF Croft, Steve de Vries, Wim Becker, Robert H. TI Radio AGNs in 13,240 galaxy clusters from the sloan digital sky survey SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : active; galaxies : clusters: general ID ACTIVE GALACTIC NUCLEI; COOLING FLOWS; BLACK-HOLES; 1ST SURVEY; QUASARS AB We correlate the positions of 13,240 brightest cluster galaxies (BCGs) with 0.1 <= z <= 0.3 from the maxBCG catalog with radio sources from the FIRST survey to study the sizes and distributions of radio AGNs in galaxy clusters. We find that 19.7% of our BCGs are associated with FIRST sources, and this fraction depends on the stellar mass of the BCG, and to a lesser extent on the richness of the parent cluster ( in the sense of increasing radio-loudness with increasing mass). The intrinsic size of the radio emission associated with the BCGs peaks at 55 kpc, with a tail extending to 200 kpc. The radio power of the extended sources places them on the divide between FR I and FR II type sources, while sources compact in the radio tend to be somewhat less radio-luminous. We also detect an excess of radio sources associated with the cluster, instead of with the BCG itself, extending out to similar to 1.4 Mpc. C1 Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. Univ Calif Davis, Davis, CA 95616 USA. RP Croft, S (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, L 413,7000 E Ave, Livermore, CA 94550 USA. OI Croft, Steve/0000-0003-4823-129X NR 23 TC 17 Z9 17 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2007 VL 667 IS 1 BP L13 EP L16 DI 10.1086/522086 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 210NJ UT WOS:000249462600004 ER PT J AU Miniati, F Koushiappas, SM Di Matteo, T AF Miniati, Francesco Koushiappas, Savvas M. Di Matteo, Tiziana TI Angular anisotropies in the cosmic gamma-ray background as a probe of its origin SO ASTROPHYSICAL JOURNAL LA English DT Article DE diffuse radiation; gamma rays : theory; large scale structure of universe ID LARGE-SCALE STRUCTURE; LUMINOSITY FUNCTION; SHOCK ACCELERATION; CLUSTERS; BLAZARS; GALAXIES; EMISSION; FOREGROUNDS; EVOLUTION; WAVES AB Notwithstanding the advent of the Gamma-ray Large Area Space Telescope, theoretical models predict that a significant fraction of the cosmic gamma-ray background (CGB), at a level of 20% of the currently measured value, will remain unresolved. The angular power spectrum of intensity fluctuations of the CGB contains information on its origin. We show that probing the latter on scales from a few tens of arcminutes to several degrees, together with complementary GLAST observations of gamma-ray emission from galaxy clusters and the blazar luminosity function, can discriminate between a background that originates from unresolved blazars or cosmic rays accelerated at structure formation shocks. C1 ETH, CH-8093 Zurich, Switzerland. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, ISR Div, Los Alamos, NM 87545 USA. Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Miniati, F (reprint author), ETH, Wolfgang Pauli Str16, CH-8093 Zurich, Switzerland. EM fm@phys.ethz.ch; smkoush@lanl.gov; tiziana@phys.cmu.edu RI Di Matteo, Tiziana/O-4762-2014 OI Di Matteo, Tiziana/0000-0002-6462-5734 NR 34 TC 29 Z9 29 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2007 VL 667 IS 1 BP L1 EP L4 DI 10.1086/522085 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 210NJ UT WOS:000249462600001 ER PT J AU Hopkins, RJ Lewis, K Desyaterik, Y Wang, Z Tivanski, AV Arnott, WP Laskin, A Gilles, MK AF Hopkins, R. J. Lewis, K. Desyaterik, Y. Wang, Z. Tivanski, A. V. Arnott, W. P. Laskin, A. Gilles, M. K. TI Correlations between optical, chemical and physical properties of biomass burn aerosols SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SINGLE-SCATTERING ALBEDO; BLACK CARBON PARTICLES; X-RAY MICROSCOPY; LIGHT-ABSORPTION; ELECTRON-MICROSCOPY; PARTICULATE MATTER; CALIBRATION; DEPENDENCE; SMOKE AB Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo (omega) and Angstrom absorption coefficients (alpha(ap)) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp(2) hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp(2) hybridization and chemical composition. Measured w (0.4 - 1.0 at 405 nm) and alpha(ap) (1.0 - 3.5) values displayed a fuel dependence. The category with sp(2) hybridization > 80% had values of omega (< 0.5) and alpha(ap) (similar to 1.25) characteristic of light absorbing soot. Other categories with lower sp(2) hybridization (20 to 60%) exhibited higher w (> 0.8) and alpha(ap) (1.0 to 3.5) values, indicating increased absorption spectral selectivity. Citation: Hopkins, R. J., K. Lewis, Y. Desyaterik, Z. Wang, A. V. Tivanski, W. P. Arnott, A. Laskin, and M. K. Gilles (2007), Correlations between optical, chemical and physical properties of biomass burn aerosols, Geophys. Res. Lett., 34, L18806, doi: 10.1029/2007GL030502. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Nevada, Dept Phys, Reno, NV 89557 USA. Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. Univ Calif Berkeley, Coll Engn, Berkeley, CA 94720 USA. RP Hopkins, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, 1 Cyclotron Rd,MS 6R2100, Berkeley, CA 94720 USA. EM mkgilles@lbl.gov RI Laskin, Alexander/I-2574-2012 OI Laskin, Alexander/0000-0002-7836-8417 NR 24 TC 31 Z9 32 U1 5 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 20 PY 2007 VL 34 IS 18 AR L18806 DI 10.1029/2007GL030502 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 213RB UT WOS:000249683700003 ER PT J AU Strack, OE Cook, BK AF Strack, O. Erik Cook, Benjamin K. TI Three-dimensional immersed boundary conditions for moving, solids in the lattice-Boltzmann method SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE computational fluid dynamics; lattice-Boltzmann; immersed boundary condition; solid-fluid interaction; particulate suspensions; domain method ID INITIAL-VALUE PROBLEMS; DIRECT SIMULATION; PARTICULATE SUSPENSIONS; PARTICLE SIMULATION; HYDRODYNAMIC FORCE; NEWTONIAN FLUID; CURVED BOUNDARY; DOMAIN METHOD; FLOWS; MODEL AB This paper establishes the range of validity for a previously published three-dimensional moving solid boundary condition for the lattice-Boltzmann method. This method was reasonably formulated from a mass and momentum balance perspective, but was only verified for a small range of (primarily two-dimensional) problems. One of the advantages of this boundary condition is that it offers resolution at the sub-grid scale, allowing for accurate and stable calculation of the force and torque for solids which are moving through a lattice, even for small solid sizes relative to the computational grid size. We verify the boundary condition for creeping flows by comparison to analytical solutions that include both the force and the torque on fixed and moving spheres, and then follow this with comparisons to experimental and empirical results for both fixed as well moving spheres in inertial flows. Finally, we compare simulation results to numerical results of other investigators for the settling of an offset sphere and the drafting-kissing-tumbling of two sedimenting spheres. We found that an accurate calculation of the collision-operator weighting used to obtain sub-grid-scale resolution was necessary in order to prevent spikes in the velocities, forces, and moments when solid objects cross-computational cells. The wide range of comparisons collected and presented in this paper can be used to establish the validity of other numerical models, in addition to the one examined here. Published in 2007 by John Wiley & Sons, Ltd. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Strack, OE (reprint author), Sandia Natl Labs, POB 5800,MS 0378, Albuquerque, NM 87185 USA. EM oestrac@sandia.gov NR 56 TC 35 Z9 35 U1 0 U2 32 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD SEP 20 PY 2007 VL 55 IS 2 BP 103 EP 125 DI 10.1002/fld.1437 PG 23 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 207IG UT WOS:000249244200001 ER PT J AU Schmerge, JF Castro, J Clendenin, JE Dowell, DH Gierman, SM Loos, H AF Schmerge, J. F. Castro, J. Clendenin, J. E. Dowell, D. H. Gierman, S. M. Loos, H. TI The S-BAND 1.6 cell RF gun correlated energy spread dependence on pi and 0 mode relative amplitude SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 46th Workshop on Physics and Applications of High Brightness Electon Beams CY OCT 09-14, 2005 CL Erice, ITALY SP ICFA ID TEST FACILITY AB The pi mode or accelerating mode in a 1.6 cell rf gun is normally the only mode considered in rf gun simulations. However, due to the finite Q there is a small but measurable 0 mode present even at steady state. The pi mode by definition has a 180 degrees phase shift between cells but this phase shift for the total field is several degrees different. This results in a correlated energy spread exiting the gun. A comparison of simulation and experiment will be shown. C1 [Schmerge, J. F.; Castro, J.; Clendenin, J. E.; Dowell, D. H.; Gierman, S. M.; Loos, H.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Schmerge, JF (reprint author), Stanford Univ, SLAC, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. OI Loos, Henrik/0000-0001-5085-0562 NR 3 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD SEP 20 PY 2007 VL 22 IS 23 BP 4061 EP 4068 DI 10.1142/S0217751X07037639 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GU UT WOS:000251713400005 ER PT J AU Schmerge, JF Clendenin, JE Dowell, DH Gierman, SM AF Schmerge, J. F. Clendenin, J. E. Dowell, D. H. Gierman, S. M. TI Rf gun photo-emission model for metal cathodes including time dependent emission SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 46th Workshop on Physics and Applications of High Brightness Electon Beams CY OCT 09-14, 2005 CL Erice, ITALY SP ICFA ID LASER AB The quantum efficiency from a metal cathode is strongly dependent on the field at the cathode due to the Schottky effect. Since the field is time dependent the quantum efficiency is also time dependent. Thus the laser pulse shape used to generate electrons in a photocathode rf gun is not the same as the electron bunch shape. In addition since the thermal emittance and quantum efficiency are related, the thermal emittance is also time dependent. C1 [Schmerge, J. F.; Clendenin, J. E.; Dowell, D. H.; Gierman, S. M.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Schmerge, JF (reprint author), Stanford Univ, SLAC, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. NR 10 TC 3 Z9 3 U1 1 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD SEP 20 PY 2007 VL 22 IS 23 BP 4069 EP 4082 DI 10.1142/S0217751X07037640 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GU UT WOS:000251713400006 ER PT J AU Smedley, J Rao, T Warren, J Sekutowicz, J Langner, J Strzyzewski, P Lefferts, R Lipski, A AF Smedley, J. Rao, T. Warren, J. Sekutowicz, J. Langner, J. Strzyzewski, P. Lefferts, R. Lipski, A. TI Superconducting photocathodes SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 46th Workshop on Physics and Applications of High Brightness Electon Beams CY OCT 09-14, 2005 CL Erice, ITALY SP ICFA ID PHOTOEMISSION AB We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied. C1 [Smedley, J.; Rao, T.; Warren, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sekutowicz, J.] DESY, D-2000 Hamburg, Germany. [Langner, J.; Strzyzewski, P.] Andrzej Soltan Inst Nucl Studies, Otwock, Poland. [Lefferts, R.; Lipski, A.] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Smedley, J (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Sekutowicz, Jacek/A-6561-2013 NR 18 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD SEP 20 PY 2007 VL 22 IS 23 BP 4083 EP 4093 DI 10.1142/S0217751X07037652 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GU UT WOS:000251713400007 ER PT J AU Andonian, G Dunning, M Hemsing, E Rosenzweig, JB Cook, A Murokh, A Reiche, S Babzien, M Ben-Zvi, I Kusche, K Yakimenko, V Alesini, D Palumbo, L Vicario, C AF Andonian, G. Dunning, M. Hemsing, E. Rosenzweig, J. B. Cook, A. Murokh, A. Reiche, S. Babzien, M. Ben-Zvi, I. Kusche, K. Yakimenko, V. Alesini, D. Palumbo, L. Vicario, C. TI Observation of coherent edge radiation emitted by a 100 femtosecond compressed electron beam SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 46th Workshop on Physics and Applications of High Brightness Electon Beams CY OCT 09-14, 2005 CL Erice, ITALY SP ICFA AB A chicane compressor developed by UCLA for the production of ultra-short, 60 MeV electron beams at the Brookhaven National Laboratory Accelerator Test Facility has been commissioned, and initial beam physics experiments have been performed. These measurements have established the compression of electron beams to the 100 femtosecond (1 kA peak current) regime, via coherent transition radiation (CTR) based measurements. Investigations of coherent edge radiation (CER) include signatures that differentiate it from coherent synchrotron radiation (CSR), such as polarization and far-field angular distribution. Additionally, the radiation wavelength spectrum is determined from autocorrelation measurements. Radiation properties are compared to detailed start-to-end simulations derived from PARMELA and QUINDI (a Lienard-Wiechert code developed at UCLA). Plans for future experiments which further explore the observed wavelength spectra axe presented. C1 [Andonian, G.; Dunning, M.; Hemsing, E.; Rosenzweig, J. B.; Cook, A.; Murokh, A.; Reiche, S.] Univ Calif Los Angeles, Dept Phys & Astron, Particle Beam Phys Lab, Los Angeles, CA 90095 USA. [Babzien, M.; Ben-Zvi, I.; Kusche, K.; Yakimenko, V.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. [Alesini, D.; Palumbo, L.; Vicario, C.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00046 Frascati, RM, Italy. RP Andonian, G (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Particle Beam Phys Lab, Los Angeles, CA 90095 USA. RI Cook, Alan/D-2557-2013 NR 15 TC 1 Z9 1 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD SEP 20 PY 2007 VL 22 IS 23 BP 4101 EP 4114 DI 10.1142/S0217751X07037676 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GU UT WOS:000251713400009 ER PT J AU Lim, JK Rosenzweig, JB Anderson, SG Tremaine, AM AF Lim, J. K. Rosenzweig, J. B. Anderson, S. G. Tremaine, A. M. TI A high-density electron beam and quad-scan measurements at PLEIADES Thomson x-ray source SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 46th Workshop on Physics and Applications of High Brightness Electon Beams CY OCT 09-14, 2005 CL Erice, ITALY SP ICFA AB A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and vaxying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report. C1 [Lim, J. K.; Rosenzweig, J. B.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Anderson, S. G.; Tremaine, A. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lim, JK (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM jlim@physics.ucla.edu NR 4 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD SEP 20 PY 2007 VL 22 IS 23 BP 4317 EP 4323 DI 10.1142/S0217751X07037858 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GU UT WOS:000251713400027 ER PT J AU Thompson, MC Badakov, H Rosenzweig, JB Travish, G Hogan, M Ischebeck, R Kirby, N Muggli, P Scott, A Slemann, R Walz, D Yoder, R AF Thompson, M. C. Badakov, H. Rosenzweig, J. B. Travish, G. Hogan, M. Ischebeck, R. Kirby, N. Muggli, P. Scott, A. Slemann, R. Walz, D. Yoder, R. TI Preliminary results from the UCLA/SLAC ultra-high gradient Cerenkov wakefield accelerator experiment SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 46th Workshop on Physics and Applications of High Brightness Electon Beams CY OCT 09-14, 2005 CL Erice, ITALY SP ICFA AB The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. This experiment takes advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., sigma(z) = 20 mu m at Q = 3 nC). The FFTB electron beam has been successfully focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 mu m / OD = 325 mu m and ID = 100 mu m / OD = 325 mu m. The pulse length of the electron beam was varied in the range 20 mu m < sigma(z) < 100 mu m which produced a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments we plan to collect and measure coherent Cerenkov radiation emitted from the capillaxy tube to gain more information about the strength of the accelerating fields. C1 [Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travish, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Hogan, M.; Ischebeck, R.; Kirby, N.; Slemann, R.; Walz, D.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Muggli, P.] Univ So Calif, Los Angeles, CA 90089 USA. [Scott, A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Yoder, R.] Manhattan Coll, Riverdale, NY 10471 USA. RP Thompson, MC (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM thompson93@llnl.gov RI Travish, Gil/H-4937-2011 OI Travish, Gil/0000-0002-4787-0949 NR 10 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD SEP 20 PY 2007 VL 22 IS 23 BP 4343 EP 4354 DI 10.1142/S0217751X07037883 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GU UT WOS:000251713400030 ER PT J AU Cardolaccia, T Funston, AM Kose, ME Keller, JM Miller, JR Schanze, KS AF Cardolaccia, Thomas Funston, Alison M. Kose, M. Erkan Keller, Julia M. Miller, John R. Schanze, Kirk S. TI Radical ion states of platinum acetylide oligomers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ALPHA,ALPHA-COUPLED THIOPHENE OLIGOMERS; RESOLVED MICROWAVE CONDUCTIVITY; DIFFUSION-LIMITED REACTIONS; END-CAPPED OLIGOTHIOPHENES; DENSITY-FUNCTIONAL THEORY; CHARGE-CARRIER MOBILITY; CHAIN-LENGTH DEPENDENCE; TRIPLET EXCITED-STATES; CONTAINING POLY-YNES; PULSE-RADIOLYSIS AB The ion radicals of two series of platinum acetylide oligomers have been subjected to study by electrochemical and pulse radiolysis/transient absorption methods. One series of oligomers, Pt-n,, has the general structure Ph-C C-[Pt(PBU3)(2)-C C-(1,4-Ph)-C C-],-Pt(PBU3)2-C C-Ph (where x = 0-4, Ph = phenyl and 1,4-Ph = 1,4-phenylene). The second series of oligomers, Pt4Tn,,, contain a thiophene oligomer core, -C C-(2,5-Th),,-C C- (where n = 1-3 and 2,5-Th = 2,5-thienylene), capped on both ends with -Pt(PBU3)2-C C-(1,4-Ph)-C C-Pt(PBU3)2-C C-Ph segments. Electrochemical studies reveal that all of the oligomers feature reversible or quasi-reversible one-electron oxidation at potentials less than 1 V versus SCE. These oxidations are assigned to the formation of radical cations on the platinum acetylide chains. For the longer oligomers multiple, reversible one-electron waves are observed at potentials less than 1 V, indicating that multiple positive polarons can be produced on the oligomers. Pulse-radiolysis/transient absorption spectroscopy has been used to study the spectra and dynamics of the cation and anion radical states of the oliomers in dichloroethane and tetrahydrofuran solutions, respectively. All of the ion radicals exhibit two allowed absorption bands: one in the visible region and the second in the near-infrared region. The ion radical spectra shift with oligomer length, suggesting that the polarons are delocalized to some extent on the platinum acetylide chains. Analysis of the electrochemical and pulse radiolysis data combined with the density functional theory calculations on model ion radicals provides insight into the electronic structure of the positive and negative ion radical states of the oligomers. A key conclusion of the work is that the polaron states are concentrated on relatively short oligomer segments. C1 Univ Florida, Dept Chem, Gainesville, FL 32611 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Miller, JR (reprint author), Univ Florida, Dept Chem, POB 117200, Gainesville, FL 32611 USA. EM jrmiller@bnl.gov; kschanze@che.m.ufl.edu RI Funston, Alison/B-8817-2012; Kose, Muhammet/C-7167-2012; Schanze, Kirk/A-7200-2009 OI Funston, Alison/0000-0002-4320-6434; Schanze, Kirk/0000-0003-3342-4080 NR 81 TC 23 Z9 23 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 20 PY 2007 VL 111 IS 37 BP 10871 EP 10880 DI 10.1021/jp0737552 PG 10 WC Chemistry, Physical SC Chemistry GA 211CK UT WOS:000249501700005 PM 17718472 ER PT J AU Khaliullin, RZ Head-Gordon, M Bell, AT AF Khaliullin, Rustam Z. Head-Gordon, Martin Bell, Alexis T. TI Theoretical study of solvent effects on the thermodynamics of iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride dissociation SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID QUASI-CHEMICAL THEORY; FREE-ENERGY; MOLECULAR-DYNAMICS; DENSITY FUNCTIONALS; SOLVATION MODELS; FORCE-FIELD; SIMULATION; APPROXIMATION; EXCHANGE; CYCLOOCTENE AB A quasichemical method that combines ab initio treatment of explicit solvent with dielectric continuum models has been used to study the origin of a strong effect of methanol on the extent of iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride dissociation in acetonitrile-methanol solutions. It is shown that the dissociation is energetically more favorable in methanol than in acetonitrile primarily because of the strong specific interactions between the chloride anion and the solvent methanol molecules in its first solvation shell. These interactions are weaker in acetonitrile. The final estimate for the difference in the dissociation free energies in methanol and acetonitrile is -23 kJ/mol, in a good agreement with the experimental value of -21 kJ/mol. Energy decomposition analysis of chloride-solvent interactions suggests that stronger chloride-methanol binding is a result of the contribution of charge delocalization effects to the chloride-methanol interactions. C1 Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM alexbell@berkeley.edu RI Khaliullin, Rustam/B-2672-2009; OI Khaliullin, Rustam/0000-0002-9073-6753; Bell, Alexis/0000-0002-5738-4645 NR 39 TC 7 Z9 7 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 20 PY 2007 VL 111 IS 37 BP 10992 EP 10998 DI 10.1021/jp073557a PG 7 WC Chemistry, Physical SC Chemistry GA 211CK UT WOS:000249501700021 PM 17722913 ER PT J AU Agnihotri, S Zheng, YJ Mota, JPB Ivanov, I Kim, PC AF Agnihotri, Sandeep Zheng, Yijing Mota, Jose P. B. Ivanov, Ilia Kim, Pyoungchung TI Practical Modeling of heterogeneous bundles of single-walled carbon nanotubes for adsorption applications: Estimating the fraction of open-ended nanotubes in samples SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ORGANIC VAPORS; GASES; SIMULATION; MOLECULES; SORBENT; SCHEME AB A practical approach for adsorption modeling of heterogeneity of single-walled carbon nanotube (SWNT) bundles has been developed. The method integrates experimental analysis with grand canonical Monte Carlo (GCMC) simulation of a small probe molecule, such as nitrogen at 77 K. Using this method, it is possible for one to separately estimate adsorption inside the nanotubes, adsorption on the external surface of the bundles, and adsorptive contributions from the impurities present in samples. By introducing a scaling parameter for adsorption in the internal porous volume of the bundles, the predicted adsorption isotherm results in a near replication of the experimental N-2 adsorption isotherm. We refer to this parameter as the volume fraction of open-ended nanotubes. Our GCMC-assisted experimental characterization method has been applied successfully to several commercial samples obtained from different suppliers, such as MER Corp., Carbon Nanotechnologies Inc., Carbon Solutions Inc., Carbolex Inc., and BuckyUSA. It was found that the volume fraction of open-ended SWNTs in these samples ranged between 0 and 55%. The majority of the samples were subjected to some purification treatment by the manufacturer and exhibited an already high BET surface area of hundreds of square meters per gram. The near-perfect reproduction of the experimental N2 (77 K) adsorption isotherm for each of the tested samples shows that our characterization method is not specific to a particular sample and can be extended to most SWNTs successfully. The fraction of open-ended SWNTs cannot otherwise be estimated by visual characterization of the samples because of the large aspect ratio of nanotubes and the spaghetti-like arrangement of the bundles. Our method has the potential to become a standard technique to quantify this structural property of SWNT samples. C1 Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, Requimte CQFB, P-2829516 Caparica, Portugal. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Agnihotri, S (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. EM sagnihot@utk.edu RI Mota, Jose/D-5812-2013; REQUIMTE, AL/H-9106-2013; REQUIMTE, CAT/M-4526-2013; REQUIMTE, CENG/M-4555-2013; REQUIMTE, LAQV/N-9835-2013; ivanov, ilia/D-3402-2015 OI Mota, Jose/0000-0001-6752-5766; ivanov, ilia/0000-0002-6726-2502 NR 32 TC 22 Z9 22 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 20 PY 2007 VL 111 IS 37 BP 13747 EP 13755 DI 10.1021/jpo074183o PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211CL UT WOS:000249501800018 ER PT J AU Gao, PX Lee, JL Wang, ZL AF Gao, Pu-Xian Lee, J. L. Wang, Zhong L. TI Multicolored ZnO nanowire architectures on trenched silicon substrates SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHOTONIC CRYSTALS; FABRICATION; REPLICATION; DEPOSITION; CHIP AB Well-tailored three-dimensional (3D) ZnO nanowire architectures have been successfully grown on Si microtrenches fabricated using nanoimprinting lithography by a low-temperature hydrothermal approach. Au nanoparticles or ZnO nanofilms were used as templates to tailor the orientation ordered nanowire growth normal to the microtrench surface. Au produced sparse nanowire growth, while ZnO seeds created densely packed growth. Optically, other than displaying a primary color when viewed from one incident. angle, the 3D nanowire architecture periodically displayed multiple primary color domains covering all microtrenches and the local orientation ordered nanowire arrays. A pre-growth annealing of ZnO nanoseeds resulted in nonuniformity and non-periodic distribution of the grown nanoarchitectures and thus reduced the multicolor effect. C1 Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. Sandia Natl Labs, Livermore, CA 94551 USA. Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. RP Wang, ZL (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM zhong.wang@mse.gatech.edu RI Gao, Puxian/E-1461-2011; Wang, Zhong Lin/E-2176-2011 OI Wang, Zhong Lin/0000-0002-5530-0380 NR 16 TC 9 Z9 10 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 20 PY 2007 VL 111 IS 37 BP 13763 EP 13769 DI 10.1021/jp074465o PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211CL UT WOS:000249501800020 ER PT J AU Myers, KL Brockwell, AE Eddy, WF AF Myers, Kary L. Brockwell, Anthony E. Eddy, William F. TI State-space models for optical imaging SO STATISTICS IN MEDICINE LA English DT Article DE linear state-space models; Kalman filtering; functional neuroimaging; optical imaging; orientation columns ID INTRINSIC SIGNALS; COLUMNS; CORTEX AB Measurement of stimulus-induced changes in activity in the brain is critical to the advancement of neuroscience. Scientists use a range of methods, including electrode implantation, surface (scalp) electrode placement, and optical imaging of intrinsic signals, to gather data capturing underlying signals of interest in the brain. These data are usually corrupted by artifacts, complicating interpretation of the signal; in the context of optical imaging, two primary sources of corruption are the heartbeat and respiration cycles. We introduce a new linear state-space framework that uses the Kalman filter to remove these artifacts from optical imaging data. The method relies on a likelihood-based analysis under the specification of a formal statistical model, and allows for corrections to the signal based on auxiliary measurements of quantities closely related to the sources of contamination, such as physiological processes. Furthermore, the likelihood-based modeling framework allows us to perform both goodness-of-fit testing and formal hypothesis testing on parameters of interest. Working with data collected by our collaborators, we demonstrate the method of data collection in an optical imaging study of a cat's brain. Copyright (c) 2007 John Wiley & Sons, Ltd. C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA. RP Myers, KL (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663,MS F600, Los Alamos, NM 87545 USA. EM kary@lanl.gov OI Myers, Kary/0000-0002-5642-959X FU NIBIB NIH HHS [R01EB005847-01, R21EB005967-01A1] NR 15 TC 3 Z9 3 U1 0 U2 0 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0277-6715 J9 STAT MED JI Stat. Med. PD SEP 20 PY 2007 VL 26 IS 21 BP 3862 EP 3874 DI 10.1002/sim.2933 PG 13 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA 212CY UT WOS:000249572400004 PM 17566966 ER PT J AU Prudden, J Pebernard, S Raffa, G Slavin, DA Perry, JJP Tainer, JA McGowan, CH Boddy, MN AF Prudden, John Pebernard, Stephanie Raffa, Grazia Slavin, Daniela A. Perry, J. Jefferson P. Tainer, John A. McGowan, Clare H. Boddy, Michael N. TI SUMO-targeted ubiquitin ligases in genome stability SO EMBO JOURNAL LA English DT Article DE DNA repair; desumoylation; STUbL; SUMO; ubiquitin ligase ID CHECKPOINT KINASE CDS1; RING FINGER PROTEIN; SACCHAROMYCES-CEREVISIAE; FISSION YEAST; CHROMOSOME SEGREGATION; COVALENT MODIFICATION; REPLICATION FORKS; MODIFIER-1 SUMO-1; GENETIC-ANALYSIS; DNA-DAMAGE AB We identify the SUMO- Targeted Ubiquitin Ligase ( STUbL) family of proteins and propose that STUbLs selectively ubiquitinate sumoylated proteins and proteins that contain SUMO- like domains ( SLDs). STUbL recruitment to sumoylated/ SLD proteins is mediated by tandem SUMO interaction motifs ( SIMs) within the STUbLs N- terminus. STUbL- mediated ubiquitination maintains sumoylation pathway homeostasis by promoting target protein desumoylation and/ or degradation. Thus, STUbLs establish a novel mode of communication between the sumoylation and ubiquitination pathways. STUbLs are evolutionarily conserved and include: Schizosaccharomyces pombe Slx8-Rfp ( founding member), Homo sapiens RNF4, Dictyostelium discoideum MIP1 and Saccharomyces cerevisiae Slx5 - Slx8. Cells lacking Slx8- Rfp accumulate sumoylated proteins, display genomic instability, and are hypersensitive to genotoxic stress. These phenotypes are suppressed by deletion of the major SUMO ligase Pli1, demonstrating the specificity of STUbLs as regulators of sumoylated proteins. Notably, human RNF4 expression restores SUMO pathway homeostasis in fission yeast lacking Slx8- Rfp, underscoring the evolutionary functional conservation of STUbLs. The DNA repair factor Rad60 and its human homolog NIP45, which contain SLDs, are candidate STUbL targets. Consistently, Rad60 and Slx8- Rfp mutants have similar DNA repair defects. C1 Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. Univ Roma La Sapienza, Dipartimento Genet & Biol Mol, Rome, Italy. Amrita Vishwa Vidya Peetham, Sch Biotechnol, Amritapuri, Kerala, India. Lawrence Berkeley Natl Lab, Dept Mol Biol, Div Life Sci, Berkeley, CA USA. Scripps Res Inst, Dept Cell Biol, La Jolla, CA USA. RP Boddy, MN (reprint author), Scripps Res Inst, Dept Mol Biol, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM nboddy@scripps.edu RI Boddy, Michael/A-7214-2009; Kaser-Pebernard, Stephanie/C-4219-2014; OI Kaser-Pebernard, Stephanie/0000-0002-6035-6979; raffa, grazia daniela/0000-0002-5072-5240 FU NCI NIH HHS [CA095114, R01 CA095114]; NIGMS NIH HHS [GM068608, R01 GM068608] NR 50 TC 198 Z9 207 U1 1 U2 15 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD SEP 19 PY 2007 VL 26 IS 18 BP 4089 EP 4101 DI 10.1038/sj.emboj.7601838 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 213UF UT WOS:000249691900004 PM 17762865 ER PT J AU Frankel, KL Dolan, JF Finkel, RC Owen, LA Hoeft, JS AF Frankel, Kurt L. Dolan, James F. Finkel, Robert C. Owen, Lewis A. Hoeft, Jeffrey S. TI Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and cosmogenic Be-10 geochronology SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CALIFORNIA SHEAR ZONE; WALKER LANE; STRUCTURAL EVOLUTION; RANGE PROVINCE; PLATE BOUNDARY; NEVADA; BASIN; KINEMATICS AB The Death Valley-Fish Lake Valley fault zone (DV-FLVFZ) is a prominent dextral fault system in the eastern California shear zone (ECSZ). Combining offset measurements determined with LiDAR topographic data for two alluvial fans with terrestrial cosmogenic nuclide Be-10 ages from the fan surfaces yields a late Pleistocene slip rate of similar to 2.5 to 3 mm/yr for the northern part of the DV-FLVFZ in Fish Lake Valley. These rates are slower than the late Pleistocene rate determined for the system in northern Death Valley, indicating that slip rates decrease northward along this major fault zone. When summed with the slip rate from the White Mountains fault, the other major fault in this part of the ECSZ, our results suggest that either significant deformation is accommodated on structures east of Fish Lake Valley, or that rates of seismic strain accumulation and release have not remained constant over late Pleistocene to Holocene time. C1 Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA USA. Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. William Lettis & Associates Inc, Walnut Creek, CA USA. RP Frankel, KL (reprint author), Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. EM kfrankel@usc.edu; dolan@usc.edu; lewis.owen@uc.edu; jeffhoeft@gmail.com NR 21 TC 44 Z9 44 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 19 PY 2007 VL 34 IS 18 AR L18303 DI 10.1029/2004GL030549 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 213QZ UT WOS:000249683500002 ER PT J AU Tikhonov, AM Schlossman, ML AF Tikhonov, Aleksey M. Schlossman, Mark L. TI Vaporization and layering of alkanols at the oil/water interface SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY REFLECTIVITY; WATER-HEXANE INTERFACE; LIQUID-LIQUID INTERFACE; PHASE-TRANSITION; MONOLAYERS; ADSORPTION; SURFACE; SCATTERING; F(CF2)(10)(CH2)(2)OH; DISTRIBUTIONS AB This study of adsorption of normal alkanols at the oil/water interface with x-ray reflectivity and tensiometry demonstrates that the liquid to gas monolayer phase transition at the hexane/water interface is thermodynamically favourable only for long-chain alkanols. As the alkanol chain length is decreased, the change in excess interfacial entropy per area Delta S-a(sigma) decreases to zero. Systems with small values of Delta S-a(sigma) form multi-molecular layers at the interface instead of the monolayer formed by systems with much larger Delta S-a(sigma). Substitution of n-hexane by n-hexadecane significantly alters the interfacial structure for a given alkanol surfactant, but this substitution does not fundamentally change the phase transition behaviour of the monolayers. These data show that the critical alkanol carbon number, at which the change in excess interfacial entropy per area decreases to zero, is approximately six carbons larger than the number of carbons in the alkane solvent molecules. C1 Univ Chicago, Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Chicago, Ctr Adv Radiat Sources, Upton, NY 11973 USA. Univ Illinois, Dept Phys, Chicago, IL 60607 USA. Univ Illinois, Dept Chem, Chicago, IL 60607 USA. RP Tikhonov, AM (reprint author), Univ Chicago, Brookhaven Natl Lab, Beamline X19C, Upton, NY 11973 USA. EM tikhonov@bnl.gov; schloss@uic.edu RI Tikhonov, Aleksey/N-1111-2016 NR 35 TC 7 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 19 PY 2007 VL 19 IS 37 AR 375101 DI 10.1088/0953-8984/19/37/375101 PG 16 WC Physics, Condensed Matter SC Physics GA 207MN UT WOS:000249255300003 ER PT J AU Zetterstrom, P Delaplane, R Wang, YD Liaw, PK Choo, H Saksl, K Zhang, HF Ren, Y Zuo, L AF Zetterstrom, P. Delaplane, R. Wang, Y. D. Liaw, P. K. Choo, H. Saksl, K. Zhang, H. F. Ren, Y. Zuo, L. TI Nanoscale defect clusters in metallic glasses SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID RANGE ORDER; ALLOYS; LIQUID AB The reverse Monte Carlo method was used to obtain three-dimensional discrete distributions of constitutional atoms in melt-spun CuZr and CuZrTi metallic glasses from neutron and x-ray diffraction data. It was found that the icosahedral short-range order is less stable in the CuZr binary alloy than in the Ti-doped ternary alloy. The present investigation also provides evidence on the medium-range order, characterized by some nanoscale clusters of defects, in the metallic-glassy state. C1 CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain. Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Deutsches Elektronen Synchrotron HASYLAB, D-22607 Hamburg, Germany. Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110015, Peoples R China. Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. Northeastern Univ, Minist Educ, Key Lab Anisotropy Design & Texture Engn Mat, Shenyang 110004, Peoples R China. RP Zetterstrom, P (reprint author), Uppsala Univ, Studsvik Neutron Res Lab, Uppsala, Sweden. RI wang, yandong/G-9404-2013; Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 NR 26 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 19 PY 2007 VL 19 IS 37 AR 376217 DI 10.1088/0953-8984/19/37/376217 PG 8 WC Physics, Condensed Matter SC Physics GA 207MN UT WOS:000249255300042 ER PT J AU Gottesfeld, S AF Gottesfeld, Shimshon TI Fuel cell techno-personal milestones 1984-2006 SO JOURNAL OF POWER SOURCES LA English DT Article DE polymer electrolyte fuel cells; direct methanol fuel cells; Grove Medal ID MODEL AB This paper is based on my award acceptance talk on the occasion of receiving the Grove Medal for Fuel Cell Science and Technology, at the 2006 Grove meeting in Torino, Italy. I chose to name the talk: "Fuel Cell Techno-Personal Milestones 1984-2006", trying to reflect on important milestones in the history of the science and technology of hydrogen/air and methanol/air polymer electrolyte fuel cells, in which I was fortunate to be involved for over 20 years. (C) 2006 Elsevier B.V. All rights reserved. C1 Fuel Cell Consulting LLC, Niskayuna, NY USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP Gottesfeld, S (reprint author), Fuel Cell Consulting LLC, 3404 Rosendale Rd, Niskayuna, NY USA. EM shimshon.gottesfeld@gmail.com NR 12 TC 12 Z9 12 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 19 PY 2007 VL 171 IS 1 BP 37 EP 45 DI 10.1016/j.jpowsour.2006.11.081 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 219XT UT WOS:000250122200005 ER PT J AU Ahluwalia, RK Wang, X AF Ahluwalia, R. K. Wang, X. TI Buildup of nitrogen in direct hydrogen polymer-electrolyte fuel cell stacks SO JOURNAL OF POWER SOURCES LA English DT Article DE polymer-electrolyte fuel cells; hydrogen impurities; nitrogen crossover AB Hydrogen-fueled polymer-electrolyte fuel cell stacks (PEFC) operate at less than 100% fuel utilization per pass, with the anode exit gas being recycled to the anode inlet. Any inert gases present in the anode gas then increase in concentration as the hydrogen is consumed. A portion of the recirculating anode gas is purged to prevent excessive buildup of the inert gases. It has been observed that N-2 diffuses across the polymer-electrolyte membrane from the cathode side to the anode side, adding to the inert gases in the anode channels. This paper discusses the results of a study to model and analyze the buildup of N-2 in the recirculating anode gas, and the impact of this N2 on the performance of an automotive 90 Me PEFC stack. Results. show that N-2 crossover from the cathode air to the anode gas depends on a number of parameters, including the power level, N-2 concentration in feed hydrogen (if any), purge rate, and membrane thickness. The buildup of N2 is mainly a function of the degree of purge, defined as the average fraction of the anode exit gas that is vented. Even with pure fuel H-2 and 90% hydrogen consumption per pass, N-2 concentrations can reach 50-70% at low purge rates, and 5-20% at a 2% purge rate. As a result of this N2, the cell voltage decreases by 10-18 mV if the N-2 concentration in anode channels is allowed to reach 25-60%, but by < 5 mV if the N2 concentration is limited to 2-25% by purging. There is an optimum level of purge for which the overall degradation in cell performance is the smallest. The optimum purge level is about 2% with pure H-2 feed, but increases to about 9% if the fuel hydrogen contains 2% N-2. The allowable level of N2 impurity in the fuel gas depends on the acceptable loss in stack efficiency. For a 25 mu m thick membrane, 0.08% N-2 in feed can be tolerated if the acceptable loss in efficiency is 0. 1 percentage point, 0.5% N-2 in the H-2 for a 0.5 percentage point loss in efficiency, and 1.5% N-2 in the H2 if a 1 percentage point loss in system efficiency is acceptable. (C) 2007 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Div Nucl Engn, Argonne, IL 60439 USA. RP Ahluwalia, RK (reprint author), Argonne Natl Lab, Div Nucl Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM walia@ne.anl.gov NR 10 TC 56 Z9 56 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 19 PY 2007 VL 171 IS 1 BP 63 EP 71 DI 10.1016/j.jpowsour.2007.01.032 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 219XT UT WOS:000250122200008 ER PT J AU Kovalenko, MV Heiss, W Shevchenko, EV Lee, JS Schwinghammer, H Alivisatos, AP Talapin, DV AF Kovalenko, Maksym V. Heiss, Wolfgang Shevchenko, Elena V. Lee, Jong-Soo Schwinghammer, Harald Alivisatos, A. Paul Talapin, Dmitri V. TI SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BINARY NANOPARTICLE SUPERLATTICES; ROOM-TEMPERATURE; COLLOIDAL NANOCRYSTALS; HGTE NANOCRYSTALS; PBS NANOCRYSTALS; EMISSION; GROWTH; ROUTE; FILMS AB A solution-phase synthesis of monodisperse SnTe nanocrystals via the reaction of bis[bis(trimethylsilyl)amino]tin(II) with trioctylphosphine telluride in oleylamine is demonstrated. The obtained SnTe nanocrystals are single-crystalline particles with a cubic rock-salt crystal structure. The size of the SnTe nanocrystals can be precisely tuned in the range of 4.5-15 nm by tailoring the reaction temperature and stabilizer concentration. These SnTe nanocrystals exhibit size-tunable band gap energies of 0.38-0.8 eV. The narrow size-distributions allow assembling SnTe nanocrystals into 3-dimensional superlattices. C1 Johannes Kepler Univ Linz, Inst Solid State & Semicond Phys, A-4040 Linz, Austria. Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Kovalenko, MV (reprint author), Johannes Kepler Univ Linz, Inst Solid State & Semicond Phys, A-4040 Linz, Austria. EM maksym.kovalenko@jku.at; dvtalapin@ibl.gov RI Kovalenko, Maksym/B-6844-2008; Lee, Jong-Soo /F-7461-2010; Heiss, Wolfgang/F-1200-2011; Alivisatos , Paul /N-8863-2015 OI Kovalenko, Maksym/0000-0002-6396-8938; Lee, Jong-Soo /0000-0002-3045-2206; Heiss, Wolfgang/0000-0003-0430-9550; Alivisatos , Paul /0000-0001-6895-9048 NR 28 TC 103 Z9 103 U1 19 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 19 PY 2007 VL 129 IS 37 BP 11354 EP + DI 10.1021/ja074481z PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 210OG UT WOS:000249464900029 PM 17722931 ER PT J AU Paulick, MG Wise, AR Forstner, MB Groves, JT Bertozzi, CR AF Paulick, Margot G. Wise, Amber R. Forstner, Martin B. Groves, Jay T. Bertozzi, Carolyn R. TI Synthetic analogues of glycosylphosphatidylinositol-anchored proteins and their behavior in supported lipid bilayers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FLUORESCENCE CORRELATION SPECTROSCOPY; GLYCOSYL-PHOSPHATIDYLINOSITOL ANCHOR; CELL-SURFACE GLYCANS; PRION PROTEIN; GPI ANCHOR; TRYPANOSOMA-BRUCEI; LIVING CELLS; CHEMICAL-SYNTHESIS; MEMBRANE-PROTEINS; CONVERGENT SYNTHESIS AB Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphaticlylinositol (GPI) anchor is a posttranslational modification that anchors the modified proteins in the outer leaflet of the plasma membrane. GPI-anchored proteins play vital roles in signal transcluction, the vertebrate immune response, and the pathobiology of trypanosomal parasites. While many GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. We synthesized a series of GPI-protein analogues bearing modified anchor structures that were designed to dissect the contribution of various glycan components to the GPI-protein's membrane behavior. These anchor analogues were similar in length to native GPI anchors and included mimics of the native structure's three domains. A combination of expressed protein ligation and native chemical ligation was used to attach these analogues to the green fluorescent protein (GFP). These modified GFPs were incorporated in supported lipid bilayers, and their mobilities were analyzed using fluorescence correlation spectroscopy. The data from these experiments suggest that the GPI anchor is more than a simple membrane-anchoring device; it also may prevent transient interactions between the attached protein and the underlying lipid bilayer, thereby permitting rapid diffusion in the bilayer. The ability to generate chemically defined analogues of GPI-anchored proteins is an important step toward elucidating the molecular functions of this interesting post-translational modification. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu RI Forstner, Martin/A-8903-2008 OI Forstner, Martin/0000-0003-0413-8659 FU NIGMS NIH HHS [GM59907] NR 74 TC 55 Z9 56 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 19 PY 2007 VL 129 IS 37 BP 11543 EP 11550 DI 10.1021/ja073271j PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 210OG UT WOS:000249464900052 PM 17715922 ER PT J AU Calzada, ML Torres, M Fuentes-Cobas, LE Mehta, A Ricote, J Pardo, L AF Calzada, M. L. Torres, M. Fuentes-Cobas, L. E. Mehta, A. Ricote, J. Pardo, L. TI Ferroelectric self-assembled PbTiO3 perovskite nanostructures onto (100)SrTiO3 substrates from a novel microemulsion aided sol-gel preparation method SO NANOTECHNOLOGY LA English DT Article ID OXIDE CERAMIC POWDERS; LEAD TITANATE FILMS; THIN-FILMS; NANOSCALE FERROELECTRICS; PIEZOELECTRIC RESPONSE; MEDIATED SYNTHESIS; FORCE MICROSCOPY; DEPOSITION; LITHOGRAPHY; GRAINS AB A novel preparation method, which involves the use of microemulsions, sol - gel chemistry and chemical solution deposition, has been developed in this work for the preparation of layers of PbTiO3 nanostructures supported on SrTiO3 substrates. A transparent solution was first prepared by mixing a PbTiO3 precursor sol and a microemulsion formed by water, cyclohexane and the surfactant Brij 30 ( polyoxyethylene( 4) lauryl ether). The solution was deposited onto the SrTiO3 substrate by spin- coating and dried under controlled conditions ( temperature, time and relative humidity) to favor the rearrangement of the micelles in the deposited coat. After a rapid thermal treatment of crystallization at 650 degrees C, nanostructures with uniform sizes of similar to 40 nm diameter and showing periodicity in some zones of the substrate are obtained. The analysis of these nanostructures by grazing- incidence x- ray synchrotron radiation indicates that they have a perovskite structure with a < 100 > preferred orientation and that they are under strained conditions. Thermal treatments at higher temperatures produce the collapse of the ordered nanoparticles' network and the formation of larger isolated particles of PbTiO3 with a truncated- pyramid morphology. Piezoresponse force microscopy studies demonstrate that the spontaneous polarization of these PbTiO3 nanostructures can be switched and that they have piezoelectric activity. These results support the fabrication strategy here proposed as a promising approach for the preparation of nanoferroelectrics onto substrates of possible interest in future nanoelectronic devices. C1 CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. Ctr Invest Mat Avanzados, Chihuahua, Mexico. Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. RP Calzada, ML (reprint author), CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. EM lcalzada@icmm.csic.es RI Ricote, Jesus/E-4419-2010; Pardo, Lorena/E-1346-2011; CALZADA, M. LOURDES/A-8712-2011 OI Ricote, Jesus/0000-0002-2907-2505; Pardo, Lorena/0000-0003-1731-0657; CALZADA, M. LOURDES/0000-0002-2286-653X NR 57 TC 10 Z9 10 U1 0 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD SEP 19 PY 2007 VL 18 IS 37 AR 375603 DI 10.1088/0957-4484/18/37/375603 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 207WX UT WOS:000249282900012 ER PT J AU Costford, SR Kavaslar, N Ahituv, N Chaudhry, SN Schackwitz, WS Dent, R Pennacchio, LA McPherson, R Harper, ME AF Costford, Sheila R. Kavaslar, Nihan Ahituv, Nadav Chaudhry, Shehla N. Schackwitz, Wendy S. Dent, Robert Pennacchio, Len A. McPherson, Ruth Harper, Mary-Ellen TI Gain-of-Function R225W Mutation in Human AMPK gamma(3) Causing Increased Glycogen and Decreased Triglyceride in Skeletal Muscle SO PLOS ONE LA English DT Article AB Background. AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3) subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations [1-3]. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3) subunit in humans. Methods and Findings. We sequenced the exons and splice junctions of the AMPK gamma(3) gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3) R225W mutation is homologous in location to the gamma(2)R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3)R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a similar to 90% increase of skeletal muscle glycogen content and a similar to 30% decrease in intramuscular triglyceride (IMTG). Conclusions. We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3) subunit of AMPK in humans. The gamma(3)R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK gamma(3) in human muscle energy metabolism. C1 [Costford, Sheila R.; Chaudhry, Shehla N.; Harper, Mary-Ellen] Univ Ottawa, Fac Med, Dept Biochem Microbiol & Immunol, Ottawa, ON, Canada. [Kavaslar, Nihan; McPherson, Ruth] Univ Ottawa, Inst Heart, Atherosclerosis Res Grp, Ottawa, ON, Canada. [Kavaslar, Nihan; McPherson, Ruth] Univ Ottawa, Inst Heart, Div Cardiol, Ottawa, ON, Canada. [Dent, Robert] Ottawa Hosp, Weight Management Clin, Ottawa, ON, Canada. [Ahituv, Nadav; Schackwitz, Wendy S.; Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Schackwitz, Wendy S.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. RP Harper, ME (reprint author), Univ Ottawa, Fac Med, Dept Biochem Microbiol & Immunol, Ottawa, ON, Canada. EM Maryellen.Harper@uottawa.ca FU Heart and Stroke Foundation of Ontario [NA-5413]; Department of Energy [DE-AC02-05CH11231]; University of California FX This research was supported by a grant (# NA-5413) from the Heart and Stroke Foundation of Ontario ( to R. McPherson and M-E Harper) and was partially conducted at the E.O. Lawrence Berkeley National Laboratory, and performed under Department of Energy Contract DE-AC02-05CH11231, University of California. NR 41 TC 46 Z9 47 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 19 PY 2007 VL 2 IS 9 AR e903 DI 10.1371/journal.pone.0000903 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V10HS UT WOS:000207455700011 PM 17878938 ER PT J AU Smallwood, HS Lourette, NM Boschek, CB Bigelow, DJ Smith, RD Pasa-Tolic, L Squier, TC AF Smallwood, Heather S. Lourette, Natacha M. Boschek, Curt B. Bigelow, Diana J. Smith, Richard D. Pasa-Tolic, Ljiljana Squier, Thomas C. TI Identification of a denitrase activity against calmodulin in activated macrophages using high-field liquid chromatography - FTICR mass spectrometry SO BIOCHEMISTRY LA English DT Article ID METHIONINE SULFOXIDE REDUCTASE; PEROXYNITRITE-TREATED PROTEINS; NITRIC-OXIDE SYNTHASE; TYROSINE PHOSPHORYLATION; OXIDIZED CALMODULIN; RAW-264.7 MACROPHAGES; NITRATED PROTEINS; REDOX MODULATION; OPPOSING DOMAINS; REACTIVE OXYGEN AB We have identified a denitrase activity in macrophages that is upregulated. following macrophage activation, which is shown by mass spectrometry to recognize nitrotyrosines in the calcium signaling protein calmodulin (CaM). The denitrase activity converts nitrotyrosines to their native tyrosine structure without the formation of any aminotyrosine. Comparable extents of methionine sulfoxide reduction are also observed that are catalyzed by endogenous methionine sulfoxide reductases. Competing with repair processes, oxidized CaM is a substrate for a peptidase activity that results in the selective cleavage of the C-terminal lysine (i.e., Lys(148)) that is expected to diminish CaM function. Thus, competing repair and peptidase activities define the abundances and functionality of CaM in modulating cellular metabolism in response to oxidative stress, where the presence of the truncated CaM species provides a useful biomarker for the transient appearance of oxidized CaM. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Squier, TC (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,Mail Stop P7-53, Richland, WA 99352 USA. EM thomas.squier@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [RR18522]; NIA NIH HHS [AG12993, AG17996] NR 49 TC 41 Z9 41 U1 2 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 18 PY 2007 VL 46 IS 37 BP 10498 EP 10505 DI 10.1021/bi7009713 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 210CA UT WOS:000249433100010 PM 17711305 ER PT J AU Boschek, CB Jones, TE Squier, TC Bigelow, DJ AF Boschek, Curt B. Jones, Terry E. Squier, Thomas C. Bigelow, Diana J. TI Calcium occupancy of N-terminal sites within calmodulin induces inhibition of the ryanodine receptor calcium release channel SO BIOCHEMISTRY LA English DT Article ID MUSCLE SARCOPLASMIC-RETICULUM; CARDIAC-MUSCLE; TARGET PROTEINS; PEPTIDE COMPLEX; BINDING-SITE; SKELETAL; CA2+; DOMAIN; APOCALMODULIN; REGION AB Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K-3614-N-3643) located within the central portion of the primary sequence. However, it is presently unclear whether the identified CaM-binding sequence in association with CaM (a) senses calcium over the physiological range of calcium concentrations associated with RyR1 regulation or alternatively, (b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene)maleimide at either T34C (PYN-CaM) or T110C (Py-C-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association of both apo-CaM and calcium-activated CaM with RyRp. Upon association with RyRp, fluorescence changes in PYN-CaM or Py-C-CaM permit the measurement of the calcium-dependent activation of these individual domains. Fluorescence changes upon calcium activation of Py-C-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM at resting calcium levels; at calcium levels associated with muscle contraction, activation of the N-terminal domain occurs with concomitant increases in the fluorescence intensity of Py-C-CaM that is associated with structural changes within the CaM-binding sequence of RyR1. Occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium dependence of RyR1 inhibition observed at activating calcium levels, where [Ca](1/2) = 4.3 +/- 0.4 mu M, suggesting a direct regulation of RyR1 function upon the calcium-dependent activation of CaM. These results indicate that occupancy of the N-terminal domain calcium binding sites in CaM bound to the identified CaM-binding sequence K-3614-N-3643 induces conformational rearrangements within the complex between CaM and RyR1 responsible for the CaM-dependent modulation of the RyR1 calcium release channel. C1 Pacific NW Natl Lab, Cell Biol & Biochem Grp, Div Biol Sci, Richland, WA 99352 USA. RP Bigelow, DJ (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, 790 6th St,Mail Stop P7-53, Richland, WA 99354 USA. EM diana.bigelow@pnl.gov FU NIA NIH HHS [AG12993, AG18013] NR 42 TC 7 Z9 7 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 18 PY 2007 VL 46 IS 37 BP 10621 EP 10628 DI 10.1021/bi700655h PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 210CA UT WOS:000249433100022 PM 17713923 ER PT J AU Chondroudi, M Balasubramanian, M Welp, U Kwok, WK Kanatzidis, MG AF Chondroudi, Maria Balasubramanian, Mahalingarn Welp, Ulrich Kwok, Wai-K. Kanatzidis, Mercouri G. TI Mixed valency in Yb7Co4InGe12: a novel intermetallic compound stabilized in liquid indium SO CHEMISTRY OF MATERIALS LA English DT Article ID CHARGE-DENSITY-WAVE; X-RAY ABSORPTION; EXPLORATORY SYNTHESIS; NEUTRON-DIFFRACTION; ALUMINUM SILICIDES; CRYSTAL-STRUCTURE; MOLTEN ALUMINUM; FLUX SYNTHESIS; METAL FLUX; RE AB The quaternary compounds RE7CO4InGe12 (RE = Dy, Ho, Yb) were obtained from In flux reactions as thin silver needles. RE7CO4InGe12 crystallizes in the tetragonal P4/m space group under a new structure type which is characterized by columnar units forming three different types of channels with the RE atoms situated within these channels. Investigation of the Yb analog with magnetic susceptibility measurements, X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES) revealed that Yb7Co4InGe12 is a mixed-valence compound and that the relative Yb3+/Yb2+ ratio is slightly temperature-dependent. Additionally, resistivity measurements for Yb7Co4InGe12 exhibited negative magnetoresistance at low temperatures. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM m-kanatzidis@northwestem.edu NR 36 TC 31 Z9 31 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 18 PY 2007 VL 19 IS 19 BP 4769 EP 4775 DI 10.1021/cm071687q PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 210KP UT WOS:000249455400022 ER PT J AU Ma, B Lauterwasser, F Deng, L Zonte, CS Kim, BJ Frechet, JMJ AF Ma, Biwu Lauterwasser, Frank Deng, Lan Zonte, C. Sebastian Kim, Bumjoon J. Frechet, Jean M. J. TI New thermally cross-linkable polymer and its application as a hole-transporting layer for solution processed multilayer organic light emitting diodes SO CHEMISTRY OF MATERIALS LA English DT Article ID CONJUGATED POLYMERS; DEVICES OLEDS; PERFORMANCE; POTENTIALS; LEDS AB A new thermally cross-linkable copolymer containing reactive benzocyclobutene (BCB) units and the well-known hole-transporting moiety N,M '-bis(3-methylphenyl)-N,N '-diphenylbenzidine) (TPD) was synthesized and characterized. Thermal annealing of spun-cast films of the copolymer, followed by cross-linking at 200 degrees C, led to insoluble polymer films with a smooth surface. Green emitting fluorescent OLEDs were fabricated using the new cross-linkable polymer and compared with conventionally prepared devices. Using the thermally cross-linked copolymer as a hole-transporting layer, solution processed multilayer light emitting diodes were prepared that exhibited high performance with 10.4% external quantum efficiency at a brightness of 350 cd/m(2). C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM Frechet@berkeley.edu RI Ma, Biwu/B-6943-2012; Kim, Bumjoon J./C-1714-2011; OI Thompson, Mark/0000-0002-7764-4096; Frechet, Jean /0000-0001-6419-0163 NR 39 TC 64 Z9 64 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 18 PY 2007 VL 19 IS 19 BP 4827 EP 4832 DI 10.1021/cm0715500 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 210KP UT WOS:000249455400030 ER PT J AU Olsen, BD Segalman, RA AF Olsen, Bradley D. Segalman, Rachel A. TI Nonlamellar phases in asymmetric rod-coil block copolymers at increased segregation strengths SO MACROMOLECULES LA English DT Article ID DIBLOCK COPOLYMER; MOLECULAR RODS; ORGANIZATION; BEHAVIOR; MELTS; LIGHT; POLYMERS AB A new phase consisting of rectangular rod nanodomains packed onto a hexagonal lattice is observed in rod-coil block copolymers at the limit of both large volume fraction asymmetry and large geometrical asymmetry between the rod and coil. In moderately segregated poly(alkoxyphenylenevinylene-b-isoprene) (PPV-b-PI), an order-order transition is observed between hexagonal and lamellar phases for polymers near the phase boundary, and the lamellar phase is observed at high temperatures. The domain spacings of polymers in the lamellar phase collapse on to a simple scaling relationship where domain spacing is proportional to molecular weight. The proportionality constant is equal to the statistical segment length of the PPV rod block, suggesting that the angle between the rod director and the lamellar interface is nearly 90 degrees. At higher temperatures, the block copolymers transition from ordered to nematic to isotropic states, with the intermediate nematic phase being observed for all coil fractions studied. A three-dimensional phase diagram shows the microphase and liquid crystalline transitions in rod-coil block copolymers as a function of temperature, geometrical asymmetry, and coil fraction. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem Engn, Div Mat Sci, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem Engn, Div Mat Sci, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103; Olsen, Bradley/0000-0002-7272-7140 NR 42 TC 74 Z9 75 U1 3 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD SEP 18 PY 2007 VL 40 IS 19 BP 6922 EP 6929 DI 10.1021/ma070976x PG 8 WC Polymer Science SC Polymer Science GA 209NO UT WOS:000249395500020 ER PT J AU Bang, J Kim, BJ Stein, GE Russell, TP Li, X Wang, J Kramer, EJ Hawker, CJ AF Bang, Joona Kim, Bumjoon J. Stein, Gila E. Russell, Thomas P. Li, Xuefa Wang, Jin Kramer, Edward J. Hawker, Craig J. TI Effect of humidity on the ordering of PEO-based copolymer thin films SO MACROMOLECULES LA English DT Article ID HEXAGONALLY PERFORATED LAYER; ABC TRIBLOCK COPOLYMERS; PS DIBLOCK COPOLYMER; BLOCK-COPOLYMER; ELECTRIC-FIELDS; PHASE; NANOSTRUCTURES; LITHOGRAPHY; TEMPLATES; NANOPARTICLES AB Solvent cast diblock and triblock copolymer films of poly(ethylene oxide-b-styrene) (PEO-b-PS) and poly(ethylene oxide-b-methyl meth acrylate-b-styrene) (PEO-b-PMMA-b-PS), with cylindrical microdomains of PEO or PMMA-PEO, have a high degree of lateral ordering after solvent annealing. The relative humidity of the vapor during the solvent annealing has been shown to play an important role in achieving this order. After solvent annealing under high humidity a PEO-b-PMMA-b-PS triblock copolymer having a lamellar morphology in bulk develops a hexagonal array of depressed PEO domains on the film surface while the film surface remains flat under less humid conditions. Cross-sectional TEM and GISAXS show that the film annealed under high humidity conditions exhibits a well-defined hexagonally perforated lamellar (HPL) structure throughout its thickness, whereas a stack of lamellae aligned parallel to the surface is evident for films annealed at lower humidity. These results demonstrate the switchable nanoscopic structure of these films and strongly suggest that water vapor induces the morphological transition from lamellar to HPL by swelling the PEO domains. C1 Korea Univ, Dept Chem & Biol Chem Engn, Seoul 136701, South Korea. Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kramer, EJ (reprint author), Korea Univ, Dept Chem & Biol Chem Engn, Seoul 136701, South Korea. EM edkramer@mrl.ucsb.edu; hawker@mrl.ucsb.edu RI Hawker, Craig/G-4971-2011; Kim, Bumjoon J./C-1714-2011; Bang, Joona/F-6589-2013; Stein, Gila/P-1927-2016 OI Hawker, Craig/0000-0001-9951-851X; Stein, Gila/0000-0002-3973-4496 NR 53 TC 86 Z9 87 U1 4 U2 86 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD SEP 18 PY 2007 VL 40 IS 19 BP 7019 EP 7025 DI 10.1021/ma0710737 PG 7 WC Polymer Science SC Polymer Science GA 209NO UT WOS:000249395500031 ER PT J AU Habenschuss, A Tsige, M Curro, JG Grest, GS Nath, SK AF Habenschuss, Anton Tsige, Mesfin Curro, John G. Grest, Gary S. Nath, Shyamal K. TI Structure of poly(dialkylsiloxane) melts: Comparisons of wide-angle X-ray scattering, molecular dynamics simulations, and integral equation theory SO MACROMOLECULES LA English DT Article ID INITIO FORCE-FIELD; POLY-(DIMETHYLSILOXANE) CHAIN; POLY(DIMETHYLSILOXANE) MELTS; EQUILIBRIUM-THEORY; EXCESS ELECTRONS; POLYMER MELTS; SIMPLE FLUIDS; LIQUIDS; POLYOLEFINS; THERMODYNAMICS AB Wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between the MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. CULGI Inc, Albuquerque, NM 87131 USA. RP Habenschuss, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM habenschussa@ornl.gov NR 50 TC 11 Z9 11 U1 4 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD SEP 18 PY 2007 VL 40 IS 19 BP 7036 EP 7043 DI 10.1021/ma0702290 PG 8 WC Polymer Science SC Polymer Science GA 209NO UT WOS:000249395500033 ER PT J AU Seo, SSA Lee, JH Lee, HN Chisholm, MF Choi, WS Kim, DJ Jo, JY Kim, H Yu, J Noh, TW AF Seo, Sung Seok A. Lee, Jun Hee Lee, Ho Nyung Chisholm, Matthew F. Choi, Woo Seok Kim, Dong Jik Jo, Ji Young Kim, Hanchul Yu, Jaejun Noh, Tae Won TI Ferroelectricity in artificial bicolor oxide superlattices SO ADVANCED MATERIALS LA English DT Article ID EPITAXIAL BATIO3/SRTIO3 SUPERLATTICES; POLARIZATION ENHANCEMENT; FILMS; NANOSCALE AB Bicolor oxide superlattices with one- and two-unit-cell layer thickness (see figure) are explored by advanced synthesis, characterization, and first-principles calculation. Experimentally, enhanced ferroelectric polarization is observed for the superlattice of which chemical composition lies beyond the solubility limit. Theoretical analyses reveal that ferroelectric corrugation occurs in a paraelectric layer in the superlattice and plays important roles in both stabilization and enhancement of ferroelectricity. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Seoul Natl Univ, Res Ctr Oxide Elect, Frontier Phys Res Div, Dept Phys & Astron, Seoul 151747, South Korea. Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Frontier Phys Res Div, Dept Phys & Astron, Seoul 151747, South Korea. Korea Res Inst Stand & Sci, Div Chem Metrol & Mat Evaluat, Taejon 305600, South Korea. RP Lee, HN (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM hnlee@ornl.gov; twnoh@snu.ac.kr RI Seo, Sung Seok/B-6964-2008; Kim, Dong Jik/C-4602-2011; Noh, Tae Won /K-9405-2013; Lee, Ho Nyung/K-2820-2012; Choi, Woo Seok/G-8783-2014 OI Seo, Sung Seok/0000-0002-7055-5314; Kim, Dong Jik/0000-0003-1900-4629; Lee, Ho Nyung/0000-0002-2180-3975; NR 22 TC 12 Z9 12 U1 3 U2 29 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 17 PY 2007 VL 19 IS 18 BP 2460 EP + DI 10.1002/adma.200601357 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 217TB UT WOS:000249969100010 ER PT J AU Han, WQ Wu, LJ Klie, RF Zhu, YM AF Han, Wei-Qiang Wu, Lijun Klie, Robert F. Zhu, Yimei TI Enhanced optical absorption induced by dense nanocavities inside titania nanorods SO ADVANCED MATERIALS LA English DT Article ID TRITITANATE NANOTUBES; POROUS SILICON; SOLAR-CELL; DIOXIDE; LAYER; FILMS; WATER AB Dense polyhedral nanocavities inside single-crystalline anatase TiO2 nanorods are successfully synthesized by simply heating H2Ti3O7 nanorods. The size of the nanocavities is typically about 10 nm. The surfaces of the nanocavity polyhedron are determined to be the crystallographic low-index planes of the TiO2 crystal (see figure). C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Han, WQ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov RI Han, WQ/E-2818-2013 NR 34 TC 43 Z9 45 U1 1 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 17 PY 2007 VL 19 IS 18 BP 2525 EP + DI 10.1002/adma.200700540 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 217TB UT WOS:000249969100023 ER PT J AU Zheng, LX Zhang, XF Li, QW Chikkannanavar, SB Li, Y Zhao, YH Liao, XZ Jia, QX Doorn, SK Peterson, DE Zhu, YT AF Zheng, Lianxi Zhang, Xiefei Li, Qingwen Chikkannanavar, Satishkumar B. Li, Yuan Zhao, Yonghao Liao, Xiaozhou Jia, Quanxi Doorn, Stephen K. Peterson, Dean E. Zhu, Yuntian TI Carbon-nanotube cotton for large-scale fibers SO ADVANCED MATERIALS LA English DT Article ID YARNS AB A new form of carbon-nanotube (CNT) material, CNT cotton, which is analogous to conventional cotton in many aspects including the color and fluffiness, is synthesized (see figure). The cotton is composed of ultralong individual CNTs and exhibits excellent hydrophobicity. This form of CNT material shows great potential for large-scale fiber production. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. RP Zhu, YT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM yzhu@lanl.gov RI Zhu, Yuntian/B-3021-2008; Zhao, Yonghao/A-8521-2009; Liao, Xiaozhou/B-3168-2009; Zheng, Lianxi/A-3855-2011; Lujan Center, LANL/G-4896-2012; Jia, Q. X./C-5194-2008 OI Zhu, Yuntian/0000-0002-5961-7422; Liao, Xiaozhou/0000-0001-8565-1758; Zheng, Lianxi/0000-0003-4974-365X; NR 14 TC 45 Z9 45 U1 7 U2 59 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 17 PY 2007 VL 19 IS 18 BP 2567 EP + DI 10.1002/adma.200602648 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 217TB UT WOS:000249969100031 ER PT J AU Chou, TP Zhang, QF Fryxell, GE Cao, GZ AF Chou, Tammy P. Zhang, Qifeng Fryxell, Glen E. Cao, Guozhong TI Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency SO ADVANCED MATERIALS LA English DT Article ID PHOTOELECTROCHEMICAL CELLS; PHOTONIC CRYSTALS; ELECTRODES; MOBILITY AB A hierarchically-structured ZnO film consisting of secondary colloidal spheres of similar to 300 nm in diameter and primary nanoparticles of similar to 20 nm in diameter is shown to have an similar to 83% improvement in the overall light conversion efficiency, when compared to commercially-obtained ZnO film with similar to 25 nm particles. This increase is attributed to the hierarchical structure, where the secondary colloidal spheres promote light scattering for enhanced photon absorption. C1 Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. Pacific NW Natl Lab, IIC, Richland, WA 99352 USA. RP Cao, GZ (reprint author), Univ Washington, Dept Mat Sci & Engn, 302 Roberts Hall,Box 352120, Seattle, WA 98195 USA. EM gzcao@u.washington.edu RI Cao, Guozhong/E-4799-2011; Zhang, Qifeng/D-2498-2012 NR 26 TC 362 Z9 371 U1 9 U2 123 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 17 PY 2007 VL 19 IS 18 BP 2588 EP + DI 10.1002/adma.200602927 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 217TB UT WOS:000249969100035 ER PT J AU Aella, P Ingole, S Petuskey, WT Picraux, ST AF Aella, Pavan Ingole, Sarang Petuskey, William T. Picraux, S. Tom TI Influence of plasma stimulation on Si nanowire nucleation and orientation dependence SO ADVANCED MATERIALS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SILICON NANOWIRES; GROWTH DIRECTION; TEMPERATURE; ARRAYS AB Silicon nanowires are grown epitaxially on Si (100) surfaces using thermal (a) and rf plasma excitation (b) for vapor-liquid-solid (VLS) growth. Plasma excitation at low growth temperatures promotes the nucleation of smaller diameter [110] oriented Si nanowires and is attributed to a plasma-induced increase in silicon chemical potential; it also increases low temperature nanowire growth rates (see figure). The rate limiting step in VLS growth here is due to silicon incorporation at the vapor-liquid interface. Plasma excitation enables additional control over nanowire orientation. C1 Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. Arizona State Univ, Dept Chem & Biochem, Sci & Engn Mat Grad Program, Tempe, AZ 85287 USA. RP Picraux, ST (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM picraux@lanl.gov NR 20 TC 33 Z9 33 U1 0 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD SEP 17 PY 2007 VL 19 IS 18 BP 2603 EP + DI 10.1002/adma.200602944 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 217TB UT WOS:000249969100038 ER PT J AU Brar, VW Zhang, Y Yayon, Y Ohta, T McChesney, JL Bostwick, A Rotenberg, E Horn, K Crommie, MF AF Brar, Victor W. Zhang, Yuanbo Yayon, Yossi Ohta, Taisuke McChesney, Jessica L. Bostwick, Aaron Rotenberg, Eli Horn, Karsten Crommie, Michael F. TI Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC SO APPLIED PHYSICS LETTERS LA English DT Article ID MICROSCOPY; GRAPHITE; SURFACE; 6H-SIC(0001); SHEETS; GAS AB The authors present a scanning tunneling spectroscopy (STS) study of the local electronic structure of single and bilayer graphene grown epitaxially on a SiC(0001) surface. Low voltage topographic images reveal fine, atomic-scale carbon networks, whereas higher bias images are dominated by emergent spatially inhomogeneous large-scale structure similar to a carbon-rich reconstruction of SiC(0001). STS spectroscopy shows an similar to 100 meV gaplike feature around zero bias for both monolayer and bilayer graphene/SiC, as well as significant spatial inhomogeneity in electronic structure above the gap edge. Nanoscale structure at the SiC/graphene interface is seen to correlate with observed electronic spatial inhomogeneity. These results are relevant for potential devices involving electronic transport or tunneling in graphene/SiC. (c) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. Montana State Univ, Bozeman, MT 59717 USA. RP Brar, VW (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM vbrar@berkeley.edu RI Rotenberg, Eli/B-3700-2009; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; McChesney, Jessica/0000-0003-0470-2088 NR 25 TC 161 Z9 163 U1 9 U2 73 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 17 PY 2007 VL 91 IS 12 AR 122102 DI 10.1063/1.2771084 PG 3 WC Physics, Applied SC Physics GA 213KY UT WOS:000249667200047 ER PT J AU Harris, JR Caporaso, GJ Blackfield, D Chen, YJ AF Harris, J. R. Caporaso, G. J. Blackfield, D. Chen, Y.-J. TI Displacement current and surface flashover SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIC INHIBITION; VACUUM; INSULATORS; MECHANISM AB High-voltage vacuum insulator failure is generally due to surface flashover rather than insulator bulk breakdown. Vacuum surface flashover is widely believed to be initiated by a secondary electron emission avalanche along the vacuum-insulator interface. This process requires a physical mechanism to cause secondary electrons emitted from the insulator surface to return to that surface. Here, it is shown that when an insulator is subjected to a fast high-voltage pulse, the magnetic field due to displacement current through the insulator can provide this mechanism. This indicates the importance of the voltage pulse shape, especially the rise time, in the flashover initiation process. (c) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Harris, JR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM harris89@llnl.gov NR 13 TC 14 Z9 17 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 17 PY 2007 VL 91 IS 12 AR 121504 DI 10.1063/1.2785116 PG 3 WC Physics, Applied SC Physics GA 213KY UT WOS:000249667200025 ER PT J AU Robinson, SJ Perkins, CL Shen, TC Tucker, JR Schenkel, T Wang, XW Ma, TP AF Robinson, S. J. Perkins, C. L. Shen, T.-C. Tucker, J. R. Schenkel, T. Wang, X. W. Ma, T. P. TI Low-temperature charge transport in Ga-acceptor nanowires implanted by focused-ion beams SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON; ARRAYS; SI; FABRICATION; WIRES AB Ga-acceptor nanowires were embedded in crystalline Si using focused-ion beams. The dc current-voltage characteristics of these wires after annealing are highly nonlinear at low temperatures. A conductance threshold of less than 50 mV is observed independent of Ga+ dosage and implant beam overlap. These features suggest a Coulomb blockade transport mechanism presumably caused by a network of Ga precipitates in the substrate. This granular scenario is further supported by measurements of gated nanowires. Nanowires with metallic conductance at low temperatures could be achieved by reducing the current density of the focused-ion beams. C1 Utah State Univ, Dept Phys, Logan, UT 84322 USA. Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. RP Shen, TC (reprint author), Utah State Univ, Dept Phys, Logan, UT 84322 USA. EM tcshen@cc.usu.edu RI Perkins, Cade/C-4376-2011 OI Perkins, Cade/0000-0002-4573-4580 NR 24 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 17 PY 2007 VL 91 IS 12 AR 122105 DI 10.1063/1.2786014 PG 3 WC Physics, Applied SC Physics GA 213KY UT WOS:000249667200050 ER PT J AU Wang, ZL Tang, DW Li, XB Zheng, XH Zhang, WG Zheng, LX Zhu, YTT Jin, AZ Yang, HF Gu, CZ AF Wang, Zhao Liang Tang, Da Wei Li, Xiao Bo Zheng, Xing Hua Zhang, Wei Gang Zheng, Li Xin Zhu, Yuntian T. Jin, Ai Zi Yang, Hai Fang Gu, Chang Zhi TI Length-dependent thermal conductivity of an individual single-wall carbon nanotube SO APPLIED PHYSICS LETTERS LA English DT Article ID 3-OMEGA METHOD; NANOSTRUCTURES; CONDUCTANCE; RESISTANCE; HEAT AB The thermal conductivity of single-wall carbon nanotubes (SWCNTs) is predicted to increase with length, but this has never been proved experimentally because of limitations in previous measurement methods. Here, the authors report the measurement of the length-dependent thermal conductivities of individual SWCNTs on a Si substrate using a four-pad 3 omega method. An increase in thermal conductivity with length was observed at room temperature, which is consistent with a theoretical prediction that considers higher order three-phonon processes. When SWCNTs are longer than the phonon mean path, they showed dissipative thermal transport. The observed increase of thermal conductivity with length makes SWCNTs ideal for thermal management.(c) 2007 American Institute of Physics. C1 Chinese Acad Sci, Inst Engn Thermophys, Beijing 100080, Peoples R China. Chinese Acad Sci, Inst Proc Engn, Beijing 100080, Peoples R China. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. RP Tang, DW (reprint author), Chinese Acad Sci, Inst Engn Thermophys, Beijing 100080, Peoples R China. EM dwtang@mail.etp.ac.cn RI Zhu, Yuntian/B-3021-2008; Zheng, Lianxi/A-3855-2011; Li, Xiaobo/D-2646-2013 OI Zhu, Yuntian/0000-0002-5961-7422; Zheng, Lianxi/0000-0003-4974-365X; NR 17 TC 49 Z9 53 U1 3 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 17 PY 2007 VL 91 IS 12 AR 123119 DI 10.1063/1.2779850 PG 3 WC Physics, Applied SC Physics GA 213KY UT WOS:000249667200107 ER PT J AU Kapre, RR Bothe, E Weyhermuller, T George, SD Muresan, N Wieghard, K AF Kapre, Ruta R. Bothe, Eberhard Weyhermuller, Thomas George, Serena DeBeer Muresan, Nicoleta Wieghard, Karl TI Electronic structures of tris(dioxolene)chromium and tris(dithiolene)chroimium complexes of the electron-transfer series [Cr(dioxolene)(3)](z) and [Cr(dithiolene)(3)](z) (z=0, 1-, 2-, 3-). A combined experimental and density functional theoretical study SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; TRANSITION-METAL COMPLEXES; IRON-SULFUR CLUSTERS; CHROMIUM OXIDATION-STATE; PLANAR NICKEL-COMPLEXES; CORRELATED AB-INITIO; GAUSSIAN-BASIS SETS; BIOINORGANIC CHEMISTRY; DIRADICAL CHARACTER; CATECHOLATE LIGANDS AB From the reaction mixture of 3,6-di-tert-butylcatechol, H-2[L-3,6(cat)], [CrCl3(thf)(3)], and NEt3 in CH3CN in the presence of air, the neutral complex [Cr-III(3,6L center dot(sq))3] (S = 0) (1) was isolated. Reduction of 1 with [Co(Cp)(2)] in CH2Cl2 yielded microcrystals of [Co(Cp)(2)][Cr-III(3,6 L center dot(sq))(2)(L-3,6(cat))] (S = 1/2) (2) where (L-3,L-6 center dot(sq))(1-) is the pi-radical monoanionic o-semiquinonate of the catecholate dianion (L-3,6(cat))(2-). Electrochemistry demonstrated that both species are members of the electron-trarisfer series [Cr(L-3,6(O,O))](z) (z = 0, 1-, 2-, 3-). The corresponding tris(benzo-1,2-dithiolato)chromium complex [N(n-Bu)4][Cr-III(3,5L center dot(S,S))(2)(L-3,5(S,S))] (S = 1/2) (3) has also been isolated; (L-3,5(S,S))(2-) represents the closed-shell dianion 3,5-di-tert-butylbenzene-1,2-dithiolate(2-), and (L-3,L-5 center dot(S,S))(1-) is its monoanionic pi radical. Complex 3 is a member of the electron-transfer series [Cr(L-3,5(S,S))(3)](z) (Z = 0, 1-, 2-, 3-). It is shown by Cr K-edge and S K-edge X-ray absorption, UV-vis, and EPR spectroscopies, as well as X-ray crystallography, of 1 and 3 that the oxidation state of the central Cr ion in each member of both electron-transfer series remains the same (+III) and that all redox processes are ligand-based. These experimental results have been corroborated by broken symmetry density functional theoretical calculations by using the B3LYP functional. C1 Max Planck Inst Bioanorgan Chem, D-45470 Mulheim, Germany. Stanford Univ, Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. RP Wieghard, K (reprint author), Max Planck Inst Bioanorgan Chem, Stiftstrasse 34-36, D-45470 Mulheim, Germany. EM wieghardt@mpi-muelheim.mpg.de RI DeBeer, Serena/G-6718-2012; Weyhermuller, Thomas/G-6730-2012 OI Weyhermuller, Thomas/0000-0002-0399-7999 NR 66 TC 55 Z9 56 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 17 PY 2007 VL 46 IS 19 BP 7827 EP 7839 DI 10.1021/ic7008607 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 209EJ UT WOS:000249371500025 PM 17715917 ER PT J AU Stephenson, NA Bell, AT AF Stephenson, Ned A. Bell, Alexis T. TI Mechanistic insights into iron porphyrin-catalyzed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Review DE porphyrin; peroxide; epoxidation; mechanism; iron ID IRON(III) TETRAKIS(PENTAFLUOROPHENYL) PORPHYRIN; TRANSITION-METAL PORPHYRINS; TERT-BUTYL HYDROPEROXIDE; M-CHLOROPERBENZOIC ACID; O BOND SCISSION; COMPOUND-I; METALLOPORPHYRIN COMPLEXES; CYCLOOCTENE EPOXIDATION; ALKYL HYDROPEROXIDES; AQUEOUS-SOLUTIONS AB Iron porphyrins are well known for their ability to catalyze the oxidation of hydrocarbons by hydrogen peroxide and by organic peroxides in general. While many mechanistic studies have been reported, a complete description of the reaction pathway by which the olefin epoxidation occurs has emerged only recently as a result of the work reported by the authors. The aim of this review is to present a summary of the authors' research and to place it into perspective with previously published studies. What emerges is a complete mechanistic picture for the epoxidation of olefins by hydrogen peroxide catalyzed by iron porphyrins that is consistent with all experimental evidence. Rate parameters associated with elementary processes in the reaction mechanism have been determined from experimental measurements of cyclooctene epoxide formation and hydrogen peroxide consumption as a function of the composition of the solvent, axial ligand, porphyrin, and substrate. Several notable findings emerge from this effort. The first is that only iron(III) porphyrin cations are catalytically active. These species are formed by dissociation of the neutral complex, consisting of an iron(III) porphyrin cation and an anion serving as the axial ligand, into solvated cations and anions. Weakly bound axial ligands, such as triflate anions, dissociate in aprotic solvent, whereas a protic solvent is necessary to dissociate strongly bound ligands such as chloride anions. The role of solvent composition on the dissociation of iron porphyrin complex is fully described by a model of the thermodynamics of the process. The selectivity of hydrogen peroxide towards epoxidation versus decomposition is determined by two competitive processes, heterolytic and homolytic cleavage of the O-O bond of the iron(III)-coordinated hydrogen peroxide molecule. The former process leads to the production of an iron(IV) pi-radical cation which is active for olefin epoxidation, while the later process; leads to an iron(IV)-hydroxo species that is active exclusively for peroxide decomposition. A competition also occurs between olefin and hydrogen peroxide for reaction with the iron(IV) pi-radical cation species. Substrate composition does not affect the individual rate parameters as long as the olefin does not interact electronically with the iron porphyrin. Solvent alcohol coordinates to the iron(III) porphyrin in the axial position, thereby modifying the electronic properties of the iron. A second effect of alcohols is to facilitate the heterolytic cleavage of the oxygen-oxygen bond of hydrogen peroxide. The quantity, position, and electronegativity of halogen substituents attached to the phenyl groups at the meso-position of the porphyrin ring also affect the activity and selectivity of the porphyrin for olefin epoxidation. All of these effects are well explained by the mechanism that we have proposed. The rate parameters associated with the proposed mechanism vary in a systematic and physically meaningful fashion with changes in the composition of the porphyrin, the axial ligand associated with the porphyrin, and the solvent in which the porphyrin is dissolved. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM alexbell@berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 NR 67 TC 62 Z9 63 U1 4 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD SEP 17 PY 2007 VL 275 IS 1-2 BP 54 EP 62 DI 10.1016/j.molcata.2007.05.005 PG 9 WC Chemistry, Physical SC Chemistry GA 212OT UT WOS:000249607400008 ER PT J AU Webb, JD Harrison, DJ Norman, DW Blacquiere, JM Vogels, CM Decken, A Bates, CG Venkataraman, D Baker, RT Westcott, SA AF Webb, Jonathan D. Harrison, Daniel J. Norman, David W. Blacquiere, Johanna M. Vogels, Christopher M. Decken, Andreas Bates, Craig G. Venkataraman, D. Baker, R. Thomas Westcott, Stephen A. TI Metal catalysed hydroboration of vinyl sulfides, sulfoxides, sulfones, and sulfonates SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Article DE boronate esters; catalysis; hydroboration; regioselectivity; vinyl sulfides ID BORONIC ACID INHIBITORS; BOND-FORMING REACTIONS; ASYMMETRIC HYDROBORATION; DEHYDROGENATIVE BORYLATION; OLEFIN HYDROBORATION; MOLECULAR-STRUCTURES; CONVENIENT SYNTHESIS; RHODIUM; CATECHOLBORANE; VINYLARENES AB The hydroboration of phenyl vinyl sulfide with catecholborane (HBcat) and pinacolborane (HBpin) has been examined with a number of rhodium, complexes, all of which proceed with excellent regiocontrol in favour of the branched product PhSCH(B(OR)(2))CH3. The corresponding linear product can be obtained exclusively in reactions employing [Cp*IrCl2](2) and HBcat. Catalysed hydroborations of (E)-2-Q-7-toluenethio)styrene with HBcat using Rh(acac)(dppp) gave predominant formation of one product while reactions using HBpin afforded several products arising from a competing C-S bond cleavage (acac = acetylacetonato, dppp = 1,3-bis(diphenylphosphiiio)propane). Although reactions of phenyl vinyl sulfoxide were complicated by a competing deoxygenation reaction, hydroborations of phenyl vinyl sulfone using HBcat once again gave regioselective formation of either the branched or linear products, depending on the choice of catalyst used to effect this transformation. Catalysed hydroborations of phenyl vinyl sulfortate were less chemo- and regioselective, yielding hydrogenation and diboration products in addition to the two hydroboration product isomers. (c) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Mt Allison Univ, Dept Chem, Sackville, NB E4L 1G8, Canada. Univ New Brunswick, Dept Chem, Fredericton, NB E3B 5A3, Canada. Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. RP Baker, RT (reprint author), Los Alamos Natl Lab, Div Chem, MS J582, Los Alamos, NM 87545 USA. EM bakertom@lanl.gov; swestcott@mta.ca RI Venkataraman, Dhandapani/A-8226-2008 OI Venkataraman, Dhandapani/0000-0003-2906-0579 NR 69 TC 5 Z9 5 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD SEP 17 PY 2007 VL 275 IS 1-2 BP 91 EP 100 DI 10.1016/j.molcata.2007.05.026 PG 10 WC Chemistry, Physical SC Chemistry GA 212OT UT WOS:000249607400013 ER PT J AU Sartorius, A Mahlstedt, MM Vollmayr, B Henn, FA Ende, G AF Sartorius, Alexander Mahlstedt, Magdalena M. Vollmayr, Barbara Henn, Fritz A. Ende, Gabriele TI Elevated spectroscopic glutamate/gamma-amino butyric acid in rats bred for learned helplessness SO NEUROREPORT LA English DT Article DE desipramine; electroconvulsive shocks; gamma-aminobutyric acid; glutamate; hippocampus; in-vitro magnetic resonance spectroscopy; learned helplessness; major depression; monoamine theory of depression; prefrontal cortex ID GAMMA-AMINOBUTYRIC-ACID; MAGNETIC-RESONANCE SPECTROSCOPY; MAJOR DEPRESSION; MOOD DISORDERS; FRONTAL-CORTEX; STRESS; ANTIDEPRESSANTS; BRAIN AB The theory of depression is dominated by the monoamine hypothesis but there is increasing evidence that beyond monoamines, glutamate (Glu) and gamma-aminobutyric acid (GABA) play an essential role in the pathogenesis of depression. In this study, the effect of alterations of GAGA and Glu were investigated in the congenital learned helplessness paradigm. Proton magnetic resonance spectroscopy is an important monitoring tool to bridge the findings in clinical and preclinical studies. We found increased Glu/GABA ratios in the hippocampus and prefrontal cortex of placebo-treated (saline intraperitoneally) congenital learned helplessness rats versus wildtype rats, and a treatment-induced (desipramine 10 mg/kg intraperitoneally or electroconvulsive shock) decrease of this monoamine ratio in both brain regions. Our results corroborate previous findings of an amino-acid influence on the pathomechanisms of mood disorders. C1 Cent Inst Mental Hlth, D-68159 Mannheim, Germany. Univ Nottingham, Sch Pharm, Nottingham NG7 2RD, England. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sartorius, A (reprint author), Cent Inst Mental Hlth, D-68159 Mannheim, Germany. EM alexander.sartorius@zi-mannheim.de RI Ende, Gabriele/B-7012-2009; Sartorius, Alexander/E-3061-2012 NR 26 TC 46 Z9 48 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0959-4965 J9 NEUROREPORT JI Neuroreport PD SEP 17 PY 2007 VL 18 IS 14 BP 1469 EP 1473 DI 10.1097/WNR.0b013e3282742153 PG 5 WC Neurosciences SC Neurosciences & Neurology GA 210UA UT WOS:000249479900012 PM 17712276 ER PT J AU Toussaint, KC Liu, M Pelton, M Pesic, J Guffey, MJ Guyot-Sionnest, P Scherer, NF AF Toussaint, K. C., Jr. Liu, M. Pelton, M. Pesic, J. Guffey, M. J. Guyot-Sionnest, P. Scherer, N. F. TI Plasmon resonance-based optical trapping of single and multiple Au nanoparticles SO OPTICS EXPRESS LA English DT Article ID GOLD NANOPARTICLES; METAL NANOPARTICLES; BIASED DIFFUSION; CARBON NANOTUBES; MANIPULATION; PARTICLES; MOLECULES; FORCES; NANORODS; ARRAYS AB The plasmon resonance-based optical trapping ( PREBOT) method is used to achieve stable trapping of metallic nanoparticles of different shapes and composition, including Au bipyramids and Au/Ag core/shell nanorods. In all cases the longitudinal plasmon mode of these anisotropic particles is used to enhance the gradient force of an optical trap, thereby increasing the strength of the trap potential. Specifically, the trapping laser is slightly detuned to the long-wavelength side of the longitudinal plasmon resonance where the sign of the real component of the polarizability leads to an attractive gradient force. A second ( femtosecond pulsed) laser is used to excite two-photon fluorescence for detection of the trapped nanoparticles. Two-photon fluorescence time trajectories are recorded for up to 20 minutes for single and multiple particles in the trap. In the latter case, a stepwise increase reflects sequential loading of single Au bipyramids. The nonlinearity of the amplitude and noise with step number are interpreted as arising from interactions or enhanced local fields amongst the trapped particles and fluctuations in the arrangements thereof. (c) 2007 Optical Society of America. C1 Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. Univ Chicago, Dept Chem, Chicago, IL 60637 USA. Univ Chicago, Dept Phys, Chicago, IL 60637 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Scherer, NF (reprint author), Univ Chicago, James Franck Inst, 929 E 57th St, Chicago, IL 60637 USA. EM nfschere@uchicago.edu RI Liu, Mingzhao/A-9764-2011; Pelton, Matthew/H-7482-2013; Toussaint, Kimani/A-4611-2014 OI Liu, Mingzhao/0000-0002-0999-5214; Pelton, Matthew/0000-0002-6370-8765; Toussaint, Kimani/0000-0002-6701-4541 NR 44 TC 66 Z9 67 U1 3 U2 37 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 17 PY 2007 VL 15 IS 19 BP 12017 EP 12029 DI 10.1364/OE.15.012017 PG 13 WC Optics SC Optics GA 218HK UT WOS:000250006400029 PM 19547566 ER PT J AU Luengo Hendriks, CL Keraenen, SVE Biggin, MD Knowles, DW AF Luengo Hendriks, Cris L. Keraenen, Soile V. E. Biggin, Mark D. Knowles, David W. TI Automatic channel unmixing for high-throughput quantitative analysis of fluorescence images SO OPTICS EXPRESS LA English DT Article ID SCANNING LASER MICROSCOPY; CONFOCAL MICROSCOPY; CROSS-TALK; COLOCALIZATION; REDUCTION; CELLS AB Laser-scanning microscopy allows rapid acquisition of multi-channel data, paving the way for high-throughput, high-content analysis of large numbers of images. An inherent problem of using multiple fluorescent dyes is overlapping emission spectra, which results in channel cross-talk and reduces the ability to extract quantitative measurements. Traditional unmixing methods rely on measuring channel cross-talk and using fixed acquisition parameters, but these requirements are not suited to high-throughput processing. Here we present a simple automatic method to correct for channel cross-talk in multi-channel images using image data only. The method is independent of the acquisition parameters but requires some spatial separation between different dyes in the image. We evaluate the method by comparing the cross-talk levels it estimates to those measured directly from a standard fluorescent slide. The method is then applied to a high-throughput analysis pipeline that measures nuclear volumes and relative expression of gene products from three-dimensional, multi-channel fluorescence images of whole Drosophila embryos. Analysis of images before unmixing revealed an aberrant spatial correlation between measured nuclear volumes and the gene expression pattern in the shorter wavelength channel. Applying the unmixing algorithm before performing these analyses removed this correlation. (c) 2007 Optical Society of America. C1 Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Knowles, DW (reprint author), Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd Mailstop 84R0171, Berkeley, CA 94720 USA. EM dwknowles@lbl.gov RI Luengo Hendriks, Cris L./B-1097-2008 OI Luengo Hendriks, Cris L./0000-0002-8279-1760 NR 14 TC 7 Z9 7 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 17 PY 2007 VL 15 IS 19 BP 12306 EP 12317 DI 10.1364/OE.15.012306 PG 12 WC Optics SC Optics GA 218HK UT WOS:000250006400062 PM 19547599 ER PT J AU Balaraman, GS Vrinceanu, D AF Balaraman, G. S. Vrinceanu, D. TI Numerical solution of modified-Kepler problem using a splitting method SO PHYSICS LETTERS A LA English DT Article DE Kepler problem; Rydberg atoms; symplectic integration AB An efficient geometric integrator is proposed for numerically solving the Kepler problem modified by an additional potential energy term. This method is stable over long integration times, uses relatively large timesteps and gives a good estimate of the global error. Two case studies are presented to demonstrate these advantages. (c) 2007 Elsevier B.V. All rights reserved. C1 Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Vrinceanu, D (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. EM vrinceanu@lanl.gov NR 9 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD SEP 17 PY 2007 VL 369 IS 3 BP 188 EP 195 DI 10.1016/j.physleta.2007.04.107 PG 8 WC Physics, Multidisciplinary SC Physics GA 215KT UT WOS:000249807900003 ER PT J AU Watzke, A Wilson, RM O'Malley, SJ Bergman, RG Ellman, JA AF Watzke, Anja Wilson, Rebecca M. O'Malley, Steven J. Bergman, Robert G. Ellman, Jonathan A. TI Asymmetric intramolecular alkylation of chiral aromatic Imines via catalytic C-H bond activation SO SYNLETT LA English DT Article DE C-H bond activation; asymmetric catalysis; transimination; cyclization; dihydrobenzofuran ID LITHOSPERMUM-RUDERALE; POLYPHENOLIC ACIDS AB The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered mela to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; jellman@berkeley.edu RI Ellman, Jonathan/C-7732-2013 NR 19 TC 14 Z9 14 U1 1 U2 11 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0936-5214 J9 SYNLETT JI Synlett PD SEP 17 PY 2007 IS 15 BP 2383 EP 2389 DI 10.1055/s-2007-985593 PG 7 WC Chemistry, Organic SC Chemistry GA 223AD UT WOS:000250340900015 ER PT J AU Chapman, PJ Long, Z Datskos, PG Archibald, R Sepaniak, MJ AF Chapman, Peter J. Long, Zhou Datskos, Panos G. Archibald, Richard Sepaniak, Michael J. TI Differentially ligand-functionalized microcantilever Arrays for metal ion identification and sensing SO ANALYTICAL CHEMISTRY LA English DT Article ID CANTILEVER ARRAY; CHROMATOGRAPHY; SENSOR; NANOMECHANICS; SPECTROMETRY; TECHNOLOGY; MONOLAYERS; NETWORKS; SYSTEM; SALTS AB A microcantilever array sensor with cantilevers differentially functionalized with self-assembled monolayers (SAMs) of thiolated ligands is prepared by simultaneous capillary coating. This array is described for the detection of metal ions including Li+, Cs+, Cu2+, CO2+, Fe3+, and Al3+. Binding of the charged metal cations to the surface of the microcantilever sensors produces surface stress that causes bending of the cantilevers that is detected as tip deflection using an array of vertical cavity surface emitting lasers and a position-sensitive detector. Optimization studies of the nanostructured dealloyed surface were performed for SAMs based on their response to Cu2+ cations. Sensor performance experiments demonstrate good sensitivity toward metal ions, with limits of detection as low as 10(-8) molar. A multiplex capillary coating method for cantilever array creation is demonstrated and validated based on surface-enhanced Raman spectra obtained from adjacent cantilevers that were functionalized with different thiolated SAMs. The cantilever array coated with a range of thiolated ligands was exposed to the group of metal ions. The response characteristics of each metal ion show substantial diversity, varying not only in response magnitude, but response kinetics. A pattern recognition algorithm based on a combination of independent component analysis and support vector machines was able to validate that the sensor array response profiles produced enough information content that metal ions could be reliably classified with probabilities as high as 89%. C1 Univ Tennessee, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sepaniak, MJ (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM msepaniak@utk.edu RI Archibald, Rick/I-6238-2016 OI Archibald, Rick/0000-0002-4538-9780 NR 35 TC 30 Z9 30 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD SEP 15 PY 2007 VL 79 IS 18 BP 7062 EP 7068 DI 10.1021/ac070754x PG 7 WC Chemistry, Analytical SC Chemistry GA 211MK UT WOS:000249527700020 PM 17705449 ER PT J AU Andarawewa, KL Erickson, AC Chou, WS Costes, SV Gascard, P Mott, JD Bissell, MJ Barcellos-Hoff, MH AF Andarawewa, Kurnari L. Erickson, Anna C. Chou, William S. Costes, Sylvain V. Gascard, Philippe Mott, Joni D. Bissell, Mina J. Barcellos-Hoff, Mary Helen TI Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta-induced epithelial to mesenchymal transition SO CANCER RESEARCH LA English DT Article ID E-CADHERIN EXPRESSION; HUMAN BREAST-CANCER; TGF-BETA; SIGNALING PATHWAYS; GENE-EXPRESSION; TUMOR INVASION; IN-VIVO; METASTASIS; PLASTICITY; GROWTH-FACTOR-BETA-1 AB Transforming growth factor beta 1 (TGF beta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF beta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF beta-mediated epithelial to mesenchymal transition (EMT). Nonmalignant HMEC (MCF10A, HMT3522 SI, and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture or treated with a low concentration of TGF beta (0.4 ng/mL) or double treated. All double-treated (IR + TGF beta) HMEC underwent a morphologic shift from cuboidal to spindle shaped. This phenotype was accompanied by a decreased expression of epithelial markers E-cadherin, beta-catenin, and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin, and vimentin. Furthermore, double treatment increased cell motility, promoted invasion, and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGF beta alone elicited EMT, although IR increased chronic TGF beta signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/mitogenactivated protein kinase (MAPK) signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGF beta-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGF beta, and treatment with U0126, a MAP/Erk kinase (MEK) inhibitor, blocked the EMT phenotype. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Barcellos-Hoff, MH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Bldg 977-225A,1Cylotron Rd, Berkeley, CA 94720 USA. EM MHBarcellos-Hoff@tbl.gov RI Costes, Sylvain/D-2522-2013 OI Costes, Sylvain/0000-0002-8542-2389 NR 50 TC 107 Z9 122 U1 0 U2 4 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD SEP 15 PY 2007 VL 67 IS 18 BP 8662 EP 8670 DI 10.1158/0008-5472.CAN-07-1294 PG 9 WC Oncology SC Oncology GA 213PL UT WOS:000249679500031 PM 17875706 ER PT J AU Balhorn, R Hok, S Burke, PA Lightstone, FC Cosman, M Zemla, A Mirick, G Perkins, J Natarajan, A Corzett, M DeNardo, S Albrecht, H Gregg, JP DeNardo, GL AF Balhorn, Rod Hok, Saphon Burke, Patricia A. Lightstone, Felice C. Cosman, Monique Zemla, Adam Mirick, Gary Perkins, Julie Natarajan, Arutselvan Corzett, Michele DeNardo, SallyJ. Albrecht, Huguette Gregg, Jeff P. DeNardo, Gerry L. TI Selective high-affinity ligand antibody mimics for cancer diagnosis and therapy: Initial application to Lymphoma/Leukemia SO CLINICAL CANCER RESEARCH LA English DT Article; Proceedings Paper CT 11th Conference on Cancer Therapy with Antibodies and Immunoconjugates CY OCT 12-14, 2006 CL Parsippany, NJ SP Ctr Mol Med & Immunol, Garden State Canc Ctr ID NON-HODGKINS-LYMPHOMA; MONOCLONAL-ANTIBODIES; MEMBRANE ANTIGEN; 3-DIMENSIONAL STRUCTURE; TETANUS TOXIN; CELL-LINES; PHASE-I; RADIOIMMUNOTHERAPY; IDENTIFICATION; LYM-1 AB Purpose: More than two decades of research and clinical trials have shown radioimmunotherapy to be a promising approach for treating various forms of cancer, Lym-1 antibody, which binds selectively to HLA-DR10 on malignant B-cell lymphocytes, has proved to be effective in delivering radionuclides to non-Hodgkin's lymphoma and leukemia. Using a new approach to create small synthetic molecules that mimic the targeting properties of the Lym-1 antibody, a prototype, selective high-affinity ligand (SHAL), has been developed to bind to a unique region located within the Lym-1 epitope on HLA-DR10. Experimental Design: Computer docking methods were used to predict two sets of small molecules that bind to neighboring cavities on the 0 subunit of HLA-DR10 surrounding a critical amino acid in the epitope, and the ligands were confirmed to bind to the protein by nuclear magnetic resonance spectroscopy. Pairs of these molecules were then chemically linked together to produce a series of bidentate and bisbidentate SHALs. Results: These SHALs bind with nanomolar to picomolar K-d'S only to cell lines expressing HLA-DR10. Analyses of biopsy sections obtained from patients also confirmed that SHAL bound to both small and large cell non-Hodgkin's lymphomas mimicking the selectivity of Lym-1. Conclusions: These results show that synthetic molecules less than 1/50th the mass of an antibody can be designed to exhibit strong binding to subtle structural features on cell surface proteins similar to those recognized by antibodies. This approach offers great potential for developing small molecule therapeutics that target other types of cancer and disease. C1 Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. Univ Calif Davis, Radiodiag & Therapy Lab, Sacramento, CA 95817 USA. RP Balhorn, R (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, L-452,7000 E Ave, Livermore, CA 94550 USA. EM balhorn2@llnl.gov FU NCI NIH HHS [P01-CA47829] NR 45 TC 13 Z9 15 U1 0 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD SEP 15 PY 2007 VL 13 IS 18 SU S BP 5621S EP 5628S DI 10.1158/1078-0432.CCR-07-1128 PN 2 PG 8 WC Oncology SC Oncology GA 216PD UT WOS:000249889900018 PM 17875798 ER PT J AU Christmann, A Steinwart, I Hubert, M AF Christmann, Andreas Steinwart, Ingo Hubert, Mia TI Robust learning from bites for data mining SO COMPUTATIONAL STATISTICS & DATA ANALYSIS LA English DT Article DE breakdown point; convex risk minimization; data mining; distributed computing; influence function; logistic regression; robustness; scalability; statistical machine learning; support vector machine ID CONVEX RISK MINIMIZATION; SUPPORT VECTOR MACHINES; LARGE DATA SETS; HIGH BREAKDOWN; BOUNDED INFLUENCE; REGRESSION DEPTH; CLASSIFICATION; ESTIMATORS; ASYMPTOTICS; CONSISTENCY AB Some methods from statistical machine learning and from robust statistics have two drawbacks. Firstly, they are computer-intensive such that they can hardly be used for massive data sets, say with millions of data points. Secondly, robust and non-parametric confidence intervals for the predictions according to the fitted models are often unknown. A simple but general method is proposed to overcome these problems in the context of huge data sets. An implementation of the method is scalable to the memory of the computer and can be distributed on several processors to reduce the computation time. The method offers distribution-free confidence intervals for the median of the predictions. The main focus is on general support vector machines (SVM) based on minimizing regularized risks. As an example, a combination of two methods from modem statistical machine learning, i.e. kernel logistic regression and epsilon-support vector regression, is used to model a data set from several insurance companies. The approach can also be helpful to fit robust estimators in parametric models for huge data sets. (c) 2006 Elsevier B. V. All rights reserved. C1 Vrije Univ Brussels, Dept Math, B-1050 Brussels, Belgium. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Katholieke Univ Leuven, UCS, B-3000 Louvain, Belgium. RP Christmann, A (reprint author), Vrije Univ Brussels, Dept Math, Pleinlaan 2, B-1050 Brussels, Belgium. EM Andreas.Christmann@vub.ac.be RI Hubert, Mia/B-7434-2011; OI Steinwart, Ingo/0000-0002-4436-7109 NR 49 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-9473 J9 COMPUT STAT DATA AN JI Comput. Stat. Data Anal. PD SEP 15 PY 2007 VL 52 IS 1 BP 347 EP 361 DI 10.1016/j.csda.2006.12.009 PG 15 WC Computer Science, Interdisciplinary Applications; Statistics & Probability SC Computer Science; Mathematics GA 216XN UT WOS:000249912400029 ER PT J AU Valentine, GA Perry, FV AF Valentine, Greg A. Perry, Frank V. TI Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA) SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE basaltic field; lithospheric mantle; dike; effusion rate; time-predictable; volume-predictable ID WESTERN UNITED-STATES; RIO-GRANDE RIFT; ISOTOPIC EVIDENCE; SOUTHERN NEVADA; CRATER FLAT; EXPERIMENTAL CONSTRAINTS; YUCCA MOUNTAIN; EVOLUTION; EXTENSION; ROCKS AB Understanding the evolution of basaltic volcanic fields is critical to our concepts of basaltic magmatism and to volcanic risk assessment. We summarize physical volcanological, geochemical, and time-volume characteristics of the Plio-Pleistocene part of the Southwestern Nevada Volcanic Field (SNVF) as an example of an extremely low volume-flux end member of basaltic fields. The SNVF has produced 17 volcanoes of dominantly trachybasaltic composition over the past 5 Myr with a total volume of slightly less than 6 km(3). Eruptive fissure lengths, volumes, and inferred lava effusion rates decreased between Pliocene- and Pleistoceneage volcanoes. Major element data suggest that most of the magmas underwent similar degrees of fractionation during ascent, and trace element compositions indicate a decrease in the degree of partial melting of the lithospheric mantle source since similar to 3 Ma. Isotopic data support an interpretation wherein magmas ascended relatively quickly from their source regions with little if any interaction with crustal rocks. Relationships between age and cumulative erupted volume indicate that the repose interval between eruptive episodes is determined by the volumes of prior episodes and, since similar to 3 Ma, an average eruption rate of similar to 0.5 km(3)/Myr, i.e., the field is time-predictable. All of these features support a model wherein magmatism is a passive result of regional tectonic strain. Partial melt resides in pockets of lithospheric mantle that are relatively enriched in hydrous minerals; slow deformation focuses melt, occasionally resulting in sufficiently high melt pressure to drive dikes upward and feed eruptive episodes. Larger source volumes result in larger eruptive volumes and wider dikes that relieve relatively more strain in the crust than smaller volume events, and therefore are followed by longer repose intervals required for recovery of crustal stresses. We suggest that time-predictability may be a fundamental property of tectonically controlled basaltic fields, where melt accumulation and ascent are controlled by tectonic strain rate. This behavior contrasts with magmatically controlled fields where magma flux is sufficiently high to overwhelm local tectonic strain, eruptions are primarily caused by magmatic processes that build pressure in reservoirs, and the systems are more likely to be volume-predictable. (C) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Valentine, GA (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Mail Stop D462, Los Alamos, NM 87545 USA. EM gav@lanl.gov NR 53 TC 73 Z9 73 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD SEP 15 PY 2007 VL 261 IS 1-2 BP 201 EP 216 DI 10.1016/j.epsl.2007.06.029 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 218VE UT WOS:000250042500016 ER PT J AU Presto, AA Granite, EJ AF Presto, Albert A. Granite, Evan J. TI Impact of sulfur oxides on mercury capture by activated carbon SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FLUE-GAS; CATALYTIC-OXIDATION; SO2 REMOVAL; ADSORPTION; MECHANISM; SORBENTS; COAL AB Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions Of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content Of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury Capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Granite, EJ (reprint author), US DOE, Natl Energy Technol Lab, POB 10940,MS 58-103A, Pittsburgh, PA 15236 USA. EM evan.granite@netl.doe.gov RI Presto, Albert/C-3193-2008 OI Presto, Albert/0000-0002-9156-1094 NR 30 TC 92 Z9 99 U1 2 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 15 PY 2007 VL 41 IS 18 BP 6579 EP 6584 DI 10.1021/es0708316 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 211CA UT WOS:000249500700046 PM 17948811 ER PT J AU Benezeth, P Palmer, DA Anovitz, LM Horita, J AF Benezeth, Pascale Palmer, Donald A. Anovitz, Lawrence M. Horita, Juske TI Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO(2) SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID HIGH-TEMPERATURE SOLUBILITY; IN-SITU MEASUREMENTS; CARBON-DIOXIDE; DISSOLUTION KINETICS; GEOLOGIC SEQUESTRATION; ALUMINUM SPECIATION; REACTIVE TRANSPORT; CHEMICAL AFFINITY; ROCK INTERACTIONS; AQUIFER DISPOSAL AB Over the last decade, a significant research effort has focused on determining the feasibility of sequestering large amounts of CO(2) in deep, permeable geologic formations to reduce carbon dioxide emissions to the atmosphere. Most models indicate that injection of CO2 into deep sedimentary formations will lead to the formation of various carbonate minerals, including the common phases calcite (CaCO(3)), dolomite (CaMg(CO(3))(2)), magnesite (MgCO(3)), siderite (FeCO(3)), as well as the far less common mineral, dawsonite (NaAlCO(3)(OH)(2)). Nevertheless, the equilibrium and kinetics that control the precipitation of stable carbonate minerals are poorly understood and few experiments have been performed to validate computer codes that model CO(2) sequestration. In order to reduce this uncertainty we measured the solubility of synthetic dawsonite according to the equilibrium: NaAlCO(3) (OH)(2(cr)) + 2H(2)O((t)) reversible arrow Al(OH)(4)(-) + HCO(3)(-) + Na(+) + H(+), from under- and oversaturated solutions at 50-200 degrees C in basic media at 1.0 mol.kg(-1) NaCl. The solubility products (Q(s)) obtained were extrapolated to infinite dilution to obtain the solubility constants (K(s)(o)). Combining the fit of these logK(s)(o) values and fixing Delta C(p,r)(o) at -185.5 J.mol(-1).K(-1) at 25 C, which was derived from the calorimetric data of Ferrante et al. [Ferrante, M.J., Stuve, J.M., and Richardson, D.W., 1976. Thermodynamic data for synthetic dawsonite. U.S. Bureau of Mines Report Investigation, 8129, Washington, D.C., 13p.], the following thermodynamic parameters for the dissolution of dawsonite were calculated at 25 degrees C: Delta G(r)(o)= 102.1 kJ.mol(-1), Delta H(r)(o) = 97.0 kJ.mol(-1) and Delta S(r)(o) = -17.1 J.mol(-1). K(-1). Subsequently, we were able to derive values for the Gibbs energy of formation (Delta fG(298.15)(o) = -1782 +/- 2 kJ.mol(-1)), enthalpy of formation (Delta fH(298.15)(o) = -1960 +/- 7 kJ mol(-1)) and entropy (S(298.15)(o) = 131 +/- 2 J.mol(-1).K(-1)) of dawsonite. These results are within the combined experimental uncertainties of the values reported by Ferrante et al. (1976). Predominance diagrams are presented for the dawsonite/boehmite and dawsonite/bayerite equilibria at 100 degrees C in the presence of a saline solution with and without silica-containing minerals. (C) 2007 Elsevier Ltd. All rights reserved. C1 Univ Toulouse 3, CNRS, IRD, LMTG,UMR5563, F-31400 Toulouse, France. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Benezeth, P (reprint author), Univ Toulouse 3, CNRS, IRD, LMTG,UMR5563, 14 Ave Edouard Belin, F-31400 Toulouse, France. EM benezeth@lmtg.obs-mip.fr RI BENEZETH, Pascale/H-7969-2014; Anovitz, Lawrence/P-3144-2016 OI BENEZETH, Pascale/0000-0002-1841-2383; Anovitz, Lawrence/0000-0002-2609-8750 NR 70 TC 71 Z9 73 U1 1 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2007 VL 71 IS 18 BP 4438 EP 4455 DI 10.1016/j.gca.2007.07.003 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 220OJ UT WOS:000250165700004 ER PT J AU Bourne, NK Millett, JCF Brown, EN Gray, GT AF Bourne, N. K. Millett, J. C. F. Brown, E. N. Gray, G. T., III TI Effect of halogenation on the shock properties of semicrystalline thermoplastics SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HIGH-PRESSURE PHASE; EQUATION-OF-STATE; CRYSTAL-STRUCTURE; POLYTETRAFLUOROETHYLENE TEFLON; STRAIN-RATE; POLYMERS; PTFE; POLY(TETRAFLUOROETHYLENE); COMPRESSION; TRANSITION AB The high-strain rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in the transport industries. This work explores the effect of fluorination upon semicrystalline thermoplastics. Polyethylene, with its simple hydrocarbon chain, is considered; with increasing fluorination of the carbon backbone polyvinylidene difluoride, and then polytetrafluorethylene (PTFE) is also compared. All three show a nonlinear equation of state behavior, which may be related to partial crystallinity. PTFE is shown to have anomalous release speed, which reflects its transformation from phase II to phase III transition at 0.7 GPa. Strength effects show a different ordering of behavior between the three materials. The first results are accountable purely using van der Waals forces between the chains. However, strength effects show the effect of further attractive forces that indicate some tacticity in the material associated with the state behind the shock. (C) 2007 American Institute of Physics. C1 Atom Weapons Establishment, Reading RG7 4PR, Berks, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bourne, NK (reprint author), Atom Weapons Establishment, Reading RG7 4PR, Berks, England. EM Neil.Bourne@mac.co.uk RI Bourne, Neil/A-7544-2008; OI Brown, Eric/0000-0002-6812-7820 NR 56 TC 14 Z9 15 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2007 VL 102 IS 6 AR 063510 DI 10.1063/1.2778746 PG 8 WC Physics, Applied SC Physics GA 215CZ UT WOS:000249787200031 ER PT J AU Ishimaru, M Hirotsu, Y Tang, M Valdez, JA Sickafus, KE AF Ishimaru, Manabu Hirotsu, Yoshihiko Tang, Ming Valdez, James A. Sickafus, Kurt E. TI Ion-beam-induced phase transformations in delta-Sc4Zr3O12 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID YTTRIA-STABILIZED ZIRCONIA; RADIATION TOLERANCE; NUCLEAR-WASTE; OXIDES; PLUTONIUM; XENON; IMMOBILIZATION; FLUORITE; FORM AB Structural changes in ion-beam-irradiated rhombohedral Sc4Zr3O12 (delta-Sc4Zr3O12) have been examined using transmission electron microscopy (TEM). Polycrystalline delta-Sc4Zr3O12 samples were irradiated at cryogenic temperature with 300 keV Kr2+ ions to a fluence of 3x10(16) Kr/cm(2) (equivalent to a peak dose of similar to 70 displacements per target atom). High-resolution TEM and nanobeam electron diffraction experiments revealed a phase transformation to another ordered crystalline phase in the near-surface region of the irradiated sample. We propose an atomistic model for this crystalline phase, based on the bixbyite structure, and discuss its formation process. The phase transformation (occurring during irradiation) that produces this bixbyite structure is unusual in the fact that a more highly ordered structure is the product of the transformation. C1 Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Ishimaru, M (reprint author), Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. EM ishimaru@sanken.osaka-u.ac.jp NR 31 TC 17 Z9 17 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2007 VL 102 IS 6 AR 063532 DI 10.1063/1.2783892 PG 7 WC Physics, Applied SC Physics GA 215CZ UT WOS:000249787200053 ER PT J AU Kim, YS Lin, SY Chang, ASP Lee, JH Ho, KM AF Kim, Yong-Sung Lin, Shawn-Yu Chang, Allan S. P. Lee, Jae-Hwang Ho, Kai-Ming TI Analysis of photon recycling using metallic photonic crystal SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LIGHT-EMITTING-DIODES; WHITE-LIGHT AB We investigate a photon recycling scheme using two-dimensional metallic photonic crystals made of silver to improve the energy efficiency of an incandescent light source. A theoretical framework is presented to analyze the resultant photon-recycled lighting system. Calculation results show that the system can reach a maximum luminous efficiency of 125 lm/W, which is 8 times higher than that of a bare blackbody radiation at 2800 K. The color temperature of the system is calculated to be around 3500 K or below, while the color rendering index is between 68 and 90. These results suggest that a photon-recycled incandescent light source using metallic photonic crystals can be a viable alternative future lighting solution.(C) 2007 American Institute of Physics. C1 Rensselaer Polytech Inst, Dept Phys Appl Phys Astron, Troy, NY 12180 USA. Rensselaer Polytech Inst, Future Chips Constellat, Troy, NY 12180 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. US DOE, Ames Lab, Ames, IA 50011 USA. RP Lin, SY (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys Astron, Troy, NY 12180 USA. EM sylin@rpi.edu NR 15 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2007 VL 102 IS 6 AR 063107 DI 10.1063/1.2779271 PG 6 WC Physics, Applied SC Physics GA 215CZ UT WOS:000249787200007 ER PT J AU Li, N Xiao, HY Zu, XT Wang, LM Ewing, RC Lian, J Gao, F AF Li, N. Xiao, H. Y. Zu, X. T. Wang, L. M. Ewing, Rodney C. Lian, Jie Gao, Fei TI First-principles study of electronic properties of La(2)Hf(2)O(7) and Gd(2)Hf(2)O(7) SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; RADIATION TOLERANCE; MOLECULAR-DYNAMICS; DEFECT-FLUORITE; PYROCHLORE; METALS; IMMOBILIZATION; A(2)B(2)O(7); IRRADIATION AB The structural and electronic properties of A(2)Hf(2)O(7) (A=La and Gd) pyrochlore compounds are investigated by means of first-principles total energy calculations. Also, the formation energies of defects are calculated, and the results can be used to explain the stability of pyrochlores. Hybridizations between A 5p and O 2s and between A 5d and O 2p states are observed, but the interaction between A 5p and O 2s orbitals is much stronger in Gd(2)Hf(2)O(7) than that in La(2)Hf(2)O(7). Gd(2)Hf(2)O(7) shows a density of state distribution much different from that of La(2)Hf(2)O(7). Mulliken overlap population analysis shows that the A-O(48f) and A-O(8b) bonds in Gd(2)Hf(2)O(7) are more ionic than the corresponding bonds in La(2)Hf(2)O(7), while the Hf-O(48f) bond in Gd(2)Hf(2)O(7) is more covalent. These calculations suggest that A-O(48f) and A-O(8b) bonds may play important roles in their response to irradiation-induced amorphization observed experimentally. C1 Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM hyxiao@uestc.edu.cn RI Lian, Jie/A-7839-2010; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 NR 38 TC 22 Z9 22 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2007 VL 102 IS 6 AR 063704 DI 10.1063/1.2779262 PG 6 WC Physics, Applied SC Physics GA 215CZ UT WOS:000249787200057 ER PT J AU Millett, JCF Deas, D Bourne, NK Montgomery, ST AF Millett, J. C. F. Deas, D. Bourne, N. K. Montgomery, S. T. TI The deviatoric response of an alumina filled epoxy composite during shock loading SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PARTICULATE-LOADED MATERIALS; LATERAL STRESS; PIEZORESISTANCE GAUGES; DYNAMICAL RESPONSE; DELAYED FAILURE; SHEAR-STRENGTH; PARTICLES; TANTALUM; BEHAVIOR; IMPACT AB The deviatoric response of a particulate alumina-epoxy composite to shock loading has been investigated using manganin stress gauges sensitive to the lateral component of stress. Results show that the lateral stress and thus the shear strength are near constant behind the shock front, indicating that the presence of alumina has a diluting response of the epoxy resin. The shear strength has been observed to increase with increasing shock stress, in agreement with comparisons between the measured shock stress and the calculated hydrodynamic pressure. Finally, the Hugoniot elastic limit of this material has been estimated at similar to 1.6 GPa by the intersection between the elastic and inelastic shear strengths. C1 Cranfield Univ, Def Acad United Kingdom, Swindon SN6 8LA, Wilts, England. Univ Manchester, Manchester M60 1QD, Lancs, England. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Millett, JCF (reprint author), AWE, Reading RG7 4PR, Berks, England. EM jeremy.millett@awe.co.uk RI Bourne, Neil/A-7544-2008 NR 42 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2007 VL 102 IS 6 AR 063518 DI 10.1063/1.2783843 PG 6 WC Physics, Applied SC Physics GA 215CZ UT WOS:000249787200039 ER PT J AU Suh, JO Tu, KN Tamura, N AF Suh, J. O. Tu, K. N. Tamura, N. TI Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-DIFFRACTION; LEAD-FREE SOLDERS; INTERMETALLIC COMPOUNDS; COMPOUND; JOINTS; NI; AG AB A strong crystallographic orientation relationship between the Cu6Sn5 scallop-type grains and their Cu substrate has been found by synchrotron micro-x-ray diffraction study. Even though the crystal structures of Cu6Sn5 (monoclinic) and Cu (face-centered-cubic) are very different, angular distributions of crystallographic directions between Cu6Sn5 and Cu revealed a strong orientation relationship. Both SnPb solder and pure Sn showed the same result, indicating that this is general behavior between Sn-based solders and Cu. The strong orientation relation suggests that Cu6Sn5 forms prior to Cu3Sn in the wetting reactions. A total of six different orientation relationships were found. In all the cases, the [(1) over bar 101] direction of Cu6Sn5 preferred to be parallel to the [110] direction of Cu with a misfit of 0.24%. Due to pseudohexagonal structure of the Cu6Sn5, the six relationships can be categorized into two groups. From the orientation distribution, one group was found to be less rigid then the other group. (C) 2007 American Institute of Physics. C1 Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Suh, JO (reprint author), Jet Propuls Lab, Pasadena, CA 91109 USA. EM Jong-ook.Suh@jpl.nasa.gov NR 18 TC 45 Z9 46 U1 4 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2007 VL 102 IS 6 AR 063511 DI 10.1063/1.2776002 PG 7 WC Physics, Applied SC Physics GA 215CZ UT WOS:000249787200032 ER PT J AU Wee, SH Goyal, A Li, J Zuev, YL Cook, S AF Wee, S. H. Goyal, A. Li, J. Zuev, Y. L. Cook, S. TI Strong enhancement of flux pinning in thick NdBa2Cu3O7-delta films grown on ion-beam assisted deposition-MgO templates via three-dimensional self-assembled stacks of BaZrO3 nanodots SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID YBA2CU3O7-DELTA FILMS; CURRENT DENSITIES; RABITS AB Thick, epitaxial NdBa2Cu3O7-delta (NdBCO) films (up to 2.1 mu m) with a high density of nanoscale columnar defects parallel to the c-axis of the film were deposited on ion-beam assisted deposition-MgO templates via pulsed laser deposition. The columnar defects were composed of self-assembled BaZrO3 (BZO) nanodots. A significant enhancement in J(c) for H parallel to c is found for these films. In addition, an overall improvement in the in-field J(c) at all field orientations is observed. Compared to pure NdBCO of similar thickness, the in-field J(c) at H parallel to c for 0.7 mu m thick NdBCO+BZO film is improved by a factor of 2-4 in the field range of 0.1-4 T and 10-20 at 7-8 T at 77 K. In addition, a smaller alpha similar to 0.17 is found in the field regime where J(c)similar to H-alpha. Also, a higher maximum pinning force, F-p(max)similar to 14 GN/m(3), is found at 3 T and a larger H-irr over 8 T is found for the NdBCO films with columnar defects. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wees@ornl.gov NR 12 TC 21 Z9 21 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2007 VL 102 IS 6 AR 063906 DI 10.1063/1.2781534 PG 6 WC Physics, Applied SC Physics GA 215CZ UT WOS:000249787200072 ER PT J AU Snead, LL AF Snead, Lance L. TI Proceedings of the first symposium on nuclear fuels and structural materials for next generation nuclear reactors (NFSM-1) - Foreword SO JOURNAL OF NUCLEAR MATERIALS LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Snead, LL (reprint author), Oak Ridge Natl Lab, POB 2008, MS-6140, Oak Ridge, TN 37831 USA. EM sneadll@ornl.gov NR 0 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP IX EP IX DI 10.1016/j.jnucmat.2007.05.004 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200001 ER PT J AU Burchell, TD Snead, LL AF Burchell, Timothy D. Snead, Lance L. TI The effect of neutron irradiation damage on the properties of grade NBG-10 graphite SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc AB Nuclear block graphite-10 (NBG-10) is a medium-grain, near-isotropic graphite manufactured by SGL Carbon Company at their plant in Chedde. France. NBG-10 graphite was developed as a candidate core structural material for the pebble bed modular reactor (PBMR) currently being designed in South Africa, and for prismatic reactor concepts being developed in the USA and Europe. NBG-10 is one of several graphites included in the US-DOE Very High Temperature Reactor (VHTR) program. Thirty-six NBG-10 graphite flexure bars have been successfully irradiated in a series of IS HEIR PTT capsules at ORNL. The capsule irradiation temperatures were 294 +/- 25 360 25 and 691 25 degrees C. The peak doses attained were 4.93, 6.67, and 6.69 x 10(25) n/m(2) [E > 0.1 MeV] at similar to 294, similar to 360, and similar to 691 degrees C, respectively. The high temperature irradiation volume and dimensional change behavior, and flexure strength and elastic modulus changes of NIBG-10 were similar to other extruded, near-isotropic grades, such as H-451, which has been irradiated previously at ORNL. The low temperature (similar to 294 degrees C) irradiation volume and dimensional change behavior was also as expected for extruded graphites, i.e., exhibiting low dose swelling prior to shrinkage. This behavior was attributed to the relaxation of internal stress arising from the graphite manufacturing process and specimen machining. While the data reported here do not represent a complete database for NBG-10 graphite, they give a measure of confidence that the current generation of nuclear graphites will behave in a familiar and well understood manner. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Burchell, TD (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM burchelltd@ornl.gov RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 NR 8 TC 29 Z9 29 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 18 EP 27 DI 10.1016/j.jnucmat.2007.05.021 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200003 ER PT J AU Klueh, RL Nelson, AT AF Klueh, R. L. Nelson, A. T. TI Ferritic/martensitic steels for next-generation reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID ACTIVATION FERRITIC STEELS; TEMPERATURE TENSILE PROPERTIES; MARTENSITIC STAINLESS-STEELS; CHROMIUM-TUNGSTEN STEELS; COAL POWER-PLANTS; REDUCED-ACTIVATION; MECHANICAL-PROPERTIES; IRRADIATION CREEP; ALLOY COMPOSITION; HEAT-TREATMENT AB Concepts for the next generation of nuclear power reactors designed to meet increasing world-wide demand for energy include water-cooled, gas-cooled, and liquid-metal-cooled reactors. Reactor conditions for several designs offer challenges for engineers and designers concerning which structural and cladding materials to use. Depending on operating conditions, some of the designs favor the use of elevated-temperature ferritic/martensitic steels for in-core and out-of core applications. This class of commercial steels has been investigated in previous work on international fast reactor and fusion reactor research programs. More recently, international fusion reactor research programs have developed and tested elevated-temperature reduced-activation steels. Steels from these fission and fusion programs will provide reference materials for future fission applications. In addition, new elevated-temperature steels have been developed in recent years for conventional power systems that also need to be considered for the next generation of nuclear reactors. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Klueh, RL (reprint author), Oak Ridge Natl Lab, POB 2008, MS 6138, Oak Ridge, TN 37831 USA. EM kluchrl@ornl.gov OI Nelson, Andrew/0000-0002-4071-3502 NR 63 TC 274 Z9 292 U1 13 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 37 EP 52 DI 10.1016/j.jnucmat.2007.05.005 PG 16 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200005 ER PT J AU Li, M Byun, TS Hashimoto, N Snead, LL Zinkle, SJ AF Li, Meimei Byun, T. S. Hashimoto, N. Snead, L. L. Zinkle, S. J. TI The temperature dependence of the yield stress for neutron-irradiated molybdenum SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID IRON SINGLE CRYSTALS; MECHANICAL-PROPERTIES; BCC METALS; DEFORMATION; VANADIUM; CARBON AB Molybdenum was neutron-irradiated near 80 degrees C at doses of 7.2 x 10(-5), 7.2 x 10(-4), 7.2 x 10(-3), 0.072 and 0.28 dpa. irradiated Mo was tensile tested over a temperature range of -50 to 100 degrees C at a strain rate of I X, 10-3 S-1. It was found that the yield stress of irradiated Mo decreased at lower temperatures and increased at higher temperatures, resulting in reduced temperature dependence of yielding at lower doses (< 0.001 dpa); the yield stress was increased, and the temperature dependence of yielding was nearly unchanged upon further irradiation at higher doses (> 0.001 dpa). The temperature dependence of the yield stress for unirradiated and irradiated Mo is consistent with the theoretical expression of the Fleischer model for interactions of dislocations with tetragonal strain fields. (c) 2007 Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Li, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM liml@ornl.gov RI HASHIMOTO, Naoyuki/D-6366-2012; OI Zinkle, Steven/0000-0003-2890-6915 NR 24 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 53 EP 60 DI 10.1016/j.jnucmat.2007.05.006 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200006 ER PT J AU Newsome, G Snead, LL Hinoki, T Katoh, Y Peters, D AF Newsome, George Snead, Lance L. Hinoki, Tatsuya Katoh, Yutai Peters, Dominic TI Evaluation of neutron irradiated silicon carbide and silicon carbide composites SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID SIC/SIC COMPOSITES; SIC FIBERS; MECHANICAL-PROPERTIES; SICF/SIC COMPOSITES; MATRIX COMPOSITES; FUSION; RADIATION; STRENGTH; MICROSTRUCTURE; TEMPERATURE AB The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon (TM) Type-S, Hi-Nicalon (TM), or Sylramic (TM) fibers fabricated by chemical vapor infiltration. A statistically significant population of flexural samples were irradiated up to 4.6 x 10(25) n/m(2) (E > 0.1 MeV) at 300. 500, and 800 degrees C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. The magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon (TM) Type-S, while composites reinforced with Hi-Nicalon (TM) or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known. (c) 2007 Elsevier B.V. All rights reserved. C1 Lockheed Martin Corp, Schenectady, NY 12301 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. Kyoto Univ, Uji, Kyoto, Japan. RP Snead, LL (reprint author), Lockheed Martin Corp, Schenectady, NY 12301 USA. EM sneadll@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 NR 42 TC 54 Z9 54 U1 0 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 76 EP 89 DI 10.1016/j.jnucmat.2007.05.007 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200008 ER PT J AU Wu, XL Pan, X Mabon, JC Li, MM Stubbins, JF AF Wu, Xianglin Pan, Xiao Mabon, James C. Li, Meimei Stubbins, James F. TI An EBSD investigation on flow localization and microstructure evolution of 316L stainless steel for Gen IV reactor applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID STACKING-FAULT ENERGY; MODELING TENSILE RESPONSE; TEMPERATURE-DEPENDENCE; IRRADIATION; ALLOYS; METALS AB Type 316L stainless steel has been selected as a candidate structural material in a series of current accelerator driven systems and Generation IV reactor conceptual designs. The material is sensitive to irradiation damage in the temperature range of 150-400 degrees C: even low levels of irradiation exposure, as small as 0.1 dpa, can cause severe loss of ductility during tensile loading. This process, where the plastic flow becomes highly localized resulting in extremely low overall ductility, is referred as flow localization. The process controlling this confined flow is related to the difference between the yield and ultimate tensile strengths such that large irradiation-induced increases in the yield strength result in very limited plastic flow leading to necking after very small levels of uniform elongation. In this study, the microstructural evolution controlling flow localization is examined. It is found that twinning is an important deformation mechanism at lower temperatures since it promotes the strain hardening process. At higher temperatures, twinning becomes energetically impossible since the activation of twinning is determined by the critical twinning stress, which increases rapidly with temperature. Mechanical twinning and dislocation-based planar slip are competing. mechanisms for plastic deformation. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Illinois, Dept Nucl Plasma & Radiol Engn, Nucl Engn Lab 214, Urbana, IL 61801 USA. Univ Illinois, Frederick Seitz Mat Res Lab, 214 Nucl Engn Lab, Urbana, IL 61801 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Stubbins, JF (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Nucl Engn Lab 214, Urbana, IL 61801 USA. EM jstubbin@uiuc.edu NR 14 TC 5 Z9 5 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 90 EP 97 DI 10.1016/j.jnucmat.2007.05.028 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200009 ER PT J AU Machut, M Sridharan, K Li, N Ukai, S Allen, T AF Machut, McLean Sridharan, Kumar Li, Ning Ukai, Shigeharu Allen, Todd TI Time dependence of corrosion in steels for use in lead-alloy cooled reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc AB Stability of the protective oxide layer is critical for the long-term performance of cladding and structural components in lead-alloy cooled nuclear systems. Measurements have shown that removal of the outer magnetite layer is a significant effect at higher temperatures in flowing lead-bismuth. Developing a predictive capability for oxide thickness and material removal is therefore needed. A model for the corrosion of steels in liquid lead-alloys has been employed to assist in materials development for application in the Generation IV Lead-cooled Fast Reactor (LFR). Data from corrosion tests of steels in Los Alamos National Laboratory's DELTA Loop is used to benchmark the model and to obtain predictions of long-term material's corrosion performance. The model is based on modifications of Wagner's diffusion based oxidation theory and Tedmon's equation for high-temperature oxidation with scale removal. Theoretically and experimentally obtained values for parabolic oxide growth rate. mass transfer corrosion rate. and long-term material thinning rates are presented and compared to the literature. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Wisconsin, Dept Nucl Engn & Engn Phys, Madison, WI 53706 USA. Los Alamos Natl Lab, AFCI, Mat Phys & Appl Div, Los Alamos, NM USA. Hokkaido Univ, Div Engn & Mat Sci, Sapporo, Hokkaido 060, Japan. RP Machut, M (reprint author), Univ Wisconsin, Dept Nucl Engn & Engn Phys, 150 Engn Dr, Madison, WI 53706 USA. EM mtmachut@wisc.edu OI Allen, Todd/0000-0002-2372-7259 NR 15 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 134 EP 144 DI 10.1016/j.jnucmat.2007.05.009 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200014 ER PT J AU Miller, MK Russell, KF AF Miller, M. K. Russell, K. F. TI Embrittlement of RPV steels: An atom probe tomography perspective SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID PRESSURE-VESSEL STEELS; FIELD-ION MICROSCOPY; PHOSPHORUS SEGREGATION; APT CHARACTERIZATION; NEUTRON-IRRADIATION; SOLUTE SEGREGATION; KS-01 WELD; COPPER; TEMPERATURE; SOLUBILITY AB Atom probe tomography has played a key role in the understanding of the embrittlement of neutron irradiated reactor pressure vessel steels through the atomic level characterization of the microstructure. Atom probe tomography has been used to demonstrate the importance of the post weld stress relief treatment in reducing the matrix copper content in high copper alloys, the formation of similar to 2-nm-diameter copper-, nickel-, manganese- and silicon-enriched precipitates during neutron irradiation in copper containing RPV steels, and the coarsening of these precipitates during post irradiation heat treatments. Atom probe tomography has been used to detect similar to 2-nm-diameter nickel-, silicon- and manganese-enriched clusters in neutron irradiated low copper and copper free alloys. Atom probe tomography has also been used to quantity solute segregation to, and precipitation on, dislocations and grain boundaries. published by Elsevier B.V. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Microscopy Grp, Oak Ridge, TN 37831 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Microscopy Grp, POB 2008, Bldg 4500S, MS 6136, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov NR 51 TC 112 Z9 119 U1 3 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 145 EP 160 DI 10.1016/j.jnucmat.2007.05.003 PG 16 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200015 ER PT J AU Crawford, DC Porter, DL Hayes, SL AF Crawford, Douglas C. Porter, Douglas L. Hayes, Steven L. TI Fuels for sodium-cooled fast reactors: US perspective SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID FAST BREEDER-REACTORS; II DRIVER FUEL; PU-ZR FUEL; LOSS-OF-FLOW; EBR-II; CONSTITUENT REDISTRIBUTION; IRRADIATION BEHAVIOR; STAINLESS-STEEL; METALLIC FUEL; ELEMENTS AB The US experience with mixed oxide. metal, and mixed carbide fuels is substantial, comprised of irradiation of over 50000 MOX rods, over 130000 metal rods, and 600 mixed carbide rods, in EBR-II and FFTF alone. All three types have been demonstrated capable of fuel utilization at or above 200 GWd/MTHM. To varying degrees. life-limiting phenomena for each type have been identified and investigated, and there are no disqualifying safety-related fuel behaviors. All three fuel types appear capable of meeting requirements of sodium-cooled fast reactor fuels, with reliability of mixed oxide and metal fuel well established. Improvements in irradiation performance of cladding and duct alloys have been a key development in moving these fuel designs toward higher-burnup potential. Selection of one fuel system over another will depend on circumstances particular to the application and on issues other than fuel performance,, such as fabrication cost or overall system safety performance. (c) 2007 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Dept Nucl Fuels & Mat, Idaho Falls, ID 83415 USA. RP Crawford, DC (reprint author), Idaho Natl Lab, Dept Nucl Fuels & Mat, Idaho Falls, ID 83415 USA. EM Douglas.Crawford@inl.gov RI Hayes, Steven/D-8373-2017; OI Hayes, Steven/0000-0002-7583-2069; Crawford, Douglas/0000-0001-5639-7885 NR 95 TC 88 Z9 91 U1 4 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 202 EP 231 DI 10.1016/j.jnucmat.2007.05.010 PG 30 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200019 ER PT J AU Crawford, DC Porter, DL Hayes, SL Meyer, MK Petti, DA Pasamehmetoglu, K AF Crawford, Douglas C. Porter, Douglas L. Hayes, Steven L. Meyer, Mitchell K. Petti, David A. Pasamehmetoglu, Kemal TI An approach to fuel development and qualification SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc AB Some of the rationale for nuclear energy technology development in the US has been lost or forgotten over the past two decades with the lack of a focused reactor development program. But the emergence of new R&D programs points to a need to understand how best to plan for a Iona-term fuel development program. The rationale for such a program is not easily found in the literature, so the authors have suggested a structure and rationale. The approach is described as four phases. with emphasis on selecting a reference fuel concept, evaluating and improving the fuel to develop a fuel specification for a reference design. obtaining data to support a licensing safety case for the fuel, and final qualification of the fuel for a specific application. Because a fuel program requires long-lead-time irradiation testing, bringing a fuel design from the initial concept through licensing might take over 20 years. (c) 2007 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Crawford, DC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM douglas.crawford@inl.gov RI Hayes, Steven/D-8373-2017; OI Hayes, Steven/0000-0002-7583-2069; Crawford, Douglas/0000-0001-5639-7885; Meyer, Mitchell/0000-0002-1980-7862 NR 14 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 232 EP 242 DI 10.1016/j.jucmat.2007.05.029 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200020 ER PT J AU Fielding, R Meyer, M Jue, JF Gan, J AF Fielding, Randall Meyer, Mitch Jue, Jan-Fong Gan, Jian TI Gas-cooled fast reactor fuel fabrication SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc AB The gas-cooled fast reactor is a high temperature helium-cooled Generation IV reactor concept. Operating parameters for this type of reactor are well beyond those of current fuels so a novel fuel must be developed. One fuel concept calls for UC particles dispersed throughout an SiC matrix. This study examines a hybrid reaction bonding process as a possible fabrication route for this fuel. Processing parameters are also optimized. The process combines carbon and SiC powders and a carbon yielding polymer. In order to obtain dense reaction bonded SiC samples the porosity to carbon ratio in the preform must be large enough to accommodate SiC formation from the carbon present in the sample, however too much porosity reduces mechanical integrity which leads to poor infiltration properties. The porosity must also be of a suitable size to allow silicon transport throughout the sample but keep residual silicon to a minimum. Published by Elsevier B.V. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Fielding, R (reprint author), Idaho Natl Lab, PO Box 1625, Idaho Falls, ID 83415 USA. EM randall.fielding@inl.gov OI Meyer, Mitchell/0000-0002-1980-7862 NR 7 TC 9 Z9 10 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 243 EP 249 DI 10.1016/j.jnucmat.2007.05.011 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200021 ER PT J AU Maki, JT Petti, DA Knudson, DL Miller, GK AF Maki, John T. Petti, David A. Knudson, Darrell L. Miller, Gregory K. TI The challenges associated with high burnup, high temperature and accelerated irradiation for TRISO-coated particle fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc AB Fuel service conditions proposed for the very high temperature reactor will be challenging. All major fuel-related design parameters (burnup. temperature, fast neutron fluence. power density, particle packing fraction) exceed the values that were qualified in the successful German UO2 coated particle fuel development program in the 1980s. Of particular concern are the high burnup and high temperatures expected in the very high temperature reactor. In this paper, the challenges associated with high burnup and high temperature are evaluated quantitatively by examining the performance of the fuel in terms of different known failure mechanisms. Potential design solutions to ameliorate the negative effects of high burnup and high temperature are discussed. Also of concern are the effects of accelerated irradiation on coated fuel that often occur during irradiation testing. These effects are evaluated in this paper and recommendations concerning allowable levels of accelerations are presented. (c) 2007 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Maki, JT (reprint author), Idaho Natl Lab, PO Box 1625, Idaho Falls, ID 83415 USA. EM John.Maki@inl.gov NR 18 TC 17 Z9 18 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 270 EP 280 DI 10.1016/j.jnucmat.2007.05.019 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200023 ER PT J AU Meyer, MK Fielding, R Gan, J AF Meyer, M. K. Fielding, R. Gan, J. TI Fuel development for gas-cooled fast reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID IRRADIATION AB The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002].. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases. (c) 2007 Published by Elsevier B.V. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Meyer, MK (reprint author), Idaho Natl Lab, PO Box 1625, Idaho Falls, ID 83415 USA. EM Mitchell.Meyer@inl.gov OI Meyer, Mitchell/0000-0002-1980-7862 NR 23 TC 38 Z9 40 U1 6 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 281 EP 287 DI 10.1016/j.jnucmat.2007.05.013 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200024 ER PT J AU Nozawa, T Snead, LL Katoh, Y Miller, JH AF Nozawa, T. Snead, L. L. Katoh, Y. Miller, J. H. TI Shear properties at the PyC/SiC interface of a TRISO-coating SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID FIBER-REINFORCED COMPOSITES; PULL-OUT STRESSES; SILICON-CARBIDE; THERMAL-EXPANSION; FUEL; CONSTITUENTS; STRENGTH; PARTICLE AB The failure behavior of TRISO-coated fuel particles depends significantly oil the shear strength Lit the interface bevveen the inner pyrolytic carbon (PyC) and silicon carbide (SiC) coatings. In this study, a micro-indentation fiber push-out test was applied to measure the interfacial shear properties of a model TRISO-coated tube. Of particular emphasis is that this study developed a non-linear shear-lag model for a transversely isotropic composite material due to insufficiency in the existing isotropic models as applied to layered TRISO-coating systems. In the model, the effects of thermal residual stresses and the roughness-induced clamping stress were identified as particularly important. The rigorous model proposed in this study provides more reasonable data on two important interfacial parameters: the interfacial debond shear strength and the interfacial friction stress. The modified model coupled with experiments yields an interfacial debond shear strength of 240 +/- 40 MP This high interfacial strength, though slightly lower than that obtained by the existing isotropic model (similar to 280 MPa). allows significant loads to be transferred between inner PyC and SiC in application. Additionally. an interfacial friction stress of 120 +/- 30 MPa was determined. This high friction stress is attributed primarily to the roughness at the cracked interface rather than clamping effects due to differing coefficients of thermal expansion. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Nozawa, T (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM nozawat@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 NR 18 TC 10 Z9 10 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 304 EP 313 DI 10.1016/j.jnucmat.2007.05.015 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200026 ER PT J AU Ott, LJ Morris, RN AF Ott, L. J. Morris, R. N. TI Irradiation tests of mixed-oxide fuel prepared with weapons-derived plutonium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID MOX FUEL; BEHAVIOR AB Mixed-oxide test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/MT. The mixed-oxide fuel was fabricated at Los Alamos National Laboratory by a master-mix process and has been irradiated in the advanced test reactor at the Idaho National Laboratory. Previous withdrawals of the same fuel have occurred at 9, 21. 30. and 40 GWd/MT. Oak Ridge National Laboratory manages this test series for the Department of Energy's Fissile Materials Disposition Program. This paper describes the preparation of the mixed-oxide fuel, the equipment design. and the irradiation history of the test capsules. and discusses the significance of the more important observations of the postirradiation examinations. Code predictions (FRAPCON-3 and TRANSURANUS) are presented and compared with available post-irradiation examination data for the highest and lowest powered mixed-oxide capsules. Fuel performance has been excellent and consistent with code predictions and with existing US and European experience. Published bv Elsevier B.V. C1 Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ott, LJ (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,MS 6167, Oak Ridge, TN 37831 USA. EM ottlj@ornl.gov; morrisrn@ornl.gov OI Morris, Robert/0000-0001-7192-7733 NR 18 TC 5 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 314 EP 328 DI 10.1016/j.jnucmat.2007.05.030 PG 15 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200027 ER PT J AU Snead, LL Nozawa, T Katoh, Y Byun, TS Kondo, S Petti, DA AF Snead, Lance L. Nozawa, Takashi Katoh, Yutai Byun, Thak-Sang Kondo, Sosuke Petti, David A. TI Handbook of SiC properties for fuel performance modeling SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 1st Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 04-08, 2006 CL Reno, NV SP Amer Nucl Soc ID DEPOSITED SILICON-CARBIDE; HIGH-TEMPERATURE OXIDATION; GRAIN-SIZE DEPENDENCE; TO-PASSIVE TRANSITION; DOSE NEUTRON-IRRADIATION; ELECTRON-SPIN-RESONANCE; GAS-COOLED REACTORS; BRITTLE RING TEST; THERMAL-CONDUCTIVITY; MECHANICAL-PROPERTIES AB The SiC layer integrity in the TRISO-coated gas-reactor fuel particle is critical to the performance, allowed burn-up, and hence intrinsic efficiency of high temperature gas cooled reactors. While there has been significant developmental work oil manufacturing the fuel particles, detailed understanding of the effects of the complex in-service stress state combined with realistic materials property data under irradiation on fuel particle survival is not adequately understood. This particularly frustrates the modeling efforts that seek to improve fuel performance through basic understanding. Ill this work a compilation of non-irradiated and irradiated properties of SiC are provided and reviewed and analyzed in terms of application to TRISO fuels. In addition to a compilation and review of literature data, new data generated to fill holes in the existing database is included, specifically in the high-temperature irradiation regime. Another critical piece of information, the strength of the SiC/Pyrolytic carbon interface, was measured and is included, along with a formalism for its analysis. Finally, recommended empirical treatments of the data are suggested. (c) 2,907 Elsevier BN. All rights reserved. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Snead, LL (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM sneadll@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 NR 243 TC 389 Z9 401 U1 22 U2 122 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2007 VL 371 IS 1-3 BP 329 EP 377 DI 10.1016/j.jnucmat.2007.05.016 PG 49 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 214QM UT WOS:000249753200028 ER PT J AU Jonsson, JC Branden, H AF Jonsson, Jacob C. Branden, Henrik TI Obtaining the bidirectional transmittance distribution function of isotropically scattering materials using an integrating sphere SO OPTICS COMMUNICATIONS LA English DT Article DE BTDF; light scattering; integrating sphere; integral equation; ill-posed problems; Tikhonov regularization ID DIRECTIONAL REFLECTANCE; EMISSIVITY AB This paper demonstrates a method to determine the bidirectional transmittance distribution function (BTDF) using an integrating sphere. Information about the sample's angle-dependent scattering is obtained by making transmittance measurements with the sample at different distances from the integrating sphere. Knowledge about the illuminated area of the sample and the geometry of the sphere port in combination with the measured data combines to a system of equations that includes the angle-dependent transmittance. The resulting system of equations is an ill-posed problem which rarely gives a physical solution. A solvable system is obtained by using Tikhonov regularization on the ill-posed problem. The solution to this system can then be used to obtain the BTDF. Four bulk-scattering samples were characterised using two goniophotometers and the described method to verify the validity of the new method. The agreement shown is excellent for the more diffuse samples. The solution to the low-scattering samples contains unphysical oscillations, but still gives the correct shape of the solution. The origin of the oscillations and why they are more prominent in lowscattering samples are discussed. Published by Elsevier B.V. C1 [Jonsson, Jacob C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Branden, Henrik] Uppsala Univ, Dept Comp & Informat Technol, S-75105 Uppsala, Sweden. RP Jonsson, JC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM JCJonsson@lbl.gov NR 19 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD SEP 15 PY 2007 VL 277 IS 2 BP 228 EP 236 DI 10.1016/j.optcom.2007.05.017 PG 9 WC Optics SC Optics GA 243IX UT WOS:000251791100002 ER PT J AU Cang, H Xu, CS Montiel, D Yang, H AF Cang, Hu Xu, C. Shan Montiel, Daniel Yang, Haw TI Guiding a confocal microscope by single fluorescent nanoparticles SO OPTICS LETTERS LA English DT Article ID PARTICLE TRACKING; CELLS AB Confocal optical microscopes offer unparalleled high sensitivity and three-dimensional (3D) imaging capability but require slow point-by-point scanning; they are inefficient for imaging moving objects. We propose a more efficient solution. Instead of indiscriminate scanning, we let the focus of the microscope pursue the object of interest such that no time is wasted on uninformative background, allowing us to visualize 3D trajectories of fluorescent nanoparticles in solution with millisecond temporal and similar to 200 nm spatial resolution. (C) 2007 Optical Society of America. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Div Phys Biosci, Berkeley, CA 94720 USA. RP Yang, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Div Phys Biosci, Berkeley, CA 94720 USA. EM hawyang@berkeley.edu NR 14 TC 47 Z9 47 U1 0 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 15 PY 2007 VL 32 IS 18 BP 2729 EP 2731 DI 10.1364/OL.32.002729 PG 3 WC Optics SC Optics GA 220JB UT WOS:000250151900033 PM 17873950 ER PT J AU LaViolette, RA Ellebracht, LA Gieseler, CJ AF LaViolette, Randall A. Ellebracht, Lory A. Gieseler, Charles J. TI Limits on relief through constrained exchange on random graphs SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE econophysics; markets; infrastructures; networks; complex systems; resilience ID SMALL-WORLD; COMPLEX NETWORKS; MODEL; PERCOLATION AB Agents are represented by nodes on a random graph (e.g., "small world"). Each agent is endowed with a zero-mean random value that may be either positive or negative. All agents attempt to find relief, i.e., to reduce the magnitude of that initial value, to zero if possible, through exchanges. The exchange occurs only between the agents that are linked, a constraint that turns out to dominate the results. The exchange process continues until Pareto equilibrium is achieved. Only 40-90% of the agents achieved relief on small-world graphs with mean degree between 2 and 40. Even fewer agents achieved relief on scale-free-like graphs with a truncated power-law degree distribution. The rate at which relief grew with increasing degree was slow, only at most logarithmic for all of the graphs considered; viewed in reverse, the fraction of nodes that achieve relief is resilient to the removal of links. (c) 2007 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RESPEC, Albuquerque, NM 87109 USA. RP LaViolette, RA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ralavio@sandia.gov; Icooper@sandia.gov; cjgiese@sandia.gov NR 31 TC 1 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD SEP 15 PY 2007 VL 383 IS 2 BP 671 EP 676 DI 10.1016/j.physa.2007.04.066 PG 6 WC Physics, Multidisciplinary SC Physics GA 198MS UT WOS:000248632800043 ER PT J AU Wippermann, S Schmidt, WG Calzolari, A Nardelli, MB Stekolnikov, AA Seino, K Bechstedt, F AF Wippermann, S. Schmidt, W. G. Calzolari, A. Nardelli, M. Buonglorno Stekolnikov, A. A. Seino, K. Bechstedt, F. TI Quantum conductance of In nanowires on Si(111) from first principles calculations SO SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 24th European Conference on Surface Science (ECOSS-24) CY SEP 04-08, 2006 CL Paris, FRANCE DE In nanowires; silicon surface; density functional calculations; electron transport ID METAL-INSULATOR-TRANSITION; ELECTRON-GAS; CHAINS; SURFACE; INSTABILITY; SILICON; STATE AB The quantum conductance of the paradigmatic quasi-one-dimensional In/Si(111) surface system is calculated for 4 x 1, 4 x 2 and 8 x 2 surface reconstructions. In agreement with experiment, we find the recently suggested formation of hexagons within the In nanowires [C. Gonzalez, F. Flores, J. Ortega, Phys. Rev. Lett. 96 (2006) 136101] to drastically modify the electron transport along the In chains. In contrast, the formation of trimers barely changes the quantum conductance. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Paderborn, Lehrstuhl Theoret Phys, D-33095 Paderborn, Germany. CNR, INFM, Natl Res Ctr, I-41100 Modena, Italy. Oak Ridge Natl Lab, CSMD, NC 27269, NCSU Dept Phys, Oak Ridge, TN 37831 USA. Univ Jena, Inst Festkorperphys, D-07743 Jena, Germany. RP Wippermann, S (reprint author), Univ Paderborn, Lehrstuhl Theoret Phys, D-33095 Paderborn, Germany. EM wippermann@phys.upb.de RI Buongiorno Nardelli, Marco/C-9089-2009; Seino, Kaori /A-7909-2015; Calzolari, Arrigo/B-8448-2015; Wippermann, Stefan/H-8481-2014 OI Calzolari, Arrigo/0000-0002-0244-7717; Schmidt, Wolf Gero/0000-0002-2717-5076; Wippermann, Stefan/0000-0001-9680-2128 NR 28 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD SEP 15 PY 2007 VL 601 IS 18 BP 4045 EP 4047 DI 10.1016/j.susc.2007.04.053 PG 3 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 223ZK UT WOS:000250414600080 ER PT J AU Lucovsky, G Seo, H Fleming, LB Luning, J Lysaght, P Bersuker, G AF Lucovsky, G. Seo, H. Fleming, L. B. Luening, J. Lysaght, P. Bersuker, G. TI Studies of bonding defects, and defect state suppression in HfO2 by soft X-ray absorption and photoelectron spectroscopies SO SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 24th European Conference on Surface Science (ECOSS-24) CY SEP 04-08, 2006 CL Paris, FRANCE DE transition metal oxides; crystal field and Jahn-Teller d-state splittings; Ab initio molecular orbital theory; intrinsic bonding states; intrinsic defect states ID OXIDES AB This paper identifies two-different regimes of nano-crystallinity: (i) thin films with nano-crystallites >3 nm, that display coherent well-defined grain-boundaries, and (ii) thin films with nano-crystallites less than similar to 2 nm, that display neither will-defined grain-boundaries nor lattice planes in high resolution transmission electron microscopy images, but yield an image indicative of clusters of small nano-crystallites with a length scale order of -2 nm. Near edge X-ray absorption spectroscopy, and soft-X-ray photoelectron spectroscopy, combined with visible and UV spectroscopic ellipsometry, provide an unambiguous way to distinguish between these two technologically important regimes of nano -crystalline order, yielding significant information on electronic structure of intrinsic band edge states and intrinsic electronically-active defects. (C) 2007 Elsevier B.V. All rights reserved. C1 N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. SEMATECH, Austin, TX 78741 USA. RP Lucovsky, G (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM lucovsky@ncsu.edu NR 25 TC 8 Z9 8 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD SEP 15 PY 2007 VL 601 IS 18 BP 4236 EP 4241 DI 10.1016/j.susc.2007.04.197 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 223ZK UT WOS:000250414600120 ER PT J AU Wunderlich, B AF Wunderlich, Bernhard TI One hundred years research on supercooling and superheating SO THERMOCHIMICA ACTA LA English DT Article; Proceedings Paper CT 9th Lahnwitz Seminar on Calorimetry CY MAY 29-JUN 01, 2006 CL Rostock-Warnemunde, GERMANY DE superheating; supercooling; macromolecules; melting; crystallization; kinetics; history ID TEMPERATURE-MODULATED CALORIMETRY; MELTING BEHAVIOR; POLYMER CRYSTALS; MOLAR-MASS; POLYETHYLENE; CRYSTALLIZATION; KINETICS; POLY(OXYETHYLENE); FRACTIONS; GLASS AB Supercooling before crystallization is well known for over 300 years and has been linked to the need of crystal nucleation. The nucleation is then followed by crystal growth, which usually quickens with increasing supercooling, goes through a maximum, and finally decreases again as the molecular mobility decreases when approaching the glass transition temperature. Superheating, in contrast, is less common. Very often melting is sufficiently fast so that its rate is determined by the conduction of the heat of fusion into the crystal, i.e., on heating, the temperature does not rise above the melting temperature until the end of the transition. Some 100 years ago, superheating was first studied. It was observed that nucleation of the mobile phase usually does not slow down the melting. Only slow melting leads to superheating. The molecular mobility increases with temperature and reduces at higher temperatures the chance of superheating. Both, supercooling and superheating are discussed on hand of theories developed for simple motifs. The results are then expanded to semicrystalline polymers which represent an arrested, metastable system with locally reversible subsystems. The macromolecules may bridge between crystal and fluid phases at points of decoupling and transfer stresses across the phase boundary. This can develop more viscous environments around the crystals. A more viscous environment, in turn, slows phase transitions, as does the need of specific conformations for the transition. Order in the amorphous phase, in contrast, increases the equilibrium phase transition, not necessarily the superheating. Crown Copyright (C) 2006 Published by Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Wunderlich, B (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM Wunderlich@CharterTN.net NR 42 TC 17 Z9 17 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 J9 THERMOCHIM ACTA JI Thermochim. Acta PD SEP 15 PY 2007 VL 461 IS 1-2 BP 4 EP 13 DI 10.1016/j.tca.2006.11.015 PG 10 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 207BZ UT WOS:000249227900002 ER PT J AU Daschbach, JL Thallapally, PK Atwood, JL McGrail, BP Dang, LX AF Daschbach, John L. Thallapally, Praveen K. Atwood, Jerry L. McGrail, B. Peter Dang, Liem X. TI Free energies of CO2/H-2 capture by p-tert-butylcalix[4]arene: A molecular dynamics study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COMPUTER EXPERIMENTS; CLASSICAL FLUIDS; ION-PAIR; WATER AB The interactions of CO2/H-2 with p-tert-butylcalix[4]arene (TBC4) were studied using potential of mean force (PMF) and free energy perturbation approaches. To the best of our knowledge, the present work is one of the first to employ the constrained mean force approach to evaluate solute selectivity by the TBC4 molecule. The computed PMFs for the interaction of CO2/H-2 with a single TBC4 molecule establish that the interaction of CO2 with the open end of the cage structure is attractive while the interaction with H-2 is repulsive. Free energy perturbation calculations were performed for the same two guest molecules with a pair of facing TBC4 molecules used as a representative model as found in the TBC4 molecular solid. At low temperature, both CO2/H-2 have favorable interactions with the TBC4 pair, with the CO2 interaction being considerably greater. These results are in agreement with recent experimental data showing considerable CO2 uptake by TBC4 at moderate pressures. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Missouri, Dept Chem, Columbia, MO 65211 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM liem.dang@pnl.gov RI thallapally, praveen/I-5026-2014 OI thallapally, praveen/0000-0001-7814-4467 NR 13 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2007 VL 127 IS 10 AR 104703 DI 10.1063/1.2768961 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 210RX UT WOS:000249474400036 PM 17867765 ER PT J AU Stevens, LL Orler, EB Dattelbaum, DM Ahart, M Hemley, RJ AF Stevens, Lewis L. Orler, E. Bruce Dattelbaum, Dana M. Ahart, Muhtar Hemley, Russell J. TI Brillouin-scattering determination of the acoustic properties and their pressure dependence for three polymeric elastomers SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID VOLUME-TEMPERATURE RELATIONSHIPS; EQUATION-OF-STATE; X-RAY; POLY(ESTER URETHANE); ISOTHERMAL EQUATION; AMORPHOUS POLYMERS; ELASTIC-CONSTANTS; FORCE-FIELD; SHEAR-WAVES; SPECTROSCOPY AB The acoustic properties of three polymer elastomers, a cross-linked poly(dimethylsiloxane) (Sylgard (R) 184), a cross-linked terpolymer poly(ethylene-vinyl acetate-vinyl alcohol), and a segmented thermoplastic poly(ester urethane) copolymer (Estane (R) 5703), have been measured from ambient pressure to approximately 12 GPa by using Brillouin scattering in high-pressure diamond anvil cells. The Brillouin-scattering technique is a powerful tool for aiding in the determination of equations of state for a variety of materials, but to date has not been applied to polymers at pressures exceeding a few kilobars. For the three elastomers, both transverse and longitudinal acoustic modes were observed, though the transverse modes were observed only at elevated pressures (>0.7 GPa) in all cases. From the Brillouin frequency shifts, longitudinal and transverse sound speeds were calculated, as were the C-11 and C-12 elastic constants, bulk, shear, and Young's moduli, and Poisson's ratios, and their respective pressure dependencies. P-V isotherms were then constructed, and fit to several empirical/semiempirical equations of state to extract the isothermal bulk modulus and its pressure derivative for each material. Finally, the lack of shear waves observed for any polymer at ambient pressure, and the pressure dependency of their appearance is discussed with regard to instrumental and material considerations. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Stevens, LL (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. NR 67 TC 8 Z9 8 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2007 VL 127 IS 10 AR 104905 DI 10.1063/1.2757173 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 210RX UT WOS:000249474400050 PM 17867779 ER PT J AU Nocek, B Evdokimova, E Proudfoot, M Kudritska, M Grochowski, LL White, RH Savchenko, A Yakunin, AF Edwards, A Joachimiak, A AF Nocek, B. Evdokimova, E. Proudfoot, M. Kudritska, M. Grochowski, L. L. White, R. H. Savchenko, A. Yakunin, A. F. Edwards, A. Joachimiak, A. TI Structure of an amide bond forming F-420 : gamma-glutamyl ligase from Archaeoglobus Fulgidus - A member of a new family of non-ribosomal peptide synthases SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE gamma-glutamyl ligase; coenzyme F-420 biosynthesis; amide bond-forming enzyme; metal-dependent; new fold ID SI-FACE STEREOSPECIFICITY; ELECTRON-DENSITY MAPS; COENZYME F-420; PROTEIN-STRUCTURE; FOLYLPOLYGLUTAMATE SYNTHETASE; METHANOCOCCUS-JANNASCHII; CRYSTAL-STRUCTURE; P-CLUSTER; BIOSYNTHESIS; OXIDOREDUCTASE AB F-420 is a flavin-like redox-active coenzyme commonly used by archaea and some eubacteria in a variety of biochemical reactions in methanogenesis, the formation of secondary metabolites, the degradation of nitroaromatic compounds, activation of nitroimidazofurans, and F-420-dependent photolysis in DNA repair. Coenzyme F-420-2 biosynthesis from 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) and lactalclehyde involves six enzymatic steps and five proteins (CofA, CofB, CofC, CofD, and CofE). CofE, a F-420-0:gamma-glutamyl ligase, is responsible for the last two enzymatic steps; it catalyses the GTP-dependent addition of two L-glutamate residues to F-420-0 to form F-420-2. CofE is found in archaea, the aerobic actinomycetes, and cyanobacteria. Here, we report the first crystal structure of the apo-F-420-0:gamma-glutamyl lig se (CofE-AF) from Archaeoglobus fulgidus and its complex with GDP at 2.5 angstrom and 1.35 angstrom resolution, respectively. The structure of CofE-AF reveals a novel protein fold with an intertwined, butterfly-like dimer formed by two-domain monomers. GDP and Mn2+ are bound within the putative active site in a large groove at the dimer interface. We show that the enzyme adds a glutamate residue to both F-420-0 and F-420-1 in two distinct steps. CofE represents the first member of a new structural family of nonribosomal peptide synthases. (C) 2007 Published by Elsevier Ltd. C1 Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. Argonne Natl Lab, Midwest Ctr Struct Genom, Struct Biol Ctr, Argonne, IL 60439 USA. Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada. Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA. RP Joachimiak, A (reprint author), Univ Chicago, Dept Biochem & Mol Biol, 920 E 58Th St, Chicago, IL 60637 USA. EM andrzejj@anl.gov RI Yakunin, Alexander/J-1519-2014 FU NIGMS NIH HHS [GM074942, U54 GM074942, U54 GM074942-04S2] NR 62 TC 15 Z9 16 U1 0 U2 3 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 14 PY 2007 VL 372 IS 2 BP 456 EP 469 DI 10.1016/j.jmb.2007.06.063 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 209EQ UT WOS:000249372200015 PM 17669425 ER PT J AU Khare, A Dmitriev, SV Saxena, A AF Khare, Avinash Dmitriev, Sergey V. Saxena, Avadh TI Exact moving and stationary solutions of a generalized discrete nonlinear Schrodinger equation SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID JACOBI ELLIPTIC FUNCTIONS; CYCLIC IDENTITIES; DISCRETIZATIONS; STABILITY; SOLITONS AB We obtain exact moving and stationary, spatially periodic and localized solutions of a generalized discrete nonlinear Schrodinger equation. More specifically, we find two different moving periodic wave solutions and a localized moving pulse solution. We also address the problem of finding exact stationary solutions and, for a particular case of the model when stationary solutions can be expressed through the Jacobi elliptic functions, we present a two-point map from which all possible stationary solutions can be found. Numerically we demonstrate the generic stability of the stationary pulse solutions and also the robustness of moving pulses in long-term dynamics. C1 Inst Phys, Bhubaneswar 751005, Orissa, India. Altai State Tech Univ, Dept Genie Phys, Barnaul 656038, Russia. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Khare, A (reprint author), Inst Phys, Bhubaneswar 751005, Orissa, India. NR 24 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD SEP 14 PY 2007 VL 40 IS 37 BP 11301 EP 11317 DI 10.1088/1751-8113/40/37/008 PG 17 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 207AD UT WOS:000249223100010 ER PT J AU Turri, G Lohmann, B Langer, B Snell, G Becker, U Berrah, N AF Turri, G. Lohmann, B. Langer, B. Snell, G. Becker, U. Berrah, N. TI Spin polarization of the Ar*2p(1/2)(-1) and 2p(1/2)(-1) 3d resonant Auger decay SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID ANGULAR-DISTRIBUTIONS; PROPENSITY RULES; SPECTATOR MODEL; ELECTRONS; AR; PHOTOIONIZATION; STATES; XE; AUTOIONIZATION; SPECTROSCOPY AB The spin-resolved Auger decay of the Ar 2p(1/2)(-1) 3d state was measured at moderate energy resolution and compared with the decay of the 2p(1/2)(-1) 4s. The former shows a lower transferred spin polarization and a similar, if not higher, dynamical spin polarization, supporting the statement that a fully resolved spectrum is not a necessary condition for observing dynamical spin polarization. An interpretation of the spin polarization as configuration interaction induced effect in the final ionic state leads to partial agreement with our relativistic distorted wave calculation utilizing a 36 configuration state function basis set. Comparison of the experimental and numerical results leads to ambiguities for at least one Auger line. A hypothetical, qualitative interpretation is discussed. C1 Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany. Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Dahlem, Germany. Max Born Inst Nichtilneare Opt & Kurzzeitspektros, D-12489 Berlin, Germany. RP Turri, G (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RI Langer, Burkhard/A-6504-2013; Becker, Uwe/A-6604-2013 NR 32 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD SEP 14 PY 2007 VL 40 IS 17 BP 3453 EP 3466 DI 10.1088/0953-4075/40/17/012 PG 14 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 207AH UT WOS:000249223500015 ER PT J AU Chen, P Gu, JA AF Chen, Pisin Gu, Je-An TI A possible connection between dark energy and the hierarchy SO MODERN PHYSICS LETTERS A LA English DT Article; Proceedings Paper CT International Symposium on Cosmology and Particle Astrophysic CY 2006 CL Taipei, TAIWAN DE dark energy; brane-world; Casimir energy ID BRANES; BULK AB Recently it was suggested that the dark energy maybe related to the well-known hierarchy between the Planck scale (similar to 10(19)GeV) and the TeV scale. The same brane-world setup to address this hierarchy problem may also in principle address the smallness problem of dark energy. Specifically, the Planck-SM hierarchy ratio was viewed as a quantum gravity-related, dimensionless fine structure constant where various physical energy scales in the system are associated with the Planck mass through different powers of the 'gravity fine structure constant'. In this paper we provide a toy model based on the Randall-Sundrum geometry where SUSY-breaking is induced by the coupling between a SUSY-breaking Higgs field on the brane and the KK gravitinos. We show that the associated Casimir energy density indeed conforms with the dark energy scale. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Gu, Je-An] Natl Ctr Theoret Sci, Hsinchu, Taiwan. RP Chen, P (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. EM chen@slac.stanford.edu; jagu@phys.cts.nthu.edu.tw NR 25 TC 3 Z9 3 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD SEP 14 PY 2007 VL 22 IS 25-28 BP 1995 EP 2002 DI 10.1142/S0217732307025224 PG 8 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 243LQ UT WOS:000251798800021 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Burton, TP Bystersky, M Cadman, RV Cai, XZ Caines, H Calderon de la Barca Sanchez, M Callner, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Christie, W Chung, SU Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, N Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Horner, MJ Huang, HZ Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jia, F Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kurnadi, P Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Qattan, IA Raniwala, R Raniwala, S Ray, RL Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, EP Simon, F Singaraju, RN Smirnov, N Snellings, R Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Z Surrow, B Symons, TJM Szanto De Toledo, A Takahashi, J Tang, AH Tarnowsky, T Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Wu, Y Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yue, Q Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S-L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Burton, T. P. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. Calderon de la Barca Sanchez, M. Callner, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Chung, S. U. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, N. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Horner, M. J. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kurnadi, P. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Qattan, I. A. Raniwala, R. Raniwala, S. Ray, R. L. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Z. Surrow, B. Symons, T. J. M. Szanto De Toledo, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, Y. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I-K. Yue, Q. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. TI Partonic flow and phi-meson production in Au+Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; ELLIPTIC FLOW; ANISOTROPIC FLOW; PHOTOPRODUCTION; COLLABORATION; PERSPECTIVE; SIGNATURE; NUCLEI; QCD AB We present first measurements of the phi-meson elliptic flow (v(2)(p(T))) and high-statistics p(T) distributions for different centralities from root s(NN) = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v(2) of the phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Omega to those of the phi as a function of transverse momentum is consistent with a model based on the recombination of thermal s quarks up to p(T)similar to 4 GeV/c, but disagrees at higher momenta. The nuclear modification factor (R-CP) of phi follows the trend observed in the K-S(0) mesons rather than in Lambda baryons, supporting baryon-meson scaling. These data are consistent with phi mesons in central Au+Au collisions being created via coalescence of thermalized s quarks and the formation of a hot and dense matter with partonic collectivity at RHIC. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Illinois, Chicago, IL 60607 USA. Creighton Univ, Omaha, NE 68178 USA. Nucl Phys Inst AS CR, CR-25068 Prague, Czech Republic. JINR, Lab High Energy, Dubna, Russia. JINR, Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Inst Modern Phys, Lanzhou, Peoples R China. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. Univ Utrecht, NIKHEF, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Anhua 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Dogra, Sunil /B-5330-2013; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014 OI Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323 NR 41 TC 133 Z9 134 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 14 PY 2007 VL 99 IS 11 AR 112301 DI 10.1103/PhyRevLett.99.112301 PG 6 WC Physics, Multidisciplinary SC Physics GA 210SA UT WOS:000249474700017 PM 17930430 ER PT J AU Erdemir, D Chattopadhyay, S Guo, L Ilavsky, J Amenitsch, H Segre, CU Myerson, AS AF Erdemir, Deniz Chattopadhyay, Soma Guo, Liang Ilavsky, Jan Amenitsch, Heinz Segre, Carlo U. Myerson, Allan S. TI Relationship between self-association of glycine molecules in supersaturated solutions and solid state outcome SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTAL NUCLEATION; GAMMA-GLYCINE; POLYMORPHISM; ACID AB Small angle x-ray scattering is utilized to directly examine the formation of clusters in supersaturated solutions of glycine, in an attempt to understand their role in the nucleation process. The results suggest that the majority of glycine molecules exist as dimers in aqueous solutions, and monomers in 13% (v/v) acetic acid-water mixtures. As the water and acetic acid-water solutions crystallize into alpha and gamma forms, respectively, the findings indicate a direct correlation between molecular self-association in solution and the polymorphic outcome. C1 IIT, Dept Chem Engn, Chicago, IL 60616 USA. IIT, CSRRI & BCPS Dept, Chicago, IL 60616 USA. MRCAT, Argonne, IL 60439 USA. BioCAT, Argonne, IL 60439 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Inst Biophys & Nanosyst Res, A-8042 Graz, Austria. RP Erdemir, D (reprint author), IIT, Dept Chem Engn, Chicago, IL 60616 USA. RI Myerson, Allan/E-6813-2011; Segre, Carlo/B-1548-2009; ID, BioCAT/D-2459-2012; ID, MRCAT/G-7586-2011; OI Myerson, Allan/0000-0002-7468-8093; Segre, Carlo/0000-0001-7664-1574; Amenitsch, Heinz/0000-0002-0788-1336; Ilavsky, Jan/0000-0003-1982-8900 FU NCRR NIH HHS [RR-08630] NR 26 TC 32 Z9 32 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 14 PY 2007 VL 99 IS 11 AR 115702 DI 10.1103/PhysRevLett.99.115702 PG 4 WC Physics, Multidisciplinary SC Physics GA 210SA UT WOS:000249474700037 PM 17930450 ER PT J AU Podolsky, D Raghu, S Vishwanath, A AF Podolsky, Daniel Raghu, Srinivas Vishwanath, Ashvin TI Nernst effect and diamagnetism in phase fluctuating superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELD; BI2SR2CACU2O8+DELTA; TRANSITIONS; STATE AB We study superconducting systems in the regime where superconductivity is destroyed by phase fluctuations. We find that the Nernst effect has a much sharper temperature decay than predicted by Gaussian fluctuations, with an onset temperature that tracks T-c rather than the pairing temperature. We find a close quantitative connection with diamagnetism-the ratio of magnetization to transverse thermoelectric conductivity reaches a fixed value at high temperatures. We interpret measurements on underdoped cuprates in terms of a dilute vortex liquid over a wide temperature range above T-c. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Podolsky, D (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Podolsky, Daniel/D-5576-2013 OI Podolsky, Daniel/0000-0001-6428-2957 NR 21 TC 57 Z9 57 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 14 PY 2007 VL 99 IS 11 AR 117004 DI 10.1103/PhysRevLett.99.117004 PG 4 WC Physics, Multidisciplinary SC Physics GA 210SA UT WOS:000249474700051 PM 17930464 ER PT J AU Snijders, PC Moon, EJ Gonzalez, C Rogge, S Ortega, J Flores, F Weitering, HH AF Snijders, P. C. Moon, E. J. Gonzalez, C. Rogge, S. Ortega, J. Flores, F. Weitering, H. H. TI Controlled self-organization of atom vacancies in monatomic gallium layers SO PHYSICAL REVIEW LETTERS LA English DT Article ID SI(001); GROWTH; STRAIN AB Ga adsorption on the Si(112) surface results in the formation of pseudomorphic Ga atom chains. Compressive strain in these atom chains is relieved via creation of adatom vacancies and their self-organization into meandering vacancy lines. The average spacing between these line defects can be controlled, within limits, by adjusting the chemical potential mu of the Ga adatoms. We derive a lattice model that quantitatively connects density functional theory (DFT) calculations for perfectly ordered structures with the fluctuating disorder seen in experiment and the experimental control parameter mu. This hybrid approach of lattice modeling and DFT can be applied to other examples of line defects in heteroepitaxy. C1 Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Snijders, PC (reprint author), Delft Univ Technol, Kavli Inst NanoSci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands. EM snijderspc@ornl.gov RI Gonzalez, Cesar/C-4834-2011; Moon, Eun Ju/C-7856-2014; Ortega Mateo, Jose/I-4358-2014; Flores, fernando/K-2362-2014; Rogge, Sven/G-3709-2010 OI Gonzalez, Cesar/0000-0001-5118-3597; Ortega Mateo, Jose/0000-0001-9156-1038; NR 14 TC 8 Z9 8 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 14 PY 2007 VL 99 IS 11 AR 116102 DI 10.1103/PhysRevLett.99.116102 PG 4 WC Physics, Multidisciplinary SC Physics GA 210SA UT WOS:000249474700039 PM 17930452 ER PT J AU Viviani, M Schiavilla, R Kubis, B Lewis, R Girlanda, L Kievsky, A Marcucci, LE Rosati, S AF Viviani, M. Schiavilla, R. Kubis, B. Lewis, R. Girlanda, L. Kievsky, A. Marcucci, L. E. Rosati, S. TI Isospin mixing in the nucleon and He-4 and the nucleon strange electric form factor SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCATTERING; PROTON AB In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in He-4(e,e('))He-4 experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and He-4. We examine this issue in the present Letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in He-4 are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX Collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor. C1 Univ Pisa, INFM, Dept Phys, Sez Pisa, I-56127 Pisa, Italy. Jefferson Lab, Newport News, VA 23606 USA. Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. Univ Bonn, HISKP Theory, D-53115 Bonn, Germany. Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. RP Viviani, M (reprint author), Univ Pisa, INFM, Dept Phys, Sez Pisa, I-56127 Pisa, Italy. RI kievsky, alejandro/A-7123-2011 NR 33 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 14 PY 2007 VL 99 IS 11 AR 112002 DI 10.1103/PhyRevLett.99.112002 PG 4 WC Physics, Multidisciplinary SC Physics GA 210SA UT WOS:000249474700016 PM 17930429 ER PT J AU Waldmueller, I Wanke, MC Chow, WW AF Waldmueller, Ines Wanke, Michael C. Chow, Weng W. TI Circumventing the Manley-Rowe quantum efficiency limit in an optically pumped terahertz quantum-cascade amplifier SO PHYSICAL REVIEW LETTERS LA English DT Article ID LASERS; GAIN AB Using a microscopic theory based on the Maxwell-semiconductor Bloch equations, we investigate the feasibility of an optically pumped electrically driven terahertz (THz) quantum-cascade laser as a pathway to room-temperature THz generation. In optical conversion schemes the power conversion efficiency is limited by the Manley-Rowe relation. We circumvent this constraint by incorporating an electrical bias in a four level intersubband scheme, thereby allowing coherent recovery of the optical pump energy. The observed THz radiation is generated through both stimulated emission and automatically phase-matched quantum coherence contributions-making the proposed approach both a promising source for THz radiation and a model system for quantum coherence effects such as lasing without inversion and electromagnetically induced transparency. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Texas A&M Univ, Inst Quantum Studies, Dept Phys, College Stn, TX 77843 USA. RP Waldmueller, I (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Montano, Ines/I-7497-2012 NR 16 TC 18 Z9 18 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 14 PY 2007 VL 99 IS 11 AR 117401 DI 10.1103/PhysRevLett.99.117401 PG 4 WC Physics, Multidisciplinary SC Physics GA 210SA UT WOS:000249474700057 PM 17930470 ER PT J AU Khaliullin, RZ Cobar, EA Lochan, RC Bell, AT Head-Gordon, M AF Khaliullin, Rustarn Z. Cobar, Erika A. Lochan, Rohini C. Bell, Alexis T. Head-Gordon, Martin TI Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Review ID ENERGY DECOMPOSITION ANALYSIS; DENSITY-FUNCTIONAL THEORY; SUBSTITUTED (ETA-6-ARENE)CR(CO)3 COMPLEXES; HYDROGEN-BONDING INTERACTIONS; DONOR-ACCEPTOR INTERACTIONS; METAL-ORGANIC FRAMEWORKS; WATER DIMER; AB-INITIO; PERTURBATION-THEORY; CHARGE-TRANSFER AB An energy decomposition analysis (EDA) method is proposed to isolate physically relevant components of the total intermolecular interaction energies such as the contribution from interacting frozen monomer densities, the energy lowering due to polarization of the densities, and the further energy lowering due to charge-transfer effects. This method is conceptually similar to existing EDA methods such as Morokuma analysis but includes several important new features. The first is a fully self-consistent treatment of the energy lowering due to polarization, which is evaluated by a self-consistent field calculation in which the molecular orbital coefficients are constrained to be block-diagonal (absolutely localized) in the interacting molecules to prohibit charge transfer. The second new feature is the ability to separate forward and back-donation in the charge-transfer energy term using a perturbative approximation starting from the optimized block-diagonal reference. The newly proposed EDA method is used to understand the fundamental aspects of intermolecular interactions such as the degree of covalency in the hydrogen bonding in water and the contributions of forward and back-donation in synergic bonding in metal complexes. Additionally, it is demonstrated that this method can be used to identify the factors controlling the interaction of the molecular hydrogen with open metal centers in potential hydrogen storage materials and the interaction of methane with rhenium complexes. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NHLBI, Lab Computat Biol, Computat Biophys Sect, NIH, Bethesda, MD 20892 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Khaliullin, RZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM rustam@khaliullin.com RI Khaliullin, Rustam/B-2672-2009; OI Khaliullin, Rustam/0000-0002-9073-6753; Bell, Alexis/0000-0002-5738-4645 NR 109 TC 217 Z9 217 U1 8 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 13 PY 2007 VL 111 IS 36 BP 8753 EP 8765 DI 10.1021/jp073685z PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 208OO UT WOS:000249329300002 PM 17655284 ER PT J AU Krisch, MJ D'Auria, R Brown, MA Tobias, DJ Hemminger, JC Ammann, M Starr, DE Bluhm, H AF Krisch, Maria J. D'Auria, Raffaella Brown, Matthew A. Tobias, Douglas J. Hemminger, John C. Ammann, Markus Starr, David E. Bluhm, Hendrik TI The effect of an organic surfactant on the liquid-vapor interface of an electrolyte solution SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SUPERCOOLED SULFURIC-ACID; MOLECULAR-DYNAMICS; AIR/WATER INTERFACE; AQUEOUS-SOLUTIONS; AEROSOL-PARTICLES; MARINE AEROSOL; SALT-SOLUTIONS; BUTANOL FILMS; WATER; SPECTROSCOPY AB Insight into ion behavior at mixed organic/aqueous liquid surfaces is crucial for understanding the chemistry of atmospheric aerosols, which frequently contain mixtures of water, electrolytes, and organics. The addition of I-butanol to an aqueous potassium iodide solution modifies the interfacial profile of ions at the liquid-vapor interface. Our experiments probe atomic composition at the liquid surface with ambient pressure X-ray photoelectron spectroscopy. Photoelectron kinetic energies are varied to produce a depth profile of the liquid-vapor interface. Molecular dynamics simulations of butanol in an aqueous electrolyte solution are used to develop a detailed understanding of the ion-solvent interactions in the interfacial region. Our previous work on pure aqueous salt solutions observed substantial ion concentrations at the liquid-vapor interface and an increased anion/cation ratio at the interface. A question has arisen as to whether covering the surface with an organic monolayer might change or suppress the interfacial ion concentrations. We observe that the direct interaction of both the cation and the anion with the butanol leads to changes in the ion concentrations in the region of the liquid interface. Substantial ion concentrations are still observed in the interfacial region in the presence of butanol. However, we do find that the presence of the butanol reduces the previously observed anion/cation separation in the interfacial region. C1 Univ Calif Irvine, Dept Chem, Air UCI, Irvine, CA 92697 USA. Paul Scherrer Inst, Lab Radio & Environm Chem, CH-5232 Villigen, Switzerland. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Tobias, DJ (reprint author), Univ Calif Irvine, Dept Chem, Air UCI, Irvine, CA 92697 USA. EM dtobias@uci.edu; jchemmin@uci.edu RI Ammann, Markus/E-4576-2011; Brown, Matthew/D-9236-2012; Tobias, Douglas/B-6799-2015 OI Ammann, Markus/0000-0001-5922-9000; NR 57 TC 75 Z9 76 U1 2 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 13 PY 2007 VL 111 IS 36 BP 13497 EP 13509 DI 10.1021/jp073078b PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 208OR UT WOS:000249329600030 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Castromonte, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E Dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP Frisullo, V O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, E Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Goebel, C Otalora, J Hemandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M Pennington, MR AF Link, J. M. Yager, P. M. Anjos, J. C. Bediaga, I. Castromonte, C. Machado, A. A. Magnin, J. Massafferri, A. de Miranda, J. M. Pepe, I. M. Polycarpo, E. Dos Reis, A. C. Carrillo, S. Casimiro, E. Cuautle, E. Sanchez-Hernandez, A. Uribe, C. Vazquez, F. Agostino, L. Cinquini, L. Cumalat, J. P. Frisullo, V. O'Reilly, B. Segoni, I. Stenson, K. Butler, J. N. Cheung, H. W. K. Chiodini, G. Gaines, I. Garbincius, P. H. Garren, L. A. Gottschalk, E. Kasper, P. H. Kreymer, A. E. Kutschke, R. Wang, M. Benussi, L. Bianco, S. Fabbri, F. L. Zallo, A. Reyes, M. Cawlfield, C. Kim, D. Y. Rahimi, A. Wiss, J. Gardner, R. Kryemadhi, A. Chung, Y. S. Kang, J. S. Ko, B. R. Kwak, J. W. Lee, K. B. Cho, K. Park, H. Alimonti, G. Barberis, S. Boschini, M. Cerutti, A. D'Angelo, P. DiCorato, M. Dini, P. Edera, L. Erba, S. Inzani, P. Leveraro, E. Malvezzi, S. Menasce, D. Mezzadri, M. Moroni, L. Pedrini, D. Pontoglio, C. Prelz, F. Rovere, M. Sala, S. Davenport, T. F., III Arena, V. Boca, G. Bonomi, G. Gianini, G. Liguori, G. Pegna, D. Lopes Merlo, M. M. Pantea, D. Ratti, S. P. Riccardi, C. Vitulo, P. Goebel, C. Otalora, J. Hemandez, H. Lopez, A. M. Mendez, H. Paris, A. Quinones, J. Ramirez, J. E. Zhang, Y. Wilson, J. R. Handler, T. Mitchell, R. Engh, D. Hosack, M. Johns, W. E. Luiggi, E. Nehring, M. Sheldon, P. D. Vaandering, E. W. Webster, M. Sheaff, M. Pennington, M. R. TI Dalitz plot analysis of the D+ -> K-pi(+)pi(+) decay in the FOCUS experiment SO PHYSICS LETTERS B LA English DT Article ID K-MATRIX FORMALISM; SCATTERING; KAPPA; RESONANCE; D-S(+); ROY AB Using, data collected by the high-energy photoproduction experiment FOCUS at Fermilab we performed a Dalitz plot analysis of the Cabibbo favored decay D+ -> K-pi(+)pi(+). This study uses 53653 Dalitz-plot events with a signal fraction of similar to 97%, and represents the highest statistics, most complete Dalitz plot analysis for this channel. Results are presented and discussed using two different formalisms. The first is a simple sum of Breit-Wigner functions with freely fitted masses and widths. It is the model traditionally adopted and serves as comparison with the already published analyses. The second uses a K-matrix approach for the dominant S-wave, in which the parameters are fixed by first fitting K pi scattering data and continued to threshold by Chiral Perturbation Theory. We show that the Dalitz plot distribution for this decay is consistent with the assumption of two-body dominance of the final state interactions and the description of these interactions is in agreement with other data on the K pi final state. (c) 2007 Elsevier B.V. All rights reserved. C1 Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Calif Davis, Davis, CA 95616 USA. Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. CINVESTAV, Mexico City 07000, DF, Mexico. Univ Colorado, Boulder, CO 80309 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Guanajuato, Guanajuato 37150, Mexico. Univ Illinois, Urbana, IL 61801 USA. Indiana Univ, Bloomington, IN 47405 USA. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Univ Milan, Milan, Italy. Univ N Carolina, Asheville, NC 28804 USA. Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. Ist Nazl Fis Nucl, I-27100 Pavia, Italy. Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. Univ Puerto Rico, Mayaguez, PR 00681 USA. Univ S Carolina, Columbia, SC 29208 USA. Univ Tennessee, Knoxville, TN 37996 USA. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Wisconsin, Madison, WI 53706 USA. Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. RP Malvezzi, S (reprint author), Ist Nazl Fis Nucl, Via Celoria 16, I-20133 Milan, Italy. EM sandra.malvezzi@mib.infn.it RI Bonomi, Germano/G-4236-2010; Kwak, Jungwon/K-8338-2012; Anjos, Joao/C-8335-2013; Link, Jonathan/L-2560-2013; Castromonte Flores, Cesar Manuel/O-6177-2014; Benussi, Luigi/O-9684-2014; Menasce, Dario Livio/A-2168-2016 OI bianco, stefano/0000-0002-8300-4124; Bonomi, Germano/0000-0003-1618-9648; Link, Jonathan/0000-0002-1514-0650; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; Benussi, Luigi/0000-0002-2363-8889; Menasce, Dario Livio/0000-0002-9918-1686 NR 34 TC 34 Z9 34 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 13 PY 2007 VL 653 IS 1 BP 1 EP 11 DI 10.1016/j.physletb.2007.06.070 PG 11 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 216EW UT WOS:000249862300001 ER PT J AU Verde, G Danielewicz, P Lynch, WG Liu, XD Seymour, D Shomin, R Tan, WP Tsang, MB Wagner, A Xu, HS Brown, DA Davin, B Larochelle, Y de Souza, RT Yanez, R Charity, RJ Sobotka, LG AF Verde, G. Danielewicz, P. Lynch, W. G. Liu, X. D. Seymour, D. Shomin, R. Tan, W. P. Tsang, M. B. Wagner, A. Xu, H. S. Brown, D. A. Davin, B. Larochelle, Y. de Souza, R. T. Yanez, R. Charity, R. J. Sobotka, L. G. TI d-alpha correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV SO PHYSICS LETTERS B LA English DT Article DE two-particle correlation functions; intensity interferometry; collective motion; multifragmentation ID HEAVY-ION COLLISIONS; CENTRAL AU+AU COLLISIONS; 2-PARTICLE CORRELATIONS; EMISSION; FLOW; EXPANSION; ARRAY AB The interplay of the effects of geometry and collective motion on d-alpha correlation functions is investigated for central Xe + Au collisions at E/A = 50 MeV. The data cannot be explained without collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte Carlo model, where thermal emission is superimposed on collective motion. Both the emission volume and the competition between the thermal and collective motion influence significantly the shape of the correlation function, motivating new strategies for extending intensity interferometry studies to massive particles. (c) 2007 Elsevier B.V. All rights reserved. C1 Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy. Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. Indiana Univ, ICUF, Bloomington, IN 47405 USA. Washington Univ, Dept Chem, St Louis, MO 63130 USA. RP Verde, G (reprint author), Ist Nazl Fis Nucl, Sez Catania, 64 Via Santa Sofia, I-95123 Catania, Italy. EM verde@ct.infn.it RI Verde, Giuseppe/J-3609-2012; Lynch, William/I-1447-2013; Tan, Wanpeng/A-4687-2008; Wagner, Andreas/G-3127-2013; deSouza, Romualdo/P-5862-2015; Parno, Diana/B-7546-2017 OI Lynch, William/0000-0003-4503-176X; Tan, Wanpeng/0000-0002-5930-1823; Wagner, Andreas/0000-0001-7575-3961; deSouza, Romualdo/0000-0001-5835-677X; Parno, Diana/0000-0002-9363-0401 NR 33 TC 5 Z9 5 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 13 PY 2007 VL 653 IS 1 BP 12 EP 17 DI 10.1016/j.physletb.2007.07.031 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 216EW UT WOS:000249862300002 ER PT J AU Ntarlagiannis, D Atekwana, EA Hill, EA Gorby, Y AF Ntarlagiannis, Dimitrios Atekwana, Estella A. Hill, Eric A. Gorby, Yuri TI Microbial nanowires: Is the subsurface "hardwired''? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID REDUCTION; CONDUCTIVITY; SIGNALS; MR-1 AB The Earth's shallow subsurface results from integrated biological, geochemical, and physical processes. Methods are sought to remotely assess these interactive processes, especially those catalysed by micro-organisms. Using saturated sand columns and the metal reducing bacterium Shewanella oneidensis MR-1, we show that electrically conductive appendages called bacterial nanowires are directly associated with electrical potentials. No significant electrical potentials were detectable in columns inoculated with mutant strains that produced non-conductive appendages. Scanning electron microscopy imaging revealed a network of nanowires linking cells-cells and cells to mineral surfaces, ''hardwiring'' the entire length of the column. We hypothesize that the nanowires serve as conduits for transfer of electrons from bacteria in the anaerobic part of the column to bacteria at the surface that have access to oxygen, akin to a biogeobattery. These results advance understanding of the mechanisms of electron transport in subsurface environments and of how microorganisms cycle geologic material and share energy. C1 Oklahoma State Univ, Boone Pickens Sch Geol, Stillwater, OK 74078 USA. Queens Univ Belfast, Sch Planning Architecture & Civil Engn, Environm Engn Res Ctr, Belfast BT9 5AG, Antrim, North Ireland. J Craig Venter Inst, La Jolla, CA 92037 USA. Pacific NW Natl Lab, Microbiol Grp, Div Biol Sci, Richland, WA 99352 USA. Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ USA. RP Ntarlagiannis, D (reprint author), Oklahoma State Univ, Boone Pickens Sch Geol, 105 Noble Res Ctr, Stillwater, OK 74078 USA. NR 18 TC 42 Z9 44 U1 7 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 12 PY 2007 VL 34 IS 17 AR L17305 DI 10.1029/2007GL030426 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 211IQ UT WOS:000249517900003 ER PT J AU Cheng, MD Ford, EA DePaoli, DW Kenik, EA Angelini, P AF Cheng, Meng-Dawn Ford, Emory A. DePaoli, David W. Kenik, Edward A. Angelini, Peter TI Validation of TiO2 particle-size distribution measured by scanning mobility particle sizer SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID GROWTH AB In the latest Vision2020 roadmap (http:H www.chemicalvision202O.org/ nanomateriaisroadmap.html), a key need identified across the nanomanufacturing industry is the capability of on-line real-time characterization of nanoparticles smaller than 50 nm. Electron microscopy is the gold standard for quality-assuring designed nanomaterial. However, imaging of a large number of particles needed for statistics, 10 000 per batch for example, is a daunting task and would take a prohibitively long time to complete, eliminating the possibility for using microscopy for practical process monitoring and control. A demonstration project was executed at Oak Ridge National Laboratory (ORNL) to evaluate the feasibility of using a commercial particle measurement system for on-line real-time characterization. Production of titanium nanoparticles in the vapor phase was chosen for the demonstration project. The results showed that the measurement system could be used as a continuous monitor for nanomanufacturing. However, it is noted that, after the completion of this project, a significant maintenance task was required to restore the commercial system to the operation-ready state, because of the corrosive nature of the sample stream. Thus, if the commercial measurement system is to be used on a continuous basis on an industrial process, the system will have to be reconstructed and possibly redesigned to be able to achieve long-term operation stability and reduce maintain cost. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Mat Technol Inst, St Louis, MO USA. RP Cheng, MD (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM chengmd@ornl.gov RI Cheng, Meng-Dawn/C-1098-2012; OI Cheng, Meng-Dawn/0000-0003-1407-9576 NR 5 TC 1 Z9 1 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD SEP 12 PY 2007 VL 46 IS 19 BP 6269 EP 6272 DI 10.1021/ie0610546 PG 4 WC Engineering, Chemical SC Engineering GA 207ZQ UT WOS:000249290000028 ER PT J AU Morreale, BD Howard, BH Iyoha, O Enick, RM Ling, C Sholl, DS AF Morreale, Bryan D. Howard, Bret H. Iyoha, Osemwengie Enick, Robert M. Ling, Chen Sholl, David S. TI Experimental and computational prediction of the hydrogen transport properties of Pd4S SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID ALLOY MEMBRANES; PALLADIUM; DIFFUSION; PRESSURES; IDENTIFICATION; TEMPERATURES AB Computational and experimental methods were used to quantify the apparent influence of a Pd4S corrosion product resulting from flux testing of 100-micron thick pure palladium membranes in a 0.1% H2S-10%He-H-2 retentate gas mixture. The permeability of Pd4S was estimated to be approximately 20 times less than that of pure palladium from the results obtained through sulfide growth kinetics using gravimetric methods and the observed H-2 flux decay during permeability characterization from 623 to 908 K. To complement experimental analysis, density functional theory was used to predict the hydrogen permeability of Pd4S by examining diffusivity and solubility of H in bulk Pd4S. Results are in good agreement between the experimental and computational prediction of the activation energy of permeation, while only in moderate agreement when comparing the hydrogen permeability of Pd4S. The permeability values obtained through experimentation were approximately 7 times greater than the computational predictions. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Morreale, BD (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM bryan.morreale@netl.doe.gov NR 33 TC 44 Z9 45 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD SEP 12 PY 2007 VL 46 IS 19 BP 6313 EP 6319 DI 10.1021/ie070461u PG 7 WC Engineering, Chemical SC Engineering GA 207ZQ UT WOS:000249290000033 ER PT J AU Kotani, T van Schilfgaarde, M Faleev, SV Chantis, A AF Kotani, Takao van Schilfgaarde, Mark Faleev, Sergey V. Chantis, Athanasios TI Quasiparticle self-consistent GW method: a short summary SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 1st International Conference on Quantum Simulators and Design CY DEC 03-06, 2006 CL Hiroshima, JAPAN SP Hiroshima Univ, Minist Educ, Culture, Sports, Sci & Technol ID DENSITY-FUNCTIONAL THEORY; ELECTRONIC-STRUCTURE; EXACT-EXCHANGE; ENERGY; APPROXIMATION; GAS; SEMICONDUCTORS; SPECTRA AB We have developed a quasiparticle self-consistent GW method (QSGW), which is a new self- consistent method to calculate the electronic structure within the GW approximation. The method is formulated based on the idea of a self- consistent perturbation; the non- interacting Green function G0, which is the starting point for GWA to obtain G, is determined self- consistently so as to minimize the perturbative correction generated by GWA. After selfconsistency is attained, we have G(0), W ( the screened Coulomb interaction) and G self- consistently. This G(0) can be interpreted as the optimum non- interacting propagator for the quasiparticles. We will summarize some theoretical discussions to justify QSGW. Then we will survey results which have been obtained up to now: e. g., band gaps for normal semiconductors are predicted to a precision of 0.1-0.3 eV; the selfconsistency including the off- diagonal part is required for NiO and MnO; and so on. There are still some remaining disagreements with experiments; however, they are very systematic, and can be explained from the neglect of excitonic effects. C1 Arizona State Univ, Tempe, AZ 85284 USA. Sandia Natl Labs, Livermore, CA 94551 USA. Univ Calif Los Alamos Natl Labs, Los Alamos, NM 87545 USA. RP Kotani, T (reprint author), Arizona State Univ, Tempe, AZ 85284 USA. RI kotani, takao/G-4355-2011; OI kotani, takao/0000-0003-1693-7052; Chantis, Athanasios/0000-0001-7933-0579 NR 36 TC 22 Z9 22 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 12 PY 2007 VL 19 IS 36 AR 365236 DI 10.1088/0953-8984/19/36/365236 PG 8 WC Physics, Condensed Matter SC Physics GA 207MM UT WOS:000249255200037 PM 21694181 ER PT J AU Xu, CS Kirn, H Yang, H Hayden, CC AF Xu, C. Shan Kirn, Hahkjoon Yang, Haw Hayden, Carl C. TI Multiparameter fluorescence Spectroscopy of single quantum dot-dye FRET hybrids SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RESONANCE ENERGY-TRANSFER; MOLECULES; SENSOR AB Transient energy transfer mechanism in single quantum dot-dye hybrids was studied by following the evolution of the emission decay profile in addition to the ratiometric shift between the donor and acceptor. This study was made possible by the combined use of multiparameter spectroscopy and model-free statistical approach. C1 Univ Calif Berkeley, Dept Chem, Phys Biosci Div, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Yang, H (reprint author), Univ Calif Berkeley, Dept Chem, Phys Biosci Div, Berkeley, CA 94720 USA. EM hawyang@berkeley.edu; cchayde@sandia.gov NR 19 TC 15 Z9 15 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 12 PY 2007 VL 129 IS 36 BP 11008 EP + DI 10.1021/ja074279w PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 209ES UT WOS:000249372400022 PM 17705496 ER PT J AU Eller, LR Stepien, M Fowler, CJ Lee, JT Sessler, JL Moyer, BA AF Eller, Leah R. Stepien, Marcin Fowler, Christopher J. Lee, Jeong Tae Sessler, Jonathan L. Moyer, Bruce A. TI Octamethyl-octaundecylcyclo[8]pyrrole: A promising sulfate anion extractant SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article AB The diprotonated form of an organic-solubilized cyclo[8]pyrrole derivative, bearing eight undecyl chains on the P-pyrrolic positions, was found to extract sulfate anion effectively from neutral aqueous media into a toluene organic phase. The kinetics of sulfate anion exchange between the two phases were found to be exceedingly slow in the absence of the phase-transfer catalyst, Aliquat 336-nitrate (A336N), but appreciable in its presence. The bisnitrate anion bound form of this cyclo[8]pyrrole could be generated in situ by subjecting the toluene phase containing initially 0.5 mM of the sulfate anion bound form and 0.1 mM trioctylamine (TOA) to successive equilibrations with aqueous 0.1 M HNO3 until sulfate was no longer detected in the aqueous phase. This bisnitrate complex, when studied as a 0.5 mM solution in toluene in the presence of 0.1 mM (TOAH)(+)(NO3-), was also found to be an effective extractant for sulfate anion. D (SO4) values of 0.001 and 1000 were observed at 1 M NaNO3(aq) and 0.3 mM NaNO3(aq), respectively, and the logarithm of the conditional exchange constant, log(K'(exch)), was calculated to be 4.9 +/- 0.4. The present cyclo[8]pyrrole system is thus noteworthy as being the first synthetic receptor that displays a high selectivity for sulfate anion in the presence of excess nitrate under conditions of solvent extraction. C1 Univ Texas, Dept Chem & Biochem, Austin, TX 78712 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Sessler, JL (reprint author), Univ Texas, Dept Chem & Biochem, Austin, TX 78712 USA. EM sessier@mail.utexas.edu; moyerba@ornl.gov RI Stepien, Marcin/J-2609-2014; Moyer, Bruce/L-2744-2016; OI Moyer, Bruce/0000-0001-7484-6277; Stepien, Marcin/0000-0002-4670-8093 NR 8 TC 90 Z9 90 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 12 PY 2007 VL 129 IS 36 BP 11020 EP + DI 10.1021/ja074568k PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 209ES UT WOS:000249372400028 PM 17711284 ER PT J AU Petrenko, T George, SD Aliaga-Alcalde, N Bill, E Mienert, B Xiao, Y Guo, Y Sturhahn, W Cramer, SP Wieghardt, K Neese, F AF Petrenko, Taras George, Serena DeBeer Aliaga-Alcalde, Nuria Bill, Eckhard Mienert, Bernd Xiao, Yuming Guo, YiSong Sturhahn, Wolfgang Cramer, Stephen P. Wieghardt, Karl Neese, Frank TI Characterization of a genuine lron(V)-nitrido species by nuclear resonant vibrational spectroscopy coupled to density functional calculations SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NORMAL-MODE ANALYSIS; IRON NORMAL-MODES; HEME-PROTEINS; RAMAN-SPECTROSCOPY; CORRELATION-ENERGY; COMPLETE SET; COMPLEXES; VALENT; PHOTOLYSIS; SPECTRA AB The characterization of high-valent iron species is of interest due to their relevance to biological reaction mechanisms. Recently, we have synthesized and characterized an [Fe(V)-nitrido-cyclam-acetator](+) complex, which has been characterized by Mossbauer, magnetic susceptibility data, and XAS spectroscopies combined with DFT calculations (Aliaga-Alcade, N.; DeBeer George, S.; Bill, E.; Wieghardt, K.; Neese, F. Angew. Chem., Int. Ed. 2005, 44, 2908-2912). The results of this study indicated that the [Fe(V)-nitridocyclam-acetato](+) complex is an unusual d(3) System with a nearly orbitally degenerate S = 1/2 ground state. Although the calculations predicted fairly different Fe-N stretching frequencies for the S = 1/2 and the competing S = 3/2 ground states, a direct experimental determination of this important fingerprint quantity was missing. Here we apply synchrotron-based nuclear resonance vibrational scattering (NRVS) to characterize the Fe-N stretching frequency of an Fe(V)-nitrido complex and its Fe(Ill)-azide precursor. The NRVS data show a new isolated band at 864 cm(-1) in the Fe(V)-nitrido complex that is absent in the precursor. The NRVS spectra are fit and simulated using a DFT approach, and the new feature is unambiguously assigned to a Fe(V)-N stretch. The calculated Fe-N stretching frequency is too high by similar to 75 cm(-1). Anharmonic contributions to the Fe-N stretching frequency have been evaluated and have been found to be small (-5.5 cm(-1)). The NRVS data provided a unique opportunity to obtain this vibrational information, which had eluded characterization by more traditional vibrational spectroscopies. C1 Inst Phys & Theoret Chem, D-53115 Bonn, Germany. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. Max Planck Inst Bioanorgan Chem, D-45470 Mulheim, Germany. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Lawrence Berkeley Natl Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP George, SD (reprint author), Inst Phys & Theoret Chem, Wegelerstr 12, D-53115 Bonn, Germany. EM debeer@stanford.edu; neese@thch.uni-bonn.de RI Guo, Yisong/C-7785-2009; DeBeer, Serena/G-6718-2012; Wieghardt, Karl/B-4179-2014; Aliaga-Alcalde, Nuria/H-5886-2011; Neese, Frank/J-4959-2014 OI Guo, Yisong/0000-0002-4132-3565; Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Neese, Frank/0000-0003-4691-0547 NR 40 TC 48 Z9 48 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 12 PY 2007 VL 129 IS 36 BP 11053 EP 11060 DI 10.1021/ja070792y PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 209ES UT WOS:000249372400039 PM 17711275 ER PT J AU Cao, R Anderson, TM Piccoli, PMB Schultz, AJ Koetzle, TF Geletii, YV Slonkina, E Hedman, B Hodgson, KO Hardcastle, KI Fang, X Kirk, ML Knottenbelt, S Kogerler, P Musaev, DG Morokuma, K Takahashi, M Hill, CL AF Cao, Rui Anderson, Travis M. Piccoli, Paula M. B. Schultz, Arthur J. Koetzle, Thomas F. Geletii, Yurii V. Slonkina, Elena Hedman, Britt Hodgson, Keith O. Hardcastle, Kenneth I. Fang, Xikui Kirk, Martin L. Knottenbelt, Sushilla Koegerler, Paul Musaev, Djamaladdin G. Morokuma, Keiji Takahashi, Masashi Hill, Craig L. TI Terminal gold-oxo complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID RAY CRYSTAL-STRUCTURE; OXYGEN-ATOM TRANSFER; NONHEME OXOIRON(IV) COMPLEXES; IMIDO COMPLEXES; CATALYTIC-OXIDATION; AMBIENT-TEMPERATURE; 3-COORDINATE NICKEL; THIOETHER-OXIDATION; COBALT(III) IMIDO; ALKOXO COMPLEXES AB In contradiction to current bonding paradigms, two terminal Au-oxo molecular complexes have been synthesized by reaction of AuCl3 with metal oxide-cluster ligands that model redox-active metal oxide surfaces. Use of K-10[alpha(2)-P2W17O61]-20H(2)O and K2WO4 (forming the [A-PW9O34](9-) ligand in situ) produces K15H2[Au(O)(OH2)P2W18O68]center dot 25H(2)O (1); use of K-10[P2W20O70(OH2)(2)]center dot 22H(2)O (3) produces K7H2[Au(O)(OH2)P2W20O70(OH2)(2)]center dot 27H(2)O (2). Complex 1 crystallizes in orthorhombic Fddd, with a = 28.594(4) angstrom, b = 31.866(4) angstrom, C = 38.241(5) angstrom, V = 34844(7) angstrom(3), Z = 16 (final R = 0.0540), and complex 2 crystallizes in hexagonal P6(3)lmmc, with a = 16.1730(g) angstrom, b = 16.1730(g) angstrom, c = 19.7659(15) angstrom, V = 4477.4(5) angstrom(3), Z = 2 (final R = 0.0634). The polyanion unit in 1 is disorder-free. Very short (similar to 1.76 angstrom) Au-oxo distances are established by both X-ray and 30 K neutron diffraction studies, and the latter confirms oxo and trans aqua (H2O) ligands on Au. Seven findings clarify that Au and not W is present in the Au-oxo position in 1 and 2. Five lines of evidence are consistent with the presence of d(8) Au(III) centers that are stabilized by the flanking polytungstate ligands in both 1 and 2: redox titrations, electrochemical measurements, 17 K optical spectra, Au L-2 edge X-ray absorption spectroscopy, and Au-oxo bond distances. Variable-temperature magnetic susceptibility data for crystalline 1 and 2 establish that both solids are diamagnetic, and P-31 and O-17 NMR spectroscopy confirm that both remain diamagnetic in solution. Both complexes have been further characterized by FT-IR, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and other techniques. C1 Emory Univ, Dept Chem, Atlanta, GA 30322 USA. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Stanford Univ, Dept Chem, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. Toho Univ, Fac Sci, Dept Chem, Funabashi, Chiba 274, Japan. RP Hill, CL (reprint author), Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA. EM chill@emory.edu RI Bobyr, Elena/C-4269-2008; Geletii, Yurii/B-3930-2014; Kogerler, Paul/H-5866-2013 OI Geletii, Yurii/0000-0002-2287-330X; Kogerler, Paul/0000-0001-7831-3953 FU NIGMS NIH HHS [GM-057378] NR 132 TC 49 Z9 49 U1 1 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 12 PY 2007 VL 129 IS 36 BP 11118 EP 11133 DI 10.1021/ja072456n PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA 209ES UT WOS:000249372400047 PM 17711276 ER PT J AU Morton, R Huntley, K Morton, N Larson, P AF Morton, Robert Huntley, Ken Morton, Nick Larson, Peter TI Archimedes' gift: X-ray fluorescence imaging, a new paleontological tool for soft tissue analysis and a test for fossilizatton process hypotheses SO JOURNAL OF VERTEBRATE PALEONTOLOGY LA English DT Meeting Abstract C1 Children Middle Waters Inst, Bartlesville, OK USA. Missouri Western State Univ, Bartlesville, OK USA. Black Hills Inst, Hill City, SD USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SOC VERTEBRATE PALEONTOLOGY PI NORTHBROOK PA 60 REVERE DR, STE 500, NORTHBROOK, IL 60062 USA SN 0272-4634 J9 J VERTEBR PALEONTOL JI J. Vertebr. Paleontol. PD SEP 12 PY 2007 VL 27 IS 3 SU S BP 120A EP 120A PG 1 WC Paleontology SC Paleontology GA 211PJ UT WOS:000249535400411 ER PT J AU Liang, J Liu, WW Spanswick, E Donovan, EF AF Liang, Jun Liu, W. W. Spanswick, E. Donovan, E. F. TI Azimuthal structures of substorm electron injection and their signatures in riometer observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID AURORAL RADIO ABSORPTION; SPIKE EVENTS; MAGNETIC-FIELD; CURRENT WEDGE; PRECIPITATION; EXPANSION; SHEET; UV; MAGNETOTAIL; INSTABILITY AB We propose a theoretical model to investigate the effects of the curvature/gradient (c/g) drift and the finite azimuthal extent of the dipolarization region on the electron injection process associated with the substorm dipolarization. We study the azimuthal structure of high-energy (>30 keV) electron precipitation flux and compare the result with riometer observations. We are able to reproduce three basic archetypes of riometer responses to substorms, namely, the spike, dispersionless injection, and dispersed injection events catalogued in previous observations. The electron injection near the duskward edge of the dipolarization region is most subject to azimuthal c/g drift loss, appearing in riometer observations as the "spike'' feature. The "dispersionless injection'' response is seen inside the dipolarization region but some distance away from its western border: or, alternatively, when the substorm has a rapid westward expansion, so that the gain and loss of electrons from the duskside and dawnside of a dipolarizing flux tube roughly balance. The "dispersed injection'' feature is seen east of the dipolarization region. Our theory successfully explains the statistical differences in terms of magnetic local time location and peak intensity between spikes and injection events. Through the substorm event on 23 May 1998 we demonstrate that our theoretical predictions of riometer responses are very consistent with the observations. We highlight the potential of riometers in resolving the azimuthal extent and evolution of the dipolarization region, which provides a new ground-based technique of remote sensing the substorm process. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Canadian Space Agcy, Space Sci Branch, St Hubert, PQ, Canada. Univ Calgary, Dept Phys & Astron, Calgary, AB, Canada. RP Liang, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM jun.liang@space.gc.ca OI Donovan, Eric/0000-0002-8557-4155 NR 40 TC 15 Z9 15 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 11 PY 2007 VL 112 IS A9 AR A09209 DI 10.1029/2007JA012354 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 211JO UT WOS:000249520300001 ER PT J AU Verdaguer, A Weis, C Oncins, G Ketteler, G Bluhm, H Salmeron, M AF Verdaguer, Albert Weis, Cbristopb Oncins, Gerard Ketteler, Guido Bluhm, Hendrik Salmeron, Miquel TI Growth and structure of water on SiO2 films on Si investigated by Kelvin probe microscopy and in situ x-ray spectroscopies SO LANGMUIR LA English DT Article ID POLARIZATION FORCE MICROSCOPY; PHOTOELECTRON-SPECTROSCOPY; ULTRATHIN SIO2; INTERFACES; SURFACES; ICE; ADSORPTION; OXIDE AB The growth of water on thin SiO2 films on Si wafers at vapor pressures between 1.5 and 4 Torr and temperatures between -10 and 21 degrees C has been studied in situ using Kelvin probe microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH), water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH, the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The 0 K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 degrees C and is ice-like below 0 degrees C. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Fac Ciencies, ICN, Bellaterra 08193, Spain. Univ Barcelona, Dept Phys Chem, E-08028 Barcelona, Spain. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Div Sci Mat, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Verdaguer, Albert/A-4303-2008 OI Verdaguer, Albert/0000-0002-4855-821X NR 34 TC 80 Z9 81 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 11 PY 2007 VL 23 IS 19 BP 9699 EP 9703 DI 10.1021/la700893w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 207HD UT WOS:000249241300029 PM 17696552 ER PT J AU Nawani, P Gelfer, MY Hsiao, BS Frenkel, A Gilman, JW Khalid, S AF Nawani, Pranav Gelfer, Mikhail Y. Hsiao, Benjamin S. Frenkel, Anatoly Gilman, Jeffrey W. Khalid, Syed TI Surface modification of nanoclays by catalytically active transition metal ions SO LANGMUIR LA English DT Article ID LAYERED-SILICATE NANOCOMPOSITES; POLYMER; POLYPROPYLENE; ORGANOCLAYS; RETARDANCY; SYSTEMS AB A unique class of nanoclays was prepared by modification of pristine clays or organoclays (Cloisite C20A) with transition metal ions (TMIs). The composition, structure, morphology and thermal properties of TMI-modified nanoclays were investigated by atomic absorption spectroscopy (AAS), elemental analysis (EA), scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray absorption near-edge structure (XANES) spectroscopy. The content of TMIs in modified clays was found to be close to the limiting value of ion exchange capacity. SEM and X-ray results confirmed that TMIs were located between the mineral layers instead of being adsorbed on the surface of clay particles. TGA results indicated that the TMI treatment of organoclays could significantly increase the thermal stability, which was more pronounced in air than in nitrogen. Temperature-resolved SAXS measurements revealed that the presence of TMIs increased the onset temperature of structural degradation. The higher thermal stability of TMI-modified organoclays can be attributed to the change in the thermal degradation mechanism, resulting in a decrease in the yield of volatile products and the formation of char facilitated by the presence of catalytically active TMIs. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Yeshiva Univ, Dept Phys, New York, NY 10016 USA. Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hsiao, BS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM bhsiao@notes.cc.sunysb.edu RI Frenkel, Anatoly/D-3311-2011 OI Frenkel, Anatoly/0000-0002-5451-1207 NR 17 TC 14 Z9 14 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 11 PY 2007 VL 23 IS 19 BP 9808 EP 9815 DI 10.1021/la700908m PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 207HD UT WOS:000249241300043 PM 17705406 ER PT J AU Smith, MC Wozniak, P Mao, S Sumi, T AF Smith, Martin C. Wozniak, Przemyslaw Mao, Shude Sumi, Takahiro TI Blending in gravitational microlensing experiments: source confusion and related systematics SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing; galaxy : bulge; galaxy : centre ID DIFFERENCE IMAGE-ANALYSIS; II BULGE DATA; HUBBLE-SPACE-TELESCOPE; GALACTIC BULGE; OPTICAL DEPTH; OGLE-II; LENSING EXPERIMENT; MACHO PROJECT; BINARY LENSES; MILKY-WAY AB Gravitational microlensing surveys target very dense stellar fields in the local group. As a consequence, the microlensed source stars are often blended with nearby unresolved stars. The presence of 'blending' is a cause of major uncertainty when determining the lensing properties of events towards the Galactic centre. After demonstrating empirical cases of blending, we utilize Monte Carlo simulations to probe the effects of blending. We generate artificial microlensing events using a Hubble Space Telescope luminosity function convolved to typical ground-based seeing, adopting a range of values for the stellar density and seeing. Microlensing light curves are generated using typical sampling and errors from the second phase of the Optical Gravitational Lensing Experiment. We find that a significant fraction of bright events are blended, contrary to the oft-quoted assumption that bright events should be free from blending. We probe the effect that this erroneous assumption has on both the observed event time-scale distribution and the optical depth using realistic detection criteria relevant to the different surveys. Importantly, under this assumption the latter quantity appears to be reasonably unaffected across our adopted values for seeing and density. The time-scale distribution is, however, biased towards smaller values, even for the least-dense fields. The dominant source of blending is from lensing of faint source stars, rather than lensing of bright source stars blended with nearby fainter stars. We also explore other issues, such as the centroid motion of blended events and the phenomena of 'negative' blending. Furthermore, we briefly note that blending can affect the determination of the centre of the red clump giant region from an observed luminosity function. This has implications for a variety of studies, for example mapping extinction towards the bulge and attempts to constrain the parameters of the Galactic bar through red clump giant number counts. We conclude that blending will be of crucial importance for future microlensing experiments if they wish to determine the optical depth to within 10 per cent or better. C1 Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Manchester, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England. Princeton Univ Observ, Princeton, NJ 08544 USA. Nagoya Univ, Solar Terrestrial Environm Lab, Nagoya, Aichi 4648601, Japan. RP Smith, MC (reprint author), Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. EM msmith@astro.rug.nl; wozniak@nis.lanl.gov; smao@jb.man.ac.uk; sumi@stelab.nagoya-u.ac.jp OI Wozniak, Przemyslaw/0000-0002-9919-3310 NR 62 TC 27 Z9 27 U1 0 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2007 VL 380 IS 2 BP 805 EP 818 DI 10.1111/j.1365-2966.2007.12130.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 210RR UT WOS:000249473800035 ER PT J AU Antipov, S Spentzouris, L Gai, W Liu, W Power, JG AF Antipov, S. Spentzouris, L. Gai, W. Liu, W. Power, J. G. TI Double-negative metamaterial research for accelerator applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE loaded waveguide; double-negative metamaterial; wakefields; dipole mode suppression ID COPLANAR WAVE-GUIDE; REFRACTIVE-INDEX; PERMITTIVITY; PERMEABILITY AB Material properties are central to the design of particle accelerators. One area of advanced accelerator research is to investigate novel materials and structures and their potential use in extending capabilities of accelerator components. Within the past decade a new type of artificially constructed material having the unique property of simultaneously negative permittivity and permeability has been realized, and is under intense investigation, primarily by the optical physics and microwave engineering communities [C.M. Soukoulis, Science 315 (2007) 47; D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305 (2004) 788; J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773]. Although they are typically constructed of arrays of discrete cells, as long as the condition that the wavelength of applied radiation is significantly greater than the cell dimensions is met, the material mimics a continuous medium and can be described with the bulk properties of permittivity, epsilon, and permeability, mu. When the permittivity and permeability are simultaneously negative in some frequency range, the metamaterial is called double negative (DNM) or left-handed (LHM) and has unusual properties, such as a negative index of refraction. An investigation of these materials in the context of accelerators is being carried out by IIT and the Argonne Wakefield Accelerator Facility [S. Antipov, W. Liu, W. Gai, J. Power, L. Spentzouris, AIP Conf. Proc. 877 (2006); S. Antipov, W. Liu, J. Power, L. Spentzouris, Design, Fabrication, and Testing of Left-Handed Metamaterial, Wakefield Notes at Argonne Wakefield Accelerator, (http://www.hep.anl.gov/awa/wfnotes/wf229.pdf)]. Waveguides loaded with metamaterials are of interest because the DNM can change the dispersion relation of the waveguide significantly. For example, slow backward waves can be produced in a DNM-loaded waveguide without having corrugations. This article begins with a brief introduction of known design principles for realizing a DNM [J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773; D.R. Smith, et al., Phys. Rev. Lett. 84 (2000) 4184; J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microwave Theory Tech. 47 (1999) 2075], along with a description of the experimental verification of the basic DNM properties of our designs. We then present our waveguide analysis, starting with the case of a waveguide loaded with a truly continuous medium that is dispersive and anisotropic. We show that the dispersion relation of a waveguide with frequency regions of negative epsilon(omega) and negative mu(omega) has several interesting frequency bands. While a DNM approximates a continuous medium, it is still made up of discrete elements. We discuss some implications of the discrete nature of the material for the behavior of a loaded waveguide, particularly at frequencies below the cutoff frequency of the waveguide. We conclude by describing our experimental program at present and in the near future. This includes testing the excitation of TM modes in a DNM loaded waveguide in the interesting frequency bands, both on the bench and from particle beam excitation. (c) 2007 Elsevier B.V. All rights reserved. C1 IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Spentzouris, L (reprint author), IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. EM spentzouris@iit.edu NR 30 TC 11 Z9 11 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2007 VL 579 IS 3 BP 915 EP 923 DI 10.1016/j.nima.2007.04.158 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 210YH UT WOS:000249491000001 ER PT J AU Amsbaugh, JF Anaya, JM Banar, J Bowles, TJ Browne, MC Bullard, TV Burritt, TH Cox-Mobrand, GA Dai, X Deng, H Di Marco, M Doe, PJ Dragowsky, MR Duba, CA Duncan, FA Earle, ED Elliott, SR Esch, EI Fergani, H Formaggio, JA Fowler, MM Franklin, JE Geissbuehler, P Germani, JV Goldschmidt, A Guillian, E Hallin, AL Harper, G Harvey, PJ Hazama, R Heeger, KM Heise, J Hime, A Howe, MA Huang, M Kormos, LL Kraus, C Krauss, CB Law, J Lawsong, IT Lesko, KT Loach, JC Majerus, S Manor, J Mcgee, S Miknaitis, KKS Miller, GG Morissette, B Myers, A Oblath, NS O'Keeffe, HM Ollerhead, RW Peeters, SJM Poon, AWP Prior, G Reitzner, SD Rielage, K Robertson, RGH Skensved, P Smith, AR Smith, MWE Steiger, TD Stonehill, LC Thornewell, PM Tolich, N VanDevender, BA Van Wechel, TD Wall, BL Tseung, HWC Wendland, J West, N Wilhelmy, JB Wilkerson, JF Wouters, JM AF Amsbaugh, J. F. Anaya, J. M. Banar, J. Bowles, T. J. Browne, M. C. Bullard, T. V. Burritt, T. H. Cox-Mobrand, G. A. Dai, X. Deng, H. Di Marco, M. Doe, P. J. Dragowsky, M. R. Duba, C. A. Duncan, F. A. Earle, E. D. Elliott, S. R. Esch, E.-I. Fergani, H. Formaggio, J. A. Fowler, M. M. Franklin, J. E. Geissbuehler, P. Germani, J. V. Goldschmidt, A. Guillian, E. Hallin, A. L. Harper, G. Harvey, P. J. Hazama, R. Heeger, K. M. Heise, J. Hime, A. Howe, M. A. Huang, M. Kormos, L. L. Kraus, C. Krauss, C. B. Law, J. Lawsong, I. T. Lesko, K. T. Loach, J. C. Majerus, S. Manor, J. McGee, S. Miknaitis, K. K. S. Miller, G. G. Morissette, B. Myers, A. Oblath, N. S. O'Keeffe, H. M. Ollerhead, R. W. Peeters, S. J. M. Poon, A. W. P. Prior, G. Reitzner, S. D. Rielage, K. Robertson, R. G. H. Skensved, P. Smith, A. R. Smith, M. W. E. Steiger, T. D. Stonehill, L. C. Thornewell, P. M. Tolich, N. VanDevender, B. A. Van Wechel, T. D. Wall, B. L. Tseung, H. Wan Chan Wendland, J. West, N. Wilhelmy, J. B. Wilkerson, J. F. Wouters, J. M. TI Array of low-background He-3 proportional counters for the Sudbury Neutrino Observatory SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE He-3 proportional counter; solar neutrinos; neutral current; low-radioactivity materials; neutron detection; radon-daughter mitigation; chemical-vapor deposition ID ATOMS; WATER; CO AB An array of Neutral-Current Detectors (NCDs) has been built in order to make a unique measurement of the total active flux of solar neutrinos in the Sudbury Neutrino Observatory (SNO). Data in the third phase of the SNO experiment were collected between November 2004 and 2006, after the NCD array was added to improve the neutral-current sensitivity of the SNO detector. This array consisted of 36 strings of proportional counters filled with a mixture of He-3 and CF4 gas capable of detecting the neutrons liberated by the neutrino-deuteron neutral-current reaction in the D2O, and four strings filled with a mixture of He-4 and CF4 gas for background measurements. The proportional counter diameter is 5 cm. The total deployed array length was 398 m. The SNO NCD array is the lowest-radioactivity large array of proportional counters ever produced. This article describes the design, construction, deployment, and characterization of the NCD array, discusses the electronics and data acquisition system, and considers event signatures and backgrounds. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Washington, Ctr expt Nucl Phys & Astrophys, Dept Phys, Seattle, WA 98195 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Oxford, Dept Phys, Oxford OX1 3RH, England. Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. Univ Texas, Dept Phys, Austin, TX 78712 USA. Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. SNOLAB, Sudbury, ON P3Y 1M3, Canada. Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Stonehill, LC (reprint author), Univ Washington, Ctr expt Nucl Phys & Astrophys, Dept Phys, Seattle, WA 98195 USA. EM lauracs@lanl.gov RI Heeger, Karsten/A-9533-2011; Hallin, Aksel/H-5881-2011; Kormos, Laura/D-1032-2012; Dai, Xiongxin/I-3819-2013; Prior, Gersende/I-8191-2013; Anaya, Juan-Manuel/J-1960-2016; OI Heeger, Karsten/0000-0002-4623-7543; Anaya, Juan-Manuel/0000-0002-6444-1249; Prior, Gersende/0000-0002-6058-1420; Wilkerson, John/0000-0002-0342-0217 NR 35 TC 39 Z9 39 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2007 VL 579 IS 3 BP 1054 EP 1080 DI 10.1016/j.nima.2007.05.321 PG 27 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 210YH UT WOS:000249491000013 ER PT J AU Bennett, GW Bousquet, B Brown, HN Bunce, G Carey, RM Cushman, P Danby, GT Debevec, PT Deile, M Deng, H Deninger, W Dhawan, SK Druzhinin, VP Duong, L Efstathiadis, E Farley, FJM Fedotovich, GV Giron, S Gray, F Grigoriev, D Grosse-Perdekamp, M Grossmann, A Hare, M Hertzog, DW Huang, X Hughes, VW Iwasaki, M Jungmann, K Kawall, D Kawamura, M Khazin, BI Kindem, J Krienen, F Kronkvist, I Lam, A Larsen, R Lee, YY Logashenko, IB McNabb, R Meng, W Mi, J Miller, JP Morse, WM Nikas, D Onderwater, CTG Orlov, YF Ozben, C Paley, J Peng, Q Polly, C Pretz, J Prigl, R Putlitz, GZ Qian, T Redin, SI Rind, O Roberts, BL Ryskulov, NM Sedykh, S Semertzidis, YK Shagin, P Shatunov, YM Sichtermann, EP Solodov, EP Sossong, M Steinmetz, A Sulak, L Timmermans, C Trofimov, A Urner, D von Walter, P Warburton, D Winn, D Yamamoto, A Zimmerman, D AF Bennett, G. W. Bousquet, B. Brown, H. N. Bunce, G. Carey, R. M. Cushman, P. Danby, G. T. Debevec, P. T. Deile, M. Deng, H. Deninger, W. Dhawan, S. K. Druzhinin, V. P. Duong, L. Efstathiadis, E. Farley, F. J. M. Fedotovich, G. V. Giron, S. Gray, F. Grigoriev, D. Grosse-Perdekamp, M. Grossmann, A. Hare, M. Hertzog, D. W. Huang, X. Hughes, V. W. Iwasaki, M. Jungmann, K. Kawall, D. Kawamura, M. Khazin, B. I. Kindem, J. Krienen, F. Kronkvist, I. Lam, A. Larsen, R. Lee, Y. Y. Logashenko, I. B. McNabb, R. Meng, W. Mi, J. Miller, J. P. Morse, W. M. Nikas, D. Onderwater, C. T. G. Orlov, Yu. F. Ozben, C. Paley, J. Peng, Q. Polly, C. Pretz, J. Prigl, R. Putlitz, G. Zu Qian, T. Redin, S. I. Rind, O. Roberts, B. L. Ryskulov, N. M. Sedykh, S. Semertzidis, Y. K. Shagin, P. Shatunov, Yu. M. Sichtermann, E. P. Solodov, E. P. Sossong, M. Steinmetz, A. Sulak, L. Timmermans, C. Trofimov, A. Urner, D. von Walter, P. Warburton, D. Winn, D. Yamamoto, A. Zimmerman, D. TI Statistical equations and methods applied to the precision muon (g-2) experiment at BNL SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE X-2 minimization fit; statistical errors; correlations; systematic errors; set-subset variance; bias of fit parameters ID ANOMALOUS MAGNETIC-MOMENT; POSITIVE MUON AB In the muon (g - 2) experiment at Brookhaven National Laboratory, the spin precession frequency omega(a) is obtained from a standard chi(2) minimization fit applied to the time distribution of decay electrons. The unusually high accuracy (similar to 0.5 ppm) of the experiment puts stringent requirements on the quality of the fit and the level of understanding of the statistical properties of the fitted parameters. We discuss the properties of the fits and their implications on the derived value for omega(a), including estimates of the effect of an imperfect fit function, methods of including additional external information to reduce the error, the effects of splitting the data into many smaller subsets of data, applying different weighting methods to the data using energy information, and various tests of data suitability. (c) 2007 Elsevier B.V. All rights reserved. C1 Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Boston Univ, Dept Phys, Boston, MA 02215 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Cornell Univ, Newman Lab, Ithaca, NY 14853 USA. Fairfield Univ, Fairfield, CT 06430 USA. Kernfys Versneller Inst, Univ Groningen, NL-9747 AA Groningen, Netherlands. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ Illinois, Dept Phys, Urbana, IL USA. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. Tokyo Inst Technol, Tokyo 152, Japan. Yale Univ, Dept Phys, New Haven, CT 06511 USA. RP Redin, SI (reprint author), Budker Inst Nucl Phys, Novosibirsk 630090, Russia. EM redin@inp.nsk.su RI jungmann, klaus/H-1581-2013; Semertzidis, Yannis K./N-1002-2013; Logashenko, Ivan/A-3872-2014; Iwasaki, Masahiko/M-8433-2014; OI jungmann, klaus/0000-0003-0571-4072; Iwasaki, Masahiko/0000-0002-3460-9469; Gray, Frederick/0000-0003-4073-8336 NR 17 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2007 VL 579 IS 3 BP 1096 EP 1116 DI 10.1016/j.nima.2007.06.023 PG 21 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 210YH UT WOS:000249491000016 ER PT J AU Menasce, D Turqueti, M Uplegger, L AF Menasce, Dario Turqueti, Marcos Uplegger, Lorenzo TI The Renaissance: A test-stand for the Forward CMS Pixel Tracker assembly SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE CMS; pixel; test-stand AB The CMS Forward Pixel Tracker will consist of two end-cap blocks, each made of two disks lodging sensors and Read-Out Chips (ROCs) (grouped into plaquettes of different sizes) for a total of about 18 million read-out channels. During the assembly phase, prior to the physical mounting of the plaquettes on the disks a thorough electronic test is necessary to check each channel for functionality, noise level, required threshold trimming and bump-bond quality. To this extent a complete test-stand system, based on custom PCI cards and specialized software, has been developed. Different methods have been evaluated and implemented to electronically assess the amount of malfunctioning bump-bonds. Determination of the correct parameters for initialization of the ROCs has also been implemented as an automatic procedure; data are finally fed into a centralized database for subsequent retrieval during detector initialization or for off-line analysis. In this paper we describe requirements, design and implementation of such a system, which is currently in use at the Silicon Detector Facility (SiDet) Laboratory of FNAL for the final assembly of the Forward Tracker system. (c) 2007 Elsevier B.V. All rights reserved. C1 Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. Fermi Natl Lab, Batavia, IL 60510 USA. RP Menasce, D (reprint author), Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. EM Dario.Menasce@mib.infn.it RI Menasce, Dario Livio/A-2168-2016 OI Menasce, Dario Livio/0000-0002-9918-1686 NR 5 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2007 VL 579 IS 3 BP 1141 EP 1149 DI 10.1016/j.nima.2007.06.018 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 210YH UT WOS:000249491000020 ER PT J AU Shen, GY Liermann, HP Sinogeikin, S Yang, WG Hong, XG Yoo, CS Cynn, HC AF Shen, Guoyin Liermann, Hanns-Peter Sinogeikin, Stanislav Yang, Wenge Hong, Xinguo Yoo, Choong-Shik Cynn, Hyunchae TI Distinct thermal behavior of GeO2 glass in tetrahedral, intermediate, and octahedral forms SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE amorphous materials; high pressure; thermal densification ID PERMANENTLY DENSIFIED SIO2; LOW-ENERGY DYNAMICS; DIAMOND-ANVIL CELL; MEDIUM-RANGE ORDER; HIGH-PRESSURE; VITREOUS SILICA; X-RAY; STABILITY; GERMANIA; EQUATION AB One fascinating high-pressure behavior of tetrahedral glasses and melts is the local coordination change with increasing pressure, which provides a structural basis for understanding numerous anomalies in their high-pressure properties. Because the coordination change is often not retained upon decompression, studies must be conducted in situ. Previous in situ studies have revealed that the short-range order of tetrahedrally structured glasses and melts changes above a threshold pressure and gradually transforms to an octahedral form with further pressure increase. Here, we report a thermal effect associated with the coordination change at given pressures and show distinct thermal behaviors of GeO2 glass in tetrahedral, octahedral, and their intermediate forms. An unusual thermally induced densification, as large as 16%, was observed on a GeO2 glass at a pressure of 5.5 gigapascal (GPa), based on in situ density and x-ray diffraction measurements at simultaneously high pressures and high temperatures. The large thermal densification at high pressure was found to be associated with the 4- to 6-fold coordination increase. Experiments at other pressures show that the tetrahedral GeO2 glass displayed small thermal densification at 3.3 GPa arising from the relaxation of intermediate range structure, whereas the octahedral glass at 12.3 GPa did not display any detectable thermal effects. C1 Carnegie Inst Washington, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. Univ Chicago, GeoSoilEnviroCARS, Chicago, IL 60637 USA. Lawrence Livermore Natl Lab, High Pressure Phys Grp, Livermore, CA 94550 USA. RP Shen, GY (reprint author), Carnegie Inst Washington, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. EM gshen@hpcat.aps.anl.gov RI Shen, Guoyin/D-6527-2011; Yang, Wenge/H-2740-2012 NR 27 TC 19 Z9 19 U1 6 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 11 PY 2007 VL 104 IS 37 BP 14576 EP 14579 DI 10.1073/pnas.0703098104 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 211GT UT WOS:000249513000008 PM 17804799 ER PT J AU Bei, H Shim, S AF Bei, H. Shim, S. TI Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal SO APPLIED PHYSICS LETTERS LA English DT Article ID STRAIN GRADIENT PLASTICITY; SENSING INDENTATION EXPERIMENTS; MECHANICAL-PROPERTIES; DAMAGE; DEFORMATION; STRENGTH; NICKEL; SCALE AB Nanoindentation was performed on a Mo-alloy single crystal to investigate effects of focused ion beam (FIB) milling on mechanical behavior. On a non-FIB-milled surface, pop-ins were observed on all load-displacement curves corresponding to a transition from elastic to plastic deformation. Similar pop-ins were not detected on surfaces subjected to FIB milling. This difference indicates that FIB milling introduces damage that obviates the need for dislocation nucleation during subsequent deformation. A second effect of FIB milling is that it increased the surface hardness. Together, these effects could be the source of the size effects reported in the literature on micropillar tests. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Bei, H (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM beih@ornl.gov OI Bei, Hongbin/0000-0003-0283-7990 NR 29 TC 72 Z9 73 U1 2 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 10 PY 2007 VL 91 IS 11 AR 111915 DI 10.1063/1.2784948 PG 3 WC Physics, Applied SC Physics GA 210RT UT WOS:000249474000033 ER PT J AU Djukic, D Roth, RM Osgood, RM Evans-Lutterodt, K Bakhru, H Bakhru, S Welch, D AF Djukic, Djordje Roth, Ryan M. Osgood, R. M., Jr. Evans-Lutterodt, Kenneth Bakhru, Hassaram Bakhru, Sasha Welch, David TI X-ray microbeam probing of elastic strains in patterned He+ implanted single-crystal LiNbO3 SO APPLIED PHYSICS LETTERS LA English DT Article ID POTASSIUM TANTALATE FILMS; MICRODIFFRACTION; RESOLUTION; FIELDS AB X-ray microprobing is used to investigate buried elastic strain resulting from deep He+ implantantion in LiNbO3. The implantation regions are defined lithographically and strain fields mapped with spatial- and energy-resolved x-ray microdiffraction to characterize the resulting structures. The structurally modified regions are found to retain their lateral lithographic definition, with the buried implantation being in strong compression. C1 Columbia Univ, Microelect Sci Labs, New York, NY 10027 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. SUNY Albany, Dept Phys, New York, NY 12222 USA. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Djukic, D (reprint author), Columbia Univ, Microelect Sci Labs, New York, NY 10027 USA. EM dd292@columbia.edu NR 23 TC 10 Z9 10 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 10 PY 2007 VL 91 IS 11 AR 112908 DI 10.1063/1.2776859 PG 3 WC Physics, Applied SC Physics GA 210RT UT WOS:000249474000065 ER PT J AU Goel, N Tsai, W Garner, CM Sun, Y Pianetta, P Warusawithana, M Schlom, DG Wen, H Gaspe, C Keay, JC Santos, MB Goncharova, LV Garfunkel, E Gustafsson, T AF Goel, N. Tsai, W. Garner, C. M. Sun, Y. Pianetta, P. Warusawithana, M. Schlom, D. G. Wen, H. Gaspe, C. Keay, J. C. Santos, M. B. Goncharova, L. V. Garfunkel, E. Gustafsson, T. TI Band offsets between amorphous LaAlO3 and In0.53Ga0.47As SO APPLIED PHYSICS LETTERS LA English DT Article ID HIGH-K DIELECTRICS; SRTIO3/SI(001) HETEROJUNCTIONS; PRECISE DETERMINATION; SILICON; OXIDES AB The band offsets between an amorphous LaAlO3 dielectric prepared by molecular-beam deposition and a n-type In0.53Ga0.47As (001) layer have been measured using synchrotron radiation photoemission spectroscopy. The valence and conduction band offsets at the postdeposition annealed LaAlO3/InGaAs interface are 3.1 +/- 0.1 and 2.35 +/- 0.2 eV, respectively. The band gap of LaAlO3, as determined by Al 2p and O 1s core level energy loss spectra, is 6.2 +/- 0.1 eV. Within the resolution of the medium energy ion scattering technique, no interfacial oxide layer is seen between the InGaAs and the 3.6 nm thick amorphous LaAlO3. C1 Intel Corp, Santa Clara, CA 95052 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. Rutgers State Univ, Surface Modificat Lab, Piscataway, NJ 08854 USA. RP Goel, N (reprint author), Intel Corp, Santa Clara, CA 95052 USA. EM niti.goel@intel.com RI Santos, Michael/B-5836-2013; Schlom, Darrell/J-2412-2013 OI Schlom, Darrell/0000-0003-2493-6113 NR 21 TC 14 Z9 14 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 10 PY 2007 VL 91 IS 11 AR 113515 DI 10.1063/1.2783264 PG 3 WC Physics, Applied SC Physics GA 210RT UT WOS:000249474000106 ER PT J AU Li, YL Hu, SY Tenne, D Soukiassian, A Schlom, DG Xi, XX Choi, KJ Eom, CB Saxena, A Lookman, T Jia, QX Chen, LQ AF Li, Y. L. Hu, S. Y. Tenne, D. Soukiassian, A. Schlom, D. G. Xi, X. X. Choi, K. J. Eom, C. B. Saxena, A. Lookman, T. Jia, Q. X. Chen, L. Q. TI Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains SO APPLIED PHYSICS LETTERS LA English DT Article ID PHASE-FIELD MODEL; THIN-FILMS; TRANSITION; EVOLUTION AB The phase transitions of superlattices into single- and multidomain states were studied using a mesoscale phase-field model incorporating structural inhomogeneity, micromechanics, and electrostatics. While the predictions of transition temperatures of BaTiO3/SrTiO3 superlattices into multidomains show remarkably good, quantitative agreement with ultraviolet Raman spectroscopic and variable-temperature x-ray diffraction measurements, the single-domain assumption breaks down for superlattices in which the nonferroelectric layer thickness exceeds the characteristic domain size in the ferroelectric layers. C1 Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. Boise State Univ, Dept Phys, Boise, ID 83725 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. Penn State Univ, Dept Phys, University Pk, PA 16802 USA. Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Li, YL (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM yulan@lanl.gov RI Tenne, Dmitri/C-3294-2009; Schlom, Darrell/J-2412-2013; Choi, Kyoung Jin/N-4662-2013; Jia, Q. X./C-5194-2008; Chen, LongQing/I-7536-2012; Eom, Chang-Beom/I-5567-2014; Choi, Kyoung Jin/D-6941-2013; OI Tenne, Dmitri/0000-0003-2697-8958; Lookman, Turab/0000-0001-8122-5671; Schlom, Darrell/0000-0003-2493-6113; Chen, LongQing/0000-0003-3359-3781; HU, Shenyang/0000-0002-7187-3082 NR 20 TC 51 Z9 51 U1 3 U2 43 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 10 PY 2007 VL 91 IS 11 AR 112914 DI 10.1063/1.2785121 PG 3 WC Physics, Applied SC Physics GA 210RT UT WOS:000249474000071 ER PT J AU Miknaitis, G Pignata, G Rest, A Wood-Vasey, WM Blondin, S Challis, P Smith, RC Stubbs, CW Suntzeff, NB Foley, RJ Matheson, T Tonry, JL Aguilera, C Blackman, JW Becker, AC Clocchiatti, A Covarrubias, R Davis, TM Filippenko, AV Garg, A Garnavich, PM Hicken, M Jha, S Krisciunas, K Kirshner, RP Leibundgut, B Li, W Miceli, A Narayan, G Prieto, JL Riess, AG Salvo, ME Schmidt, BP Sollerman, J Spyromilio, J Zenteno, A AF Miknaitis, G. Pignata, G. Rest, A. Wood-Vasey, W. M. Blondin, S. Challis, P. Smith, R. C. Stubbs, C. W. Suntzeff, N. B. Foley, R. J. Matheson, T. Tonry, J. L. Aguilera, C. Blackman, J. W. Becker, A. C. Clocchiatti, A. Covarrubias, R. Davis, T. M. Filippenko, A. V. Garg, A. Garnavich, P. M. Hicken, M. Jha, S. Krisciunas, K. Kirshner, R. P. Leibundgut, B. Li, W. Miceli, A. Narayan, G. Prieto, J. L. Riess, A. G. Salvo, M. E. Schmidt, B. P. Sollerman, J. Spyromilio, J. Zenteno, A. TI The ESSENCE supernova survey: Survey optimization, observations, and supernova photometry SO ASTROPHYSICAL JOURNAL LA English DT Review DE cosmology : observations; methods : data analysis; supernovae : general; surveys ID HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT SUPERNOVAE; LIGHT-CURVE SHAPES; IA SUPERNOVAE; DARK ENERGY; COSMOLOGICAL CONSTANT; IMAGE SUBTRACTION; CELESTIAL EQUATOR; STANDARD STARS; HOST GALAXIES AB We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the dark energy equation-of-state parameter, w = P/(rho c(2)). We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to w for a given fixed amount of telescope time. For our survey on the CTIO 4 m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z approximate to 0: 5 +/- 0: 2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in nearly real time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their apparent brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4 m telescope's natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 Type Ia supernovae, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for all of the Type Ia supernovae found by ESSENCE and used in our measurement of w, presented in a companion paper by Wood-Vasey and coworkers. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Natl Opt Astron Observ, Tucson, AZ 85719 USA. Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. Australian Natl Univ, Mt Stromlo & Siding Spring Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. Univ Washington, Dept Astron, Seattle, WA 98195 USA. Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, MS 29, Menlo Pk, CA 94025 USA. European So Observ, D-85748 Garching, Germany. Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. Space Telescope Sci Inst, Baltimore, MD 21218 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. RP Miknaitis, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Stubbs, Christopher/C-2829-2012; Davis, Tamara/A-4280-2008; OI Stubbs, Christopher/0000-0003-0347-1724; Davis, Tamara/0000-0002-4213-8783; Narayan, Gautham/0000-0001-6022-0484; Schmidt, Brian/0000-0001-6589-1287; Sollerman, Jesper/0000-0003-1546-6615 NR 104 TC 181 Z9 182 U1 2 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2007 VL 666 IS 2 BP 674 EP 693 DI 10.1086/519986 PN 1 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 208FR UT WOS:000249305700006 ER PT J AU Wood-Vasey, WM Miknaitis, G Stubbs, CW Jha, S Riess, AG Garnavich, PM Kirshner, RP Aguilera, C Becker, AC Blackman, JW Blondin, S Challis, P Clocchiatti, A Conley, A Covarrubias, R Davis, TM Filippenko, AV Foley, RJ Garg, A Hicken, M Krisciunas, K Leibundgut, B Li, W Matheson, T Miceli, A Narayan, G Pignata, G Prieto, JL Rest, A Salvo, ME Schmidt, BP Smith, RC Sollerman, J Spyromilio, J Tonry, JL Suntzeff, NB Zenteno, A AF Wood-Vasey, W. M. Miknaitis, G. Stubbs, C. W. Jha, S. Riess, A. G. Garnavich, P. M. Kirshner, R. P. Aguilera, C. Becker, A. C. Blackman, J. W. Blondin, S. Challis, P. Clocchiatti, A. Conley, A. Covarrubias, R. Davis, T. M. Filippenko, A. V. Foley, R. J. Garg, A. Hicken, M. Krisciunas, K. Leibundgut, B. Li, W. Matheson, T. Miceli, A. Narayan, G. Pignata, G. Prieto, J. L. Rest, A. Salvo, M. E. Schmidt, B. P. Smith, R. C. Sollerman, J. Spyromilio, J. Tonry, J. L. Suntzeff, N. B. Zenteno, A. TI Observational constraints on the nature of dark energy: First cosmological results from the ESSENCE supernova survey SO ASTROPHYSICAL JOURNAL LA English DT Review DE cosmological parameters; cosmology : observations; supernovae : general ID HIGH-REDSHIFT SUPERNOVAE; HUBBLE-SPACE-TELESCOPE; LIGHT-CURVE SHAPES; IA SUPERNOVAE; ACCELERATING UNIVERSE; LEGACY SURVEY; HOST GALAXIES; TIME DILATION; INTERGALACTIC DUST; PRECISE DISTANCE AB We present constraints on the dark energy equation-of-state parameter, w = P/(rho c(2)), using 60 SNe Ia fromthe ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (Omega(M), w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1:05(-0.12)(+0: 13) (stat 1 sigma) +/- 0: 13 (sys) and Omega(M) = 0:274(-0.020)(+0:033) (stat 1 sigma) with a bestfit chi(2)/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1:07(-0: 09)(+0:09) (stat 1 sigma) +/- 0: 13 ( sys), Omega(M) 0:267(-0:028)(+0:028) (stat 1 sigma) with a best-fit chi(2)/dof of 0.91. The current global SN Ia data alone rule out empty (Omega(M) = 0), matter-only Omega(M) = 0: 3, and Omega(M) = 1 universes at > 4.5 sigma. The current SN Ia data are fully consistent with a cosmological constant. C1 Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. Space Telescope Sci Inst, Baltimore, MD 21218 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. Univ Washington, Dept Astron, Seattle, WA 98195 USA. Australian Natl Univ, Mt Stromlo & Siding Spring Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. European So Observ, D-85748 Garching, Germany. Natl Opt Astron Observ, Tucson, AZ 85719 USA. Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Wood-Vasey, WM (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM wmwood-vasey@cfa.harvard.edu RI Stubbs, Christopher/C-2829-2012; Davis, Tamara/A-4280-2008; OI Stubbs, Christopher/0000-0003-0347-1724; Davis, Tamara/0000-0002-4213-8783; Schmidt, Brian/0000-0001-6589-1287; Sollerman, Jesper/0000-0003-1546-6615; Narayan, Gautham/0000-0001-6022-0484 NR 144 TC 590 Z9 594 U1 2 U2 18 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2007 VL 666 IS 2 BP 694 EP 715 PN 1 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 208FR UT WOS:000249305700007 ER PT J AU Davis, TM Mortsell, E Sollerman, J Becker, AC Blondin, S Challis, P Clocchiatti, A Filippenko, AV Foley, RJ Garnavich, PM Jha, S Krisciunas, K Kirshner, RP Leibundgut, B Li, W Matheson, T Miknaitis, G Pignata, G Rest, A Riess, AG Schmidt, BP Smith, RC Spyromilio, J Stubbs, CW Suntzeff, NB Tonry, JL Wood-Vasey, WM Zenteno, A AF Davis, T. M. Mortsell, E. Sollerman, J. Becker, A. C. Blondin, S. Challis, P. Clocchiatti, A. Filippenko, A. V. Foley, R. J. Garnavich, P. M. Jha, S. Krisciunas, K. Kirshner, R. P. Leibundgut, B. Li, W. Matheson, T. Miknaitis, G. Pignata, G. Rest, A. Riess, A. G. Schmidt, B. P. Smith, R. C. Spyromilio, J. Stubbs, C. W. Suntzeff, N. B. Tonry, J. L. Wood-Vasey, W. M. Zenteno, A. TI Scrutinizing exotic cosmological models using essence supernova data combined with other cosmological probes SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : observations; supernovae : general ID HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT SUPERNOVAE; BVRI LIGHT CURVES; EQUATION-OF-STATE; DARK ENERGY; IA SUPERNOVAE; WMAP OBSERVATIONS; CHAPLYGIN-GAS; LEGACY SURVEY; CONSTRAINTS AB The first cosmological results from the ESSENCE supernova survey ( Wood- Vasey and coworkers) are extended to a wider range of cosmological models including dynamical dark energy and nonstandard cosmological models. We fold in a greater number of external data sets such as the recent Higher- z release of high- redshift supernovae ( Riess and coworkers), as well as several complementary cosmological probes. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to gauge the worth of models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, the preferred cosmological model is the flat cosmological constant model, where the expansion history of the universe can be adequately described with only one free parameter describing the energy content of the universe. Among the more exotic models that provide good fits to the data, we note a preference for models whose best- fit parameters reduce them to the cosmological constant model. C1 Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. Univ Washington, Dept Astron, Seattle, WA 98195 USA. Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. European So Observ, D-85748 Garching, Germany. Natl Opt Astron Observ, Tucson, AZ 85719 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. Space Telescope Sci Inst, Baltimore, MD 21218 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Australian Natl Univ, Mt Stromlo & Siding Spring Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. Univ Illinois, Dept Astron, Urbana, IL 61801 USA. RP Davis, TM (reprint author), Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. EM tamarad@dark-cosmology.dk; edvard@astro.su.se; jesper@dark-cosmology.dk RI Stubbs, Christopher/C-2829-2012; Davis, Tamara/A-4280-2008; OI Stubbs, Christopher/0000-0003-0347-1724; Davis, Tamara/0000-0002-4213-8783; Schmidt, Brian/0000-0001-6589-1287; Sollerman, Jesper/0000-0003-1546-6615 NR 75 TC 392 Z9 393 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2007 VL 666 IS 2 BP 716 EP 725 DI 10.1086/519988 PN 1 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 208FR UT WOS:000249305700008 ER EF