FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Maziasz, PJ Pint, BA Shingledecker, JP Evans, ND Yamamoto, Y More, KL Lara-Curzio, E AF Maziasz, P. J. Pint, B. A. Shingledecker, J. P. Evans, N. D. Yamamoto, Y. More, K. L. Lara-Curzio, E. TI Advanced alloys for compact, high-efficiency, high-temperature heat-exchangers SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE heat-exchanger; high-temperature; heat-resistant alloys; foil; sheet; austenitic stainless alloys; oxidation resistance; creep-resistance AB Oak Ridge National Laboratory (ORNL) has conducted research and development for several years which has been focused on the behavior and performance improvements of sheets and foils of various alloys for compact heat-exchangers (recuperators) for advanced microturbines. The performance and reliability of such thin sections are challenged at 650-750 degrees C by fine grain size causing excessive creep, and by moisture effects greatly enhancing oxidation attack in exhaust gas environments. Standard 347 stainless steel has been used successfully at or below 600 degrees C, but has suffered from both of these kinds of degradation at 650 degrees C and above. Alloys have been identified which can have very good properties for such heat-exchangers, especially with careful control of microstructure during processing, including alloy 625, HR120 and the new AL20-25+Nb. These alloys, and the mechanistic understanding behind their behavior, are also applicable to achieving the better heat-exchanger technology needed for fuel cells or other high-temperature, clean-energy applications. Published by Elsevier Ltd on behalf of the International Association for Hydrogen Energy. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Maziasz, PJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM maziaszpj@ornl.gov RI Evans, Neal/F-5955-2011; Pint, Bruce/A-8435-2008; More, Karren/A-8097-2016; OI Pint, Bruce/0000-0002-9165-3335; More, Karren/0000-0001-5223-9097; Maziasz, Philip/0000-0001-8207-334X NR 22 TC 16 Z9 16 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3622 EP 3630 DI 10.1016/j.ijhydene.2006.08.018 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200003 ER PT J AU Hardy, JS Thomsen, EC Canfield, NL Crum, JV Weil, KS Pederson, LR AF Hardy, John S. Thomsen, Edwin C. Canfield, Nathan L. Crum, Jarrod V. Weil, K. Scott Pederson, Larry R. TI Development of passive hydrogen separation membranes made from co-synthesized nanoscale cermet powders SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE cermet; composite; nanoscale; synthesis; proton; hydrogen; membrane; gas separation; ionic conduction; cerate; nickel; percolation ID STATE PROTONIC CONDUCTORS AB A powder comprised of nickel oxide and proton-conducting Nd- and Zr-doped barium cerate with a particle size on the order of 10nm has been co-synthesized using the glycine-nitrate combustion process. The two compositions are intimately mixed with no significant elemental substitution between them after synthesis. To ensure complete reaction of the cerate components, the synthesized powder must be calcined at 1000 degrees C. Among the barium cerate compositions investigated, the 30% Zr- and 15% Nd-doped material exhibited the best combination of chemical stability in CO2 and conductivity in hydrogen environments. At least 35 vol% Ni is required to achieve percolation in the composites. When sintering is carried out in an atmosphere which promotes reduction of nickel oxide to nickel metal, the result is a mixed electronic- and protonic-conducting composite which has potential use as a hydrogen separation membrane. Composites with a relative density of 99.2% and nanoscale grains have been prepared by hot pressing. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hardy, JS (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM john.hardy@pnl.gov RI Hardy, John/E-1938-2016 OI Hardy, John/0000-0002-1699-3196 NR 18 TC 12 Z9 12 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3631 EP 3639 DI 10.1016/j.ijhydene.2006.08.016 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200004 ER PT J AU Zeng, Z Natesan, K AF Zeng, Z. Natesan, K. TI Control of metal dusting corrosion in Ni-based alloys SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE metal dusting; Ni-based alloys; intermediate oxidation ID MECHANISM; PROTECTION; IRON AB Metal dusting is a major issue in plants used in the production of hydrogen-and methanol-reformer systems, and syngas (H-2/CO mixtures) systems that are pertinent to the chemical and petrochemical industries. Usually, metal dusting corrosion has two stages: incubation and growth resulting in propagation of metal dusting pits. The two stages were studied by scanning electron microscopy and profile mapping to evaluate the scale of the surface oxide in the initiation and propagation of metal dusting attack. The initiation occurs because of the presence of defects, and the propagation is determined by the diffusion of carbon into the alloy. The carbon diffusion pathways can be blocked by periodically oxidizing alloy surface at moderate temperatures in controlled atmospheres. It was concluded that metal dusting degradation can be mitigated by selecting an alloy with a long incubation time and subjecting it to intermediate oxidation. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Energy Technol Div, Argonne, IL 60439 USA. RP Zeng, Z (reprint author), Argonne Natl Lab, Energy Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zeng@anl.gov NR 18 TC 7 Z9 7 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3640 EP 3647 DI 10.1016/j.ijhydene.2006.08.050 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200005 ER PT J AU Yang, ZG Xia, GG Li, XH Stevenson, JW AF Yang, Zhenguo Xia, Guan-Guang Li, Xiao-Hong Stevenson, Jeffry W. TI (Mn,Co)(3)O(4) spinel coatings on ferritic stainless steels for SOFC interconnect applications SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE solid oxide fuel cell; interconnect; coating; oxidation ID OXIDE FUEL-CELLS; METALLIC INTERCONNECTS; EXPOSURE CONDITIONS; OXIDATION BEHAVIOR; PROTECTION LAYERS; CATHODE; PERFORMANCE; DEGRADATION; SYSTEM; ALLOYS AB (Mn,CO)(3)O(4) spinel with a nominal composition of Mn(1.5)Co(1.5)O(4) demonstrates excellent electrical conductivity, satisfactory thermal and structural stability, as well as good thermal expansion match to ferritic stainless steel interconnects. A slurry-coating technique was developed for fabricating the spinel coatings onto the steel interconnects. Thermally grown layers of Mn(1.5)CO(1.5)O(4) not only significantly decreased the contact resistance between a LSF cathode and stainless steel interconnect, but also acted as a mass barrier to inhibit scale growth on the stainless steel and to prevent Cr outward migration through the coating. The level of improvement in electrical performance and oxidation resistance (i.e. the scale growth rate) was dependent on the ferritic substrate composition. For E-brite and Crofer22 APU, with a relatively high Cr concentration (27 wt% and 23%, respectively) and negligible Si, the reduction of contact ASR and scale growth on the ferritic substrates was significant. In comparison, limited improvement was achieved by application of the Mn(1.5)CO(1.5)O(4) spinel coating on AISI430, which contains only 17%Cr and a higher amount of residual Si. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, ZG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM zgary.yang@pni.gov NR 36 TC 183 Z9 189 U1 4 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3648 EP 3654 DI 10.1016/j.ijhydene.2006.08.048 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200006 ER PT J AU Kim, JY Hardy, JS Weil, S AF Kim, Jin Yong Hardy, John S. Weil, Scott TI Dual-atmosphere tolerance of Ag-CuO-based air braze SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE Ag-CuO braze; dual-atmosphere; microstructure ID OXIDE FUEL-CELLS; SEALS; SILVER; DEGRADATION; STABILITY; SOFCS AB Recently, a new braze filler metal based on the silver-copper oxide system was developed for use in sealing high-temperature, solid-state electrochemical devices such as solid oxide fuel cells. One of the concerns regarding the viability of this joining technique is the long-term stability of silver-based alloys under a high-temperature, dual oxidizing/reducing gas environment. This paper reports on an initial series of exposure experiments that were conducted to characterize the effects of (1) filler metal composition, (2) brazing temperature, and (3) exposure time on the microstructural stability of Ag-CuO-brazed Al2O3/Al2O3 joints under a prototypic operating environment for an intermediate temperature solid oxide fuel cell stack. In general joints exposed simultaneously to air on one side and hydrogen on the other for short periods of time at 800 degrees C (100h) showed no signs of degradation with respect to hermeticity or joint microstructure. Samples exposed for longer periods of time (1000h) displayed some internal porosity, which extends approximately halfway across the joint and is not interconnected. Little effect of the filler metal's composition on its tolerance to dual-atmosphere exposure was observed. However, brazing temperature was found to have a measurable effect. Higher brazing temperature leads to a more extensive formation of an interfacial reaction phase, copper aluminate, which tends to tie up some of the free CuO in the filler metal and minimize the formation of porosity in the air-brazed joints during long-term, dual-atmosphere exposure. The effect is due to the greater chemical stability of the copper aluminate relative to copper oxide. Published by Elsevier Ltd on behalf of the International Association for Hydrogen Energy. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weil, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM scott.weil@pni.gov RI Hardy, John/E-1938-2016 OI Hardy, John/0000-0002-1699-3196 NR 15 TC 27 Z9 29 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3655 EP 3663 DI 10.1016/j.ijhydene.2006.08.054 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200007 ER PT J AU Gannon, PE Gorokhovsky, VI Deibert, MC Smith, RJ Kayani, A White, PT Sofie, S Yang, Z McCready, D Visco, S Jacobson, C Kurokawa, H AF Gannon, P. E. Gorokhovsky, V. I. Deibert, M. C. Smith, R. J. Kayani, A. White, P. T. Sofie, S. Yang, Zhenguo McCready, D. Visco, S. Jacobson, C. Kurokawa, H. TI Enabling inexpensive metallic alloys as SOFC interconnects: An investigation into hybrid coating technologies to deposit nanocomposite functional coatings on ferritic stainless steels SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE solid oxide fuel cell; metallic interconnect; coatings filtered arc; EBPVD ID TEMPERATURE OXIDATION RESISTANCE; SPINEL PROTECTION LAYERS; OXIDE FUEL-CELLS; CONDUCTIVITY; CR-1-XALXN; MAGNETRON; SCALES; FILMS AB Reduced operating temperatures (600-800 degrees C) of solid oxide fuel cells (SOFCs) may enable the use of inexpensive ferritic steels as interconnects. Due to the demanding SOFC interconnect operating environment, protective coatings are required to increase long-term stability. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc-assisted electron beam physical vapor deposition (FA-EBPVD) technologies were used to deposit two-segment coatings with Cr-Al-Y-O nanocomposite bottom segments and Mn-Co-O spinel-based top segments. Coatings were deposited on ferritic steels and subsequently annealed in air for various times. Surface oxidation was investigated using SEWEDS, XRD and RBS analyses. Cr-volatilization was evaluated by transpiration and ICP-MS analysis of the resultant condensate. Time-dependent area specific resistance (ASR) was studied using the four-point technique. The oxidation behavior, Cr volatilization rate, and ASR of coated and uncoated samples are reported. Significant long-term (> 1000h) surface stability, low ASR, and dramatically reduced Cr-volatility were observed with the coated specimens. Improvement mechanisms, including the coating diffusion barrier properties and electrical conductivity are discussed. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Montana State Univ, Bozeman, MT 59717 USA. Arcomac Surface Engn, LLC, Bozeman, MT USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gannon, PE (reprint author), Montana State Univ, Bozeman, MT 59717 USA. EM pgannon@montana.edu NR 22 TC 38 Z9 39 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3672 EP 3681 DI 10.1016/j.ijhydene.2006.08.012 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200009 ER PT J AU Natesan, K Park, JH AF Natesan, K. Park, J. H. TI Fireside and steamside corrosion of alloys for USC plants SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE fireside corrosion; steamside corrosion; iron and nickel base alloys; alkali sulfate; alkali chloride; coal ash corrosion AB A program on fireside corrosion is being conducted at Argonne National Laboratory to evaluate the performance of several structural alloys in the presence of mixtures of synthetic coal ash, alkali sulfates, and alkali chlorides. Experiments in the present program, which address the effects of deposit chemistry, temperature, and alloy chemistry on the corrosion response of alloys, were conducted at temperatures in the range of 575-800 degrees C for time periods up to approximate to 1850 h. Alloys selected for the study included both ferritic and austenitic steels and Ni-base alloys. Data were obtained on weight change, scale thickness, internal penetration, microstructural characteristics of corrosion products, mechanical integrity, and cracking of scales. Results showed that the relationship of corrosion rates to temperature followed a bell-shaped curve, with peak rates at approximate to 725 degrees C, but the rate itself was dependent on the alloy chemistry. Several Fe-base alloys showed acceptable rates in the sulfate-containing coal-ash environment; but NaCl in the deposit led to catastrophic corrosion at 650 and 800 degrees C. Ni-base alloys generally exhibited less corrosion than the Fe-base alloys under similar exposure conditions; however, they were susceptible to localized corrosion in the form of pits. Experiments were also conducted to evaluate the corrosion performance of several Fe-base alloys in a steam environment. Results, presented on both the fireside and steamside corrosion, can be used to compare the performance of the various Fe-base alloys. Attaining adequate creep strength, fireside corrosion resistance, and steamside corrosion resistance is still a challenge in materials development for advanced steam-cycle applications. (c) 2006 Published by Elsevier Ltd on behalf of the International Association for Hydrogen Energy. C1 Argonne Natl Lab, Energy Technol Div, Argonne, IL 60439 USA. RP Natesan, K (reprint author), Argonne Natl Lab, Energy Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hampton311@hotmail.com NR 15 TC 32 Z9 45 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3689 EP 3697 DI 10.1016/j.ijhydene.2006.08.038 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200011 ER PT J AU Jablonski, PD Alman, DE AF Jablonski, Paul D. Alman, David E. TI Oxidation resistance and mechanical properties of experimental low coefficient of thermal expansion (CTE) Ni-base alloys SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE coefficient of thermal expansion (CTE); chromia former; oxidation resistance; solid oxide fuel cell (SOFC) ID COAL POWER-PLANTS AB Energy generation systems must operate at higher temperatures and pressures in order to achieve increased efficiency. This may require the utilization of high temperature, high strength Ni-base alloys. However, the high thermal expansion coefficients (CTE) of commercially available Ni-base alloys relative to low cost ferritic steels may make it difficult to employ Ni-base alloys in hot sections. Utilizing prior work by Yamamoto et al. [In: Materials for advanced power engineering-2002. Proceedings of the seventh Leige conference; September 30-October 3, 2002. Energy and technology, Volume 21. Forschungszentium Julich Gmbh Inst. Fur Werkstoffe und Verfahren der Energietechnik; 2002] and the Thermo-Calc phase prediction software, a series of Ni-based alloys were developed at the National Energy Technology Laboratory based on the composition range of Ni-(18-25)Mo-(8-15)Cr-1Ti-0.5Mn, with CTEs similar to ferritic steels. The oxidation behavior was measured at 800 degrees C in moist air. The tensile properties were measured at 25 and 750 degrees C after aging at 750 degrees C for upwards of 1000h. The results were compared to Haynes 230 and Crofer 22 APU. Published by Elsevier Ltd on behalf of the International Association for Hydrogen Energy. C1 Natl Energy Technol Lab, Albany, OR 97321 USA. RP Jablonski, PD (reprint author), Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM Paul.Jablonski@NETL.DOE.GOV NR 16 TC 13 Z9 13 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3705 EP 3712 DI 10.1016/j.ijhydene.2006.08.019 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200013 ER PT J AU Weil, KS Xia, G Yang, ZG Kim, JY AF Weil, K. Scott Xia, Gordon Yang, Z. Gary Kim, Jin Yong TI Development of a niobium clad PEM fuel cell bipolar plate material SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE PEM fuel cell; bipolar plate; clad metal ID SULFURIC-ACID-SOLUTIONS; CORROSION BEHAVIOR; STAINLESS-STEEL; ALLOYS; RESISTANCE AB Reported in this paper are results obtained on a niobium clad material that is being developed for use in polymer electrolyte membrane fuel cell (PEMFC) stacks. A series of materials evaluation tests were initially conducted on niobium coupons to deter-mine if this material was suitable as an external cladding layer exposed to a prototypic PEMFC environment. Results from corrosion testing conducted in 80 degrees C, 1M H2SO4 (with 2ppm HF) display no measurable weight loss in the niobium specimens out to 2000h of exposure. Interfacial contact resistance measurements conducted on as-received and post-exposed niobium indicate that it exhibits excellent surface conductivity (<= 10 m Omega cm(2)) under low clamping forces in both conditions. Polarization testing carried out under both prototypic anodic and cathodic PEMFC operating conditions suggest that the electrochemical behavior of niobium is comparable to that of platinum, with current densities of 2.7 x 10(-5) and 6.3 x 10(-9) A/cm(2) at half cell potentials of -0.1 and 0.6V versus a saturated calomel reference electrode, respectively, under prototypic anode and cathode environmental conditions. Subsequent contact resistance and polarization testing of niobium clad stainless steel coupons yielded results similar to those found in monolithic niobium testing. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weil, KS (reprint author), Pacific NW Natl Lab, PO Box 999, Richland, WA 99352 USA. EM scott.weil@pnl.gov NR 23 TC 37 Z9 39 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3724 EP 3733 DI 10.1016/j.ijhydene.2006.08.041 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200015 ER PT J AU Alman, DE Jablonski, PD AF Alman, D. E. Jablonski, P. D. TI Effect of minor elements and a Ce surface treatment on the oxidation behavior of an Fe-22Cr-0.5Mn (Crofer 22 APU) ferritic stainless steel SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE oxidation; surface alloying; ferritic steel; rare earth; solid oxide fuel cells ID OXIDE FUEL-CELLS; HIGH-TEMPERATURE OXIDATION; INTERCONNECT; ALLOYS; CR AB This paper details the oxidation behavior of coupons from three different Crofer 22 APU sheets. Oxidation tests were conducted at 800 degrees C in moist air for 2300h. The major features of the scales were similar in all three coupons, with a continuous Cr-Mn spinel layer forming at the gas-oxide interface and a Cr2O3 layer forming at the oxide-metal interface. Also, at the Cr2O3-metal interface, large Cr-Mn oxide particles formed in the base metal. Metal extrusions in the oxide scale were observed in the vicinity of these Cr-Mn oxide particles. All three alloys had internal oxide particles forming in the base metal beneath the oxide scale, and the extent of this internal oxidation was related to the Al and Si-content in the coupons (as also reported by Piron-Abellan J, Huczkowski P, Ertl S, Shemet V, Singheiser L, Quadakkers W. In: Fuel cell seminar, 2004. San Antionio, TX, November 1-5, 2004). Of note, discontinuous Ti-oxide and Mn-oxide particles formed above the outer spine] layer on the coupons with relatively high Al and Si contents. The effectiveness of rare-earth surface modification on improving oxidation resistance of this alloy was demonstrated. Pack cementation-like processes were used to treat the surface of the coupons with Ce. A continuous Cr-Mn outer oxide layer and a continuous inner Cr2O3 layer formed on the surface of the treated coupons during oxidation. However, the thickness of the scales and amount of internal oxidation were significantly reduced with the treatment, leading to the decrease in oxidation rate. The amount of internal oxidation was also reduced with the treatment. The treatment appeared to suppress the formation Of SiO2 at the scale-metal interface in high Si containing alloys. ASR measurements indicate that the treatment decreases the electrical resistance, which is a benefit for SOFC interconnect application. Published by Elsevier Ltd on behalf of the International Association for Hydrogen Energy. C1 Natl Energy Technol Lab, Albany, OR 97321 USA. RP Alman, DE (reprint author), Natl Energy Technol Lab, 1450 Queen Ave, Albany, OR 97321 USA. EM david.alman@netl.doe.gov NR 19 TC 46 Z9 47 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3743 EP 3753 DI 10.1016/j.ijhydene.2006.08.032 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200017 ER PT J AU Kim, JY Hardy, JS Weil, KS AF Kim, Jin Yong Hardy, John S. Weil, K. Scott TI Ag-Al based air braze for high temperature electrochemical devices SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE Ag-Al braze; mechanical properties; microstructure ID ALUMINA; SILVER; SOFCS AB Silver-aluminum based air brazing was attempted using an in situ alloying and brazing process. In this process, layers of foils of aluminum and silver were laid up between alumina plates in alternating fashion to achieve three target compositions representing Ag, Ag3Al, and Ag2Al phases. Each alloy composition revealed different microstructure, mechanical properties and fracture mechanisms. Joints brazed with foils containing 9.8 at% Al formed a long continuous layer parallel to the direction of the original aluminum foil. The fracture occurred at low bend strength (6-12 MPa) mainly through the interface between this newly formed long alumina layer and the braze filler. Joints containing 26.5 at% Al in the braze filler metal experienced the series of phase transformations, leading to cracks in as-brazed specimens. The fracture initiated through these pre-existing cracks, thus the joint strength observed in these specimens was extremely low. The joints prepared using foils with 35.1 at% Al exhibited a good interface even though interfacial alumina particles formed during air brazing. Crack propagation occurred along the interface between the alumina substrate and in situ formed interfacial alumina particles or directly through these particles. Due to the good interface, the best bend strength (46-52 MPa) was achieved for the braze filler containing 35 at% Al. Published by Elsevier Ltd on behalf of the International Association for Hydrogen Energy. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weil, KS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM scott.weil@pnl.gov RI Hardy, John/E-1938-2016 OI Hardy, John/0000-0002-1699-3196 NR 12 TC 8 Z9 8 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3754 EP 3762 DI 10.1016/j.ijhydene.2006.08.055 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200018 ER PT J AU Yang, ZG Xia, GG Walker, MS Wang, CM Stevenson, JW Singh, P AF Yang, Zhenguo Xia, Guan-Guang Walker, Matthew S. Wang, Chong-Min Stevenson, Jeffry W. Singh, Prabhakar TI High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE solid oxide fuel cell; interconnect; stainless steel; oxidation ID INTERCONNECT EXPOSURE CONDITIONS; OXIDE FUEL-CELLS; FERRITIC STAINLESS-STEELS; ELECTRONIC RESISTANCE; OXIDATION-KINETICS; CORROSION BEHAVIOR; DUAL-ENVIRONMENT; SUPERALLOY FOILS; IRON AB Metallic interconnects in SOFC stacks, perform in challenging environment, as they are simultaneously exposed to a reducing environment (e.g. hydrogen, reformate) on one side and an oxidizing environment (e.g. air) on the other side at elevated temperatures. To understand the oxidation/corrosion behavior of metals and alloys under the dual exposures and assess their suitability, selected metals and alloys, including nickel, Fe-Cr and Ni-Cr based chromia forming alloys, alumina forming Fecralloy((R)), were investigated. It was found that the oxidation/corrosion behavior of metals and alloys in the presence of dual environment can be significantly different in terms of scale structure and/or chemistry from their exposure in a single oxidizing or reducing atmosphere. The anomalous oxidization/corrosion is attributed to the presence of hydrogen diffusion flux from the fuel side to the air side under the influence of a hydrogen gradient across the metallic substrates. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, ZG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM zgary.yang@pni.gov RI Singh, Prabhakar/M-3186-2013 NR 29 TC 46 Z9 47 U1 2 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3770 EP 3777 DI 10.1016/j.ijhydene.2006.08.056 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200020 ER PT J AU Brady, MP Wang, H Yang, B Turner, JA Bordignon, M Molins, R Elhamid, MA Lipp, L Walker, LR AF Brady, M. P. Wang, H. Yang, B. Turner, J. A. Bordignon, M. Molins, R. Elhamid, M. Abd Lipp, L. Walker, L. R. TI Growth of Cr-Nitrides on commercial Ni-Cr and Fe-Cr base alloys to protect PEMFC bipolar plates SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT Symposium on Materials in Clean Power Systems held at the 2006 TMS Annual Conference and Exposition CY 2006 CL San Antonio, TX SP TMS DE nitride; bipolar plate; fuel cell; oxidation; nitridation ID MEMBRANE FUEL-CELLS; STAINLESS-STEEL; NITRIDATION AB Nitridation of Cr-bearing alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant CrN or Cr2N base surfaces of interest for a range of electrochemical devices, including fuel cells, batteries, and sensors. This paper presents results of exploratory studies of the nitridation of commercially available, high Cr (30-35 wt%) Ni-Cr alloys and a terrific high Cr (29 wt%) stainless steel for proton exchange membrane fuel cell (PEMFC) bipolar plates. A high degree of corrosion resistance in sulfuric acid solutions designed to simulate bipolar plate conditions and low ICR values were achieved. Oxygen impurities in the nitriding environment were observed to play a significant role in the nitrided surface structures that formed, with detrimental effects for the Ni-Cr base alloys, but beneficial effects for the stainless steel alloy. Positive results from single-cell fuel cell testing are also presented. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. Ecole Mines, CNRS, Ctr Mat, UMR 7633, F-91003 Evry, France. Gen Motors Tech Ctr, Warren, MI 48090 USA. FuelCell Energy Inc, Danbury, CT 06813 USA. RP Brady, MP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov RI Brady, Michael/A-8122-2008 OI Brady, Michael/0000-0003-1338-4747 NR 36 TC 70 Z9 77 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 3778 EP 3788 DI 10.1016/j.ijhydene.2006.08.044 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200021 ER PT J AU Adamyan, AZ Adamyan, ZN Aroutiounian, VM Arakelyan, AH Touryan, KJ Turner, JA AF Adamyan, A. Z. Adamyan, Z. N. Aroutiounian, V. M. Arakelyan, A. H. Touryan, K. J. Turner, J. A. TI Sol-gel derived thin-film semiconductor hydrogen gas sensor SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE hydrogen sensor; nanocrystallites; thin film; gas sensitivity ID SNO2; PERFORMANCES AB We present the results of investigations of thin-film hydrogen sensors that show high sensitivity at low operating temperatures. These hydrogen sensors are manufactured using the sol-gel technique which ensures high temperature stability of nanocrystalline grains in the SnO2 films. It was established that the highest sensitivity of the sensors occurred at 100-130 degrees C. The hydrogen Sensitivity depends on the hydrogen concentration linearly starting at 50ppm, and reaches 10(4) at 5000ppm. The response time was measured at 1-2s and the times were less than 10s. We show that compared to constant power supply, pulse heating of the sensor improves the stability of the sensor, reduces the sensitivity to humidity, and reduces performance drift. We consider the effects of the material substrates, technology of the comb-like electrodes, and catalyst preparations. Various possibilities of reducing CO gas cross sensitivity are also presented. (c) 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Yerevan State Univ, Dept Phys Semicond & Microelect, Yerevan 375025, Armenia. Natl Renewable Energy Lab, Golden, CO USA. RP Aroutiounian, VM (reprint author), Yerevan State Univ, Dept Phys Semicond & Microelect, 1, A Manoogian, Yerevan 375025, Armenia. EM aroutiounvl@yahoo.com NR 25 TC 52 Z9 52 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2007 VL 32 IS 16 SI SI BP 4101 EP 4108 DI 10.1016/j.ijhydene.2007.03.043 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 238QS UT WOS:000251463200062 ER PT J AU Silling, SA Forrestal, MJ AF Silling, S. A. Forrestal, M. J. TI Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article DE abrasion; mass loss; steel projectiles; concrete targets ID DECELERATION; ALGORITHM AB We developed an abrasion model that predicts mass loss and change in nose shape for steel projectiles that penetrate concrete targets. Mass loss data from four sets of experiments with two ogive-nose projectile geometries and concrete targets with limestone and quartz aggregates were used to develop the abrasion model. We plotted post-test mass loss versus initial kinetic energy and found a nearly linear dependence for striking velocities to approximately 1000 m/s. With this linear relationship, we derived a mathematical model that was implemented into the Sandia-developed, Eulerian hydrocode CTH. Predictions from CTH agreed well with experimental observations. (c) 2006 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Silling, SA (reprint author), Sandia Natl Labs, MS 0378,POB 5800, Albuquerque, NM 87185 USA. EM sasilli@sandia.gov NR 12 TC 30 Z9 46 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD NOV PY 2007 VL 34 IS 11 BP 1814 EP 1820 DI 10.1016/j.ijimpeng.2006.10.008 PG 7 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 200KD UT WOS:000248761400007 ER PT J AU Van Leeuwen, M AF Van Leeuwen, M. CA STAR Collaboration TI Jet-correlations from star SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT 11th International Workshop on Correlation and Fluctuation in Multiparticle Production CY NOV 21-24, 2006 CL Hangzhou, PEOPLES R CHINA ID TRANSVERSE-MOMENTUM; COLLISIONS; PARTON AB We present recent results on particle spectra and azimuthal di-hadron correlations at intermediate and high PT in p+p, d+Au and Au+Au collisions at root S-NN - 200 GeV from the STAR collaboration. The implications for parton energy loss and hadronisation in hot and dense QCD matter are discussed. C1 [Van Leeuwen, M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Van Leeuwen, M (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mvanleeuwen@lbl.gov OI van Leeuwen, Marco/0000-0002-5222-4888 NR 35 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2007 VL 16 IS 10 BP 3049 EP 3057 DI 10.1142/S0218301307009051 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 249YT UT WOS:000252267900002 ER PT J AU Jia, JY AF Jia, Jiangyong CA PHENIX Collaboration TI Mapping out the jet correlation landscape: A perspective from phenix experiment SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT 11th International Workshop on Correlation and Fluctuation in Multiparticle Production CY NOV 21-24, 2006 CL Hangzhou, PEOPLES R CHINA ID HADRON CORRELATIONS; ELLIPTIC FLOW; RADIATION AB This is a status report on where PHENIX stands in terms of mapping out the landscape of jet correlation in p(T), hadron species, root s. We focus on correlation results at high p(T) which are sensitive to the quenching of the jet by medium as well as results at low and intermediate p(T), which allow studying the response of the medium to the jet. C1 [Jia, Jiangyong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jjia@bnl.gov NR 42 TC 0 Z9 0 U1 1 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2007 VL 16 IS 10 BP 3058 EP 3081 DI 10.1142/S0218301307009063 PG 24 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 249YT UT WOS:000252267900003 ER PT J AU Sickles, A AF Sickles, Anne CA PHENIX Collaboration TI Jet correlations with identified particles from phenix: Methods and results SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT 11th International Workshop on Correlation and Fluctuation in Multiparticle Production CY NOV 21-24, 2006 CL Hangzhou, PEOPLES R CHINA AB Azimuthal angle two particle correlations have been shown to be a powerful probe for extracting novel features of the interaction between hard scattered partons and the medium produced in Au+Au collisions at RHIC. At intermediate PT, 2-5 GeV/c, the jets have been shown to be significantly modified in both their particle composition and their angular distribution compared to p+p collisions. Additionally, angular two particle correlations with identified hadrons provide information on the possible role of modified hadronization scenarios such as partonic recombination, which might allow medium modified jet fragmentation by connecting hard scattered partons to low PT thermal partons. PHENIX has excellent particle identification capabilities and has developed robust techniques for extracting jet correlations from the large underlying event. We present recent PHENIX results from Au+Au collisions for a variety Of PT and particle type combinations. We also present p+p measurements as a baseline. We show evidence that protons and anti-protons in the PT region of enhanced baryon and anti-baryon single particle production are produced in close angle pairs of opposite charge and that the strong modifications to the away side shape observed for charged hadron correlations are also present when baryons are correlated. C1 [Sickles, Anne] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sickles, A (reprint author), Brookhaven Natl Lab, Bldg 510C, Upton, NY 11973 USA. EM anne@bnl.gov NR 12 TC 1 Z9 1 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2007 VL 16 IS 10 BP 3160 EP 3167 DI 10.1142/S0218301307009154 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 249YT UT WOS:000252267900012 ER PT J AU Enokizono, A AF Enokizono, Akitomo TI Observation of non-Gaussian source structure by HBT-imaging analysis SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT 11th International Workshop on Correlation and Fluctuation in Multiparticle Production CY NOV 21-24, 2006 CL Hangzhou, PEOPLES R CHINA ID QUARK-GLUON PLASMA; HEAVY-ION REACTIONS; COLLABORATION; PERSPECTIVE; COLLISIONS AB We report a summary of recent RHIC measurements of hadron emission source structures by HBT-imaging analysis. Recent developments of the imaging technique which can be applied to two-particle correlation functions and high statistics data sets taken by RHIC experiments allow us to investigate the detailed source structures of hadron emissions, revealing an interesting characteristic that the source functions of charged pion pairs measured in relativistic heavy-ion collisions at root s(NN) - 200 GeV are not the simple Gaussian shape but have non-Gaussian tails at large relative separation r. Also theoretical calculations to describe the observed non-Gaussian tails are reported. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Enokizono, A (reprint author), Lawrence Livermore Natl Lab, L-305,7000 East Ave, Livermore, CA 94550 USA. EM enokizono2@llnl.gov NR 25 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2007 VL 16 IS 10 BP 3193 EP 3204 DI 10.1142/S0218301307009191 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 249YT UT WOS:000252267900016 ER PT J AU Zhang, WN Wong, CY AF Zhang, Wei-Ning Wong, Cheuk-Yin TI Explanation of the RHIC HBT puzzle by a granular source of quark-gluon plasma droplets SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT 11th International Workshop on Correlation and Fluctuation in Multiparticle Production CY NOV 21-24, 2006 CL Hangzhou, PEOPLES R CHINA ID HEAVY-ION COLLISIONS; PION INTERFEROMETRY; MATTER; COLLABORATION; HYDRODYNAMICS; PERSPECTIVE AB We present a review on the explanation of the RHIC HBT puzzle by a granular pion-emitting source of quark-gluon plasma droplets. The evolution of the droplet is described by relativistic hydrodynamics with an equation of state suggested by lattice gauge results. The granular source evolution is obtained by superposing all of the evolutions of individual droplets. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration characterized by a freeze-out temperature T-f. We find that the average particle emission time scales with the initial radius of the droplet. Pions will be emitted earlier if the droplet radius is smaller. An earlier emission time will lead to a smaller extracted HBT radius R-out while the extracted HBT radius R-out, is determined by the scale of the distribution of the droplet centers. However, a collective expansion of the droplets can further decrease R-out. As a result, the value of R-out/R-side, can be close to, or even less than I for the granular source of QGP droplets. C1 [Zhang, Wei-Ning] Dalian Univ Technol, Dept Phys, Dalian 116024, Liaoning, Peoples R China. [Zhang, Wei-Ning] Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Wong, Cheuk-Yin] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Zhang, WN (reprint author), Dalian Univ Technol, Dept Phys, Dalian 116024, Liaoning, Peoples R China. EM weiningzh@hotmail.com; wongc@ornl.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 NR 39 TC 5 Z9 5 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2007 VL 16 IS 10 BP 3262 EP 3270 DI 10.1142/S0218301307009233 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 249YT UT WOS:000252267900020 ER PT J AU Wong, CY Zhang, WN AF Wong, Cheuk-Yin Zhang, Wei-Ning TI Single-event Hanbury-Brown-Twiss interferometry SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT 11th International Workshop on Correlation and Fluctuation in Multiparticle Production CY NOV 21-24, 2006 CL Hangzhou, PEOPLES R CHINA AB Large spatial density fluctuations in high energy heavy-ion collisions can come from many sources: initial transverse density fluctuations, non-central collisions, phase transitions, surface tension, and fragmentations. The common presence of some of these sources in high energy heavy-ion collisions suggests that large scale density fluctuations may often occur. The detection of large density fluctuations by single-event Hanbury-Brown-Twiss interferometry in heavy-ion collisions will provide useful information on density fluctuations and the dynamics of heavy-ion collisions. C1 [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. [Wong, Cheuk-Yin] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Zhang, Wei-Ning] Dalian Univ Technol, Dept Phys, Dalian 116024, Liaoning, Peoples R China. [Zhang, Wei-Ning] Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. EM wongc@ornl.gov; weiningzh@hotmail.com OI Wong, Cheuk-Yin/0000-0001-8223-0659 NR 22 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2007 VL 16 IS 10 BP 3271 EP 3279 DI 10.1142/S0218301307009245 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 249YT UT WOS:000252267900021 ER PT J AU Rohmer, D Sitek, A Gullberg, GT AF Rohmer, Damien Sitek, Arkadiusz Gullberg, Grant T. TI Reconstruction and visualization of fiber and Laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance Imaging (DTMRI) data SO INVESTIGATIVE RADIOLOGY LA English DT Article DE cardiac imaging; diffusion tensor MRI; fiber tracking; laminar structure ID LEFT-VENTRICLE; IN-VIVO; MYOCARDIAL-INFARCTION; CARDIAC FIBER; 3.0 TESLA; MRI; ARCHITECTURE; ORIENTATION; MECHANICS; STRAIN AB Objective: The human heart is composed of a helical network of muscle fibers organized to form sheets that are separated by cleavage planes responsible for the orthotropic mechanical properties of cardiac muscle. The purpose of this study is the reconstruction and visualization of these structures in 3 dimensions. Methods: Anisotropic least square filtering followed by fiber and sheet tracking techniques were applied to diffusion tensor magnetic resonance imaging data of the excised human heart. Fibers were reconstructed using the first eigenvectors of the diffusion tensors. The sheets were reconstructed using the second and third eigenvectors and visualized as surfaces. Results: The fibers are shown to lie in sheets that have transmural structure, which correspond to histologic studies published in the literature. Quantitative measurements show that the sheets as appose to the fibers are organized into laminar orientations without dominant populations. Conclusions: A visualization algorithm was developed to demonstrate the complex 3-dimensional orientation of the fibers and sheets in human myocardium. C1 Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Gullberg, GT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS55R0121, Berkeley, CA 94720 USA. EM GTGullberg@lbl.gov OI Sitek, Arkadiusz/0000-0002-0677-4002 FU NIBIB NIH HHS [R01EB000121] NR 52 TC 68 Z9 70 U1 0 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0020-9996 J9 INVEST RADIOL JI Invest. Radiol. PD NOV PY 2007 VL 42 IS 11 BP 777 EP 789 PG 13 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 224AP UT WOS:000250417700008 PM 18030201 ER PT J AU Pomykala, JA Jody, BJ Daniels, EJ Spangenberger, JS AF Pomykala, J. A., Jr. Jody, B. J. Daniels, E. J. Spangenberger, J. S. TI Automotive recycling in the united states: Energy conservation and environmental benefits SO JOM LA English DT Article AB The production and use of polymers has been growing and that trend is expected to continue. Likewise, the production of metals from ores is on the rise because of increasing demand. Recycling polymers and residual metals can result in significant energy savings and environmental benefits including a reduction in CO2 emissions. This article describes recycling options for the polymers and metals in end-of-life vehicles. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Jody, BJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bjody@anl.gov NR 13 TC 6 Z9 6 U1 1 U2 3 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1047-4838 J9 JOM-US JI JOM PD NOV PY 2007 VL 59 IS 11 BP 41 EP 45 DI 10.1007/s11837-007-0139-8 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 228LC UT WOS:000250730400008 ER PT J AU Bogan, MJ Benner, WH Hau-Riege, SP Chapman, HN Frank, M AF Bogan, Michael J. Benner, W. Henry Hau-Riege, Stefan P. Chapman, Henry N. Frank, Matthias TI Aerosol sample preparation methods for X-ray diffractive imaging: Size-selected spherical nanoparticles on silicon nitride foils SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE electrospray; differential mobility; nanoparticle; X-ray diffractive imaging ID GAS-PHASE; ELECTROSPRAY; COMPLEXES; PROTEINS; PULSES AB We are developing aerosol generating and processing methods for X-ray analyses of nanoscale materials using conventional synchrotron radiation sources and using the newly operational soft X-ray free-electron laser in Hamburg (FLASH) at the Deutsches Elektronen Synchrotron. Charge-reduced electrospray, differential mobility analysis and an electrostatic precipitator were used to prepare samples consisting of size-monodisperse spherical nanoparticles deposited on 20 nm thick silicon nitride foils supported by silicon frames. Ninety-seven and 102 nm diameter spheres were selected from a broader distribution of 98 nm spheres using differential mobility. We measured the size distribution of the spheres using forward scattering from 1.65 nm light at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory and scanning electron microscopy (SEM). The full-width half maximum (FWHM) of the size distribution of the size-selected spheres was as narrow as 5.4nm when measured by SEM, as compared to 16 nm for the non-size-selected distribution. Forward scattering measurements of the 97 nm diameter size-selected spheres fit a size distribution with a FWHM of 4 nm and allowed us to validate the methodology for use in future diffraction imaging experiments at FLASH. (C) 2007 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bogan, MJ (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM bogan2@llnl.gov RI Chapman, Henry/G-2153-2010; Bogan, Mike/I-6962-2012; Frank, Matthias/O-9055-2014 OI Chapman, Henry/0000-0002-4655-1743; Bogan, Mike/0000-0001-9318-3333; NR 22 TC 10 Z9 10 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD NOV PY 2007 VL 38 IS 11 BP 1119 EP 1128 DI 10.1016/j.jaerosci.2007.07.007 PG 10 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 234RE UT WOS:000251180600002 ER PT J AU Phan, AV Gray, LJ Kaplan, T AF Phan, A. -V. Gray, L. J. Kaplan, T. TI On some benchmark results for the interaction of a crack with a circular inclusion SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article AB Stress intensity factor calculations for crack-inclusion interaction problems are presented The problems considered include the benchmark problems first discussed by Helsing and Jonsson (2002, ASME J. Appl. Mech, 69, pp. 88-90), and subsequently by Wang, Mogilevskaya, and Crouch (2003, ASME J. Appl. Mech., 70, pp. 619-621). The numerical results are obtained using the symmetric-Galerkin boundary element method in conjunction with an improved quarter-point elementfor evaluating the stress intensity factors by means of the displacement correlation technique. The converged results confirm the accuracy of the previous simulations and demonstrate that accurate solutions for these interaction problems can be obtained with numerical methods that are applicable in three. dimensions. C1 Univ S Alabama, Dept Mech Engn, Mobile, AL 36688 USA. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Phan, AV (reprint author), Univ S Alabama, Dept Mech Engn, Mobile, AL 36688 USA. NR 9 TC 14 Z9 14 U1 0 U2 3 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD NOV PY 2007 VL 74 IS 6 BP 1282 EP 1284 DI 10.1115/1.2722773 PG 3 WC Mechanics SC Mechanics GA 236XR UT WOS:000251337200025 ER PT J AU Becker, R LeBlanc, MM Cazamias, JU AF Becker, R. LeBlanc, M. M. Cazamias, J. U. TI Characterization of recompressed spall in copper gas gun targets SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STAINLESS-STEEL; SHOCK; ALUMINUM; BEHAVIOR; FRACTURE; DAMAGE; WAVE AB Complementary experiments and simulations are conducted to characterize the microstructure and mechanisms involved in recompression of spalled ductile metals. Soft capture experiments performed on copper targets in a gas gun include a dense secondary plate spaced behind the customary flyer to recompress the voids in the wake of the spall induced by the flyer. Control experiments are run without the secondary plate to obtain spall damage without recompression. The simulations feature explicit representation of void nucleating particles in a narrow strip of material spanning the flyer package and target. Analysis of the spall closure in the simulations reveals the void collapse mechanisms and the origin of features observed experimentally. The experiments and simulations show little trace of the prior voids, and a thin ribbon of highly strained material is the only readily observable remnant of the spall surface. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Alabama, Birmingham, AL 35294 USA. RP Becker, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM becker13@llnl.gov RI Becker, Richard/I-1196-2013 NR 19 TC 3 Z9 3 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2007 VL 102 IS 9 AR 093512 DI 10.1063/1.2802589 PG 8 WC Physics, Applied SC Physics GA 231XY UT WOS:000250983700027 ER PT J AU Kirkengen, M Bergli, J Galperin, YM AF Kirkengen, M. Bergli, J. Galperin, Y. M. TI Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DIPOLE AB It is known that silicon is an indirect band gap material, reducing its efficiency in photovoltaic applications. Using surface plasmons in metallic nanoparticles embedded in a solar cell has recently been proposed as a way to increase the efficiency of thin-film silicon solar cells. The dipole mode that dominates the plasmons in small particles produces an electric field having Fourier components with all wave numbers. In this work, we show that such a field creates electron-hole-pairs without phonon assistance, and discuss the importance of this effect compared to radiation from the particle and losses due to heating. (C) 2007 American Institute of Physics. C1 Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Oslo, Ctr Adv Mat & Nanotechnol, N-0316 Oslo, Norway. AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Kirkengen, M (reprint author), Univ Oslo, Dept Phys, PO Box 1048 Blindern, N-0316 Oslo, Norway. EM mki@fys.uio.no RI Galperin, Yuri/A-1851-2008; Bergli, Joakim/A-1707-2008 OI Galperin, Yuri/0000-0001-7281-9902; NR 17 TC 45 Z9 47 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2007 VL 102 IS 9 AR 093713 DI 10.1063/1.2809368 PG 5 WC Physics, Applied SC Physics GA 231XY UT WOS:000250983700048 ER PT J AU Mendelev, MI Rehbein, DK Ott, RT Kramer, MJ Sordelet, DJ AF Mendelev, M. I. Rehbein, D. K. Ott, R. T. Kramer, M. J. Sordelet, D. J. TI Computer simulation and experimental study of elastic properties of amorphous Cu-Zr alloys SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BULK METALLIC-GLASS; TRANSITION AB Molecular-dynamics simulations were performed to determine the elastic constants of CuxZr100-x (33.3 <= x <= 64.5) metallic glasses at room temperature. The accuracy of the interatomic potentials used to obtain the model glass structures was tested by comparing to the total structure factors obtained from high-energy synchrotron x-ray diffraction and, more importantly, to acoustic velocities measured from melt spun ribbons. Both the simulated and measured acoustic velocities increased at comparable rates with increasing Cu concentration, but the former underestimated the latter by about 10%. Young's moduli of the simulated models were determined by combining the ultrasonic data with densities that were obtained from simulations. In addition, the compositional dependence of Poisson's ratio, shear modulus, and bulk modulus for this series of simulated metallic glasses was determined. Examination of partial-pair correlations deduced from simulated glass structures shows a correlation between higher bulk moduli in Cu-rich compositions and concomitant changes in Zr-Zr nearest neighbors, which exhibit a stronger sensitivity to an imposed hydrostatic stress than do Cu-Cu or Cu-Zr nearest-neighbor distances. (C) 2007 American Institute of Physics. C1 Iowa State Univ Sci & Technol, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Mendelev, MI (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM mendelev@ameslab.gov NR 30 TC 35 Z9 35 U1 4 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2007 VL 102 IS 9 AR 093518 DI 10.1063/1.2805655 PG 8 WC Physics, Applied SC Physics GA 231XY UT WOS:000250983700033 ER PT J AU Liu, Z Mehta, A Tamura, N Pickard, D Rong, B Zhou, T Pianetta, P AF Liu, Z. Mehta, A. Tamura, N. Pickard, D. Rong, B. Zhou, T. Pianetta, P. TI Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors SO JOURNAL OF ARCHAEOLOGICAL SCIENCE LA English DT Article DE Chinese blue; Chinese purple; Egyptian blue; Maya blue; pigment; Taoism; Chinese glass; silk road ID BLUE AB Until the 19th century, most pigments were based on naturally occurring colored minerals and dyes, with three significant exceptions: Egyptian Blue, Chinese Blue/Purple and Maya Blue. The former two are alkaline-earth copper silicates, and because of this similarity it has been proposed that the Chinese pigments were derived from Egyptian Blue. Herein, we analyzed clumps of pigment from the Qin warriors and discovered that in spite of the structural similarity to Egyptian Blue, the micro-structural morphology of Chinese Purple is very different. Therefore, we believe that the synthesis technology for the Chinese pigments was a by-product of high-refractive index glasses (artificial jades) produced by Taoist monks. Further, the disappearance of these pigments from Chinese art and monuments concurrently with the decline of Taoism not only substantiates the link between the two, but also gives a striking example of how cultural changes in the society affected the scientific developments in ancient China. (c) 2007 Elsevier Ltd. All rights reserved. C1 Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. Museum Terracotta Warriors & Horses Emperor Qin S, Xian 710600, Peoples R China. RP Liu, Z (reprint author), Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. EM zhiliu@stanford.edu RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 NR 26 TC 12 Z9 13 U1 1 U2 13 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0305-4403 J9 J ARCHAEOL SCI JI J. Archaeol. Sci. PD NOV PY 2007 VL 34 IS 11 BP 1878 EP 1883 DI 10.1016/j.jas.2007.01.005 PG 6 WC Anthropology; Archaeology; Geosciences, Multidisciplinary SC Anthropology; Archaeology; Geology GA 221XH UT WOS:000250260200013 ER PT J AU Zhang, H Herman, JP Bolton, H Zhang, Z Clark, S Xun, LY AF Zhang, Hua Herman, Jacob P. Bolton, Harvey, Jr. Zhang, Zhicheng Clark, Sue Xun, Luying TI Evidence that bacterial ABC-Type transporter imports free EDTA for metabolism SO JOURNAL OF BACTERIOLOGY LA English DT Article ID STRAIN DSM 9103; NITRILOTRIACETATE MONOOXYGENASE; CHELATOBACTER-HEINTZII; GENE-CLUSTER; DEGRADATION; BINDING; PROTEIN; OPPA; BNC1; BIODEGRADATION AB EDTA, a common chelating agent, is becoming a major organic pollutant in the form of metal-EDTA complexes in surface waters, partly due to its recalcitrance to biodegradation. Even an EDTA-degrading bacterium, BNC1, does not degrade stable metal-EDTA complexes. In the present study, an ABC-type transporter was identified for possible uptake of EDTA because the transporter genes and the EDTA monooxygenase gene were expressed from a single operon in BNC1. The ABC-type transporter had a periplasmic-binding protein (EppA) that should confer the substrate specificity for the transporter; therefore, EppA was produced in Escherichia coli, purified, and characterized. EppA was shown to bind free EDTA with a dissociation constant as low as 25 nM by using isothermal titration calorimetry. When unstable metal-EDTA complexes, e.g., (Mg-EDTA)(2-), were added to the EppA solution, binding was also observed. However, experimental data and theoretical analysis supported EppA binding only of free EDTA. When stable metal-EDTA complexes, e.g., (Cu-EDTA)(2-), were titrated into the EppA solution, no binding was observed. Since EDTA monooxygenase in the cytoplasm uses some of the stable metal-EDTA complexes as substrates, we suggest that the lack of EppA binding and EDTA uptake are responsible for the failure of BNC1 cells to degrade the stable complexes. C1 Washington State Univ, Sch Biosci & Mol, Pullman, WA 99164 USA. Washington State Univ, Dept Chem, Pullman, WA 99164 USA. Pacific NW Natl Lab, Dept Sci Biol, Richland, WA 99352 USA. RP Xun, LY (reprint author), Washington State Univ, 301 Abelson Hall, Pullman, WA 99164 USA. EM xun@mail.wsu.edu RI Zhang, Zhicheng/B-3887-2010; Bolton, Harvey/E-5583-2011 NR 40 TC 12 Z9 12 U1 0 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD NOV PY 2007 VL 189 IS 22 BP 7991 EP 7997 DI 10.1128/JB.01164-07 PG 7 WC Microbiology SC Microbiology GA 232AU UT WOS:000250991300007 PM 17873047 ER PT J AU Russias, J Saiz, E Deville, S Gryn, K Liu, G Nalla, RK Tomsia, AP AF Russias, J. Saiz, E. Deville, S. Gryn, K. Liu, G. Nalla, R. K. Tomsia, A. P. TI Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A LA English DT Article DE freeform fabrication; scaffold; composite; degradation; mechanical properties ID COMPOSITE SCAFFOLDS; POROUS SCAFFOLDS; GLASS COATINGS; BONE REPAIR; HYDROXYAPATITE; IMPLANTS; MICROSTRUCTURE; MICROSPHERES; BIOMATERIALS; PERFORMANCE AB A key issue for the fabrication of scaffolds for tissue engineering is the development of processing techniques flexible enough to produce materials with a wide spectrum of solubility (bioresorption rates) and mechanical properties matching those of calcified tissues. These techniques must also have the capability of generating adequate porosity to further serve as a framework for cell penetration, new bone formation, and subsequent remodeling. In this study we show how hybrid organic/inorganic scaffolds with controlled microstructures can be built using robotic assisted deposition at room temperature. Polylactide or polycaprolactone scaffolds with pore sizes ranging between 200-500 mu m and hydroxyapatite contents up to 70 wt% were fabricated. Compressive tests revealed an anisotropic behavior of the scaffolds, strongly dependant on their chemical composition. The inclusion of an inorganic component increased their stiffness but they were not brittle and could be easily machined even for ceramic contents up to 70 wt%. The mechanical properties of hybrid scaffolds did not degrade significantly after 20 days in simulated body fluid. However, the stiffness of pure polylactide scaffolds increased drastically due to polymer densification. Scaffolds containing bioactive glasses were also printed. After 20 days in simulated body fluid they developed an apatite layer on their surface. (c) 2007 Wiley Periodicals, Inc. C1 Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Saiz, E (reprint author), Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. EM esaiz@lbl.gov OI Deville, Sylvain/0000-0002-3363-3184 FU NIDCR NIH HHS [5R01 DE015633] NR 38 TC 48 Z9 49 U1 3 U2 28 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1549-3296 J9 J BIOMED MATER RES A JI J. Biomed. Mater. Res. Part A PD NOV PY 2007 VL 83A IS 2 BP 434 EP 445 DI 10.1002/jbm.a.31237 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 218AV UT WOS:000249989300021 PM 17465019 ER PT J AU Davis, RR Lockwood, PE Hobbs, DT Messer, RLW Price, RJ Lewis, JB Wataha, JC AF Davis, R. R. Lockwood, P. E. Hobbs, D. T. Messer, R. L. W. Price, R. J. Lewis, J. B. Wataha, J. C. TI In vitro biological effects of sodium titanate materials SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE mTT; cell-culture; monocyte; fibroblast; cytotoxicity; drug-delivery ID MONOSODIUM TITANATE; ACTINIDE SEPARATIONS; STRONTIUM; MACROPHAGES AB Monosodium titanate (MST) particles effectively bind specific metals and are therefore promising compounds for delivery or sequestration of metals in biological contexts. Yet, the biological properties of MST are largely unexplored. Our previous study showed that the cytotoxicity of these compounds was mild, but the nature of the dose response curves suggested that residual titanates in culture may have interfered with the assay. In the current study, we assessed the importance of these artifacts, and extended our previous results using fibroblasts for biological evaluation. We also assessed the biological response to a new type of titanate (referred to as amorphous peroxo-titanate or APT) that shows more promising metal binding properties than MST. Methods: The degree of titanate-induced interference in the MTT (mitochondrial activity assay) was estimated by means of cell-free assays with and without a final centrifugation step to remove residual titanate particulate. Cytotoxic responses to titanates were assessed by measuring succinate dehydrogenase activity (by MTT) in THP1 monocytes or L929 fibroblasts after 24-72 h exposures. Monocytic activation by APT was assessed by TNF alpha secretion (ELISA) from monocytes with or without lipopolysaccharide (LPS) activation. Results: We confirmed that residual titanate particulates may alter the SDH activity assay, but that this effect is eliminated by adding a final centrifugation step to the standard MTT procedure. Addition of MST or APT at concentrations up to 100 mg/L altered succinate dehydrogenase activity by < 25% in both monocytes and fibroblasts. Fibroblasts displayed time-dependent adaptation to the MST. APT did not trigger TNF alpha secretion or modulate LPS-induced TNF alpha secretion from monocytes. Conclusions: Although further in vitro and in vivo assessment is needed, MST and APT exhibit biological properties that are promising for their use as agents to sequester or deliver metals in biological systems. (C) 2007 Wiley Periodicals, Inc. C1 Med Coll Georgia, Augusta, GA 30912 USA. Washington Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Wataha, JC (reprint author), Med Coll Georgia, Augusta, GA 30912 USA. EM watahaj@mail.mcg.edu NR 10 TC 23 Z9 25 U1 1 U2 15 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4973 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD NOV PY 2007 VL 83B IS 2 BP 505 EP 511 DI 10.1002/jbm.b.30823 PG 7 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 224DF UT WOS:000250425400028 PM 17471514 ER PT J AU Carlisle, KB Chawla, KK Koopman, M Gladysz, GM Lewis, M AF Carlisle, K. B. Chawla, K. K. Koopman, M. Gladysz, G. M. Lewis, M. TI Uniaxial compressive properties of bismaleamid-coated carbon microballoons SO JOURNAL OF CELLULAR PLASTICS LA English DT Article DE syntactic foam; coated microballoons; uniaxial compression; carbon; bismaleamid ID 3-PHASE SYNTACTIC FOAMS AB A uniaxial compression technique employing a nanoindenter equipped with a flat-ended cylindrical tip is used to evaluate the performance of carbon microballoons (CMBs) precipitation-coated with a bismaleamid (APO-BMI) polymer. This coating will eliminate the size and density induced segregation of APO-BMI and CMBs during mold filling and the potentially damaging mixing step wherein CMBs and powdered binder pre-polymer are blended prior to foam molding. To augment the molding of syntactic foams directly from coated CMBs and to aid in the development of a constitutive model for a three-phase syntactic foam, mechanical property evaluation of the coated CMBs is needed. Cured, APO-BMI coated and uncoated CMBs (0.192g/cm(3) tap density) are compressed uniaxially using a modified nanoindenter to obtain the compressive properties of the CMBs in both conditions. These properties included strain-to-failure, failure load, displacement-at-failure, and work of fracture. The 0.192g/cm(3) tap density CMBs' behavior followed the prior inter-tap density trends between compressive strain and diameter and failure load versus stiffness. The coating is determined to have no statistically significant effect on the mechanical properties of the CMBs. From the combination of this information, the effect of an APO-BMI coating on CMBs of any tap density is inferred. C1 Univ Alabama, Dept Mat Sci & Engn, Birmingham, AL 35294 USA. Trelleborg Emerson & Cuming Inc, Canton, MA 02021 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chawla, KK (reprint author), Univ Alabama, Dept Mat Sci & Engn, 1530 3rd Ave S, Birmingham, AL 35294 USA. EM kchawla@uab.edu NR 14 TC 4 Z9 4 U1 1 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-955X J9 J CELL PLAST JI J. Cell. Plast. PD NOV PY 2007 VL 43 IS 6 BP 417 EP 429 DI 10.1177/0021955X06076060 PG 13 WC Chemistry, Applied; Polymer Science SC Chemistry; Polymer Science GA 239HY UT WOS:000251510600001 ER PT J AU Kilaru, P Baker, GA Scovazzo, P AF Kilaru, Prem Baker, Gary A. Scovazzo, Paul TI Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: Data and correlations SO JOURNAL OF CHEMICAL AND ENGINEERING DATA LA English DT Article ID PHYSICOCHEMICAL PROPERTIES; MEMBRANES; PRESSURE; SOLUBILITY; TRANSPORT; RING AB Presented are experimental densities and surface tensions of imidazolium-, quaternary ammonium-, and phosphonium-based room-temperature ionic liquids (RTILs) in the temperature range of (298 to 350) K. Densities of the RTILs decrease slightly with temperature in the studied range (298 to 333) K. At 298 K, the densities of the phosphonium-based RTILs ranged from (0.88 to 1.05) g center dot cm(-3), while those of the ammonium-based RTILs ranged from (1.08 to 1.37) g center dot cm(-3). The volume expansivities of phosphonium and ammonium RTILs at 1 atm, and 298 K are in the range of (5.5 to 6.5)center dot 10(-4) K-1. Surface tension and temperature relationships were established using the van der Waals-Guggenheim equation, sigma = E-s(1 - T/Tc)(n), where n approximate to 1, for the RTILs studied. The Macleod-Sugden-Wright (MSW) equation was used to correlate surface tension with the respective molar volume of the various RTILs. The developed equation can accurately correlate surface tension for this grouping of RTILs with a maximum estimated error of 0.15 % within the temperature ranges considered. C1 Univ Mississippi, Dept Chem Engn, University, MS 38677 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Scovazzo, P (reprint author), Univ Mississippi, Dept Chem Engn, 134 Anderson Hall, University, MS 38677 USA. EM scovazzo@olemiss.edu RI Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 NR 34 TC 178 Z9 180 U1 1 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9568 J9 J CHEM ENG DATA JI J. Chem. Eng. Data PD NOV-DEC PY 2007 VL 52 IS 6 BP 2306 EP 2314 DI 10.1021/je7003098 PG 9 WC Thermodynamics; Chemistry, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA 231OL UT WOS:000250958800038 ER PT J AU Wick, CD Kuo, IFW Mundy, CJ Dang, LX AF Wick, Collin D. Kuo, I-Feng W. Mundy, Christopher J. Dang, Liem X. TI The effect of polarizability for understanding the molecular structure of aqueous interfaces SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID LIQUID-VAPOR INTERFACE; 1ST PRINCIPLES; FLUCTUATING CHARGE; PHASE-EQUILIBRIA; FREE-SURFACE; ION-BINDING; AB-INITIO; WATER; DYNAMICS; SPECTROSCOPY AB A review is presented on recent progress of the application of molecular dynamics simulation methods with the inclusion of polarizability for the understanding of aqueous interfaces. Comparisons among a variety of models, including those based on density functional theory of the neat air-water interface, are given. These results are used to describe the effect of polarizability on modeling the microscopic structure of the neat air-water interface, including comparisons with recent spectroscopic studies. Also, the understanding of the contribution of polarization to the electrostatic potential across the air-water interface is elucidated. Finally, the importance of polarizability for understanding anion transfer across an organic-water interface is shown. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mundy, CJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM chris.mundy@pnl.gov; liem.dang@pnl.gov NR 55 TC 81 Z9 81 U1 2 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV-DEC PY 2007 VL 3 IS 6 BP 2002 EP 2010 DI 10.1021/ct700098z PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 232MQ UT WOS:000251024200011 PM 26636197 ER PT J AU Whitfield, TW Varma, S Harder, E Lamoureux, G Rempe, SB Roux, B AF Whitfield, Troy W. Varma, Sameer Harder, Edward Lamoureux, Guillaume Rempe, Susan B. Roux, Benoit TI Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CAR-PARRINELLO EQUATIONS; ELECTRONIC-STRUCTURE CALCULATIONS; HYDRATION FREE-ENERGY; AUGMENTED-WAVE METHOD; ION SOLVATION; POTENTIAL FUNCTIONS; ULTRASOFT PSEUDOPOTENTIALS; LIQUID WATER; FORCE-FIELD AB The hydration of K+ is studied using a hierarchy of theoretical approaches, including ab initio Born-Oppenheimer molecular dynamics and Car-Parrinello molecular dynamics, a polarizable force field model based on classical Drude oscillators, and a nonpolarizable fixed-charge potential based on the TIP3P water model. While models based more directly on quantum mechanics offer the possibility to account for complex electronic effects, polarizable and fixed-charges force fields allow for simulations of large systems and the calculation of thermodynamic observables with relatively modest computational expense. A particular emphasis is placed on investigating the sensitivity of the polarizable model to reproduce key aspects of aqueous K+, such as the coordination structure, the bulk hydration free energy, and the self-diffusion of K+. It is generally found that, while the simple functional form of the polarizable Drude model imposes some restrictions on the range of properties that can simultaneously be fitted, the resulting hydration structure for aqueous K+ agrees well with experiment and with more sophisticated computational models. All the computational models yield a similar hydration structure, with a first peak in the radial distribution function near 2.7 angstrom though the distribution functions obtained from the two ab initio simulations are less sharply peaked. A counterintuitive result, seen in Car-Parrinello molecular dynamics and in simulations with the Drude polarizable force field, is that the average induced molecular dipole of the water molecules within the first hydration shell around K+ is slightly smaller than the corresponding value in the bulk. In final analysis, the perspective of K+ hydration emerging from the various computational models is broadly consistent with experimental data, though at a finer level there remain a number of issues that should be resolved to further our ability in modeling ion hydration accurately. C1 Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. Univ Penn, Ctr Mol Modeling, Dept Chem, Philadelphia, PA 19104 USA. Sandia Natl Labs, Computat Biosci Dept, Albuquerque, NM 87185 USA. Univ Chicago, Dept Biochem, Chicago, IL 60615 USA. RP Rempe, SB (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM slrempe@sandia.gov; roux@uchicago.edu RI Rempe, Susan/H-1979-2011; Lamoureux, Guillaume/K-4038-2013 FU NEI NIH HHS [PN2 EY016570]; NIGMS NIH HHS [R01 GM072558, R01 GM072558-09] NR 78 TC 64 Z9 66 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV-DEC PY 2007 VL 3 IS 6 BP 2068 EP 2082 DI 10.1021/ct700172b PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 232MQ UT WOS:000251024200016 PM 21785577 ER PT J AU Ziemniak, SE Anovitz, LM Castelli, RA Porter, WD AF Ziemniak, Stephen E. Anovitz, Lawrence M. Castelli, Roy A. Porter, Wallace D. TI Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4 SO JOURNAL OF CHEMICAL THERMODYNAMICS LA English DT Article DE magnetic materials; oxides; differential scanning calorimetry; specific heat; thermodynamic properties ID LOW-TEMPERATURES; FREE-ENERGY; MAGNESIUM CHROMITES; SPINEL STRUCTURE; SOLID-SOLUTIONS; HEAT-CAPACITY; EQUILIBRIA; FERRITE; SYSTEM; OXIDE AB High-temperature heat capacity measurements were obtained for Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4 using a differential scanning calorimeter. These data were combined with previously available, overlapping heat capacity data at temperatures up to 400 K and fitted to 5-parameter Maier-Kelley C-p(T) equations. Expressions for molar entropy were then derived by suitable integration of the Maier-Kelley equations in combination with recent S degrees(298) evaluations. Finally, a database of high-temperature equilibrium measurements on the formation of these oxides was constructed and critically evaluated. Gibbs free energies of Cr2O3, FeCr2O4, and CoCr2O4 were referenced by averaging the most reliable results at reference temperatures of (1100, 1400, and 1373) K, respectively, while Gibbs free energies for ZnCr2O4 were referenced to the results of Jacob [K.T. Jacob, Thermochim. Acta 15 (1976) 79-87] at T=1100 K. Thermodynamic extrapolations from the high-temperature reference points to T=298.15 K by application of the heat capacity correlations gave Delta(f)G degrees(298) = (-1049.96, -1339.40, -1428.35, and -1326.75) kJ center dot mol(-1) for Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4, respectively. (c) 2007 Elsevier Ltd. All rights reserved. C1 Lockheed Martin Corp, Schenectady, NY 12301 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ziemniak, SE (reprint author), Lockheed Martin Corp, POB 1072, Schenectady, NY 12301 USA. EM ziemnia@kapl.gov RI Anovitz, Lawrence/P-3144-2016 OI Anovitz, Lawrence/0000-0002-2609-8750 NR 68 TC 13 Z9 13 U1 5 U2 51 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0021-9614 J9 J CHEM THERMODYN JI J. Chem. Thermodyn. PD NOV PY 2007 VL 39 IS 11 BP 1474 EP 1492 DI 10.1016/j.jct.2007.03.001 PG 19 WC Thermodynamics; Chemistry, Physical SC Thermodynamics; Chemistry GA 234KP UT WOS:000251160600010 ER PT J AU Letant, SE Ortiz, JI Tammero, LFB Birch, JM Derlet, RW Cohen, S Manning, D McBride, MT AF Letant, Sonia E. Ortiz, Josue I. Tammero, Lance F. Bentley Birch, James M. Derlet, Robert W. Cohen, Stuart Manning, Dannelle McBride, Mary T. TI Multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at the point of care SO JOURNAL OF CLINICAL MICROBIOLOGY LA English DT Article ID REAL-TIME PCR; SYNCYTIAL-VIRUS; RAPID DIAGNOSIS; INFLUENZA; INFECTIONS; ADENOVIRUS AB We have developed a nucleic acid-based assay that is rapid, sensitive, and specific and can be used for the simultaneous detection of five common human respiratory pathogens, including influenza virus A, influenza virus B, parainfluenza virus types 1 and 3, respiratory syncytial virus (RSV), and adenovirus groups B, C, and E. Typically, diagnosis on an unextracted clinical sample can be provided in less than 3 h, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs and therefore allow implementation of infection control measures and the timely administration of antiviral therapies. We present here a summary of the assay performance in terms of sensitivity and specificity. The limits of detection are provided for each targeted respiratory pathogen, and result comparisons were performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the University of California-Davis Medical Center hospital. Overall, the use of the multiplexed reverse transcription-PCR assay reduced the rate of false-negative results by 4% and reduced the rate of false-positive results by up to 10%. The assay correctly identified 99.3% of the clinical negatives and 97% of the adenovirus, 95% of the RSV, 92% of the influenza virus B, and 77% of the influenza virus A samples without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on unextracted samples. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Davis, Med Ctr, Sacramento, CA 95817 USA. RP Letant, SE (reprint author), Lawrence Livermore Natl Lab, L-231,7000 E Ave, Livermore, CA 94550 USA. EM letant1@llnl.gov FU NIAID NIH HHS [U01 AI061184] NR 18 TC 27 Z9 28 U1 0 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0095-1137 J9 J CLIN MICROBIOL JI J. Clin. Microbiol. PD NOV PY 2007 VL 45 IS 11 BP 3498 EP 3505 DI 10.1128/JCM.01712-07 PG 8 WC Microbiology SC Microbiology GA 231FU UT WOS:000250932700003 PM 17855573 ER PT J AU Grafe, M Singh, B Balasubramanian, M AF Grafe, Markus Singh, Balwant Balasubramanian, Mahalingam TI Surface speciation of Cd(II) and Pb(II) on kaolinite by XAFS spectroscopy SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE EXAFS spectroscopy; surface structure; adsorption; gibbsite; polynuclear complexes; steric hindrance ID OXIDE-WATER INTERFACES; CRYSTAL-STRUCTURE; ADSORPTION COMPLEXES; SORPTION; CADMIUM; POWDER; GAMMA-CD(OH)2; TRANSITION; BEAMLINE; GIBBSITE AB Little spectroscopic evidence exists in the literature describing the surface complexation of cadmium (Cd) and lead (Pb) on kaolinite, the dominant clay mineral present in highly weathered soils of tropical and humid climates. X-ray absorption fine structure (XAFS) spectroscopy data at the Cd K and Pb L(III) edges were collected on Cd- and Pb-sorbed kaolinite samples and compared to a suite of reference materials including Pb and Cd sorbed on amorphous (am-)gibbsite. Cadmium formed dominantly (> 75%) outer sphere complexes on kaolinite and a small fraction of CdOHCl complexes. In contrast Cd adsorbed as an inner sphere complex on gibbsite, suggesting that the Si tetrahedral sheet hindered Cd sorption to the Al octahedral sheet on kaolinite. Lead formed polymeric complexes, which bonded to kaolinite via edge sharing with surface Al octahedra. Two distinct Pb-Al edge-sharing distances on am-gibbsite, as opposed to one on kaolinite, suggested a similar steric hindrance effect for the surface complexation of polymeric Pb complexes on kaolinite. The results of this study show that the Si tetrahedral sheet limited the surface complexation of Cd and Pb on kaolinite, elevating kaolinite's permanent negative charge properties in retaining these heavy metals at its surface. (c) 2007 Elsevier Inc. All rights reserved. C1 Univ Sydney, Fac Agr Food & Nat Prod, Sydney, NSW 2006, Australia. Argonne Natl Lab, XOR, PNC, CAT, Argonne, IL 60439 USA. RP Grafe, M (reprint author), Univ Sydney, Fac Agr Food & Nat Prod, Sydney, NSW 2006, Australia. EM m.grafe@usyd.edu.au RI Singh, Balwant/F-6481-2012 OI Singh, Balwant/0000-0002-9751-2971 NR 40 TC 30 Z9 31 U1 6 U2 44 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD NOV 1 PY 2007 VL 315 IS 1 BP 21 EP 32 DI 10.1016/j.jcis.2007.05.022 PG 12 WC Chemistry, Physical SC Chemistry GA 218AX UT WOS:000249989500004 PM 17714722 ER PT J AU Classen, AT Chapman, SK Whitham, TG Hart, SC Koch, GW AF Classen, Aimee T. Chapman, Samantha K. Whitham, Thomas G. Hart, Stephen C. Koch, George W. TI Genetic-based plant resistance and susceptibility traits to herbivory influence needle and root litter nutrient dynamics SO JOURNAL OF ECOLOGY LA English DT Article DE decomposition; genotype; herbivory; insects; needle; nitrogen; nutrient cycling; phosphorus; root; semi-arid ID PINYON PINE; ENVIRONMENTAL-STRESS; CHIHUAHUAN DESERT; SEMIARID WOODLAND; LIGNIN CONTROL; LEAF-LITTER; INSECT HERBIVORY; SOIL PROCESSES; DECOMPOSITION; FOREST AB 1. It is generally assumed that the same factors drive the decomposition of both litter and roots and that nutrient release from litter and roots is synchronized. However, few studies have explicitly tested these assumptions, and no studies have examined whether plant genetics (i.e. plant susceptibility to herbivory) could affect these relationships. 2. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pinon pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pinon needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and long-term experimental removals and additions of these insects to individual trees have identified trees that are naturally resistant or susceptible to M. acalyptus and D. albovittella. In addition, these herbivores increase litter chemical quality and alter soil microclimate, both of which mediate decomposition in ecosystems. 3. The effects of herbivore susceptibility and resistance on needle litter mass and phosphorus (P) loss, when significant, are largely mediated by herbivore-induced changes to microclimate. But the effects of herbivore susceptibility and resistance on root litter nitrogen (N) and P retention, and needle litter N retention, are largely governed by herbivore-induced changes to litter chemical quality. Whether a particular tree was resistant or susceptible to herbivores exerted a large influence on net nutrient release, but the direction of herbivore influence varied temporally. 4. The controls on decomposition vary between herbivore-susceptible and herbivore-resistant phenotypes. This suggests that understanding decomposition and nutrient retention in some ecosystems may require considering the effects of herbivores on above- and below-ground processes and how these effects may be governed by plant genetics. 5. Synthesis. Because so few studies have attempted to quantify genetic components of ecosystem processes, the integration of ecosystem ecology with population genetics has the potential to place ecosystem science within a genetic and evolutionary framework. Using field trials of known genetic composition, ecosystem scientists may use quantitative genetics techniques to explore ecosystem traits just as population geneticists have used these techniques to explore traditional traits such as resistance to insects. C1 No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Ecol & Evolut Biol, Knoxville, TN 37996 USA. Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA. No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. RP Classen, AT (reprint author), No Arizona Univ, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA. EM aclassen@utk.edu RI Classen, Aimee/C-4035-2008 OI Classen, Aimee/0000-0002-6741-3470 NR 55 TC 30 Z9 30 U1 2 U2 27 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0022-0477 J9 J ECOL JI J. Ecol. PD NOV PY 2007 VL 95 IS 6 BP 1181 EP 1194 DI 10.1111/j.1365-2745.2007.01297.x PG 14 WC Plant Sciences; Ecology SC Plant Sciences; Environmental Sciences & Ecology GA 221ZK UT WOS:000250265700003 ER PT J AU Onishi, Y Kivva, SL Zheleznyak, MJ Voitsekhovich, OV AF Onishi, Y. Kivva, S. L. Zheleznyak, M. J. Voitsekhovich, O. V. TI Aquatic assessment of the chernobyl nuclear accident and its remediation SO JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE LA English DT Article AB This modeling study evaluated the aquatic environment affected by the Chernobyl nuclear accident and the effectiveness of remediation efforts. The study results indicate that radionuclide concentrations in the Pripyat and Dnieper rivers were well above the drinking water limits immediately after the Chernobyl accident but have decreased significantly in subsequent years due to flushing, burying, and decaying. Because high concentrations of Sr-90 and Cs-137, the major radionuclides affecting human health through the aquatic pathways, are associated with flooding, two earthen dikes were constructed along the Pripyat River. The left-bank dike alone was successful in reducing the 90Sr concentration in the river by half. The 100-m-high, movable New Safe Confinement (NSC), which will cover the current Chernobyl Shelter, will reduce radionuclide contamination further in these rivers and nearby groundwater. If the Chernobyl Shelter should collapse before the NSC is built, the resulting peak radionuclide concentrations in the Dnieper River are expected to still remain below the drinking water limits. The radionuclide influx to groundwater through the NSC should not have any effect on concentrations in the Pripyat River. C1 LLC, Yasuo Onishi Consulting, Richland, WA 99354 USA. Washington State Univ, Dept Civil & Environm Engn, Richland, WA 99354 USA. Pacific NW Natl Lab, Richland, WA 99354 USA. Ukrainian Ctr Environm & Water Projects, Kiev, Ukraine. Ukrainian Inst Hydrometeorol, Kiev, Ukraine. RP Onishi, Y (reprint author), LLC, Yasuo Onishi Consulting, 144 Spengler St, Richland, WA 99354 USA. EM yasuo.onishi@yahoo.com RI Zheleznyak, Mark/D-6800-2013; Zheleznyak, Mark/H-6479-2011 OI Zheleznyak, Mark/0000-0001-7723-6052; Zheleznyak, Mark/0000-0001-7723-6052 NR 20 TC 2 Z9 2 U1 0 U2 13 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9372 J9 J ENVIRON ENG-ASCE JI J. Environ. Eng.-ASCE PD NOV PY 2007 VL 133 IS 11 BP 1015 EP 1023 DI 10.1061/(ASCE)0733-9372(2007)133:11(1015) PG 9 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 222SR UT WOS:000250318000002 ER PT J AU Kando, M Fukuda, Y Kotaki, H Koga, J Bulanov, SV Tajima, T Chao, A Pitthan, R Schuler, KP Zhidkov, AG Nemoto, K AF Kando, M. Fukuda, Y. Kotaki, H. Koga, J. Bulanov, S. V. Tajima, T. Chao, A. Pitthan, R. Schuler, K. -P. Zhidkov, A. G. Nemoto, K. TI On the production of flat electron bunches for laser wakefield acceleration SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article ID WAKE WAVE BREAKING; PLASMA-WAVES; ION ACCELERATORS; INTENSITY LASER; PULSE; FIELD; INJECTION; BEAMS; DENSITY; PROTONS AB We suggest a novel method for the injection of electrons into the acceleration phase of particle accelerators, producing low-emittance beams appropriate even for the demanding high-energy linear collider specifications. We discuss the injection mechanism into the acceleration phase of the wakefield in a plasma behind a high-intensity laser pulse, which takes advantage of the laser polarization and focusing. The scheme uses the structurally stable regime of transverse wakewave breaking, when the electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse elongated in the transverse direction with an underdense plasma, the electrons injected via the transverse wakewave breaking and accelerated by the wakewave perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with an asymmetric emittance (flat beam). An approach for generating flat laser- accelerated ion beams is briefly discussed. C1 [Kando, M.; Fukuda, Y.; Kotaki, H.; Koga, J.; Bulanov, S. V.; Tajima, T.] Japan Atom Energy Agcy, Kansai Photon Sci Inst, Kyoto 6190215, Japan. [Chao, A.; Pitthan, R.] Stanford Linear Accelerator Ctr, Palo Alto, CA 94025 USA. [Schuler, K. -P.] DESY, D-22603 Hamburg, Germany. [Zhidkov, A. G.; Nemoto, K.] Elect Power Ind, Cent Res Inst, Kanagawa 2400196, Japan. [Bulanov, S. V.] Russian Acad Sci, Prokhorov Inst Gen Phys, Moscow 119991, Russia. RP Kando, M (reprint author), Japan Atom Energy Agcy, Kansai Photon Sci Inst, Kyoto 6190215, Japan. EM zhidkov@criepi.denken.orjp RI Bulanov, Sergei/A-1721-2013 NR 76 TC 13 Z9 13 U1 0 U2 4 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD NOV PY 2007 VL 105 IS 5 BP 916 EP 926 DI 10.1134/S1063776107110064 PG 11 WC Physics, Multidisciplinary SC Physics GA 242WD UT WOS:000251756000006 ER PT J AU Banerjee, A Andrews, MJ AF Banerjee, Arindam Andrews, Malcolm J. TI A convection heat transfer correlation for a binary air-helium mixture at low reynolds number SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE convection heat transfer; hot-wire correlation; air-helium mixture ID HOT-WIRE ANEMOMETRY; GAS-MIXTURES; CALIBRATION; CYLINDERS; BEHAVIOR; TEMPERATURE; VELOCITY; PROBES; FLOWS AB The results of experiments investigating heat transfer from a hot wire in a binary mixture of air and helium are reported. The measurements were made with a constant temperature anemometer at low Reynolds numbers (0.25 bound hole radiative transitions band with a maximum at 0.76 eV. C1 Charles Univ Prague, Fac Math & Phys, Inst Phys, CZ-12116 Prague, Czech Republic. Inst Semicond Phys, UA-03028 Kiev, Ukraine. Freiburger Mat Forschungszentrum, D-79104 Freiburg, Germany. Brookhaven Natl Lab, Energy Environm & Natl Secur Directorate, Upton, NY 11973 USA. RP Franc, J (reprint author), Charles Univ Prague, Fac Math & Phys, Inst Phys, CZ-12116 Prague, Czech Republic. EM franc@karlov.mff.cuni.cz RI Fiederle, Michael/B-9750-2013; Elhadidy, Hassan/H-1462-2014; Franc, Jan/C-3802-2017 OI Franc, Jan/0000-0002-9493-3973 NR 26 TC 17 Z9 17 U1 2 U2 4 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2007 VL 22 IS 11 BP 3249 EP 3254 DI 10.1557/JMR.2007.0404 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 228YO UT WOS:000250768700033 ER PT J AU Thurber, A Hays, J Reddy, KM Shutthanandan, V Punnoose, A AF Thurber, Aaron Hays, Jason Reddy, K. M. Shutthanandan, V. Punnoose, Alex TI Fluorine doping in dilute magnetic semiconductor Sn1-xFexO2 SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article; Proceedings Paper CT Symposium on Photovoltaics, Solar Energy Materials and Thin Films held at the 2006 International Materials Research Congress CY AUG 20-24, 2006 CL Cancun, MEXICO ID ELECTRON METAMAGNETISM AB Recent studies have reported room-temperature ferromagnetism (FM) in Fe doped SnO2. The FM in semiconductors due to transition metal doping has been argued to be carrier mediated. Fluorine (F) doping in pure SnO2 has been reported to significantly increase the carrier concentration. In this work, we investigated the role of F doping in the range from 0% to 0.79% on the FM of chemically synthesized single phase Sn1-x Fe-x O-2 using X-ray diffraction, UV-Vis spectrophotometry, particle-induced X-ray emission, particle-induced gamma ray emission and magnetometry. The saturation magnetization M-s (0.03 emu/g) increased by a factor of 2.5 and the lattice volume and band gap energy decreased by 0.35 angstrom(3) and 0.2 eV, respectively, with 0.67% F doping (F/Sn atom %) compared to the sample without any fluorine. C1 Boise State Univ, Dept Phys, Boise, ID 83725 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Punnoose, A (reprint author), Boise State Univ, Dept Phys, Boise, ID 83725 USA. EM apunnoos@boisestate.edu NR 12 TC 4 Z9 4 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD NOV PY 2007 VL 18 IS 11 BP 1151 EP 1155 DI 10.1007/s10854-007-9145-4 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 201XD UT WOS:000248865000014 ER PT J AU Yang, DL Devlin, DJ Barbero, RS AF Yang, Dali Devlin, David J. Barbero, Robert S. TI Effect of hollow fiber morphology and compatibility on propane/propylene separation SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE hollow fibers; structural packing; distillation; olefins; paraffins ID OLEFIN/PARAFFIN SEPARATIONS; MEMBRANE; DISTILLATION; EXTRACTION; TECHNOLOGY; CONTACTORS; ABSORPTION; TRANSPORT; PACKING AB With a large specific area, micro-porous membranes in the geometry of hollow fibers become attractive materials for providing an effective contact area between two phases (e.g. liquid-gas and liquid-liquid). In this study, we used hollow fibers as structured packing materials in the propane/propylene distillation. We investigate the effects of morphology and compatibility of hollow fibers on separation efficiency and operation stability in the distillation process. While a hydrophobic micro-porous membrane may seem preferable for this application, an asymmetric membrane with sub-micron pore size on the liquid side may be more suitable for long-term stability of the distillation operation. A stable operation zone without flooding and loading problems is obtained when the pressure drop across the membrane is in a certain ran e. Typically, the high separation efficiency (HTU < 30 cm) is obtained when the tested modules are operated inside this stable zone. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yang, DL (reprint author), Los Alamos Natl Lab, MST 7, Los Alamos, NM 87545 USA. EM dyang@lanl.gov NR 42 TC 8 Z9 11 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD NOV 1 PY 2007 VL 304 IS 1-2 BP 88 EP 101 DI 10.1016/j.memsci.2007.07.005 PG 14 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 219CE UT WOS:000250061500011 ER PT J AU Orme, CJ Stewart, FF AF Orme, Christopher J. Stewart, Frederick F. TI Pervaporation of water from aqueous hydriodic acid and iodine mixtures using Nafion (R) membranes SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE sulfur-iodine cycle; Nafione (R); hydriodic acid; dewatering; membranes ID ACETIC-ACID; DEHYDRATION; PERMEATION; SEPARATION; HYDROGEN; POLYMER; MODEL AB The sulfur-iodine (S-I) process for generation of hydrogen has been proposed as a thermochemical cycle for study due to its predicted high efficiencies. Improvements in the cycle that will yield the greatest gain in both operating and capital costs involve chemical separations. To date, membrane processes have been largely unexplored. In this work, a materials compatibility study into the application of Nation-117 (R) and Nation-112 (R) as membranes for the pervaporation of water from aqueous mixtures of hydriodic acid (HI) and HI/iodine at 134 degrees C was conducted. Significant water permeability was measured with respect to feed water concentration, and high separation factors were calculated. Most surprisingly, HI and HI/iodine feeds acted very differently in that HI-iodine complexes formed result in higher fluxes and separation factors than what was observed for HI alone. (c) 2007 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Dept Chem Sci, Idaho Falls, ID 83415 USA. RP Stewart, FF (reprint author), Idaho Natl Lab, Dept Chem Sci, POB 1625, Idaho Falls, ID 83415 USA. EM Frederick.Stewart@inl.gov NR 22 TC 6 Z9 6 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD NOV 1 PY 2007 VL 304 IS 1-2 BP 156 EP 162 DI 10.1016/j.memsci.2007.07.028 PG 7 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 219CE UT WOS:000250061500018 ER PT J AU Sumali, H AF Sumali, Hartono TI Squeeze-film damping in the free molecular regime: model validation and measurement on a MEMS SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article ID QUALITY FACTOR; RESONATORS; VACUUM; MICROBEAM; PRESSURE AB Squeeze-film damping (SFD) is important in MEMS oscillators because it determines the quality factor of the oscillators. Published models for predicting SFD gave widely different results in the free-molecule regime, where the distance traveled by gas molecules between collisions in free space is much larger than the thickness of the squeezed gas film. The work presented here provides new experimental data for validating SFD models in that regime. The case studied here is where a rigid plate oscillates vertically while staying parallel to the substrate. The test device was an almost rectangular microplate supported by beam springs. The structure was excited by shaking the base. The velocities of numerous points on the plate and of the substrate were measured with a laser Doppler vibrometer and a microscope. An experimental modal analysis curve-fit the multiple frequency response functions to give the damping ratios. The test structure was contained in a vacuum chamber with air pressures controlled to provide a five-order-of-magnitude range of Knudsen numbers. The damping ratios from the measurements are compared with predictions from various published models. The measured damping ratios are close to predictions from models that are based on the Reynolds equation and take into account the inertia of the gas. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sumali, H (reprint author), Sandia Natl Labs, MS 1070,POB 5800, Albuquerque, NM 87185 USA. EM hsumali@sandia.gov NR 27 TC 55 Z9 55 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD NOV PY 2007 VL 17 IS 11 BP 2231 EP 2240 DI 10.1088/0960-1317/17/11/009 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 227CO UT WOS:000250635000009 ER PT J AU Im, HJ Lee, B Brown, SS Dai, S AF Im, Hee-Jung Lee, Byunghwan Brown, Suree S. Dai, Sheng TI Neutron scintillators of transparent silica xerogel monolith via a sealed container system and pi-pi interactions SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Nanoscience and Nanotechnology CY DEC 07-08, 2006 CL Korea Inst Ind Technol, Gwangju, SOUTH KOREA SP Gwangju Jeonnam Nano Technol Union HO Korea Inst Ind Technol DE scintillator; neutron sensor; sol-gel; monolith; syneresis; pi-pi interaction ID POLYMER; SEPARATION; OXIDE) AB Transparent crack-free lithiated sol-gel scintillating monoliths were developed by taking advantage of a sealed container system for a syneresis and the pi-pi interactions between sol-gel components and organic fluors to yield a better homogeneity and scintillating efficiency. The transparency of the resulting materials indicates that the new scintillating material composites are mesoscopically dispersed. The silica monolith can be prepared without cladding the monolith with an engineering plastic such as a poly(ether ether ketone) (PEEK) or a liquid mounting medium. A successful detection of neutron particles by using these lithiated scintillating monoliths was demonstrated. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Korea Atom Energy Res Inst, Nucl Chem Res Ctr, 150 Deokjin Dong, Taejon 305353, South Korea. RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 NR 22 TC 6 Z9 6 U1 0 U2 2 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD NOV PY 2007 VL 7 IS 11 SI SI BP 3784 EP 3787 DI 10.1166/jnn.2007.016 PG 4 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 226GS UT WOS:000250576500022 PM 18047058 ER PT J AU Fabbri, IM Lauto, A Lucianetti, A AF Fabbri, I. M. Lauto, A. Lucianetti, A. TI A spiral index profile for high power optical fibers SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS LA English DT Article DE propagation theory; spiral index; Hermite-Bessel modes ID WEAKLY GUIDING FIBERS; SINGLE-MODE OPERATION; LASER; WAVEGUIDE AB A new optical fiber, based on a spiral-shaped refractive index profile, is proposed. This study shows that the assumption of the spiral index profile as a perturbation of the step index profile leads to an exact solution for the fiber modes. The classic Helmholtz equation for wave propagation is split into an azimuthal Hermite eigenvalue equation and a radial Bessel eigenvalue equation. The resulting TE and TM ( transverse electric and magnetic) modes are products of Hermite and Bessel functions ( Hermite - Bessel modes). This result is complementary to the theory of step index fibers, where unperturbed cylindrical geometry requires perturbation theory for its solutions. The spiral profile fibers have the unique property of focusing light azimuthally at fixed angles and therefore the polarization of the mode is maintained. In addition, spiral fibers are proven to be particularly efficient as they produce excellent confinement of the electromagnetic fields. C1 Univ Western Australia, Dept Elect Engn, Crawley, WA 6009, Australia. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Fabbri, IM (reprint author), Univ Western Australia, Dept Elect Engn, 35 Stirling Highway, Crawley, WA 6009, Australia. RI Lucianetti, Antonio/G-7383-2014 NR 16 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1464-4258 J9 J OPT A-PURE APPL OP JI J. Opt. A-Pure Appl. Opt. PD NOV PY 2007 VL 9 IS 11 BP 963 EP 971 DI 10.1088/1464-4258/9/11/001 PG 9 WC Optics SC Optics GA 227AQ UT WOS:000250630000001 ER PT J AU Rowe, MC Wolff, JA Gardner, JN Ramos, FC Teasdale, R Heikoop, CE AF Rowe, M. C. Wolff, J. A. Gardner, J. N. Ramos, F. C. Teasdale, R. Heikoop, C. E. TI Development of a continental volcanic field: Petrogenesis of pre-caldera intermediate and silicic rocks and origin of the bandelier magmas, jemez mountains (New mexico, USA) SO JOURNAL OF PETROLOGY LA English DT Article DE crustal anatexis; fractional crystallization; Jemez mountain volcanic field; valles caldera; radiogenic isotopes; trace elements ID RIO-GRANDE RIFT; ASSIMILATION-FRACTIONAL CRYSTALLIZATION; ENERGY-CONSTRAINED ASSIMILATION; ELEMENT PARTITION-COEFFICIENTS; EXPLOSIVE RHYOLITIC VOLCANISM; DIEGO CANYON IGNIMBRITES; WESTERN UNITED-STATES; PB-ISOTOPE VARIATIONS; NORTHERN NEW-MEXICO; TRACE-ELEMENTS AB The Miocene-Quaternary Jemez Mountains volcanic field (JMVF) is the site of the Valles caldera and associated Bandelier Tuff. Caldera formation was preceded by 10 Myr of volcanism dominated by intermediate composition rocks (5770 SiO2) that contain components derived from the lithospheric mantle and Precambrian crust. Simple mixing between crust-dominated silicic melts and mantle-dominated mafic magmas, fractional crystallization, and assimilation accompanied by fractional crystallization are the principal mechanisms involved in the production of these intermediate lavas. A variety of isotopically distinct crustal sources were involved in magmatism between 13 and 6 Ma, but only one type (or two very similar types) of crust between 6 and 2 Ma. This long history constitutes a record of accommodation of mantle-derived magma in the crust by melting of country rock. The post-2 Ma Bandelier Tuff and associated rhyolites were, in contrast, generated by melting of hybridized crust in the form of buried, warm intrusive rocks associated with pre-6 Ma activity. Major shifts in the location, style and geochemical character of magmatism in the JMVF occur within a few million years after volcanic maxima and may correspond to pooling of magma at a new location in the crust following solidification of earlier magma chambers that acted as traps for basaltic replenishment. C1 Univ Texas, Dept Geol Sci, Austin, TX 78712 USA. Washington State Univ, Dept Geol, Pullman, WA 99164 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Cent Washington Univ, Dept Geol Sci, Ellensburg, WA 98926 USA. Calif State Univ Los Angeles, Dept Geol & Environm Sci, Chico, CA 95929 USA. RP Rowe, MC (reprint author), Univ Texas, Dept Geol Sci, Austin, TX 78712 USA. EM rowem@mail.utexas.edu NR 91 TC 13 Z9 13 U1 1 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-3530 EI 1460-2415 J9 J PETROL JI J. Petrol. PD NOV PY 2007 VL 48 IS 11 BP 2063 EP 2091 DI 10.1093/petrology/egm050 PG 29 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 227VC UT WOS:000250684900002 ER PT J AU Lipfert, J Columbus, L Chu, VB Lesley, SA Doniach, S AF Lipfert, Jan Columbus, Linda Chu, Vincent B. Lesley, Scott A. Doniach, Sebastian TI Size and shape of detergent micelles determined by small-angle x-ray scattering SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MEMBRANE-PROTEIN CRYSTALLIZATION; PHOTOSYNTHETIC REACTION-CENTER; MOLECULAR-THERMODYNAMIC MODEL; PHYSICAL-CHEMICAL PROPERTIES; DODECYL-SULFATE MICELLES; BETA-D-GLUCOPYRANOSIDE; ADVANCED PHOTON SOURCE; NEUTRON-SCATTERING; AQUEOUS-SOLUTION; BIOLOGICAL MACROMOLECULES AB We present a systematic analysis of the aggregation number and shape of micelles formed by nine detergents commonly used in the study of membrane proteins. Small-angle X-ray scattering measurements are reported for glucosides with 8 and 9 alkyl carbons (OG/NG), maltosides and phosphocholines with 10 and 12 alkyl carbons (DM/DDM and FC-IO/FC-12), 1,2-dihexanoyl-sn-glycero-phosphocholine (DHPC), I-palmitoyl-2hydroxy-sn-glycero-3-[phospho-rac-(1 -glycerol)] (LPPG), and 3-[(3-cholamidopropyl)dimethylammoniol-lpropane sulfonate (CHAPS). The SAXS intensities are well described by two-component ellipsoid models, with a dense outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core. These models provide an intermediate resolution view of micelle size and shape. In addition, we show that Guinier analysis of the forward scattering intensity can be used to obtain an independent and model-free measurement of the micelle aggregation number and radius of gyration. This approach has the advantage of being easily generalizable to protein-detergent complexes, where simple geometric models are inapplicable. Furthermore, we have discovered that the position of the second maximum in the scattering intensity provides a direct measurement of the characteristic head group-head group spacing across the micelle core. Our results for the micellar aggregation numbers and dimensions agree favorably with literature values as far as they are available. We de novo determine the shape of FC-10, FC-12, DM, LPPG, and CHAPS micelles and the aggregation numbers of FC-10 and OG to be ca. 50 and 250, respectively. Combined, these data provide a comprehensive view of the determinants of micelle formation and serve as a starting point to correlate detergent properties with detergent -protein interactions. C1 Stanford Univ, Dept Phys & Appl Phys, Biophys Program, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Inst Pasteur, Unite Biochim Struct, F-75724 Paris, France. Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. Scripps Res Inst, Joint Ctr Struct Genom, La Jolla, CA 92037 USA. Genom Inst Novartis Res Fdn, San Diego, CA 92121 USA. RP Doniach, S (reprint author), Stanford Univ, Dept Phys & Appl Phys, Biophys Program, Stanford, CA 94305 USA. EM doniach@drizzle.stanford.edu RI Columbus, Linda/F-5877-2010 OI Columbus, Linda/0000-0002-2574-0561 FU NIGMS NIH HHS [1F32GM068286, F32 GM068286, P01 GM0066275, P50 GM62411, U54 GM074898] NR 62 TC 103 Z9 104 U1 5 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 1 PY 2007 VL 111 IS 43 BP 12427 EP 12438 DI 10.1021/jp073016l PG 12 WC Chemistry, Physical SC Chemistry GA 225ZJ UT WOS:000250556600013 PM 17924686 ER PT J AU Stanton, CL Kuo, IFW Mundy, CJ Laino, T Houk, KN AF Stanton, Courtney L. Kuo, I-Feng W. Mundy, Christopher J. Laino, Teodoro Houk, K. N. TI QM/MM metadynamics study of the direct decarboxylation mechanism for orotidine-5 '-monophosphate decarboxylase using two different QM regions: Acceleration too small to explain rate of enzyme catalysis SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID OROTIDINE MONOPHOSPHATE DECARBOXYLASE; SPACE GAUSSIAN PSEUDOPOTENTIALS; SET MODEL CHEMISTRY; PROFICIENT ENZYME; 5'-MONOPHOSPHATE DECARBOXYLASE; MOLECULAR-DYNAMICS; OROTIDINE-5'-PHOSPHATE DECARBOXYLASE; 5'-PHOSPHATE DECARBOXYLASE; ACTIVE-SITE; DENSITY AB Despite decades of study, the mechanism by which orotidine-5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine monophosphate remains unresolved. A computational investigation of the direct decarboxylation mechanism has been performed using mixed quantum mechanical/molecular mechanical (QM/MM) dynamics simulations. The study was performed with the program CP2K that integrates classical dynamics and ab initio dynamics based on the Born- Oppenheimer approach. Two different QM regions were explored. The free energy barriers for direct decarboxylation of orotidine-5'-monophosphate (OMP) in solution and in the enzyme (using the larger QM region) were determined with the metadynamics method to be 40 and 33 kcal/mol, respectively. The calculated change in activation free energy (Delta Delta G(double dagger)) on going from solution to the enzyme is therefore -7 kcal/mol, far less than the experimental change of -23 kcal/ mol (for kappa(cat.)/kappa(cat.): Radzicka, A.; Wolfenden, R., Science 1995, 267, 90-92). These results do not support the direct decarboxylation mechanism that has been proposed for the enzyme. However, in the context of QM/MM calculations, it was found that the size of the QM region has a dramatic effect on the calculated reaction barrier. C1 Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. ETH, Dept Chem & Appl Biosci, CH-6900 Lugano, Switzerland. RP Houk, KN (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 607 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM houk@chem.ucla.edu RI Liu, Peng/D-1233-2013 FU NIGMS NIH HHS [R01 GM036700, R01 GM036700-27] NR 62 TC 40 Z9 40 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 1 PY 2007 VL 111 IS 43 BP 12573 EP 12581 DI 10.1021/jp074858n PG 9 WC Chemistry, Physical SC Chemistry GA 225ZJ UT WOS:000250556600031 PM 17927240 ER PT J AU Chialvo, AA Simonson, JM AF Chialvo, A. A. Simonson, J. M. TI H3O+Cl- pair association in steam and highly compressible aqueous environments SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CONSTRAINED MOLECULAR-DYNAMICS; MINERAL-SOLUTION EQUILIBRIA; THERMODYNAMIC PROPERTIES; HIGH-TEMPERATURE; SUPERCRITICAL WATER; HYDROCHLORIC-ACID; ION-PAIR; ELECTRICAL CONDUCTANCE; COEXISTENCE PROPERTIES; ELECTROLYTE-SOLUTIONS AB An extensive molecular-based simulation effort is conducted to analyze ion-pairing behavior in near-critical dilute HC1 aqueous solutions along three near- (super- and sub-) critical isotherms over a wide density range, that is, from steam-like to liquid-like environments. The study encompasses the determination of the ion-pair association constant via potential of mean force calculations and the resulting degree of ion-pair association. The main goal behind this effort is to address a few relevant questions regarding the thermodynamic and corresponding microscopic behavior of the ion-pair formation in steamlike and highly compressible environments for which experimental data are extremely difficult to obtain accurately and in the process to illustrate the "uneventful" behavior of the association constant along the critical isotherm of the solvent. Direct comparison is made between simulation, theoretical developments, and experiment to identify potential pitfalls in the interpretation of experimental data and subsequent macroscopic modeling. C1 Oak Ridge Natl Lab, Aqueous Chem & Geochem Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Chialvo, AA (reprint author), Oak Ridge Natl Lab, Aqueous Chem & Geochem Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM chialvoaa@ornl.gov OI Chialvo, Ariel/0000-0002-6091-4563 NR 63 TC 8 Z9 8 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 1 PY 2007 VL 111 IS 43 BP 15569 EP 15574 DI 10.1021/jp073518z PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 226AP UT WOS:000250559900011 ER PT J AU Henderson, D Trokhymchuk, A Kalyuzhnyi, YV Gee, RH Lacevic, N AF Henderson, Douglas Trokhymchuk, Andrij Kalyuzhnyi, Yurij V. Gee, Richard H. Lacevic, Naida TI Integral equation study of particle confinement effects in a polymer/particle mixture SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SPHERE CHAIN FLUIDS; ORNSTEIN-ZERNIKE EQUATIONS; THERMODYNAMIC PERTURBATION-THEORY; DIRECTIONAL ATTRACTIVE FORCES; MOLECULAR-DYNAMICS SIMULATION; DENSITY-FUNCTIONAL THEORY; MONTE-CARLO-SIMULATION; STICKY 2-POINT MODEL; CHEMICAL ASSOCIATION; PRIMITIVE MODELS AB A product-reactant Ornstein-Zernike (PROZA) extension of the Wertheim's multidensity integral equation theory techniques is applied to evaluate the structuring of the PDMS polymer melt in the bulk and in the presence of a single and a pair of silica surfaces. By comparing with simulation data, we find that the PROZA theory is not very accurate in reproducing the details of the total (the sum of intramolecular and intermolecular correlations) atom-atom radial distribution function of the united atom PDMS model. At the same time, the inhomogeneous calculations based on the PROZA theory are qualitatively correct in describing the local density distribution of the silicon atoms and a single methyl group near silica surfaces. Relating the flat surface geometry to the spherical geometry by means of the Derjaguin approximation, the results obtained for the two-surface system are used to discuss the two-particle aggregation tendency as well as some general aspects of the origin of the reinforcement phenomenon in a polymer/particle composite. C1 Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine. Brigham Young Univ, Dept Chem, Provo, UT 84602 USA. Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. RP Henderson, D (reprint author), Inst Condensed Matter Phys, Svientsitskoho 1, UA-79011 Lvov, Ukraine. RI Trokhymchuk, Andrij/D-1917-2012 OI Trokhymchuk, Andrij/0000-0003-2257-0779 NR 56 TC 2 Z9 2 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 1 PY 2007 VL 111 IS 43 BP 15625 EP 15633 DI 10.1021/jp073582g PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 226AP UT WOS:000250559900018 ER PT J AU Rother, G Melnichenko, YB Cole, DR Frielinghaus, H Wignall, GD AF Rother, Gernot Melnichenko, Yuri B. Cole, David R. Frielinghaus, Henrich Wignall, George D. TI Microstructural characterization of adsorption and depletion regimes of supercritical fluids in nanopores SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ANGLE NEUTRON-SCATTERING; PHASE-SEPARATION; BINARY-FLUID; ACTIVATED CARBON; POROUS CARBONS; SURFACE; MIXTURE; SYSTEMS; GLASS; PORE AB Fluid accommodation in porous media has been studied over a wide range of pressures at three supercritical temperatures by small-angle neutron scattering. A new formalism gives for the first time the mean density and volume of the adsorbed fluid phase formed in the pores from experimental data; thus, excess, absolute, and total adsorption become measurable quantities without the introduction of further assumptions. Results on propane adsorption to a silica aerogel show the formation of a thin adsorption layer of high density at low bulk fluid pressures and densities. In that region, the density of the adsorption layer increases with increasing fluid density while its volume remains approximately constant. Depletion of the fluid from the pore space is found near and above the critical density, which leads to negative values of the excess adsorption. At high fluid densities, the pores are evenly filled with fluid of lower density than the bulk fluid. The total amount of fluid confined in the pore spaces increases with the fluid density below the critical density and remains approximately constant at higher fluid densities. Application of the new model also gives insight into the sorption properties of supercritical carbon dioxide in silican aerogel. The concept presented here has potential to be adopted for the study of numerous other sub- and supercritical fluids and fluid mixtures in a variety of micro- and nanoporous materials. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Scattering Sci Div, Oak Ridge, TN 37831 USA. Forschungszentrum Julich, IFF, D-52425 Julich, Germany. RP Rother, G (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM rotherg@ornl.gov RI Rother, Gernot/B-7281-2008; Frielinghaus, Henrich/K-6017-2013 OI Rother, Gernot/0000-0003-4921-6294; Frielinghaus, Henrich/0000-0002-8812-8783 NR 38 TC 36 Z9 36 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 1 PY 2007 VL 111 IS 43 BP 15736 EP 15742 DI 10.1021/jp073698c PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 226AP UT WOS:000250559900030 ER PT J AU Liu, JC Monson, PA van Swol, F AF Liu, J.-C. Monson, P. A. van Swol, Frank TI Studies of a lattice model of water confined in a slit pore SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INDUCED PHASE-TRANSITIONS; DENSITY-FUNCTIONAL-THEORY; WALLED CARBON NANOTUBES; MEAN-FIELD THEORY; CAPILLARY CONDENSATION; ACTIVATED CARBONS; STATISTICAL-MECHANICS; ADSORPTION BEHAVIOR; POROUS MATERIALS; NARROW PORES AB We describe an extension of the Bell-Salt lattice model of water to the study of water confined in a slit pore. Wall-fluid interactions are chosen to be qualitatively representative of water interacting with a graphite surface. We have calculated the bulk vapor-liquid phase coexistence for the model through direct Monte Carlo simulations of the vapor-liquid interface. Adsorption and desorption isotherms in the slit pore were calculated using grand canonical ensemble Monte Carlo simulations. In addition, the thermodynamic conditions of vapor-liquid equilibrium for the confined fluid were determined. Our results are consistent with recent calculations for off-lattice models of confined water that show metastable vapor states of confined water persisting beyond the bulk saturation conditions, except for the narrowest pores. The results are similarly consistent with recent experiments on water adsorption in graphitized carbon black. C1 Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Monson, PA (reprint author), Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. NR 53 TC 8 Z9 8 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 1 PY 2007 VL 111 IS 43 BP 15976 EP 15981 DI 10.1021/jp0738309 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 226AP UT WOS:000250559900056 ER PT J AU Lima, ERA Biscaia, EC Bostrom, M Tavares, FW Prausnitz, JM AF Lima, Eduardo R. A. Biscaia, Evaristo C., Jr. Bostroem, Mathias Tavares, Frederico W. Prausnitz, John M. TI Osmotic second virial coefficients and phase diagrams for aqueous proteins from a much-improved Poisson-Boltzmann equation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SPHERICAL COLLOIDAL PARTICLES; HOFMEISTER-SERIES; RELATIVE EFFECTIVENESS; SALT IDENTITY; LYSOZYME; FORCES; PH; CRYSTALLIZATION; SOLUBILITY; SURFACE AB A much-improved Poisson -Boltzmann equation for two globular proteins using bispherical coordinates is used to establish the potential of mean force (PMF) between two globular lysozyme particles. Calculations presented here include previously ignored ion-protein none ectro static potentials. The lysozyme-lysozyme PMF is used to calculate osmotic second virial coeffiencients. The theoretical PMF curve as a function of sodium chloride concentration is successfully compared with that from experiment. Our theoretical PMF shows how the second virial coefficient and the phase diagram depends on salt concentration, pH and, most notably, on the choice of salt in the aquous solution. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Regensburg, Inst Phys & Theoret Chem, D-93040 Regensburg, Germany. Linkoping Univ, Dept Phys Chem & Biol, Div Theory & Modeling, SE-58183 Linkoping, Sweden. Univ Fed Rio de Janeiro, COPPE, Programa Engn Quim, BR-21945970 Rio De Janeiro, Brazil. Univ Fed Rio de Janeiro, Escola Quim, BR-21949900 Rio De Janeiro, Brazil. RP Prausnitz, JM (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM Prausnit@cchem.berkeley.edu RI Lima, Eduardo/F-3508-2015; OI Rocha de Almeida Lima, Eduardo/0000-0003-4767-1672 NR 29 TC 26 Z9 27 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 1 PY 2007 VL 111 IS 43 BP 16055 EP 16059 DI 10.1021/jp074807q PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 226AP UT WOS:000250559900067 ER PT J AU Curro, NJ Pines, D AF Curro, N. J. Pines, D. TI Anisotropic spin fluctuations in CeCoIn5 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article; Proceedings Paper CT 1st International Symposium of Quantum Beam Science Directorate CY AUG 20-25, 2006 CL Tokai, JAPAN SP Japan Atom Energy Agcy DE superconductors; nuclear magnetic resonance; magnetic properties ID UNCONVENTIONAL SUPERCONDUCTIVITY AB CeCoIn5 is an unconventional heavy fermion superconductor with a relatively large transition temperature T-c = 2.3 K. NMR measurements of the spin lattice relaxation rate at the In(1) site reveal a significant anisotropy of the fluctuating hyperfine fields, which reverses below 30 K. These results suggest that two-dimensional fluctuations of the Ce 4f moments are relevant for the superconducting pairing. Published by Elsevier Ltd. C1 [Curro, N. J.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys, Los Alamos, NM 87545 USA. [Pines, D.] Univ Calif Davis, Davis, CA 95616 USA. RP Curro, NJ (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys, POB 1663, Los Alamos, NM 87545 USA. EM curro@lanl.gov RI Curro, Nicholas/D-3413-2009 OI Curro, Nicholas/0000-0001-7829-0237 NR 9 TC 7 Z9 7 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD NOV PY 2007 VL 68 IS 11 SI SI BP 2028 EP 2030 DI 10.1016/j.jpcs.2007.08.020 PG 3 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 240NL UT WOS:000251594200005 ER PT J AU Ohishi, K Heffner, RH Ito, TU Higemoto, W Morris, GD Hur, N Bauer, ED Sarrao, JL Thompson, JD MacLaughlin, DE Shu, L AF Ohishi, K. Heffner, R. H. Ito, T. U. Higemoto, W. Morris, G. D. Hur, N. Bauer, E. D. Sarrao, J. L. Thompson, J. D. MacLaughlin, D. E. Shu, L. TI mu SR study of the effects of Ce dilution on the development of the heavy-fermion state in (Ce, La)(2)IrIn8 SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article; Proceedings Paper CT 1st International Symposium of Quantum Beam Science Directorate CY AUG 20-25, 2006 CL Tokai, JAPAN SP Japan Atom Energy Agcy DE metals; alloys AB We have performed muon Knight shift measurements in the heavy-fermion compound (Ce1-xLax)(2)IrIn8, x = 0.1, in 1T magnetic field applied along the crystalline c-axis. Although the Knight shift K scales linearly with susceptibility x above T similar to 20 K, a breakdown of this relationship was observed below a temperature T* = 20.1(8) K. It was found that this Knight shift anomaly occurs due to a low-temperature susceptibility component x(cf)similar to(1 - T/T*) ln(T*/T), corresponding to the formation of a coherent heavy-fermion state below T*, as found previously in the x = 0 compound. The characteristic temperature T* is reduced by about 4 K for 10% La doping, indicating a reduction in the strength of the intersite Ce fluctuations associated with the heavy electron state. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Ohishi, K.; Heffner, R. H.; Ito, T. U.; Higemoto, W.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Ito, T. U.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Morris, G. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hur, N.] Inha Univ, Dept Phys, Inchon 402751, South Korea. [Bauer, E. D.; Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [MacLaughlin, D. E.; Shu, L.] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. RP Ohishi, K (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. EM ohishi.kazuki@jaea.go.jp RI Ohishi, Kazuki/E-9592-2010; Bauer, Eric/D-7212-2011; Shu, Lei/E-7524-2012; Hur, Namjung/G-3752-2013; OI Ohishi, Kazuki/0000-0003-1494-6502; Ito, Takashi/0000-0003-1971-4313; Bauer, Eric/0000-0003-0017-1937 NR 9 TC 2 Z9 2 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD NOV PY 2007 VL 68 IS 11 SI SI BP 2068 EP 2071 DI 10.1016/j.jpcs.2007.08.045 PG 4 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 240NL UT WOS:000251594200015 ER PT J AU Takahashi, N Shibata, K Sato, T Tamura, I Kajimoto, R Harjo, S Oikawa, K Arai, M Mezei, F AF Takahashi, N. Shibata, K. Sato, T. J. Tamura, I. Kajimoto, R. Harjo, S. Oikawa, K. Arai, M. Mezei, F. TI Instrumental design and expected performance of coupled-moderator near-back scattering spectrometer at J-PARC SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article; Proceedings Paper CT 1st International Symposium of Quantum Beam Science Directorate CY AUG 20-25, 2006 CL Tokai, JAPAN SP Japan Atom Energy Agcy DE C. neutron scattering AB A near-backscattering (n-BS) crystal-analyzer neutron inelastic spectrometer, DIANA, has been proposed for construction at Japan Proton Accelerator Research Complex. It has originally been designed to view a decoupled non-poisoned moderator in order to obtain high intensity and good energy resolution. Recently, we have reconsidered the instrumental parameters including the type of moderator, by performing Monte-Carlo simulations in order to obtain better performance. Among four virtual n-BS spectrometers on different beam sources moderators, a coupled-moderator-source spectrometer has shown the best performance, i.e. compared to the original DIADA design between ninefold and fivefold enhanced intensities have been obtained with 21%-better to 35%-worse energy resolutions. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Takahashi, N.; Shibata, K.; Harjo, S.; Oikawa, K.; Arai, M.] J PARC Ctr, Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Sato, T. J.] Univ Tokyo, Inst Solid State Phys, Tokai, Ibaraki 3191106, Japan. [Tamura, I.] Tokai Res & Dev Ctr, Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Kajimoto, R.] Quantum Beam Sci Directorate, Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Mezei, F.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. [Mezei, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Takahashi, N (reprint author), J PARC Ctr, Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. EM takahashi.nobuaki68@jaea.go.jp RI Sato, Taku/I-7664-2015 OI Sato, Taku/0000-0003-2511-4998 NR 10 TC 6 Z9 6 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD NOV PY 2007 VL 68 IS 11 SI SI BP 2199 EP 2203 DI 10.1016/j.jpcs.2007.08.054 PG 5 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 240NL UT WOS:000251594200046 ER PT J AU Estill, JC Rebak, RB AF Estill, John C. Rebak, Raul B. TI Anodic behavior of specimens prepared from a full-diameter alloy 22 fabricated mockup container for nuclear waste SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 17-21, 2005 CL Denver, CO SP Amer Soc Mech Engineers DE N06022; container fabrication; welding; corrosion rate; repassivation; potential AB Alloy 22 (N06022) has been extensively tested for general and localized corrosion behavior both in the wrought annealed condition and in the as-welded condition. In general, the specimens for laboratory testing are mostly prepared from flat plates of material. It is important to determine if the process of fabricating a container will affect the corrosion performance of this alloy. Thus, specimens for corrosion testing were prepared directly from a fabricated full-diameter Alloy 22 container Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded container were the same as those from flat welded plates. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Estill, JC (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave,L-631, Livermore, CA 94550 USA. OI Rebak, Raul/0000-0002-8070-4475 NR 14 TC 1 Z9 1 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD NOV PY 2007 VL 129 IS 4 BP 729 EP 736 DI 10.1115/1.2767366 PG 8 WC Engineering, Mechanical SC Engineering GA 229RZ UT WOS:000250823200021 ER PT J AU White, RB Dean, SW Pantoya, ML Hirschfeld, DA Gill, W Erikson, WW AF White, R. B. Dean, S. W. Pantoya, M. L. Hirschfeld, D. A. Gill, W. Erikson, W. W. TI Effect of aluminum on heat flux from a simulated rocket propellant flame SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID AEROSOL-PARTICLES; METAL PARTICLES; BOUNDARY-LAYER; COMBUSTION; IGNITION; AIR; THERMOPHORESIS; TEMPERATURE; GASES; MODEL AB Aluminum particles have been shown to enhance the performance in propellant systems by reacting and releasing significant chemical energy that contributes to the overall heat release. However, the heat transfer characteristics from a propellant to a target are not well understood. In this study, impinging flow geometries of a simulated propellant flame seeded with aluminum particles were investigated. Although the contribution of aluminum was the main focus of this study, inert powders of alumina-titania and yttria stabilized zirconia were also used to compare and quantify the heat flux contributions of reacting, melting, and nonmelting powders, respectively. An oxygen-acetylene torch seeded with aluminum, alumina-titania, or yttria stabilized zirconia was used to analyze the different heat transfer characteristics from each material. Copper coupons captured and quenched reacting particulates from the flame. A scanning electron microscope with energy dispersive spectroscopy and a differential scanning calorimeter were used to examine the degree of completion of aluminum oxidation. Results show that yttria stabilized zirconia experience a 1.9% increase in heat flux compared with gas-only flames. Flames seeded with alumina-titania showed an 80.2% increase in heat flux, whereas aluminum particles provide a 232.7% gain over gas-only flames. Results from the differential scanning calorimeter show that aluminum consumption percentages for flames with a 2.5 oxygen-fuel ratio are an average of 8.6% higher than those for a 1.5% oxygen-fuel ratio. The percent of aluminum consumed in the reaction generally increases with standoff distance. C1 Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. New Mexico Inst Min & Technol, Mat & Met Engn Dept, Socorro, NM 87801 USA. Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP White, RB (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. NR 44 TC 5 Z9 5 U1 1 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD NOV-DEC PY 2007 VL 23 IS 6 BP 1255 EP 1262 DI 10.2514/1.28161 PG 8 WC Engineering, Aerospace SC Engineering GA 231HD UT WOS:000250936400012 ER PT J AU Yang, F Jaitly, N Jayachandran, H Luo, QZ Monroe, ME Du, XX Gritsenko, MA Zhang, R Anderson, DJ Purvine, SO Adkins, JN Moore, RJ Mottaz, HM Ding, SJ Lipton, MS Camp, DG Udseth, HR Smith, RD Rossie, S AF Yang, Feng Jaitly, Navdeep Jayachandran, Hemalatha Luo, Quanzhou Monroe, Matthew E. Du, Xiuxia Gritsenko, Marina A. Zhang, Rui Anderson, David J. Purvine, Samuel O. Adkins, Joshua N. Moore, Ronald J. Mottaz, Heather M. Ding, Shi-Jian Lipton, Mary S. Camp, David G., II Udseth, Harold R. Smith, Richard D. Rossie, Sandra TI Applying a targeted label-free approach using LC-MS AMT tags to evaluate changes in protein phosphorylation following phosphatase inhibition SO JOURNAL OF PROTEOME RESEARCH LA English DT Article ID HUMAN PYRUVATE-DEHYDROGENASE; SMOOTH-MUSCLE CONTRACTION; ELONGATION FACTOR-II; MASS-SPECTROMETRY; TYROSINE PHOSPHORYLATION; MYOSIN PHOSPHATASE; RHO-KINASE; PHOSPHOPROTEOMIC ANALYSIS; VIMENTIN PHOSPHORYLATION; BARRIER DYSFUNCTION AB To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation site and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type 11 Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases. C1 Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA. Purdue Univ, Purdue Canc Ctr, W Lafayette, IN 47907 USA. Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Rossie, S (reprint author), Purdue Univ, Dept Biochem, 175 S Univ St, W Lafayette, IN 47907 USA. EM rossie@purdue.edu RI Luo, Quanzhou/B-4908-2011; Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU NCRR NIH HHS [P41 RR018522-05, RR18522, P41 RR018522]; NINDS NIH HHS [NS031221, R01 NS031221] NR 70 TC 19 Z9 19 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD NOV PY 2007 VL 6 IS 11 BP 4489 EP 4497 DI 10.1021/pr070068e PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 228GU UT WOS:000250718700041 PM 17929957 ER PT J AU Eeltink, S Geiser, L Svec, F Frechet, JMJ AF Eeltink, Sebastiaan Geiser, Laurent Svec, Frantisek Frechet, Jean M. J. TI Optimization of the porous structure and polarity of polymethacrylate-based monolithic capillary columns for the LC-MS separation of enzymatic digests SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE column technology; high-performance liquid chromatography; monolithic stationary phase; peptides; temperature ID PERFORMANCE LIQUID-CHROMATOGRAPHY; ORGANIC POLYMER MONOLITHS; IN-SITU POLYMERIZATION; STATIONARY PHASES; MASS-SPECTROMETRY; SURFACE-CHEMISTRY; SILICA MONOLITH; ELECTROCHROMATOGRAPHY; MEDIA; PROTEINS AB The porous structure as well as the polarity of methacrylate ester-based monolithic stationary phases has been optimized to achieve the separation of various peptides originating from enzymatic digestion. The porous structure, determined by the size of both pores and microglobules, was varied through changes in the composition of porogenic solvents in the polymerization mixture, while the polarity was controlled through the incorporation of butyl, lauryl, or octadecyl methacrylate in the polymer backbone. Both the morphology and the chemistry of the monoliths had a significant effect on the retention and efficiency of the capillary columns. The best resolution of peptidic fragments obtained by digestion of Cytochrome c with trypsin in solution was obtained in a gradient LC-MS mode using a monolithic capillary column of poly(lauryl methaciylate-co-etllylene dimethacrylate) featuring small pores and small microglobules. Raising the temperature from 25 to 60 degrees C enabled separations to be carried out at 40% higher flow rates. Separations carried out at 60 degrees C with a steeper gradient proceeded without loss of performance in half the time required for a comparable separation at room temperature. Our preparation technique affords monolithic columns with excellent column-to-column and run-to-run repeatability of retention times and pressure drops. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu FU NIGMS NIH HHS [R01 GM044885, GM44885, R01 GM044885-15] NR 34 TC 61 Z9 63 U1 1 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9306 J9 J SEP SCI JI J. Sep. Sci. PD NOV PY 2007 VL 30 IS 17 BP 2814 EP 2820 DI 10.1002/jssc.200700185 PG 7 WC Chemistry, Analytical SC Chemistry GA 238QE UT WOS:000251461500003 PM 17893847 ER PT J AU Assefa, Z Kalachnikova, K Haire, RG Sykora, RE AF Assefa, Zerihun Kalachnikova, Katrina Haire, Richard G. Sykora, Richard E. TI Hydrothermal synthesis, structural, Raman, and luminescence studies of Am[M(CN)(2)](3) center dot 3H(2)O and Nd[M(CN)(2)](3) center dot 3H(2)O (M = Ag, Au): Bimetallic coordination polymers containing both trans-plutonium and transition metal elements SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Trans-plutonium complexes; Coordination polymer; Emission; Hydrothermal syntheses ID LANTHANIDE ION COMPLEXES; STATE ENERGY-TRANSFER; SPECTROSCOPIC PROPERTIES; CRYSTAL-STRUCTURES; 1,3,5-TRIAZA-7-PHOSPHAADAMANTANE TPA; FLUOROZIRCONATE GLASS; THEORETICAL CHEMISTRY; MOLECULAR RECOGNITION; TRIVALENT AMERICIUM; ACTINIDE COMPLEXES AB The polymeric compounds consisting of the man-made element, americium, and gold and silver dicyanides were prepared under mild hydrothermal conditions at 120 degrees C. It was found that the americium ion and the transition metal ions are interconnected through cyanide bridging in the compounds. Given the similarities in the radii of americium and neodymium, crystals of the latter were also characterized for comparison purposes. The four compounds are isostructural and crystallize in the hexagonal space group, P63/mcm, with only slight differences in their unit cell parameters. Crystallographic data (MoK alpha, lambda = 0.71073 angstrom): Am[Ag(CN)(2)](3) center dot 3H(2)O (1), a = 6.7205(10) angstrom, c = 18.577(3) angstrom, V = 726.64(19), Z = 2; Am[Au(CN)(2)](3) center dot 3H(2)O (2), a = 6.666(2) angstrom, c = 18.342(3) angstrom, V = 705.9(4), Z = 2; Nd[Ag(CN)(2)](3) center dot 3H(2)O (3), a = 6.7042(4) angstrom, c = 18.6199(14) angstrom, V = 724.77(8), Z = 2; and Nd[Au(CN)(2)](3) center dot 3H(2)O (4), a = 6.6573(13) angstrom, c = 18.431(4) angstrom, V = 707.2(2), Z = 2. The coordination around the Am and/or Nd consists of six N-bound CN- groups resulting in a trigonal prismatic arrangement. Three capping oxygen atoms of coordinated water molecules complete the tricapped trigonal prismatic coordination environment, providing a total coordination number of nine for the f-elements. Raman spectroscopy, which compliments the structural analyses, reveals that the four compounds display strong signals in the nu(CN) stretching region. When compared with KAg(CN)(2) or KAu(CN)(2), the nCN stretching frequencies for these compounds blue-shift due to bridging of the dicyanometallate ions with the f-element ions. There is subsequent reduction in electron density at the cyanide center. Compared with the silver systems, the nCN frequency appears at higher energy in the gold dicyanide complexes. This shift is consistent with the structural data where the carbon-nitrogen bond distance is found to be shorter in the gold dicyanides. (C) 2007 Elsevier Inc. All rights reserved. C1 [Assefa, Zerihun] N Carolina Agr & Tech State Univ, Dept Chem, Greensboro, NC 27411 USA. [Kalachnikova, Katrina; Sykora, Richard E.] Univ S Alabama, Dept Chem, Mobile, AL 36688 USA. [Haire, Richard G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Assefa, Z (reprint author), N Carolina Agr & Tech State Univ, Dept Chem, Greensboro, NC 27411 USA. EM zassefa@ncat.edu; rsykora@jaguar1.usouthal.edu FU Division of Chemical Sciences, Geosciences and Biosciences; OBES; USDOE [DE-AC05-00OR22725]; National Oceanic and Atmospheric Administration [NA06OAR4810187] FX Support for this work was provided by the Division of Chemical Sciences, Geosciences and Biosciences, OBES, USDOE, under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. The 243 Am isotope used in these studies was supplied by the USDOE through its production program at ORNL. Dr. Radu Custelcean and Dr. Bruce Moyer at ORNL are thanked for their generous allocation of X-ray diffractometer time. The authors would also like to thank Travis H. Bray at Auburn University for single-crystal X-ray data sets collected on compounds 3 and 4 and Peter Khalifah at the University of Massachusetts for measuring powder X-ray diffraction patterns on compounds 3 and 4. ZA also acknowledges the support from the National Oceanic and Atmospheric Administration Educational Partnership Program (NOAA-EPP) Award no. NA06OAR4810187 to North Carolina A&T State University. NR 60 TC 15 Z9 15 U1 0 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD NOV PY 2007 VL 180 IS 11 BP 3121 EP 3129 DI 10.1016/j.jssc.2007.08.032 PG 9 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 368PY UT WOS:000260636200017 ER PT J AU Ben-Naim, E Zippelius, A AF Ben-Naim, E. Zippelius, A. TI Singular energy distributions in driven and undriven granular media SO JOURNAL OF STATISTICAL PHYSICS LA English DT Article DE granular materials; kinetic theory; nonequilibrium statistical physics; energy distribution; rotation ID INELASTIC PARTICLES; VELOCITY STATISTICS; ROTATIONAL ENERGY; KINETIC-THEORY; SPHERES; DYNAMICS; GAS; HYDRODYNAMICS; EQUATIONS; COLLAPSE AB We study the kinetic theory of driven and undriven granular gases, taking into account both translational and rotational degrees of freedom. We obtain the high-energy tail of the stationary bivariate energy distribution, depending on the total energy E and the ratio x = root E-w/ E of rotational energy E-w to total energy. Extremely energetic particles have a unique and well-defined distribution f(x) which has several remarkable features: x is not uniformly distributed as in molecular gases; f(x) is not smooth but has multiple singularities. The latter behavior is sensitive to material properties such as the collision parameters, the moment of inertia and the collision rate. Interestingly, there are preferred ratios of rotational-to-total energy. In general, f(x) is strongly correlated with energy and the deviations from a uniform distribution grow with energy. We also solve for the energy distribution of freely cooling Maxwell Molecules and find qualitatively similar behavior. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM ebn@lanl.gov; annette@theorie.physik.uni-goettingen.de RI Ben-Naim, Eli/C-7542-2009 OI Ben-Naim, Eli/0000-0002-2444-7304 NR 61 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0022-4715 J9 J STAT PHYS JI J. Stat. Phys. PD NOV PY 2007 VL 129 IS 4 BP 677 EP 697 DI 10.1007/s10955-007-9411-0 PG 21 WC Physics, Mathematical SC Physics GA 221PH UT WOS:000250239300005 ER PT J AU Campi, G Proffen, T Qiu, X Bozin, ES Billinge, SJL Agrestini, S Saini, NL Bianconi, A AF Campi, G. Proffen, T. Qiu, X. Bozin, E. S. Billinge, S. J. L. Agrestini, S. Saini, N. L. Bianconi, A. TI Local lattice dynamics in the Mg0.5Al0.5B2 superconductor SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article; Proceedings Paper CT 5th International Conference on Stripes and High Tc Superconductivity CY DEC 17-22, 2006 CL Rome, ITALY DE MgB2; neutron diffraction ID MGB2; DENSITY; DRIVEN AB We have studied temperature evolution of the local as well as the average crystal structure of MgB2 and Mg0.5Al0.5B2 using real-space atomic pair distribution function (PDF) measured by high resolution neutron powder diffraction in a wide temperature range of T=10-600 K. The mean square relative displacements (MSRD) of atomic B-B, B-Mg (B-Al) pairs are compared with mean-square displacements (MSD) to calculate atomic correlations. In spite of the enhanced atomic disorder in Mg0.5Al0.5B2, where the boron-boron, and boron-magnesium pair motions are found to be small, we find that the same atomic correlations in MgB2 assume even slightly lower values and remain nearly constant in a wide temperature range of 0-600 K. This anomalous behavior and its physical interpretation provoke new questions on our understanding to the local lattice dynamics in this material. C1 CNR, Ist Cristallograf, I-00016 Monterotondo, Italy. Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. RP Campi, G (reprint author), CNR, Ist Cristallograf, Via Salaria Km 29-300, I-00016 Monterotondo, Italy. EM gaetano.campi@ic.cur.it RI Bozin, Emil/E-4679-2011; Lujan Center, LANL/G-4896-2012; Bianconi, Antonio/J-3997-2013; Saini, Naurang/J-7918-2013; Proffen, Thomas/B-3585-2009; OI Bianconi, Antonio/0000-0001-9795-3913; Saini, Naurang/0000-0003-3684-1517; Proffen, Thomas/0000-0002-1408-6031; Campi, Gaetano/0000-0001-9845-9394 NR 34 TC 2 Z9 2 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD NOV PY 2007 VL 20 IS 7-8 BP 505 EP 510 DI 10.1007/s10948-007-0277-9 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 229WB UT WOS:000250835800005 ER PT J AU Egami, T AF Egami, T. TI Electronically driven superlattice in the cuprates SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article; Proceedings Paper CT 5th International Conference on Stripes and High Tc Superconductivity CY DEC 17-22, 2006 CL Rome, ITALY DE intermediate phase; superlattice; pseudogap phase; cuprates ID HIGH-TEMPERATURE SUPERCONDUCTORS; COPPER-OXIDE SUPERCONDUCTORS; EXCITATIONS; LIQUID AB Upon doping the Mott-Hubbard insulator, an intermediate phase may be formed before the system reaches the Fermi-liquid phase. The pseudogap state and the spin/charge stripe phase are the possible examples of such a phase. We propose a new intermediate phase that has the form of the superlattice with 2 root 2ax2 root 2b in the CuO2 plane, and allows the coexistence of the Mott-Hubbard insulator and the Fermi-liquid. This hypothesis is supported by neutron diffraction data, the phonon dispersion determined by neutron scattering and the recent ARPES data. The implications of such a phase on the mechanism of high-temperature superconductivity are discussed. C1 Univ Tennessee, Dept Mat Sci & Engn, Dept Phys & Astron, Knoxville, TN 37996 USA. Univ Tennessee, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Egami, T (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Dept Phys & Astron, Knoxville, TN 37996 USA. EM egami@utk.edu NR 25 TC 1 Z9 1 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1557-1939 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD NOV PY 2007 VL 20 IS 7-8 BP 547 EP 549 DI 10.1007/s10948-007-0272-1 PG 3 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 229WB UT WOS:000250835800014 ER PT J AU Mena, JM De Leon, JM Bishop, AR AF Mena, J. Miranda De Leon, J. Mustre Bishop, A. R. TI Effect of uniaxial pressure on the isotope effect on the spectrum of hamiltonians with electron-phonon coupling SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article; Proceedings Paper CT 5th International Conference on Stripes and High Tc Superconductivity CY DEC 17-22, 2006 CL Rome, ITALY DE isotopic effect; polaron; uniaxial pressure ID LATTICE; TEMPERATURE; SUPERCONDUCTORS; SYSTEM; STRAIN AB We have studied the effect of a change in the equilibrium nearest neighbour distances on the dynamics of charge and ions on a three-site cluster, identified with an O-Cu-O cluster present in high temperature superconductors. We consider a model Hamiltonian that contains an electronic part represented by a single band Hubbard model with onsite electronic correlations and a phononic part consisting of non-interacting Raman and infrared active phonons. The electron-phonon coupling is introduced through the change in interatomic distances generated by Coulomb repulsion between charges at neighbouring sites. For intermediate and strong values of the electron-phonon coupling, this model generates correlated electron-ion motion, i.e., polaron formation. In order to simulate the effect of change in the equilibrium nearest neighbour distances, we assume that the main effect such a change is a variation of the intersite electron hopping probability, t. We, therefore, studied the excitation spectrum of this model and the local lattice distortion in the Cu-O bond length as a function of t. We also studied the effect of a change in t in the polaron tunnelling energy when we use different oxygen isotopic masses, i.e., O-16 and O-18. We find that as function of t, the isotopic shift does not show a monotonic behaviour, as it does as a function of the electron-phonon coupling constant. It exhibits a minimum for values of t for which the electron-phonon coupling generates local lattice distortions with magnitudes similar to those observed experimentally in high-temperature superconductors. This observation could be related with the observed maximum on T (c) as a function of the microstrain of the Cu-O bonds (Sanna et al. in Int. J. Mod. Phys. B 14(29-31), 2000; Bianconi et al. in J. Phys.: Condens. Matter 12:10655, 2000; Agrestini et al. in J. Phys. A: Math. Gen. 36:9133, 2003). C1 CINVESTAV, Dept Fis Aplicada, Merida 97300, Mexico. Jozef Stefan Inst, SI-1001 Ljubljana, Slovenia. Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP De Leon, JM (reprint author), CINVESTAV, Dept Fis Aplicada, Merida 97300, Mexico. EM mustre@cinvestav.mx NR 10 TC 4 Z9 4 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1557-1939 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD NOV PY 2007 VL 20 IS 7-8 BP 603 EP 608 DI 10.1007/s10948-007-0253-4 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 229WB UT WOS:000250835800028 ER PT J AU Vartanyants, IA Robinson, IK McNulty, I David, C Wochner, P Tschentscher, T AF Vartanyants, I. A. Robinson, I. K. McNulty, I. David, C. Wochner, P. Tschentscher, Th. TI Coherent x-ray scattering and lensless imaging at the european XFEL facility SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article; Proceedings Paper CT Workshop on Diffraction, Crystallography and Imaging CY OCT 28-29, 2005 CL European XFEL, DESY, Zeuthen, GERMANY HO European XFEL, DESY DE x-ray free-electron laser; coherent X-ray diffraction imaging; phase retrieval ID DIFFERENTIAL INTERFERENCE CONTRAST; FOURIER-TRANSFORM; HOLOGRAPHIC MICROSCOPY; SPATIAL-RESOLUTION; PHASE RETRIEVAL; PULSE LASERS; DIFFRACTION; LENSES; ABLATION; OPTICS AB Coherent X-ray diffraction imaging is a rapidly advancing form of lensless microscopy. The phase information of the diffraction pattern is embedded in a sufficiently sampled coherent diffraction pattern. Using advanced computational methods, this diffraction pattern can be inverted to produce an image of a sample with diffraction-limited resolution. It is attractive to use high-power coherent X-ray beams produced by future X-ray free-electron lasers for imaging nanoscale condensed matter, materials and biological samples. Here, the scientific case, requirements and the possible realisation of the coherent X-ray diffraction imaging beamlines at the European XFEL Facility are presented. C1 DESY, HASYLAB, D-22607 Hamburg, Germany. UCL, London Ctr Nanotechnol, Dept Phys & Astron, London WC1E 6BT, England. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Paul Scherrer Inst, CH-5232 Villigen, Switzerland. Max Planck Inst Met Res, D-70569 Stuttgart, Germany. RP Vartanyants, IA (reprint author), DESY, HASYLAB, Notkestr 85, D-22607 Hamburg, Germany. EM ivan.vartaniants@desy.de NR 90 TC 24 Z9 25 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2007 VL 14 BP 453 EP 470 DI 10.1107/S0909049507037600 PN 6 PG 18 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 228KM UT WOS:000250728800001 PM 17960027 ER PT J AU Lurio, L Mulders, N Paetkau, M Jemian, PR Narayanan, S Sandy, A AF Lurio, Laurence Mulders, Norbert Paetkau, Mark Jemian, Pete R. Narayanan, Suresh Sandy, Alec TI Windows for small-angle X-ray scattering cryostats SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE SAXS; windows; parasitic scattering; cryostats AB To determine the suitability of commonly used windows for small-angle X-ray scattering, a range of materials, including Kapton, (aluminized) Mylar, beryllium, high-purity aluminium foil, mica and silicon nitride have been studied. At small wavevector transfers, Q, in the range 2 x 10 x 3 to 0.2 nm(-1), the scattering from Kapton, mica and beryllium is reasonably well described by power laws in Q with exponents of -3.25, -3.6 and -3.9, respectively. There are large variations in the scattering from mica, but a freshly cleaved natural mica window was by far the weakest scatterer. For applications where radiation in the infrared or visible range should be blocked, aluminized Mylar is the most suitable material. Both Mylar and Kapton can be used to make very simple demountable superfluid-tight windows using indium O-ring seals. C1 No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. Univ Illinois, Frederick Seitz Mat Res Lab, Argonne, IL 60439 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lurio, L (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM llurio@niu.edu NR 9 TC 4 Z9 4 U1 4 U2 19 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2007 VL 14 BP 527 EP 531 DI 10.1107/S0909049507042409 PN 6 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 228KM UT WOS:000250728800010 PM 17960036 ER PT J AU Park, JS Lee, JK Park, HM Hong, KS AF Park, Jong-Sung Lee, Jung-Kun Park, Hyun-Min Hong, Kug Sun TI Ferroelectric properties of Pb(Zn1/3Nb2/3)O-3-PbTiO3-RNbO3(R = Na, K) ceramics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID RELAXOR FERROELECTRICS AB We investigate the ferroelectric properties of Pb(Zn1/3Nb2/3)O-3-PbTiO3(PZN-PT)-based ceramics, which are stabilized by adding a small amount of NaNbO3 (NN) and KNbO3 (KN). As the content of alkali niobate increased, the ferroelectric properties of Pb(Zn1/3Nb2/3)O-3-PbTiO3-RNbO3 (PZN-PT-RN; R=Na, K) became softer, which was more pronounced in PZN-PT-KN. The difference in the piezoelectric properties between PZN-PT-KN and PZN-PT-NN was explained by the cation size effect. Because the ionic size of Na is smaller than that of K, the Na ion can retain the ferroelectricity of the solid solution more effectively. The field-induced strain of 85PZN-5PT-10NN under 10 kV/cm was as high as 0.1%. Also, the addition of NN increased the tunability of dielectric constant significantly. At a composition of 85PZN-5PT-20NN, the tunability was 90% and no hysteresis was observed. In contrast to RN, the increase in the content of PT caused the transition from relaxor to normal ferroelectrics, which were accompanied by the structural change from the rhombohedral to tetragonal phase. C1 Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea. Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. Korea Res Inst Stand & Sci, Yuseong Daejeon 305600, South Korea. RP Hong, KS (reprint author), Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea. EM kshongss@plaza.snu.ac.kr NR 16 TC 2 Z9 2 U1 2 U2 8 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD NOV PY 2007 VL 90 IS 11 BP 3512 EP 3516 DI 10.1111/j.1551-2916.2007.01917.x PG 5 WC Materials Science, Ceramics SC Materials Science GA 228WA UT WOS:000250762100021 ER PT J AU Wee, SH Goyal, A Hsu, H Li, J Heatherly, L Kim, K Aytug, T AF Wee, Sung-Hun Goyal, Amit Hsu, Huey Li, Jing Heatherly, Lee Kim, Kyunghoon Aytug, Tolga TI Formation of high-quality, epitaxial La2Zr2O7 layers on biaxially textured substrates by slot-die coating of chemical solution precursors SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID COATED-CONDUCTOR FABRICATION; LANTHANUM ZIRCONIUM-OXIDE; SOLUTION DEPOSITION; BUFFER LAYERS; SUPERCONDUCTING TAPES; THIN-FILMS AB Crystallization studies were performed of epitaxial La2Zr2O7 (LZO) films on biaxially textured Ni-3at.%W substrates having thin Y2O3 (10 nm) seed layers. LZO films were deposited under controlled humid atmosphere using reel-to-reel slot-die coating of chemical solution precursors. Controlled crystallization under various processing conditions has revealed a broad phase space for obtaining high-quality, epitaxial LZO films without microcracks, with no degradation of crystallographic texture and with high surface crystallinity. Crack-free and strong c-axis aligned LZO films with no random orientation were obtained even at relatively low annealing temperatures of 850 degrees-950 degrees C in flowing one atmosphere gas mixtures of Ar-4% H-2 with an effective oxygen partial pressure of P(O-2)similar to 10(-22) atm. Texture and reflection high-energy electron diffraction analyses reveal that low-temperature-annealed samples have strong cube-on-cube epitaxy and high surface crystallinity, comparable to those of LZO film annealed at high temperature of 1100 degrees C. In addition, these samples have a smoother surface morphology than films annealed at higher temperatures. Ni diffusion rate into the LZO buffer film is also expected to be significantly reduced at the lower annealing temperatures. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Knoxville, TN 37996 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM wees@ornl.gov NR 20 TC 9 Z9 10 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD NOV PY 2007 VL 90 IS 11 BP 3529 EP 3535 DI 10.1111/j.1551-2916.2007.01955.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 228WA UT WOS:000250762100024 ER PT J AU Laskay, UA Collin, OL Hylanda, JJ Nichol, B Jackson, GP Pasilis, SP Duckworth, DC AF Laskay, Uenige A. Collin, Olivier L. Hylanda, Jennifer J. Nichol, Brad Jackson, Glen P. Pasilis, Sofie P. Duckworth, Douglas C. TI Dynamic Collision-Induced Dissociation (DCID) in a quadrupole ion trap using a two-frequency excitation waveform: II. Effects of frequency spacing and scan rate SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID MASS-SPECTROMETER; ACTIVATION; EJECTION; FIELD AB Dynamic CID of selected precursor ions is achieved by the application of a two-frequency excitation waveform to the end-cap electrodes during the mass instability scan of a quadrupole ion trap (QIT) mass spectrometer. This new method permits a shorter scanning time when compared with conventional on-resonance CID. When the excitation waveform consists of two closely-spaced frequencies, the relative phase-relationship of the two frequencies plays a critical role in the fragmentation dynamics. However, at wider frequency spacings (>10 kHz), these phase effects are diminished, while maintaining the efficacy of closely-spaced excitation frequencies. The fragmentation efficiencies and energetics of n-butylbenzene and tetra-alanine are studied under different experimental conditions and the results are compared at various scan rate parameters between 0.1 and 1.0 ms/Th. Although faster scan rates reduce the analysis time, the maximum observed fragmentation efficiencies rarely exceed 30%, compared with values in excess of 50% achieved at slower scan rates. The internal energies calculated from the simulations of n-butylbenzene at fast scan rates are similar to 4 eV for most experimental conditions, while at slow scan rates, internal energies above 5.5 eV are observed for a wide range of conditions. Extensive ITSIM simulations support the observation that slowing the scan rate has a similar effect on fragmentation as widening the frequency spacing between the two excitation frequencies. Both approaches generally enhance CID efficiencies and make fragmentation less dependent upon the relative phase angle between the excitation waveform and the ion motion. C1 Ohio Univ, Dept Chem & Biochem, Ctr Intelligent Chem Instrumentat, Clippinger Labs 136, Athens, OH 45701 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jackson, GP (reprint author), Ohio Univ, Dept Chem & Biochem, Ctr Intelligent Chem Instrumentat, Clippinger Labs 136, Athens, OH 45701 USA. EM jacksong@ohio.edu RI Jackson, Glen/D-3518-2014; Duckworth, Douglas/B-7171-2015 OI Jackson, Glen/0000-0003-0803-6254; Duckworth, Douglas/0000-0002-8161-5685 NR 17 TC 5 Z9 5 U1 3 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD NOV PY 2007 VL 18 IS 11 BP 2017 EP 2025 DI 10.1016/j.jasms.2007.08.014 PG 9 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 229ZK UT WOS:000250844900017 PM 17904860 ER PT J AU Jeffery, CA Reisner, JM Andrejczuk, M AF Jeffery, Christopher A. Reisner, Jon M. Andrejczuk, Miroslaw TI Another look at Stochastic condensation for subgrid cloud modeling: Adiabatic evolution and effects SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID DROPLET SIZE DISTRIBUTIONS; CUMULUS CLOUDS; PART I; MICROSCOPIC APPROACH; KINETIC-EQUATION; TURBULENT CLOUDS; GROWTH; MICROPHYSICS; VARIABILITY; BASE AB The theory of stochastic condensation, which models the impact of an ensemble of unresolved supersaturation fluctuations S' on the volume-averaged droplet-size distribution f(r), is revisited in the modern context of subgrid cloud parameterization. The exact transition probability density for droplet radius driven by independent, Gaussian S' fluctuations that are periodically renewed is derived and shown to be continuous but not smooth. The Fokker-Planck model follows naturally as the smooth-in-time approximation to this discrete-in-time process. Evolution equations for the moments of f ( r) that include a contribution from subgrid S' fluctuations are presented; these new terms are easily implemented in moment-based cloud schemes that resolve supersaturation. New, self-consistent expressions for the evolution of f ( r) and mean supersaturation S in a closed, adiabatic volume are derived without approximation; quite appropriately, these coupled equations exactly conserve total water mass. The behavior of this adiabatic system, which serves as a surrogate for a closed model grid column, is analyzed in detail. In particular, a new nondimensional number is derived that determines the relative impact of S' fluctuations on droplet spectral evolution, and the contribution of fluctuations to S is shown to be negative definite and maximal near the accommodation length and has a direct correspondence to the analysis of Cooper. Observational support for the theory of stochastic condensation is found in cloud droplet spectra from cumulus cloud fields measured during the Rain in the Cumulus over the Ocean (RICO) and Small Cumulus Microphysics Study (SCMS) campaigns. Increasing spectral broadening with increasing spatial scale is discovered and compares well with theoretical predictions. However, the observed spectra show evidence of non-Gaussian S' fluctuations and inhomogeneous mixing, processes neglected in the current theory. C1 LANI, Los Alamos, NM USA. RP Jeffery, CA (reprint author), Los Alamos Natl Lab, ISR 2, POB 1663,Mail Stop D-436, Los Alamos, NM 87545 USA. EM cjeffery@lanl.gov NR 36 TC 4 Z9 4 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2007 VL 64 IS 11 BP 3949 EP 3969 DI 10.1175/2006JAS2147.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 236DK UT WOS:000251283000015 ER PT J AU Moon, BS Hahn, CH Yoo, DS Kim, IG Cho, YH Holcomb, DE AF Moon, B. S. Hahn, C. H. Yoo, D. S. Kim, I. G. Cho, Y. H. Holcomb, D. E. TI Measurement of a 2-MeV mectron beam rux by using an aluminum-nitride detector SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE flux detector; aluminum nitride; electron beam flux; linearity of the detector response; flux; measurement; EGS4 calculations AB A small aluminum-nitride detector of 3 mm x 3 mm x 0.387 mm in size fabricated at the Oak Ridge National Laboratory is used to measure the 1 MeV similar to 2 MeV electron beam from a beam facility at the Korea Atomic Energy Research Institute. Our objective is to check the linearity of the generated electric current relative to the electron beam intensity and to see if the electric current generated can be used as a measurement of the flux intensity. The results show that if the electric voltage applied to the detector is 2,000 V or higher and if the data are taken in a sufficiently short period of time so that the heat build up inside the detector is negligible, then the measured electric current increases linearly as the flux intensity increases. Hence, the measured value can be used as an estimate of the flux intensity, provided that one prior measurement of the beam with the given energy is available. C1 Changwon Natl Univ, Dept Phys, Chang Won 641773, South Korea. Korea Atom Energy Res Inst, Radiat Detector Lab, Taejon 305600, South Korea. Dept Nucl Reactor Technol, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Moon, BS (reprint author), Changwon Natl Univ, Dept Phys, Chang Won 641773, South Korea. EM bsmoon@changwon.ac.kr OI Holcomb, David/0000-0001-8263-4661 NR 6 TC 1 Z9 1 U1 0 U2 0 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD NOV PY 2007 VL 51 IS 5 BP 1771 EP 1775 PG 5 WC Physics, Multidisciplinary SC Physics GA 232BF UT WOS:000250992400029 ER PT J AU Bronkhorst, CA Hansen, BL Cerreta, EK Bingert, JF AF Bronkhorst, C. A. Hansen, B. L. Cerreta, E. K. Bingert, J. F. TI Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE shear localization; microstructure; polycrystal plasticity; dynamic loading; deformation statistics ID DUCTILE SINGLE-CRYSTALS; PLANE-STRAIN COMPRESSION; SHEAR-BAND FORMATION; CRYSTALLOGRAPHIC TEXTURE; FCC METALS; INTRAGRANULAR BEHAVIOR; PLASTICITY MODELS; GRAIN-BOUNDARIES; DEFORMATION; TANTALUM AB In general, the shear localization process involves initiation and growth. Initiation is expected to be a stochastic process in material space where anisotropy in the elastic-plastic behavior of single crystals and inter-crystalline interactions serve to form natural perturbations to the material's local stability. A hat-shaped sample geometry was used to study shear localization growth. It is an axisymmetric sample with an upper "hat" portion and a lower' "brim" portion with the shear zone located between the hat and brim. The shear zone length was 870-890 pm with deformation imposed through a Split-Hopkinson Pressure Bar system at maximum top-to-bottom velocity in the range of 8-25 m/s. The deformation behavior of tantalum tophat samples is modeled through direct polycrystal simulations. An embedded Voronoi-tessellated two-dimensional microstructure is used to represent the material within the shear zone of the sample. A thermo-mechanically coupled elastoviscoplastic single crystal model is presented and used to represent the response of the grains within the aggregate shear zone. In the shoulder regions away from the shear zone where strain levels remain on the order of 0.05, the material is represented by an isotropic J(2) flow theory based upon the elastoviscoplastic Mechanical Threshold Stress (MTS) model for flow strength. The top surface stress versus displacement results were compared to those of the experiments and over-all the simulated stress magnitude is over-predicted. It is believed that the reason for this is that the simulations are two-dimensional. A region within the numerical shear zone was isolated for statistical examination. The vonMises stress state within this isolated shear zone region suggests an approximate normal distribution with a factor of two difference between the minimum and maximum points in the distribution. The equivalent plastic strain distribution within this same region has values ranging between 0.4 and 1.5 and is not symmetric. Other material state distributions are also given. The crystallographic texture within this isolated shear zone is also compared to the experimental texture and found to match reasonably well considering the simulations are two-dimensional. Published by Elsevier Ltd. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA. RP Bronkhorst, CA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cabronk@lanl.gov RI Bronkhorst, Curt/B-4280-2011 OI Bronkhorst, Curt/0000-0002-2709-1964 NR 54 TC 38 Z9 38 U1 4 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD NOV PY 2007 VL 55 IS 11 BP 2351 EP 2383 DI 10.1016/j.jmps.2007.03.019 PG 33 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 232QT UT WOS:000251035000004 ER PT J AU Schmidt, P Grigorenko, I Levi, AFJ AF Schmidt, Petra Grigorenko, Ilya Levi, A. F. J. TI Design of resonators using materials with negative refractive index SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID METAMATERIALS; PERMEABILITY AB By optimizing the design we show that inhomogeneous electromagnetic resonators with almost uniform field intensity and up to twice the energy density of conventional structures are possible by exploiting the properties of negative refractive index materials. We demonstrate that using negative refractive index materials it is possible to make FWHM of the transmission coefficient independent of cavity length L. (c) 2007 Optical Society of America. C1 Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. Los Alamos Natl Lab, Theoret Div T11, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Grigorenko, I (reprint author), Univ So Calif, Dept Phys & Astron, 3620 S McClintock Ave,SSC 211A, Los Angeles, CA 90089 USA. EM ilya@lonl.gov RI Grigorenko, Ilya/B-5616-2009; Levi, Anthony/B-4112-2009 NR 15 TC 2 Z9 2 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD NOV PY 2007 VL 24 IS 11 BP 2791 EP 2795 DI 10.1364/JOSAB.24.002791 PG 5 WC Optics SC Optics GA 236XB UT WOS:000251335600005 ER PT J AU Littenberg, LS AF Littenberg, Laurence S. TI Experimental quark flavor physics: Kaon physics SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Review DE kaons; decays ID DIRECT CP VIOLATION; NEUTRAL-CURRENT PROCESSES; RARE K-DECAYS; STANDARD-MODEL; TOP-QUARK; PARAMETER RE(EPSILON'/EPSILON); PRECISE MEASUREMENT; UNITARITY TRIANGLE; WEAK INTERACTIONS; EXTRA DIMENSIONS AB Selected recent results on rare kaon decays are reviewed and prospects for on-going and future experiments are discussed. C1 Brookhaven Natl Lab, Brookhaven Phys Dept, Upton, NY 11973 USA. RP Littenberg, LS (reprint author), Brookhaven Natl Lab, Brookhaven Phys Dept, Upton, NY 11973 USA. OI Littenberg, Laurence/0000-0001-8373-7179 NR 122 TC 2 Z9 2 U1 0 U2 1 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD NOV PY 2007 VL 76 IS 11 AR 111006 DI 10.1143/JPSJ.76.111006 PG 11 WC Physics, Multidisciplinary SC Physics GA 233WV UT WOS:000251121900007 ER PT J AU Mackenzie, P AF Mackenzie, Paul TI Lattice QCD SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE quantum chromodynamics; QCD; lattice gauge theory; quarks; gluons; strong interactions ID FERMIONS AB Modem lattice gauge theory calculations are making it possible for lattice QCD to play an increasingly important role in the quantitative investigation of the Standard Model. The fact that QCD is strongly coupled at large distances has required the development of nonperturbative methods and large-scale computer simulations to solve the theory. The development of successful numerical methods for QCD calculations puts us in a good position to be ready for the possible discovery of new strongly coupled forces beyond the Standard Model in the era of the Large Hadron Collider. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Mackenzie, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM mackenzie@fnal.gov NR 31 TC 0 Z9 0 U1 0 U2 0 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD NOV PY 2007 VL 76 IS 11 AR 111019 DI 10.1143/JPSJ.76.111019 PG 7 WC Physics, Multidisciplinary SC Physics GA 233WV UT WOS:000251121900020 ER PT J AU Nakamur, H Doe, PJ Ejiri, H Elliott, SR Engel, J Finger, M Finger, M Fushimi, K Gehman, VM Greenfield, MB Hai, VH Hazama, R Imaseki, H Kavitov, P Kekelidze, VD Kitamura, H Matsuoka, K Nomachi, M Ogama, T Para, A Robertson, RGH Sakiuchi, T Shima, T Slunecka, M Shirkov, GD Sissakian, AN Titov, AI Uchihori, Y Umehara, S Urano, A Vaturin, V Voronov, VV Wilkerson, JF Will, DI Yasuda, K Yoshida, S AF Nakamur, Hidehito Doe, Peter J. Ejiri, Hiroyasu Elliott, Steven R. Engel, Jonathan Finger, Miroslav Finger, Michael, Jr. Fushimi, Kenichi Gehman, Victor M. Greenfield, Mark B. Hai, Vo H. Hazama, Ryuta Imaseki, Hitoshi Kavitov, Petr Kekelidze, Vladimir D. Kitamura, Hisashi Matsuoka, Kenji Nomachi, Masaharu Ogama, Takeo Para, Adam Robertson, R. G. Hamish Sakiuchi, Takuya Shima, Tatsushi Slunecka, Milos Shirkov, Grigori D. Sissakian, Alexei N. Titov, Alexander I. Uchihori, Yukio Umehara, Saori Urano, Atsushi Vaturin, Vladimir Voronov, Victor V. Wilkerson, John F. Will, Douglas I. Yasuda, Kensuke Yoshida, Sei TI Multilayer scintillator responses for mo observatory of neutrino experiment studied using a prototype detector MOON-1 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE neutrino mass; double beta decay; plastic scintillator; energy resolution ID DOUBLE-BETA-DECAY; SOLAR NEUTRINOS; MO-100; SPECTROSCOPY AB An ensemble of multilayer scintillators is discussed as an option of the high-sensitivity detector MOON (Mo Observatory of Neutrinos) for spectroscopic measurements of neutrinoless double beta decays. A prototype detector MOON-1, which consists of 6-layer plastic scintillator plates, was built to study the photon responses of the MOON-type detector. The photon responses, i.e., the number of scintillation photons collected and the energy resolution, which are key elements for high-sensitivity experiments, are found to be 1835 +/- 30 photoelectrons for 976 keV electrons and sigma = 2.9 +/- 0.1% (Delta E/E = 6.8 +/- 10.3% in FWHM) at the Q(beta beta) similar to 3 MeV region, respectively. The multilayer plastic scintillator structure with high energy resolution as well as a good signal for the background suppression of beta-gamma rays is crucial for the MOON-type detector to achieve inverted-hierarchy neutrino-mass sensitivity. It will also be useful for medical and other rare-decay experiments as well. C1 Natl Inst Radiol Sci, Chiba 2638555, Japan. Univ Washington, CENPA, Seattle, WA 98195 USA. Osaka Univ, RCNP, Osaka 5670047, Japan. LANL, Los Alamos, NM 87545 USA. Univ N Carolina, Chapel Hill, NC 27599 USA. Charles Univ Prague, FMP, CZ-18000 Prague 8, Czech Republic. Univ Tokushima, IAS, Tokushima 7708592, Japan. Int Christian Univ, Tokyo 1818585, Japan. Osaka Univ, OULNS, Osaka 5600043, Japan. Hiroshima Univ, Higashihiroshima, Hiroshima 7398527, Japan. VNIIEF, Sarov 607188, Nizhny Novgorod, Russia. Joint Inst Nucl Res, Dubna 141980, Russia. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Tohoku Univ, RCNS, Sendai, Miyagi 9808578, Japan. RP Nakamur, H (reprint author), Natl Inst Radiol Sci, Chiba 2638555, Japan. EM hidehito@nirs.go.jp OI Wilkerson, John/0000-0002-0342-0217 NR 35 TC 14 Z9 14 U1 0 U2 2 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD NOV PY 2007 VL 76 IS 11 AR 114201 DI 10.1143/JPSJ.76.114201 PG 9 WC Physics, Multidisciplinary SC Physics GA 233WV UT WOS:000251121900043 ER PT J AU Peskin, ME AF Peskin, Michael E. TI Dark matter and particle physics SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE dark matter; WIMP; LHC; ILC ID CLUSTER; EVOLUTION; DYNAMICS; GALAXY; MASS AB Astrophysicists now know that 80% of the matter in the universe is "dark matter", composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Peskin, ME (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM mpeskin@slac.stanford.edu OI Peskin, Michael/0000-0001-6403-6828 NR 31 TC 4 Z9 4 U1 1 U2 1 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD NOV PY 2007 VL 76 IS 11 AR 111017 DI 10.1143/JPSJ.76.111017 PG 6 WC Physics, Multidisciplinary SC Physics GA 233WV UT WOS:000251121900018 ER PT J AU Kim, J Jalhadi, K Lee, SY Joy, DC AF Kim, J. Jalhadi, K. Lee, S. -Y. Joy, D. C. TI Fabrication of a Fresnel zone plate through electron beam lithographic process and its application to measuring of critical dimension scanning electron microscope performance SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID RESOLUTION AB It is important to be able to quantify the imaging performance of critical dimension scanning electron microscopes for such purposes as verifying the specification, and tracking and optimizing its performance during use. Imaging performance can be defined by parameters such as resolution, signal to noise ratio, drift, and instability under standard operation conditions. To perform tests to obtain such parameters, it is necessary to have both suitable test samples and appropriate software for image analysis. A Fresnel zone plate, as a reproducible and well characterized sample, is fabricated using direct-write electron beam lithography. A package of two-dimensional Fourier transform and analysis software, designed as a plug-in for the shareware IMAGE-JAVA program, has been developed for resolution analysis and is freely available online. (C) 2007 American Vacuum Society. C1 [Kim, J.; Jalhadi, K.; Joy, D. C.] Univ Tennessee, Elect Beam Lab, Knoxville, TN 37996 USA. [Lee, S. -Y.] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA. [Joy, D. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kim, J (reprint author), Univ Tennessee, Elect Beam Lab, Knoxville, TN 37996 USA. EM jkim7@utk.edu NR 10 TC 5 Z9 5 U1 0 U2 3 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 1771 EP 1775 DI 10.1116/1.2787874 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900003 ER PT J AU Yan, PY Spiller, E Mirkarimi, P AF Yan, Pei-yang Spiller, Eberhard Mirkarimi, Paul TI Characterization of ruthenium thin films as capping layer for extreme ultraviolet lithography mask blanks SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID MULTILAYER MIRRORS; EUVL MASK; PERFORMANCE; REFLECTANCE; INSPECTION; SI AB In extreme ultraviolet lithography (EUVL), the multilayer (ML) damage-free mask patterning processes and damage-free usage cycle are the keys in obtaining a successful, functional EUVL mask. A robust ML capping layer design will enable a long mask lifetime. In this article detailed investigation on the viability of ruthenium (Ru) thin films as capping layer for EUVL ML mask blanks is presented. The study is focused on Ru capping layer design for high reflectivity and its properties relevant to EUVL mask applications, such as microstructure, stress, optical properties at EUV wavelength, and chemical durability. The authors found that Ru thin films with a crystalline structure present a very high compressive stress which is insensitive to the primary ion deposition source energy. The Ru/Si interdiffusion layer, however, presents a much lower stress than the of Ru-only film. Amorphization of the Ru film is via atomic composition modification, which the authors believe could be one of the keys in reducing Ru film stress. The ruthenium cap, under a piranha chemical clean, was found to be more durable than Si capped ML blanks, indicating the advantages of using Ru as the EUVL ML mask blank capping layer. (C) 2007 American Vacuum Society. C1 [Yan, Pei-yang] Intel Corp, Santa Clara, CA 95052 USA. [Spiller, Eberhard; Mirkarimi, Paul] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Yan, PY (reprint author), Intel Corp, Santa Clara, CA 95052 USA. EM pei-yang.yan@intel.com NR 15 TC 10 Z9 10 U1 2 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 1859 EP 1866 DI 10.1116/1.2799963 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900020 ER PT J AU Witte, DJ Pickard, DS Crnogorac, F Pianetta, P Pease, RFW AF Witte, D. J. Pickard, D. S. Crnogorac, F. Pianetta, P. Pease, R. F. W. TI Rapid partial melt crystallization of silicon for monolithic three-dimensional integration SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication CY MAY 29-JUN 01, 2007 CL Denver, CO AB Controlling the crystallization process of semiconductor materials is essential for many applications, including monolithic three-dimensional integration of devices. In particular, crystallization must be done while keeping to the thermal budget of underlying device layers. Using a 532 nm laser pulse of 10 ms duration, we demonstrate partial melting of silicon, which yields crystallites several microns in size upon cooling. A < 100 > preferential orientation was observed in these crystallites, which may be a consequence of partial melting. By observing the melt evolution, we show that a partial melt can form on the millisecond time scale and does not require thermal equilibrium to exist. By reducing the laser pulse duration further, such a process could be compatible with the thermal constraints of three-dimensional integration. (c) 2007 American Vacuum Society. C1 [Witte, D. J.; Pickard, D. S.; Crnogorac, F.; Pease, R. F. W.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Pianetta, P.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Witte, DJ (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM dwitte@stanford.edu NR 6 TC 1 Z9 1 U1 0 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 1989 EP 1992 DI 10.1116/1.2798732 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900041 ER PT J AU Salmassi, F Gullikson, EM Anderson, EH Naulleau, PP AF Salmassi, Farhad Gullikson, Eric M. Anderson, Erik H. Naulleau, Patrick P. TI Multilayer phase-only diffraction gratings: Fabrication and application to extreme ultraviolet optics SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication CY MAY 29-JUN 01, 2007 CL Denver, CO ID SHIFT MASKS; LITHOGRAPHY; DESIGN AB The use of phase-only diffractive devices has long played an important role in advanced optical systems in varying fields. Such devices include gratings, diffractive and holographic optical elements, diffractive lenses, and phase-shift masks for advanced lithography. Extending such devices to the increasingly important regime of extreme ultraviolet (EUV) wavelengths, however, is not trivial. Here, the authors present an effective fabrication and etch process enabling high-resolution patterning of Mo/Si multilayers for use in EUV phase devices, providing another method for fabrication of high numerical aperture diffractive devices or high-resolution EUV phase shift masks. (c) 2007 American Vacuum Society. C1 [Salmassi, Farhad; Gullikson, Eric M.; Anderson, Erik H.; Naulleau, Patrick P.] Lawrence Berkeley Natl Lab, Ctr X Ray Opt, Berkeley, CA 94720 USA. RP Salmassi, F (reprint author), Lawrence Berkeley Natl Lab, Ctr X Ray Opt, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM fsalmassi@lbl.gov NR 12 TC 1 Z9 1 U1 0 U2 0 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 2055 EP 2058 DI 10.1116/1.2798725 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900056 ER PT J AU Liang, T Ultanir, E Zhang, G Park, SJ Anderson, E Gullikson, E Naulleau, P Salmassi, F Mirkarimi, P Spiller, E Baker, S AF Liang, Ted Ultanir, Erdem Zhang, Guojing Park, Seh-Jin Anderson, Erik Gullikson, Eric Naulleau, Patrick Salmassi, Farhad Mirkarimi, Paul Spiller, Eberhard Baker, Sherry TI Growth and printability of multilayer phase defects on extreme ultraviolet mask blanks SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication CY MAY 29-JUN 01, 2007 CL Denver, CO ID LOCALIZED DEFECTS AB The ability to fabricate defect-free reflective Mo-Si multilayer (ML) blanks is a well-recognized challenge in enabling extreme ultraviolet (EUV) lithography for semiconductor manufacturing. Both the specification and reduction of defects necessitate the understanding of their printability and how they are generated and grow during ML deposition. A ML phase defect can be depicted by its topographical profile on the surface as either a bump or pit, which is then characterized by height or depth and width. These phase defects are complex in nature and their impact to resist printing. The authors developed an effective way to study phase defects with programmed defect mask (PDM) as "model" test vehicle. The defects are produced with tuned ML deposition process and placed in varying proximity to absorber patterns on the mask. This article describes the recent study of ML phase defect printability from exposures of a ML PDM on the EUV microexposure tool with annular, monopole, and dipole illuminations. (c) 2007 American Vacuum Society. C1 [Liang, Ted; Ultanir, Erdem; Zhang, Guojing; Park, Seh-Jin] Intel Corp, Santa Clara, CA 94054 USA. [Anderson, Erik; Gullikson, Eric; Naulleau, Patrick; Salmassi, Farhad] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mirkarimi, Paul; Spiller, Eberhard; Baker, Sherry] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Liang, T (reprint author), Intel Corp, 2200 Miss Coll Blvd, Santa Clara, CA 94054 USA. EM ted.liang@intel.com NR 13 TC 16 Z9 16 U1 0 U2 0 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 2098 EP 2103 DI 10.1116/1.2779044 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900066 ER PT J AU Naulleau, PP Anderson, CN Dean, K Denham, P Goldberg, KA Hoef, B Niakoula, D La Fontaine, B Wallow, T AF Naulleau, Patrick P. Anderson, Christopher N. Dean, Kim Denham, Paul Goldberg, Kenneth A. Hoef, Brian Niakoula, Dimitra La Fontaine, Bruno Wallow, Tom TI Advanced resist testing using the SEMATECH Berkeley extreme ultraviolet microfield exposure tool SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication CY MAY 29-JUN 01, 2007 CL Denver, CO ID LITHOGRAPHIC CHARACTERIZATION; ILLUMINATOR; ALIGNMENT AB Recent upgrades made to the SEMATECH Berkeley microfield exposure tool are summarized and some of the latest resist characterization results are presented. Tool illumination uniformity covering the full 200x600 mu m(2) wafer-side field of view is demonstrated and intrawafer focus control of 1.8 nm is shown. Printing results demonstrate chemically amplified resist resolution of 28 nm dense and 22.7 nm semi-isolated. Moreover, contact printing results show that shot noise is not a dominant issue in current 35 nm contact printing performance. (c) 2007 American Vacuum Society. C1 [Naulleau, Patrick P.; Denham, Paul; Goldberg, Kenneth A.; Hoef, Brian; Niakoula, Dimitra] Ctr X Ray Opt, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Anderson, Christopher N.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dean, Kim] SEMATECH, Austin, TX 78741 USA. [La Fontaine, Bruno; Wallow, Tom] Adv Micro Devices Inc, Sunnyvale, CA 94088 USA. RP Naulleau, PP (reprint author), Ctr X Ray Opt, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM pnaulleau@lbl.gov NR 20 TC 0 Z9 2 U1 0 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 2132 EP 2135 DI 10.1116/1.2781522 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900073 ER PT J AU Anderson, CN Naulleau, PP Denham, P Kemp, D Rekawa, S AF Anderson, Christopher N. Naulleau, Patrick P. Denham, Paul Kemp, Drew Rekawa, Senajith TI Dual-domain scanning illuminator for the SEMATECH Berkeley microfield exposure tool SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication CY MAY 29-JUN 01, 2007 CL Denver, CO AB Illumination uniformity and reproducibility in extreme ultraviolet (EUV) microfield exposure tools are critical to many aspects of the EUV lithography development task. Here, the authors present a scanning-field-averaging illuminator delivering consistent, uniform illumination to synchrotron-based microfield exposure tools. The system is integrated into the existing Fourier-synthesis custom coherence illuminator at the SEMATECH Berkeley microfield exposure tool and its effectiveness is demonstrated lithographically. Following the upgrade, the authors report a 6.5% peak-to-valley intensity variation across the full 200x600 mu m(2) wafer-side field of view. (c) 2007 American Vacuum Society. C1 [Anderson, Christopher N.] Univ Calif Berkeley, Appl Sci & Technol Grp, Berkeley, CA 94720 USA. [Naulleau, Patrick P.; Denham, Paul; Kemp, Drew; Rekawa, Senajith] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Anderson, CN (reprint author), Univ Calif Berkeley, Appl Sci & Technol Grp, Berkeley, CA 94720 USA. EM cnanderson@berkeley.edu RI Anderson, Christopher/H-9526-2015 OI Anderson, Christopher/0000-0002-2710-733X NR 4 TC 3 Z9 3 U1 0 U2 0 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 2151 EP 2154 DI 10.1116/1.2804610 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900077 ER PT J AU Maldonado, JR Liu, Z Sun, Y Schuetter, S Pianetta, P Pease, RFW AF Maldonado, Juan R. Liu, Zhi Sun, Yun Schuetter, Scott Pianetta, Piero Pease, R. F. W. TI CsBr/GaN heterojunction photoelectron source SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication CY MAY 29-JUN 01, 2007 CL Denver, CO ID ALKALI-HALIDES AB Experimental results on a new CsBr/GaN heterojunction photocathode structure are presented. The results indicate a fourfold improvement in photoyield relative to CsBr/Cr photocathodes. A model is presented based on intraband states in CsBr and electron injection from the GaN (with 1% addition of indium) substrate to explain the observed photoyield enhancement. The photocathode lifetime at high current density (>40 A/cm(2)) is limited by laser heating of the small illuminated area. Calculations are presented for sapphire and diamond substrates, indicating a factor of 20 reduction in temperature for the latter. The results are encouraging for the realization of a high photoyield photocathode operating at high current density with long lifetime. (c) 2007 American Vacuum Society. C1 [Maldonado, Juan R.; Pease, R. F. W.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Liu, Zhi; Sun, Yun; Pianetta, Piero] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Schuetter, Scott] Univ Wisconsin, Computat Mech Ctr, Madison, WI 53706 USA. RP Maldonado, JR (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM jrmaldo1@slac.stanford.edu RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 NR 10 TC 9 Z9 9 U1 0 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 2266 EP 2270 DI 10.1116/1.2779042 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900100 ER PT J AU La, YH Park, SM Meagley, RP Leolukman, M Gopalan, P Nealey, PF AF La, Young-Hye Park, Sang-Min Meagley, Robert P. Leolukman, Melvina Gopalan, Padma Nealey, Paul F. CA Insik-In TI Pixelated chemically amplified resists: Investigation of material structure on the spatial distribution of photoacids and line edge roughness SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication CY MAY 29-JUN 01, 2007 CL Denver, CO ID SIDEWALL ROUGHNESS; MATERIAL ORIGIN; ACID DIFFUSION; POSITIVE-TONE; FILMS; LITHOGRAPHY; PHOTORESIST; PERFORMANCE; GENERATOR; POLYMERS AB Preorganized pixel-forming photoresists were prepared to investigate the effect of well-defined material structures and the spatial distribution of photoacid on line edge roughness of chemically amplified photoresists. Asymmetric poly(styrene)-block-poly(t-butylacrylate) (PS-b-PtBA) diblock copolymers, which formed PS cylinders or spheres within a PtBA matrix, were used as photoresists by adding catalytic amounts of photoacid generators (PAGs). PAGs resided only in the PtBA matrix domain, resulting in the PAG chemistry occurring only in the matrix domain. The pixelated photoresists showed a significant solubility switch after UV or x-ray exposure and postexposure bake, such that the polymer in the exposed regions dissolved in aqueous base solution. Granular structures that were matched with the domain spacing and structure of the block copolymer photoresists were observed on the edge of the patterned features. This model system demonstrated that line edge roughness is directly correlated to the structure of pixelated photoresist materials. (C) 2007 American Vacuum Society. C1 [La, Young-Hye; Park, Sang-Min; Nealey, Paul F.] Univ Wisconsin, Ctr Nanotechnol, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Leolukman, Melvina; Gopalan, Padma; Insik-In] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Meagley, Robert P.] Intel Corp, Lawrence Berkeley Natl Lab, Berkeley, CA 94708 USA. RP Nealey, PF (reprint author), Univ Wisconsin, Ctr Nanotechnol, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM nealey@engr.wisc.edu NR 28 TC 11 Z9 11 U1 0 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 2508 EP 2513 DI 10.1116/1.2800330 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900149 ER PT J AU Mesler, BL Fischer, P Chao, W Anderson, EH Kim, DH AF Mesler, Brooke L. Fischer, Peter Chao, Weilun Anderson, Erik H. Kim, Dong-Hyun TI Soft x-ray imaging of spin dynamics at high spatial and temporal resolution SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication CY MAY 29-JUN 01, 2007 CL Denver, CO ID NANOMAGNETISM; MICROSCOPY AB Soft x-ray microscopy provides element specific magnetic imaging with a spatial resolution down to 15 nm. At XM-1, the full-field soft x-ray microscope at the Advanced Light Source in Berkeley, a stroboscopic pump and probe setup has been developed to study fast magnetization dynamics in ferromagnetic elements with a time resolution of 70 ps, which is set by the width of the x-ray pulses from the synchrotron. Results obtained from a 2 mu m x 4 mu m x 45 nm rectangular permalloy sample exhibiting a seven domain Landau pattern reveal dynamics up to several nanoseconds after the exciting magnetic field pulse. Domain wall motion, a gyrotropic vortex motion, and a coupling between vortices in the rectangular geometry are observed. (C) 2007 American Vacuum Society. C1 [Mesler, Brooke L.; Fischer, Peter; Chao, Weilun; Anderson, Erik H.] Lawrence Berkeley Natl Lab, Ctr X Ray Opt, Berkeley, CA 94720 USA. Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. RP Fischer, P (reprint author), Lawrence Berkeley Natl Lab, Ctr X Ray Opt, Berkeley, CA 94720 USA. EM pjfischer@lbl.gov RI Kim, Dong-Hyun/F-7195-2012; MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 NR 20 TC 13 Z9 14 U1 0 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2007 VL 25 IS 6 BP 2598 EP 2602 DI 10.1116/1.2806977 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 240UA UT WOS:000251611900165 ER PT J AU Schneidewind, A Brockman, MA Yang, R Adam, RI Li, B Le Gall, S Rinaldo, CR Craggs, SL Allgaier, RL Power, KA Kuntzen, T Tung, CS LaBute, MX Mueller, SM Harrer, T McMichael, AJ Goulder, PJR Aiken, C Brander, C Kelleher, AD Allen, TM AF Schneidewind, Arne Brockman, Mark A. Yang, Ruifeng Adam, Rahma I. Li, Bin Le Gall, Sylvie Rinaldo, Charles R. Craggs, Sharon L. Allgaier, Rachel L. Power, Karen A. Kuntzen, Thomas Tung, Chang-Shung LaBute, Montiago X. Mueller, Sandra M. Harrer, Thomas McMichael, Andrew J. Goulder, Philip J. R. Aiken, Cbristopher Brander, Christian Kelleher, Anthony D. Allen, Todd M. TI Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication SO JOURNAL OF VIROLOGY LA English DT Article ID OWL MONKEY CELLS; CLASS-I ALLELES; CYCLOPHILIN-A; HIV-1 INFECTION; VIRAL LOAD; HOST RESTRICTION; VACCINE DESIGN; CYCLOSPORINE-A; P24 GAG; REVERSION AB Human leukocyte antigen (HLA)-B27-positive subjects are uncommon in their ability to control infection with human immunodeficiency virus type 1 (HIV-1). However, late viral escape from a narrowly directed immunodominant Gag-specific CD8(+) T-lymphocyte (CTL) response has been linked to AIDS progression in these individuals. Identifying the mechanism of the immune-mediated control may provide critical insights into HIV-1 vaccine development. Here, we illustrate that the CTL escape mutation R264K in the HLA-B27-restricted KK10 epitope in the capsid resulted in a significant defect in viral replication in vitro. The R264K variant was impaired in generating late reverse transcription products, indicating that replication was blocked at a postentry step. Notably, the R264K mutation was associated in vivo with the development of a rare secondary mutation, S(173)A, which restored viral replication in vitro. Furthermore, infectivity of the R264K variant was rescued by the addition of cyclosporine A or infection of a cyclophilin A-deficient cell line. These data demonstrate a severe functional defect imposed by the R264K mutation during an early step in viral replication that is likely due to the inability of this variant to replicate efficiently in the presence of normal levels of cyclophilin A. We conclude that the impact of the R264K substitution on capsid structure constrains viral escape and enables long-term maintenance of the dominant CTL response against B27-KK10, providing an explanation for the protective effect of HLA-B27 during HIV infection. C1 [Schneidewind, Arne; Brockman, Mark A.; Adam, Rahma I.; Li, Bin; Le Gall, Sylvie; Allgaier, Rachel L.; Power, Karen A.; Kuntzen, Thomas; Goulder, Philip J. R.; Brander, Christian; Allen, Todd M.] Harvard Univ, Sch Med, Partners AIDS Res Ctr, Massachusetts Gen Hosp, Boston, MA 02115 USA. [Brockman, Mark A.] Harvard Univ, Sch Med, Howard Hughes Med Inst, Massachusetts Gen Hosp, Boston, MA 02115 USA. [Yang, Ruifeng; Aiken, Cbristopher] Vanderbilt Univ, Dept Microbiol & Immunol, Sch Med, Med Ctr N A 5301, Nashville, TN USA. [Rinaldo, Charles R.] Univ Pittsburgh, Dept Pathol, Sch Med, Pittsburgh, PA USA. [Craggs, Sharon L.; McMichael, Andrew J.] John Radcliffe Hosp, Weatherall Inst Mol Med, MRC Human Immunol Unit, Oxford OX3 9DU, England. [Tung, Chang-Shung; LaBute, Montiago X.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Mueller, Sandra M.; Harrer, Thomas] Univ Erlangen Nurnberg, Inst Clin & Mol Virol, Erlangen, Germany. [Goulder, Philip J. R.] Peter Medawar Bldg Pathogen Res, Nuffield Dept Med, Dept Pediat, Oxford, England. [Kelleher, Anthony D.] Univ New S Wales, Natl Ctr HIV Epidemiol & Clin Res, Sydney, NSW, Australia. RP Allen, TM (reprint author), MGH-E,CNY 6625 149 13th St, Hillsborough 02129, North Ireland. EM tallen2@partners.org RI Allen, Todd/F-5473-2011; OI Brander, Christian/0000-0002-0548-5778; Brockman, Mark/0000-0001-6432-1426 FU Medical Research Council [MC_U137884177]; NIAID NIH HHS [R01 AI050423, R01 AI054178, R21 AI067078, U01 AI052403] NR 80 TC 220 Z9 225 U1 1 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD NOV PY 2007 VL 81 IS 22 BP 12382 EP 12393 DI 10.1128/JVI.01543-07 PG 12 WC Virology SC Virology GA 275IP UT WOS:000254065400029 PM 17804494 ER PT J AU Laird, CD Biegler, LT Waanders, BGVB AF Laird, Carl D. Biegler, Lorenz T. Waanders, Bart G. van Bloemen TI Closure to "Mixed-integer approach for obtaining unique solutions in source inversion of water networks" by Carl D. Laird, Lorenz T. Biegler, and Bart G. van Bloemen Waanders SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE LA English DT Editorial Material C1 Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. Sandia Natl Labs, Albuquerque, NM 87109 USA. RP Laird, CD (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM claird@andrew.cmu.edu; 1b01@andrew.cmu.edu; bartv@sandia.gov NR 11 TC 0 Z9 0 U1 0 U2 1 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 J9 J WATER RES PL-ASCE JI J. Water Resour. Plan. Manage.-ASCE PD NOV-DEC PY 2007 VL 133 IS 6 BP 575 EP 578 DI 10.1061/(ASCE)0733-9496(2007)132:4(242) PG 4 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 222SP UT WOS:000250317800019 ER PT J AU Merenkov, DN Bludov, AN Gnatchenko, SL Baran, M Szymczak, R Novosad, VA AF Merenkov, D. N. Bludov, A. N. Gnatchenko, S. L. Baran, M. Szymczak, R. Novosad, V. A. TI Exchange anisotropy in polycrystalline FeNi/FeMn films with hysteresis loop asymmetry SO LOW TEMPERATURE PHYSICS LA English DT Article ID MAGNETIZATION REVERSAL; FERROMAGNET/ANTIFERROMAGNET BILAYERS; ANGULAR-DEPENDENCE; BIAS; ROUGHNESS; NIFE/FEMN; LAYERS AB The process of magnetization reversal of a FeNi(50 angstrom)/FeMn(50 angstrom) polycrystalline film prepared in a magnetic field has been investigated at temperatures ranging from 25 to 300 K. The external field was oriented in the film plane along the easy or difficult axis of the ferromagnetic layer. In the process of magnetization reversal of the film along the easy axis, strong asymmetry of the hysteresis loop is observed together with an exchange shift. As temperature decreases, the asymmetry becomes more pronounced and the shift increases. The field dependences of the magnetization of the film are symmetric and are not shifted when the external field is applied along the difficult axis. The magnetization reversal process is examined on the basis of a model that takes account of the appearance of high-order exchange anisotropy in polycrystalline films. It is shown that the observed strong asymmetry of the hysteresis loop is associated with the formation of a canted phase and the existence of a metastable state. As the film temperature decreases, the interval of fields where the canted phase can exist becomes wider as a result of an increase of the exchange anisotropy constants. (c) 2007 American Institute of Physics. C1 Natl Acad Sci Ukraine, BI Verkin Inst Low Temp Phys & Technol, UA-61103 Kharkov, Ukraine. Polish Acad Sci, Inst Phys, PL-02688 Warsaw, Poland. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Merenkov, DN (reprint author), Natl Acad Sci Ukraine, BI Verkin Inst Low Temp Phys & Technol, Pr Lenina 47, UA-61103 Kharkov, Ukraine. EM merenkov@ilt.kharkov.ua RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015 NR 30 TC 5 Z9 5 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1063-777X J9 LOW TEMP PHYS+ JI Low Temp. Phys. PD NOV PY 2007 VL 33 IS 11 BP 957 EP 964 DI 10.1063/1.2747073 PG 8 WC Physics, Applied SC Physics GA 238BA UT WOS:000251421100011 ER PT J AU Hancock, JM Adams, NC Aidinis, V Blake, A Blake, JA Bogue, M Brown, SDM Chesler, E Davidson, D Duran, C Eppig, JT Gailus-Durner, V Gates, H Gkoutos, GV Greenaway, S de Angelis, MH Kollias, G Leblanc, S Lee, K Lengger, C Maier, H Mallon, AM Masuya, H Melvin, DG Muller, W Parkinson, H Proctor, G Reuveni, E Schofield, P Shukla, A Smith, C Toyoda, T Vasseur, L Wakana, S Walling, A White, J Wood, J Zouberakis, M AF Hancock, John M. Adams, Niels C. Aidinis, Vassilis Blake, Andrew Blake, Judith A. Bogue, Molly Brown, Steve D. M. Chesler, Elissa Davidson, Duncan Duran, Christopher Eppig, Janan T. Gailus-Durner, Valerie Gates, Hilary Gkoutos, Georgios V. Greenaway, Simon de Angelis, Martin Hrabe Kollias, George Leblanc, Sophie Lee, Kirsty Lengger, Christoph Maier, Holger Mallon, Ann-Marie Masuya, Hiroshi Melvin, David G. Mueller, Werner Parkinson, Helen Proctor, Glenn Reuveni, Eli Schofield, Paul Shukla, Aadya Smith, Cynthia Toyoda, Tetsuro Vasseur, Laurent Wakana, Shigeharu Walling, Alison White, Jacqui Wood, Joe Zouberakis, Michalis TI Mouse phenotype database integration consortium: Integration of mouse phenome data resources (vol 18, pg 157, 2007) SO MAMMALIAN GENOME LA English DT Correction C1 MRC, Mammalian Genet Unit, Mouse Phenotype Database Integrat Consortium, Didcot OX11 0RD, Oxon, England. Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England. BSRC Fleming, GR-16672 Athens, Greece. Jackson Lab, Bar Harbor, ME 04609 USA. Oak Ridge Natl Lab, Biosci Div, Mammalian Genet & Genom Grp, Oak Ridge, TN 37831 USA. MRC, Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland. Natl Res Ctr Environm Hlth, D-85764 Neuherberg, Germany. Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. Inst Clin Souris, F-67404 Illkirch Graffenstaden, France. RIKEN, Genome Sci Ctr, Tsukuba, Ibaraki, Japan. Helmhlotz Zentrum Infektionforschung GmbH, D-38124 Braunschweig, Germany. Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England. European Bioinformat Inst, Cambridge CB10 1SD, England. Mouse Biol Unit, EMBL Monterondo Oustat, I-00016 Rome, Italy. Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3DY, England. Univ Oxford, Computing Lab, Harwell OX1 3QDA, Berks, England. MRC, Mary Lyon Ctr, Harwell OX11 0RD, Berks, England. RP Hancock, JM (reprint author), MRC, Mammalian Genet Unit, Mouse Phenotype Database Integrat Consortium, Didcot OX11 0RD, Oxon, England. RI Kollias, George/A-7079-2012; Lengger, Christoph/M-9831-2014; Gailus-Durner, Valerie/M-7337-2014; Masuya, Hiroshi/A-6442-2016; OI Kollias, George/0000-0003-1867-3150; Masuya, Hiroshi/0000-0002-3392-466X; Hancock, John/0000-0003-2991-2217 NR 1 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0938-8990 J9 MAMM GENOME JI Mamm. Genome PD NOV PY 2007 VL 18 IS 11 BP 815 EP 815 DI 10.1007/s00335-007-9050-4 PG 1 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 231WQ UT WOS:000250980300008 ER PT J AU Trimm, M AF Trimm, Marvin TI Looking toward the future SO MATERIALS EVALUATION LA English DT Editorial Material C1 Savannah River Natl Lab, Aiken, SC 29801 USA. RP Trimm, M (reprint author), Savannah River Natl Lab, 730-A,Room 102, Aiken, SC 29801 USA. EM marvin.trivam@srnl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD NOV PY 2007 VL 65 IS 11 BP 1075 EP 1075 PG 1 WC Materials Science, Characterization & Testing SC Materials Science GA 225BT UT WOS:000250492800001 ER PT J AU Berry, P Vansyoc, K Summa, D AF Berry, P. Vansyoc, K. Summa, D. TI The future radiography department SO MATERIALS EVALUATION LA English DT Article C1 Los Alamos Natl Lab, Nondestruct Evaluat Team, Los Alamos, NM 87545 USA. RP Berry, P (reprint author), Los Alamos Natl Lab, Nondestruct Evaluat Team, C-914, Los Alamos, NM 87545 USA. EM pberry@lanl.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD NOV PY 2007 VL 65 IS 11 BP 1099 EP 1101 PG 3 WC Materials Science, Characterization & Testing SC Materials Science GA 225BT UT WOS:000250492800003 ER PT J AU Bingham, P Arrowood, L Gregor, J AF Bingham, P. Arrowood, L. Gregor, J. TI Calibration and performance testing for reconfigurable computed tomography systems SO MATERIALS EVALUATION LA English DT Article C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. RP Bingham, P (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM binghampr@ornl.gov NR 8 TC 1 Z9 1 U1 0 U2 1 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD NOV PY 2007 VL 65 IS 11 BP 1102 EP + PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA 225BT UT WOS:000250492800004 ER PT J AU Arrowood, L Gregor, J Bingham, P AF Arrowood, L. Gregor, J. Bingham, P. TI Iterative reconstruction techniques for industrial computed tomography: Application and performance SO MATERIALS EVALUATION LA English DT Article ID ALGORITHM C1 Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Arrowood, L (reprint author), Y-12 Natl Secur Complex,POB 2009,Bldg 9103,MS 816, Oak Ridge, TN 37831 USA. EM lfa@y12.doe.gov NR 5 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD NOV PY 2007 VL 65 IS 11 BP 1109 EP 1112 PG 4 WC Materials Science, Characterization & Testing SC Materials Science GA 225BT UT WOS:000250492800005 ER PT J AU Weil, KS Mast, ES Sprenkle, VL AF Weil, K. S. Mast, E. S. Sprenkle, V. L. TI Agglomeration behavior of solid nickel on polycrystalline barium titanate SO MATERIALS LETTERS LA English DT Article ID THIN-FILMS; SIO2 AB This letter describes the phenomenon that takes place between nickel/barium titanate couples when heated under conditions employed in multilayer ceramic capacitor manufacturing practice: a 4 h, 1300 degrees C isothermal anneal in 1% H-2-99% N-2. Dense, sputtered nickel films were observed to dewet the titanate and agglomerate into discrete or interconnected islands via a solid-state process. Up to a critical film thickness value of similar to 1.4 mu m, the degree of agglomeration was found to display an exponential dependence on the thickness of the original nickel film. (C) 2007 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weil, KS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM scott.weil@pnl.gov NR 10 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD NOV PY 2007 VL 61 IS 28 BP 4993 EP 4996 DI 10.1016/j.matlet.2007.03.088 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 228OG UT WOS:000250738700006 ER PT J AU Dennler, G AF Dennler, Gilles TI The value of values SO MATERIALS TODAY LA English DT Editorial Material C1 Univ Groningen, NL-9700 AB Groningen, Netherlands. Natl Renewable Energy Lab, Golden, CO 80401 USA. Solar Energy Energy Res Ctr Netherlands, Amsterdam, Netherlands. Cornell Univ, Ithaca, NY 14853 USA. Stanford Univ, Stanford, CA 94305 USA. Univ London Imperial Coll Sci Technol & Med, London, England. Fraunhofer Inst Solar Energy Syst, Frankfurt, Germany. Univ Colorado, Denver, CO 80202 USA. Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands. EM gdennler@konarka.com RI Dennler, Gilles/C-6927-2011 OI Dennler, Gilles/0000-0002-1564-5632 NR 5 TC 13 Z9 13 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 J9 MATER TODAY JI Mater. Today PD NOV PY 2007 VL 10 IS 11 BP 56 EP 56 DI 10.1016/S1369-7021(07)70290-0 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA 229BP UT WOS:000250776600019 ER PT J AU Li, H Liaw, PK Choo, H AF Li, Hongqi Liaw, Peter K. Choo, Hahn TI On the serrated behavior during plastic deformation of a Zr-based bulk metallic glass SO MATERIALS TRANSACTIONS LA English DT Article DE metallic glass; mechanical behavior; load drop ID COMPRESSIVE BEHAVIOR; AMORPHOUS-ALLOYS; ROOM-TEMPERATURE; FLOW; DUCTILITY; MECHANISM AB The uniaxial compression tests were conducted on an amorphous Zr-based alloy at room temperature. The results show that this alloy exhibited the typical features of metallic glasses and the stress-strain curve is extensively serrated within the plastic regime. The analysis reveals that for all the shear band events, the maximum stresses remained approximately constant during the course of plastic deformation, and the minimum stresses began to decrease when the deformation enters the late stage. This phenomenon is probably associated with the different shear-banding behaviors within various deformation stages. Calculations find that the stress accumulation sections in the stress-strain curve are parallel to each other, indicating that such reloading processes are elastic in nature. Therefore, there are elastic and plastic sections in the stress-strain curve. Further analysis discloses that the plastic strain component carried by each shear band event increases with the applied strain within the late deformation stage. C1 [Li, Hongqi; Liaw, Peter K.; Choo, Hahn] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Li, H (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM hqli@utk.edu RI Li, Hongqi/B-6993-2008; Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 NR 22 TC 0 Z9 0 U1 0 U2 3 PU JAPAN INST METALS PI SENDAI PA 1-14-32, ICHIBANCHO, AOBA-KU, SENDAI, 980-8544, JAPAN SN 1345-9678 EI 1347-5320 J9 MATER TRANS JI Mater. Trans. PD NOV PY 2007 VL 48 IS 11 BP 2919 EP 2922 DI 10.2320/matertrans.MRA2007143 PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 244MK UT WOS:000251869800023 ER PT J AU Williams, PT Franklin, B AF Williams, Paul T. Franklin, Barry TI Vigorous exercise and diabetic, hypertensive, and hypercholesterolernia medication use SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE physical activity; hypertension; diabetes; high cholesterol; cardiorespiratory fitness; runners ID HEART-DISEASE RISK; BLOOD-PRESSURE; CARDIORESPIRATORY FITNESS; PHYSICAL-ACTIVITY; AEROBIC EXERCISE; MALE RUNNERS; INTENSITY; HEALTH; PREVENTION; DISTANCE AB Purpose: The prevalences of diabetes, hypertension, and high cholesterol all decrease with increased levels of physical activity and cardiorespiratory fitness. Whether these reductions extend beyond contemporary guideline activity levels and whether fitness affects medication use independent of activity, remains unclear. Methods: Cross-sectional analyses of 62,291 male and 45,041 female runners, of whom 496 used antidiabetic, 373 8 used antihypertension, and 2360 used low-density lipoprotein cholesterol (LDL-C-lowering medications. Cardiorespiratory fitness was reported as speed (m center dot s(-1)) during a 10-km foot race. Results: Medication use was significantly inversely associated with activity and fitness (P < 0.001, except LDL-C-lowering versus women's fitness). Compared with <= 16 km center dot wk(-1) (guideline levels), the odds in men and women who ran > 64 km center dot wk(-1) were, respectively, 69% and 55% lower for antidiabetic, 48% and 52% lower for antihypertension, and 64% and 51% lower for LDL-C-lowering medication use. Compared with the least-fit men (< 3.25 m center dot s(-1)) and women (< 2.8 m center dot s(-1)), the odds for those who were most fit (men > 4.75 m center dot s(-1); women > 4.0 m center dot s(-1)) were 58% and 65% lower for antidiabetic, and 76% and 55% lower for antihypertensive medication use. Odds for LDL-C-lowering medication use were 87% lower in the fittest versus the least-fit men. Adjustment for activity only moderately diminished the inverse relationships of fitness with medication use. Conclusion: Among individuals who exceed current guideline levels, anfidiabetic, antihypertension, and LDL-C-lowering medications are inversely related to vigorous physical activity and cardiorespiratory fitness. Lower odds of medication use with higher fitness occur independently of physical activity. C1 Ernest Orlando Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. William Beaumont Hosp, Beaumont Hlth Ctr, Dept Med, Div Cardiol,Cardiac Rehabilitat & Exercise Lab, Royal Oak, MI USA. RP Williams, PT (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Life Sci Div, 1 Cycloton Rd, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU NHLBI NIH HHS [R01 HL072110-03, HL-072110, R01 HL072110-02, R01 HL072110-04, R01 HL072110-01A2, HL-45652, R01 HL072110]; NIDDK NIH HHS [R01 DK066738-01, DK066738, R01 DK066738-03, R01 DK066738-04, R01 DK066738-02, R01 DK066738] NR 30 TC 22 Z9 22 U1 1 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD NOV PY 2007 VL 39 IS 11 BP 1933 EP 1941 DI 10.1249/mss.0b013e318145b337 PG 9 WC Sport Sciences SC Sport Sciences GA 230VB UT WOS:000250903100007 PM 17986900 ER PT J AU Cao, BY Bringa, EM Meyers, MA AF Cao, Buyang Bringa, Eduardo M. Meyers, Marc Andre TI Shock compression of monocrystalline copper: Atomistic Simulations SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 4th Symposium on the Dynamic Behavior of Materials held at the 2007 TMS Annual Meeting and Exhibition CY FEB 25-MAR 01, 2007 CL Orlando, FL SP TMS Struct Mat Div, TMS/ASM Mech Behav Mat Comm ID MOLECULAR-DYNAMICS SIMULATIONS; ONE-DIMENSIONAL COMPRESSION; WAVE DEFORMATION; STAINLESS-STEEL; PULSE DURATION; NICKEL; ORIENTATION; PRESSURE; CRYSTALS; LATTICE AB Molecular dynamics (MD) simulations were used to model the effects of shock compression on [001] and [221] monocrystals. We obtained the Hugoniot for both directions, and analyzed the formation of a two-wave structure for the [221] monocrystal. We also analyzed the dislocation structure induced by the shock compression along these two crystal orientations. The topology of this structure compares extremely well with that observed in recent transmission electron microscopy (TEM) studies of shock-induced plasticity in samples recovered from flyer plate and laser shock experiments. However, the density of stacking faults in our simulations is 10(2) to 10(4) times larger than in the experimental observations of recovered samples. The difference between experimentally observed TEM and calculated MD results is attributed to two effects: (1) the annihilation of dislocations during post-shock relaxation (including unloading) and recovery processes and (2) a much shorter stress rise time at the front in MD ( < 1 ps) in comparison with flyer-plate shock compression (similar to 1ns). C1 Univ Calif San Diego, Dept Mech & Aerosp Engn, Mat Sci & Engn Program, La Jolla, CA 92093 USA. Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA USA. RP Cao, BY (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, Mat Sci & Engn Program, La Jolla, CA 92093 USA. EM bcao3@jhu.edu RI Cao, Buyang/A-6136-2010; Bringa, Eduardo/F-8918-2011; Meyers, Marc/A-2970-2016 OI Meyers, Marc/0000-0003-1698-5396 NR 31 TC 31 Z9 32 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2007 VL 38A IS 11 BP 2681 EP 2688 DI 10.1007/s11661-007-9248-9 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 231JX UT WOS:000250944100008 ER PT J AU Srinivasan, SG Baskes, ML AF Srinivasan, S. G. Baskes, M. L. TI Atomistic simulations of the plasticity behavior of shock-induced polycrystalline nickel SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 4th Symposium on the Dynamic Behavior of Materials held at the 2007 TMS Annual Meeting and Exhibition CY FEB 25-MAR 01, 2007 CL Orlando, FL SP TMS ID LATTICE-DEFECTS; SINGLE-CRYSTAL; STRAIN RATES; FRACTURE; SPALL; HYDROGEN; METALS; RANGE AB Shock loading single crystalline nickel creates a defected nanostructure dominated by stacking faults and twins. This transformation is caused by a complex interplay between the incident waves, the waves reflected from sample-free surfaces, and the interference between reflected waves. The plasticity behavior of this shock-induced defected nickel was studied using molecular dynamics (MD) simulations. Compared to a perfect single-crystal nickel sample of the same size, the twinned sample has significantly less yield stress in compression, a slightly lower yield stress in tension, and a yield stress about 30 pet higher in shear. Importantly, our simulations reveal the underlying atomistic mechanisms of dislocation nucleation and twin growth. We observe that while strengthening under shear loading involves lattice dislocations cutting through twins, weakening arises from nucleation of dislocations on the twins under tensile and compressive loading. Also, we have discovered precursors to dislocation loop nucleation in these simulations. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Srinivasan, SG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sgsrini@lanl.gov NR 23 TC 5 Z9 5 U1 1 U2 8 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2007 VL 38A IS 11 BP 2716 EP 2720 DI 10.1007/s11661-007-9277-4 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 231JX UT WOS:000250944100011 ER PT J AU Yamamoto, Y Brady, MP Lu, ZP Liu, CT Takeyama, M Maziasz, PJ Pint, BA AF Yamamoto, Y. Brady, M. P. Lu, Z. P. Liu, C. T. Takeyama, M. Maziasz, P. J. Pint, B. A. TI Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID CREEP-RESISTANT; REINFORCED CR; ALLOYS; OXIDATION; BEHAVIOR AB Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 degrees C to 800 degrees C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of gamma (fcc) + alpha (bcc) dual phase due to the strong alpha-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase gamma-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the gamma-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Met & Ceram Sci, Tokyo 1528552, Japan. RP Yamamoto, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov RI Brady, Michael/A-8122-2008; Pint, Bruce/A-8435-2008; Lu, Zhao-Ping/A-2718-2009; OI Brady, Michael/0000-0003-1338-4747; Pint, Bruce/0000-0002-9165-3335; Maziasz, Philip/0000-0001-8207-334X NR 29 TC 46 Z9 51 U1 2 U2 37 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2007 VL 38A IS 11 BP 2737 EP 2746 DI 10.1007/s11661-007-9319-y PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 231JX UT WOS:000250944100014 ER PT J AU Cowen, CJ Boehlert, CJ AF Cowen, C. J. Boehlert, C. J. TI The microstructure, creep, and tensile behavior for Ti-5AI-45Nb (atomic percent) fully-beta alloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID ORTHORHOMBIC TITANIUM ALUMINIDE; ROOM-TEMPERATURE; REINFORCED COMPOSITES; MMC APPLICATIONS; STEADY-STATE; PHASE; DEFORMATION; EVOLUTION; TI2ALNB; ALPHA-2 AB The microstructure, tensile, and creep behavior of a Ti-5AI-45Nb (at. pct) alloy was evaluated. The main objective of processing and characterizing this alloy was to obtain the constituent properties of a fully-beta TI-Al-Nb alloy to aid in modeling the tensile and creep properties of twophase orthorhombic + body-centered-cubic (O + bcc) alloys. A second objective was to compare the tensile and creep behavior of this fully-beta alloy to that for two-phase O + bcc alloys. This alloy exhibited a single-phase microstructure, containing the disordered bee phase (beta), after all the processing and heat treatments performed. This alloy was easily fabricated and workable; however, its creep resistance was significantly worse than that for fully-O and twophase O + bcc alloys. The alloy exhibited little strain hardening along with a room-temperature yield strength (YS) of 545 MPa, an ultimate tensile stress (UTS) of 559 MPa, a Young's modulus (E) of 86 GPa, and a tensile elongation to failure of 25 pct. Extensive surface slip was evident on the deformed material. Its room-temperature tensile properties were quite similar to those for a fully-beta Ti-12Al-38Nb microstructure (YS = 553 MPa, UTS = 566 MPa, E = 84, and epsilon(f) > 27 pct). Thus, the room-temperature tensile properties and behavior of fully-beta Ti-Al-Nb microstructures containing 50 at. pct Ti are not sensitive to compositional variations between 5 to 12 at. pet Al and 38 to 45 at. pct Nb. C1 US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. RP Cowen, CJ (reprint author), US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. EM Boehlert@egr.msu.edu NR 44 TC 0 Z9 1 U1 1 U2 6 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2007 VL 38A IS 11 BP 2747 EP 2753 DI 10.1007/s11661-007-9322-3 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 231JX UT WOS:000250944100015 ER PT J AU Marchi, CS Somerday, BP Zelinski, J Tang, X Schiroky, GH AF Marchi, C. San Somerday, B. P. Zelinski, J. Tang, X. Schiroky, G. H. TI Mechanical properties of super duplex stainless steel 2507 after gas phase thermal precharging with hydrogen SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID AUSTENITIC STAINLESS-STEELS; STACKING-FAULT ENERGY; ENVIRONMENTALLY ASSISTED CRACKING; FRACTURE-TOUGHNESS; EMBRITTLEMENT; DEFORMATION; TRANSPORT; PERMEATION; METALS; IRON AB Thermal precharging of super duplex stainless steel 2507 with 125 wppm hydrogen significantly reduced tensile ductility and fracture toughness. Strain-hardened 2507 exhibited more severe ductility loss compared to the annealed microstructure. The reduction of area (RA) was between 80 and 85 pct for both microstructures in the noncharged condition, while reductions of area were 25 and 46 pct for the strain-hardened and annealed micro structures, respectively, after hydrogen precharging. Similar to the effect of internal hydrogen on tensile ductility, fracture toughness of strain-hardened 2507 was lowered from nearly 300 MPa m(1/2) in the noncharged condition to less than 60 MPa m(1/2) in the hydrogen-precharged condition. While precharging 2507 with hydrogen results in a considerable reduction in ductility and toughness, the absolute values are similar to Iiigh-strength austenitic steels that have been tested under the same conditions, and which are generally considered acceptable for high-pressure hydrogen gas systems. The fracture mode in hydrogen-precharged 2507 involved cleavage cracking of the ferrite phase and ductile fracture along oblique planes in the austenite phase, compared to 100 pct microvoid coalescence in the absence of hydrogen. Predictions from a strain-based micromechanical fracture toughness model were in good agreement with the measured fracture toughness of hydrogen-precharged 2507, implying a governing role of austenite for resistance to hydrogenassisted fracture. C1 Sandia Natl Labs, Livermore, CA 94550 USA. Defense Nucl Facil Safety Board, Washington, DC 20004 USA. Swagelok Co, Solon, OH 44139 USA. RP Marchi, CS (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM cwsanma@sandia.gov NR 67 TC 2 Z9 2 U1 1 U2 6 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2007 VL 38A IS 11 BP 2763 EP 2775 DI 10.1007/s11661-007-9286-3 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 231JX UT WOS:000250944100017 ER PT J AU Smith, M Culp, JT Bittner, E Parker, B Li, J Bockrath, B AF Smith, M. Culp, J. T. Bittner, E. Parker, B. Li, J. Bockrath, B. TI Kinetics of desorption of hexane from the microporous metal organic framework RPM-1 SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE metal organic framework; hexane; desorption; pulse mass analyzer; kinetics ID SORPTION PROPERTIES; NANOPOROUS MATERIAL; HYDROGEN STORAGE; ADSORPTION; SEPARATION; NI-2(4,4'-BIPYRIDINE)(3)(NO3)(4); HYDROCARBONS; STABILITY; DIFFUSION; VAPORS AB The kinetics of desorption of hexane from the microporous metal framework RPM-1 has been studied using a pulse mass analyzer. In this method a small sample of organic liquid was injected into a heated carrier gas that passes through a packed bed of adsorbent. The change in mass of the bed with time was observed following the adsorption of the pulse. RPM-1 is a microporous material of the general formula [M-3(bpdC)(3)(bpy)] center dot 4DMF center dot H2O, where M is either Co or Zn, bpdc is biphenyl dicarboxylate and.bpy is 4,4'-bipyridine. The pores are channels of larger supercages (11 x 11 x 5 angstrom) connected by smaller windows of approximately 8 angstrom diameter. The desorption of hexane was well represented by a combination of two first order processes. Activation energies determined for the two processes over a temperature range of 373-473 K were 56 and 63 kJ/mol for RPM-1 (Co). The two activation energies are similar to isosteric heats of adsorption measured independently in earlier work at corresponding coverages. Similar values were found for RPM-1 (Zn). The pulse mass analyzer was found to be an effective way to investigate the dynamics of adsorption processes. (c) 2007 Elsevier Inc. All rights reserved. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Rutgers State Univ, Dept Chem & Biol Chem, Piscataway, NJ 08854 USA. RP Bockrath, B (reprint author), US DOE, Natl Energy Technol Lab, PO Box 10940, Pittsburgh, PA 15236 USA. EM bockrath@netl.doe.gov RI Culp, Jeffrey/B-1219-2010 OI Culp, Jeffrey/0000-0002-7422-052X NR 26 TC 3 Z9 3 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD NOV 1 PY 2007 VL 106 IS 1-3 BP 115 EP 121 DI 10.1016/j.micromeso.2007.02.050 PG 7 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 234ZN UT WOS:000251203400014 ER PT J AU Ruiz-Guajardo, JC Otero-Arnaiz, A Taylor, T Stone, G Glenn, TC Schable, NA Miller, JT Preuss, S Schnabel, A AF Ruiz-Guajardo, Juan C. Otero-Arnaiz, Adriana Taylor, Travis Stone, Graham Glenn, Travis C. Schable, Nancy A. Miller, Joseph T. Preuss, Sonja Schnabel, Andrew TI Isolation of polymorphic microsatellite markers in the sub-Saharan tree, Acacia (Senegalia) mellifera (Fabaceae : Mimosoideae) SO MOLECULAR ECOLOGY NOTES LA English DT Article DE Acacia mellifera; Fabaceae; microsatellites; molecular markers; Senegalia AB We isolated 11 polymorphic microsatellite markers from Acacia mellifera, a savannah woodland tree in sub-Saharan Africa and southern Arabia. The loci were screened for polymorphism using 48 Kenyan individuals. Allelic diversity ranged from three to 19 per locus and the polymorphic information content varied from 0.287 to 0.893. These loci will be useful in studies of genetic structure, gene flow and breeding systems. C1 Univ Edinburgh, Inst Evolut Biol, Edinburgh EH9 3JT, Midlothian, Scotland. Natl Inst Ecol, Mexico City 04530, DF, Mexico. Indiana Univ, Dept Biol Sci, South Bend, IN 46634 USA. Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Univ Iowa, Dept Biol Sci, Roy Carver Ctr Comparat Genom, Iowa City, IA 52242 USA. RP Ruiz-Guajardo, JC (reprint author), Univ Edinburgh, Inst Evolut Biol, Kings Bldg, Edinburgh EH9 3JT, Midlothian, Scotland. EM j.guajardo@ed.ac.uk RI Glenn, Travis/A-2390-2008; Miller, Joe/M-2693-2016 OI Miller, Joe/0000-0002-5788-9010 NR 11 TC 4 Z9 4 U1 1 U2 6 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1471-8278 J9 MOL ECOL NOTES JI Mol. Ecol. Notes PD NOV PY 2007 VL 7 IS 6 BP 1138 EP 1140 DI 10.1111/j.1471-8286.2007.01809.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 227HL UT WOS:000250647700061 ER PT J AU Tsyusko, OV Tuberville, TD Peters, MB Crawford, N Hagen, C Weller, SG Sakai, AK Glenn, TC AF Tsyusko, Olga V. Tuberville, Tracey D. Peters, Maureen B. Crawford, Nicholas Hagen, Cris Weller, Stephen G. Sakai, Ann K. Glenn, Travis C. TI Microsatellite markers isolated from polyploid wood-sorrel Oxalis alpina (Oxalidaceae) SO MOLECULAR ECOLOGY NOTES LA English DT Article DE breeding system; microsatellites; Oxalis alpina; PCR; polymorphism; polyploidy; primer AB Twelve polymorphic microsatellite loci were isolated from polyploid alpine wood-sorrel, Oxalis alpina (Oxalidaceae), and optimized for future studies of its breeding system. The loci were screened for variability among 72 individuals from Pinos Altos, New Mexico. The primers amplified loci with allele number ranging from two to 17 per locus and with estimates of Nei's genetic diversity varying from 0.10 to 0.99. These primers provide an opportunity to use polymorphic DNA markers to study the causes of breeding system variability in this species. C1 Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. RP Tsyusko, OV (reprint author), Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM tsyusko@srel.edu RI Glenn, Travis/A-2390-2008; OI Tsyusko, Olga/0000-0001-8196-1062 NR 6 TC 2 Z9 2 U1 1 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1471-8278 J9 MOL ECOL NOTES JI Mol. Ecol. Notes PD NOV PY 2007 VL 7 IS 6 BP 1284 EP 1286 DI 10.1111/j.1471-8286.2007.01856.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 227HL UT WOS:000250647700101 ER PT J AU Crispo, E Hagen, C Glenn, T Geneau, G Chapman, LJ AF Crispo, Erika Hagen, Cris Glenn, Travis Geneau, Genevieve Chapman, Lauren J. TI Isolation and characterization of tetranucleotide microsatellite markers in a mouth-brooding haplochromine cichlid fish (Pseudocrenilabrus multicolor victoriae) from Uganda SO MOLECULAR ECOLOGY NOTES LA English DT Article DE African cichlid; enrichment; population genetics; primer design; sequencing; tetranucleotide ID OXYGEN-CONSUMPTION; HYPOXIA AB Eight tetranucleotide microsatellite loci were isolated from the haplochromine cichlid fish, Pseudocrenilabrus multicolor victoriae, an important model species for studies in respiratory ecology, conservation, and evolution. We surveyed variation at these loci in 23 individuals from western Uganda, finding four to 19 alleles per locus and an average expected heterozygosity of 0.8575. These microsatellite loci will be used to examine gene flow and population structure in Ugandan P. m. victoriae. C1 McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. McGill Univ, Genome Quebec Innovat Ctr, Montreal, PQ H3A 1A4, Canada. RP Crispo, E (reprint author), McGill Univ, Dept Biol, 1205 Doctor Penfield Ave, Montreal, PQ H3A 1B1, Canada. EM erika.crispo@mail.mcgill.ca RI Glenn, Travis/A-2390-2008 NR 12 TC 6 Z9 6 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1471-8278 J9 MOL ECOL NOTES JI Mol. Ecol. Notes PD NOV PY 2007 VL 7 IS 6 BP 1293 EP 1295 DI 10.1111/j.1471-8286.2007.01859.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 227HL UT WOS:000250647700103 ER PT J AU Hansen, DR Dastidar, SG Cai, ZQ Penaflor, C Kuehl, JV Boore, JL Jansen, RK AF Hansen, Debra R. Dastidar, Sayantani G. Cai, Zhengqiu Penaflor, Cynthia Kuehl, Jennifer V. Boore, Jeffrey L. Jansen, Robert K. TI Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae) SO MOLECULAR PHYLOGENETICS AND EVOLUTION LA English DT Review DE chloroplast genome evolution; basal angiosperm phylogeny; chloranthales; austrobaileyales; inverted repeat ID COMPLETE NUCLEOTIDE-SEQUENCE; LONG-BRANCH ATTRACTION; PLASTID GENE RBCL; INVERTED REPEAT; BASAL ANGIOSPERMS; EARLIEST ANGIOSPERMS; INDEPENDENT LOSSES; ORGANELLAR GENOMES; FLOWERING PLANTS; VASCULAR PLANTS AB We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceac), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorns. Published by Elsevier Inc. C1 Univ Texas, Inst Mol & Cell Biol, Biol Labs 404, Sect Integrat Biol, Austin, TX 78712 USA. Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. Lawrence Berkeley Lab, DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. SymBio, Menlo Pk, CA 94025 USA. RP Jansen, RK (reprint author), Univ Texas, Inst Mol & Cell Biol, Biol Labs 404, Sect Integrat Biol, Austin, TX 78712 USA. EM jansen@mail.utexas.edu RI Jansen, Robert/F-6272-2011; cai, zhengqiu/G-2002-2011 NR 108 TC 66 Z9 330 U1 5 U2 42 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1055-7903 J9 MOL PHYLOGENET EVOL JI Mol. Phylogenet. Evol. PD NOV PY 2007 VL 45 IS 2 BP 547 EP 563 DI 10.1016/j.ympev.2007.06.004 PG 17 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA 230CN UT WOS:000250853400010 PM 17644003 ER PT J AU Conselice, CJ Bundy, K Trujillo, I Coil, A Eisenhardt, P Ellis, RS Georgakakis, A Huang, J Lotz, J Nandra, K Newman, J Papovich, C Weiner, B Willmer, C AF Conselice, C. J. Bundy, K. Trujillo, I. Coil, A. Eisenhardt, P. Ellis, R. S. Georgakakis, A. Huang, J. Lotz, J. Nandra, K. Newman, J. Papovich, C. Weiner, B. Willmer, C. TI The properties and evolution of a K-band selected sample of massive galaxies at z similar to 0.4-2 in the Palomar/DEEP2 survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE galaxies : evolution; galaxies : formation; galaxies : structure ID STAR-FORMING GALAXIES; HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT GALAXIES; DEEP-FIELD-NORTH; SPECTRAL ENERGY-DISTRIBUTION; LYMAN BREAK GALAXIES; DISTANT RED GALAXIES; STELLAR MASS; LUMINOSITY FUNCTION; BILLION YEARS AB We present the results of a study on the properties and evolution of massive ( M-* > 10(11)M circle dot) galaxies at z similar to 0.4 - 2 utilizing Keck spectroscopy, near- infrared Palomar imaging, and Hubble, Chandra and Spitzer data covering fields targeted by the DEEP2 galaxy spectroscopic survey. Our sample is K- band selected and stellar mass limited, based on wide- area near- infrared imaging from the Palomar Observatory Wide- Field Infrared Survey, which covers 1.53 deg(2) to a 5 sigma depth of K-s,K-vega similar to 20.5. Our primary goal is to obtain a broad census of massive galaxies through measuring how their number and mass densities, morphology, as well as their star formation and active galactic nucleus content evolve from z similar to 0.4 - 2. Our major findings include: ( i) statistically the mass and number densities of M-* > 10(11)M circle dot galaxies show little evolution between z = 0 and 1 and from z similar to 0 to 2 for M-* > 10(11.5)M circle dot galaxies. We however find significant evolution within 1 < z < 1.5 for 10(11) M circle dot < M-* < 10(11.5)M circle dot galaxies. ( ii) After examining the structures of our galaxies using Hubble ACS imaging, we find that M-* > 1011M circle dot selected galaxies show a nearly constant elliptical fraction of similar to 70 - 90 per cent at all redshifts. The remaining objects tend to be peculiars possibly undergoing mergers at z > 0.8, while spirals dominate the remainder at lower redshifts. A significant fraction (similar to 25 per cent) of these early- types contain minor structural anomalies. ( iii) We find that only a fraction (similar to 60 per cent) of massive galaxies with M-* > 10(11)M circle dot are on the red sequence at z similar to 1.4, while nearly 100 per cent evolve on to it by z similar to 0.4. ( iv) By utilizing Spitzer MIPS imaging and [ O II] line fluxes we argue that M-* > 1011.5M circle dot galaxies have a steeply declining star formation rate ( SFR) density similar to ( 1 + z) (6). By examining the contribution of star formation to the evolution of the mass function, as well as the merger history through the CAS parameters, we determine that M-* > 10(11)M circle dot galaxies undergo on average 0.9+(0.7)(-0.5) - 0.5 major mergers at 0.4 < z < 1.4. ( v) We find that a high ( 5 per cent) fraction of all M-* > 10(11)M circle dot galaxies are X- ray emitters. Roughly half of these are morphologically distorted ellipticals or peculiars. Finally, we compare our mass growth with semi- analytical models from the Millennium Simulation, finding relative good agreement at z < 2 for the M-* < 10(11.5)M circle dot systems, but that the number and mass densities of M* > 10(11.5)M circle dot galaxies are underpredicted by a factor of > 100. C1 Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. Univ Toronto, Dept Astron, Toronto, ON, Canada. Univ Arizona, Steward Observ, Tucson, AZ USA. CALTECH, Jet Propuls Lab, Pasadena, CA 91125 USA. Univ London Imperial Coll Sci Technol & Med, London, England. Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. Natl Opt Astron Observ, Tucson, AZ USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Maryland, College Pk, MD 20742 USA. RP Conselice, CJ (reprint author), Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. EM conselice@nottingham.ac.uk RI Conselice, Christopher/B-4348-2013; Georgakakis, Antonis/K-4457-2013; OI Conselice, Christopher/0000-0003-1949-7638 NR 120 TC 100 Z9 100 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2007 VL 381 IS 3 BP 962 EP 986 DI 10.1111/j.1365-2966.2007.12316.x PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 223IH UT WOS:000250363000006 ER PT J AU Tessendorf, SA AF Tessendorf, Sarah A. TI Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS SO MONTHLY WEATHER REVIEW LA English DT Article ID SEVERE THUNDERSTORM ELECTRIFICATION; SUPERCELL THUNDERSTORM; UNITED-STATES; LIQUID WATER; PRECIPITATION; CLASSIFICATION; THUNDERCLOUDS; MICROPHYSICS; KINEMATICS; REGIONS AB This study addresses the kinematic, microphysical, and electrical evolution of an isolated convective storm observed on 3 June 2000 during the Severe Thunderstorm Electrification and Precipitation Study field campaign. Doppler-derived vertical velocities, radar reflectivity, hydrometeor classifications from polarimetric radar, and Lightning Mapping Array (LMA) charge structures are examined over a nearly 3-h period. This storm, characterized as a low-precipitation supercell, produced modest amounts of hail, determined by fuzzy-logic hydrometeor classification as mostly small (< 2 cm) hail, with one surface report of large (>= 2 cm) hail. Doppler-derived updraft speeds peaked between 20 and 25 m s(-1), and reflectivity was never greater than 60 dBZ. The most striking feature of this storm was its total lack of cloud-to-ground (CG) lightning. Though this storm was electrically active, with maximum flash rates near 30 per minute, no CG flashes of either polarity were detected. The charge structure inferred from the LMA observations was consistent with an inverted dipole, defined as having a midlevel positive charge region below upper-level negative charge. Inverted charge structures have typically been considered conducive to producing positive CG lightning; however, the 3 June storm appeared to lack the lower negative charge layer below the inverted dipole that is thought to provide the downward electrical bias necessary for positive CG lightning. C1 Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP Tessendorf, SA (reprint author), NOAA, Earth Syst Res Lab, DSRC, R-CSD3,325 Broadway, Boulder, CO 80305 USA. EM sarah.tessendorf@noaa.gov NR 51 TC 28 Z9 28 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2007 VL 135 IS 11 BP 3665 EP 3681 DI 10.1175/2006MWR1953.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 231QX UT WOS:000250965200001 ER PT J AU Tessendorf, SA Rutledge, SA AF Tessendorf, Sarah A. Rutledge, Steven A. TI Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS SO MONTHLY WEATHER REVIEW LA English DT Article ID SEVERE THUNDERSTORM ELECTRIFICATION; ELECTRICAL STRUCTURE; PHYSICAL PROCESSES; CHARGE; PRECIPITATION; CLASSIFICATION; RADIATION; UPDRAFT AB This study discusses radar and lightning observations of two multicellular storms observed during the Severe Thunderstorm Electrification and Precipitation Study. The Lightning Mapping Array data indicated that the charge structure of the 19 June 2000 storm was consistent with a normal polarity tripole, while the 22 June 2000 storm exhibited an overall inverted tripolar charge structure. The 19 June storm consisted of weaker convection and produced little to no hail and moderate total flash rates peaking between 80 and 120 min(-1). The cells in the 22 June 2000 storm were much more vigorous, exhibited strong, broad updrafts, and produced large quantities of hail, as well as extraordinary total flash rates as high as 500 min(-1). The National Lightning Detection Network (NLDN) indicated that the 19 June storm produced mostly negative cloud-to-ground (CG) lightning, while the 22 June storm produced predominantly positive CG lightning, peaking at 10 min-1 just after two cells merged. However, the Los Alamos Sferic Array indicated that many of the positive CG strokes reported by the NLDN in the 22 June storm were intracloud discharges known as narrow bipolar events. Negative CG lightning was also observed in the 22 June storm, but typically came to ground beneath an inverted dipole in the storm anvil. C1 Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP Tessendorf, SA (reprint author), NOAA, Earth Syst Res Lab, DSRC, R-CSD3,25 Broadway, Boulder, CO 80305 USA. EM sarah.tessendorf@noaa.gov NR 49 TC 30 Z9 35 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2007 VL 135 IS 11 BP 3682 EP 3706 DI 10.1175/2007MWR1954.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 231QX UT WOS:000250965200002 ER PT J AU Wang, H Tribbia, JJ Baer, F Fournier, A Taylor, MA AF Wang, Houjun Tribbia, Joseph J. Baer, Ferdinand Fournier, Aime Taylor, Mark A. TI A spectral element version of CAM2 SO MONTHLY WEATHER REVIEW LA English DT Article ID SHALLOW-WATER EQUATIONS; RADIATIVE FLUXES; MODEL; RESOLUTION; BUDGET; ISCCP AB The authors describe a recent development and some applications of a spectral element dynamical core. The improvements and development include the following: (i) the code was converted from FORTRAN 77 to FORTRAN 90; (ii) the dynamical core was extended to the generalized terrain-following, or hybrid eta, vertical coordinates; (iii) a fourth-order Runge-Kutta (RK4) method for time integration was implemented; (iv) moisture effects were added in the dynamical system and a semi-Lagrangian method for moisture transport was implemented; and (v) the improved dynamical core was coupled with the Community Atmosphere Model version 2 (CAM2) physical parameterizations and Community Land Model version 2 (CLM2) in such a way that it can be used as an alternative dynamical core in CAM2. This spectral element version of CAM2 is denoted as CAM-SEM. A mass fixer as used in the Eulerian version of CAM2 (CAM-EUL) is also implemented in CAM-SEM. Results from multiyear simulations with CAM-SEM (coupled with CLM2) with climatology SST are also presented and compared with simulations from CAM-EUL. Close resemblances are shown in simulations from CAM-SEM and CAM-EUL. The authors found that contrary to what is suggested by some other studies, the high-order Lagrangian interpolation (with a limiter) using the spectral element basis functions may not be suitable for moisture and other strongly varying fields such as cloud and precipitation. C1 Natl Ctr Atmospher Res, Boulder, CO 80307 USA. Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD USA. Sandia Natl Labs, Albuquerque, NM USA. RP Wang, H (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM houjun.wang@noaa.gov RI Fournier, Aime/J-6366-2015 OI Fournier, Aime/0000-0002-5872-8307 NR 30 TC 12 Z9 12 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2007 VL 135 IS 11 BP 3825 EP 3840 DI 10.1175/2007MWR2058.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 231QX UT WOS:000250965200009 ER PT J AU Chu, S AF Chu, Steven TI Plenary speaker Steven Chu to discuss the world's energy problem SO MRS BULLETIN LA English DT Biographical-Item C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Chu, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD NOV PY 2007 VL 32 IS 11 BP 957 EP 957 PG 1 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 233MY UT WOS:000251096200027 ER PT J AU Njus, JM Vigeland, LE Li, X Springer, CS Taylor, M Telang, FW Coyle, P Rooney, WD AF Njus, J. M. Vigeland, L. E. Li, X. Springer, C. S. Taylor, M. Telang, F. W. Coyle, P. Rooney, W. D. TI Quantitative DCE MRI suggests widespread microvascular abnormalities in RR MS brain tissue SO MULTIPLE SCLEROSIS LA English DT Meeting Abstract CT 12th Annual Meeting of the Americas-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis CY MAY 30-JUN 02, 2007 CL Washington, DC SP Americas Comm Treatment & Res Multiple Sclerosis, Univ Maryland Sch Med, Natl Multiple Sclerosis Soc DE blood volumes; brain tissue; DCE; lesions; quantitative MRI; sex C1 Oregon Hlth & Sci Univ, Adv Imaging Res Ctr, Portland, OR 97201 USA. SUNY Stony Brook, Dept Neurol, Stony Brook, NY USA. Brookhaven Natl Lab, Dept Med, Upton, NY USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1352-4585 J9 MULT SCLER JI Mult. Scler. PD NOV PY 2007 VL 13 IS 9 MA P22 BP 1232 EP 1233 PG 2 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA 238KU UT WOS:000251447300054 ER PT J AU Taylor, JD Baumgartner, A Schmid, TE Adler, ID Brinkworth, MH AF Taylor, J. D. Baumgartner, A. Schmid, T. E. Adler, I. -D. Brinkworth, M. H. TI The effect of age on the response of male mouse germ-cells to cyclophosphamide SO MUTAGENESIS LA English DT Meeting Abstract C1 Univ Bradford, Med Biosci Res Focus Grp, Bradford BD7 1DP, W Yorkshire, England. Lawrence Livermore Natl Lab, Div Life Sci, Livermore, CA USA. Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA USA. Tech Univ Munich, D-8000 Munich, Germany. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0267-8357 J9 MUTAGENESIS JI Mutagenesis PD NOV PY 2007 VL 22 IS 6 BP 440 EP 440 PG 1 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 229TI UT WOS:000250826900046 ER PT J AU Marsden, DA Farmer, PB Jones, DJL Ognibene, TJ Ubick, E Brown, K AF Marsden, Debbie A. Farmer, Peter B. Jones, Donald J. L. Ognibene, Ted J. Ubick, Esther Brown, Karen TI Determination of exogenous and endogenously derived N7-(2-hydroxyethyl) guanine adducts in rats treated with C-14-labelled ethylene oxide SO MUTAGENESIS LA English DT Meeting Abstract C1 Univ Leicester, RKCSB, Leicester LE2 7LX, Leics, England. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Marsden, Debbie/F-7259-2011 NR 1 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0267-8357 J9 MUTAGENESIS JI Mutagenesis PD NOV PY 2007 VL 22 IS 6 BP 448 EP 448 PG 1 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 229TI UT WOS:000250826900070 ER PT J AU Zhao, Q Graf, PA Jones, WB Franceschetti, A Li, J Wang, LW Kim, K AF Zhao, Qingzhong Graf, Peter A. Jones, Wesley B. Franceschetti, Alberto Li, Jingbo Wang, Lin-Wang Kim, Kwiseon TI Shape dependence of band-edge Exciton fine structure in CdSe nanocrystals SO NANO LETTERS LA English DT Article ID SILICON QUANTUM DOTS; ELECTRONIC-STRUCTURE; SEMICONDUCTOR NANOCRYSTALS; ALTERNATIVE ROUTES; SOLAR-CELLS; STATES; CLUSTERS; RODS; CONFINEMENT; DYNAMICS AB The band-edge exciton fine structure of wurtzite CdSe nanocrystals is investigated by a plane-wave pseudopotential method that includes spin-orbit coupling., screened electron-hole Coulomb interactions, and exchange interactions. Large-scale, systematic simulations have been carried out on quantum dots, nanorods, nanowires, and nanodisks. The size and shape dependence of the exciton fine structure is explored over the whole diameter-length configuration space and is explained by the interplay of quantum confinement, intrinsic crystal-field splitting, and electron-hole exchange interactions. Our results show that the band-edge exciton fine structure of CdSe nanocrystals is determined by the origin of their valence-band single-particle wave functions. Nanocrystals where the valence-band maximum originates from the bulk A band have a "dark" ground-state exciton. Nanocrystals where the valence-band maximum is derived from the bulk B band have a "quasi-bright" ground-state exciton. Thus, the diameter-length configuration map can be divided into two regions, corresponding to dark and quasi-bright ground-state excitons. We find that the dark/quasi-bright ground-state exciton crossover is not only diameter-dependent but also length-dependent, and it is characterized by a curve in the two-parameter space of diameter and length. C1 Ctr Comp Sci, Natl Renewable Energy Lab, Golden, CO 80401 USA. Ctr Mat Sci, Natl Renewable Energy Lab, Golden, CO 80401 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Zhao, Q (reprint author), Ctr Comp Sci, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. NR 40 TC 33 Z9 33 U1 2 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3274 EP 3280 DI 10.1021/nl0713070 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800005 PM 17900160 ER PT J AU Huang, SCJ Artyukhin, AB Martinez, JA Sirbuly, DJ Wang, Y Ju, JW Stroeve, P Noy, A AF Huang, Shih-Chieh J. Artyukhin, Alexander B. Martinez, Julio A. Sirbuly, Donald J. Wang, Yinmin Ju, Jiann-Wen Stroeve, Pieter Noy, Aleksandr TI Formation, stability, and mobility of one-dimensional lipid Bilayers on polysilicon nanowires SO NANO LETTERS LA English DT Article ID LATERAL DIFFUSION-COEFFICIENTS; TRANS-GOLGI NETWORK; MEMBRANE CURVATURE; PHOSPHOLIPID-BILAYERS; PLASMA-MEMBRANE; BREFELDIN-A; RELAXATION; TUBULATION; GENERATION; LIPOSOMES AB Curved lipid membranes are ubiquitous in living systems and play an important role in many biological processes. To understand how curvature and lipid composition affect membrane formation and fluidity, we have assembled and studied mixed 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) supported lipid bilayers on amorphous silicon nanowires grown around carbon nanotube cores with controlled wire diameters ranging from 20 to 200 nm. We found that lipid vesicles fused onto nanowire substrates and formed continuous bilayers for all DOPC-DOPE mixtures tested (with the DOPE content of up to 30%). Our measurements demonstrate that nanowire-supported bilayers are mobile, exhibit fast recovery after photobleaching, and have a low concentration of defects. Lipid diffusion coefficients in these high-curvature tubular membranes are comparable to the values reported for flat supported bilayers and increase slightly with decreasing nanowire diameter. A free space diffusion model adequately describes the effect of bilayer curvature on the lipid mobility for nanowire substrates with diameters greater than 50 nm, but shows significant deviations from the experimental values for smaller diameter nanowires. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA. Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM noy1@llnl.gov RI Wunder, Stephanie/B-5066-2012; Zdilla, Michael/B-4145-2011; Wang, Yinmin (Morris)/F-2249-2010 OI Wang, Yinmin (Morris)/0000-0002-7161-2034 NR 37 TC 32 Z9 32 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3355 EP 3359 DI 10.1021/nl071641w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800019 PM 17900161 ER PT J AU Schaller, RD Pietryga, JM Klimov, VI AF Schaller, Richard D. Pietryga, Jeffrey M. Klimov, Victor I. TI Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit SO NANO LETTERS LA English DT Article ID TIME-RESOLVED PHOTOLUMINESCENCE; MULTIPLE EXCITON GENERATION; SEMICONDUCTOR NANOCRYSTALS; OPTICAL GAIN; ELECTRON RELAXATION; PBSE NANOCRYSTALS; CDSE NANOCRYSTALS; COLLOIDAL PBSE; EFFICIENCY; INP AB Carrier multiplication (CM) is a process in which absorption of a single photon produces not just one but multiple electron-hole pairs (excitons). This effect is a potential enabler of next-generation, high-efficiency photovoltaic and photocatalytic systems. On the basis of energy conservation, the minimal photon energy required to activate CM is two energy gaps (2E(g)). Here, we analyze CM onsets for nanocrystal quantum dots (NQDs) based upon combined requirements imposed by optical selection rules and energy conservation and conclude that materials with a significant difference between electron and hole effective masses such as III-V semiconductors should exhibit a CM threshold near the apparent 2E(g) limit. Further, we discuss the possibility of achieving sub-2E(g) CM thresholds through strong exciton-exciton attraction, which is feasible in NQDs. We report experimental studies of exciton dynamics (Auger recombination, intraband relaxation, radiative recombination, multiexciton generation, and biexciton shift) in InAs NQDs and show that they exhibit a CM threshold near 2E(g). C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Schaller, RD (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM rdsx@lanl.gov; klimov@lanl.gov OI Klimov, Victor/0000-0003-1158-3179 NR 50 TC 195 Z9 196 U1 3 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3469 EP 3476 DI 10.1021/nl072046x PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800039 PM 17967043 ER PT J AU Quek, SY Venkataraman, L Choi, HJ Louie, SG Hybertsen, MS Neaton, JB AF Quek, Su Ying Venkataraman, Latha Choi, Hyoung Joon Louie, Steven G. Hybertsen, Mark S. Neaton, J. B. TI Amine-gold linked single-molecule circuits: Experiment and theory SO NANO LETTERS LA English DT Article ID JUNCTION CONDUCTANCE; ELECTRON-TRANSPORT AB A combination of theory and experiment is used to quantitatively understand the conductance of single-molecule benzenediamine-gold junctions. A newly developed analysis is applied to a measured junction conductance distribution, based on 59 000 individual conductance traces, which has a clear peak at 0.0064 G(0) and a width of +/- 47%. This analysis establishes that the distribution width originates predominantly from variations in conductance across different junctions rather than variations in conductance during junction elongation. Conductance calculations based on density functional theory (DFT) for 15 distinct junction geometries show a similar spread. We show explicitly that differences in local structure have a limited influence on conductance because the amine-Au bonding motif is well-defined and flexible, explaining the narrow distributions seen in the experiments. The minimal impact of junction structure on conductance permits an unambiguous comparison of calculated and measured conductance values and a direct assessment of the widely used DFT theoretical framework. The average calculated conductance (0.046 G(0)) is found to be seven times larger than experiment. This discrepancy is explained quantitatively in terms of electron correlation effects to the molecular level alignments in the junction. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. Columbia Univ, Ctr Electron Transport Nanostruct, New York, NY 10027 USA. Yonsei Univ, IPAP, Dept Phys, Seoul 120749, South Korea. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Neaton, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jbneaton@lbl.gov RI Quek, Su Ying/I-2934-2014; Choi, Hyoung Joon/N-8933-2015; Neaton, Jeffrey/F-8578-2015; OI Choi, Hyoung Joon/0000-0001-8565-8597; Neaton, Jeffrey/0000-0001-7585-6135; Hybertsen, Mark S/0000-0003-3596-9754; Venkataraman, Latha/0000-0002-6957-6089 NR 27 TC 279 Z9 279 U1 4 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3477 EP 3482 DI 10.1021/nl072058i PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800040 PM 17900162 ER PT J AU Chen, XD Hirtz, M Rogach, AL Talapin, DV Fuchs, H Chi, LF AF Chen, Xiaodong Hirtz, Michael Rogach, Andrey L. Talapin, Dmitri V. Fuchs, Harald Chi, Lifeng TI Correlating dynamics and selectivity in adsorption of semiconductor nanocrystals onto a self-organized pattern SO NANO LETTERS LA English DT Article ID LANGMUIR-BLODGETT-FILMS; MONODISPERSE NANOCRYSTALS; LARGE AREAS; NANOPARTICLES; LITHOGRAPHY; TEMPLATES; POLYMERS; CDSE; GOLD AB Selective adsorption of semiconductor nanocrystals onto an organic self-organized pattern shows a time-dependent behavior. By studying the wetting behavior of delivered solvent (1-phenyloctane) on a lipid self-organized pattern and determining the adhesion energy between semiconductor nanocrystals and substrate, we obtain a correlation between dynamics and selectivity in adsorption of semiconductor nanocrystals onto the pattern by constructing a potential energy landscape. Two consecutive steps for selective adsorption of nanocrystals onto the self-organized pattern have been established: the first one is the molecule exchange of 1-phenyloctane and lipid molecules to form the adsorption sites for nanocrystals, and the second one is the adsorption of nanocrystals onto the adsorption sites due to the strong interaction between nanocrystals and substrate. C1 Univ Munster, Inst Phys, D-48149 Munster, Germany. Ctr Nanotechnol, D-48149 Munster, Germany. Univ Munich, Ctr Nanosci, Dept Phys, D-80799 Munich, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Chi, LF (reprint author), Univ Munster, Inst Phys, Wilhelm-Klemm-Str 10, D-48149 Munster, Germany. EM chi@uni-muenster.de RI Chen, Xiaodong/A-4537-2009; Hirtz, Michael/C-8821-2011; Chi, Lifeng/A-1419-2015 OI Chen, Xiaodong/0000-0002-3312-1664; Hirtz, Michael/0000-0002-2647-5317; NR 24 TC 10 Z9 10 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3483 EP 3488 DI 10.1021/nl072069b PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800041 PM 17914855 ER PT J AU Jensen, K Weldon, J Garcia, H Zettl, A AF Jensen, K. Weldon, J. Garcia, H. Zettl, A. TI Nanotube radio SO NANO LETTERS LA English DT Article ID SINGLE CARBON NANOTUBE; FIELD-EMISSION AB We have constructed a fully functional, fully integrated radio receiver from a single carbon nanotube. The nanotube serves simultaneously as all essential components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A direct current voltage source, as supplied by a battery, powers the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, we demonstrate successful music and voice reception. C1 Univ Calif Berkeley, Ctr Integrat Nanomech Syst, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Ctr Integrat Nanomech Syst, Dept Phys, Berkeley, CA 94720 USA. EM azettl@physics.berkeley.edu RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X NR 18 TC 226 Z9 228 U1 5 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3508 EP 3511 DI 10.1021/nl0721113 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800046 PM 17973438 ER PT J AU Son, YW Cohen, ML Louie, SG AF Son, Young-Woo Cohen, Marvin L. Louie, Steven G. TI Electric field effects on spin transport in defective metallic carbon nanotubes SO NANO LETTERS LA English DT Article ID GRAPHENE; PSEUDOPOTENTIALS; STATES AB On the basis of first-principles calculations, we investigate transport properties of spin-polarized electrons in defective metallic single-wall carbon nanotubes (SWCNTs) under homogeneous transverse electric fields. Either vacancies or carbon adatoms are introduced in (10,10) SWCNT and are shown to play a role of quasi-localized magnetic impurities. The applied transverse electric fields change the relative position of the energy levels of the defects with respect to the Fermi energy so that the spin-polarized conductances are shown to be tunable. For some impurities, the orientation of the majority spin electrons in conducting channels at the Fermi energy can be switched to the opposite spin by an experimentally attainable electric field. Our results suggest that pure carbon or organic nanomagnets could be realized in SWCNTs, and their spin transport properties are controllable by transverse electric fields. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Konkuk Univ, Dept Phys, Seoul 143701, South Korea. RP Son, YW (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM youngwoo@konkuk.ac.kr RI son, Young-Woo/B-2566-2010 NR 48 TC 30 Z9 30 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3518 EP 3522 DI 10.1021/nl0721822 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800048 PM 17973439 ER PT J AU McDonald, TJ Svedruzic, D Kim, YH Blackburn, JL Zhang, SB King, PW Heben, MJ AF McDonald, Timothy J. Svedruzic, Drazenka Kim, Yong-Hyun Blackburn, Jeffrey L. Zhang, S. B. King, Paul W. Heben, Michael J. TI Wiring-up hydrogenase with single-walled carbon nanotubes SO NANO LETTERS LA English DT Article ID CRYSTAL-STRUCTURE; DEPENDENCE; OXIDATION; ENERGIES; SPECTRA; DEVICE AB Many envision a future where hydrogen is the centerpiece of a sustainable, carbon-free energy supply. For example, the energy in sunlight may be stored by splitting water into H(2) and O(2) Using inorganic semiconductors and photoelectrochemical approaches(1) or with artificial photosynthetic systems that seek to mimic the light absorption, energy transfer, electron transfer, and redox catalysis that occurs in green plants.(2) Unfortunately, large scale deployment of artificial water-splitting technologies may be impeded by the need for the large amounts of precious metals required to catalyze the multielectron water-splitting reactions. Nature provides a,variety of microbes that can activate the dihydrogen bond through the catalytic activity of [NiFe] and [FeFe] hydrogenases,(3,4) and photobiological approaches to water splitting have been advanced.(5) One may also consider a biohybrid approach; however, it is difficult to interface these sensitive(6,7) metalloenzymes to other materials and systems. Here we show that surfactant-suspended carbon single-walled nanotubes (SWNTs) spontaneously self-assemble with [FeFe] hydrogenases in solution to form catalytically active biohybrids. Photoluminescence excitation and Raman spectroscopy studies show that SWNTs act as molecular wires to make electrical contact to the biocatalytic region of hydrogenase. Hydrogenase mediates electron injection into nanotubes having appropriately positioned lowest occupied molecular orbital levels when the H2 partial pressure is varied. The hydrogenase is strongly attached to the SWNTs, so mass transport effects are eliminated and the absolute potential of the electronic levels of the nanotubes can be unambiguously measured. Our findings reveal new nanotube physics and represent the first example of "wiring-up" an hydrogenase with another nanoscale material. This latter advance offers a nonprecious metal route to the design of new biohybrid architectures and building blocks for hydrogen-related technologies. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP King, PW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM paul_king@nrel.gov; michael_heben@nrel.gov RI Kim, Yong-Hyun/C-2045-2011; Blackburn, Jeffrey/D-7344-2012; King, Paul/D-9979-2011; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013 OI Kim, Yong-Hyun/0000-0003-4255-2068; King, Paul/0000-0001-5039-654X; Zhang, Shengbai/0000-0003-0833-5860 NR 37 TC 73 Z9 73 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3528 EP 3534 DI 10.1021/nl072319o PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800050 PM 17967044 ER PT J AU Park, MJ Downing, KH Jackson, A Gomez, ED Minor, AM Cookson, D Weber, AZ Balsara, NP AF Park, Moon Jeong Downing, Kenneth H. Jackson, Andrew Gomez, Enrique D. Minor, Andrew M. Cookson, David Weber, Adam Z. Balsara, Nitash P. TI Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation SO NANO LETTERS LA English DT Article ID FUEL-CELL; PROTON CONDUCTIVITY; EXCHANGE MEMBRANES; BLOCK-COPOLYMERS; TRANSPORT; NAFION(R); HUMIDITY; SYSTEMS AB We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. Argonne Natl Lab, Australina Synchrotron Res Program, Argonne, IL 60439 USA. RP Park, MJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Jackson, Andrew/B-9793-2008; Gomez, Enrique/E-5887-2013; Park, Moon Jeong/F-5752-2013; OI Jackson, Andrew/0000-0002-6296-0336; Weber, Adam/0000-0002-7749-1624 NR 31 TC 141 Z9 144 U1 4 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2007 VL 7 IS 11 BP 3547 EP 3552 DI 10.1021/nl072617l PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232ZI UT WOS:000251059800053 PM 17960948 ER PT J AU Lee, WS Vishik, IM Tanaka, K Lu, DH Sasagawa, T Nagaosa, N Devereaux, TP Hussain, Z Shen, ZX AF Lee, W. S. Vishik, I. M. Tanaka, K. Lu, D. H. Sasagawa, T. Nagaosa, N. Devereaux, T. P. Hussain, Z. Shen, Z.-X. TI Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212 SO NATURE LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; PSEUDOGAP; BI2SR2CACU2O8+DELTA; SPECTROSCOPY; DEPENDENCE; STATE AB The superconducting gap-an energy scale tied to the superconducting phenomena-opens on the Fermi surface at the superconducting transition temperature (T-c) in conventional BCS superconductors. In underdoped high-T-c superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above T-c (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above T-c is one of the central questions in high-T-c research(3-8). Although some experimental evidence suggests that the two gaps are distinct(9-18), this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap that opens at T-c and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments(19-21). C1 Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada. RP Shen, ZX (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM leews@stanford.edu; zxshen@stanford.edu RI Nagaosa, Naoto/G-7057-2012; Sasagawa, Takao/E-6666-2014 OI Sasagawa, Takao/0000-0003-0149-6696 NR 28 TC 269 Z9 272 U1 3 U2 59 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 1 PY 2007 VL 450 IS 7166 BP 81 EP 84 DI 10.1038/nature06219 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 226JR UT WOS:000250585800040 PM 17972881 ER PT J AU Smith, B Ashburner, M Rosse, C Bard, J Bug, W Ceusters, W Goldberg, LJ Eilbeck, K Ireland, A Mungall, CJ Leontis, N Rocca-Serra, P Ruttenberg, A Sansone, SA Scheuermann, RH Shah, N Whetzel, PL Lewis, S AF Smith, Barry Ashburner, Michael Rosse, Cornelius Bard, Jonathan Bug, William Ceusters, Werner Goldberg, Louis J. Eilbeck, Karen Ireland, Amelia Mungall, Christopher J. Leontis, Neocles Rocca-Serra, Philippe Ruttenberg, Alan Sansone, Susanna-Assunta Scheuermann, Richard H. Shah, Nigam Whetzel, Patricia L. Lewis, Suzanna CA OBI Consortium TI The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration SO NATURE BIOTECHNOLOGY LA English DT Article ID GENE ONTOLOGY; ANNOTATION; ORGANIZATION; COMMUNITY; KNOWLEDGE; GENOMICS; LANGUAGE; PATHWAY; GO AB The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or 'ontologies'. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved. C1 SUNY Buffalo, Ctr Excellence Bioinformat & Life sci, Dept Physiol, Buffalo, NY 14203 USA. Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. Univ Edinburgh, Dept Biomed Sci, Edinburgh EH8 9JZ, Midlothian, Scotland. Drexel Univ, Coll Med, Dept Neurobiol & Anat, Philadelphia, PA 19129 USA. SUNY Buffalo, Ctr Excellence Bioinformat & Life Sci, Dept Psychiat, Buffalo, NY 14203 USA. SUNY Buffalo, Ctr Excellence Bioinformat & Life Sci, Dept Oral Biol, Buffalo, NY 14203 USA. Univ Utah, Eccles Inst Human Genet, Salt Lake City, UT 84112 USA. European Bioinformat Inst, Cambridge CB10 1SD, England. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Bowling Green State Univ, Dept Chem, Bowling Green, OH 43403 USA. MIT, Artificial Intelligence Lab, Cambridge, MA 02139 USA. Univ Texas SW Med Ctr, Dept Pathol, Dallas, TX 75230 USA. Stanford Univ, Sch Med, Stanford Med Informat, Stanford, CA 94305 USA. Univ Penn, Ctr Informat, Dept Genet, Philadelphia, PA 19104 USA. RP Smith, B (reprint author), SUNY Buffalo, Ctr Excellence Bioinformat & Life sci, Dept Physiol, 701 Elliot St, Buffalo, NY 14203 USA. EM phismith@buffalo.edu RI Field, Dawn/C-1653-2010; Ceusters, Werner/H-2269-2013; Leontis, Neocles/E-8866-2011; Smith, Barry/A-9525-2011; OI Ceusters, Werner/0000-0002-2676-8689; Leontis, Neocles/0000-0003-3521-5119; Smith, Barry/0000-0003-1384-116X; Ruttenberg, Alan/0000-0002-1604-3078; Sansone, Susanna-Assunta/0000-0001-5306-5690; Lewis, Suzanna/0000-0002-8343-612X; Scheuermann, Richard/0000-0003-1355-892X FU Biotechnology and Biological Sciences Research Council [BB/E025080/1]; Medical Research Council [G8225539]; NHGRI NIH HHS [U54 HG004028, U54 HG004028-01, U54 HG004028-02]; NIGMS NIH HHS [R15 GM055898, R15 GM055898-04] NR 47 TC 831 Z9 841 U1 7 U2 34 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD NOV PY 2007 VL 25 IS 11 BP 1251 EP 1255 DI 10.1038/nbt1346 PG 5 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 233JF UT WOS:000251086500025 PM 17989687 ER PT J AU Friddle, RW Lemieux, MC Cicero, G Artyukhin, AB Tsukruk, VV Grossman, JC Galli, G Noy, A AF Friddle, Raymond W. Lemieux, Melburne C. Cicero, Giancarlo Artyukhin, Alexander B. Tsukruk, Vladimir V. Grossman, Jeffrey C. Galli, Giulia Noy, Aleksandr TI Single functional group interactions with individual carbon nanotubes SO NATURE NANOTECHNOLOGY LA English DT Article ID CHEMICAL FORCE MICROSCOPY; ADHESION BONDS; TRANSISTORS; NANOWIRES; STRENGTH; SENSORS; ARRAYS; TIP AB Carbon nanotubes(1) display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits(2) and biosensors(3) to field emitters(4) and membranes(5). These applications use the non- covalent interactions between the nanotubes and chemical functionalities(6), often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular- level control of these interactions. We have used chemical force microscopy(7) to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour- grown individual single- walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level. C1 Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. Politecn Torino, Dept Phys, I-10129 Turin, Italy. Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. RP Friddle, RW (reprint author), Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM noy1@llnl.gov OI Cicero, Giancarlo/0000-0002-2920-9882 NR 33 TC 44 Z9 46 U1 2 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD NOV PY 2007 VL 2 IS 11 BP 692 EP 697 DI 10.1038/nnano.2007.334 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 235WR UT WOS:000251265500012 PM 18654407 ER PT J AU Watts, MR Shaw, MJ Nielson, GN AF Watts, Michael R. Shaw, Michael J. Nielson, Gregory N. TI Optical resonators - Microphotonic thermal imaging SO NATURE PHOTONICS LA English DT News Item C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Watts, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mwatts@sandia.gov NR 3 TC 19 Z9 19 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD NOV PY 2007 VL 1 IS 11 BP 632 EP 634 DI 10.1038/nphoton.2007.219 PG 3 WC Optics; Physics, Applied SC Optics; Physics GA 236DH UT WOS:000251282700012 ER PT J AU Shah, V Knappe, S Schwindt, PDD Kitching, J AF Shah, Vishal Knappe, Svenja Schwindt, Peter D. D. Kitching, John TI Subpicotesla atomic magnetometry with a microfabricated vapour cell SO NATURE PHOTONICS LA English DT Article ID MAGNETIC-RESONANCE; SPIN-EXCHANGE AB Highly sensitive magnetometers capable of measuring magnetic fields below 1 pT have an impact on areas as diverse as geophysical surveying(1), the detection of unexploded ordinance(2), space science(3), nuclear magnetic resonance(4,5), health care(6) and perimeter and remote monitoring. Recently, it has been shown that laboratory optical magnetometers(7,8), based on the precession of the spins of alkali atoms in the vapour phase, could achieve sensitivities in the femtotesla range, comparable to(9-12), or even exceeding(13), those of superconducting quantum interference devices(6). We demonstrate here an atomic magnetometer based on a millimetre-scale microfabricated alkali vapour cell with sensitivity below 70 fT Hz(-1/2). Additionally, we use a simplified optical configuration that requires only a single low-power laser. This result suggests that millimetre-scale, low-power femtotesla magnetometers are feasible, and we support this proposition with a simple sensitivity scaling analysis. Such an instrument would greatly expand the range of applications in which atomic magnetometers could be used. C1 NIST, Boulder, CO 80305 USA. Univ Colorado, Dept Phys, Boulder, CO 80309 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kitching, J (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA. EM kitching@boulder.nist.gov NR 30 TC 108 Z9 111 U1 8 U2 49 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD NOV PY 2007 VL 1 IS 11 BP 649 EP 652 DI 10.1038/nphoton.2007.201 PG 4 WC Optics; Physics, Applied SC Optics; Physics GA 236DH UT WOS:000251282700015 ER PT J AU Ediger, M Bester, G Badolato, A Petroff, PM Karrai, K Zunger, A Warburton, RJ AF Ediger, M. Bester, G. Badolato, A. Petroff, P. M. Karrai, K. Zunger, A. Warburton, R. J. TI Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots SO NATURE PHYSICS LA English DT Article ID EMISSION; COULOMB; STATES AB Coulomb interactions between electrons lead to the observed multiplet structure and breakdown of the Aufbau principle for atomic d and f shells(1). Nevertheless, these effects can disappear in extended systems. For instance, the multiplet structure of atomic carbon is not a feature of graphite or diamond. A quantum dot is an extended system containing similar to 10(6) atoms for which electron-electron interactions do survive and the interplay between the Coulomb energy, J, and the quantization energy, Delta E, is crucial to Coulomb blockade(2-5). We have discovered consequences of Coulomb interactions in self-assembled quantum dots by interpreting experimental spectra with an atomistic calculation. The Coulomb effects, evident in the photon emission process, are tunable in situ by controlling the quantum dot charge from + 6e to -6e. The same dot shows two regimes: J <= Delta E for electron charging yet J similar to Delta E for hole charging. We find a breakdown of the Aufbau principle for holes; clear proof of non-perturbative hole-hole interactions; promotion-demotion processes in the final state of the emission process, effects first predicted a decade ago(6); and pronounced configuration hybridizations in the initial state. The level of charge control and the energy scales result in Coulomb effects with no obvious analogues in atomic physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. Univ Munich, Ctr Nanosci, D-80539 Munich, Germany. Univ Munich, Dept Phys, D-80539 Munich, Germany. RP Bester, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM G.Bester@fkf.mpg.de; R.J.Warburton@hw.ac.uk RI Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013; Badolato, Antonio/E-9778-2015 OI Bester, Gabriel/0000-0003-2304-0817; NR 19 TC 76 Z9 77 U1 3 U2 33 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD NOV PY 2007 VL 3 IS 11 BP 774 EP 779 DI 10.1038/nphys748 PG 6 WC Physics, Multidisciplinary SC Physics GA 235WU UT WOS:000251265800016 ER PT J AU Wilke, RA Lin, DW Roden, DM Watkins, PB Flockhart, D Zineh, I Giacomini, KM Krauss, RM AF Wilke, Russell A. Lin, Debbie W. Roden, Dan M. Watkins, Paul B. Flockhart, David Zineh, Issam Giacomini, Kathleen M. Krauss, Ronald M. TI Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges SO NATURE REVIEWS DRUG DISCOVERY LA English DT Review ID LONG-QT-SYNDROME; TORSADES-DE-POINTES; PERFORMANCE LIQUID-CHROMATOGRAPHY; ACTION-POTENTIAL PROLONGATION; STATIN-ASSOCIATED MYOPATHY; TANDEM MASS-SPECTROMETRY; CONGESTIVE-HEART-FAILURE; CANINE PURKINJE-FIBERS; INDUCED LIVER-INJURY; S-TRANSFERASE M1 AB Serious adverse drug reactions (SADRs) are a major cause of morbidity and mortality worldwide. Some SADRs may be predictable, based upon a drug's pharmacodynamic and pharmacokinetic properties. Many, however, appear to be idiosyncratic. Genetic factors may underlie susceptibility to SADRs and the identification of predisposing genotypes may improve patient management through the prospective selection of appropriate candidates. Here we discuss three specific SADRs with an emphasis on genetic risk factors. These SADRs, selected based on widesweeping clinical interest, are drug-induced liver injury, statin-induced myotoxicity and drug-induced long QT and torsades de pointes. Key challenges for the discovery of predictive risk alleles for these SADRs are also considered. C1 Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA. Lawrence Berkeley Natl Lab, Dept Gen Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Nutr Sci, Berkeley, CA 94720 USA. RP Krauss, RM (reprint author), Childrens Hosp Oakland, Res Inst, 5700 Martin Luther King Jr Way, Oakland, CA 94609 USA. EM rkrauss@chori.org FU NCRR NIH HHS [K24 RR020815, K24 RR020815-05, K24RR02815]; NHLBI NIH HHS [HL 69757, U01 HL065962, U01 HL065962-08, U01 HL069757, U01 HL069757-08, U01 HL65962, U19 HL069757]; NIDDK NIH HHS [U01 DK065201, U01 DK065201-05]; NIGMS NIH HHS [U01 GM074492-04, GM61390, T32 GM008425, TR2GM008425, U01 GM061373, U01 GM061373-10, U01 GM061390, U01 GM074492, U19 GM061390] NR 147 TC 152 Z9 154 U1 4 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1474-1776 J9 NAT REV DRUG DISCOV JI Nat. Rev. Drug Discov. PD NOV PY 2007 VL 6 IS 11 BP 904 EP 916 DI 10.1038/nrd2423 PG 13 WC Biotechnology & Applied Microbiology; Pharmacology & Pharmacy SC Biotechnology & Applied Microbiology; Pharmacology & Pharmacy GA 225RY UT WOS:000250536300016 PM 17971785 ER PT J AU Henn, F AF Henn, Fritz TI Gene and pathophysiology of depression: Tips for classification SO NERVENARZT LA German DT Meeting Abstract C1 [Henn, Fritz] Brookhaven Natl Lab, New York, NY USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0028-2804 J9 NERVENARZT JI Nervenarzt PD NOV PY 2007 VL 78 SU 2 BP 461 EP 461 PG 1 WC Clinical Neurology; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 264VP UT WOS:000253318801328 ER PT J AU DuPont, J Brown, RS Geist, DR AF DuPont, Josephm. Brown, Richard S. Geist, David R. TI Unique allacustrine migration patterns of a bull trout population in the Pend Oreille River drainage, Idaho SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Editorial Material ID SALMON ONCORHYNCHUS-KISUTCH; SALVELINUS-CONFLUENTUS; CUTTHROAT TROUT; LIFE-HISTORY; BRITISH-COLUMBIA; ATLANTIC SALMON; BLACKFOOT RIVER; HABITAT USE; MONTANA; MOVEMENTS AB We captured and radio-tagged six adult bull trout Salvelinus confluentus in a spawning tributary of the East River basin, Idaho. These fish were tracked for a year to determine the type of migration they endured to reach their overwintering and spawning locations. Our tracking efforts revealed that the fish made complex postspawning migrations downstream and then upstream either towards or into Lake Pend Oreille, To reach the lake, bull trout migrated at least 12 kin out of the East River basin into the Priest River, traveled 34 kin down the Priest River into the Pend Oreille River, and then turned upstream and migrated 36 km to Lake Pend Oreille. Three of the six bull trout returned to the East River basin during the subsequent spring. These movement patterns are uniquely complex and extensive for outlet-spawning or allacustrine bull trout. This work illustrates the type of allacustrine migrations bull trout can have and suggests the need for new approaches for accomplishing bull trout population expansion into historically occupied habitats. Eliminating barriers downstream of lakes could potentially contribute to and increase bull trout populations considerably. C1 [DuPont, Josephm.] Idaho Dept Fish & Game, Coeur Dalene, ID 83815 USA. [Brown, Richard S.; Geist, David R.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP DuPont, J (reprint author), Idaho Dept Fish & Game, 2885 Kathleen Ave, Coeur Dalene, ID 83815 USA. EM jdupont@idfg.idaho.gov NR 38 TC 6 Z9 6 U1 1 U2 2 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA SN 0275-5947 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PD NOV PY 2007 VL 27 IS 4 BP 1268 EP 1275 DI 10.1577/M06-137.1 PG 8 WC Fisheries SC Fisheries GA 247GG UT WOS:000252065400021 ER PT J AU Firestone, RB AF Firestone, R. B. TI Nuclear data sheets for A=24 SO NUCLEAR DATA SHEETS LA English DT Review ID HIGH-SPIN STATES; NEUTRON-RICH NUCLEI; INELASTIC ELECTRON-SCATTERING; DIRECT MASS MEASUREMENTS; MAGNETIC DIPOLE STATES; HALF-LIFE MEASUREMENTS; STELLAR REACTION-RATE; DELAYED PROTON DECAY; LOWEST T=2 STATE; LOW-LYING LEVELS AB This evaluation of A=24 has been updated from previous evaluations published in 1998En04, 1990En08, and 1978En02. Coverage includes properties of adopted levels and gamma rays, decay-scheme data (energies, intensities and placement of radiations), and cross reference entries. The following tables continue the tradition of showing the systematic relationships between levels in A=24. These assignments are based on energy differences for states with the same J(pi) values, gamma-ray strengths, spectroscopic factors in analog single particle (T=1) or two particle (T=2) transfer reactions. Isospin is not a perfect quantum number and the adopted T-value may correspond to a small component in the wavefunction. C1 [Firestone, R. B.] Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Firestone, RB (reprint author), Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. OI Firestone, Richard/0000-0003-3833-5546 NR 181 TC 46 Z9 48 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2007 VL 108 IS 11 BP 2319 EP + DI 10.1016/j.nds.2007.10.001 PG 72 WC Physics, Nuclear SC Physics GA 241CG UT WOS:000251633900001 ER PT J AU Wu, Q Schubring, DL Sienicki, JJ AF Wu, Qiao Schubring, DuWayne L. Sienicki, James J. TI Feasibility analysis of two-phase MHD energy conversion for liquid metal cooled reactors SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB A two-phase MHD energy conversion unit is proposed to a liquid metal cooled fast reactor. Using supercritical CO2 as the working fluid in the gas cycle without considering friction and heat losses, the optimized cycles efficiency is obtained, which is about 5% higher than that of the gas turbine Brayton cycle with the same regenerator/compressor configurations. Based on a simple MHD power analysis and the two-phase homogeneous flow model, the important system operational conditions were estimated. The results suggest that a liquid lead pump of at least 20% of the MHD power output is needed in order to convert the 400 MW reactor heat into electricity at the specified thermal efficiency, unless a mixture foam flow of void fraction greater than 80% is achievable at very high mixture velocity. (C) 2007 Elsevier B.V. All rights reserved. C1 Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Corvallis, OR 97331 USA. Argonne Natl Lab, Reactor Engn Div, Argonne, IL 60439 USA. RP Wu, Q (reprint author), Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Corvallis, OR 97331 USA. EM qiao@engr.orst.edu NR 8 TC 0 Z9 0 U1 3 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD NOV PY 2007 VL 237 IS 20-21 BP 2114 EP 2119 DI 10.1016/j.nucengdes.2007.02.009 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 228BJ UT WOS:000250701600005 ER PT J AU Chen, D Howe, KJ Dallman, J Letellier, BC Klasky, M Leavitt, J Jain, B AF Chen, Dong Howe, Kerry J. Dallman, Jack Letellier, Bruce C. Klasky, Marc Leavitt, Janet Jain, Bhagwat TI Experimental analysis of the aqueous chemical environment following a loss-of-coolant accident SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB Five different 30-day tests were conducted to simulate the chemical environment in a pressurized water reactor containment water pool after a loss-of-coolant accident (LOCA). All chemical environments within the test apparatus included boric acid, lithium hydroxide, and hydrochloric acid. In addition, trisodium phosphate, sodium hydroxide, and sodium tetraborate were used to control pH in separate tests. Materials tested within this environment included representative amounts of submerged and unsubmerged metal coupons, concrete, insulation debris samples, concrete particulate, and latent debris. Visible changes were seen on the both submerged and unsubmerged metal coupons in each test because of corrosion. The tests with calcium silicate (cal-sil) insulation had considerably more sediment than the other tests with fiberglass insulation. Particulate deposits were found only on the exterior surfaces of the fiberglass bundles. The most particulate deposits were found on the fiberglass exterior from the test that involved cal-sil insulation and trisodium phosphate (TSP). In addition, snow-like white precipitates were found on top of the sediment in that test, that were rich in calcium and phosphorus. Precipitates were also present in the solutions of two tests when the solution was cooled to room temperature. These precipitates have high contents of aluminum and boron with small amounts of sodium and calcium. The presence of insulation debris, precipitates, and sediments is significant because of the impact they may have on the ECCS recirculation process. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. Los Alamos Natl Lab, Nucl Design & Risk Anal Grp D5, Los Alamos, NM 87545 USA. US Nucl Regulatory Commiss, Rockville, MD 20852 USA. RP Howe, KJ (reprint author), Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. EM howe@unm.edu RI Howe, Kerry/B-3355-2009 NR 12 TC 11 Z9 11 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD NOV PY 2007 VL 237 IS 20-21 BP 2126 EP 2136 DI 10.1016/j.nucengdes.2007.02.010 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 228BJ UT WOS:000250701600007 ER PT J AU Bakhtiari, S Gopalsami, N Elmer, TW Raptis, AC AF Bakhtiari, Sason Gopalsami, Nachappo Elmer, Thomas W. Raptis, Apostolos C. TI Covert plant detection SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Bakhtiari, S (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Elmer, Thomas/0000-0003-0363-5928 NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD NOV PY 2007 VL 52 IS 640 BP 18 EP 19 PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 232WA UT WOS:000251049900004 ER PT J AU Callen, JD Anderson, JK Arlen, TC Bateman, G Budny, RV Fujita, T Greenfield, CM Greenwald, M Groebner, RJ Hill, DN Hogeweij, GMD Kaye, SM Kritz, AH Lazarus, EA Leonard, AC Mahdavi, MA McLean, HS Osborne, TH Pankin, AY Petty, CC Sarff, JS St John, HE Stacey, WM Stutman, D Synakowski, EJ Tritz, K AF Callen, J. D. Anderson, J. K. Arlen, T. C. Bateman, G. Budny, R. V. Fujita, T. Greenfield, C. M. Greenwald, M. Groebner, R. J. Hill, D. N. Hogeweij, G. M. D. Kaye, S. M. Kritz, A. H. Lazarus, E. A. Leonard, A. C. Mahdavi, M. A. McLean, H. S. Osborne, T. H. Pankin, A. Y. Petty, C. C. Sarff, J. S. St John, H. E. Stacey, W. M. Stutman, D. Synakowski, E. J. Tritz, K. TI Experimental tests of paleoclassical transport SO NUCLEAR FUSION LA English DT Article ID ELECTRON HEAT-TRANSPORT; HIGH-BETA; DIII-D; TOKAMAK; CONFINEMENT; PLASMAS; MODE; BARRIERS; COLLISIONALITY; TURBULENCE AB Predictions of the recently developed paleoclassical transport model are compared with data from many toroidal plasma experiments: electron heat diffusivity in DIII-D, C-Mod and NSTX ohmic and near-ohmic plasmas; transport modelling of DIII-D ohmic-level discharges and of the RTP ECH 'stair-step' experiments with electron internal transport barriers (eITBs) at low order rational surfaces; investigation of a strong eITB in JT-60U; H-mode T-e edge pedestal properties in DIII-D; and electron heat diffusivities in non-tokamak experiments (NSTX/ST, MST/RFP, SSPX/spheromak). The radial electron heat transport predicted by the paleoclassical model is found to be in reasonable agreement with a wide variety of ohmic-level experimental results and to set the lower limit (within a factor less than or similar to 2 in tokamaks) on the radial electron heat transport in most resistive, current-carrying toroidal plasmas-for T-e less than or similar to T-e(crit) similar or equal to B (2/3)a(-1/2) keV where it is expected to be dominant over fluctuation-induced anomalous transport that scales with a gyro-Bohm diffusion coefficient. C1 [Callen, J. D.; Anderson, J. K.; Sarff, J. S.] Univ Wisconsin, Madison, WI 53706 USA. [Arlen, T. C.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Arlen, T. C.; Greenfield, C. M.; Groebner, R. J.; Hill, D. N.; Lazarus, E. A.; Leonard, A. C.; Mahdavi, M. A.; Osborne, T. H.; Petty, C. C.; St John, H. E.] Gen Atom Co, San Diego, CA 92186 USA. [Bateman, G.; Kritz, A. H.; Pankin, A. Y.] Lehigh Univ, Bethlehem, PA 18015 USA. [Budny, R. V.; Kaye, S. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Fujita, T.] JAEA, Naka Site, Naka, Ibaraki 3110193, Japan. [Greenwald, M.] MIT, Cambridge, MA 02139 USA. [Hogeweij, G. M. D.] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Lazarus, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McLean, H. S.; Synakowski, E. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Stacey, W. M.] Georgia Tech, Atlanta, GA 30332 USA. [Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. RP Callen, JD (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM callen@engr.wisc.edu RI Stutman, Dan/P-4048-2015; OI Greenwald, Martin/0000-0002-4438-729X NR 33 TC 6 Z9 6 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2007 VL 47 IS 11 BP 1449 EP 1457 DI 10.1088/0029-5515/47/11/006 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 242TQ UT WOS:000251749500009 ER PT J AU Baylor, LR Jernigan, TC Parks, PB Antar, G Brooks, NH Combs, SK Fehling, DT Foust, CR Houlberg, WA Schmidt, GL AF Baylor, L. R. Jernigan, T. C. Parks, P. B. Antar, G. Brooks, N. H. Combs, S. K. Fehling, D. T. Foust, C. R. Houlberg, W. A. Schmidt, G. L. TI Comparison of deuterium pellet injection from different locations on the DIII-D tokamak SO NUCLEAR FUSION LA English DT Article ID HIGH-FIELD-SIDE; ASDEX UPGRADE; FUELING EFFICIENCY; MODE PLASMAS; ABLATION; CLOUD; DRIFT; STRIATIONS AB Deuterium pellets have been injected into plasmas in the DIII-D tokamak from the inner wall, top, and outer midplane port locations to investigate fuelling efficiency, mass deposition and interaction with edge localized modes (ELMs). Pellets injected from the outer midplane port (low field side (LFS)) show a large discrepancy in the mass deposition profile and fuelling efficiency from conventional pellet ablation theory, while the penetration depth compares favourably with theory. The mass deposition from pellets injected from inner wall and top locations is deeper than expected from ablation theory. The profile measurements indicate that pellet mass is deposited inside the measured penetration radius, thus verifying that a drift of the pellet ablatant is occurring in the major radius direction during the toroidal symmetrization process. The scaling of the measured drift magnitude in DIII-D is found to depend strongly on the pellet size and plasma pedestal temperature. Extrapolation to a burning plasma configuration on ITER is favourable for inner wall pellet fuel deposition depth well beyond the separatrix. Pellets injected into H-mode plasmas from all locations trigger ELMs with much larger ELM events induced by the outside midplane injected pellets. This suggests that the LFS is more sensitive to ELM triggering and may be the preferred location to inject very small pellets to trigger frequent small ELMs and thus minimize ELM induced damage to the divertor material surfaces. C1 [Baylor, L. R.; Jernigan, T. C.; Combs, S. K.; Fehling, D. T.; Foust, C. R.; Houlberg, W. A.; Schmidt, G. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Parks, P. B.; Brooks, N. H.] Gen Atom, San Diego, CA 92121 USA. [Antar, G.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Baylor, LR (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM BaylorLR@ornl.gov NR 29 TC 29 Z9 29 U1 4 U2 15 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2007 VL 47 IS 11 BP 1598 EP 1606 DI 10.1088/0029-5515/47/11/023 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 242TQ UT WOS:000251749500026 ER PT J AU Munsat, T Park, HK Classen, IGJ Domier, CW Donne, AJH Luhmann, NC Mazzucato, E van de Pol, MJ AF Munsat, T. Park, H. K. Classen, I. G. J. Domier, C. W. Donne, A. J. H. Luhmann, N. C., Jr. Mazzucato, E. van de Pol, M. J. CA TEXTOR Team TI Localization of the magnetic reconnection zone during sawtooth crashes in tokamak plasmas SO NUCLEAR FUSION LA English DT Letter ID FUSION TEST REACTOR; OSCILLATIONS; INSTABILITY; TOMOGRAPHY; PHYSICS AB Recent 2D spatially and temporally resolved measurements of electron temperature fluctuations in the tokamak core have revealed new information on the dynamics of the sawtooth crash. Measures of poloidal localization of the reconnection zone are achieved through direct analysis of the 2D data and through an interpolated projection of the q = 1 region. An estimate of the toroidal coverage of the reconnection zone is achieved through analysis of shots exhibiting toroidal rotation in which the helically localized reconnection occurs both within and outside of the view of the measurement window. The localized trigger of the crash instability exhibits a dominant toroidal mode number of n approximate to 3, and a dominant poloidal mode number of m >= 10. C1 [Munsat, T.] Univ Colorado, Dept Phys, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA. [Park, H. K.; Mazzucato, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Classen, I. G. J.; Donne, A. J. H.; van de Pol, M. J.] EURATOM, FOM, Inst Plasma Phys Lab, NL-3430 BE Nieuwegein, Netherlands. [Domier, C. W.; Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [TEXTOR Team] EURATOM, FZJ, Forschungszentrum Julich GmbH Helmhortz Gemeinsch, Inst Energieforsch, D-52425 Julich, Germany. RP Munsat, T (reprint author), Univ Colorado, Dept Phys, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA. NR 14 TC 25 Z9 26 U1 1 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2007 VL 47 IS 11 BP L31 EP L35 DI 10.1088/0029-5515/47/11/L01 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 242TQ UT WOS:000251749500001 ER PT J AU Montag, C AF Montag, Christoph TI Ion beam emittance growth in LINAC-ring electron-ion colliders due to LINAC RF voltage fluctuations and spurious dispersion SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE emittance growth; dispersion; noise; LINAC AB LINAC-ring electron-ion colliders provide superior luminosity performance compared to ring-ring based designs due to the fact that beam-beam effects on the electron beam can be largely ignored. However, fluctuations in electron beam parameters may lead to intolerable ion beam emittance blow-up. While the effects of electron bunch intensity fluctuations and emittance jitter have been studied earlier [C. Montag, Hadron beam emittance growth due to electron beam parameter jitter in LINAC-Ring electron-ion colliders, C-A/AP/143. [1]], this report examines the effect of random RF voltage fluctuations in conjunction with spurious dispersion in the electron LINAC. (c) 2007 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Montag, C (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM montag@bnl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2007 VL 581 IS 3 BP 581 EP 585 DI 10.1016/j.nima.2007.07.060 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 234GF UT WOS:000251148000002 ER PT J AU Nygren, D AF Nygren, David TI Optimal detectors for WIMP and 0-nu beta beta searches: Identical high-pressure xenon gas TPCs? SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE WIMP; neutrino-less double beta decay; high-pressure xenon gas; TPC ID SCINTILLATION PROPORTIONAL COUNTER; BETA-BETA-DECAY; LIQUID XENON; DARK-MATTER; CHAMBER; LUMINESCENCE; MIXTURES; EMISSION; XE-136 AB time projection chamber (TPC) filled with high-pressure gaseous xenon (HPXe) - instead of liquid xenon (LXe) - appears likely to offer both superior energy resolution for the 0-v beta beta decay search in Xe-136 and superior gamma-background rejection in the search for WIMPs. An augmentation to maximize the primary scintillation detection efficiency of the 0-v P decay detector design will realize an optimum design for both purposes. In this scenario an attractive synergy exists: two identical HPXe TPCs differing only in isotopic content will provide significantly more robust evidence for the existence of either signal if present. A simple analysis of important factors that limit energy resolution leads to the conclusion that the optimal design for either next-generation search at the few hundred kg level is the same HPXe-based TPC. A careful measurement of the scintillation and ionization responses of HPXe to nuclear and electronic recoils is needed to test the claim of HPXe superiority to LXe for the combined goals. Published by Elsevier B.V. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Nygren, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. EM drnygren@lbl.gov NR 30 TC 16 Z9 16 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2007 VL 581 IS 3 BP 632 EP 642 DI 10.1016/j.nima.2007.07.062 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 234GF UT WOS:000251148000008 ER PT J AU Schuster, E Xu, C Torres, N Morinaga, E Allen, C Krstic, M AF Schuster, Eugenio Xu, Chao Torres, Nicholas Morinaga, Eiji Allen, Christopher Krstic, Miroslav TI Beam matching adaptive control via extremum seeking SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE beam matching; adaptive control ID FEEDBACK; SYSTEMS AB The matching problem for a low energy transport system in a charged particle accelerator is approached using the extremum seeking method for non-model based optimization and adaptive control. The beam dynamics used for numerical simulations are given by the KV (Kapchinsky-Vladimirsky) envelope equations. Extremum seeking is employed for the lens tuning in both a matching and a periodic channel. Numerical simulations illustrate the effectiveness of this approach. (c) 2007 Elsevier B.V. All rights reserved. C1 Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. Osaka Univ, Dept Comp Controlled Mech Syst, Suita, Osaka 5650871, Japan. RP Schuster, E (reprint author), Lehigh Univ, Dept Mech Engn & Mech, 19 Mem Dr W, Bethlehem, PA 18015 USA. EM schuster@lehigh.edu RI Xu, Chao/G-9603-2012 NR 21 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2007 VL 581 IS 3 BP 799 EP 815 DI 10.1016/j.nima.2007.07.154 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 234GF UT WOS:000251148000025 ER PT J AU Leitner, D Lyneis, CM Todd, DS Tarvainen, O AF Leitner, D. Lyneis, C. M. Todd, D. S. Tarvainen, O. TI Ionization efficiency studies for xenon ions with the superconducting ECR ion source VENUS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE ionization efficiencies; superconducting ECR ion sources; VENUS AB Ionization efficiency studies for high charge state xenon ions using a calibrated gas leak are presented. A 75% enriched Xe-129 gas leak with a gas flow equivalent to 5.11 p mu A was used in all the measurements. The experiments were performed at the VENUS (Versatile ECR ion source for Nuclear Science) ion source for 18 GHz, 28 GHz and double frequency operation. Overall, total ionization efficiencies close to 100% and ionization efficiencies into a single charge state up to 22% were measured. The influence of the biased disk on the ionization efficiency was studied and the results were somewhat surprising. When the biased disk was removed from the plasma chamber, the ionization efficiency was dramatically reduced for single frequency operation. However, using double frequency heating the ionization efficiencies achieved without the biased disk almost matched the ionization efficiencies achieved with the biased probe. In addition, we have studied the influence of the support gas on the charge state distribution of the xenon ions. Either pure oxygen or a mixture of oxygen and helium were used as support gases. The addition of a small amount of helium can increase the ionization efficiency into a single charge state by narrowing the charge state distribution. Furthermore by varying the helium flow the most efficient charge state can be shifted over a wide range without compromising the ionization efficiency. This is not possible using only oxygen as support gas. Results from these studies are presented and discussed. (C) 2007 Elsevier B.V. All rights reserved. C1 [Leitner, D.; Lyneis, C. M.; Todd, D. S.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tarvainen, O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Leitner, D (reprint author), Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dleitner@lbl.gov NR 11 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV PY 2007 VL 264 IS 1 BP 149 EP 155 DI 10.1016/j.nimb.2007.07.027 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 242PI UT WOS:000251737300021 ER PT J AU Breese, MBH Vittone, E Vizkelethy, G Sellin, PJ AF Breese, M. B. H. Vittone, E. Vizkelethy, G. Sellin, P. J. TI A review of ion beam induced charge microscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Review DE IBIC microscopy; nuclear microprobes; charge transport measurements ID SINGLE-EVENT UPSETS; HETEROJUNCTION BIPOLAR-TRANSISTORS; POLYCRYSTALLINE CVD DIAMOND; NUCLEAR MICROPROBE ANALYSIS; 4H-SIC SCHOTTKY DIODES; LATERAL IBIC TECHNIQUE; MULTIPLE-BIT UPSET; HEAVY-ION; RADIATION DETECTORS; SEMICONDUCTOR-DEVICES AB Since its development in the early 1990's, ion beam induced charge (IBIC) microscopy has found widespread applications in many microprobe laboratories for the analysis of microelectronic devices, dislocations, semiconductor radiation detectors, semi-insulating materials, high power transistors, charge-coupled arrays, solar cells, light emitting diodes, and in conjunction with Single Event Upset imaging. Several modalities of the techniques have been developed, such as lateral IBIC and time-resolved IBIC. The theoretical model of IBIC generation and collection has developed from a one-dimensional model of charge drift and diffusion to a detailed model of the motion of ion charge carriers in semiconductors and insulators. This paper reviews the current state-of-the-art of IBIC theory and applications. (c) 2007 Elsevier B.V. All rights reserved. C1 [Breese, M. B. H.] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Vittone, E.] NIS Univ Torino, Expt Phys Dept, Turin, Italy. [Vittone, E.] Ist Nazl Fis Nucl, Turin, Italy. [Vizkelethy, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sellin, P. J.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. RP Breese, MBH (reprint author), Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. EM phymbhb@nus.edu.sg RI Breese, Mark/G-2068-2012; OI vittone, ettore/0000-0003-3133-3687 NR 118 TC 57 Z9 57 U1 2 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV PY 2007 VL 264 IS 2 BP 345 EP 360 DI 10.1016/j.nimb.2007.09.031 PG 16 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 244NW UT WOS:000251873600022 ER PT J AU Rezayat, T Shukla, AK AF Rezayat, Talayeh Shukla, Anil K. TI Evidence for the bulk nature of self-assembled monolayer surface of fluorinated alkyl thiol from hyperthermal energy ion-surface collisions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE surface-induced dissociation; CF3+; self-assembled monolayer; bulk surface ID POLYATOMIC IONS; DISSOCIATIVE SCATTERING; LIQUID SURFACE; DYNAMICS; CF3+; BEAM; SUBSTRATE AB Kinetic energy distributions of fragment ions from hyperthermal energy collisions of CF3+ ions with a self-assembled monolayer sur face of fluorinated alkyl thiol on gold substrate and a LiF surface (vapor deposited on titanium substrate) have been measured as a function of scattering angle and fragment ion mass. These distributions for the thiol surface show two energetically and angularly distinct pathways for the dissociation of CF3+ ions while those from LiF show only one peak. A plot of the velocities of the fragment ions as a Newton diagram for these two processes clearly demonstrates that one process is due to the collision of ions with a fraction of the molecular chain of the monolayer surface molecule with scattering over a broader angular range while the other process is due to collision of the projectile ions with the monolayer surface acting as a bulk surface with fragment ions scattering close to the surface parallel and resembles the Newton diagram from the LiF surface. (C) 2007 Elsevier B.V. All rights reserved. C1 [Rezayat, Talayeh; Shukla, Anil K.] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Shukla, AK (reprint author), Pacific NW Natl Lab, Fundamental Sci Directorate, POB 999,MS K8-98, Richland, WA 99352 USA. EM Anil.Shukla@pnl.gov NR 24 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV PY 2007 VL 264 IS 2 BP 400 EP 403 DI 10.1016/j.nimb.2007.08.083 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 244NW UT WOS:000251873600029 ER PT J AU Balazs, C AF Balazs, C. TI The common origin of luminous and dark matter SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA AB It is shown that the minimal supersymmetric extension of the standard particle model provides the measured baryon asymmetry and dark matter abundance of the Universe simultaneously. C1 Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Balazs, C (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 32 EP 35 DI 10.1016/j.nuclphysbps.2007.08.072 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100008 ER PT J AU Moskalenko, IV Digel, SW Porter, TA Reimer, O Strong, AW AF Moskalenko, Igor V. Digel, Seth W. Porter, Troy A. Reimer, Olaf Strong, Andrew W. TI Understanding limitations in the determination of the diffuse Galactic gamma-ray emission SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA ID COSMIC-RAYS; SUPERNOVA-REMNANTS; EGRET; GALAXY; CALIBRATION; RADIATION; EXCESS AB We discuss uncertainties and possible sources of errors associated with the determination of the diffuse Galactic gamma-ray emission using the EGRET data. Most of the issues will be relevant also in the GLAST era. The focus here is on issues that impact evaluation of dark matter annihilation signals against the diffuse gamma-ray emission of the Milky Way. C1 [Moskalenko, Igor V.; Reimer, Olaf] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Moskalenko, Igor V.; Digel, Seth W.; Reimer, Olaf] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Digel, Seth W.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Porter, Troy A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Strong, Andrew W.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. RP Moskalenko, IV (reprint author), Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. RI Reimer, Olaf/A-3117-2013; Moskalenko, Igor/A-1301-2007 OI Reimer, Olaf/0000-0001-6953-1385; Moskalenko, Igor/0000-0001-6141-458X NR 32 TC 10 Z9 10 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 44 EP 47 DI 10.1016/j.nuclphysbps.2007.08.022 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100011 ER PT J AU Hooper, D AF Hooper, Dan TI Probing supersymmetric parameters with astrophysical observations SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA AB A wide range of techniques have been developed to search for particle dark matter, including direct detection, indirect detection, and collider searches. The prospects for the detection of neutralino dark matter is quite promising for each of these three very different methods. Looking ahead to a time in which these techniques have successfully detected neutralino dark matter, we explore the ability of these observations to determine the parameters of supersymmetry. In particular, we focus on the ability of direct and indirect detection techniques to measure the parameters mu and m(A). We find that mu can be much more tightly constrained if astrophysical measurements are considered than by LHC data alone. In supersymmetric models within the A-funnel region of parameter space, we find that astrophysical measurements can determine m(A) to roughly +/- 100 GeV precision. C1 Fermilab Natl Accelerator Lab, Theoret Astrophys Grp, Batavia, IL 60510 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Theoret Astrophys Grp, POB 500, Batavia, IL 60510 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 48 EP 50 DI 10.1016/j.nuclphysbps.2007.08.071 PG 3 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100012 ER PT J AU Wai, L AF Wai, Larry CA GLAST LAT Collab Dark Matter New Physics Working Grp TI The search for milky way halo substructure WIMP annihilations using the GLAST LAT SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA DE GLAST; WIMP; dark matter; indirect detection ID CLUSTER HALOES; DARK-MATTER; GAMMA-RAYS; GALAXY; EVOLUTION AB The GLAST LAT Collaboration is one among several experimental groups, covering a wide range of approaches, pursuing the search for the nature of dark matter. The GLAST LAT has the unique ability to find new sources of high energy gamma radiation emanating directly from WIMP annihilations in situ in the universe. Using it's wide band spectral and full sky spatial capabilities, the GLAST LAT can form "images" in high energy gamma-rays of dark matter substructures in the gamma-ray sky. We describe a preliminary feasibility study for indirect detection of milky way dark matter satellites using the GLAST LAT. C1 Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Wai, L (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 16 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 60 EP 63 DI 10.1016/j.nuclphysbps.2007.08.027 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100015 ER PT J AU Koglin, JE Aramaki, T Craig, WW Fabris, L Gahbauer, F Hailey, CJ Jou, FJ Madden, N Mori, BK Yu, HT Ziock, KP AF Koglin, J. E. Aramaki, T. Craig, W. W. Fabris, L. Gahbauer, F. Hailey, C. J. Jou, F. J. Madden, N. Mori, B. K. Yu, H. T. Ziock, K. P. TI Indirect dark matter search with antideuterons: Progress and future prospects for general antiparticle spectrometer (GAPS) SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA AB We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. Many supersymmetry models, as well as other models based on extra dimensions, predict a primary antideuteron flux from dark matter annihilation that is much greater than the secondary and tertiary background sources at low energies. The GAPS method involves capturing antiparticles in a target material into excited energy states. The X-rays that are emitted as the antiparticle cascades to lower energy states before the exotic atom decays serve as a fingerprint that uniquely identifies the mass of the captured antiparticle. This approach provides large area and field of view in addition to excellent background rejection capability. Analysis of the performance of a prototype GAPS tested in an antiproton beam at the KEK accelerator in Japan in 2004 and 2005 are presented. C1 [Koglin, J. E.; Aramaki, T.; Gahbauer, F.; Hailey, C. J.; Jou, F. J.; Yu, H. T.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Craig, W. W.; Fabris, L.; Madden, N.; Ziock, K. P.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gahbauer, F.] Latvian State Univ, LV-1063 Riga, Latvia. [Mori, B. K.] Canadian Inst Theoret Astrophys, Toronto, ON M5S 1A1, Canada. RP Koglin, JE (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. RI Gahbauer, Florian/J-9542-2014 OI Gahbauer, Florian/0000-0002-7126-2513 NR 9 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 75 EP 78 DI 10.1016/j.nuclphysbps.2007.08.044 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100019 ER PT J AU Akerib, DS Attisha, MJ Bailey, CN Baudis, L Bauer, DA Brink, PL Brusov, PP Bunker, R Cabrera, B Caldwell, DO Chang, CL Cooley, J Crisler, MB Cushmang, P Daal, M Dixon, R Dragowsky, MR Driscoll, DD Duong, L Ferril, R Filippini, J Gaitskell, RJ Golwala, SR Grant, DR Hennings-Yeomans, R Holmgren, D Huber, ME Kamat, S Leclercq, S Lu, A Mahapatra, R Mandic, V Meunier, P Mirabolfathi, N Nelson, H Nelson, R Ogburn, RW Perera, TA Pyle, M Ramberg, E Rau, W Reisetter, A Ross, RR Saab, T Sadoulet, B Sander, J Savage, C Schnee, RW Seitz, DN Serfass, B Sundqvist, KM Thompson, JPF Wang, G Yellin, S Yoo, J Young, BA AF Akerib, D. S. Attisha, M. J. Bailey, C. N. Baudis, L. Bauer, D. A. Brink, P. L. Brusov, P. P. Bunker, R. Cabrera, B. Caldwell, D. O. Chang, C. L. Cooley, J. Crisler, M. B. Cushmang, P. Daal, M. Dixon, R. Dragowsky, M. R. Driscoll, D. D. Duong, L. Ferril, R. Filippini, J. Gaitskell, R. J. Golwala, S. R. Grant, D. R. Hennings-Yeomans, R. Holmgren, D. Huber, M. E. Kamat, S. Leclercq, S. Lu, A. Mahapatra, R. Mandic, V. Meunier, P. Mirabolfathi, N. Nelson, H. Nelson, R. Ogburn, R. W. Perera, T. A. Pyle, M. Ramberg, E. Rau, W. Reisetter, A. Ross, R. R. Saab, T. Sadoulet, B. Sander, J. Savage, C. Schnee, R. W. Seitz, D. N. Serfass, B. Sundqvist, K. M. Thompson, J-P. F. Wang, G. Yellin, S. Yoo, J. Young, B. A. TI CDMS, supersymmetry and extra dimensions SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA ID DARK-MATTER AB The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at similar to 30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity. C1 [Baudis, L.] Rhein Westfal TH Aachen Univ, Dept Phys, D-52074 Aachen, Germany. [Akerib, D. S.; Bailey, C. N.; Brusov, P. P.; Dragowsky, M. R.; Driscoll, D. D.; Grant, D. R.; Hennings-Yeomans, R.; Kamat, S.; Perera, T. A.; Schnee, R. W.; Wang, G.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Attisha, M. J.; Gaitskell, R. J.; Thompson, J-P. F.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Bauer, D. A.; Crisler, M. B.; Dixon, R.; Holmgren, D.; Ramberg, E.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Brink, P. L.; Cabrera, B.; Chang, C. L.; Cooley, J.; Ogburn, R. W.; Pyle, M.; Yellin, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bunker, R.; Caldwell, D. O.; Ferril, R.; Mahapatra, R.; Nelson, H.; Nelson, R.; Sander, J.; Savage, C.; Yellin, S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Cushmang, P.; Duong, L.; Reisetter, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Daal, M.; Filippini, J.; Lu, A.; Mandic, V.; Meunier, P.; Mirabolfathi, N.; Ross, R. R.; Sadoulet, B.; Seitz, D. N.; Serfass, B.; Sundqvist, K. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Golwala, S. R.; Wang, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Huber, M. E.] Univ Colorado, Dept Phys, Denver, CO 80217 USA. [Leclercq, S.; Saab, T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Golwala, S. R.; Wang, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Young, B. A.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. RP Baudis, L (reprint author), Rhein Westfal TH Aachen Univ, Dept Phys, D-52074 Aachen, Germany. EM laura.baudis@rwth-aachen.de RI Huber, Martin/B-3354-2011; Bailey, Catherine/C-6107-2009; OI Baudis, Laura/0000-0003-4710-1768; Holmgren, Donald/0000-0001-6701-7737; Bunker, Raymond/0000-0003-2174-7632 NR 14 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 95 EP 98 DI 10.1016/j.nuclphysbps.2007.08.073 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100024 ER PT J AU Aprile, E Giboni, KL Monzani, ME Plante, G Yamashita, M Gaitskell, RJ Fiorucci, S Sorensen, P DeViveiroS, L Bernstein, A Madden, N Winant, C Shutt, T Kwong, J Bolozdynya, A Dahl, E Oberlack, U Shagin, P Gomez, R McKinsey, D Manzur, A Hasty, R Ni, K Arneodo, F Ferella, A Baudis, L Angle, J Orboeek, J Manalaysay, A Lopes, JAM Coelho, L Fernandes, L Santos, J AF Aprile, E. Giboni, K. -L. Monzani, M. E. Plante, G. Yamashita, M. Gaitskell, R. J. Fiorucci, S. Sorensen, P. DeViveiroS, L. Bernstein, A. Madden, N. Winant, C. Shutt, T. Kwong, J. Bolozdynya, A. Dahl, E. Oberlack, U. Shagin, P. Gomez, R. McKinsey, D. Manzur, A. Hasty, R. Ni, K. Arneodo, F. Ferella, A. Baudis, L. Angle, J. Orboeek, J. Manalaysay, A. Lopes, J. A. M. Coelho, L. Fernandes, L. Santos, J. TI XENON SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA AB The XENON experiment aims at the direct detection of dark matter in the form of WIMPs (Weakly Interacting Massive Particles) via their elastic scattering off Xenon nuclei. With 1 ton of LXe distributed in ten identical modules, the proposed XENON1T experiment will achieve a sensitivity more than a factor of thousand beyond current limits. The detectors are time projection chambers operated in dual (liquid/gas) phase, to detect simultaneously the ionization, through secondary scintillation in the gas, and primary scintillation in the liquid produced by low energy recoils. We review some of the results from the prototype XENON3 detector and briefly discuss about the status of current XENON10 at Gran Sasso Laboratory in Italy. C1 [Aprile, E.; Giboni, K. -L.; Monzani, M. E.; Plante, G.; Yamashita, M.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Gaitskell, R. J.; Fiorucci, S.; Sorensen, P.; DeViveiroS, L.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Bernstein, A.; Madden, N.; Winant, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Shutt, T.; Kwong, J.; Bolozdynya, A.; Dahl, E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Shagin, P.; Gomez, R.] Rice Univ, Dept Phys, Houston, TX 77251 USA. [McKinsey, D.; Manzur, A.; Hasty, R.; Ni, K.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Arneodo, F.; Ferella, A.; Baudis, L.] Gran Sasso Natl Lab, I-67010 Laquila, Italy. [Baudis, L.; Angle, J.; Orboeek, J.; Manalaysay, A.] Rhein Westfal TH Aachen, Dept Phys, D-52047 Aachen, Germany. [Lopes, J. A. M.; Coelho, L.; Fernandes, L.; Santos, J.] Univ Coimbra, Dept Phys, P-3004516 Coimbra, Portugal. RP Yamashita, M (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RI Coelho, Luis/F-4493-2012; Fiorucci, Stefano/I-1251-2012; de Viveiros, Luiz/M-9205-2013; Coelho, Luis/D-9295-2014; MATIAS-LOPES, JOSE/H-6074-2012; OI Coelho, Luis/0000-0001-6205-9479; Dahl, Carl Eric/0000-0003-1637-2346; Fernandes, Luis/0000-0002-7061-8768; de Viveiros, Luiz/0000-0002-7038-2361; Coelho, Luis/0000-0001-6205-9479; MATIAS-LOPES, JOSE/0000-0002-6366-2963; dos Santos, Joaquim Marques Ferreira/0000-0002-8841-6523; Ferella, Alfredo Davide/0000-0002-6006-9160 NR 11 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 113 EP 116 DI 10.1016/j.nuclphysbps.2007.08.142 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100028 ER PT J AU Angle, J Aprile, E Arneodo, F Baudis, L Bernsteine, A Bolozdynya, A Coelho, L Dahl, E DeViveiros, L Ferella, A Fernandes, L Fiorucci, S Gaitskell, RJ Giboni, KL Gomez, R Hasty, R Kwong, J Lopes, JAM Madden, N Manalaysay, A Manzur, A McKinsey, D Monzani, ME Ni, K Oberlack, U Orboeck, J Plante, G Santos, J Shagin, P Shutt, T Sorensen, P Winant, C Yamashita, M AF Angle, J. Aprile, E. Arneodo, F. Baudis, L. Bernsteine, A. Bolozdynya, A. Coelho, L. Dahl, E. DeViveiros, L. Ferella, A. Fernandes, L. Fiorucci, S. Gaitskell, R. J. Giboni, K. -L. Gomez, R. Hasty, R. Kwong, J. Lopes, J. A. M. Madden, N. Manalaysay, A. Manzur, A. McKinsey, D. Monzani, M. E. Ni, K. Oberlack, U. Orboeck, J. Plante, G. Santos, J. Shagin, P. Shutt, T. Sorensen, P. Winant, C. Yamashita, M. TI 3D position sensitive XeTPC for dark matter search SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA AB The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) is described. Results from a prototype detector (XENON3) are presented. C1 [Hasty, R.; Manzur, A.; McKinsey, D.; Ni, K.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Angle, J.; Manalaysay, A.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Aprile, E.; Monzani, M. E.; Plante, G.; Yamashita, M.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Arneodo, F.; Ferella, A.] Gran Sasso Natl Lab, I-67010 Laquila, Italy. [Baudis, L.; Orboeck, J.] Rhein Westfal TH Aachen, Dept Phys, D-52074 Aachen, Germany. [Bernsteine, A.; Madden, N.; Winant, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bolozdynya, A.; Dahl, E.; Shutt, T.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Coelho, L.; Fernandes, L.; Lopes, J. A. M.] Univ Coimbra, Dept Phys, P-3004516 Coimbra, Portugal. [DeViveiros, L.; Fiorucci, S.; Gaitskell, R. J.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Gomez, R.; Oberlack, U.; Sorensen, P.] Rice Univ, Dept Phys, Houston, TX 77251 USA. RP Ni, K (reprint author), Yale Univ, Dept Phys, New Haven, CT 06511 USA. RI Coelho, Luis/F-4493-2012; Fiorucci, Stefano/I-1251-2012; de Viveiros, Luiz/M-9205-2013; Coelho, Luis/D-9295-2014; Arneodo, Francesco/E-5061-2015; MATIAS-LOPES, JOSE/H-6074-2012; OI Coelho, Luis/0000-0001-6205-9479; de Viveiros, Luiz/0000-0002-7038-2361; Coelho, Luis/0000-0001-6205-9479; Arneodo, Francesco/0000-0002-1061-0510; MATIAS-LOPES, JOSE/0000-0002-6366-2963; dos Santos, Joaquim Marques Ferreira/0000-0002-8841-6523; Ferella, Alfredo Davide/0000-0002-6006-9160; Fernandes, Luis/0000-0002-7061-8768 NR 3 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 117 EP 120 DI 10.1016/j.nuclphysbps.2007.08.033 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100029 ER PT J AU Giuliani, F Morlat, T Ramos, AR Girard, T da Costa, MF Marques, JG Martins, RC Miley, HS Limagne, D Waysand, G AF Giuliani, F. Morlat, T. Ramos, A. R. Girard, Ta da Costa, M. Felizardo Marques, J. G. Martins, R. C. Miley, H. S. Limagne, D. Waysand, G. TI SIMPLE-icity in direct dark matter searches SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA ID LIMITS; DETECTOR AB Recent activity in the SIMPLE dark matter search program is described, to include the recent development of a "heavy" detector for application in spin-independent searches. C1 [Giuliani, F.; Morlat, T.; Ramos, A. R.; Girard, Ta; Marques, J. G.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Ramos, A. R.; da Costa, M. Felizardo; Marques, J. G.] Inst Technol & Nucl, P-2686953 Sacavem, Portugal. [da Costa, M. Felizardo; Martins, R. C.] Inst Super Tecn, Dept Elect, P-1049001 Lisbon, Portugal. [Miley, H. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Limagne, D.; Waysand, G.] Univ Paris 06, CNRS, INSP, UMR 7588, F-75015 Paris, France. [Limagne, D.; Waysand, G.] Univ Paris 07, F-75015 Paris, France. [Waysand, G.] Univ Nice Sopia Antipolis, Lab Souterrain & Bas Bruit, F-84400 Rustrel Pays Dapt, France. RP Giuliani, F (reprint author), Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. RI Marques, Jose/H-6145-2011; Martins, Raul/A-6289-2013; Lopes Ramos Wahl, Ana Rita/C-1337-2012; Felizardo, Miguel/N-1798-2015 OI Marques, Jose/0000-0002-3724-5664; Girard, Thomas/0000-0003-4113-880X; Martins, Raul/0000-0002-9517-5238; Lopes Ramos Wahl, Ana Rita/0000-0001-6652-7698; Felizardo, Miguel/0000-0002-6458-1428 NR 17 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 129 EP 132 DI 10.1016/j.nuclphysbps.2007.08.036 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100032 ER PT J AU Akerib, DS Attisha, MJ Bailey, CN Baudis, L Bauer, DA Brink, PL Brusov, PP Bunker, R Cabrera, B Caldwell, DO Chang, CL Cooley, J Crisler, MB Cushman, P Daal, M Dixon, R Dragowsky, MR Driscoll, DD Duong, L Ferril, R Filippini, J Gaitskell, RJ Golwala, SR Grant, DR Hennings-Yeomans, R Holmgren, D Huber, ME Kamat, S Leclercq, S Lu, A Mahapatra, R Mandic, V Meunier, P Mirabolfathi, N Nelson, H Nelson, R Ogburn, RW Perera, TA Pyle, M Ramberg, E Rau, W Reisetter, A Ross, RR Sadoulet, B Sander, J Savage, C Schnee, RW Seitz, DN Serfass, B Sundqvist, KM Thompson, JPF Wang, G Yellin, S Yoo, J Young, BA AF Akerib, D. S. Attisha, M. J. Bailey, C. N. Baudis, L. Bauer, D. A. Brink, P. L. Brusov, P. P. Bunker, R. Cabrera, B. Caldwell, D. O. Chang, C. L. Cooley, J. Crisler, M. B. Cushman, P. Daal, M. Dixon, R. Dragowsky, M. R. Driscoll, D. D. Duong, L. Ferril, R. Filippini, J. Gaitskell, R. J. Golwala, S. R. Grant, D. R. Hennings-Yeomans, R. Holmgren, D. Huber, M. E. Kamat, S. Leclercq, S. Lu, A. Mahapatra, R. Mandic, V. Meunier, P. Mirabolfathi, N. Nelson, H. Nelson, R. Ogburn, R. W. Perera, T. A. Pyle, M. Ramberg, E. Rau, W. Reisetter, A. Ross, R. R. Sadoulet, B. Sander, J. Savage, C. Schnee, R. W. Seitz, D. N. Serfass, B. Sundqvist, K. M. Thompson, J-P. F. Wang, G. Yellin, S. Yoo, J. Young, B. A. TI Surface event rejection using phonon information in CDMS SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 7th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe CY FEB 22-24, 2006 CL Marina del Rey, CA SP UCLA AB The published CDMS analyses have used the shape of the phonon signal rising edge to reject low-ionization-yield surface events which produce acoustic phonons more quickly than bulk events do. To achieve better WIMP sensitivity with future larger exposures, we are using a simplified model of phonon production and propagation to construct event position estimators that help us to find more efficient surface event rejection cuts. We describe this model and the resulting new cuts, and summarize the surface event leakage rates and the sensitivity figures of merit of the five surface event rejection methods developed in the second CDMS II Soudan run data analysis. C1 [Akerib, D. S.; Bailey, C. N.; Brusov, P. P.; Dragowsky, M. R.; Driscoll, D. D.; Grant, D. R.; Hennings-Yeomans, R.; Kamat, S.; Perera, T. A.; Schnee, R. W.; Wang, G.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Attisha, M. J.; Gaitskell, R. J.; Thompson, J-P. F.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Baudis, L.; Leclercq, S.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Bauer, D. A.; Crisler, M. B.; Dixon, R.; Holmgren, D.; Ramberg, E.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Brink, P. L.; Cabrera, B.; Chang, C. L.; Ogburn, R. W.; Pyle, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bunker, R.; Caldwell, D. O.; Ferril, R.; Mahapatra, R.; Nelson, H.; Nelson, R.; Sander, J.; Savage, C.; Yellin, S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Cushman, P.; Duong, L.; Reisetter, A.] Univ Minnesota, Dept Phys & Astron, Minneapolis, MN 55455 USA. [Daal, M.; Filippini, J.; Lu, A.; Mandic, V.; Meunier, P.; Mirabolfathi, N.; Rau, W.; Ross, R. R.; Sadoulet, B.; Seitz, D. N.; Serfass, B.; Sundqvist, K. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Golwala, S. R.; Wang, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Huber, M. E.] Univ Colorado, Dept Phys, Denver, CO 80217 USA. [Ross, R. R.; Sadoulet, B.] Univ Colorado, Hlth Sci Ctr, Denver, CO 80217 USA. [Young, B. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. RP Wang, G (reprint author), Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. RI Huber, Martin/B-3354-2011; Bailey, Catherine/C-6107-2009; OI Holmgren, Donald/0000-0001-6701-7737 NR 7 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2007 VL 173 BP 137 EP 140 DI 10.1016/j.nuclphysbps.2007.08.038 PG 4 WC Physics, Particles & Fields SC Physics GA 250JN UT WOS:000252296100034 ER PT J AU Wilson, SC Biegalski, SR Coats, RL AF Wilson, S. C. Biegalski, S. R. Coats, R. L. TI Computational Modeling of coupled thermomechanical and neutron transport behavior in a Godiva-like nuclear assembly SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID DYNAMICS AB The primary shutdown mechanism of all-metal nuclear assemblies engaging in pulsed operations is thermal expansion of the fuel material. Typically, a fuel temperature coefficient of reactivity is acquired by building the apparatus and fitting the operational data to the Nordheim-Fuchs kinetics equations. This value may vary as a function of reactivity insertion because of thermomechanical effects in the fuel material, which leads to uncertainty regarding untested reactor designs. This paper presents a computational method for modeling power, temperature, and thermoelastic displacement behavior of a spherical Godiva-like assembly during a prompt supercritical excursion and provides a way of determining fuel temperature coefficients of reactivity without the use of operational data. C1 Univ Texas, PRC Nucl Engn Teaching Lab, Austin, TX 78741 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wilson, SC (reprint author), Univ Texas, PRC Nucl Engn Teaching Lab, 1 Univ Stn Stop R9000, Austin, TX 78741 USA. EM biegalski@mail.utexas.edu RI Biegalski, Steven/A-7765-2010 NR 12 TC 1 Z9 2 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2007 VL 157 IS 3 BP 344 EP 353 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 224EI UT WOS:000250429900007 ER PT J AU Schlotter, WF Luening, J Rick, R Chen, K Scherz, A Eisebitt, S Guenther, CM Eberhardt, W Hellwig, O Stohr, J AF Schlotter, William F. Luening, Jan Rick, Ramon Chen, Kang Scherz, Andreas Eisebitt, Stefan Guenther, Christian M. Eberhardt, Wolfgang Hellwig, Olav Stoehr, Joachim TI Extended field of view soft x-ray Fourier transform holography: toward imaging ultrafast evolution in a single shot SO OPTICS LETTERS LA English DT Article ID RESOLUTION; MICROSCOPY AB Panoramic full-field imaging is demonstrated by applying spatial multiplexing to Fourier transform holography. Multiple object and reference waves extend the effective field of view for lensless imaging without compromising the spatial resolution. In this way, local regions of interest distributed throughout a sample can be simultaneously imaged with high spatial resolution. A method is proposed for capturing multiple ultrafast images of a sample with a single x-ray pulse. (c) 2007 Optical Society of America. C1 Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. Univ Paris 06, LCP MR, F-75005 Paris, France. Lorme Merisiers, Synchroton SOLEIL, F-91192 Gif Sur Yvette, France. BESSY MBH, D-12489 Berlin, Germany. Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95135 USA. RP Schlotter, WF (reprint author), Stanford Univ, Dept Appl Phys, 316 Via Pueblo Mall, Stanford, CA 94305 USA. EM wschlott@stanford.edu OI Gunther, Christian Michael/0000-0002-3750-7556 NR 11 TC 21 Z9 21 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD NOV 1 PY 2007 VL 32 IS 21 BP 3110 EP 3112 DI 10.1364/OL.32.003110 PG 3 WC Optics SC Optics GA 237CJ UT WOS:000251350100020 PM 17975613 ER PT J AU Merdji, H Auguste, T Boutu, W Caumes, JP Carre, B Pfeifer, T Jullien, A Neumark, DM Leone, SR AF Merdji, Hamed Auguste, Thierry Boutu, Willem Caumes, J. -Pascal Carre, Bertrand Pfeifer, Thomas Jullien, Aurelie Neumark, Daniel M. Leone, Stephen R. TI Isolated attosecond pulses using a detuned second=hairmonic field SO OPTICS LETTERS LA English DT Article ID DYNAMICS AB Calculations are presented for the generation of an isolated attosecond pulse in a multicycle two-color strong-field regime. We show that the recollision of the electron wave packet can be confined to half an optical cycle using pulses of up to 40 fs in duration. The scheme is proven to be efficient using two intense beams, one producing a strong field at omega and the other a strong field detuned from 2 omega. The slight detuning delta omega of the second harmonic is used to break the symmetry of the electric field over many optical cycles and provides a coherent control for the formation of an isolated attosecond pulse. (D 2007 Optical Society of America C1 Ctr Etud Saclay, Commissariat Energie Atom, Serv Photons Atomes & Mol, F-91191 Gif Sur Yvette, France. SLAC, Stanford PULSE Ctr, Menlo Pk, CA 94025 USA. Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Merdji, H (reprint author), Ctr Etud Saclay, Commissariat Energie Atom, Serv Photons Atomes & Mol, Batiment 522, F-91191 Gif Sur Yvette, France. EM merdji@drecam.cea.fr RI Neumark, Daniel/B-9551-2009; Jullien, Aurelie/C-8345-2009 OI Neumark, Daniel/0000-0002-3762-9473; NR 12 TC 63 Z9 66 U1 2 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD NOV 1 PY 2007 VL 32 IS 21 BP 3134 EP 3136 DI 10.1364/OL.32.003134 PG 3 WC Optics SC Optics GA 237CJ UT WOS:000251350100028 PM 17975621 ER PT J AU Densmore, CG Wheeler, H Cohenour, R Robison, TW Hasam, D Cordova, BJ Stark, PC Fuller, EN Cook, CJ Weber, HA AF Densmore, Crystal G. Wheeler, Hilary Cohenour, Rebecca Robison, Thomas W. Hasam, Dawud Cordova, Blossom J. Stark, Peter C. Fuller, Edward N. Cook, Charles J. Weber, Holly A. TI Development of a scaleable synthesis for 1,2-bis(2-aminophenylthio)ethane (APO-Link) used in the production of bismaleimide resin SO ORGANIC PROCESS RESEARCH & DEVELOPMENT LA English DT Article AB The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but is AM required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed by reaction with dichloroethane or dibromoethane. The deprotonation of 2-aminothiophenol followed by reaction with dibromoethane was also investigated and later optimized for scale-up by scrutinizing all aspects of the reaction conditions, work-up, and recrystallization. On bench-scale, the optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%). The material was also produced on both a 100 lb scale and a 200 lb scale using the optimized process, giving high quality material in excellent yield. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Honeywell FM&T LLC, Kansas City, MO 64141 USA. RP Densmore, CG (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM cgd@lanl.gov NR 12 TC 4 Z9 4 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1083-6160 J9 ORG PROCESS RES DEV JI Org. Process Res. Dev. PD NOV-DEC PY 2007 VL 11 IS 6 BP 996 EP 1003 DI 10.1021/op700122q PG 8 WC Chemistry, Applied; Chemistry, Organic SC Chemistry GA 232ZY UT WOS:000251061400010 ER PT J AU McCormick, P Inman, J Ahrens, J Mohd-Yusof, J Roth, G Cummins, S AF McCormick, Patrick Inman, Jeff Ahrens, James Mohd-Yusof, Jamaludin Roth, Greg Cummins, Sharen TI Scout: a data-parallel programming language for graphics processors SO PARALLEL COMPUTING LA English DT Article DE graphics processors; data-parallel programming; heterogeneous computing; visualization ID VISUALIZATION; HARDWARE AB Commodity graphics hardware has seen incredible growth in terms of performance, programmability, and arithmetic precision. Even though these trends have been primarily driven by the entertainment industry, the price-to-performance ratio of graphics processors (GPUs) has attracted the attention of many within the high-performance computing community. While the performance of the GPU is well suited for computational science, the programming interface, and several hardware limitations, have prevented their wide adoption. In this paper we present Scout, a data-parallel programming language for graphics processors that hides the nuances of both the underlying hardware and supporting graphics software layers. In addition to general-purpose programming constructs, the language provides extensions for scientific visualization operations that support the exploration of existing or computed data sets. Published by Elsevier B.V. C1 [McCormick, Patrick; Inman, Jeff; Ahrens, James; Mohd-Yusof, Jamaludin; Cummins, Sharen] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Roth, Greg] Univ Utah, Dept Comp Sci, Salt Lake City, UT 84112 USA. RP McCormick, P (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM pat@lanl.gov RI Cummins, Sharen/D-4842-2009; OI Cummins, Sharen/0000-0001-7745-1393; Mohd Yusof, Jamaludin/0000-0002-9844-689X NR 38 TC 13 Z9 13 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD NOV PY 2007 VL 33 IS 10-11 BP 648 EP 662 DI 10.1016/j.parco.2007.09.001 PG 15 WC Computer Science, Theory & Methods SC Computer Science GA 242UY UT WOS:000251752900002 ER PT J AU Goddeke, D Strzodka, R Mohd-Yusof, J McCormick, P Buijssen, SHM Grajewski, M Turek, S AF Goeddeke, Dominik Strzodka, Robert Mohd-Yusof, Jamaludin McCormick, Patrick Buijssen, Sven H. M. Grajewski, Matthias Turek, Stefan TI Exploring weak scalability for FEM calculations on a GPU-enhanced cluster SO PARALLEL COMPUTING LA English DT Article DE graphics processors; heterogeneous computing; parallel multigrid solvers; commodity based clusters; finite elements ID GRAPHICS HARDWARE; COMPUTATION AB The first part of this paper surveys co-processor approaches for commodity based clusters in general, not only with respect to raw performance, but also in view of their system integration and power consumption. We then extend previous work on a small GPU cluster by exploring the heterogeneous hardware approach for a large-scale system with up to 160 nodes. Starting with a conventional commodity based cluster we leverage the high bandwidth of graphics processing units (GPUs) to increase the overall system bandwidth that is the decisive performance factor in this scenario. Thus, even the addition of low-end, out of date GPUs leads to improvements in both performance- and power-related metrics. (c) 2007 Elsevier B.V. All rights reserved. C1 [Goeddeke, Dominik; Buijssen, Sven H. M.; Grajewski, Matthias; Turek, Stefan] Univ Dortmund, Inst Appl Math, D-44227 Dortmund, Germany. [Strzodka, Robert] Stanford Univ, Max Planck Ctr, Stanford, CA 94305 USA. [Mohd-Yusof, Jamaludin; McCormick, Patrick] Los Alamos Natl Lab, Comp Conputat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Goddeke, D (reprint author), Univ Dortmund, Inst Appl Math, Vogelpothsweg 87, D-44227 Dortmund, Germany. EM dominik.goeddeke@math.uni-dortmund.de OI Mohd Yusof, Jamaludin/0000-0002-9844-689X NR 35 TC 52 Z9 55 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD NOV PY 2007 VL 33 IS 10-11 BP 685 EP 699 DI 10.1016/j.parco.2007.09.002 PG 15 WC Computer Science, Theory & Methods SC Computer Science GA 242UY UT WOS:000251752900004 ER PT J AU Katsarakis, N Kafesaki, A Tsiapa, I Economou, EN Soukoulis, CM AF Katsarakis, N. Kafesaki, A. Tsiapa, I. Economou, E. N. Soukoulis, C. M. TI High transmittance left-handed materials involving symmetric split-ring resonators SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article DE metamaterials; left-handed materials ID LOW-FREQUENCY PLASMONS; METAMATERIALS AB We present theoretical and experimental results for a new design of highly symmetric, multigap split-ring resonators (SRRs), as well as for left-handed materials of a broad and high transmittance left-handed band, achieved by combining those symmetric SRRs with continuous wires. Studying in detail, both theoretically and experimentally, our proposed symmetric SRRs, we proved that they avoid the electric field excitation of the magnetic SRR resonance; thus they are appropriate for the creation of two-dimensional and three-dimensional left-handed materials. Finally, we propose critical design rules for the development of low-loss and broad-band left-handed materials. (C) 2007 Elsevier B.V. All rights reserved. C1 Fdn Res Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Greece. Technol Educ Inst, Dept Sci, Iraklion, Greece. Univ Crete, Dept Mat Sci & Technol, Rethimnon, Greece. Univ Crete, Dept Phys, Rethimnon, Greece. Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RP Kafesaki, A (reprint author), Fdn Res Technol Hellas, Inst Elect Struct & Laser, PO Box 1527, Iraklion 71110, Greece. EM kafesaki@iesl.forth.gr RI Soukoulis, Costas/A-5295-2008; Economou, Eleftherios /E-6374-2010 NR 16 TC 14 Z9 14 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD NOV PY 2007 VL 5 IS 4 BP 149 EP 155 DI 10.1016/j.photonics.2007.02.001 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 231MG UT WOS:000250950400001 ER PT J AU Luo, SN Swadener, JG Ma, C Tschauner, O AF Luo, Sheng-Nian Swadener, J. G. Ma, Chi Tschauner, Oliver TI Examining crystallographic orientation dependence of hardness of silica stishovite SO PHYSICA B-CONDENSED MATTER LA English DT Article DE silica stishovite; nanoindentation; hardness; elastic modulus ID ANISOTROPIC HALF-SPACES; HARDEST KNOWN OXIDE; SINGLE-CRYSTALS; ELASTIC-MODULI; INDENTATION; DEFORMATION; NANOINDENTATION; LOAD AB We conducted nanoindentation to explore the hardness and elastic properties of silica stishovite, synthesized at high pressure and quenched to ambient conditions. A total of 10 crystallographic orientations were examined on selected grains with a maximum load of 4 or 20 mN. We observed discontinuity in the load-displacement curve (pop-in) for the [251] and [621] grains subjected to a maximum load of 20 mN. The single-crystal hardness at high plastic deformation is quasi-isotropic with an average of 32 +/- 1 GPa, similar to the polycrystalline hardness reported earlier; the theoretical hardness determined from the experiments is about 54 +/- 3 GPa. These two hardnesses suggest that stishovite is one of the hardest oxides. The measured indentation moduli are close to the predictions at low load (minor plasticity) but are considerably lower at high load (high plasticity). Both indentation hardness and modulus decrease with increasing plasticity. Our results underscore the necessity of considering the degree of plastic deformation when interpreting hardness and elastic moduli from indentation experiments. (c) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. RP Luo, SN (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI Luo, Sheng-Nian /D-2257-2010; OI Luo, Sheng-Nian /0000-0002-7538-0541; Swadener, John G/0000-0001-5493-3461 NR 22 TC 12 Z9 12 U1 4 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 1 PY 2007 VL 399 IS 2 BP 138 EP 142 DI 10.1016/j.physb.2007.06.011 PG 5 WC Physics, Condensed Matter SC Physics GA 222JV UT WOS:000250293300010 ER PT J AU Mineev-Weinstein, M Putinar, M Sander, L Zabrodin, A AF Mineev-Weinstein, Mark Putinar, Mihai Sander, Leonard Zabrodin, Anton TI Physics and mathematics of growing interfaces - In honor of Stan Richardson's discoveries in laplacian growth and related free boundary problem - Preface SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Editorial Material C1 Los Alamos Natl Lab, Div Appl Phys, MS 365, Los Alamos, NM 87545 USA. Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA. Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Inst Biochem Phys, Moscow 117334, Russia. RP Mineev-Weinstein, M (reprint author), Los Alamos Natl Lab, Div Appl Phys, MS 365, POB 1663, Los Alamos, NM 87545 USA. EM mariner@lanl.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD NOV PY 2007 VL 235 IS 1-2 BP VII EP X DI 10.1016/j.physd.2007.07.019 PG 4 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 230QY UT WOS:000250892200001 ER PT J AU Kumar, S Vorobieff, P Orlicz, G Palekar, A Tomkins, C Goodenough, C Marr-Lyon, M Prestridge, KP Benjamin, RF AF Kumar, S. Vorobieff, P. Orlicz, G. Palekar, A. Tomkins, C. Goodenough, C. Marr-Lyon, M. Prestridge, K. P. Benjamin, R. F. TI Complex flow morphologies in shock-accelerated gaseous flows SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE richtmyer-meshkov instability; vortex dynamics; compressible mixing ID RICHTMYER-MESHKOV INSTABILITY; THIN FLUID LAYER; UNSTABLE GAS-CYLINDERS; GROWTH; PROPAGATION; INTERFACES; EVOLUTION; DYNAMICS; FUSION; PLANAR AB A Mach 1.2 planar shock wave impulsively and simultaneously accelerates a row of three heavy gas (SF6) cylinders surrounded by a lighter gas (air), producing pairs of vortex columns. The heavy gas cylinders (nozzle diameter D) are initially equidistant in the spanwise direction (center to center spacing S), with S/D = 1.5. The interaction of the vortex columns is investigated with planar laser-induced fluorescence (PLIF) in the plane normal to the axes of the cylinders. Several distinct post-shock morphologies are observed, apparently due to rather small variations of the initial conditions. We report the variation of the streamwise and spanwise growth rates of the integral scales for these flow morphologies. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ New Mexico, Albuquerque, NM 87131 USA. Univ Texas Brownsville, Brownsville, TX 78520 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Flow Sci Inc, Santa Fe, NM 87505 USA. RP Vorobieff, P (reprint author), Univ New Mexico, Albuquerque, NM 87131 USA. EM kalmoth@unm.edu RI Vorobieff, Peter/B-3376-2011; Prestridge, Kathy/C-1137-2012; OI Prestridge, Kathy/0000-0003-2425-5086; Vorobieff, Peter/0000-0003-0631-7263 NR 38 TC 9 Z9 15 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD NOV PY 2007 VL 235 IS 1-2 BP 21 EP 28 DI 10.1016/j.physd.2007.04.023 PG 8 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 230QY UT WOS:000250892200004 ER PT J AU Holm, DD Putkaradze, V AF Holm, D. D. Putkaradze, V. TI Formation and evolution of singularities in anisotropic geometric continua SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE darcy's law; geometric dissipation; self-assembly ID CAPILLARY FORCES; AGGREGATION; NANOPARTICLES; EQUATIONS; MODEL AB Evolutionary PDEs for geometric order parameters that admit propagating singular solutions are introduced and discussed. These singular solutions arise as a result of the competition between nonlinear and nonlocal processes in various familiar vector spaces. Several examples are given. The motivating example is the directed self-assembly of a large number of particles for technological purposes, such as nano-science processes, in which the particle interactions are anisotropic. This application leads to the derivation and analysis of gradient flow equations on Lie algebra valued densities. The Riemannian structure of these gradient flow equations is also discussed. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ London Imperial Coll Sci & Technol, Dept Math, London SW7 2AZ, England. Los Alamos Natl Lab, MS D413, Los Alamos, NM 87545 USA. Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA. RP Holm, DD (reprint author), Univ London Imperial Coll Sci & Technol, Dept Math, London SW7 2AZ, England. EM d.holm@ic.ac.uk; putkarad@math.colostate.edu OI Holm, Darryl D/0000-0001-6362-9912 NR 24 TC 7 Z9 7 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD NOV PY 2007 VL 235 IS 1-2 BP 33 EP 47 DI 10.1016/j.physd.2007.04.022 PG 15 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 230QY UT WOS:000250892200006 ER PT J AU Abanov, A Mineev-Weinstein, M Zabrodin, A AF Abanov, A. R. Mineev-Weinstein, M. Zabrodin, A. TI Self-similarity in laplacian growth SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Schwarz function; hele-shaw cell ID DIFFUSION-LIMITED AGGREGATION; RANDOM-MATRIX ENSEMBLE; SAFFMAN-TAYLOR FINGER; HELE-SHAW FLOWS; SECTOR GEOMETRY; SELECTION; WEDGE; LIQUID; CORNER; FLUID AB We consider Laplacian Growth of self-similar domains in different geometries. Self-similarity determines the analytic structure of the Schwarz function of the moving boundary. The knowledge of this analytic structure allows us to derive the integral equation for the conformal map. It is shown that solutions to the integral equation obey also a second-order differential equation which is the ID Schroedinger equation with the sinh(-2)-potential. The solutions, which are expressed through the Gauss hypergeometric function, characterize the geometry of self-similar patterns in a wedge. We also find the potential for the Coulomb gas representation of the self-similar Laplacian growth in a wedge and calculate the corresponding free energy. (c) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Appl Phys, MS P365, Los Alamos, NM 87545 USA. Texas A&M Univ, Dept Phys, MS 4242, College Stn, TX 77843 USA. Inst Biochem & Phys, Moscow 119991, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. RP Mineev-Weinstein, M (reprint author), Los Alamos Natl Lab, Div Appl Phys, MS P365, POB 1663, Los Alamos, NM 87545 USA. EM mariner@lanl.gov NR 33 TC 7 Z9 8 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD NOV PY 2007 VL 235 IS 1-2 BP 62 EP 71 DI 10.1016/j.physd.2007.04.012 PG 10 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 230QY UT WOS:000250892200009 ER PT J AU Singh, TB Yang, H Plochberger, B Yang, L Sitter, H Neugebauer, H Sariciftci, NS AF Singh, Th. Birendra Yang, H. Plochberger, B. Yang, L. Sitter, H. Neugebauer, H. Sariciftci, N. S. TI Characterization of highly crystalline C-60 thin films and their field-effect mobility SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 21st International Winterschool on Electronic Properties of Novel Materials CY MAR 10-17, 2007 CL Kirchberg, AUSTRIA SP Univ Wien, MEFS Co Ltd, Rice Univ, Dept Chem, Appl Nanofluorescence, BRUKER OPTIK GmbH, HORIBA Jobin Yvon GmbH, NANOCYL S A, WILEY-VCH Verlag GmbH & Co ID TRANSISTORS; POLYMERS AB Transistors fabricated from C-60 films grown by hot wall epitaxy at elevated substrate temperature of 250 degrees C, show charge carrier mobility of similar to 6 cm(2)/Vs. When grown at substrate temperature of 25 degrees C, mobilities of only 0.6-1 cm(2)/Vs are obtained. The C-60 films were characterized using grazing-incidence X-ray diffraction and show increased crystalline properties when grown at elevated substrate temperature. The improvement in the charge carrier mobility is attributed to the higher crystalline nature of the thin films. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Johannes Kepler Univ Linz, Linz Inst Organ Solar Cells, A-4040 Linz, Austria. Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Troy, NY 12180 USA. Johannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria. Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. RP Singh, TB (reprint author), Johannes Kepler Univ Linz, Linz Inst Organ Solar Cells, A-4040 Linz, Austria. EM birendra.singh@jku.at RI Yang, Lin/D-5872-2013; Singh, Birendra/H-1595-2011 OI Yang, Lin/0000-0003-1057-9194; NR 12 TC 5 Z9 5 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2007 VL 244 IS 11 BP 3845 EP 3848 DI 10.1002/pssb.200776122 PG 4 WC Physics, Condensed Matter SC Physics GA 237EG UT WOS:000251355800002 ER PT J AU Geohegan, DB Puretzky, AA Styers-Barnett, D Hu, H Zhao, B Cui, H Rouleau, CM Eres, G Jackson, JJ Wood, RF Pannala, S Wells, JC AF Geohegan, D. B. Puretzky, A. A. Styers-Barnett, D. Hu, H. Zhao, B. Cui, H. Rouleau, C. M. Eres, G. Jackson, J. J. Wood, R. F. Pannala, S. Wells, J. C. TI In situ time-resolved measurements of carbon nanotube and nanohorn growth SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 21st International Winterschool on Electronic Properties of Novel Materials CY MAR 10-17, 2007 CL Kirchberg, AUSTRIA SP Univ Wien, MEFS Co Ltd, Rice Univ, Dept Chem, Appl Nanofluorescence, BRUKER OPTIK GmbH, HORIBA Jobin Yvon GmbH, NANOCYL S A, WILEY-VCH Verlag GmbH & Co ID CHEMICAL-VAPOR-DEPOSITION; LASER VAPORIZATION; DYNAMICS AB Growth mechanisms of carbon nanotubes are investigated and compared for both high- and low-temperature synthesis methods through experiments utilizing time-resolved, in situ imaging and spectroscopy. High-speed videography and pyrometry measured the timeframes for growth for single-wall carbon nanotubes (SWNHs) and nanohorns (SWNHs) by laser vaporization (LV) at 1150 degrees C, revealing that C can self-assemble at high temperatures preferentially into SWNH structures without catalyst assistance at rates comparable to catalyst-assisted SWNH growth by either laser vaporization or chemical vapor deposition (CVD). Laser interferometry and videography reveal the coordinated growth of vertically-aligned nanotube arrays (VANTAs) by CVD at 550-900 degrees C. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Geohegan, DB (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM geohegandb@ornl.gov RI Pannala, Sreekanth/F-9507-2010; Rouleau, Christopher/Q-2737-2015; Puretzky, Alexander/B-5567-2016; Wells, Jack/D-3675-2016; Geohegan, David/D-3599-2013; Eres, Gyula/C-4656-2017 OI Rouleau, Christopher/0000-0002-5488-3537; Puretzky, Alexander/0000-0002-9996-4429; Wells, Jack/0000-0002-5083-3030; Geohegan, David/0000-0003-0273-3139; Eres, Gyula/0000-0003-2690-5214 NR 18 TC 11 Z9 11 U1 0 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2007 VL 244 IS 11 BP 3944 EP 3949 DI 10.1002/pssb.200776204 PG 6 WC Physics, Condensed Matter SC Physics GA 237EG UT WOS:000251355800022 ER PT J AU Begtrup, GE Ray, KG Kessler, BM Yuzvinsky, TD Garcia, H Zettl, A AF Begtrup, G. E. Ray, K. G. Kessler, B. M. Yuzvinsky, T. D. Garcia, H. Zettl, A. TI Extreme thermal stability of carbon nanotubes SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 21st International Winterschool on Electronic Properties of Novel Materials CY MAR 10-17, 2007 CL Kirchberg, AUSTRIA SP Univ Wien, MEFS Co Ltd, Rice Univ, Dept Chem, Appl Nanofluorescence, BRUKER OPTIK GmbH, HORIBA Jobin Yvon GmbH, NANOCYL S A, WILEY-VCH Verlag GmbH & Co AB The versatility of carbon-carbon bonding creates a wealth of extraordinary physical properties. Of the two common allotropes of carbon, diamond (sp-3 bonded) exhibits record thermal conductivity but is meta-stable and transits to graphite at elevated temperatures. Graphite (sp-2) is electrically conducting but sublimes at temperatures as low as 2400 K. Carbon nanotubes (also sp-2) capitalize on the extraordinary strength of the sp-2 hybridized carbon-carbon bond and exhibit high electrical and thermal conductivities as well as tremendous mechanical strength. Here we report a new technique to measure the thermal proper-ties of nanosystems. We apply this technique to determine the ultimate high temperature breakdown of multiwalled carbon nanotubes. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA. Ctr Integrated Nanomech Syst, Berkeley, CA USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azeftl@physics.berkeley.edu RI Ray, Keith/K-1102-2012; Ray, Keith/K-5598-2013; Zettl, Alex/O-4925-2016; OI Ray, Keith/0000-0002-6241-7472; Zettl, Alex/0000-0001-6330-136X; Yuzvinsky, Thomas/0000-0001-5708-2877 NR 8 TC 10 Z9 11 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2007 VL 244 IS 11 BP 3960 EP 3963 DI 10.1002/pssb.200776148 PG 4 WC Physics, Condensed Matter SC Physics GA 237EG UT WOS:000251355800025 ER PT J AU Doorn, SK Luo, ZT Papadimitrakopoulos, F AF Doorn, Stepben K. Luo, Zhengtang Papadimitrakopoulos, Fotios TI Frequency, transition-energy, and bundling behavior of a new class of carbon nanotube intermediate frequency modes SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 21st International Winterschool on Electronic Properties of Novel Materials CY MAR 10-17, 2007 CL Kirchberg, AUSTRIA SP Univ Wien, MEFS Co Ltd, Rice Univ, Dept Chem, Appl Nanofluorescence, BRUKER OPTIK GmbH, HORIBA Jobin Yvon GmbH, NANOCYL S A, WILEY-VCH Verlag GmbH & Co AB 985 nm in the 380-500 cm(-1) region are described. These IFMs parallel behaviour previously observed at higher frequencies and resonance energies [Phys. Rev. Lett. 93, 087401 (2004); Phys. Rev. B 72, 085446 (2005)], but in the present case occur through coupling to transitions intermediate in energy between E,, and E-22. The IFM intensity behaviour on bundling is found to be the opposite of that for the radial breathing modes (RBMs). We demonstrate that exciton-phonon coupling for the IFMs is enhanced by the bundling process, while the opposite is found for the RBMs. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87544 USA. Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. RP Doorn, SK (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87544 USA. EM skdoorn@lanl.gov RI luo, Zhengtang/C-4270-2008 OI luo, Zhengtang/0000-0002-5134-9240 NR 18 TC 3 Z9 3 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2007 VL 244 IS 11 BP 3992 EP 3997 DI 10.1002/pssb.200776178 PG 6 WC Physics, Condensed Matter SC Physics GA 237EG UT WOS:000251355800032 ER PT J AU Capaz, RB Spataru, CD Ismail-Beigi, S Louie, SG AF Capaz, Rodrigo B. Spataru, Catalin D. Ismail-Beigi, Sohrab Louie, Steven G. TI Excitons in carbon nanotubes: Diameter and chirality trends SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 21st International Winterschool on Electronic Properties of Novel Materials CY MAR 10-17, 2007 CL Kirchberg, AUSTRIA SP Univ Wien, MEFS Co Ltd, Rice Univ, Dept Chem, Appl Nanofluorescence, BRUKER OPTIK GmbH, HORIBA Jobin Yvon GmbH, NANOCYL S A, WILEY-VCH Verlag GmbH & Co AB We provide a closer look into the diameter and chirality dependences of exciton proper-ties in carbon nanotubes, using a variational methodology based on the effective mass and envelope function approximations, supported by ab initio parameters. Experimental measurements of the binding energy are reproduced within 0.02 eV for a large variety of tubes. We also report on the singlet-triplet energy splittings, which show a 1/d(2) diameter dependence. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21941 Rio De Janeiro, Brazil. Normalizacao Qualidade Ind, Inst Nacl Metrol, Div Metrol Mat, BR-25245 Duque De Caxias, Brazil. Columbia Univ, Ctr Electron Transport Mol Nanostruct, Ctr Integrated Sci & Engn, New York, NY 10027 USA. Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. RP Capaz, RB (reprint author), Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941 Rio De Janeiro, Brazil. EM capaz@if.ufrj.br RI Ismail-Beigi, Sohrab/F-2382-2014; B, Rodrigo/N-7595-2014 OI Ismail-Beigi, Sohrab/0000-0002-7331-9624; NR 15 TC 23 Z9 23 U1 0 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2007 VL 244 IS 11 BP 4016 EP 4020 DI 10.1002/pssb.200776200 PG 5 WC Physics, Condensed Matter SC Physics GA 237EG UT WOS:000251355800037 ER PT J AU Zettl, A Chang, CW Begtrup, G AF Zettl, A. Chang, C. W. Begtrup, G. TI A new look at thermal properties of nanotubes SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 21st International Winterschool on Electronic Properties of Novel Materials CY MAR 10-17, 2007 CL Kirchberg, AUSTRIA SP Univ Wien, MEFS Co Ltd, Rice Univ, Dept Chem, Appl Nanofluorescence, BRUKER OPTIK GmbH, HORIBA Jobin Yvon GmbH, NANOCYL S A, WILEY-VCH Verlag GmbH & Co AB The thermal conductance of nanotubes is examined over a wide temperature range and as a function of mechanical manipulation. It is found that carbon nanotubes maintain impressive thermal conductance up to their decomposition temperature of similar to 3200 K. For both carbon and boron nitride multiwalled nanotubes the thermal conductance is relatively independent of tube bending angle, but it can be substantially tuned by "telescoping" the tubes. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@physics.berkeley.edu RI Chang, Chih-Wei/A-5974-2012; Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X NR 6 TC 11 Z9 11 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2007 VL 244 IS 11 BP 4181 EP 4183 DI 10.1002/pssb.200776103 PG 3 WC Physics, Condensed Matter SC Physics GA 237EG UT WOS:000251355800071 ER PT J AU Dillon, AC Whitney, E Engtrakul, C Curtis, CJ O'Neill, KJ Parilla, PA Simpson, LJ Heben, MJ Zhao, Y Kim, YH Zhang, SB AF Dillon, A. C. Whitney, E. Engtrakul, C. Curtis, C. J. O'Neill, K. J. Parilla, P. A. Simpson, L. J. Heben, M. J. Zhao, Y. Kim, Y. -H. Zhang, S. B. TI Novel organometallic fullerene complexes for vehicular hydrogen storage SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 21st International Winterschool on Electronic Properties of Novel Materials CY MAR 10-17, 2007 CL Kirchberg, AUSTRIA SP Univ Wien, MEFS Co Ltd, Rice Univ, Dept Chem, Appl Nanofluorescence, BRUKER OPTIK GmbH, HORIBA Jobin Yvon GmbH, NANOCYL S A, WILEY-VCH Verlag GmbH & Co ID METAL AB Theoretical studies have predicted that scandium can bind to the twelve five-membered rings in C-60. It is then possible to stabilize four dihydrogen ligands (H-2) on each Sc atom with a binding energy of similar to 30 kJ/mol, ideal for vehicular hydrogen storage. The resulting C-60[ScH2(H-2)(4)](12) complex is predicted to be a minimum energy structure with similar to 7.0 wt% reversible hydrogen capacity. However, wet chemical synthesis of the calculated eta(5)-coordinated fullerene complex is unprecedented. The chemistry of C,, is generally olefinic (i.e., eta(2)-coordination, in which the metal is coordinated to two carbon atoms contributing two electrons to the bonding). Furthermore, stabilization of multiple dihydrogen ligands on a single transition metal has not been demonstrated. Recently we have probed new synthesis techniques in order to coordinate C,, with either Fe, Sc, Cr, Co or Li. The new compounds were characterized with solid-state nuclear magnetic resonance, and structures have been proposed. All of the structures were found to have unique binding sites for hydrogen employing the technique of temperature programmed desorption. Furthermore, some of the structures were shown to have significant hydrogen capacities with volumetric measurements. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dillon, AC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd Golden, Golden, CO 80401 USA. EM anne_dillon@nrel.gov RI Engtrakul, Chaiwat/H-5634-2011; Kim, Yong-Hyun/C-2045-2011; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013 OI Kim, Yong-Hyun/0000-0003-4255-2068; Zhang, Shengbai/0000-0003-0833-5860 NR 6 TC 7 Z9 7 U1 1 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2007 VL 244 IS 11 BP 4319 EP 4322 DI 10.1002/pssb.200776157 PG 4 WC Physics, Condensed Matter SC Physics GA 237EG UT WOS:000251355800101 ER PT J AU Feldbaum, D Wang, H Weinstein, J Vieira, D Zhao, X AF Feldbaum, D. Wang, H. Weinstein, J. Vieira, D. Zhao, X. TI Trapping radioactive (82)Rb in an optical dipole trap and evidence of spontaneous spin polarization SO PHYSICAL REVIEW A LA English DT Article ID BOSE-EINSTEIN CONDENSATION; PARITY CONSERVATION; BETA-DECAY; ATOMS; VAPOR AB Optical trapping of selected species of radioactive atoms has great potential in precision measurements for testing fundamental physics such as the electric dipole moment, atomic parity nonconservation, and parity-violating beta-decay correlation coefficients. We report on the trapping of 10(4) radioactive (82)Rb atoms (t(1/2)=75 s) with a trap lifetime of similar to 55 s in an optical dipole trap. Transfer efficiency from the magneto-optical trap is similar to 14%. We further report evidence of spontaneous spin polarization of the atoms in optical dipole trap loading. These advancements are an important step toward a new generation of precision nuclear-spin-beta-emission direction correlation measurements with polarized (82)Rb atoms. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Feldbaum, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM xxz@lanl.gov NR 24 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2007 VL 76 IS 5 AR 051402 DI 10.1103/PhysRevA.76.051402 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 236TN UT WOS:000251326400004 ER PT J AU Lee, TG Ovchinnikov, SY Sternberg, J Chupryna, V Schultz, DR Macek, JH AF Lee, Teck-Ghee Ovchinnikov, S. Yu. Sternberg, J. Chupryna, V. Schultz, D. R. Macek, J. H. TI Quantum treatment of continuum electrons in the fields of moving charges SO PHYSICAL REVIEW A LA English DT Article ID DEPENDENT SCHRODINGER-EQUATION; ION-ATOM COLLISIONS; ANGULAR-DISTRIBUTION; DISTRIBUTIONS; IONIZATION; HYDROGEN; ENERGY AB An ab initio, three-dimensional quantum mechanical calculation has been performed for the time evolution of continuum electrons in the fields of moving charges. Here the essential singularity associated with the diverging phase factor in the continuum wave function is identified and removed analytically. As a result, the continuum components of the regularized wave function are slowly varying with time. Therefore, one can propagate continuum electrons to asymptotically large times and obtain numerically stable, well-converged ejected electron momentum spectra with very low numerical noise. As a consequence, our approach resolves outstanding controversies concerning structures in electron momentum distributions. The main conclusions are general and are illustrated here for ionization of atomic hydrogen by proton impact. Our results show that in order to obtain the correct long-time free-particle propagation, the essential singularity identified here should be removed from the continuum components of solutions to the time-dependent Schrodinger equation. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37496 USA. RP Lee, TG (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM leetg@ornl.gov RI Lee, Teck Ghee/D-5037-2012; Ovchinnikov, Serguei/C-4994-2014 OI Lee, Teck Ghee/0000-0001-9472-3194; NR 18 TC 17 Z9 17 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2007 VL 76 IS 5 AR 050701 DI 10.1103/PhysRevA.76.050701 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 236TN UT WOS:000251326400002 ER PT J AU Mozyrsky, D Martin, I Timmermans, E AF Mozyrsky, D. Martin, I. Timmermans, E. TI Coherent mesoscopic quantum tunneling in boson-fermion mixtures SO PHYSICAL REVIEW A LA English DT Article ID EINSTEIN CONDENSATE; ATTRACTIVE INTERACTIONS; COLLAPSE; STATES; ATOMS; SUPERPOSITION; DYNAMICS; DECAY; GAS AB We show that cold atom systems of simultaneously trapped Bose-Einstein condensates (BECs) and quantum degenerate fermionic atoms provide promising laboratories for the study of macroscopic quantum tunneling. Our theoretical studies reveal that the spatial extent of a small trapped BEC immersed in a Fermi sea can tunnel and coherently oscillate between the values of the separated and mixed configurations (the phases of the phase separation transition of BEC-fermion systems). We evaluate the period, amplitude, and dissipation rate for (23)Na and (40)K atoms, and we discuss the experimental prospects for observing this phenomenon. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mozyrsky, D (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI Mozyrsky, Dima/0000-0001-5305-4617 NR 29 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2007 VL 76 IS 5 AR 051601 DI 10.1103/PhysRevA.76.051601 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 236TN UT WOS:000251326400006 ER PT J AU Zurek, WH AF Zurek, Wojciech Hubert TI Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer in the transition from quantum to classical SO PHYSICAL REVIEW A LA English DT Article ID DECOHERENCE; MECHANICS AB Measurements transfer information about a system to the apparatus and then, further on, to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide a framework for "wave-packet collapse," designating terminal points of quantum jumps and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment-the fittest quantum states that not only survive decoherence, but subvert the environment into carrying information about them-into becoming a witness. C1 LANL, Div Theory, Los Alamos, NM 87545 USA. RP Zurek, WH (reprint author), LANL, Div Theory, MS B213, Los Alamos, NM 87545 USA. NR 29 TC 33 Z9 33 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2007 VL 76 IS 5 AR 052110 DI 10.1103/PhysRevA.76.052110 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 236TN UT WOS:000251326400022 ER PT J AU Aleiner, IL Kharzeev, DE Tsvelik, AM AF Aleiner, I. L. Kharzeev, D. E. Tsvelik, A. M. TI Spontaneous symmetry breaking in graphene subjected to an in-plane magnetic field SO PHYSICAL REVIEW B LA English DT Article ID LONG-RANGE ORDER; 2-DIMENSIONAL SYSTEMS; METASTABILITY; PHASE AB Application of the magnetic field parallel to the plane of the graphene sheet leads to the formation of electron- and holelike Fermi surfaces. Such situation is shown to be unstable with respect to the formation of an excitonic condensate even for an arbitrary weak magnetic field and interaction strength. At temperatures lower than the mean-field temperature, the order parameter amplitude is formed. The order parameter itself is a U(2) matrix allowing for the combined rotations in the spin and valley spaces. These rotations smoothly interpolate between site and bond centered spin-density waves and spin-flux states. The trigonal warping, short-range interactions, and the three-particle umklapp processes freeze some degrees of freedom at temperatures much smaller than the mean-field transition temperature, and make either Berezinskii-Kosterlitz-Thouless [Sov. Phys. JETP 32, 493 (1971); J. Phys. C 5, L124 (1972); 6, 1181 (1973)] (driven either by vortices or half-vortices) or Ising type transitions possible. Strong logarithmic renormalization for the coupling constants of these terms by the Coulomb interaction is calculated within one-loop renormalization group. It is found that in the presence of the Coulomb interaction, some short-range interaction terms become much greater than one might expect from the naive dimensionality counting. C1 [Aleiner, I. L.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kharzeev, D. E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Tsvelik, A. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Tsvelik, A. M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Aleiner, IL (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. NR 25 TC 67 Z9 67 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195415 DI 10.1103/PhysRevB.76.195415 PG 27 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800120 ER PT J AU Allain, JP Coventry, MD Ruzic, DN AF Allain, J. P. Coventry, M. D. Ruzic, D. N. TI Collisional and thermal effects on liquid lithium sputtering SO PHYSICAL REVIEW B LA English DT Article ID NONEQUILIBRIUM ENERGY-TRANSPORT; SPIKE MODELS; MOLECULAR-DYNAMICS; CYLINDRICAL TRACK; IMPURITY CONTROL; ION-BOMBARDMENT; INDUCED EROSION; SURFACE; TEMPERATURE; CASCADES AB The lithium sputtering yield from lithium and tin-lithium surfaces in the liquid state under bombardment by low-energy, singly charged particles as a function of target temperature is measured by using the Ion-surface Interaction Experiment facility. Total erosion exceeds that expected from conventional collisional sputtering after accounting for lithium evaporation for temperatures between 200 and 400 degrees C. Lithium surfaces treated with high-fluence D atoms are bombarded by H(+), D(+), He(+), and Li(+) at energies between 200 and 1000 eV and 45 degrees incidence. Erosion measurements account for temperature-dependent evaporation. For example, 700 eV He(+) particles bombarding the D-treated liquid Li surface at room temperature result in a sputter yield of 0.12 Li/ion and at temperatures similar to 2.0T(m) (where T(m) is the melting temperature of the sample), a yield near and above unity. The enhancement of lithium sputtering is observed to be a strong function of temperature and moderately on particle energy. Bombardment of a low-vapor-pressure lithium alloy (0.8 Sn-Li), used for comparison, also results in nonlinear rise of lithium erosion as a function of temperature. Measurements on both pure liquid Li and the alloy indicate a weak dependence with surface temperature of the secondary ion-induced secondary ion emission. Treatment of liquid Li surfaces with D, yields reduced sputtering under He(+) impact by a factor of 5-6 when measured at room temperature due to preferential sputtering effects. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Illinois, Urbana, IL 61801 USA. RP Allain, JP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Allain, Jean Paul/0000-0003-1348-262X NR 62 TC 20 Z9 20 U1 5 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 205434 DI 10.1103/PhysRevB.76.205434 PG 12 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900107 ER PT J AU Bahr, DF Reid, JA Mook, WM Bauer, CA Stumpf, R Skulan, AJ Moody, NR Simmons, BA Shindel, MM Allendorf, MD AF Bahr, D. F. Reid, J. A. Mook, W. M. Bauer, C. A. Stumpf, R. Skulan, A. J. Moody, N. R. Simmons, B. A. Shindel, M. M. Allendorf, M. D. TI Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; CARBON NANOTUBE TURF; WAVE BASIS-SET; COORDINATION POLYMERS; ELASTIC PROPERTIES; NANOINDENTATION; INDENTATION; HARDNESS; STORAGE AB The recently developed class of nanoporous materials known as metal-organic frameworks (MOFs) is generating considerable interest because of their potential in sensing, storage, and chemical separations. In many applications, it is essential to understand their mechanical properties. We report the measurement of the elastic modulus of IRMOF-1 crystals using two different nanoindentation techniques. The reduced modulus from continuous stiffness measurements, calculated from the average single-crystal Young's modulus (E) of 2.7 +/- 1.0 GPa, is in good agreement with the value obtained from conventional quasistatic measurements. Permanent deformation without fracture has been observed directly after indentation. For comparison, we performed density functional theory (DFT) calculations of the elastic properties using both the local density approximation (LDA) and the generalized gradient approximation (GGA). The resulting, well-converged DFT value (LDA-GGA average) for E is 21.6 +/- 0.3 GPa, with C(11)=0.28 +/- 0.01 GPa, C(12)=0.11 +/- 0.01 GPa, and C(44)=0.03 +/- 0.02 GPa. Correcting the measured modulus for the highly anisotropic elastic behavior predicted by DFT suggests an effective modulus for the (100) face of 7.9 GPa. The DFT prediction is expected to be reliable here. Therefore, the lower measured Young's modulus is most likely due to an interesting behavior during fractureless plastic deformation that occurs in these framework materials. Deformation or buckling in this nanoporous structure likely leads to structural changes at the lowest loads we can apply in the experiment. This appears to be a unique property of MOFs, where the elastic properties of the plastically deformed materials behave differently than those for more traditional nanoporous metals, ceramics, and polymers. C1 Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. Sandia Natl Labs, Livermore, CA 94551 USA. RP Bahr, DF (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RI Bahr, David/A-6521-2012; OI Bahr, David/0000-0003-2893-967X; Simmons, Blake/0000-0002-1332-1810 NR 36 TC 58 Z9 58 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 18 AR 184106 DI 10.1103/PhysRevB.76.184106 PG 7 WC Physics, Condensed Matter SC Physics GA 236TQ UT WOS:000251326700021 ER PT J AU Bao, W Chen, Y Yamada, K Savici, AT Russo, PL Lorenzo, JE Chung, JH AF Bao, Wei Chen, Y. Yamada, K. Savici, A. T. Russo, P. L. Lorenzo, J. E. Chung, J. -H. TI Fincher-Burke spin excitations and omega/T scaling in insulating La(1.95)Sr(0.05)CuO(4) SO PHYSICAL REVIEW B LA English DT Article ID LIGHTLY DOPED LA2-XSRXCUO4; MAGNETIC EXCITATIONS; NORMAL-STATE; TEMPERATURE SUPERCONDUCTOR; QUANTUM; RESONANCE; LA2CUO4 AB Insulating La(1.95)Sr(0.05)CuO(4) shares with superconducting cuprates the same Fincher-Burke spin excitations, which usually are observed in itinerant antiferromagnets. The local spectral function satisfies omega/T scaling above similar to 16 K for this incommensurate insulating cuprate, together with previous results in commensurate insulating and incommensurate superconducting cuprates, further supporting the general prediction for square-lattice quantum spin S=1/2 systems. The width of incommensurate peaks in La(1.95)Sr(0.05)CuO(4) scales to a similar finite value as at optimal doping, strongly suggesting that they are similarly distant from a quantum critical point. They might both be limited to a finite correlation length by partial spin-glass freezing. C1 Los Alamos Natl lab, Los Alamos, NM 87545 USA. NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. Brookhaven Natl Lab, Upton, NY 11973 USA. CNRS, Inst Neel, F-38043 Grenoble, France. RP Bao, W (reprint author), Los Alamos Natl lab, Los Alamos, NM 87545 USA. RI Yamada, Kazuyoshi/C-2728-2009; Bao, Wei/E-9988-2011; Savici, Andrei/F-2790-2013 OI Bao, Wei/0000-0002-2105-461X; Savici, Andrei/0000-0001-5127-8967 NR 32 TC 5 Z9 5 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 18 AR 180406 DI 10.1103/PhysRevB.76.180406 PG 4 WC Physics, Condensed Matter SC Physics GA 236TQ UT WOS:000251326700009 ER PT J AU Bock, N Coffey, D AF Bock, N. Coffey, D. TI Calculations of optical conductivity in a two-band superconductor: Pb SO PHYSICAL REVIEW B LA English DT Article ID ELECTROMAGNETIC PROPERTIES; PHONON DENSITY; METALS; MGB2; LEAD; SPECTROSCOPY; STATES; BORON AB We demonstrate the effect of band structure on the superconducting properties of Pb by calculating the strong-coupling features in the optical conductivity sigma(omega) due to the electron-phonon interaction. The importance of momentum dependence in the calculation of the properties of superconductors has previously been raised for MgB(2) [H. J. Choi , Phys. Rev. B 66, 020513(R) (2002); Nature (London) 418, 758 (2002)]. Pb resembles MgB(2) in that it is a two-band superconductor in which the bands' contributions to the Fermi surface have very different topologies. We calculate sigma(omega) by calculating a memory function [W. Gotze and P. Wolfle, Phys. Rev. B 6, 1226 (1972)], which has been recently used to analyze sigma(omega) of Bi(2)Sr(2)CaCu(2)O(8+delta). [J. Hwang , Nature (London) 427, 714 (2004)]. In our calculations, the two components of the Fermi surface are described by parametrizations of de Haas-van Alphen data. We use a phonon spectrum that is a fit to neutron scattering data. By including the momentum dependence of the Fermi surface, a good agreement is found with the experimentally determined strong-coupling features, which can be described by a broad peak at around 4.5 meV and a narrower higher peak at around 8 meV of equal height. The calculated features are found to be dominated by scattering between states within the third band. By contrast, scattering between states in the second band leads to strong-coupling features in which the height of the high energy peak is reduced by similar to 50% compared to that of the low energy peak. This result is similar to that in the conventional isotropic (momentum independent) treatment of superconductivity. Our results show that it is important to use realistic models of the band structure and phonons and to avoid using momentum averaged quantities in calculations in order to get quantitatively accurate results. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. SUNY Coll Buffalo, Dept Phys, Buffalo, NY 14222 USA. RP Bock, N (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM nbock@lanl.gov NR 40 TC 5 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174513 DI 10.1103/PhysRevB.76.174513 PG 12 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600115 ER PT J AU Cabrera-Sanfelix, P Sanchez-Portal, D Mugarza, A Shimizu, TK Salmeron, M Arnau, A AF Cabrera-Sanfelix, Pepa Sanchez-Portal, Daniel Mugarza, Aitor Shimizu, Tomoko K. Salmeron, Miquel Arnau, Andres TI Water adsorption on O(2x2)/Ru(0001): STM experiments and first-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID SCANNING TUNNELING MICROSCOPE; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; RU(0001); H2O AB We present a combined theoretical and experimental study of water adsorption on Ru(0001) precovered with 0.25 ML (monolayer) of oxygen forming a (2x2) structure. Several structures were analyzed by means of density functional theory calculations for which scanning tunneling microscope (STM) simulations were performed and compared with experimental data. Up to 0.25 ML, the molecules bind to the exposed Ru atoms of the 2x2 unit cell via the lone pair orbitals. The molecular plane is almost parallel to the surface with its H atoms pointing toward the chemisorbed O atoms of the 2x2 unit cell forming hydrogen bonds. The existence of these additional hydrogen bonds increases the adsorption energy of the water molecule to approximately 616 meV, which is similar to 220 meV more stable than on the clean Ru(0001) surface with a similar configuration. The binding energy shows only a weak dependence on water coverage, with a shallow minimum for a row structure at 0.125 ML. This is consistent with the STM experiments that show a tendency of the molecules to form linear rows at intermediate coverage. Our calculations also suggest the possible formation of water dimers near 0.25 ML. C1 DIPC, San Sebastian 20018, Spain. UPV, CSIC, Unidad Fis Mat, Ctr Mixto, San Sebastian 20018, Spain. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Spain. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94709 USA. UPV, Fac Quim, Dept Fis Mat, EHU, San Sebastian 20080, Spain. RP Cabrera-Sanfelix, P (reprint author), DIPC, Manuel Lardizabal 4, San Sebastian 20018, Spain. RI Shimizu, Tomoko/A-6780-2010; Sanchez-Portal, Daniel /E-5858-2010; CSIC-UPV/EHU, CFM/F-4867-2012; mugarza, aitor/B-6871-2012; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; arnau, andres/H-7901-2012 OI mugarza, aitor/0000-0002-2698-885X; arnau, andres/0000-0001-5281-3212 NR 25 TC 19 Z9 19 U1 4 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 205438 DI 10.1103/PhysRevB.76.205438 PG 7 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900111 ER PT J AU Chan, TL Yao, YX Wang, CZ Lu, WC Li, J Qian, XF Yip, S Ho, KM AF Chan, T. -L. Yao, Y. X. Wang, C. Z. Lu, W. C. Li, J. Qian, X. F. Yip, S. Ho, K. M. TI Highly localized quasiatomic minimal basis orbitals for Mo from ab initio calculations SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; WANNIER FUNCTIONS; ENERGY-BANDS; ULTRASOFT PSEUDOPOTENTIALS; MOLECULAR-DYNAMICS; TRANSITION-METALS; SYSTEM-SIZE; POLARIZATION; SOLIDS AB A minimal basis set of localized quasiatomic orbitals for Mo is constructed using the fully converged eigenstates from first-principles calculations with a large basis set. The orbitals, although similar in shape to those of a free atom, are slightly deformed such that it can reproduce all the occupied-state electronic properties of the system. They are very useful for analyzing chemical bonding by calculating the Mulliken overlap population and bond order index between atoms. In addition, the transferability of tight-binding parametrizations can be evaluated, for example, the effect of the two-center approximation. C1 Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Chan, TL (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Li, Ju/A-2993-2008; Yao, Yongxin/B-7320-2008; Qian, Xiaofeng/E-7727-2012; Qian, Xiaofeng/P-4715-2016 OI Li, Ju/0000-0002-7841-8058; Qian, Xiaofeng/0000-0003-1627-288X; Qian, Xiaofeng/0000-0003-1627-288X NR 34 TC 27 Z9 27 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 205119 DI 10.1103/PhysRevB.76.205119 PG 10 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900036 ER PT J AU Chubukov, AV Norman, MR Millis, AJ Abrahams, E AF Chubukov, A. V. Norman, M. R. Millis, A. J. Abrahams, E. TI Gapless pairing and the Fermi arc in the cuprates SO PHYSICAL REVIEW B LA English DT Article ID T-C SUPERCONDUCTORS; NORMAL-STATE; PHASE FLUCTUATIONS; BI2SR2CACU2O8+DELTA; TEMPERATURE; PSEUDOGAP; TRANSITION; SCATTERING; EVOLUTION; BEHAVIOR AB We argue that the Fermi arc observed in angle-resolved photoemission measurements in underdoped cuprates can be understood as a consequence of inelastic scattering in a phase-disordered d-wave superconductor. We analyze this phenomenon in the context of strong-coupling Eliashberg theory, deriving a "single-lifetime" model for describing the temperature evolution of the spectral gap as measured by single-particle probes such as photoemission and tunneling. C1 Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. Columbia Univ, Dept Phys, New York, NY 10027 USA. Rutgers State Univ, Serin Phys Lab, Ctr Mat Theory, Piscataway, NJ 08854 USA. RP Chubukov, AV (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Norman, Michael/C-3644-2013 NR 41 TC 33 Z9 34 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 18 AR 180501 DI 10.1103/PhysRevB.76.180501 PG 4 WC Physics, Condensed Matter SC Physics GA 236TQ UT WOS:000251326700012 ER PT J AU Cuenya, BR Naitabdi, A Croy, J Sturhahn, W Zhao, JY Alp, EE Meyer, R Sudfeld, D Schuster, E Keune, W AF Cuenya, B. Roldan Naitabdi, A. Croy, J. Sturhahn, W. Zhao, J. Y. Alp, E. E. Meyer, R. Sudfeld, D. Schuster, E. Keune, W. TI Atomic vibrations in iron nanoclusters: Nuclear resonant inelastic x-ray scattering and molecular dynamics simulations SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-OF-STATES; SYNCHROTRON-RADIATION; PHONONS; CLUSTERS; SURFACES; NICKEL AB The lattice vibrational dynamics of supported, self-assembled, isolated (57)Fe nanoclusters was studied by nuclear resonant inelastic x-ray scattering and molecular dynamics calculations. The morphological and structural properties and the chemical state of the experimental nanoclusters were investigated by atomic force microscopy, high resolution transmission electron microscopy, and x-ray photoelectron spectroscopy. The measured and calculated vibrational densities of states (VDOSs) reveal an enhancement of the low- and high-energy phonon modes and provide experimental and theoretical proof of non-Debye-like behavior in the low-energy region of the VDOS. Experimentally, this effect was found to depend on the nature of the surface shell (oxide or carbide) of the core/shell nanoclusters. According to the calculations for supported isolated pure Fe nanoclusters, the non-Debye-like behavior appears not only in the surface shell but also in the bcc-Fe core of the nanocluster due to the hybridization of surface and bulk modes. C1 [Cuenya, B. Roldan; Naitabdi, A.; Croy, J.; Keune, W.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Sturhahn, W.; Zhao, J. Y.; Alp, E. E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Meyer, R.; Sudfeld, D.; Schuster, E.; Keune, W.] Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany. RP Cuenya, BR (reprint author), Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. EM roldan@physics.ucf.edu RI Naitabdi, Ahmed/F-5758-2014; Roldan Cuenya, Beatriz/L-1874-2016 OI Naitabdi, Ahmed/0000-0002-1307-5584; Roldan Cuenya, Beatriz/0000-0002-8025-307X NR 32 TC 17 Z9 17 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195422 DI 10.1103/PhysRevB.76.195422 PG 5 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800127 ER PT J AU Culcer, D Winkler, R AF Culcer, Dimitrie Winkler, R. TI Spin polarization decay in spin-1/2 and spin-3/2 systems SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-WELLS; RELAXATION ANISOTROPY; SEMICONDUCTORS; SPINTRONICS; ELECTRONS AB We present a general unifying theory for spin polarization decay due to the interplay of spin precession and momentum scattering that is applicable to both spin-1/2 electrons and spin-3/2 holes. Our theory allows us to identify and characterize a wide range of qualitatively different regimes. For strong momentum scattering or slow spin precession, we recover the D'yakonov-Perel result [Sov. Phys. Solid State 13, 3023 (1972)], according to which the spin relaxation time is inversely proportional to the momentum relaxation time. On the other hand, we find that in the ballistic regime, the carrier spin polarization shows a very different qualitative behavior. In systems with isotropic spin splitting, the spin polarization can oscillate indefinitely, while in systems with anisotropic spin splitting, the spin polarization is reduced by spin dephasing, which is nonexponential and may result in an incomplete decay of the spin polarization. For weak momentum scattering or fast spin precession, the oscillations or nonexponential spin dephasing is modulated by an exponential envelope proportional to the momentum relaxation time. Nevertheless, even in this case, in certain systems a fraction of the spin polarization may survive at long times. Finally, it is shown that despite the qualitatively different nature of spin precession in the valence band, spin polarization decay in spin-3/2 hole systems has many similarities to its counterpart in spin-1/2 electron systems. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Culcer, D (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. NR 47 TC 17 Z9 17 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195204 DI 10.1103/PhysRevB.76.195204 PG 6 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800066 ER PT J AU dela Cruz, CR Lorenz, B Sun, YY Wang, Y Park, S Cheong, SW Gospodinov, MM Chu, CW AF dela Cruz, C. R. Lorenz, B. Sun, Y. Y. Wang, Y. Park, S. Cheong, S-W. Gospodinov, M. M. Chu, C. W. TI Pressure-induced enhancement of ferroelectricity in multiferroic RMn2O5 (R=Tb,Dy,Ho) SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITIONS; NEUTRON-DIFFRACTION; TBMN2O5; YMN2O5 AB Measurements of ferroelectric polarization and dielectric constant were done on RMn2O5 (R=Tb,Dy,Ho) with applied hydrostatic pressures of up to 18 kbar. At ambient pressure, distinctive anomalies were observed in the temperature profile of both physical properties at critical temperatures marking the onset of long range antiferromegnetic order (T-N1) and ferroelectricity (T-C1), as well as at temperatures when anomalous changes in the polarization, dielectric constant, and spin wave commensurability have been previously reported. In particular, the step in the dielectric constant at low temperatures (T-C2), associated with both a drop in the ferroelectric polarization and an incommensurate magnetic structure, was shown to be suddenly quenched upon passing an R-dependent critical pressure. This was shown to correlate with the stabilization of the high ferroelectric polarization state, which is coincident with the commensurate magnetic structure. The observation is suggested to be due to a pressure-induced phase transition into a commensurate magnetic structure, as exemplified by the pressure-temperature (p-T) phase diagrams constructed in this work. The p-T phase diagrams are determined for all three compounds. C1 Univ Houston, TCSUH, Houston, TX 77204 USA. Univ Houston, Dept Phys, Houston, TX 77204 USA. Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Bulgarian Acad Sci, Inst Solid State Phys, BU-1784 Sofia, Bulgaria. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP dela Cruz, CR (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. RI dela Cruz, Clarina/C-2747-2013 OI dela Cruz, Clarina/0000-0003-4233-2145 NR 33 TC 50 Z9 50 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174106 DI 10.1103/PhysRevB.76.174106 PG 7 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600030 ER PT J AU Engelhardt, L Gass, IA Milios, CJ Brechin, EK Murrie, M Prozorov, R Vannette, M Luban, M AF Engelhardt, Larry Gass, Ian A. Milios, Constantino J. Brechin, Euan K. Murrie, Mark Prozorov, Ruslan Vannette, Matthew Luban, Marshall TI Heisenberg model of an {Fe8}-cubane cluster SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-MOLECULE MAGNETS AB An analysis of the measured magnetic susceptibility of the recently synthesized magnetic molecule {Fe-8}-cubane ([(Fe8O4)-O-III(sao)(8)(py)(4)]) leads to a detailed proposal based on an isotropic Heisenberg model for the interactions between the eight Fe-III ions. In the theoretical model, the magnetic ions are situated on the vertices of a cube with one exchange constant linking nearest neighbors and a second exchange constant (appearing as a single diagonal across each of the six faces of the cube) linking four of the eight ions on alternate sites. Excellent agreement between the experimental and theoretical susceptibility data is achieved, thereby providing estimates for the numerical values of the two exchange constants. Independent tests of the theoretical model are proposed in terms of inelastic neutron scattering and high-field magnetic susceptibility measurements at low temperatures that would probe the predicted low-lying magnetic energy levels of the system. C1 Francis Marion Univ, Dept Phys & Astron, Florence, SC 29501 USA. Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland. Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland. Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. RP Engelhardt, L (reprint author), Francis Marion Univ, Dept Phys & Astron, Florence, SC 29501 USA. RI Murrie, Mark/A-7906-2010; Prozorov, Ruslan/A-2487-2008; Brechin, Euan/M-5130-2014; OI Murrie, Mark/0000-0001-7297-2878; Prozorov, Ruslan/0000-0002-8088-6096; Brechin, Euan/0000-0002-9365-370X; Gass, Ian/0000-0001-8951-7847 NR 17 TC 6 Z9 6 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 172406 DI 10.1103/PhysRevB.76.172406 PG 4 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600013 ER PT J AU Erhart, P Eichel, RA Traskelin, P Albe, K AF Erhart, Paul Eichel, Ruediger-Albert Traskelin, Petra Albe, Karsten TI Association of oxygen vacancies with impurity metal ions in lead titanate SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; AB-INITIO; FERROELECTRIC PEROVSKITES; MOLECULAR-DYNAMICS; 1ST PRINCIPLES; POINT-DEFECTS; INTERNAL BIAS; DOMAIN-WALLS; BASIS-SET AB Thermodynamic, structural, and electronic properties of isolated copper and iron atoms as well as their complexes with oxygen vacancies in tetragonal lead titanate are investigated by means of first principles calculations. Both dopants exhibit a strong chemical driving force for the formation of M(Ti)-V(O) (M=Cu,Fe) defect associates. The most stable configurations correspond to a local dipole aligned along the tetragonal axis parallel to the spontaneous polarization. Local spin moments are obtained and the calculated spin densities are discussed. The calculations provide a simple and consistent explanation for the experimental findings. The results are discussed in the context of models for degradation of ferroelectric materials. C1 Tech Univ Darmstadt, Inst Mat Wissensch, D-64287 Darmstadt, Germany. Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. Tech Univ Darmstadt, Edward Zintl Inst, D-64287 Darmstadt, Germany. Univ Helsinki, Accelerator Lab, FIN-00014 Helsinki, Finland. Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Erhart, P (reprint author), Tech Univ Darmstadt, Inst Mat Wissensch, Petersenstr 30, D-64287 Darmstadt, Germany. RI Albe, Karsten/F-1139-2011; Erhart, Paul/G-6260-2011; OI Erhart, Paul/0000-0002-2516-6061; Eichel, Ruediger-A./0000-0002-0013-6325 NR 49 TC 58 Z9 58 U1 2 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174116 DI 10.1103/PhysRevB.76.174116 PG 12 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600040 ER PT J AU Graf, J d'Astuto, M Giura, P Shukla, A Saini, NL Bossak, A Krisch, M Cheong, SW Sasagawa, T Lanzara, A AF Graf, Jeff d'Astuto, Matteo Giura, Paola Shukla, Abhay Saini, Naurang L. Bossak, Alexei Krisch, Michael Cheong, Sang-Wook Sasagawa, Takao Lanzara, Alessandra TI In-plane copper-oxygen bond-stretching mode anomaly in underdoped La2-xSrxCuO4+delta measured with high-resolution inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article ID ENERGY RESOLUTION; DISPERSION; SUPERCONDUCTORS; OXIDE AB We have measured the lattice dynamics of underdoped La2-xSrxCuO4+delta (x=0.08) using high resolution inelastic x-ray scattering spectroscopy. The very good intrinsic Q resolution of this experiment allows us to differentiate between the two proposed scenarios for the Cu-O bond stretching phonon broadening reported at q=(0.25,0,0). The results suggest that this phonon broadening is due to intrinsic damping rather than to a steep dispersion, having important implications on the interpretation of phonon anomalies in cuprates. C1 Univ Paris 06, IMPMC, F-75252 Paris 05, France. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. European Synchrotron Radiat Facil, F-38043 Grenoble, France. Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. Dept Phys & Astron, Piscataway, NJ 08854 USA. Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, Tokyo, Japan. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP d'Astuto, M (reprint author), Univ Paris 06, IMPMC, Case 115,4,Pl Jussieu, F-75252 Paris 05, France. EM matteo.dastuto@impmc.jussieu.fr RI Shukla, Abhay/G-6753-2011; d'Astuto, Matteo/F-8235-2013; Saini, Naurang/J-7918-2013; BOSAK, Alexei/J-7895-2013; Sasagawa, Takao/E-6666-2014; giura, paola/E-3841-2017 OI d'Astuto, Matteo/0000-0002-7583-4427; Saini, Naurang/0000-0003-3684-1517; Sasagawa, Takao/0000-0003-0149-6696; NR 18 TC 8 Z9 8 U1 3 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 172507 DI 10.1103/PhysRevB.76.172507 PG 4 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600024 ER PT J AU Hastings, MB AF Hastings, M. B. TI Quantum belief propagation: An algorithm for thermal quantum systems SO PHYSICAL REVIEW B LA English DT Article ID MATRIX RENORMALIZATION-GROUP; THERMODYNAMICS AB We present an accurate numerical algorithm, called quantum belief propagation, for simulation of one-dimensional quantum systems at nonzero temperature. The algorithm exploits the fact that quantum effects are short-range in these systems at nonzero temperature, decaying on a length scale inversely proportional to the temperature. We compare to exact results on a spin-1/2 Heisenberg chain. Even a very modest calculation, requiring diagonalizing only ten-by-ten matrices, reproduces the peak susceptibility with a relative error of less than 10(-5), while more elaborate calculations further reduce the error. C1 Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hastings, MB (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM hastings@lanl.gov NR 17 TC 26 Z9 26 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 201102 DI 10.1103/PhysRevB.76.201102 PG 4 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900002 ER PT J AU Idrobo, JC Walkosz, W Yip, SF Ogut, S Wang, J Jellinek, J AF Idrobo, Juan C. Walkosz, Weronika Yip, Shing Fan Oeguet, Serdar Wang, Jinlan Jellinek, Julius TI Static polarizabilities and optical absorption spectra of gold clusters (Au-n, n=2-14 and 20) from first principles SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; ELECTRONIC PHOTODISSOCIATION SPECTROSCOPY; DIFFERENCE-PSEUDOPOTENTIAL METHOD; 2-PHOTON IONIZATION SPECTROSCOPY; ION MOBILITY MEASUREMENTS; TRANSITION-METAL ATOMS; NOBLE-GAS MATRICES; AB-INITIO; PHOTOELECTRON-SPECTROSCOPY; BINARY CLUSTERS AB Static polarizabilities and optical absorption spectra for the ground state structures of gold clusters (Au-n, n=2-14 and 20) are investigated from first principles within static and time-dependent density functional theory. The static polarizabilities of clusters with less than 14 atoms generally increase as a function of size modulated by even-odd oscillations. The polarizabilities of Au-14 and Au-20 are noticeably lower due to the shape transition from two-dimensional to three-dimensional structures at n=14. The analyses of the optical absorption spectra calculated within the time-dependent local density approximation indicate that the d electrons in Au-n clusters are significantly more involved in low-energy transitions and give rise to more quenched oscillator strengths (by screening the s electrons) than in Ag-n clusters. These stronger effects of the d electrons in the optical properties of Au-n are due to the larger degree of proximity of the s and d levels in the Au atom as compared to the Ag atom, which gives rise to stronger s-(p)-d hybridization in the molecular orbitals of Au-n. The calculated spectra are found to be in good agreement with experimental data and results from earlier studies for the available sizes. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Univ Illinois, Dept Phys, Chicago, IL 60607 USA. SE Univ Nanjing, Dept Phys, Nanjing 210096, Peoples R China. RP Yip, SF (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Ogut, Serdar/B-1749-2012; Idrobo, Juan/H-4896-2015 OI Idrobo, Juan/0000-0001-7483-9034 NR 116 TC 114 Z9 116 U1 3 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 205422 DI 10.1103/PhysRevB.76.205422 PG 12 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900095 ER PT J AU Jensen, K Mickelson, W Kis, A Zettl, A AF Jensen, K. Mickelson, W. Kis, A. Zettl, A. TI Buckling and kinking force measurements on individual multiwalled carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID STRENGTH; COMPRESSION; MICROSCOPY; MODULUS; LOAD AB Using an atomic force microscope operated inside a transmission electron microscope, we have studied the forces involved in buckling and kinking an individual multiwalled carbon nanotube while observing its structure. In particular, we have measured an individual nanotube's asymptotic critical buckling load and critical kinking load. The buckling results are well described by classical elastic theory, while the observed kinking behavior requires a more involved analysis. Repeated buckling measurements on the same nanotube indicate an extremely high degree of elasticity and set a lower bound on the nanotube's yield strength of 1.7 GPa, higher than the yield strength of steel. Plastic deformation of the nanotube was eventually observed following kinking. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Jensen, K (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Mickelson, Willi/D-8813-2013; Kis, Andras/A-4631-2011; Zettl, Alex/O-4925-2016 OI Mickelson, Willi/0000-0002-6398-6212; Kis, Andras/0000-0002-3426-7702; Zettl, Alex/0000-0001-6330-136X NR 24 TC 28 Z9 28 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195436 DI 10.1103/PhysRevB.76.195436 PG 5 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800141 ER PT J AU Jia, S Ni, N Bud'ko, SL Canfield, PC AF Jia, Shuang Ni, Ni Bud'ko, S. L. Canfield, P. C. TI Magnetic properties of Gd(x)Y(1-x)Fe(2)Zn(20): Dilute, large-S moments in a nearly ferromagnetic Fermi liquid SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT-PROPERTIES; CRITICAL-POINTS; COBALT; CO; PALLADIUM; EXCHANGE; ALLOYS; METAL; RH; BEHAVIOR AB Single crystals of the dilute, rare earth bearing, pseudoternary series Gd(x)Y(1-x)Fe(2)Zn(20) were grown out of Zn-rich solution. Measurements of magnetization, resistivity, and heat capacity on Gd(x)Y(1-x)Fe(2)Zn(20) samples reveal ferromagnetic order of the Gd(3+) local moments across virtually the whole series (x >= 0.02). The magnetic properties of this series, including the ferromagnetic ordering, the reduced saturated moments at base temperature, the deviation of the susceptibilities from Curie-Weiss law, and the anomalies in the resistivity, are understood within the framework of dilute, S moments (Gd(3+)) embedded in a nearly ferromagnetic Fermi liquid (YFe(2)Zn(20)). The s-d model is employed to further explain the variation of T(C) with x as well as the temperature dependences of the susceptibilities. C1 Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. US DOE, Ames Lab, Ames, IA 50011 USA. RP Jia, S (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 NR 34 TC 19 Z9 19 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 18 AR 184410 DI 10.1103/PhysRevB.76.184410 PG 9 WC Physics, Condensed Matter SC Physics GA 236TQ UT WOS:000251326700054 ER PT J AU Kas, JJ Sorini, AP Prange, MP Cambell, LW Soininen, JA Rehr, JJ AF Kas, J. J. Sorini, A. P. Prange, M. P. Cambell, L. W. Soininen, J. A. Rehr, J. J. TI Many-pole model of inelastic losses in x-ray absorption spectra SO PHYSICAL REVIEW B LA English DT Article ID QUASI-PARTICLE ENERGIES; DEGENERATE ELECTRON-GAS; MEAN FREE PATHS; SELF-ENERGY; DIELECTRIC FUNCTION; FINE-STRUCTURE; SEMICONDUCTORS; SPECTROSCOPY; INSULATORS; CRYSTALS AB Inelastic losses are crucial to a quantitative analysis of x-ray absorption spectra. However, current treatments are semiphenomenological in nature. Here, a first-principles, many-pole generalization of the plasmon-pole model is developed for improved calculations of inelastic losses. The method is based on the GW approximation for the self-energy and real-space multiple-scattering calculations of the dielectric function for a given system. The model retains the efficiency of the plasmon-pole model and is applicable to both periodic and aperiodic materials over a wide energy range. The same many-pole model is applied to extended GW calculations of the quasiparticle spectral function. This yields estimates of multielectron excitation effects, e.g., the many-body amplitude factor S(0)(2) due to intrinsic losses. Illustrative calculations are compared with other GW calculations of the self-energy, the inelastic mean free path, and experimental x-ray absorption spectra. C1 [Kas, J. J.; Sorini, A. P.; Prange, M. P.; Rehr, J. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Cambell, L. W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Soininen, J. A.] Univ Helsinki, Dept Phys Sci, Div Xrays Phys, FI-00014 Helsinki, Finland. RP Kas, JJ (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. NR 42 TC 38 Z9 38 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195116 DI 10.1103/PhysRevB.76.195116 PG 10 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800051 ER PT J AU Kezsmarki, I Gaal, R Homes, CC Sipos, B Berger, H Bordacs, S Mihaly, G Forro, L AF Kezsmarki, I. Gaal, R. Homes, C. C. Sipos, B. Berger, H. Bordacs, S. Mihaly, G. Forro, L. TI High-pressure infrared spectroscopy: Tuning of the low-energy excitations in correlated electron systems SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION; DIAMOND; 1T-TAS2 AB We have extended the range of the high-pressure optical spectroscopy to the far-infrared region keeping the accuracy of ambient-pressure experiments. The developed method offers a powerful tool for the study of pressure-induced phase transitions and electronic-structural changes in correlated electron systems as the optical pressure cell, equipped with large free-aperture diamond window, allows the measurement of optical reflectivity down to omega approximate to 20-30 cm(-1) for hydrostatic pressures up to p approximate to 26 kbar. The efficiency of the technique is demonstrated by the investigation of the two-dimensional charge-density-wave 1T-TaS(2) whose electronic structure shows high sensitivity to external pressure. The room-temperature semimetallic phase of 1T-TaS(2) is effectively extended by application of pressure and stabilized as the ground state above p=14 kbar. The corresponding fully incoherent low-energy optical conductivity is almost temperature independent below T=300 K. For intermediate pressures, the onset of the low-temperature insulating phase is reflected by the sudden drop of the reflectivity and by the emergence of sharp phonon resonances. C1 Budapest Univ Technol & Econ, Dept Phys, H-1111 Budapest, Hungary. Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Kezsmarki, I (reprint author), Budapest Univ Technol & Econ, Dept Phys, H-1111 Budapest, Hungary. RI Sipos, Balazs/A-4240-2008; Mihaly, Gyorgy/A-2359-2009; Kezsmarki, Istvan/B-1753-2012; Bordacs, Sandor/B-3208-2013 OI Mihaly, Gyorgy/0000-0001-8986-3299; Kezsmarki, Istvan/0000-0003-4706-3247; NR 20 TC 4 Z9 4 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 205114 DI 10.1103/PhysRevB.76.205114 PG 5 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900031 ER PT J AU Laino, T Donadio, D Kuo, IFW AF Laino, Teodoro Donadio, Davide Kuo, I-Feng W. TI Migration of positively charged defects in alpha-quartz SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; PARAMAGNETIC POINT-DEFECTS; INITIO MOLECULAR-DYNAMICS; ELECTRON SPIN RESONANCE; SELF-INTERACTION ERROR; IRRADIATED QUARTZ; SILICON DIOXIDE; OXYGEN VACANCY; DISSOCIATIVE ADSORPTION; OPTICAL-ABSORPTION AB We apply a quantum-mechanics/molecular-mechanics (QM/MM) scheme to simulate the migration of charged defects in alpha-quartz. A QM/MM framework together with a self-interaction correction (SIC) scheme was used to investigate the stability of the charged dimer defect and the E'(1) center in alpha-quartz. The use of a SIC scheme makes the charged dimer center unstable in alpha-quartz, in agreement with the experimental failure of identifying this defect, while the effects of the correction of the self-interaction error on the E-1(') center are negligible. Moreover, we conjecture that by overcoming a low energy barrier, the puckering mechanism (ideally heading from the charged dimer defect to the E'(1) center in SIC-free calculations) can be reiterated allowing the drift of the positive charge localized on an overcoordinated oxygen atom. This process can be regarded as an important channel of structural reorganization of oxygen deficient silica in the presence of strong polarizing electric fields. C1 [Laino, Teodoro] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland. [Donadio, Davide] Swiss Fed Inst Technol, DCHAB, CH-6900 Lugano, Switzerland. [Kuo, I-Feng W.] Lawrence Livermore Natl Lab, Chem & Mat SCi L 091, Livermore, CA 94550 USA. RP Laino, T (reprint author), Univ Zurich, Inst Phys Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM tlaino@pci.uzh.ch RI Donadio, Davide/B-6447-2008; Donadio, Davide/C-6971-2008 OI Donadio, Davide/0000-0002-2150-4182 NR 63 TC 7 Z9 7 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195210 DI 10.1103/PhysRevB.76.195210 PG 9 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800072 ER PT J AU Latil, S Meunier, V Henrard, L AF Latil, Sylvain Meunier, Vincent Henrard, Luc TI Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRONIC-PROPERTIES; DIRAC-FERMIONS; BAND-STRUCTURE; GRAPHENE; 1ST-PRINCIPLES; STACKING; DYNAMICS; METALS AB We examine how the misorientation of a few stacked graphene layers affects the electronic structure of carbon nanosystems. We present ab initio calculations on bilayer and trilayer systems to demonstrate that the massless fermion behavior typical of single-layered graphene is also found in incommensurate multilayered graphitic systems. We also investigate the consequences of this property on experimental fingerprints, such as Raman spectroscopy and scanning tunneling microscopy (STM). Our simulations reveal that STM images of turbostratic few-layer graphite are sensitive to the layer arrangement. We also predict that the resonant Raman signals of graphitic samples are more sensitive to the orientation of the layers than to their number. C1 Fac Univ Notre Dame Paix, Phys Solide Lab, B-5000 Namur, Belgium. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Latil, S (reprint author), Fac Univ Notre Dame Paix, Phys Solide Lab, Rue Bruxelles 61, B-5000 Namur, Belgium. RI Meunier, Vincent/F-9391-2010 OI Meunier, Vincent/0000-0002-7013-179X NR 41 TC 195 Z9 196 U1 2 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 201402 DI 10.1103/PhysRevB.76.201402 PG 4 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900014 ER PT J AU Mazur, D Gray, KE Zasadzinski, JF Ozyuzer, L Beloborodov, IS Zheng, H Mitchell, JF AF Mazur, Daniel Gray, K. E. Zasadzinski, J. F. Ozyuzer, L. Beloborodov, I. S. Zheng, H. Mitchell, J. F. TI Redistribution of the density of states due to Coulomb interactions in La(2-2x)Sr(1+2x)Mn(2)O(7) SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE; MANGANITES; TRANSITION; BARRIERS; METALS AB Tunneling data on La(1.28)Sr(1.72)Mn(2)O(7) crystals confirm Coulomb interaction effects through the root E dependence of the density of states. Importantly, the data and analysis at high energy E show a pileup of states: most of the states removed from near the Fermi level are found between similar to 40 and 130 meV, from which we infer the possibility of universal behavior. The agreement of our tunneling data with recent photoemission results further confirms our analysis. C1 [Mazur, Daniel; Gray, K. E.; Ozyuzer, L.; Beloborodov, I. S.; Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Mazur, Daniel; Zasadzinski, J. F.] IIT, Div Phys, Chicago, IL 60616 USA. [Ozyuzer, L.] Izmir Inst Technol, Dept Phys, TR-35430 Izmir, Turkey. [Beloborodov, I. S.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Mazur, D (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Ozyuzer, Lutfi/H-3142-2011; Mazur, Daniel/B-8303-2014 OI Mazur, Daniel/0000-0003-2524-5226 NR 22 TC 4 Z9 4 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 193102 DI 10.1103/PhysRevB.76.193102 PG 4 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800002 ER PT J AU Mazzoli, C Wilkins, SB Di Matteo, S Detlefs, B Detlefs, C Scagnoli, V Paolasini, L Ghigna, P AF Mazzoli, C. Wilkins, S. B. Di Matteo, S. Detlefs, B. Detlefs, C. Scagnoli, V. Paolasini, L. Ghigna, P. TI Disentangling multipole resonances through a full x-ray polarization analysis SO PHYSICAL REVIEW B LA English DT Article ID COPPER-OXIDE METALS; MAGNETIC DOMAINS; SCATTERING; DIFFRACTION; PHASE; IRON; NPO2 AB Complete polarization analysis applied to resonant x-ray scattering at the Cr K edge in K(2)CrO(4) shows that incident linearly polarized x rays can be converted into circularly polarized x rays by diffraction at the Cr pre-edge (E=5994 eV). The physical mechanism behind this phenomenon is a subtle interference effect between purely dipole (E1-E1) and purely quadrupole (E2-E2) transitions, leading to a phase shift between the respective scattering amplitudes. This effect may be exploited to disentangle two close-lying resonances that appear as a single peak in a conventional energy scan, in this way allowing one to single out and identify the different multipole order parameters involved. C1 [Mazzoli, C.; Wilkins, S. B.; Detlefs, B.; Detlefs, C.; Scagnoli, V.; Paolasini, L.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Wilkins, S. B.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Di Matteo, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Di Matteo, S.] Univ Rennes 1, CNRS, Equipe Phys Surfaces & Interfaces, PALMS,UMR 6627, F-35042 Rennes, France. [Detlefs, C.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Ghigna, P.] Univ Pavia, Dipartimento Chim Fis M Rolla, I-27100 Pavia, Italy. RP Mazzoli, C (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble 9, France. RI Detlefs, Carsten/B-6244-2008; Detlefs, Blanka/C-9249-2009; Ghigna, Paolo/G-8193-2011; Mazzoli, Claudio/J-4360-2012; scagnoli, valerio/C-6833-2008 OI Detlefs, Carsten/0000-0003-2573-2286; scagnoli, valerio/0000-0002-8116-8870 NR 30 TC 36 Z9 36 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195118 DI 10.1103/PhysRevB.76.195118 PG 6 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800053 ER PT J AU Norman, MR Kanigel, A Randeria, M Chatterjee, U Campuzano, JC AF Norman, M. R. Kanigel, A. Randeria, M. Chatterjee, U. Campuzano, J. C. TI Modeling the Fermi arc in underdoped cuprates SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTIVITY; GAP ANISOTROPY; NORMAL-STATE; PHASE FLUCTUATIONS; PSEUDOGAP; PHOTOEMISSION; SURFACE; BI2SR2CACU2O8+DELTA; SPECTROSCOPY AB Angle resolved photoemission data in the pseudogap phase of underdoped cuprates have revealed the presence of a truncated Fermi surface consisting of Fermi arcs. We compare a number of proposed models for the arcs and find that the one that best models the data is a d-wave energy gap with a lifetime broadening whose temperature dependence is suggestive of fluctuating pairs. C1 Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. Univ Illinois, Dept Phys, Chicago, IL 60607 USA. Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Norman, MR (reprint author), Argonne Natl Lab, Div Sci Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 NR 63 TC 90 Z9 91 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174501 DI 10.1103/PhysRevB.76.174501 PG 7 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600103 ER PT J AU Rai, RC Cao, J Vergara, LI Brown, S Musfeldt, JL Singh, DJ Lawes, G Rogado, N Cava, RJ Wei, X AF Rai, R. C. Cao, J. Vergara, L. I. Brown, S. Musfeldt, J. L. Singh, D. J. Lawes, G. Rogado, N. Cava, R. J. Wei, X. TI High-energy magnetodielectric effect in kagome staircase materials SO PHYSICAL REVIEW B LA English DT Article ID GROUND-STATE PROPERTIES; ELECTRONIC-STRUCTURE; MAGNETIC-FIELD; BAND-THEORY; POLARIZATION; NI3V2O8; CO3V2O8; TEMPERATURE; INSULATORS; TRANSITION AB We use a combination of optical spectroscopy, first-principles calculations, and energy-dependent magneto-optical measurements to investigate the high-energy magnetodielectric effect in the frustrated kagome staircase compound Co(3)V(2)O(8) and develop structure-property relations in this family of materials. The optical spectra show two distinct Co on-site d to d excitations that can be assigned as deriving from spine and cross-tie sites, respectively. The energy separation between these features is substantially larger in Co(3)V(2)O(8) than in quasi-isostructural Ni(3)V(2)O(8), indicating that the spine and cross-tie crystal field environments are more dissimilar in the Co compound compared with those in the Ni analog. Despite the similar appearance of the spectra, orbital correlation effects seem to dominate the optical properties of Co(3)V(2)O(8), different from Ni(3)V(2)O(8). Through the 6.2 K ferromagnetic transition temperature, Co(3)V(2)O(8) displays similar to 2% dielectric contrast near 1.5 eV, larger than that observed in the static dielectric constant. Co(3)V(2)O(8) also shows a high-energy magnetodielectric contrast of similar to 2% near 1.4 eV at 30 T, smaller than that of Ni(3)V(2)O(8) (similar to 16% near 1.3 eV at 30 T). We attribute this result to the lack of strong lattice coupling at the low temperature magnetic phase boundaries. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Wayne State Univ, Dept Phys, Detroit, MI 48201 USA. DuPont Cent Res & Dev, Expt Stn, Wilmington, DE 19880 USA. Princeton Univ, Princeton Mat Inst, Dept Chem, Princeton, NJ 08544 USA. Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Rai, RC (reprint author), SUNY Coll Buffalo, Dept Phys, Buffalo, NY 14222 USA. RI Cao, Jinbo/C-7537-2009; Singh, David/I-2416-2012; OI Rai, Ram/0000-0003-2475-2488 NR 61 TC 10 Z9 10 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174414 DI 10.1103/PhysRevB.76.174414 PG 12 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600076 ER PT J AU Ross, M Boehler, R Errandonea, D AF Ross, Marvin Boehler, Reinhard Errandonea, Daniel TI Melting of transition metals at high pressure and the influence of liquid frustration: The late metals Cu, Ni, and Fe SO PHYSICAL REVIEW B LA English DT Article ID DIAMOND-ANVIL CELL; AB-INITIO; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURES; LOWER MANTLE; EARTHS CORE; FREE-ENERGY; CURVE; PHASE; IRON AB This report focuses on the role that frustration, or preferred liquid local ordering, plays in the melting of transition metals, specifically, Cu, Ni, and Fe. It is proposed that for liquids of metals with partially filled d bands (Ni and Fe) Peierls-Jahn-Teller distortions provide a mechanism for creating local structures, which at the most elementary level are impurities that lower the freezing point. The application of pressure enhances frustration and leads to melting slopes measured experimentally for Ni and Fe that are considerably lower than measured for Cu, and lower than theoretical predictions employing models in which liquid structures are neglected. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Max Planck Inst Chem, D-55020 Mainz, Germany. Univ Valencia, ICMUV, Dept Fis Aplicada, E-46100 Burjassot, Spain. RP Ross, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Boehler, Reinhard/L-3971-2016; Errandonea, Daniel/J-7695-2016 OI Boehler, Reinhard/0000-0003-0222-6997; Errandonea, Daniel/0000-0003-0189-4221 NR 60 TC 14 Z9 15 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 18 AR 184117 DI 10.1103/PhysRevB.76.184117 PG 7 WC Physics, Condensed Matter SC Physics GA 236TQ UT WOS:000251326700032 ER PT J AU Ross, M Errandonea, D Boehler, R AF Ross, Marvin Errandonea, Daniel Boehler, Reinhard TI Melting of transition metals at high pressure and the influence of liquid frustration: The early metals Ta and Mo SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; PHASE-TRANSITIONS; AB-INITIO; STABILITY; TANTALUM AB In this second report, we focus attention on the role that frustration plays in the melting curves of the early transition metals. Of particular interest are Mo and Ta. This is partly because these metals have nearly half-filled d bands implying that a maximum Jahn-Teller distortion is responsible for a high level of liquid frustration leading to melting slopes that are among the lowest observed for transition metals, and partly to resolve an apparent discrepancy between diamond-anvil cell and shockwave-melting measurements. Since the two sets of measurements are nonoverlapping, they are highly complementary, leading to a phase diagram for the two metals that resolves these discrepancies, without challenging the credibility of either set of measurements. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Valencia, ICMUV, Dept Fis Aplicada, E-46100 Burjassot, Spain. Max Planck Inst Chem, D-55020 Mainz, Germany. RP Ross, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Boehler, Reinhard/L-3971-2016; Errandonea, Daniel/J-7695-2016 OI Boehler, Reinhard/0000-0003-0222-6997; Errandonea, Daniel/0000-0003-0189-4221 NR 37 TC 42 Z9 42 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 18 AR 184118 DI 10.1103/PhysRevB.76.184118 PG 6 WC Physics, Condensed Matter SC Physics GA 236TQ UT WOS:000251326700033 ER PT J AU Rudin, SP AF Rudin, Sven P. TI Traits of bulk Pu phases in Pb-Pu superlattice phases from first principles SO PHYSICAL REVIEW B LA English DT Article ID DELTA-PU; 5F ELECTRONS; PLUTONIUM; SYSTEMS; APPROXIMATION; LOCALIZATION; TRANSITION; URANIUM; STATE AB Density functional theory calculations allowing spin polarization predict two phases in Pb-Pu superlattices. One phase exhibits bond lengths similar to bulk alpha-Pu and a degree of localization of 5f electron states corresponding to bulk beta-Pu, while for the other phase, these take on values like those found in bulk delta-Pu. The superlattice geometry localizes the 5f electron states mainly in planes perpendicular to the stacking direction. The disparate volumes between phases found in bulk Pu also emerge in Pb-Pu superlattices. The structures of the two phases differ in the presence of pairing between neighboring Pu planes. The paired and unpaired phases can coexist in special cases. The simple geometry of the pairing allows for detailed calculations to explore the transition along the complete path connecting the two phases; to date, the bulk phases have evaded such an examination. In Pb-Pu superlattices, the localization of 5f electron states smoothly parallels changes in geometry, in accordance with tendencies that emerge in bulk Pu calculations. Changing the layer thicknesses affects the ordering of the energies of the two phases for stacking along the (001) and (111) directions. For stacking in the (011) direction, only one phase appears with very weakly paired Pu planes. Compared to bulk Pb and Pu, the superlattices with single-monolayer thicknesses appear energetically favorable; pilot calculations suggest that thicker layers become energetically favorable with interface alloying. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rudin, SP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 34 TC 3 Z9 3 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195424 DI 10.1103/PhysRevB.76.195424 PG 10 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800129 ER PT J AU Sanati, M West, D Albers, RC AF Sanati, M. West, D. Albers, R. C. TI Electronic structure, phase stability, and chemical ordering of the omega phase in a Ti3Al2X (X=Nb,V) alloy SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AL-NB ALLOYS; TI-AL; MOLECULAR-DYNAMICS; BETA-PHASE; V ALLOYS; X ALLOYS; PSEUDOPOTENTIALS; SYSTEMS AB The phase stability of B2 Ti3Al2X (X=Nb or V) and slightly rearranged atomic structures is examined by first-principles calculations. The ground-state energy calculations show instability in some of the Ti3Al2X configurations against the omega structure type of atomic displacement. We use electronic density of states and Mulliken population analysis to understand the hybridization between the atoms and the electronic origin of the stability or instability of each system. In order to estimate the strength of each bond, the heats of formation for several compounds are calculated. We find that the strength of the transition metal-Al bond increases from V to Nb to Ti, with Ti-V and Ti-Nb being weakly unstable. By examining several atomic configurations, it is shown that the stability of each structure is directly related to the number of Ti-Al bonds in each configuration. It is confirmed that the formation of the omega phase in Ti3Al2X is a combined displacive-replacive transformation. The crystal structure parameters, such as lattice constants and bulk modulus, are calculated and compared with available experimental data. C1 Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Sanati, M (reprint author), Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. EM m.sanati@ttu.edu RI West, Damien/F-8616-2012 OI West, Damien/0000-0002-4970-3968 NR 35 TC 4 Z9 4 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174101 DI 10.1103/PhysRevB.76.174101 PG 6 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600025 ER PT J AU Sefat, AS Li, B Bud'ko, SL Canfield, PC AF Sefat, Athena S. Li, Bin Bud'ko, Sergey L. Canfield, Paul C. TI Magnetic behavior of RMn(2+x)Al(10-x) (R=La,Gd) crystals SO PHYSICAL REVIEW B LA English DT Article ID TERNARY INTERMETALLIC COMPOUNDS; LA-ND; SINGLE-CRYSTALS; RARE-EARTH; SPIN; MN; SM; RMN4AL8; PR; GD AB The crystallographic and magnetic properties of the solution grown RMn(2+x)Al(10-x) (R=Gd and La) crystals with tetragonal (P4/nmm) structure are investigated. For these, single-crystal x-ray diffraction results have shown the preferential occupation of excess manganese on the aluminum 8i crystallographic site. Due to excess Mn, there is evidence of local-moment magnetism in LaMn(2+x)Al(10-x) and their random distribution is thought to be responsible for the magnetic correlations below similar to 50 K and the spin-glass behavior below similar to 3 K. For GdMn(2+x)Al(10-x), the extra manganese influences temperature below which the sample enters into a state with a net ferromagnetic component: T(C)approximate to 16 K for GdMn(2.21(4))Al(9.79(4)) and 25.5 K for GdMn(2.39(2))Al(9.61(2)). Assuming a linear dependence between T(C) and excess Mn concentration, the fully stoichiometric and ordered GdMn(2)Al(10) should have T(C)approximate to 5 K. C1 Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Sefat, AS (reprint author), Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 NR 39 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174419 DI 10.1103/PhysRevB.76.174419 PG 12 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600081 ER PT J AU Shim, Y Amar, JG Uberuaga, BP Voter, AF AF Shim, Yunsic Amar, Jacques G. Uberuaga, B. P. Voter, A. F. TI Reaching extended length scales and time scales in atomistic simulations via spatially parallel temperature-accelerated dynamics SO PHYSICAL REVIEW B LA English DT Article ID MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; INFREQUENT EVENTS; MOLECULAR-DYNAMICS; CHEMICAL-REACTIONS; SADDLE-POINTS AB We present a method for performing parallel temperature-accelerated dynamics (TAD) simulations over extended length scales. In our method, a two-dimensional spatial decomposition is used along with the recently proposed semirigorous synchronous sublattice algorithm of Shim and Amar [Phys. Rev. B 71, 125432 (2005)]. The scaling behavior of the simulation time as a function of system size is studied and compared with serial TAD in simulations of the early stages of Cu/Cu(100) growth as well as for a simple case of surface relaxation. In contrast to the corresponding serial TAD simulations, for which the simulation time t(ser) increases as a power of the system size N (t(ser)similar to N(x)) with an exponent x that can be as large as three, in our parallel simulations the simulation time increases only logarithmically with system size. As a result, even for relatively small system sizes our parallel TAD simulations are significantly faster than the corresponding serial TAD simulations. The significantly improved scaling behavior of our parallel TAD simulations over the corresponding serial simulations indicates that our parallel TAD method may be useful in performing simulations over significantly larger length scales than serial TAD, while preserving all the atomistic details provided by the TAD method. C1 Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shim, Y (reprint author), Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. EM yshim@physics.utoledo.edu; jamar@physics.utoledo.edu; blas@lanl.gov; afv@lanl.gov OI Voter, Arthur/0000-0001-9788-7194 NR 39 TC 19 Z9 19 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 205439 DI 10.1103/PhysRevB.76.205439 PG 11 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900112 ER PT J AU Singh, Y McCallum, RW Johnston, DC AF Singh, Yogesh McCallum, R. W. Johnston, D. C. TI Magnetic and thermal properties of the S=1/2 zig-zag spin-chain compound In2VO5 SO PHYSICAL REVIEW B LA English DT Article ID GAP AB Static magnetic susceptibility chi, ac susceptibility chi(ac), and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are reported. A Curie-Weiss fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V4+ (S=1/2) moments. Below 150 K, the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long-range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero-field-cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field-cooled data show a bifurcation below this temperature. The frequency dependence of the chi(ac)(T) data indicates that below 3 K, the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy up to 300 K is more than what is expected for S=1/2 moments. The anomaly in Delta C and the extra entropy suggest that there may be a structural change below 130 K in In2VO5. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Singh, Y (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI singh, yogesh/F-7160-2016 NR 20 TC 6 Z9 6 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174402 DI 10.1103/PhysRevB.76.174402 PG 6 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600064 ER PT J AU Sun, J Hannon, JB Kellogg, GL Pohl, K AF Sun, J. Hannon, J. B. Kellogg, G. L. Pohl, K. TI Local structural and compositional determination via electron scattering: Heterogeneous Cu(001)-Pd surface alloy SO PHYSICAL REVIEW B LA English DT Article ID CU(100)-C(2X2)-PD SURFACE; MULTILAYER RELAXATION; CU(100); DIFFRACTION; PD; LEED; MICROSCOPY; CO; CU AB We have measured the structure and chemical composition of ultrathin Pd films on Cu(001) using low-energy electron microscopy. We determine their local stoichiometry and structure, with 8.5 nm lateral spatial resolution, by quantitatively analyzing the scattered electron intensity and comparing it to dynamical scattering calculations, as in a conventional low-energy electron diffraction (LEED)-IV analysis. The average t-matrix approximation is used to calculate the total atomic scattering matrices for this random substitutional alloy. As in the traditional LEED analysis, the structural and compositional parameters are determined by comparing the computed diffraction intensity of a trial structure to that measured in experiment. Monte Carlo simulations show how the spatial and compositional inhomogeneity can be used to understand the energetics of Cu-Pd bonding. C1 Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. IBM Res Div, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sun, J (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM jsun@cisunix.unh.edu RI Sun, Jiebing/B-5678-2012 NR 34 TC 13 Z9 13 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 20 AR 205414 DI 10.1103/PhysRevB.76.205414 PG 10 WC Physics, Condensed Matter SC Physics GA 236TS UT WOS:000251326900087 ER PT J AU Unal, B Qin, F Han, Y Liu, DJ Jing, DP Layson, AR Jenks, CJ Evans, JW Thiel, PA AF Unal, Baris Qin, Feili Han, Yong Liu, Da-Jiang Jing, Dapeng Layson, A. R. Jenks, Cynthia J. Evans, J. W. Thiel, P. A. TI Scanning tunneling microscopy and density functional theory study of initial bilayer growth of Ag films on NiAl(110) SO PHYSICAL REVIEW B LA English DT Article ID THIN METAL-FILMS; ELECTRON-DENSITY; RIPPLED RELAXATION; SURFACE-ENERGY; SILVER FILMS; AU; STABILITY; ALLOY; GOLD; NUCLEATION AB Scanning tunneling microscopy (STM) studies of the deposition of Ag on bcc NiAl(110) in the temperature range from 200 to 300 K reveal an initial bilayer growth mode. In this regime, which encompasses at least the first two levels of bilayer islands, the film appears to have an fcc Ag(110)-like structure. Selection of this structure reflects an almost perfect lateral match between the Ag(110) and NiAl(110) lattice constants. Density functional theory (DFT) analysis of supported Ag films with an ideal fcc(110) structure on NiAl(110) indicates that the bilayer growth mode is promoted by a quantum size effect. However, the system does not exhibit perfect Ag(110) film growth. STM analysis reveals that the tops of Ag islands are decorated by a ripple structure even in the initial levels of growth and also shows a deviation from Ag(110)-like bilayer growth to Ag(111)-like monolayer growth for thick films. DFT analysis is also applied to provide some insight into the observed deviations from perfect Ag(110) film structure. C1 [Unal, Baris; Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Unal, Baris; Qin, Feili; Liu, Da-Jiang; Jing, Dapeng; Jenks, Cynthia J.; Evans, J. W.; Thiel, P. A.] Iowa State Univ, Ames Lab USDOE, Ames, IA 50011 USA. [Qin, Feili; Han, Yong] Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. [Jing, Dapeng; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Layson, A. R.] Denison Univ, Dept Chem & Biochem, Granville, OH 43023 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Unal, B (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RI Han, Yong/F-5701-2012; Jing, Dapeng/M-3455-2014 OI Han, Yong/0000-0001-5404-0911; Jing, Dapeng/0000-0001-7600-7071 NR 61 TC 23 Z9 23 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195410 DI 10.1103/PhysRevB.76.195410 PG 11 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800115 ER PT J AU Vakhnenko, VO Vakhnenko, OO TenCate, JA Shankland, TJ AF Vakhnenko, Vyacheslav O. Vakhnenko, Oleksiy O. TenCate, James A. Shankland, Thomas J. TI Modeling of stress-strain dependences for Berea sandstone under quasistatic loading SO PHYSICAL REVIEW B LA English DT Article ID ELASTIC-MODULI; SLOW DYNAMICS; ROCKS AB In this work, a phenomenological model to describe the complex stress-strain properties of a sandstone sample under slow loading is presented. We consider a combination of three methods to treat the elastic and nonlinear behavior observed in stress cycling experiments. The mechanisms to treat interior equilibration processes in sandstone are termed the standard solid relaxation mechanism, the sticky-spring mechanism, and the permanent plastic deformation mechanism. With a small number of parameters, the overall model displays both qualitatively and quantitatively the principal experimental observations of the stress-strain trajectories for Berea sandstone, in particular, the details of end-point memory under quasistatic loading. C1 Inst Geophys, UA-01054 Kiev, Ukraine. Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Vakhnenko, VO (reprint author), Inst Geophys, UA-01054 Kiev, Ukraine. EM vakhnenko@ukr.net; vakhnenko@bitp.kiev.ua; tencate@lanl.gov; shanklan@lanl.gov OI Shankland, Thomas/0000-0003-0555-1015 NR 20 TC 6 Z9 6 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 18 AR 184108 DI 10.1103/PhysRevB.76.184108 PG 8 WC Physics, Condensed Matter SC Physics GA 236TQ UT WOS:000251326700023 ER PT J AU Vekua, T Honecker, A Mikeska, HJ Heidrich-Meisner, F AF Vekua, T. Honecker, A. Mikeska, H. -J. Heidrich-Meisner, F. TI Correlation functions and excitation spectrum of the frustrated ferromagnetic spin-1/2 chain in an external magnetic field SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM; LADDERS AB Magnetic field effects on the one-dimensional frustrated ferromagnetic chain are studied by means of effective field-theory approaches in combination with numerical calculations utilizing Lanczos diagonalization and the density matrix renormalization group method. The nature of the ground state is shown to change from a spin-density-wave region to a nematiclike one upon approaching the saturation magnetization. The excitation spectrum is analyzed, and the behavior of the single-spin-flip excitation gap is studied in detail, including the emergent finite-size corrections. C1 Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France. Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Vekua, T (reprint author), Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France. RI Honecker, Andreas/A-7941-2008; Heidrich-Meisner, Fabian/B-6228-2009 OI Honecker, Andreas/0000-0001-6383-3200; NR 26 TC 63 Z9 63 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174420 DI 10.1103/PhysRevB.76.174420 PG 6 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600082 ER PT J AU Veschunov, IS Vinnikov, LY Bud'ko, SL Canfield, PC AF Veschunov, I. S. Vinnikov, L. Ya. Bud'ko, S. L. Canfield, P. C. TI Visualization of ferromagnetic domains in ErNi(2)B(2)C single crystals: Weak ferromagnetism and its coexistence with superconductivity SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC SUPERCONDUCTORS; TBNI2B2C; BOROCARBIDES AB The magnetic flux structure in the basal plane, (001), of single crystals of superconducting ErNi(2)B(2)C was studied by high resolution Bitter decoration at temperatures below T(c) (superconducting transition) and/or T(N) (antiferromagnetic transition). Two sets of domain boundaries, in {110} and {100} planes, were observed. The temperature range in which the {100} domain boundaries were observed coincides with the weak ferromagnetic (WFM) ordering in this material. On the other hand, the {110} twin boundaries-the antiferromagnetic domain boundaries-were observed below T(N). For comparison, TbNi(2)B(2)C, the related compound with higher magnetic ordering temperatures but no superconductivity, was also studied. The possibility of interpretation of {100} boundaries as Bloch domain walls in the weakly ferromagnetic phase, for T < T(WFM)< T(N) (TbNi(2)B(2)C) or T < T(WFM)< T(N)< T(c) (ErNi(2)B(2)C), is discussed. C1 Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. US DOE, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. RP Veschunov, IS (reprint author), Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. RI Canfield, Paul/H-2698-2014 NR 34 TC 6 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174506 DI 10.1103/PhysRevB.76.174506 PG 5 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600108 ER PT J AU Walsh, A Wei, SH AF Walsh, Aron Wei, Su-Huai TI Theoretical study of stability and electronic structure of Li(Mg,Zn)N alloys: A candidate for solid state lighting SO PHYSICAL REVIEW B LA English DT Article ID FILLED TETRAHEDRAL SEMICONDUCTORS; TOTAL-ENERGY CALCULATIONS; OPTICAL BAND-GAP; WAVE BASIS-SET; ELASTIC PROPERTIES; LIZNX X; LIMGN; RULE; PREDICTION AB Using selective chemical mutation, we propose and investigate the electronic structure of an alloy with the potential to fill the green gap left open by existing InGaN based emission devices. The small mismatch between LiMgN and LiZnN, along with electronic band gaps spanning the visible range, makes them good candidates. Calculations are performed using a first-principles band structure method, with the special quasirandom structure approach employed to generate the random alloys. Comparison of LiMgN and LiZnN with their binary nitride analogs is made, and the energetic and electronic effects of alloy ordering are investigated. These alloys exhibit negative mixing enthalpies atypical of traditional binary nitride systems, which is explained in terms of the low lattice strain and the chemical bonding effects of the interstitial Li ions. C1 [Walsh, Aron; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Walsh, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM aron_walsh@nrel.gov RI Walsh, Aron/A-7843-2008 OI Walsh, Aron/0000-0001-5460-7033 NR 53 TC 13 Z9 14 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195208 DI 10.1103/PhysRevB.76.195208 PG 8 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800070 ER PT J AU Wang, XJ Vanderbilt, D Yates, JR Souza, I AF Wang, Xinjie Vanderbilt, David Yates, Jonathan R. Souza, Ivo TI Fermi-surface calculation of the anomalous Hall conductivity SO PHYSICAL REVIEW B LA English DT Article ID BERRY-PHASE; DYNAMICS; MATTER; IRON AB While the intrinsic anomalous Hall conductivity is normally written in terms of an integral of the electronic Berry curvature over the occupied portions of the Brillouin zone, Haldane has recently pointed out that this quantity (or more precisely, its "nonquantized part") may alternatively be expressed as a Fermi-surface property. Here we present an ab initio approach for computing the anomalous Hall conductivity that takes advantage of this observation by converting the integral over the Fermi sea into a more efficient integral on the Fermi surface only. First, a conventional electronic-structure calculation is performed with spin-orbit interaction included. Maximally localized Wannier functions are then constructed by a postprocessing step in order to convert the ab initio electronic structure around the Fermi level into a tight-binding-like form. Working in the Wannier representation, the Brillouin zone is sampled on a large number of equally spaced parallel slices oriented normal to the total magnetization. On each slice, we find the intersections of the Fermi-surface sheets with the slice by standard contour methods, organize these into a set of closed loops, and compute the Berry phases of the Bloch states as they are transported around these loops. The anomalous Hall conductivity is proportional to the sum of the Berry phases of all the loops on all the slices. Illustrative calculations are performed for Fe, Co, and Ni. C1 [Wang, Xinjie; Vanderbilt, David] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Yates, Jonathan R.; Souza, Ivo] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yates, Jonathan R.; Souza, Ivo] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, XJ (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. RI Yates, Jonathan/E-7339-2010; OI Vanderbilt, David/0000-0002-2465-9091 NR 27 TC 53 Z9 53 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195109 DI 10.1103/PhysRevB.76.195109 PG 11 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800044 ER PT J AU Wu, L Klie, RF Zhu, Y Jooss, C AF Wu, L. Klie, R. F. Zhu, Y. Jooss, Ch. TI Experimental confirmation of Zener-polaron-type charge and orbital ordering in Pr(1-x)Ca(x)MnO(3) SO PHYSICAL REVIEW B LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPE; CRYSTAL-STRUCTURE; K EDGE; RESOLUTION; MANGANITES; TRANSITIONS; OXIDES; PEROVSKITES; STEM; INTERFACES AB Pr(1-x)Ca(x)MnO(3) in the doping range between 0.3 < x < 0.5 represent an extremely interesting manganite system for the study of the interplay of different kinds of ordering (charge, orbital, lattice, and spin). While there is consensus that a charge- and orbital-ordered state develops below a transition temperature T(co)approximate to 230 K, recent controversial structural refinements resulting from neutron and x-ray diffraction studies challenged our understanding of the particular type of charge ordering (CO) and orbital ordering (OO), and consequently, the underlying mechanism of the colossal resistance effects. Here, we present a detailed high-resolution transmission electron microscopy and electron-diffraction study that, based on extinction rules, resolves the current controversy and confirms the existence of the Zener-polaron (ZP)-type CO and/or OO in Pr(1-x)Ca(x)MnO(3). The ZP-type ordering is further verified by atomic-column-resolved electron energy-loss spectroscopy revealing strong charge ordering of the in-plane oxygen-Mn bonds, while valence disproportionation at the Mn sites is less than expected. Over wide doping and temperature ranges, we observed structural phase coexistence between the ZP-CO/OO P2(1)nm and the disordered Pbnm structure. C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat sci, Upton, NY 11973 USA. Univ Illinois, Dept Phys, Chicago, IL 60607 USA. Univ Gottingen, Inst Mat Phys, D-37077 Gottingen, Germany. RP Zhu, Y (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat sci, Upton, NY 11973 USA. EM zhu@bnl.gov; jooss@ump.gwdg.de NR 56 TC 51 Z9 51 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174210 DI 10.1103/PhysRevB.76.174210 PG 13 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600055 ER PT J AU Xiang, HJ Singh, DJ AF Xiang, H. J. Singh, D. J. TI Suppression of thermopower of NaxCoO2 by an external magnetic field: Boltzmann transport combined with spin-polarized density functional theory SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; FERMI-SURFACE; MAGNETORESISTANCE; TRANSITION AB We calculate the thermopower in NaxCoO2 using the standard Boltzmann transport theory and first principles electronic structures with spin polarization taken into account. The thermopower is found to be smaller when the system is polarized, which thereby provides an alternative reasonable explanation for the suppression of thermopower in a magnetic field. The role of the spin-orbit coupling on the thermoelectricity is also discussed. C1 [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Xiang, H. J.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM singhdj@ornl.gov RI Xiang, Hongjun/A-4076-2008; Singh, David/I-2416-2012; Xiang, Hongjun/I-4305-2016 OI Xiang, Hongjun/0000-0002-9396-3214 NR 51 TC 51 Z9 51 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 19 AR 195111 DI 10.1103/PhysRevB.76.195111 PG 5 WC Physics, Condensed Matter SC Physics GA 236TR UT WOS:000251326800046 ER PT J AU Yao, YX Wang, CZ Ho, KM AF Yao, Y. X. Wang, C. Z. Ho, K. M. TI Cluster-in-jellium model and icosahedral ordering tendencies in liquid Al alloys SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-GAS; METALS; APPROXIMATION; ENERGIES; ALUMINUM; DENSITY; SOLIDS AB A jellium-passivated cluster model is developed to study the energetics of short-range ordering in supercooled liquid and glass systems. Calculations for single atoms embedded in jellium yield results in good agreement with bulk values for the cohesive energy, atomic volume, as well as angular-momentum-projected electronic density of states. The energy difference between icosahedral clusters and fcc embryos in jellium is found to correlate with the glass-forming ability of liquid Al alloys. The model will be useful for studying the short-range order tendency with minor chemical additions in metallic glass formation, without the use of large unit cell calculations. C1 Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Yao, YX (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI Yao, Yongxin/B-7320-2008 NR 25 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 17 AR 174209 DI 10.1103/PhysRevB.76.174209 PG 5 WC Physics, Condensed Matter SC Physics GA 236TP UT WOS:000251326600054 ER PT J AU Zhao, Y Gaulin, BD Castellan, JP Ruff, JPC Dunsiger, SR Gu, GD Dabkowska, HA AF Zhao, Y. Gaulin, B. D. Castellan, J. P. Ruff, J. P. C. Dunsiger, S. R. Gu, G. D. Dabkowska, H. A. TI High-resolution x-ray scattering studies of structural phase transitions in underdoped La(2-x)Ba(x)CuO(4) SO PHYSICAL REVIEW B LA English DT Article ID COPPER-OXIDE SUPERCONDUCTORS; NEUTRON-SCATTERING; MAGNETIC EXCITATIONS; CRITICAL EXPONENTS; SOFT PHONONS; FIELD-THEORY; (LA1-XBAX)2CUO4-DELTA; LA2-XSRXCUO4; TRANSPORT AB We have studied structural phase transitions in high quality underdoped La(2-x)Ba(x)CuO(4) single crystals using high-resolution x-ray scattering techniques. Critical properties associated with the continuous high temperature tetragonal (HTT) (I4/mmm) to middle temperature orthorhombic (MTO) (Bmab) phase transition were investigated in single crystal samples with x=0.125, 0.095, and 0.08, and we find that all behavior is consistent with three-dimensional XY criticality, as expected from theory. Power law behavior in the orthorhombic strain, 2(a-b)/(a+b), is observed over a remarkably wide temperature range, spanning most of the MTO regime in the phase diagram. Low temperature measurements investigating the low temperature tetragonal (LTT) (P4(2)/ncm) phase, below the strongly discontinuous MTO -> LTT phase transition, in x=0.125 and x=0.095 samples show that the LTT phase is characterized by relatively broad Bragg scattering, compared with that observed at related wave vectors in the HTT phase. This shows that the LTT phase is either an admixture of tetragonal and orthorhombic phases or that it is orthorhombic with very small orthorhombic strain, consistent with the "less orthorhombic" low temperature structure previously reported in mixed La(2-x)Sr(x-y)Ba(y)CuO(4) single crystals. We compare the complex temperature-composition phase diagram for the location of structural and superconducting phase transitions in underdoped La(2-x)Ba(x)CuO(4) and find good agreement with results obtained on polycrystalline samples. C1 McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Zhao, Y (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI Castellan, John-Paul/D-1569-2009; Piper, Walter/B-7908-2009; Gu, Genda/D-5410-2013 OI Gu, Genda/0000-0002-9886-3255 NR 31 TC 13 Z9 13 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2007 VL 76 IS 18 AR 184121 DI 10.1103/PhysRevB.76.184121 PG 7 WC Physics, Condensed Matter SC Physics GA 236TQ UT WOS:000251326700036 ER PT J AU Abelev, BI Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Anderson, M Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Benedosso, F Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Cheng, J Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Ghazikhanian, V Ghosh, P Gonzalez, JE Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Guertin, SM Guimaraes, KSFF Guo, Y Gupta, N Gutierrez, TD Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Jacobs, P Jacobs, WW Jakl, P Jia, F Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Poljak, N Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ray, RL Razin, SV Reinnarth, J Relyea, D Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakuma, T Salur, S Sandweiss, J Sarsour, M Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Sumbera, M Sun, Z Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Abelev, B. I. Adams, J. Aggarwal, M. M. Ahammed, Z. Amonett, J. Anderson, B. D. Anderson, M. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Benedosso, F. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S. -L. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guimaraes, K. S. F. F. Guo, Y. Gupta, N. Gutierrez, T. D. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Lopez-Noriega, M. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Nikitin, V. A. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Petrov, V. A. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Poljak, N. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Razin, S. V. Reinnarth, J. Relyea, D. Retiere, F. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sugarbaker, E. Sumbera, M. Sun, Z. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. TI Rapidity and species dependence of particle production at large transverse momentum for d+Au collisions at root S-NN=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID COLOR GLASS CONDENSATE; ZERO-DEGREE CALORIMETERS; TIME PROJECTION CHAMBER; FRAGMENTATION FUNCTIONS; NUCLEUS COLLISIONS; PARTON DISTRIBUTIONS; PROTON; STAR; ENERGY; QUARK AB We determine rapidity asymmetry in the production of charged pions, protons, and antiprotons for large transverse momentum (p(T)) for d+Au collisions at root s(NN)=200 GeV. The rapidity asymmetry is defined as the ratio of particle yields at backward rapidity (Au beam direction) to those at forward rapidity (d beam direction). The identified hadrons are measured in the rapidity regions |y|< 0.5 and 0.5 <|y|< 1.0 for the p(T) range 2.5 < p(T)< 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+antiproton production in both the rapidity regions. The asymmetry is larger for 0.5 <|y|< 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model preference. The rapidity dependence of pi(-)/pi(+) and (p) over bar /p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high p(T). C1 Yale Univ, New Haven, CT 06520 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Birmingham, Birmingham, W Midlands, England. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Chicago, IL 60637 USA. Creighton Univ, Omaha, NE 68178 USA. Nucl Phys Inst AS, CR-25068 Rez, Czech Republic. Lab High Energy JINR, Dubna, Russia. Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Inst Modern Phys, Lanzhou, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Phys Engn Inst, Moscow, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Utrecht, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Hefei 230026, Peoples R China. Shanghai Univ Sci & Technol, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. Hua Zhong Normal Univ, Inst Particle Phys, CCNU, Wuhan 430070, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Yale Univ, New Haven, CT 06520 USA. RI Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Okorokov, Vitaly/C-4800-2017; Dogra, Sunil /B-5330-2013; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014 OI Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Gutierrez, Thomas/0000-0002-0330-6414; Mohanty, Bedangadas/0000-0001-9610-2914; Bhasin, Anju/0000-0002-3687-8179; van Leeuwen, Marco/0000-0002-5222-4888; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405 NR 57 TC 11 Z9 11 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 054903 DI 10.1103/PhysRevC.76.054903 PG 13 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000051 ER PT J AU Bacrania, MK Boyd, NM Robertson, RGH Storm, DW AF Bacrania, M. K. Boyd, N. M. Robertson, R. G. H. Storm, D. W. TI Search for the second forbidden beta decay of (8)B to the ground state of (8)Be SO PHYSICAL REVIEW C LA English DT Article ID CURRENTS; ALPHA; A=8 AB A significant decay branch of (8)B to the ground state of (8)Be would extend the solar neutrino spectrum to higher energies than anticipated in the standard solar models. These high-energy neutrinos would affect current neutrino oscillation results and also would be a background to measurements of the hep process. We have measured the delayed alpha particles from the decay of (8)B, with the goal of observing the two 46-keV alpha particles arising from the ground-state decay. The (8)B was produced using an in-flight radioactive beam technique. It was implanted in a silicon PIN-diode detector that was capable of identifying the alpha particles from the (8)Be ground state. From this measurement we find an upper limit (at 90% confidence level) of 7.3x10(-5) for the branching ratio to the ground state. In addition to describing this measurement, we present a theoretical calculation for this branching ratio. C1 Los Alamos Natl Lab, Nucl Safeguards Sci & Technol, Los Alamos, NM 87544 USA. Univ Washington, Dept Phys, Ctr Expt Nucl Phys, Seattle, WA 98195 USA. RP Bacrania, MK (reprint author), Los Alamos Natl Lab, Nucl Safeguards Sci & Technol, POB 1663, Los Alamos, NM 87544 USA. NR 27 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 055806 DI 10.1103/PhysRevC.76.055806 PG 10 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000073 ER PT J AU Deacon, AN Freeman, SJ Janssens, RVF Honma, M Carpenter, MP Chowdhury, P Lauritsen, T Lister, CJ Seweryniak, D Smith, JF Tabor, SL Varley, BJ Xu, FR Zhu, S AF Deacon, A. N. Freeman, S. J. Janssens, R. V. F. Honma, M. Carpenter, M. P. Chowdhury, P. Lauritsen, T. Lister, C. J. Seweryniak, D. Smith, J. F. Tabor, S. L. Varley, B. J. Xu, F. R. Zhu, S. TI Yrast structures in the neutron-rich isotopes (59,60)Fe and the role of the g(9/2) orbital SO PHYSICAL REVIEW C LA English DT Article ID FUSION-EVAPORATION REACTIONS; HEAVY-ION REACTIONS; MULTINUCLEON TRANSFER; DECAY SCHEMES; NUCLEI; CA-48; MASS AB The structure of the neutron-rich isotopes (59,60)Fe has been studied with the Gammasphere detector array using fusion-evaporation reactions. Level schemes for these nuclei are presented which have been extended to spins of similar to 20h. Both isotopes exhibit regular, near-yrast gamma-decay sequences which are generated by the intrusion of the g(9/2) orbital into the fp shell-model space. Lower-spin, natural-parity levels are discussed within the context of shell-model calculations using the GXPF1A interaction in the full fp model space. Experimental features of the high-spin bands are compared with total Routhian surface calculations. C1 Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Aizu, Ctr Math Sci, Fukushima 9658580, Japan. Univ Massachusetts, Lowell, MA 01854 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Peking Univ, Dept Tech Phys, Beijing 100871, Peoples R China. RP Deacon, AN (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM alick.deacon@manchester.ac.uk RI Freeman, Sean/B-1280-2010; Xu, Furong/K-4178-2013; Carpenter, Michael/E-4287-2015 OI Freeman, Sean/0000-0001-9773-4921; Carpenter, Michael/0000-0002-3237-5734 NR 34 TC 31 Z9 32 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 054303 DI 10.1103/PhysRevC.76.054303 PG 16 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000020 ER PT J AU Dobaczewski, J Stoitsov, MV Nazarewicz, W Reinhard, PG AF Dobaczewski, J. Stoitsov, M. V. Nazarewicz, W. Reinhard, P. -G. TI Particle-number projection and the density functional theory SO PHYSICAL REVIEW C LA English DT Article ID SKYRMES INTERACTION; NUCLEI; SYMMETRY; SUPERCONDUCTORS; EQUATIONS AB In the framework of the density functional theory for superconductors, we study the restoration of the particle-number symmetry by means of the projection technique. Conceptual problems are outlined and numerical difficulties are discussed. Both are related to the fact that neither the many-body Hamiltonian nor the wave function of the system appear explicitly in the density functional theory. Similar obstacles are encountered in self-consistent theories utilizing density-dependent effective interactions. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany. RP Dobaczewski, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. NR 48 TC 87 Z9 87 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 054315 DI 10.1103/PhysRevC.76.054315 PG 16 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000032 ER PT J AU Dohrmann, F Ahmidouch, A Armstrong, CS Arrington, J Asaturyan, R Avery, S Bailey, K Bitao, H Breuer, H Brown, DS Carlini, R Cha, J Chant, N Christy, E Cochran, A Cole, L Crowder, J Danagoulian, S Elaasar, M Ent, R Fenker, H Fujii, Y Gan, L Garrow, K Geesaman, DF Gueye, P Hafidi, K Hinton, W Juengst, H Keppel, C Liang, Y Liu, JH Lung, A Mack, D Markowitz, P Mitchell, J Miyoshi, T Mkrtchyan, H Mtingwa, SK Mueller, B Niculescu, G Niculescu, I Potterveld, D Raue, BA Reimer, PE Reinhold, J Roche, J Sarsour, M Sato, Y Segel, RE Semenov, A Stepanyan, S Tadevosyan, V Tajima, S Tang, L Uzzle, A Wood, S Yamaguchi, H Yan, C Yuan, L Zeidman, B Zeier, M Zihlmann, B AF Dohrmann, F. Ahmidouch, A. Armstrong, C. S. Arrington, J. Asaturyan, R. Avery, S. Bailey, K. Bitao, H. Breuer, H. Brown, D. S. Carlini, R. Cha, J. Chant, N. Christy, E. Cochran, A. Cole, L. Crowder, J. Danagoulian, S. Elaasar, M. Ent, R. Fenker, H. Fujii, Y. Gan, L. Garrow, K. Geesaman, D. F. Gueye, P. Hafidi, K. Hinton, W. Juengst, H. Keppel, C. Liang, Y. Liu, J. H. Lung, A. Mack, D. Markowitz, P. Mitchell, J. Miyoshi, T. Mkrtchyan, H. Mtingwa, S. K. Mueller, B. Niculescu, G. Niculescu, I. Potterveld, D. Raue, B. A. Reimer, P. E. Reinhold, J. Roche, J. Sarsour, M. Sato, Y. Segel, R. E. Semenov, A. Stepanyan, S. Tadevosyan, V. Tajima, S. Tang, L. Uzzle, A. Wood, S. Yamaguchi, H. Yan, C. Yuan, L. Zeidman, B. Zeier, M. Zihlmann, B. TI Quasifree Lambda,Sigma(0), and Sigma(-) electroproduction from H-1,H-2, He-3,He-4, and carbon SO PHYSICAL REVIEW C LA English DT Article ID ATOMIC STATES; PHOTOPRODUCTION; HYPERON; LAMBDA; STRANGENESS; HYPERNUCLEI; SCATTERING; PARTICLES; DEUTERIUM; HYDROGEN AB Kaon electroproduction from light nuclei and hydrogen, using H-1, H-2, He-3, He-4, and carbon targets has been measured at the Thomas Jefferson National Accelerator Facility. The quasifree angular distributions of Lambda and Sigma hyperons were determined at Q(2)=0.35 (GeV/c)(2) and W=1.91 GeV. Electroproduction on hydrogen was measured at the same kinematics for reference. C1 Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. Argonne Natl Lab, Argonne, IL 60439 USA. Hampton Univ, Hampton, VA 23668 USA. Kent State Univ, Kent, OH 44242 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. Univ Maryland, College Pk, MD 20742 USA. Juniata Coll, Huntingdon, PA 16652 USA. N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. So Univ New Orleans, New Orleans, LA 70126 USA. Tohoku Univ, Sendai, Miyagi 9808577, Japan. Univ Minnesota, Minneapolis, MN 55455 USA. Florida Int Univ, Miami, FL 33199 USA. Ohio Univ, Athens, OH 45701 USA. George Washington Univ, Washington, DC 20052 USA. Univ Houston, Houston, TX 77204 USA. Northwestern Univ, Evanston, IL 60201 USA. Duke Univ, Durham, NC 27708 USA. Triangle Univ Nucl Lab, Durham, NC 27708 USA. Univ Virginia, Charlottesville, VA 22901 USA. RP Dohrmann, F (reprint author), Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. EM F.Dohrmann@fzd.de RI Arrington, John/D-1116-2012; Reimer, Paul/E-2223-2013; Fujii, Yu/D-3413-2015 OI Arrington, John/0000-0002-0702-1328; Fujii, Yu/0000-0001-6625-2241 NR 59 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 054004 DI 10.1103/PhysRevC.76.054004 PG 12 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000017 ER PT J AU Esbensen, H Misicu, S AF Esbensen, Henning Misicu, Serban TI Hindrance of (16)O+(208)Pb fusion at extreme sub-barrier energies SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION FUSION; ELASTIC-SCATTERING; CROSS-SECTIONS; O-16 IONS; PB-208; BARRIER AB We analyze the fusion data for (16)O+(208)Pb using coupled-channels calculations. We include couplings to the low-lying surface excitations of the projectile and target and study the effect of the ((16)O,(17)O) one-neutron pickup. The hindrance of the fusion data that is observed at energies far below the Coulomb barrier cannot be explained by a conventional ion-ion potential and defining the fusion in terms of ingoing-wave boundary conditions (IWBC). We show that the hindrance can be explained fairly well by applying the M3Y double-folding potential which has been corrected with a calibrated, repulsive term that simulates the effect of nuclear incompressibility. We show that the coupling to one-neutron transfer channels plays a crucial role in improving the fit to the data. The best fit is achieved by increasing the transfer strength by 25% relative to the strength that is required to reproduce the one-neutron transfer data. The larger strength is not unrealistic because the calculated inelastic plus transfer cross section is in good agreement with the measured quasielastic cross section. We finally discuss the problem of reproducing the fusion data at energies far above the Coulomb barrier. Here we do not account for the data when we apply the IWBC but the discrepancy is essentially eliminated by applying the M3Y+repulsion potential and a weak, short-ranged imaginary potential. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Natl Inst Nucl Phys, Bucharest, Romania. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Misicu, Serban/B-6860-2011 NR 28 TC 63 Z9 64 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 054609 DI 10.1103/PhysRevC.76.054609 PG 8 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000048 ER PT J AU Esler, A Peng, JC Chandler, D Howell, D Lamoreaux, SK Liu, CY Torgerson, JR AF Esler, A. Peng, J. C. Chandler, D. Howell, D. Lamoreaux, S. K. Liu, C. Y. Torgerson, J. R. TI Dressed spin of (3)He SO PHYSICAL REVIEW C LA English DT Article ID RF FIELD; NEUTRONS AB We report a measurement of dressed spin effects of polarized (3)He atoms from a cold atomic source traversing a region of a constant magnetic field B(0) and a transverse oscillatory dressing field B(d)cos omega(d)t. The observed effects are compared with a numerical simulation using the Bloch equation as well as a calculation based on the dressed atom formalism. An application of the dressed spin of (3)He for a proposed neutron electric dipole moment measurement is also discussed. C1 Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Esler, A (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM asharp@uiuc.edu NR 16 TC 6 Z9 6 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 051302 DI 10.1103/PhysRevC.76.051302 PG 4 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000003 ER PT J AU Flambaum, VV Wiringa, RB AF Flambaum, V. V. Wiringa, R. B. TI Dependence of nuclear binding on hadronic mass variation SO PHYSICAL REVIEW C LA English DT Article ID FINE-STRUCTURE CONSTANT; FUNDAMENTAL CONSTANTS; GENERAL-RELATIVITY; TIME-VARIATION; FORCES; UNIFICATION; FREEDOM; LIMIT; QCD AB We examine how the binding of light (A <= 8) nuclei depends on possible variations of hadronic masses, including meson, nucleon, and nucleon-resonance masses. Small variations in hadronic masses may have occurred over time; the present results can help evaluate the consequences for big bang nucleosynthesis. Larger variations may be relevant to current attempts to extrapolate properties of nucleon-nucleon interactions from lattice QCD calculations. Results are presented as derivatives of the energy with respect to the different masses so they can be combined with different predictions of the hadronic mass-dependence on the underlying current-quark mass m(q). As an example, we employ a particular set of relations obtained from a study of hadron masses and sigma terms based on Dyson-Schwinger equations and a Poincare-covariant Faddeev equation for confined quarks and diquarks. We find that nuclear binding decreases moderately rapidly as the quark mass increases, with the deuteron becoming unbound when the pion mass is increased by similar to 60% (corresponding to an increase in X(q)=m(q)/Lambda(QCD) of 2.5). In the other direction, the dineutron becomes bound if the pion mass is decreased by similar to 15% (corresponding to a reduction of X(q) by similar to 30%). If we interpret the disagreement between big bang nucleosynthesis calculations and measurements to be the result of variation in X(q), we obtain an estimate delta X(q)/X(q)=K center dot(0.013 +/- 0.002) where K similar to 1 (the expected accuracy in K is about a factor of 2). The result is dominated by (7)Li data. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. RP Flambaum, VV (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Wiringa, Robert/M-4970-2015 NR 47 TC 63 Z9 63 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 054002 DI 10.1103/PhysRevC.76.054002 PG 11 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000015 ER PT J AU Laget, JM AF Laget, J. M. TI Unitarity constraints on deeply virtual Compton scattering SO PHYSICAL REVIEW C LA English DT Article ID ELECTROPRODUCTION; MESONS; HYDROGEN; NUCLEON; PHOTON AB At moderately low momentum transfer (-t up to 1 GeV(2)) the coupling to the vector meson production channels gives the dominant contribution to real Compton and deeply virtual Compton scattering (DVCS). Starting from a Regge pole approach that successfully describes vector meson production, the singular part of the corresponding box diagrams (where the intermediate vector meson-baryon pair propagates on-shell) is evaluated without any further assumptions (unitarity). Such a treatment explains not only the unexpectedly large DVCS unpolarized cross section that has been recently measured at Jefferson Laboratory (JLab), but also all the beam spin and charge asymmetries that have been measured at JLab and Hermes, without explicit need of Generalized Parton Distributions (GPD). The issue of the relationship between the two approaches is addressed. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Laget, JM (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. NR 31 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 052201 DI 10.1103/PhysRevC.76.052201 PG 4 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000009 ER PT J AU Mibe, T Gao, H Hicks, K Kramer, K Stepanyan, S Tedeschi, DJ Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asryan, G Audit, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Battaglieri, M Bedlinskiy, I Bellis, M Benmouna, N Berman, BL Biselli, AS Blaszczyk, L Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Chen, S Cole, PL Collins, P Coltharp, P Crabb, D Crannell, H Crede, V Cummings, JP Dashyan, N De Masi, R De Vita, R De Sanctis, E Degtyarenko, PV Deur, A Dharmawardane, KV Dickson, R Djalali, C Dodge, GE Donnelly, J Doughty, D Dugger, M Dzyubak, OP Garcon, M Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gonenc, A Gordon, CIO Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hakobyan, RS Hanretty, C Hardie, J Hersman, FW Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kalantarians, N Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Klimenko, AV Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Kuznetsov, V Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Li, J Livingston, K Lu, HY MacCormick, M Marchand, C Markov, N Mattione, P McKinnon, B Mecking, BA Melone, JJ Mestayer, MD Meyer, CA Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mokeev, V Moriya, K Morrow, SA Moteabbed, M Munevar, E Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pereira, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Pozdniakov, S Price, JW Prok, Y Protopopescu, D Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Sabatie, F Salamanca, J Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shvedunov, NV Smith, ES Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, SS Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Thoma, U Tkabladze, A Tkachenko, S Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L Zhang, J Zhao, B Zhao, ZW AF Mibe, T. Gao, H. Hicks, K. Kramer, K. Stepanyan, S. Tedeschi, D. J. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Audit, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Battaglieri, M. Bedlinskiy, I. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Blaszczyk, L. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Chen, S. Cole, P. L. Collins, P. Coltharp, P. Crabb, D. Crannell, H. Crede, V. Cummings, J. P. Dashyan, N. De Masi, R. De Vita, R. De Sanctis, E. Degtyarenko, P. V. Deur, A. Dharmawardane, K. V. Dickson, R. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Dugger, M. Dzyubak, O. P. Garcon, M. Gavalian, G. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gonenc, A. Gordon, C. I. O. Gothe, R. W. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hakobyan, R. S. Hanretty, C. Hardie, J. Hersman, F. W. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kalantarians, N. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Lee, T. Li, J. Livingston, K. Lu, H. Y. MacCormick, M. Marchand, C. Markov, N. Mattione, P. McKinnon, B. Mecking, B. A. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mikhailov, K. Minehart, R. Mirazita, M. Miskimen, R. Mokeev, V. Moriya, K. Morrow, S. A. Moteabbed, M. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Pozdniakov, S. Price, J. W. Prok, Y. Protopopescu, D. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Ronchetti, F. Rosner, G. Rossi, P. Sabatie, F. Salamanca, J. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shvedunov, N. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Thoma, U. Tkabladze, A. Tkachenko, S. Todor, L. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Measurement of coherent phi-meson photoproduction from the deuteron at low energies SO PHYSICAL REVIEW C LA English DT Article ID PROTON; NUCLEI AB The cross section and decay angular distributions for the coherent phi-meson photoproduction on the deuteron have been measured for the first time up to a squared four-momentum transfer t=(p(gamma)-p(phi))(2)=-2 GeV(2)/c(2), using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared with predictions from a rescattering model. In a framework of vector meson dominance, the data are consistent with the total phi-N cross section sigma(phi N) at about 10 mb. If vector meson dominance is violated, a larger sigma(phi N) is possible by introducing a larger t slope for the phi N ->phi N process than that for the gamma N ->phi N process. The decay angular distributions of the phi are consistent with helicity conservation. C1 Ohio Univ, Athens, OH 45701 USA. Duke Univ, Durham, NC 27708 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Univ S Carolina, Columbia, SC 29208 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Arizona State Univ, Tempe, AZ 85287 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Calif State Univ Dominguez Hills, Carson, CA 90747 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Catholic Univ Amer, Washington, DC 20064 USA. CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. Christopher Newport Univ, Newport News, VA 23606 USA. Univ Connecticut, Storrs, CT 06269 USA. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Fairfield Univ, Fairfield, CT 06824 USA. Florida Int Univ, Miami, FL 33199 USA. Florida State Univ, Tallahassee, FL 32306 USA. George Washington Univ, Washington, DC 20052 USA. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Idaho State Univ, Pocatello, ID 83209 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Inst Phys Nucl ORSAY, Orsay, France. Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. James Madison Univ, Harrisonburg, VA 22807 USA. Kyungpook Natl Univ, Taegu 702701, South Korea. Univ Massachusetts, Amherst, MA 01003 USA. Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, RU-119899 Moscow, Russia. Univ New Hampshire, Durham, NH 03824 USA. Norfolk State Univ, Norfolk, VA 23504 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Rensselaer Polytech Inst, Troy, NY 12180 USA. Rice Univ, Houston, TX 77005 USA. Univ Richmond, Richmond, VA 23173 USA. Union Coll, Schenectady, NY 12308 USA. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Univ Virginia, Charlottesville, VA 22901 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. RP Mibe, T (reprint author), Ohio Univ, Athens, OH 45701 USA. RI Ireland, David/E-8618-2010; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Gao, Haiyan/G-2589-2011; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016 OI Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; NR 27 TC 9 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 052202 DI 10.1103/PhysRevC.76.052202 PG 6 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000010 ER PT J AU Naik, RS Loveland, W Sprunger, PH Vinodkumar, AM Peterson, D Jiang, CL Zhu, S Tang, X Moore, EF Chowdhury, P AF Naik, R. S. Loveland, W. Sprunger, P. H. Vinodkumar, A. M. Peterson, D. Jiang, C. L. Zhu, S. Tang, X. Moore, E. F. Chowdhury, P. TI Measurement of the fusion probability P(CN) for the reaction of (50)Ti with (208)Pb SO PHYSICAL REVIEW C LA English DT Article ID SUPERHEAVY NUCLEI; CROSS-SECTIONS; SPONTANEOUS-FISSION; CAPTURE REACTIONS; QUASI-FISSION; HEAVY-NUCLEI; ELEMENTS; FRAGMENTS; ENERGIES; STATE AB The capture cross sections and fission fragment angular distributions were measured for the reaction of (50)Ti with (208)Pb at center of mass projectile energies (E(c.m.)) of 183.7, 186.2, 190.2, 194.2, and 202.3 MeV (E(*)=14.2, 16.6, 20.6, 24.7, and 32.7 MeV). From fitting the backward angle fragment angular distributions, the cross sections for quasifission and fusion-fission and P(CN), the probability that the colliding nuclei go from the contact configuration to inside the fission saddle point, were deduced. These quantities, along with the known values of the evaporation residue production cross sections for this reaction, were used to deduce values of the survival probabilities, W(sur), for this reaction as a function of excitation energy. The deduced values of P(CN) and W(sur) and their dependence on excitation energy differ from some current theoretical predictions of these quantities. C1 Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. RP Naik, RS (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. RI Attukalathil, Vinodkumar/A-7441-2009; Tang, Xiaodong /F-4891-2016 OI Attukalathil, Vinodkumar/0000-0002-8204-7800; NR 41 TC 34 Z9 35 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 054604 DI 10.1103/PhysRevC.76.054604 PG 8 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000043 ER PT J AU Wong, CY AF Wong, Cheuk-Yin TI Ridge structure in the Delta phi-Delta eta correlation function associated with a near-side jet SO PHYSICAL REVIEW C LA English DT Article AB In the Delta phi-Delta eta correlation associated with a near-side jet observed by the STAR Collaboration in heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC), the ridge structure can be explained by the momentum kick model in which the ridge particles are identified as medium partons which suffer a collision with the jet and acquire a momentum kick along the jet direction. If this is indeed the correct mechanism, the ridge structure associated with the near-side jet may be used to probe the parton momentum distribution at the moment of the jet-parton collision, leading to the result that at that instant the parton temperature is slightly higher and the rapidity width substantially greater than corresponding quantities of their evolution product inclusive particles at the end point of the nucleus-nucleus collision. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM wongc@ornl.gov NR 23 TC 28 Z9 28 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2007 VL 76 IS 5 AR 054908 DI 10.1103/PhysRevC.76.054908 PG 11 WC Physics, Nuclear SC Physics GA 236TT UT WOS:000251327000056 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clement, C Clement, B Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ de Jong, P De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kothari, B Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lazoflores, J Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Lesne, V Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Michaut, M Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perea, PM Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pompo, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, RP Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Telford, P Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ van Eijk, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Vokac, P Von Toerne, E Voutilainen, M Vreeswijk, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Weerts, H Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Yu, C Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clement, C. Clement, B. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. de Jong, P. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kothari, B. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Michaut, M. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perea, P. M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pompo, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, R. P. Snow, J. Snow, G. R. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Telford, P. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. van Eijk, B. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Vokac, P. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Weerts, H. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Yu, C. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Measurement of the t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV using kinematic characteristics of lepton plus jets events SO PHYSICAL REVIEW D LA English DT Article ID TOP-QUARK PRODUCTION; PARTICLE PHYSICS; DETECTOR; SEARCH AB We present a measurement of the top quark pair production cross section in p (p) over bar collisions at root s=1.96 TeV utilizing 425 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair containing one high-p(T) electron or muon and at least four jets. We exploit specific kinematic features of t (t) over bar events to extract the cross section. For a top quark mass of 175 GeV, we measure sigma(t (t) over bar)=6.4(-1.2)(+1.3)(stat)+/- 0.7(syst)+/- 0.4(lum) pb, in good agreement with the standard model prediction. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Univ Alberta, Edmonton, AB, Canada. McGill Univ, Montreal, PQ, Canada. York Univ, Toronto, ON M3J 2R7, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, Lab Accelerateur Lineaire, Marseille, France. Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, Paris, France. CEA, Serv Phys Particules, DAPNIA, Saclay, France. Univ Strasbourg, IPHC, Strasbourg, France. Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. Univ Lyon 1, F-69365 Lyon, France. Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys, Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Gesamthsch Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM Inst NIKHEF, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas Arlington, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Gutierrez, Phillip/C-1161-2011; Fisher, Wade/N-4491-2013; Dudko, Lev/D-7127-2012; Mercadante, Pedro/K-1918-2012; Merkin, Mikhail/D-6809-2012; Yip, Kin/D-6860-2013; Novaes, Sergio/D-3532-2012; Nomerotski, Andrei/A-5169-2010; Mundim, Luiz/A-1291-2012; Shivpuri, R K/A-5848-2010; Leflat, Alexander/D-7284-2012; Telford, Paul/B-6253-2011; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 NR 44 TC 49 Z9 49 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 092007 DI 10.1103/PhysRevD.76.092007 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200013 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clement, B Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ de Jong, P De La Cruz-Burelo, E De Oliveira Martins, C Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lazoflores, J Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Michaut, M Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Telford, P Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ van Eijk, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Vreeswijk, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clement, B. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. de Jong, P. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Michaut, M. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Telford, P. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. van Eijk, B. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for B-s(0)->mu(+)mu(-) decays at D0 SO PHYSICAL REVIEW D LA English DT Article ID RUN-II; B-S; MODELS; DETECTOR; PHYSICS AB We report results from a search for the decay B-s(0)->mu(+)mu(-) using 1.3 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the D0 experiment at the Fermilab Tevatron Collider. We find two candidate events, consistent with the expected background of 1.24 +/- 0.99, and set an upper limit on the branching fraction of B(B-s(0)->mu(+)mu(-))< 1.2x10(-7) at the 95% C.L. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol, Hefei, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, Orsay, France. Univ Paris 11, Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, Paris, France. CEA, Serv Phys Particules, DAPNIA, Saclay, France. Univ Strasbourg 1, IPHC, Strasbourg, France. Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. Univ Lyon 1, CNRS, IN2P3, IPNL, Villeurbanne, France. Univ Lyon 1, F-69365 Lyon, France. Rhein Westfal TH Aachen, Phys Inst A, Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fac Phys, D-5600 Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM Inst NIKHEF, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Kansas State Univ, Lawrence, KS 66045 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas Arlington, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Mundim, Luiz/A-1291-2012; Nomerotski, Andrei/A-5169-2010; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Shivpuri, R K/A-5848-2010; Telford, Paul/B-6253-2011; Gutierrez, Phillip/C-1161-2011 OI Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; NR 16 TC 39 Z9 39 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 092001 DI 10.1103/PhysRevD.76.092001 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200007 ER PT J AU Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Alexander, J Amirikas, R Aphecetche, L Aronson, SH Averbeck, R Awes, TC Azmoun, R Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bazilevsky, A Belikov, S Berdnikov, Y Bhagavatula, S Boissevain, JG Borel, H Borenstein, S Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Chai, JS Chand, P Chang, WC Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choi, J Choudhury, RK Chujo, T Cianciolo, V Cobigo, Y Cole, BA Constantin, P d'Enterria, D David, G Delagrange, H Denisov, A Deshpande, A Desmond, EJ Devismes, A Dietzsch, O Drapier, O Drees, A Drees, KA du Rietz, R Durum, A Dutta, D Efremenko, YV El Chenawi, K Enokizono, A En'yo, H Esumi, S Ewell, L Fields, DE Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fung, SY Garpman, S Ghosh, TK Glenn, A Gogiberidze, G Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Guryn, W Gustafsson, HA Hachiya, T Haggerty, JS Hamagaki, H Hansen, AG Hartouni, EP Harvey, M Hayano, R Hayashi, N He, X Heffner, M Hemmick, TK Heuser, JM Hibino, M Hill, JC Holzmann, W Homma, K Hong, B Hoover, A Hornback, D Ichihara, T Ikonnikov, VV Imai, K Isenhower, D Ishihara, M Issah, M Isupov, A Jacak, BV Jang, WY Jeong, Y Jia, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kametani, S Kamihara, N Kang, JH Kapoor, SS Katou, K Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, DW Kim, E Kim, GB Kim, HJ Kistenev, E Kiyomichi, A Kiyoyama, K Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Koehler, D Kohama, T Kopytine, M Kotchetkov, D Kozlov, A Kroon, PJ Kuberg, CH Kurita, K Kuroki, Y Kweon, MJ Kwon, Y Kyle, GS Lacey, R Ladygin, V Lajoie, JG Lebedev, A Leckey, S Lee, DM Lee, S Leitch, MJ Li, XH Lim, H Litvinenko, A Liu, MX Liu, Y Maguire, CF Makdisi, YI Malakhov, A Manko, VI Mao, Y Martinez, G Marx, MD Masui, H Matathias, F Matsumoto, T McGaughey, PL Melnikov, E Messer, F Miake, Y Milan, J Miller, TE Milov, A Mioduszewski, S Mischke, RE Mishra, GC Mitchell, JT Mohanty, AK Morrison, DP Moss, JM Muhlbacher, F Mukhopadhyay, D Muniruzzaman, M Murata, J Nagamiya, S Nagle, JL Nakamura, T Nandi, BK Nara, M Newby, J Nilsson, P Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, K Ono, M Onuchin, V Oskarsson, A Otterlund, I Oyama, K Ozawa, K Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Parmar, A Pate, SF Peitzmann, T Peng, JC Peresedov, V Pinkenburg, C Pisani, RP Plasil, F Purschke, ML Purwar, AK Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosnet, P Ryu, SS Sadler, ME Saito, N Sakaguchi, T Sakai, M Sakai, S Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Semenov, V Seto, R Shaw, MR Shea, TK Shibata, TA Shigaki, K Shiina, T Silva, CL Silvermyr, D Sim, KS Singh, CP Singh, V Sivertz, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sullivan, JP Takagui, EM Taketani, A Tamai, M Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Tarjan, P Tepe, JD Thomas, TL Tojo, J Torii, H Towell, RS Tserruya, I Tsuruoka, H Tuli, SK Tydesjo, H Tyurin, N van Hecke, HW Velkovska, J Velkovsky, M Veszpremi, V Villatte, L Vinogradov, AA Volkov, MA Vznuzdaev, E Wang, XR Watanabe, Y White, SN Wohn, FK Woody, CL Xie, W Yang, Y Yanovich, A Yokkaichi, S Young, GR Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zhou, SJ Zolin, L AF Adler, S. S. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Alexander, J. Amirikas, R. Aphecetche, L. Aronson, S. H. Averbeck, R. Awes, T. C. Azmoun, R. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bazilevsky, A. Belikov, S. Berdnikov, Y. Bhagavatula, S. Boissevain, J. G. Borel, H. Borenstein, S. Brooks, M. L. Brown, D. S. Bruner, N. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camard, X. Chai, J. -S. Chand, P. Chang, W. C. Chernichenko, S. Chi, C. Y. Chiba, J. Chiu, M. Choi, I. J. Choi, J. Choudhury, R. K. Chujo, T. Cianciolo, V. Cobigo, Y. Cole, B. A. Constantin, P. d'Enterria, D. David, G. Delagrange, H. Denisov, A. Deshpande, A. Desmond, E. J. Devismes, A. Dietzsch, O. Drapier, O. Drees, A. Drees, K. A. du Rietz, R. Durum, A. Dutta, D. Efremenko, Y. V. El Chenawi, K. Enokizono, A. En'yo, H. Esumi, S. Ewell, L. Fields, D. E. Fleuret, F. Fokin, S. L. Fox, B. D. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fung, S. -Y. Garpman, S. Ghosh, T. K. Glenn, A. Gogiberidze, G. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Guryn, W. Gustafsson, H. -A. Hachiya, T. Haggerty, J. S. Hamagaki, H. Hansen, A. G. Hartouni, E. P. Harvey, M. Hayano, R. Hayashi, N. He, X. Heffner, M. Hemmick, T. K. Heuser, J. M. Hibino, M. Hill, J. C. Holzmann, W. Homma, K. Hong, B. Hoover, A. Hornback, D. Ichihara, T. Ikonnikov, V. V. Imai, K. Isenhower, D. Ishihara, M. Issah, M. Isupov, A. Jacak, B. V. Jang, W. Y. Jeong, Y. Jia, J. Jinnouchi, O. Johnson, B. M. Johnson, S. C. Joo, K. S. Jouan, D. Kametani, S. Kamihara, N. Kang, J. H. Kapoor, S. S. Katou, K. Kelly, S. Khachaturov, B. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, D. W. Kim, E. Kim, G. -B. Kim, H. J. Kistenev, E. Kiyomichi, A. Kiyoyama, K. Klein-Boesing, C. Kobayashi, H. Kochenda, L. Kochetkov, V. Koehler, D. Kohama, T. Kopytine, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kuberg, C. H. Kurita, K. Kuroki, Y. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Ladygin, V. Lajoie, J. G. Lebedev, A. Leckey, S. Lee, D. M. Lee, S. Leitch, M. J. Li, X. H. Lim, H. Litvinenko, A. Liu, M. X. Liu, Y. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Manko, V. I. Mao, Y. Martinez, G. Marx, M. D. Masui, H. Matathias, F. Matsumoto, T. McGaughey, P. L. Melnikov, E. Messer, F. Miake, Y. Milan, J. Miller, T. E. Milov, A. Mioduszewski, S. Mischke, R. E. Mishra, G. C. Mitchell, J. T. Mohanty, A. K. Morrison, D. P. Moss, J. M. Muehlbacher, F. Mukhopadhyay, D. Muniruzzaman, M. Murata, J. Nagamiya, S. Nagle, J. L. Nakamura, T. Nandi, B. K. Nara, M. Newby, J. Nilsson, P. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, K. Ono, M. Onuchin, V. Oskarsson, A. Otterlund, I. Oyama, K. Ozawa, K. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Parmar, A. Pate, S. F. Peitzmann, T. Peng, J. -C. Peresedov, V. Pinkenburg, C. Pisani, R. P. Plasil, F. Purschke, M. L. Purwar, A. K. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosnet, P. Ryu, S. S. Sadler, M. E. Saito, N. Sakaguchi, T. Sakai, M. Sakai, S. Samsonov, V. Sanfratello, L. Santo, R. Sato, H. D. Sato, S. Sawada, S. Schutz, Y. Semenov, V. Seto, R. Shaw, M. R. Shea, T. K. Shibata, T. -A. Shigaki, K. Shiina, T. Silva, C. L. Silvermyr, D. Sim, K. S. Singh, C. P. Singh, V. Sivertz, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Sullivan, J. P. Takagui, E. M. Taketani, A. Tamai, M. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Tarjan, P. Tepe, J. D. Thomas, T. L. Tojo, J. Torii, H. Towell, R. S. Tserruya, I. Tsuruoka, H. Tuli, S. K. Tydesjoe, H. Tyurin, N. van Hecke, H. W. Velkovska, J. Velkovsky, M. Veszpremi, V. Villatte, L. Vinogradov, A. A. Volkov, M. A. Vznuzdaev, E. Wang, X. R. Watanabe, Y. White, S. N. Wohn, F. K. Woody, C. L. Xie, W. Yang, Y. Yanovich, A. Yokkaichi, S. Young, G. R. Yushmanov, I. E. Zajc, W. A. Zhang, C. Zhou, S. Zhou, S. J. Zolin, L. TI Measurement of single muons at forward rapidity in p+p collisions at root s=200 GeV and implications for charm production SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL PARTON DISTRIBUTIONS; GLUON DISTRIBUTION-FUNCTIONS; DEEP-INELASTIC SCATTERING; DRELL-YAN PROCESS; HEAVY FLAVOR; ENERGY-LOSS; P(P)OVER-BAR COLLISIONS; TRANSVERSE-MOMENTUM; ROOT-S-NN=200 GEV; BOTTOM PRODUCTION AB Muon production at forward rapidity (1.5 <=|eta|<= 1.8) has been measured by the PHENIX experiment over the transverse momentum range 1 <= p(T)<= 3 GeV/c in root s=200 GeV p+p collisions at the Relativistic Heavy Ion Collider. After statistically subtracting contributions from light hadron decays an excess remains which is attributed to the semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p(T), bottom quarks. The resulting muon spectrum from heavy flavor decays is compared to PYTHIA and a next-to-leading-order perturbative QCD calculation. PYTHIA is used to determine the charm quark spectrum that would produce the observed muon excess. The corresponding differential cross section for charm quark production at forward rapidity is determined to be d sigma(c (c) over bar)/dy|(y=1.6)=0.243 +/- 0.013(stat.)+/- 0.105(data syst.)(-0.087)(+0.049)(PYTHIA syst.) mb. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. Univ Calif Riverside, Riverside, CA 92521 USA. CIAE, Beijing, Peoples R China. Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. Columbia Univ, New York, NY 10027 USA. Nevis Labs, Irvington, NY 10533 USA. CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. Debrecen Univ, H-4010 Debrecen, Hungary. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. IHEP, Protvino, Russia. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Russia. KAERI, Cyclotron Appl Lab, Seoul, South Korea. Kanngnung Natl Univ, Kangnung 210702, South Korea. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. KFKI Res Inst Particle & Nucl Phys RMKI, H-1525 Budapest, Hungary. Korea Univ, Seoul 136701, South Korea. Russian Res Ctr Kurchatov Inst, Moscow, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. Petersburg Nucl Phys Inst, PNPI, Gatchina, Russia. RIKEN, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. St Petersburg State Tech Univ, St Petersburg, Russia. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, CNRS, IN2P3,Ecole Mines Nantes, SUBATECH, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjyuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adler, SS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI seto, richard/G-8467-2011; Peitzmann, Thomas/K-2206-2012; du Rietz, Rickard/I-3794-2013; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; OI Peitzmann, Thomas/0000-0002-7116-899X; du Rietz, Rickard/0000-0002-9884-9058; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Newby, Robert/0000-0003-3571-1067; Hartouni, Edward/0000-0001-9869-4351 NR 83 TC 27 Z9 29 U1 7 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 092002 DI 10.1103/PhysRevD.76.092002 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200008 ER PT J AU Airapetian, A Akopov, N Akopov, Z Amarian, M Ammosov, VV Andrus, A Aschenauer, EC Augustyniak, W Avakian, R Avetissian, A Avetissian, E Bailey, P Baturin, V Baumgarten, C Beckmann, M Belostotski, S Bernreuther, S Bianchi, N Blok, HP Bottcher, H Borissov, A Bouwhuis, M Brack, J Brull, A Brunn, I Capitani, GP Chiang, HC Ciullo, G Contalbrigo, M Court, GR Dalpiaz, PF De Leo, R De Nardo, L De Sanctis, E Devitsin, E Di Nezza, P Duren, M Ehrenfried, M Elalaoui-Moulay, A Elbakian, G Ellinghaus, F Elschenbroich, U Ely, J Fabbri, R Fantoni, A Fechtchenko, A Felawka, L Fox, B Franz, J Frullani, S Garber, Y Gapienko, G Gapienko, V Garibaldi, F Garutti, E Gaskell, D Gavrilov, G Gharibyan, V Graw, G Grebeniouk, O Greeniaus, LG Haeberli, W Hafidi, K Hartig, M Hasch, D Heesbeen, D Henoch, M Hertenberger, R Hesselink, WHA Hillenbrand, A Holler, Y Hommez, B Iarygin, G Izotov, A Jackson, HE Jgoun, A Kaiser, R Kinney, E Kisselev, A Konigsmann, K Kolster, H Kopytin, M Korotkov, V Kozlov, V Krauss, B Krivokhijine, VG Lagamba, L Lapikas, L Laziev, A Lenisa, P Liebing, P Lindemann, T Lipka, K Lorenzon, W Makins, NCR Marukyan, H Masoli, F Menden, F Mexner, V Meyners, N Mikloukho, O Miller, CA Miyachi, Y Muccifora, V Nagaitsev, A Nappi, E Naryshkin, Y Nass, A Nowak, WD Oganessyan, K Ohsuga, H Orlandi, G Potashov, S Potterveld, DH Raithel, M Reggiani, D Reimer, PE Reischl, A Reolon, AR Rith, K Rosner, G Rostomyan, A Ryckbosch, D Sanjiev, I Savin, I Scarlett, C Schafer, A Schill, C Schnell, G Schuler, KP Schwind, A Seibert, J Seitz, B Shanidze, R Shibata, TA Shutov, V Simani, MC Sinram, K Stancari, M Statera, M Steffens, E Steijger, JJM Stewart, J Stosslein, U Tanaka, H Taroian, S Tchuiko, B Terkulov, A Tessarin, S Thomas, E Tkabladze, A Trzcinski, A Tytgat, M Urciuoli, GM van der Nat, PB van der Steenhoven, G van de Vyver, R Veretennikov, D Vetterli, MC Vikhrov, V Vincter, MG Visser, J Vogt, M Volmer, J Weiskopf, C Wendland, J Wilbert, J Wise, T Yen, S Yoneyama, S Zihlmann, B Zohrabian, H Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Amarian, M. Ammosov, V. V. Andrus, A. Aschenauer, E. C. Augustyniak, W. Avakian, R. Avetissian, A. Avetissian, E. Bailey, P. Baturin, V. Baumgarten, C. Beckmann, M. Belostotski, S. Bernreuther, S. Bianchi, N. Blok, H. P. Boettcher, H. Borissov, A. Bouwhuis, M. Brack, J. Bruell, A. Brunn, I. Capitani, G. P. Chiang, H. C. Ciullo, G. Contalbrigo, M. Court, G. R. Dalpiaz, P. F. De Leo, R. De Nardo, L. De Sanctis, E. Devitsin, E. Di Nezza, P. Dueren, M. Ehrenfried, M. Elalaoui-Moulay, A. Elbakian, G. Ellinghaus, F. Elschenbroich, U. Ely, J. Fabbri, R. Fantoni, A. Fechtchenko, A. Felawka, L. Fox, B. Franz, J. Frullani, S. Gaerber, Y. Gapienko, G. Gapienko, V. Garibaldi, F. Garutti, E. Gaskell, D. Gavrilov, G. Gharibyan, V. Graw, G. Grebeniouk, O. Greeniaus, L. G. Haeberli, W. Hafidi, K. Hartig, M. Hasch, D. Heesbeen, D. Henoch, M. Hertenberger, R. Hesselink, W. H. A. Hillenbrand, A. Holler, Y. Hommez, B. Iarygin, G. Izotov, A. Jackson, H. E. Jgoun, A. Kaiser, R. Kinney, E. Kisselev, A. Koenigsmann, K. Kolster, H. Kopytin, M. Korotkov, V. Kozlov, V. Krauss, B. Krivokhijine, V. G. Lagamba, L. Lapikas, L. Laziev, A. Lenisa, P. Liebing, P. Lindemann, T. Lipka, K. Lorenzon, W. Makins, N. C. R. Marukyan, H. Masoli, F. Menden, F. Mexner, V. Meyners, N. Mikloukho, O. Miller, C. A. Miyachi, Y. Muccifora, V. Nagaitsev, A. Nappi, E. Naryshkin, Y. Nass, A. Nowak, W. -D. Oganessyan, K. Ohsuga, H. Orlandi, G. Potashov, S. Potterveld, D. H. Raithel, M. Reggiani, D. Reimer, P. E. Reischl, A. Reolon, A. R. Rith, K. Rosner, G. Rostomyan, A. Ryckbosch, D. Sanjiev, I. Savin, I. Scarlett, C. Schaefer, A. Schill, C. Schnell, G. Schueler, K. P. Schwind, A. Seibert, J. Seitz, B. Shanidze, R. Shibata, T. -A. Shutov, V. Simani, M. C. Sinram, K. Stancari, M. Statera, M. Steffens, E. Steijger, J. J. M. Stewart, J. Stoesslein, U. Tanaka, H. Taroian, S. Tchuiko, B. Terkulov, A. Tessarin, S. Thomas, E. Tkabladze, A. Trzcinski, A. Tytgat, M. Urciuoli, G. M. van der Nat, P. B. van der Steenhoven, G. van de Vyver, R. Veretennikov, D. Vetterli, M. C. Vikhrov, V. Vincter, M. G. Visser, J. Vogt, M. Volmer, J. Weiskopf, C. Wendland, J. Wilbert, J. Wise, T. Yen, S. Yoneyama, S. Zihlmann, B. Zohrabian, H. Zupranski, P. TI Transverse polarization of Lambda and (Lambda)over-bar hyperons in quasireal photoproduction SO PHYSICAL REVIEW D LA English DT Article ID INCLUSIVE HADRON-PRODUCTION; PHOTON ENERGIES; 800-GEV/C PROTONS; P INTERACTIONS; ASYMMETRY; NUCLEON; GEV/C AB The HERMES experiment has measured the transverse polarization of Lambda and (Lambda) over bar hyperons produced inclusively in quasireal photoproduction at a positron beam energy of 27.6 GeV. The transverse polarization P-n(Lambda) of the Lambda hyperon is found to be positive while the observed (Lambda) over bar polarization is compatible with zero. The values averaged over the kinematic acceptance of HERMES are P-n(Lambda)=0.078 +/- 0.006(stat)+/- 0.012(syst) and P-n((Lambda) over bar)=-0.025 +/- 0.015(stat)+/- 0.018(syst) for Lambda and (Lambda) over bar, respectively. The dependences of P-n(Lambda) and P-n((Lambda) over bar) on the fraction zeta of the beam's light-cone momentum carried by the hyperon and on the hyperon's transverse momentum p(T) were investigated. The measured Lambda polarization rises linearly with p(T) and exhibits a different behavior for low and high values of zeta, which approximately correspond to the backward and forward regions in the center-of-mass frame of the gamma*N reaction. C1 Yerevan Phys Inst, Yerevan 375036, Armenia. Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Sez Bari, Ist Nazl Fis Nucl, I-70124 Bari, Italy. Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. DESY, D-22603 Hamburg, Germany. DESY, D-15738 Zeuthen, Germany. Joint Inst Nucl Res, Dubna 141980, Russia. Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. Univ Ferrara, Sez Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Freiburg, Fac Phys, D-79104 Freiburg, Germany. Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. Univ Giessen, Inst Phys, D-35392 Giessen, Germany. Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. PN Lebedev Phys Inst, Moscow 117924, Russia. Univ Munich, Sekt Phys, D-85748 Garching, Germany. NIKHEF, NL-1009 DB Amsterdam, Netherlands. Petersburg Nucl Phys Inst, St Petersburg 188350, Russia. Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. Ist Super Sanita, Phys Lab, I-00161 Rome, Italy. Ist Nazl Fis Nucl, Sez Roma 1, Grp Sanita, I-00161 Rome, Italy. Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. TRIUMF, Vancouver, BC V6T 2A3, Canada. Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland. RP Airapetian, A (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Gavrilov, Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Taroian, Sarkis/E-1668-2014; El Alaoui, Ahmed/B-4638-2015; Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015 NR 35 TC 16 Z9 16 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 092008 DI 10.1103/PhysRevD.76.092008 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200014 ER PT J AU Aoki, S Fukugita, M Ishikawa, KI Ishizuka, N Kanaya, K Kuramashi, Y Namekawa, Y Okawa, M Sasaki, K Ukawa, A Yoshie, T AF Aoki, S. Fukugita, M. Ishikawa, K-I. Ishizuka, N. Kanaya, K. Kuramashi, Y. Namekawa, Y. Okawa, M. Sasaki, K. Ukawa, A. Yoshie, T. TI Lattice QCD calculation of the rho meson decay width SO PHYSICAL REVIEW D LA English DT Article ID SCATTERING MATRIX; VECTOR-MESON AB We present a lattice QCD calculation of the rho meson decay width via the P-wave scattering phase shift for the I=1 two-pion system. Our calculation uses full QCD gauge configurations for N(f)=2 flavors generated using a renormalization group improved gauge action and an improved Wilson fermion action on a 12(3)x24 lattice at m(pi)/m(rho)=0.41 and the lattice spacing 1/a=0.92 GeV. The phase shift calculated with the use of the finite size formula for the two-pion system in the moving frame shows a behavior consistent with the existence of a resonance at a mass close to the vector meson mass obtained in spectroscopy. The decay width estimated from the phase shift is consistent with the experiment, when the quark mass is scaled to the realistic value. C1 Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. Univ Tsukuba, Ctr Comp Sci, Tsukuba, Ibaraki 3058577, Japan. Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. RI Ukawa, Akira/A-6549-2011; Kuramashi, Yoshinobu /C-8637-2016 NR 9 TC 73 Z9 73 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 094506 DI 10.1103/PhysRevD.76.094506 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200060 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Dubitzky, RS Marks, J Schenk, S Uwer, U Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Re, CDLV Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Re, Ch. De la Vaissie Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Study of e(+)e(-)->Lambda(Lambda)over-bar, Lambda(Sigma)over-bar(0), Sigma(0)(Sigma)over-bar(0) using initial state radiation with BABAR SO PHYSICAL REVIEW D LA English DT Article ID HARD-PHOTON-EMISSION; BHABHA SCATTERING; NEAR-THRESHOLD; J/PSI-DECAYS; BARYON; ANNIHILATION; FACTORIES; ENERGIES; PHYSICS; RETURN AB We study the e(+)e(-)->Lambda(Lambda) over bar gamma, Lambda(Sigma) over bar (0)gamma, Sigma(0)(Sigma) over bar (0)gamma processes using 230 fb(-1) of integrated luminosity collected by the BABAR detector at e(+)e(-) center-of-mass energy of 10.58 GeV. From the analysis of the baryon-antibaryon mass spectra the cross sections for e(+)e(-)->Lambda(Lambda) over bar, Lambda(Sigma) over bar (0), Sigma(0)(Sigma) over bar>(0) are measured in the dibaryon mass range from threshold up to 3 GeV/c(2). The ratio of electric and magnetic form factors, |G(E)/G(M)|, is measured for e(+)e(-)->Lambda(Lambda) over bar, and limits on the relative phase between Lambda form factors are obtained. We also measure the J/psi ->Lambda(Lambda) over bar, Sigma(0)(Sigma) over bar (0), and psi(2S)->Lambda(Lambda) over bar branching fractions. C1 CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, IN2P3, Lab Leprince Ringuet, CNRS, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Univ Paris 11, F-91898 Orsay, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas Austin, Austin, TX 78712 USA. Univ Texas Richardson, Richardson, TX 75083 USA. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-10125 Turin, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016 OI Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602 NR 26 TC 52 Z9 54 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 092006 DI 10.1103/PhysRevD.76.092006 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200012 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Watson, AT Held, T Koch, H Pelizaeus, M Schroeder, T Steinke, M Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Hryn'ova, T Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Pelizaeus, M. Schroeder, T. Steinke, M. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Hryn'ova, T. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Study of B(0)->pi(0)pi(0), B(+/-)->pi(+/-)pi(0), and B(+/-)-> K(+/-)pi(0) decays, and isospin analysis of B ->pi pi decays SO PHYSICAL REVIEW D LA English DT Article ID CP ASYMMETRIES; B-DECAY; PHYSICS AB We present updated measurements of the branching fractions and CP asymmetries for B(0)->pi(0)pi(0), B(+/-)->pi(+/-)pi(0), and B(+/-)-> K(+/-)pi(0). Based on a sample of 383x10(6) Upsilon(4S)-> B (B) over bar decays collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, we measure B(B(0)->pi(0)pi(0))=(1.47 +/- 0.25 +/- 0.12)x10(-6), B(B(+/-)->pi(+/-)pi(0))=(5.02 +/- 0.46 +/- 0.29)x10(-6), and B(B(+/-)-> K(+/-)pi(0))=(13.6 +/- 0.6 +/- 0.7)x10(-6). We also measure the CP asymmetries C(pi)(pi)(0)(0)=-0.49 +/- 0.35 +/- 0.05, A(pi)(pi)(+)(0)=0.03 +/- 0.08 +/- 0.01, and A(K)(pi)(+)(0)=0.030 +/- 0.039 +/- 0.010. Finally, we present bounds on the Cabibbo-Kobayashi-Maskawa angle alpha using isospin relations. C1 CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Telichenphys, D-01062 Dresden, Germany. Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Accelerateur Lineaire Lab, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes EnergiesLab Phys Nucl & Ha, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Stanford Linear Accelerator Ctr, Columbia, SC 29208 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas Austin, Austin, TX 78712 USA. Univ Texas Richardson, Richardson, TX 75083 USA. Univ Trieste, Dipartimento Fis, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Valencia, CSIC, IFIC, Valencia 46071, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; OI Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712 NR 28 TC 40 Z9 40 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 091102 DI 10.1103/PhysRevD.76.091102 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200002 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Ronan, MT Tackmann, K Wenzel, WA Sanchez, PD Hawkes, CM Soni, N Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Gladney, L Biasini, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Hryn'ova, T Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Soni, N. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Gladney, L. Biasini, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Hryn'ova, T. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Evidence for the B-0 -> p(p)over-barK*(0) and B+->eta K-c*(+) decays and study of the decay dynamics of B meson decays into p(p)over-barh final states SO PHYSICAL REVIEW D LA English DT Article ID J/PSI RADIATIVE DECAYS; POSITIVE-STRANGENESS; BARYON RESONANCE; NARROW; MASS; PHOTOPRODUCTION; DETECTOR; SEARCH AB With a sample of 232x10(6) Upsilon(4S)-> B (B) over bar events collected with the BABAR detector, we study the decays of B mesons to p (p) over barh final states, where h=pi(+), K-S(0), K*(0), or K*(+). We report evidence for the B-0 -> p (p) over barK(*0) decay, with a branching fraction (1.47 +/- 0.45(stat)+/- 0.40(syst))x10(-6), and for the B+->eta K-c*(+) decay, with the branching fraction of B(B+->eta K-c*(+))xB(eta(c)-> p (p) over bar)=(1.57(-0.45)(+0.56)(stat)(-0.36)(+0.46)(syst))x10(-6), and provide improved measurements of the branching fractions of the other modes of this type. We also report the measurements of the charge asymmetry consistent with zero in the B+-> p (p) over bar pi(+), B-0 -> p (p) over barK*(0), and B+-> p (p) over barK*(+) modes. No evidence is found for the pentaquark candidate Theta(+) in the mass range 1.52 to 1.55 GeV/c(2), decaying into pK(S)(0), or the glueball candidate f(J)(2220) in the mass range 2.2 < m(p (p) over bar)< 2.4 GeV/c(2), and branching fraction limits are established for both at the 10(-7) level. C1 CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas Austin, Austin, TX 78712 USA. Univ Texas Richardson, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Forti, Francesco/H-3035-2011; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Roe, Natalie/A-8798-2012; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Patrignani, Claudia/C-5223-2009 OI Frey, Raymond/0000-0003-0341-2636; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Forti, Francesco/0000-0001-6535-7965; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Bellini, Fabio/0000-0002-2936-660X; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Patrignani, Claudia/0000-0002-5882-1747 NR 46 TC 23 Z9 23 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 092004 DI 10.1103/PhysRevD.76.092004 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200010 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI The e(+)e(-)-> 2(pi(+)pi(-))pi(0), 2(pi(+)pi(-))eta, K+K-pi(+)pi(-)pi(0) and K+K-pi(+)pi(-)eta cross sections measured with initial-state radiation SO PHYSICAL REVIEW D LA English DT Article ID INTERVAL 1350-2400 MEV; BHABHA SCATTERING; TAGGED PHOTONS; MONTE-CARLO; ENERGIES; DETECTOR; PHYSICS AB We study the processes e(+)e(-)-> 2(pi(+)pi(-))pi(0)gamma, 2(pi(+)pi(-))eta gamma, K+K-pi(+)pi(-)pi(0)gamma and K+K-pi(+)pi(-)eta gamma with the hard photon radiated from the initial state. About 20 000, 4300, 5500, and 375 fully reconstructed events, respectively, are selected from 232 fb(-1) of BABAR data. The invariant mass of the hadronic final state defines the effective e(+)e(-) center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct e(+)e(-) measurements, currently available only for the eta pi(+)pi(-) and omega pi(+)pi(-) submodes of the e(+)e(-)-> 2(pi(+)pi(-))pi(0) channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from e(+)e(-)->omega(782)pi(+)pi(-) and study the omega(1420) and omega(1650) resonances. In the charmonium region, we observe the J/psi in all these final states and several intermediate states, as well as the psi(2S) in some modes, and we measure the corresponding branching fractions. C1 CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Dept ECM, Fac Fis, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Ctr Sci Orsay, Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas Austin, Austin, TX 78712 USA. Univ Texas Richardson, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI de Sangro, Riccardo/J-2901-2012; Forti, Francesco/H-3035-2011; Della Ricca, Giuseppe/B-6826-2013; Bellini, Fabio/D-1055-2009; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Lista, Luca/C-5719-2008; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Patrignani, Claudia/C-5223-2009; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016 OI de Sangro, Riccardo/0000-0002-3808-5455; Forti, Francesco/0000-0001-6535-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Bellini, Fabio/0000-0002-2936-660X; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Patrignani, Claudia/0000-0002-5882-1747; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602 NR 28 TC 87 Z9 87 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 092005 DI 10.1103/PhysRevD.76.092005 PG 34 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200011 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Eigen, G Ofte, I Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Tackmann, K Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Be'quilleux, J Davier, M Grosdidier, G Hoecker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Gabathuler, JRFE Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Fisher, PH Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Perez, A Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Eigen, G. Ofte, I. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Be'quilleux, J. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Gabathuler, J. R. Fry E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Fisher, P. H. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. TI Measurement of CP asymmetries in B(0)-> K(S)(0)K(S)(0)K(S)(0) decays SO PHYSICAL REVIEW D LA English DT Article ID B DECAYS; VIOLATION; PHYSICS AB We present measurements of the time-dependent CP-violating asymmetries in B(0)-> K(S)(0)K(S)(0)K(S)(0) decays based on 384x10(6) Upsilon(4S)-> B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We obtain the CP asymmetry parameters C=0.02 +/- 0.21 +/- 0.05 and S=-0.71 +/- 0.24 +/- 0.04, where the first uncertainties are statistical and the second systematic. These results are consistent with standard model expectations. C1 CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Dept ECM, Fac Fis, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Int Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Ctr Sci Orsay, Accelerateur Lineaire Lab, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico 2, Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies,Univ Denis Didero, F-75252 Paris, France. Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis Scuola Normale Super, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DEM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas Austin, Austin, TX 78712 USA. Univ Texas Dallas, Richardson, TX 75083 USA. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Politecn Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012 OI Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Bellini, Fabio/0000-0002-2936-660X; NR 16 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 091101 DI 10.1103/PhysRevD.76.091101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200001 ER PT J AU Cheng, HY Chua, CK Soni, A AF Cheng, Hai-Yang Chua, Chun-Khiang Soni, Amarjit TI Charmless three-body decays of B mesons SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; SIMPLE SYMMETRY-BREAKING; CHARMED MESONS; QCD FACTORIZATION; CP VIOLATION; HEAVY-QUARK; FINAL-STATES; MODEL; PI(0)PI(0)GAMMA; ASYMMETRY AB An exploratory study of charmless 3-body decays of B mesons is presented using a simple model based on the framework of the factorization approach. The nonresonant contributions arising from B -> P1P2 transitions are evaluated using heavy meson chiral perturbation theory (HMChPT). The momentum dependence of nonresonant amplitudes is assumed to be in the exponential form e(NR)(-alpha)p(B)center dot(p(i)+p(j)) so that the HMChPT results are recovered in the soft meson limit p(i),p(j)-> 0. In addition, we have identified another large source of the nonresonant signal in the matrix elements of scalar densities, e.g. < KK|>ss|0 >, which can be constrained from the decay B-0 -> KSKSKS or B--> K-KSKS. The intermediate vector-meson contributions to 3-body decays are identified through the vector current, while the scalar meson resonances are mainly associated with the scalar density. Their effects are described in terms of the Breit-Wigner formalism. Our main results are: (i) All KKK modes are dominated by the nonresonant background. The predicted branching ratios of K+K-KS(L), K+K-K- and K-KSKS modes are consistent with the data within errors. (ii) Although the penguin-dominated B-0 -> K+K-KS decay is subject to a potentially significant tree pollution, its effective sin2 beta is very similar to that of the KSKSKS mode. However, direct CP asymmetry of the former, being of order -4%, is more prominent than the latter. (iii) For B -> K pi pi decays, we found sizable nonresonant contributions in K-pi(+)pi(-) and K-0 pi(+)pi(-) modes, in agreement with the Belle measurements but larger than the BABAR result. (iv) Time-dependent CP asymmetries in K-S pi(0)pi(0), a purely CP-even state, and K-S pi(+)pi(-), an admixture of CP-even and CP-odd components, are studied. (v) The pi(+)pi(-)pi(0) mode is found to have a rate larger than pi(+)pi(-)pi(-) even though the former involves a pi(0) in the final state. They are both dominated by resonant rho contributions. (vi) We have computed the resonant contributions to 3-body decays and determined the rates for the quasi-two-body decays B -> VP and B -> SP. The predicted rho pi, f(0)(980)K and f(0)(980)pi rates are in agreement with the data, while the calculated phi K, K-*pi, rho K and K-0(*)(1430)pi are in general too small compared to experiment. (vii) Sizable direct CP asymmetry is found in K+K-K- and K+K-pi(-) modes. C1 Acad Sinica, Inst Phys, Taipei 115, Taiwan. Chung Yuan Christian Univ, Dept Phys, Chungli 320, Taiwan. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Cheng, HY (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. NR 75 TC 39 Z9 39 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 094006 DI 10.1103/PhysRevD.76.094006 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200029 ER PT J AU Davoudiasl, H Soni, A AF Davoudiasl, Hooman Soni, Amarjit TI Strong CP problem, up-quark mass, and the Randall-Sundrum microscope SO PHYSICAL REVIEW D LA English DT Article ID ELECTRIC-DIPOLE MOMENT; QUANTUM CHROMODYNAMICS; CONSERVATION; MODEL; QCD; INSTANTONS; HIERARCHY; NEUTRON; FIELDS AB In the Randall-Sundrum model, setting the ratio of up- and down-quark masses m(u)/m(d)< 1, relevant to the strong CP problem, does not require chiral symmetry or fine-tuning, due to exponential bulk fermion profiles. We point out that such geometric suppression of the mass of a fermion magnifies the masses of its corresponding Kaluza-Klein (KK) states. In this sense, these KK states act as "microscopes" for probing light quark and lepton masses. In simple realizations, this hypothesis can be testable at future colliders, like the LHC, by measuring the spectrum of level-1 KK fermions. The microscope can then provide an experimental test for the vanishing of m(u) in the ultraviolet, independently of nonperturbative determinations, by lattice simulations or other means, at hadronic scales. We also briefly comment on application of our microscope idea to other fermions, such as the electron and neutrinos. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov; soni@bnl.gov NR 44 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 095015 DI 10.1103/PhysRevD.76.095015 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200083 ER PT J AU de Florian, D Vogelsang, W Wagner, F AF de Florian, Daniel Vogelsang, Werner Wagner, Federico TI Single-inclusive hadron production in polarized pp scattering at next-to-leading logarithmic accuracy SO PHYSICAL REVIEW D LA English DT Article ID QCD HARD SCATTERING; CROSS-SECTIONS; PARTON DISTRIBUTIONS; GLUON POLARIZATION; MASS SINGULARITIES; SPIN ASYMMETRY; LARGE-X; RESUMMATION; ORDER; FACTORIZATION AB We study the resummation of large logarithmic perturbative corrections to the partonic cross sections relevant for the process pp -> hX at high transverse momentum of the hadron h, when the initial protons are longitudinally polarized. We perform the resummation to next-to-leading logarithmic accuracy. We present numerical results for center-of-mass energies root S=19.4 GeV, relevant for comparisons to data from the Fermilab E704 experiment, and root S=62.4 GeV, where preliminary data from RHIC have recently become available. We find significant enhancements of the spin-dependent cross sections, but a decrease of the double-spin asymmetry for the process. This effect is less pronounced at the higher energy. C1 Univ Buenos Aires, Dept Fis, FCEYN, Buenos Aires, Argentina. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP de Florian, D (reprint author), Univ Buenos Aires, Dept Fis, FCEYN, 1428 Pabellon 1 Ciudad Univ, Buenos Aires, Argentina. RI de Florian, Daniel/B-6902-2011 OI de Florian, Daniel/0000-0002-3724-0695 NR 55 TC 17 Z9 17 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 094021 DI 10.1103/PhysRevD.76.094021 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200044 ER PT J AU Golowich, E Hewett, J Pakvasa, S Petrov, AA AF Golowich, Eugene Hewett, JoAnne Pakvasa, Sandip Petrov, Alexey A. TI Implications of D-0-(D)over-bar(0) mixing for new physics SO PHYSICAL REVIEW D LA English DT Review ID SUPERSYMMETRIC STANDARD MODEL; EFFECTIVE-FIELD-THEORY; RANDALL-SUNDRUM MODEL; ULTRA HEAVY FERMIONS; LEFT-RIGHT-SYMMETRY; RARE D-DECAYS; EXTRA DIMENSIONS; NEUTRAL CURRENTS; PARTICLE PHYSICS; HIGGS SECTOR AB We provide a comprehensive, up-to-date analysis of possible new physics contributions to the mass difference Delta M-D in D-0-(D) over bar (0) mixing. We consider the most general low-energy effective Hamiltonian and include leading-order QCD running of effective operators. We then explore an extensive list of possible new physics models that can generate these operators, which we organize as including extra fermions, extra gauge bosons, extra scalars, extra space dimensions and extra symmetries. For each model we place restrictions on the allowed parameter space using the recent evidence for observation of D meson mixing. In many scenarios, we find strong constraints that surpass those from other search techniques and provide an important test of flavor-changing neutral currents in the up-quark sector. We also review the recent BABAR and Belle findings, and describe the current status of the standard model predictions of D-0-(D) over bar (0) mixing. C1 Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. Fermilab Natl Accelerator Lab, Theoret Phys Grp, Batavia, IL 60510 USA. Univ Hawaii, High Energy Phys Grp, Honolulu, HI 96822 USA. RP Golowich, E (reprint author), Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. RI Petrov, Alexey/F-2882-2010 NR 183 TC 121 Z9 122 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 095009 DI 10.1103/PhysRevD.76.095009 PG 41 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200077 ER PT J AU Green, D AF Green, Daniel TI Reheating closed string inflation SO PHYSICAL REVIEW D LA English DT Article ID BIG-BANG NUCLEOSYNTHESIS; WARM DARK-MATTER; MIRROR UNIVERSE; CONDENSATION; GRAVITINO; SCALE AB Protecting the inflationary potential from quantum corrections typically requires symmetries that constrain the form of couplings of the inflaton to other sectors. We will explore how these restrictions affect reheating in models with UV completions. In particular, we look at how reheating occurs when inflation is governed by closed strings, using N-flation as an example. We find that coupling the inflaton preferentially to the standard modelis difficult, and hidden sectors are typically reheated. Observational constraints are only met by a fraction of the models. In some working models, relativistic relics in the hidden sector provide dark matter candidates with masses that range from keV to PeV, with lighter masses being preferred. C1 Stanford Univ, SLAC, Stanford, CA 94305 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Green, D (reprint author), Stanford Univ, SLAC, Stanford, CA 94305 USA. EM drgreen@stanford.edu NR 63 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 10 AR 103504 DI 10.1103/PhysRevD.76.103504 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TX UT WOS:000251327400016 ER PT J AU Grigoryan, HR Radyushkin, AV AF Grigoryan, H. R. Radyushkin, A. V. TI Structure of vector mesons in a holographic model with linear confinement SO PHYSICAL REVIEW D LA English DT Article ID WAVE-FUNCTIONS; QCD; PHYSICS; ENERGY AB Wave functions and form factors of vector mesons are investigated in the holographic dual model of quantum chromodynamics with oscillator-like infrared cutoff. We introduce wave functions conjugate to solutions of the 5D equation of motion and develop a formalism based on these wave functions, which are very similar to those of a quantum-mechanical oscillator. For the lowest bound state (rho-meson), we show that, in this model, the basic elastic form factor exhibits the perfect vector meson dominance, i.e., it is given by the rho-pole contribution alone. The electric radius of the rho-meson is calculated, < r(rho)(2)>(C)=0.655 fm(2), which is larger than in the case of the hard-wall cutoff. The squared radii of higher excited states are found to increase logarithmically rather than linearly with the radial excitation number. We calculate the coupling constant f(rho) and find that the experimental value is closer to that calculated in the hard-wall model. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Louisiana State Univ, Dept Phys, Baton Rouge, LA 70803 USA. Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. Joint Inst Nucl Res Dubna, Theoret Phys Lab, Dubna, Russia. RP Grigoryan, HR (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. NR 37 TC 112 Z9 113 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 095007 DI 10.1103/PhysRevD.76.095007 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200075 ER PT J AU Grossman, Y Nir, Y Thaler, J Volansky, T Zupan, J AF Grossman, Yuval Nir, Yosef Thaler, Jesse Volansky, Tomer Zupan, Jure TI Probing minimal flavor violation at the CERN LHC SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS; QUARKS; SEARCH; DECAYS AB If the LHC experiments discover new particles that couple to the standard model fermions, then measurements by ATLAS and CMS can contribute to our understanding of the flavor puzzles. We demonstrate this statement by investigating a scenario where extra SU(2)-singlet down-type quarks are within the LHC reach. By measuring masses, production cross sections, and relative decay rates, minimal flavor violation (MFV) can in principle be excluded. Conversely, these measurements can probe the way in which MFV applies to the new degrees of freedom. Many of our conclusions are valid in a much more general context than this specific extension of the standard model. C1 Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. Jozef Stefan Inst, Ljubljana 1001, Slovenia. RP Grossman, Y (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. EM yuvalg@physics.technion.ac.il; yosef.nir@weizmann.ac.il; jthaler@jthaler.net; tomer.volansky@weizmann.ac.il; jure.zupan@fmf.uni-lj.si NR 34 TC 28 Z9 29 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 096006 DI 10.1103/PhysRevD.76.096006 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200094 ER PT J AU Hall, LJ Salem, MP Watari, T AF Hall, Lawrence J. Salem, Michael P. Watari, Taizan TI Statistical understanding of quark and lepton masses in Gaussian landscapes SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL CONSTANT; CABIBBO ANGLES; HIERARCHY; UNIVERSE; INSTANTONS; SUPERNOVAE; ANARCHY; MATRIX; INDEX; TORI AB The fundamental theory of nature may allow a large landscape of vacua. Even if the theory contains a unified gauge symmetry, the 22 flavor parameters of the standard model, including neutrino masses, may be largely determined by the statistics of this landscape, and not by any symmetry. Then the measured values of the flavor parameters do not lead to any fundamental symmetries, but are statistical accidents; their precise values do not provide any insights into the fundamental theory, rather the overall pattern of flavor reflects the underlying landscape. We investigate whether random selection from the statistics of a simple landscape can explain the broad patterns of quark, charged lepton, and neutrino masses and mixings. We propose Gaussian landscapes as simplified models of landscapes where Yukawa couplings result from overlap integrals of zero-mode wave functions in higher-dimensional supersymmetric gauge theories. In terms of just five free parameters, such landscapes can account for all gross features of flavor, including the hierarchy of quark and charged-lepton masses; small quark mixing angles in the basis with quarks arranged according to mass, with 13 mixing less than 12 and 23 mixing; very light Majorana neutrino masses, with the solar to atmospheric neutrino mass ratio consistent with data; distributions for leptonic mixings sin2 theta(12) and sin2 theta(23) that are peaked at large values, while the distribution for sin2 theta(13) is peaked at low values; and order unity CP-violating phases in both the quark and lepton sectors. While the statistical distributions for flavor parameters are broad, the distributions are robust to changes in the geometry of the extra dimensions. Constraining the distributions by loose cuts about observed values leads to narrower distributions for neutrino measurements of theta(13), CP violation, and neutrinoless double beta decay. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. CALTECH, Pasadena, CA 91125 USA. Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Hall, LJ (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. OI Watari, Taizan/0000-0002-8879-1008 NR 40 TC 21 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 093001 DI 10.1103/PhysRevD.76.093001 PG 54 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200015 ER PT J AU Hertzberg, MP Tegmark, M Kachru, S Shelton, J Ozcan, O AF Hertzberg, Mark P. Tegmark, Max Kachru, Shamit Shelton, Jessie Oezcan, Onur TI Searching for inflation in simple string theory models: An astrophysical perspective SO PHYSICAL REVIEW D LA English DT Article ID MODULI STABILIZATION; CHAOTIC INFLATION; COMPACTIFICATIONS; SUPERGRAVITY; ORBIFOLDS; FLUXES; ORIENTIFOLDS; BACKGROUNDS; MANIFOLDS; BRANES AB Attempts to connect string theory with astrophysical observation are hampered by a jargon barrier, where an intimidating profusion of orientifolds, Kahler potentials, etc. dissuades cosmologists from attempting to work out the astrophysical observables of specific string theory solutions from the recent literature. We attempt to help bridge this gap by giving a pedagogical exposition with detailed examples, aimed at astrophysicists and high energy theorists alike, of how to compute predictions for familiar cosmological parameters when starting with a 10-dimensional string theory action. This is done by investigating inflation in string theory, since inflation is the dominant paradigm for how early universe physics determines cosmological parameters. We analyze three explicit string models from the recent literature, each containing an infinite number of vacuum solutions. Our numerical investigation of some natural candidate inflatons, the so-called "moduli fields," fails to find inflation. We also find in the simplest models that, after suitable field redefinitions, vast numbers of these vacua differ only in an overall constant multiplying the effective inflaton potential, a difference which affects neither the potential's shape nor its ability to support slow-roll inflation. This illustrates that even having an infinite number of vacua does not guarantee having inflating ones. This may be an artifact of the simplicity of the models that we study. Instead, more complicated string theory models appear to be required, suggesting that identifying the inflating subset of the string landscape will be challenging. C1 MIT, Dept Phys, Cambridge, MA 02139 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, SLAC, Stanford, CA 94305 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA. RP Hertzberg, MP (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM mphertz@mit.edu NR 70 TC 22 Z9 22 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 10 AR 103521 DI 10.1103/PhysRevD.76.103521 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TX UT WOS:000251327400033 ER PT J AU Hooper, D Kaplinghat, M Strigari, LE Zurek, KM AF Hooper, Dan Kaplinghat, Manoj Strigari, Louis E. Zurek, Kathryn M. TI MeV dark matter and small scale structure SO PHYSICAL REVIEW D LA English DT Article ID GALACTIC SATELLITES; GALAXY AB Weakly interacting massive particles with electroweak scale masses (neutralinos, etc.) remain in kinetic equilibrium with other particle species until temperatures approximately in the range of 10 MeV to 1 GeV, leading to the formation of dark matter substructure with masses as small as 10(-4)M to 10(-12)M. However, if dark matter consists of particles with MeV scale masses, as motivated by the observation of 511 keV emission from the galactic bulge, such particles are naturally expected to remain in kinetic equilibrium with the cosmic neutrino background until considerably later times. This would lead to a strong suppression of small scale structure with masses below about 10(7)M to 10(4)M. This cutoff scale has important implications for present and future searches for faint local group satellite galaxies and for the missing satellites problem. We also summarize current constraints on the MeV dark matter scenario. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. Univ Wisconsin, Phenomenol Inst, Madison, WI 53706 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. OI Strigari, Louis/0000-0001-5672-6079 NR 52 TC 34 Z9 34 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 10 AR 103515 DI 10.1103/PhysRevD.76.103515 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TX UT WOS:000251327400027 ER PT J AU Idilbi, A Mehen, T AF Idilbi, Ahmad Mehen, Thomas TI Equivalence of soft and zero-bin subtractions at two loops SO PHYSICAL REVIEW D LA English DT Article ID EXPANSION AB Calculations of collinear correlation functions in perturbative QCD and soft-collinear effective theory require a prescription for subtracting soft or zero-bin contributions in order to avoid double counting the contributions from soft modes. At leading order in lambda, where lambda is the soft-collinear effective theory expansion parameter, the zero-bin subtractions have been argued to be equivalent to convolution with soft Wilson lines. We give a proof of the factorization of naive collinear Wilson lines that is crucial for the derivation of the equivalence. We then check the equivalence by computing the non-Abelian two-loop mixed collinear-soft contribution to the jet function in the quark form factor. These results demonstrate the equivalence, which can be used to give a nonperturbative definition of the zero-bin subtraction at lowest order in lambda. C1 Duke Univ, Dept Phys, Durham, NC 27708 USA. Jefferson Lab, Newport News, VA 23606 USA. RP Idilbi, A (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. EM idilbi@phy.duke.edu; mehen@phy.duke.edu NR 14 TC 26 Z9 26 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 094015 DI 10.1103/PhysRevD.76.094015 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200038 ER PT J AU Kim, BS AF Kim, Bom Soo TI World sheet commuting ss gamma conformal field theory and nonrelativistic string theories SO PHYSICAL REVIEW D LA English DT Article ID INVARIANCE AB We construct a sigma model in two dimensions with Galilean symmetry in flat target space similar to the sigma model of the critical string theory with Lorentz symmetry in 10 flat spacetime dimensions. This is motivated by the works of Gomis and Ooguri [J. Math. Phys. (N.Y.) 42, 3127 (2001)] and Danielsson et al. [J. High Energy Phys. 10 (2000) 020; J. High Energy Phys. 03 (2001) 041.]. Our theory is much simpler than their theory and does not assume a compact coordinate. This nonrelativistic string theory has a bosonic matter ss gamma conformal field theory with the conformal weight of ss as 1. It is natural to identify time as a linear combination of gamma and (gamma) over bar through an explicit realization of the Galilean boost symmetry. The angle between gamma and (gamma) over bar parametrizes one parameter family of selection sectors. These selection sectors are responsible for having a nonrelativistic dispersion relation without a nontrivial topology in the nonrelativistic setup, which is one of the major differences from the previous works of Gomis and Ooguri and of Danielsson and co-workers. This simple theory is the nonrelativistic analogue of the critical string theory, and there are many different avenues ahead to be investigated. We mention a possible consistent generalization of this theory with different conformal weights for the ss gamma conformal field theory. We also mention supersymmetric generalizations of these theories. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Kim, BS (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bskim@socrates.berkeley.edu NR 32 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 10 AR 106007 DI 10.1103/PhysRevD.76.106007 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TX UT WOS:000251327400136 ER PT J AU Marquet, C AF Marquet, Cyrille TI Unified description of diffractive deep inelastic scattering with saturation SO PHYSICAL REVIEW D LA English DT Article ID COLOR GLASS CONDENSATE; NONLINEAR GLUON EVOLUTION; QCD DIPOLE PICTURE; HIGH-ENERGY; SMALL-X; HARD DIFFRACTION; RENORMALIZATION-GROUP; KOVCHEGOV EQUATION; VIRTUAL PHOTONS; LEADING PROTON AB We propose a new description of inclusive diffraction in deep inelastic scattering. The diffractive structure functions are expressed in the dipole picture and contain heavy-quark contributions. The dipole scattering amplitude, a saturation model fitted on inclusive deep inelastic scattering data, features a saturation scale Q(s)(x) larger than 1 GeV for x=10(-5). The q (q) over barg contribution to the diffractive final state is modeled in such a way that both the large-Q(2) and small-beta limits are implemented. In the regime x(P)< 0.01 in which saturation is expected to be relevant, we obtain a parameter-free description of the HERA data with chi(2)/points=1.2. C1 Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Marquet, C (reprint author), Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. EM marquet@quark.phy.bnl.gov NR 66 TC 40 Z9 40 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 094017 DI 10.1103/PhysRevD.76.094017 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200040 ER PT J AU Martin, SP AF Martin, Stephen P. TI Top-squark-mediated annihilation scenario and direct detection of dark matter in compressed supersymmetry SO PHYSICAL REVIEW D LA English DT Article ID INFRARED FIXED-POINT; NEUTRALINO-STAU COANNIHILATION; RELIC DENSITY; STANDARD MODEL; GAUGINO MASSES; QUARK MASS; MSSM; PARTICLE; HIGGS; SUPERGRAVITY AB Top-squark-mediated annihilation of b-ino-like neutralinos to top-antitop pairs can play the dominant role in obtaining a thermal relic dark matter abundance in agreement with observations. In a previous paper, it was argued that this can occur naturally in models of compressed supersymmetry, which feature a running gluino mass parameter that is substantially smaller than the W-ino mass parameter at the scale of apparent gauge coupling unification. Here I study in some more detail the parameter space in which this is viable, and compare to other scenarios for obtaining the observed dark matter density. I then study the possibility of detecting the dark matter directly in future experiments. The prospects are consistently very promising for a wide variety of model parameters within this scenario. C1 No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. NR 90 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 095005 DI 10.1103/PhysRevD.76.095005 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200073 ER PT J AU Medina, AD Shah, NR Wagner, CEM AF Medina, Anibal D. Shah, Nausheen R. Wagner, Carlos E. M. TI Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions SO PHYSICAL REVIEW D LA English DT Article ID RANDALL-SUNDRUM MODEL; PRECISION TESTS; FERMION MASSES; BULK; HIERARCHY; BOSON; SPACETIME; S-1/Z(2); GRAVITY; MIXINGS AB We compute the Coleman-Weinberg effective potential for the Higgs field in Randall-Sundrum Gauge-Higgs unification scenarios based on a bulk SO(5)xU(1)(X) gauge symmetry, with gauge and fermion fields propagating in the bulk and a custodial symmetry protecting the generation of large corrections to the T parameter and the coupling of the Z to the bottom quark. We demonstrate that electroweak symmetry breaking may be realized, with proper generation of the top- and bottom-quark masses for the same region of bulk mass parameters that lead to good agreement with precision electroweak data in the presence of a light Higgs. We compute the Higgs mass and demonstrate that, for the range of parameters for which the Higgs boson has standard model-like properties, the Higgs mass is naturally in a range that varies between values close to the CERN LEP experimental limit and about 160 GeV. This mass range may be probed at the Tevatron and at the CERN LHC. We analyze the Kaluza-Klein spectrum and briefly discuss the phenomenology of the light resonances arising in our model. C1 Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Medina, AD (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. OI Medina, Anibal/0000-0003-3662-4352 NR 40 TC 93 Z9 93 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 095010 DI 10.1103/PhysRevD.76.095010 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200078 ER PT J AU Vogelsang, W Yuan, F AF Vogelsang, Werner Yuan, Feng TI Hadronic dijet imbalance and transverse-momentum-dependent parton distributions SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; SPIN PRODUCTION ASYMMETRIES; QCD HARD SCATTERING; SINGLE-SPIN; DRELL-YAN; GAUGE; COLLISIONS; RESUMMATION AB We compare several recent theoretical studies of the single transverse-spin asymmetry in dijet correlations at hadron colliders. We show that the results of these studies are all consistent. To establish this, we investigate, in particular, the two-gluon exchange contributions to the relevant initial and final-state interactions in the context of a simplifying model. Overall, the results confirm that the dijet imbalance obeys, at best, a nonstandard or "generalized" transverse-momentum-dependent factorization. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Vogelsang, W (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM vogelsan@quark.phy.bnl.gov; fyuan@quark.phy.bnl.gov RI Yuan, Feng/N-4175-2013 NR 35 TC 49 Z9 49 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2007 VL 76 IS 9 AR 094013 DI 10.1103/PhysRevD.76.094013 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 236TV UT WOS:000251327200036 ER PT J AU Berman, GP Chumak, AA Gorshkov, VN AF Berman, G. P. Chumak, A. A. Gorshkov, V. N. TI Beam wandering in the atmosphere: The effect of partial coherence SO PHYSICAL REVIEW E LA English DT Article ID TURBULENT MEDIA; GAUSSIAN-BEAM; PROPAGATION AB The effect of a random phase screen on laser beam wander in a turbulent atmosphere is studied theoretically. The photon distribution function method is used to describe the photon kinetics of both weak and strong turbulence. By bringing together analytical and numerical calculations, we have obtained the variance of beam centroid deflections caused by scattering on turbulent eddies. It is shown that an artificial distortion of the initial coherence of the radiation can be used to decrease the wandering effect. The physical mechanism responsible for this reduction and the applicability of our approach are discussed. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Natl Acad Sci, Inst Phys, UA-03028 Kiev, Ukraine. RP Berman, GP (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM gpb@lanl.gov RI Gorshkov, Vyacheslav/J-3329-2015 OI Gorshkov, Vyacheslav/0000-0002-7700-5649 NR 12 TC 33 Z9 35 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 056606 DI 10.1103/PhysRevE.76.056606 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TL UT WOS:000251326200077 PM 18233781 ER PT J AU Chen, H Shepherd, R Chung, HK Kemp, A Hansen, SB Wilks, SC Ping, Y Widmann, K Fournier, KB Dyer, G Faenov, A Pikuz, T Beiersdorfer, P AF Chen, H. Shepherd, R. Chung, H. K. Kemp, A. Hansen, S. B. Wilks, S. C. Ping, Y. Widmann, K. Fournier, K. B. Dyer, G. Faenov, A. Pikuz, T. Beiersdorfer, P. TI Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities SO PHYSICAL REVIEW E LA English DT Article ID HOT-ELECTRONS; OBLIQUE-INCIDENCE; PLASMA; PULSES; TARGETS; EMISSION; BEAMS; GAIN; NM AB We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10(17), 10(18), and 10(19) W/cm(2), using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include K alpha generation, collisional coupling, and plasma expansion. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. VNIIFTRI, Multicharged Ion Spectra Data Ctr, Mendeleyevsk 141570, Moscow Oblast, Russia. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 34 TC 30 Z9 30 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 056402 DI 10.1103/PhysRevE.76.056402 PN 2 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TL UT WOS:000251326200067 PM 18233771 ER PT J AU Graham, JP Holm, DD Mininni, PD Pouquet, A AF Graham, Jonathan Pietarila Holm, Darryl D. Mininni, Pablo D. Pouquet, Annick TI Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential SO PHYSICAL REVIEW E LA English DT Article ID CAMASSA-HOLM EQUATIONS; FULLY-DEVELOPED TURBULENCE; EXTENDED SELF-SIMILARITY; ISOTROPIC TURBULENCE; NUMERICAL SIMULATIONS; DISSIPATION RANGE; FLUID TURBULENCE; FLOWS; LERAY; FLUCTUATIONS AB We compute solutions of the Lagrangian-averaged Navier-Stokes alpha- (LANS alpha) model for significantly higher Reynolds numbers (up to Re approximate to 8300) than have previously been accomplished. This allows sufficient separation of scales to observe a Navier-Stokes inertial range followed by a second inertial range specific to the LANS alpha model. Both fully helical and nonhelical flows are examined, up to Reynolds numbers of similar to 1300. Analysis of the third-order structure function scaling supports the predicted l(3) scaling; it corresponds to a k(-1) scaling of the energy spectrum for scales smaller than alpha. The energy spectrum itself shows a different scaling, which goes as k(1). This latter spectrum is consistent with the absence of stretching in the subfilter scales due to the Taylor frozen-in hypothesis employed as a closure in the derivation of the LANS alpha model. These two scalings are conjectured to coexist in different spatial portions of the flow. The l(3) [E(k)similar to k(-1)] scaling is subdominant to k(1) in the energy spectrum, but the l(3) scaling is responsible for the direct energy cascade, as no cascade can result from motions with no internal degrees of freedom. We demonstrate verification of the prediction for the size of the LANS alpha attractor resulting from this scaling. From this, we give a methodology either for arriving at grid-independent solutions for the LANS alpha model, or for obtaining a formulation of the large eddy simulation optimal in the context of the alpha models. The fully converged grid-independent LANS alpha model may not be the best approximation to a direct numerical simulation of the Navier-Stokes equations, since the minimum error is a balance between truncation errors and the approximation error due to using the LANS alpha instead of the primitive equations. Furthermore, the small-scale behavior of the LANS alpha model contributes to a reduction of flux at constant energy, leading to a shallower energy spectrum for large alpha. These small-scale features, however, do not preclude the LANS alpha model from reproducing correctly the intermittency properties of the high-Reynolds-number flow. C1 Natl Ctr Atmospher Res, Boulder, CO 80307 USA. Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. RP Graham, JP (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. RI Pietarila Graham, Jonathan/B-5222-2008; OI Pietarila Graham, Jonathan/0000-0003-1862-0526; Mininni, Pablo/0000-0001-6858-6755 NR 64 TC 21 Z9 21 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 056310 DI 10.1103/PhysRevE.76.056310 PN 2 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TL UT WOS:000251326200055 PM 18233759 ER PT J AU Hexemer, A Vitelli, V Kramer, EJ Fredrickson, GH AF Hexemer, A. Vitelli, V. Kramer, E. J. Fredrickson, G. H. TI Monte Carlo study of crystalline order and defects on weakly curved surfaces SO PHYSICAL REVIEW E LA English DT Article ID GRAIN-BOUNDARY SCARS; CRYSTALLOGRAPHY; MEMBRANES AB We numerically study the ground states of particles interacting via a repulsive Yukawa potential on two rigid substrates shaped as isolated and periodically arranged bumps characterized by a spatially varying Gaussian curvature. Below a critical aspect ratio that describes the substrate deformation, the lattice is frustrated, but defect free. A further increase of the aspect ratio triggers defect unbinding transitions that lower the total potential energy by introducing dislocations either in isolation or within grain boundaries. In the presence of very strong deformations, isolated disclinations are nucleated. We show that the character and spatial distribution of defects observed in the ground state reflect the symmetries and periodicity of the two model surfaces investigated in this study. C1 Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. RP Hexemer, A (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM edkramer@mrl.ucsb.edu NR 37 TC 17 Z9 17 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 051604 DI 10.1103/PhysRevE.76.051604 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TK UT WOS:000251326100057 PM 18233666 ER PT J AU Karpeev, D Aranson, IS Tsimring, LS Kaper, HG AF Karpeev, Dmitry Aranson, Igor S. Tsimring, Lev S. Kaper, Hans G. TI Interactions of semiflexible filaments and molecular motors SO PHYSICAL REVIEW E LA English DT Article ID SELF-ORGANIZATION; MICROTUBULES AB This paper summarizes the results of numerical simulations of the interaction of a pair of biofilaments mediated by a molecular motor. The filaments are modeled as flexible rods, and the results are applicable to microtubules, which are relatively stiff, as well as to much softer filaments, such as actin. The results provide insight into the effects of flexibility on cytoskeleton formation and the rheology of semiflexible filament networks. The simulations are based on a nonlinear elasticity equation. The results show that flexibility enhances the tendency of filaments to align. The enhancement in turn favors the formation of large-scale structures in multifilament systems. Simulations for soft filaments show that the action of the motor can result in the formation of multiple loops of the filaments as a result of buckling, which can affect the structure of a cross-linked network and thereby its rheology. The estimate for the minimal buckling length as a function of the motor speed, the viscosity of the solvent, and the bending stiffness of the filament is derived analytically. C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA. Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA. RP Karpeev, D (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Aranson, Igor/I-4060-2013 NR 24 TC 12 Z9 12 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 051905 DI 10.1103/PhysRevE.76.051905 PN 1 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TK UT WOS:000251326100076 PM 18233685 ER PT J AU Nukala, PKVV Zapperi, S Alava, MJ Simunovic, S AF Nukala, Phani K. V. V. Zapperi, Stefano Alava, Mikko J. Simunovic, Srdan TI Effect of disorder and notches on crack roughness SO PHYSICAL REVIEW E LA English DT Article ID FRACTURE SURFACES; LINES; WOOD AB We analyze the effect of disorder and notches on crack roughness in two dimensions. Our simulation results based on large system sizes and extensive statistical sampling indicate that the crack surface exhibits a universal local roughness of zeta(loc)=0.71 and is independent of the initial notch size and disorder in breaking thresholds. The global roughness exponent scales as zeta=0.87 and is also independent of material disorder. Furthermore, we note that the statistical distribution of crack profile height fluctuations is also independent of material disorder and is described by a Gaussian distribution, albeit deviations are observed in the tails. C1 Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. Univ Rome, CNR, INFM, Dipartimento Fis, I-00185 Rome, Italy. ISI Fdn, I-10133 Turin, Italy. Aalto Univ, Phys Lab, FIN-02015 Helsinki, Finland. RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RI Alava, Mikko/G-2202-2013; Zapperi, Stefano/C-9473-2009 OI Alava, Mikko/0000-0001-9249-5079; Zapperi, Stefano/0000-0001-5692-5465 NR 36 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 056111 DI 10.1103/PhysRevE.76.056111 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TL UT WOS:000251326200018 PM 18233722 ER PT J AU Shen, BF Li, YL Yu, MY Cary, J AF Shen, Baifei Li, Yuelin Yu, M. Y. Cary, John TI Bubble regime for ion acceleration in a laser-driven plasma SO PHYSICAL REVIEW E LA English DT Article ID ELECTRON-BEAMS; PROTONS; PULSES AB Proton trapping and acceleration by an electron bubble-channel structure in laser interaction with high-density plasma is investigated by using three-dimensional particle-in-cell simulations. It is shown that protons can be trapped, bunched, and efficiently accelerated for appropriate laser and plasma parameters, and the proton acceleration is enhanced if the plasma consists mainly of heavier ions such as tritium. The observed results are analyzed and discussed in terms of a one-dimensional analytical three-component-plasma wake model. C1 Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. Argone Accelerator Inst, Argonne Natl Lab, Argonne, IL 60439 USA. Ruhr Univ Bochum, Inst Theoret Phys 1, D-44780 Bochum, Germany. Tech X Corp, Boulder, CO 80303 USA. Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Shen, BF (reprint author), Shanghai Inst Opt & Fine Mech, PO Box 800-211, Shanghai 201800, Peoples R China. RI Shen, Baifei/B-3396-2008 NR 23 TC 22 Z9 23 U1 5 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 055402 DI 10.1103/PhysRevE.76.055402 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TL UT WOS:000251326200006 PM 18233710 ER PT J AU Sherrill, ME Mancini, RC Bailey, J Filuk, A Clark, B Lake, P Abdallah, J AF Sherrill, M. E. Mancini, R. C. Bailey, J. Filuk, A. Clark, B. Lake, P. Abdallah, J., Jr. TI Spectroscopic modeling and characterization of a collisionally confined laser-ablated plasma plume SO PHYSICAL REVIEW E LA English DT Article ID ELECTRIC MICROFIELD DISTRIBUTIONS; DYNAMICS; PROPAGATION; IONS AB Plasma plumes produced by laser ablation are an established method for manufacturing the high quality stoichiometrically complex thin films used for a variety of optical, photoelectric, and superconducting applications. The state and reproducibility of the plasma close to the surface of the irradiated target plays a critical role in producing high quality thin films. Unfortunately, this dense plasma has historically eluded quantifiable characterization. The difficulty in modeling the plume formation arises in the accounting for the small amount of energy deposited into the target when physical properties of these exotic target materials are not known. In this work we obtain the high density state of the plasma plume through the use of an experimental spectroscopic technique and a custom spectroscopic model. In addition to obtaining detailed temperature and density profiles, issues regarding line broadening and opacity for spectroscopic characterization will be addressed for this unique environment. C1 Univ Nevada, Dept Phys, Reno, NV 89557 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sherrill, ME (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 26 TC 11 Z9 11 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 056401 DI 10.1103/PhysRevE.76.056401 PN 2 PG 16 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TL UT WOS:000251326200066 PM 18233770 ER PT J AU Welser-Sherrill, L Mancini, RC Koch, JA Izumi, N Tommasini, R Haan, SW Haynes, DA Golovkin, IE MacFarlane, JJ Delettrez, JA Marshall, FJ Regan, SP Smalyuk, VA Kyrala, G AF Welser-Sherrill, L. Mancini, R. C. Koch, J. A. Izumi, N. Tommasini, R. Haan, S. W. Haynes, D. A. Golovkin, I. E. MacFarlane, J. J. Delettrez, J. A. Marshall, F. J. Regan, S. P. Smalyuk, V. A. Kyrala, G. TI Spectroscopic determination of temperature and density spatial profiles and mix in indirect-drive implosion cores SO PHYSICAL REVIEW E LA English DT Article ID INERTIAL CONFINEMENT FUSION; BETA LINE; GRADIENTS; PLASMAS; OMEGA; SATELLITES; OPACITY AB In the field of inertial confinement fusion (ICF), work has been consistently progressing in the past decade toward a more fundamental understanding of the plasma conditions in ICF implosion cores. The research presented here represents a substantial evolution in the ability to diagnose plasma temperatures and densities, along with characteristics of mixing between fuel and shell materials. Mixing is a vital property to study and quantify, since it can significantly affect implosion quality. We employ a number of new spectroscopic techniques that allow us to probe these important quantities. The first technique developed is an emissivity analysis, which uses the emissivity ratio of the optically thin Ly beta and He beta lines to spectroscopically extract temperature profiles, followed by the solution of emissivity equations to infer density profiles. The second technique, an intensity analysis, models the radiation transport through the implosion core. The nature of the intensity analysis allows us to use an optically thick line, the Ly alpha, to extract information on mixing near the core edge. With this work, it is now possible to extract directly from experimental data not only detailed temperature and density maps of the core, but also spatial mixing profiles. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Nevada, Dept Phys, Reno, NV 89557 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Prism Computat Sci, Madison, WI 53703 USA. Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Welser-Sherrill, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 NR 35 TC 23 Z9 26 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2007 VL 76 IS 5 AR 056403 DI 10.1103/PhysRevE.76.056403 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 236TL UT WOS:000251326200068 PM 18233772 ER PT J AU Agapov, I Blair, GA Woodley, M AF Agapov, I. Blair, G. A. Woodley, M. TI Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Accurate measurement of the beam phase space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider (ILC) based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated. C1 [Agapov, I.] CERN, CH-1211 Geneva 23, Switzerland. [Blair, G. A.] Royal Holloway Univ London, John Adams Inst, Egham TW20 0EX, Surrey, England. [Woodley, M.] SLAC, Menlo Pk, CA 94025 USA. RP Agapov, I (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM Ilya.Agapov@cern.ch; blair@pp.rhul.ac.uk; mwd@slac.stanford.edu NR 30 TC 19 Z9 19 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2007 VL 10 IS 11 AR 112801 DI 10.1103/PhysRevSTAB.10.112801 PG 20 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 239SH UT WOS:000251537500008 ER PT J AU Lei, DY Yu, S AF Lei, D. Y. Yu, Simon TI Design criteria for multipulse operation of a multisection pulse line ion accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We present a first study of the pulse line ion accelerator operating in a multipulse, multisection mode. The study is directed towards applications with long beam pulse in a long linac with a series of accelerating structures. We show that this operating mode is possible provided that the amplitude of the accelerating voltage waveform does not change over the entire pulse train and the operating frequencies of different sections are the same. A design criteria for the length and energy gain of a multisection linac is derived, and is applied to an example of a heavy ion linac injector. C1 [Lei, D. Y.; Yu, Simon] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Lei, D. Y.; Yu, Simon] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lei, DY (reprint author), Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. EM dylei@phy.cuhk.edu.hk RI Lei, Dangyuan/B-9812-2011 OI Lei, Dangyuan/0000-0002-8963-0193 NR 10 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2007 VL 10 IS 11 AR 110401 DI 10.1103/PhysRevSTAB.10.110401 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 239SH UT WOS:000251537500001 ER PT J AU Wenk, HR Bortolotti, M Barton, N Oliver, E Brown, D AF Wenk, H.-R. Bortolotti, M. Barton, N. Oliver, E. Brown, D. TI Dauphine twinning and texture memory in polycrystalline quartz SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE quartz; mechanical twinning; in situ neutron diffraction; FEM ID ALPHA-BETA-TRANSITION; NEUTRON-DIFFRACTION; TEMPERATURE-VARIATION; TOF DIFFRACTOMETER; X-RAY; DEFORMATION; STRESSES; TIME AB Mechanical twinning in polycrystalline quartz was investigated in situ with time-of-flight neutron diffraction and a strain diffractometer. Dauphine twinning is highly temperature sensitive. It initiates at a macroscopic differential stress of 50-100 MPa and, at 500 degrees C, saturates at 400 MPa. From normalized diffraction intensities the patterns of preferred orientation (or texture) can be inferred. They indicate a partial reversal of twinning during unloading. The remaining twins impose residual stresses corresponding to elastic strains of 300-400 microstrain. Progressive twinning on loading and reversal during unloading, as well as the temperature dependence, can be reproduced with finite element model simulations. C1 Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. RP Wenk, HR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@seismo.berkeley.edu RI Bortolotti, Mauro/H-2159-2012 NR 28 TC 16 Z9 18 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD NOV PY 2007 VL 34 IS 9 BP 599 EP 607 DI 10.1007/s00269-007-0174-6 PG 9 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 224ZF UT WOS:000250486200001 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baumgart, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Benedosso, F Betts, RR Bharadwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Billmeier, A Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Burton, TP Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Callner, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, HA Christie, W Chung, SU Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Fornazier, KSF Fu, J Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Guertin, SM Guimaraes, KSFF Gupta, N Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, D Hollis, R Horner, MJ Huang, HZ Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jia, F Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kurnadi, P Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mitchell, J Mohanty, B Molnar, L Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Qattan, IA Raniwala, R Raniwala, S Ray, RL Razin, SV Reinnarth, J Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Savin, I Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Smirnov, N Snellings, R Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Z Surrow, B Symons, TJM de Toledo, AS Ak, JT Tang, AH Tarnowsky, T Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yue, Q Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baumgart, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Benedosso, F. Betts, R. R. Bharadwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Billmeier, A. Bland, L. C. Blyth, S. -L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Burton, T. P. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Callner, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, H. A. Christie, W. Chung, S. U. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fornazier, K. S. F. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, N. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. Hollis, R. Horner, M. J. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kurnadi, P. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Lopez-Noriega, M. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mitchell, J. Mohanty, B. Molnar, L. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Nikitin, V. A. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Qattan, I. A. Raniwala, R. Raniwala, S. Ray, R. L. Razin, S. V. Reinnarth, J. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Savin, I. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tarnowsky, T. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. -C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yue, Q. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. CA STAR Collaboration TI Energy dependence of pi(+/-), p and (p)over-bar transverse momentum spectra for Au+Au collisions at root SNN=62.4 and 200 GeV SO PHYSICS LETTERS B LA English DT Article DE particle production; recombination; fragmentation; jet quenching; nuclear modification factor; particle ratios ID NUCLEUS-NUCLEUS COLLISIONS; RESISTIVE PLATE CHAMBERS; QUARK-GLUON PLASMA; PARTICLE IDENTIFICATION; HADRON-PRODUCTION; D+AU COLLISIONS; STAR EXPERIMENT; JET; COLLABORATION; PROTON AB We study the energy dependense of the transverse momentum (PT) spectra for charged pions, protons and anti-protons for An + An collisions at root(NN)-N-s = 62.4 and 200 GeV. Data are presented at mid-rapidity (broken vertical bar y broken vertical bar < 0.5) for 0.2 < PT < 12 GeV/c. In the intermediate PT region (2 < PT < 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher PT (PT > 7 GeV/c) the modification is similar for both energies. The p/pi(+) and (p) over bar/pi(-) ratios for central collisions at root(NN)-N-s = 62.4 GeV peak at PT similar or equal to 2 GeV/c. In the PT range where recombination is expected to dominate, the p/pi(+) ratios at 62.4 GeV are larger than at 200 GeV, while the (p) over bar/pi(-) ratios are smaller. For PT > 2 GeV/c, the (p) over bar/pi(-) ratios at the two beam energies are independent of P-T and centrality indicating that the dependence of the (p) over bar/pi(-) ratio on P-T does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence. (C) 2007 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Birmingham, Birmingham, W Midlands, England. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Illinois, Chicago, IL USA. Creighton Univ, Omaha, NE 68178 USA. Inst Nucl Phys AS, CR-25068 Prague, Czech Republic. Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. Joint Inst Nucl Res Dubna, Phys Particules Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Inst Modern Phys, Lanzhou, Peoples R China. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. Univ Utrecht, NIKHEF H, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Hefei 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ Coll Stn, College Stn, TX 77843 USA. Univ Texas Austin, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Mohanty, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bmohanty@lbl.gov RI Barnby, Lee/G-2135-2010; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 NR 52 TC 116 Z9 118 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 1 PY 2007 VL 655 IS 3-4 BP 104 EP 113 DI 10.1016/j.physletb.2007.06.035 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 232JV UT WOS:000251016300003 ER PT J AU Balabekyan, AR Danagulyan, AS Drnoyan, JR Hovhannisyan, GH Demekhina, NA Adam, J Kalinnikov, VG Krivopustov, MI Pronskikh, VS Stegailov, VI Solnyshkin, AA Chaloun, P Tsoupko-Sitnikov, VM Mashnik, SG Gudima, KK AF Balabekyan, A. R. Danagulyan, A. S. Drnoyan, J. R. Hovhannisyan, G. H. Demekhina, N. A. Adam, J. Kalinnikov, V. G. Krivopustov, M. I. Pronskikh, V. S. Stegailov, V. I. Solnyshkin, A. A. Chaloun, P. Tsoupko-Sitnikov, V. M. Mashnik, S. G. Gudima, K. K. TI Recoil Products from p+Sn-118 and d+Sn-118 at 3.65 GeV/A SO PHYSICS OF ATOMIC NUCLEI LA English DT Article ID PARTICLE-NUCLEUS REACTIONS; PROTON-INDUCED REACTIONS; SEPARATED TIN ISOTOPES; HEAVY-ION COLLISIONS; QUARK-GLUON STRINGS; RESIDUAL NUCLEI; FISSION REACTIONS; SYSTEMATICS; MODEL; FRAGMENTATION AB The recoil properties of the product nuclei from the interaction of 3.65-GeV/nucleon protons and deuterons from the Nuclotron and Synchrophasotron of the Laboratory of High Energies (LHE), Joint Institute for Nuclear Research (JINR) at Dubna, with a Sn-118 target have been studied using catcher foils. The experimental data were analyzed using the mathematical formalism of the standard two-step vector model. The analysis of kinematical characteristics of the light and rnedium-mass reaction products confirmed the contribution of fragmentation (or multifragmentation) processes in the production of these nuclei. The comparison of the results for protons and deuterons was made. The longitudinal momenta transferred to the target in the interaction with protons and deuterons were similar and was shown to depend only on the velocity, but not on the mass of projectile. Three different Los Alamos versions of the quark-gluon-string model (LAQGSM) were used for the discussion of our experimental results, C1 Yerevan State Univ, Yerevan 375049, Armenia. Yerevan Phys Inst, Yerevan 375036, Armenia. Joint Inst Nucl Res, Dubna, Russia. INF AS, Rez, Czech Republic. Los Alamos Natl Lab, Los Alamos, NM USA. Moldavian Acad Sci, Inst Appl Phys, Kishinev, Moldova. RP Balabekyan, AR (reprint author), Yerevan State Univ, Yerevan 375049, Armenia. EM balabekyan@ysu.am RI Adam, Jindrich /G-9788-2014 NR 42 TC 4 Z9 4 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD NOV PY 2007 VL 70 IS 11 BP 1889 EP 1897 DI 10.1134/S1063778807110087 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 236QG UT WOS:000251317900008 ER PT J AU Choi, M Turnbull, AD Chan, VS Chu, MS Lao, LL Jeon, YM Li, G Ren, Q Pinsker, RI AF Choi, M. Turnbull, A. D. Chan, V. S. Chu, M. S. Lao, L. L. Jeon, Y. M. Li, G. Ren, Q. Pinsker, R. I. TI Sawtooth control using beam ions accelerated by fast waves in the DIII-D tokamak SO PHYSICS OF PLASMAS LA English DT Article ID INTERNAL KINK MODES; ENERGETIC TRAPPED-PARTICLES; MHD STABILITY CODE; CYCLOTRON HARMONICS; TOROIDAL PLASMAS; STABILIZATION; SIMULATION; EQUILIBRIUM; ABSORPTION; PERIOD AB The accuracy of the Porcelli sawtooth model is evaluated using realistic numerical calculations for a DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] experiment with neutral beam injection and fast wave heating. Simulation results confirm that beam ions accelerated by the fast waves play a crucial role in delaying the normal sawtooth crash and inducing giant sawteeth with large amplitude and long period. A single giant sawtooth period was analyzed in detail in an effort to evaluate the efficacy of the Porcelli model in quantitatively predicting a particular sawtooth crash by evaluating the model through the sawtooth period using equilibria reconstructed from the discharge data. The kinetic stabilizing contribution of fast trapped ions is found to depend strongly on both the experimentally reconstructed magnetic shear at the q=1 surface (s(1)) and the calculated poloidal beta of trapped beam ions inside the q=1 surface. To within estimates of the error from the equilibrium reconstructions and the simulation fast ion particle statistics, the results are consistent with the observed sawtooth crash. The calculations indicate that the sawtooth crash is ultimately triggered by the resistive kink in the ion-kinetic regime after the stabilizing contribution from the fast ions is reduced due to an increase in s(1) as the discharge evolves. (C) 2007 American Institute of Physics. C1 Gen Atom Co, San Diego, CA 92186 USA. Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. Chinese Acad Sci, Inst Plasma Phys, Hefei, Anhiu, Peoples R China. RP Choi, M (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. NR 37 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2007 VL 14 IS 11 AR 112517 DI 10.1063/1.2815788 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 236TH UT WOS:000251325800041 ER PT J AU Kirkwood, RK Dewald, E Niemann, C Meezan, N Wilks, SC Price, DW Landen, OL Wurtele, J Charman, AE Lindberg, R Fisch, NJ Malkin, VM Valeo, EO AF Kirkwood, R. K. Dewald, E. Niemann, C. Meezan, N. Wilks, S. C. Price, D. W. Landen, O. L. Wurtele, J. Charman, A. E. Lindberg, R. Fisch, N. J. Malkin, V. M. Valeo, E. O. TI Amplification of an ultrashort pulse laser by stimulated Raman scattering of a 1 ns pulse in a low density plasma SO PHYSICS OF PLASMAS LA English DT Article ID ACCELERATOR; IGNITION; PROFILE; PUMP AB Experiments are described in which a 1 mJ, 1 ps, 1200 nm seed laser beam is amplified by the interaction with an intersecting 350 J, 1 ns, 1054 nm pump beam in a low density (1x10(19)/cm(3)) plasma. The transmission of the seed beam is observed to be enhanced by greater than or similar to 25x when the plasma is near the resonant density for stimulated Raman scattering, compared to measured transmissions at wavelengths just below the resonant value. The amplification is observed to increase rapidly with increases in both pump intensity and plasma density. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Princeton Univ, Princeton, NJ 08543 USA. RP Kirkwood, RK (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 NR 18 TC 26 Z9 26 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2007 VL 14 IS 11 AR 113109 DI 10.1063/1.2804083 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 236TH UT WOS:000251325800058 ER PT J AU Luo, Y Heidbrink, WW Burrell, KH Ruskov, E Solomon, WM AF Luo, Y. Heidbrink, W. W. Burrell, K. H. Ruskov, E. Solomon, W. M. TI Fast-ion D(alpha) measurements and simulations in quiet plasmas SO PHYSICS OF PLASMAS LA English DT Article ID DIII-D TOKAMAK; THOMSON SCATTERING; RECONSTRUCTION; DISTRIBUTIONS; OPERATION; DESIGN AB The D(alpha) light emitted by neutralized deuterium fast ions is measured in magnetohydrodynamics (MHD)-quiescent, magnetically confined plasmas during neutral beam injection. A weighted Monte Carlo simulation code models the fast-ion D(alpha) spectra based on the fast-ion distribution function calculated classically by TRANSP [R. V. Budny, Nucl. Fusion 34, 1247 (1994)]. The spectral shape is in excellent agreement and the magnitude also has reasonable agreement. The fast-ion D(alpha) signal has the expected dependencies on various parameters including injection energy, injection angle, viewing angle, beam power, electron temperature, and electron density. The neutral particle diagnostic and measured neutron rate corroborate the fast-ion D(alpha) measurements. The relative spatial profile agrees with TRANSP and is corroborated by the fast-ion pressure profile inferred from the equilibrium. (C) 2007 American Institute of Physics. C1 Univ Calif Irvine, Irvine, CA 92697 USA. Gen Atom Co, San Diego, CA 92186 USA. Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Luo, Y (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. NR 22 TC 21 Z9 21 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2007 VL 14 IS 11 AR 112503 DI 10.1063/1.2794320 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 236TH UT WOS:000251325800027 ER PT J AU O'Neill, RG Marklin, GJ Jarboe, TR Akcay, C Hamp, WT Nelson, BA Redd, AJ Smith, RJ Stewart, BT Wrobel, JS Sieck, PE AF O'Neill, R. G. Marklin, G. J. Jarboe, T. R. Akcay, C. Hamp, W. T. Nelson, B. A. Redd, A. J. Smith, R. J. Stewart, B. T. Wrobel, J. S. Sieck, P. E. TI A fully relaxed helicity balance model for an inductively driven spheromak SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC HELICITY; INJECTION; RELAXATION; PLASMA AB Magnetic helicity balance and a fully relaxed Taylor-state model are shown to predict the magnitude of sustained equilibrium current in an inductively driven spheromak. The Helicity Injected Torus with Steady Inductive drive (HIT-SI) [T. R. Jarboe , Phys. Rev. Lett. 97, 115003 (2006)] forms and sustains spheromaks using two inductively driven helicity injectors. By assuming helicity is injected at a rate 2V Psi, and only decays through Spitzer resistivity using T(e) measured with a Langmuir probe, the magnitude of the sustained equilibrium current is predicted with no fitting parameters. The model correctly predicts a threshold helicity injection rate for spheromak formation. Although the experimental results suggest a higher effective helicity dissipation rate by a factor of similar to 1.37 compared to the Spitzer value, the prediction is still within the uncertainties of the measured parameters. (C) 2007 American Institute of Physics. C1 Univ Washington, Seattle, WA 98195 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP O'Neill, RG (reprint author), Univ Washington, Box 352250, Seattle, WA 98195 USA. NR 18 TC 8 Z9 8 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2007 VL 14 IS 11 AR 112304 DI 10.1063/1.2801410 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 236TH UT WOS:000251325800020 ER PT J AU Rovang, DC Bruner, N Maenchen, JE Oliver, BV Portillo, S Puetz, E Rose, DV Welch, DR AF Rovang, D. C. Bruner, N. Maenchen, J. E. Oliver, B. V. Portillo, S. Puetz, E. Rose, D. V. Welch, D. R. TI The role of ions during stable impedance operation of the immersed-B(z) diode at 4 to 5 MV SO PHYSICS OF PLASMAS LA English DT Article ID INTENSE ELECTRON-BEAM; DRIVEN RADIOGRAPHY; LIMITING CURRENTS; MAGNETIC-FIELD; SOLID-SURFACES; TRANSPORT; BREMSSTRAHLUNG; PERFORMANCE; FACILITY; DESIGN AB The immersed-B(z) diode is being developed as a high-brightness, flash x-ray radiography source at Sandia National Laboratories. This diode is a foil-less electron-beam diode with a long, thin, needlelike cathode that is inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces forward-directed bremsstrahlung. In addition, electron beam heating of the anode produces surface plasmas allowing ion emission. Two different operating regimes for this diode have been identified: a nominal operating regime where the total diode current is characterized as classically bipolar and an anomalous operating regime characterized by a dramatic impedance collapse where the total diode current greatly exceeds the bipolar limit. Data from a comprehensive series of experiments fielded at 4 and 5 MV, where the diode operates in the nominal or stable impedance regime, with beam currents ranging from 20-40 kA on target are presented. In this mode, both the measured diode current and experimental radiation production are consistent with physics based models including two-dimensional particle-in-cell simulations. The analysis indicates that intermediate mass ions (e.g., 12-18 amu) control the nominal impedance evolution rather than expected lighter mass ions such as hydrogen. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rovang, DC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dcrovan@sandia.gov NR 36 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2007 VL 14 IS 11 AR 113107 DI 10.1063/1.2804747 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 236TH UT WOS:000251325800056 ER PT J AU Sarkisov, GS Rosenthal, SE Struve, KW Cowan, TE Presura, R Astanovitskiy, AL Haboub, A Morozov, A AF Sarkisov, G. S. Rosenthal, S. E. Struve, K. W. Cowan, T. E. Presura, R. Astanovitskiy, A. L. Haboub, A. Morozov, A. TI Initiation of aluminum wire array on the 1-MA ZEBRA accelerator and its effect on ablation dynamics and x-ray yield SO PHYSICS OF PLASMAS LA English DT Article ID ENERGY DEPOSITION; TUNGSTEN WIRE; EXPLODING WIRES; VACUUM; IMPLOSION; EXPANSION; CORE AB The effect of current prepulse on the initiation of Al wire arrays, ablation dynamics and x-ray production was investigated on the 1-MA ZEBRA accelerator (University of Nevada, Reno). It is shown that increasing the number of wires lowers the temperature of the wire cores at the time of breakdown. Al arrays with cold wire cores demonstrate long and inhomogeneous ablation, and a less intense, wider x-ray pulse. Shortening the current prepulse by a flashover switch causes an increased wire-core temperature, symmetrization and synchronization of the wires' ablation, and improvement of the amplitude and shape of the x-ray pulse. Application of a vacuum flashover switch can be important for shortening the current prepulse on the upcoming 28-MA ZR-accelerator at Sandia National Laboratories to optimize the x-ray production and shot-to-shot reproducibility from wire-array Z pinches. (C) 2007 American Institute of Physics. C1 Ktech Corp Inc, Albuquerque, NM 87123 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Nevada, Reno, NV 89506 USA. RP Sarkisov, GS (reprint author), Ktech Corp Inc, 10800 Gibson Blvd, Albuquerque, NM 87123 USA. RI Cowan, Thomas/A-8713-2011 OI Cowan, Thomas/0000-0002-5845-000X NR 25 TC 9 Z9 12 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2007 VL 14 IS 11 AR 112701 DI 10.1063/1.2804961 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 236TH UT WOS:000251325800042 ER PT J AU Stoeckl, C Boehly, TR Delettrez, JA Hatchett, SP Frenje, JA Glebov, VY Li, CK Miller, JE Petrasso, RD Seguin, FH Smalyuk, VA Stephens, RB Theobald, W Yaakobi, B Sangster, TC AF Stoeckl, C. Boehly, T. R. Delettrez, J. A. Hatchett, S. P. Frenje, J. A. Glebov, V. Yu. Li, C. K. Miller, J. E. Petrasso, R. D. Seguin, F. H. Smalyuk, V. A. Stephens, R. B. Theobald, W. Yaakobi, B. Sangster, T. C. TI Hydrodynamics studies of direct-drive cone-in-shell, fast-ignitor targets on OMEGA SO PHYSICS OF PLASMAS LA English DT Article ID CONVERSION-EFFICIENCY; LASER; FUSION; UNIVERSITY; DENSITY; PLASMA; SYSTEM AB Experiments have been performed on the OMEGA Laser Facility [T. R. Boehly , Opt. Commun. 133, 495 (1997)] to study the hydrodynamics of directly driven cone-in-shell, fast-ignitor targets. A 35 degrees or 70 degrees opening-angle gold cone was inserted into spherical plastic shells of similar to 24-mu m thickness and similar to 870-mu m diameter, which were imploded with up to 21 kJ of 351-nm laser light. A backlighter was used on some experiments to compare the fuel assembly of targets with or without a high-pressure fill gas. The shock breakthrough to the inside of the cone, where the ultrafast laser propagates in integrated fast-ignitor experiments, was studied using a streaked optical pyrometer. No plasma was seen inside the cone before the assembled core reached peak compression. (C) 2007 American Institute of Physics. C1 Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Gen Atom Co, San Diego, CA 92121 USA. RP Stoeckl, C (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. OI Stephens, Richard/0000-0002-7034-6141 NR 30 TC 10 Z9 10 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2007 VL 14 IS 11 AR 112702 DI 10.1063/1.2812706 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 236TH UT WOS:000251325800043 ER PT J AU Dean, DJ AF Dean, David J. TI Beyond the nuclear shell model SO PHYSICS TODAY LA English DT Article AB Nuclear theorists are working to develop a comprehensive understanding of all nuclei. To achieve that goal, they'll need continuing advances in computational power along with data from new and challenging experiments. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dean, DJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI Dean, David/0000-0002-5688-703X NR 16 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD NOV PY 2007 VL 60 IS 11 BP 48 EP 53 DI 10.1063/1.2812123 PG 6 WC Physics, Multidisciplinary SC Physics GA 227YZ UT WOS:000250695200022 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical point citizen science SO PHYSICS WORLD LA English DT Editorial Material C1 SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD NOV PY 2007 VL 20 IS 11 BP 21 EP 21 PG 1 WC Physics, Multidisciplinary SC Physics GA 230SX UT WOS:000250897300026 ER PT J AU Bergmann, U AF Bergmann, Uwe TI Archimedes brought to light SO PHYSICS WORLD LA English DT Article C1 Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Bergmann, U (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM bergmann@slac.stanford.edu NR 0 TC 14 Z9 14 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD NOV PY 2007 VL 20 IS 11 BP 39 EP 42 PG 4 WC Physics, Multidisciplinary SC Physics GA 230SX UT WOS:000250897300040 ER PT J AU Kalchgruber, R Blair, MW McKeever, SWS Benton, ER Reust, DK AF Kalchgruber, Regina Blair, Michael W. McKeever, Stephen W. S. Benton, Eric R. Reust, Dennis K. TI Progress towards robotic in-situ dating of martian sediments using optically stimulated luminescence SO PLANETARY AND SPACE SCIENCE LA English DT Article DE luminescence dating; OSL; Mars; cosmic radiation ID REGENERATIVE-DOSE PROTOCOL; POLYMINERAL FINE GRAINS; EARLY MARS; MERIDIANI-PLANUM; JSC MARS-1; SURFACE; QUARTZ; RADIATION; FELDSPAR; SYSTEM AB Recent exploratory efforts to reveal the evolution and the climatic history of Mars have shown that the planet is still active. The surface of Mars has been, and continues to be, shaped by fluvial, colian and glacial processes. The timeframe of these events is, however, poorly established. We describe efforts and challenges to adapt optically stimulated luminescence (OSL) dating for robotic in-situ dating of martian sediments. Mineral mixtures were devised as simulants of martian regolith. The single-aliquot regeneration (SAR) procedure was modified to enable the determination of the equivalent dose for polymineral samples. Low-temperature measurements and simulations indicate that known (loses delivered at low temperatures can be effectively estimated as long as the stimulation temperature is greater than the highest temperature experienced during the initial irradiation. Bleaching experiments with a solar simulator suggest efficient zeroing of the OSL signal for solar-exposed sediments on Mars. Irradiations with proton and heavy-charged particles show a lower efficiency in luminescence production than that found for beta and gamma radiation. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Kalchgruber, Regina; Blair, Michael W.; McKeever, Stephen W. S.; Benton, Eric R.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Reust, Dennis K.] Nomadics Inc, Stillwater, OK 74074 USA. [Blair, Michael W.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Kalchgruber, R (reprint author), Oklahoma State Univ, Dept Phys, 145 Phys Sci 2, Stillwater, OK 74078 USA. EM regina.kalchgruber@okstate.edu OI DeWitt, Regina/0000-0003-2876-5489 NR 81 TC 11 Z9 11 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2007 VL 55 IS 14 BP 2203 EP 2217 DI 10.1016/j.pss.2007.09.002 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 245HL UT WOS:000251925600019 ER PT J AU Sittler, EC Thomsen, M Johnson, RE Hartle, RE Burger, M Chornay, D Shappirio, MD Simpson, D Smith, HT Coates, AJ Rymer, AM McComas, DJ Young, DT Reisenfeld, D Dougherty, M Andre, N AF Sittler, E. C. Thomsen, M. Johnson, R. E. Hartle, R. E. Burger, M. Chornay, D. Shappirio, M. D. Simpson, D. Smith, H. T. Coates, A. J. Rymer, A. M. McComas, D. J. Young, D. T. Reisenfeld, D. Dougherty, M. Andre, N. TI Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results (vol 54, pg 1197, 2006) SO PLANETARY AND SPACE SCIENCE LA English DT Correction C1 [Sittler, E. C.; Hartle, R. E.; Burger, M.; Chornay, D.; Shappirio, M. D.; Simpson, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thomsen, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Johnson, R. E.; Smith, H. T.] Univ Virginia, Charlottesville, VA USA. [Rymer, A. M.] Johns Hopkins Appl Phys Lab, Baltimore, MD 21218 USA. [McComas, D. J.; Young, D. T.] SW Res Inst, San Antonio, TX USA. [Reisenfeld, D.] Univ Montana, Missoula, MT 59812 USA. [Dougherty, M.] Univ London Imperial Coll Sci Technol & Med, London, England. RP Sittler, EC (reprint author), NASA, Goddard Space Flight Ctr, Code 612-2,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM edward.c.sittler@nasa.gov RI Coates, Andrew/C-2396-2008; Reisenfeld, Daniel/F-7614-2015; Smith, Howard/H-4662-2016 OI Coates, Andrew/0000-0002-6185-3125; Smith, Howard/0000-0003-3537-3360 FU Science and Technology Facilities Council [PP/D00084X/1] NR 1 TC 13 Z9 13 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2007 VL 55 IS 14 BP 2218 EP 2220 DI 10.1016/j.pss.2006.11.022 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 245HL UT WOS:000251925600020 ER PT J AU Bernstein, R Thornberg, SM Assink, RA Irwin, AN Hochrein, JM Brown, JR Derzon, DK Klamo, SB Clough, RL AF Bernstein, Robert Thornberg, Steven M. Assink, Roger A. Irwin, Adriane N. Hochrein, James M. Brown, Jason R. Derzon, Dora K. Klamo, Sara B. Clough, Roger L. TI The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labeling SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE radiation degradation; radiation oxidation; polypropylene degradation; polypropylene irradiation; Radiolysis products; volatile degradation products ID SOLID-STATE; THERMOOXIDATIVE DEGRADATION; POLYMER REACTIONS; ISOTACTIC POLYPROPYLENE; ATACTIC POLYPROPYLENE; INITIATED OXIDATIONS; PHOTOOXIDATION; POLYOLEFINS; PHOTODEGRADATION; KINETICS AB Making use of polypropylene samples that are selectively labeled with carbon-13 at each of the three unique positions within the repeating unit, we are conducting mass spectral analyses of the volatile organic oxidation products that are produced when the polymer is subjected to elevated temperature in the presence of air. By examination of both the parent and fragmentation ion peaks in the mass spectrum, we are able to identify the positioning of the C-13 labels within the volatile compounds, and thereby map each compound onto its site of origin from within the macromolecular structure of polypropylene. Most of the organic oxidation products are remarkably specific in terms of their genesis from the polymer. The structural results are discussed in terms of the oxidation chemistry of the macromolecule. Published by Elsevier Ltd. C1 [Bernstein, Robert; Thornberg, Steven M.; Assink, Roger A.; Irwin, Adriane N.; Hochrein, James M.; Brown, Jason R.; Derzon, Dora K.; Clough, Roger L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Klamo, Sara B.] CALTECH, Arnold & Mabel Beckman Labs Chem Synth, Pasadena, CA 91125 USA. RP Clough, RL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM traveler1949@comcast.net RI Bernstein, Robert/F-8396-2013 NR 41 TC 16 Z9 18 U1 4 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD NOV PY 2007 VL 92 IS 11 BP 2076 EP 2094 DI 10.1016/j.polymdegradstab.2007.07.018 PG 19 WC Polymer Science SC Polymer Science GA 241OD UT WOS:000251664800015 ER PT J AU Berger, EL AF Berger, Edmond L. TI Photon pairs: Quantum chromodynamics continuum and the Higgs boson SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT International Linear Collider Workshop (LCWS06) CY MAR 09-13, 2006 CL Bangalore, INDIA SP World Wide Study Future Linear Colliders DE Higgs; photon pairs; quantum chromodynamics AB A new QCD calculation is summarized for the transverse momentum distribution of photon pairs produced by QCD subprocesses, including all-orders soft-gluon resummation valid at next-to-next-to-leading logarithmic accuracy. Resummation is needed to obtain reliable predictions in the range of transverse momentum where the cross-section is the largest. Results axe compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC. C1 [Berger, Edmond L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM berger@anl.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD NOV PY 2007 VL 69 IS 5 BP 743 EP 748 DI 10.1007/s12043-007-0175-5 PG 6 WC Physics, Multidisciplinary SC Physics GA 241SZ UT WOS:000251677400008 ER PT J AU Ferrari, A Nosochkov, Y AF Ferrari, A. Nosochkov, Yuri TI Power losses in the international linear collider 20 mrad extraction line at 1 TeV SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT International Linear Collider Workshop (LCWS06) CY MAR 09-13, 2006 CL Bangalore, INDIA SP World Wide Study Future Linear Colliders DE extraction line; international linear collider; compact linear collider; beam losses AB We have performed a detailed study of the power losses in the post-collision extraction line of a TeV e(+)e(-) collider with a crossing angle of 20 mrad at the interaction point. Five cases were considered: four luminosity configurations for ILC and one for CLIC. For all of them, the strong beam-beam effects at the interaction point lead to an emittance growth for the outgoing beam, as well as to the production of beamstrahlung photons and e(+)e(-) coherent pairs. The power losses along the extraction line, which axe due to energy deposition by a fraction of the disrupted beam, of the beamstrahlung photons and of the coherent pairs, were estimated in the case of ideal collisions, as well as with a vertical position or angular offset at the interaction point. C1 [Ferrari, A.] Uppsala Univ, Dept Nucl & Particle Phys, S-75121 Uppsala, Sweden. [Nosochkov, Yuri] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Ferrari, A (reprint author), Uppsala Univ, Dept Nucl & Particle Phys, S-75121 Uppsala, Sweden. EM ferrari@tsl.uu.se NR 6 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD NOV PY 2007 VL 69 IS 5 BP 765 EP 769 DI 10.1007/s12043-007-0179-1 PG 5 WC Physics, Multidisciplinary SC Physics GA 241SZ UT WOS:000251677400012 ER PT J AU Freitas, A Skands, PZ AF Freitas, A. Skands, P. Z. TI Testing the supersymmetric QCD Yukawa coupling in a combined LHC/ILC analysis SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT International Linear Collider Workshop (LCWS06) CY MAR 09-13, 2006 CL Bangalore, INDIA SP World Wide Study Future Linear Colliders DE supersymmetry; quantum chromodynamics ID LINEAR COLLIDERS; E(+)E(-); SYSTEM AB In order to establish supersymmetry (SUSY) at future colliders, the identity of gauge couplings and the corresponding Yukawa couplings between gauginos, sfermions and fermions needs to be verified. A first phenomenological study for determining the Yukawa coupling of the SUSY-QCD sector is presented here, using a method which combines information from LHC and ILC. C1 [Freitas, A.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Skands, P. Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Freitas, A (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM afreitas@physik.unizh.ch OI Skands, Peter/0000-0003-0024-3822 NR 13 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD NOV PY 2007 VL 69 IS 5 BP 843 EP 847 DI 10.1007/s12043-007-0193-3 PG 5 WC Physics, Multidisciplinary SC Physics GA 241SZ UT WOS:000251677400026 ER PT J AU Rizzo, TG AF Rizzo, T. G. TI Higher curvature effects in Arkani-Hamed-Dimopoulos-Dvali and Randall-Sundrum models SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT International Linear Collider Workshop (LCWS06) CY MAR 09-13, 2006 CL Bangalore, INDIA SP World Wide Study Future Linear Colliders C1 [Rizzo, T. G.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Rizzo, TG (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM rizzo@slac.stanford.edu NR 1 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD NOV PY 2007 VL 69 IS 5 BP 889 EP 894 DI 10.1007/s12043-007-0200-8 PG 6 WC Physics, Multidisciplinary SC Physics GA 241SZ UT WOS:000251677400033 ER PT J AU Milstene, C Sopczak, A AF Milstene, C. Sopczak, A. TI Scalar top study: Detector optimization SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT International Linear Collider Workshop (LCWS06) CY MAR 09-13, 2006 CL Bangalore, INDIA SP World Wide Study Future Linear Colliders DE supersymmetry; scalar top quarks; CCD detector; vertex detector; linear collider flavour identification; detector concept; linear collider; beam delivery system; radiation damage; multiple scattering ID E(+)E(-) AB A vertex detector concept of the linear collider flavour identification (LCFI) collaboration, which studies pixel detectors for heavy quark flavour identification, has been implemented in simulations for c-quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two c-quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the international linear collider (ILC). C1 [Milstene, C.] Fermi Natl Lab, Batavia, IL 60510 USA. [Sopczak, A.] Univ Lancaster, Dept Phys, Lancaster LA1 4YW, England. RP Milstene, C (reprint author), Fermi Natl Lab, Batavia, IL 60510 USA. EM caroline@fnal.gov; andre.sopczak@cern.ch NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD NOV PY 2007 VL 69 IS 5 BP 921 EP 926 DI 10.1007/s12043-007-0205-3 PG 6 WC Physics, Multidisciplinary SC Physics GA 241SZ UT WOS:000251677400038 ER PT J AU Lee, BK Jung, KS Son, C Kini, H VerBerknioes, NC Arshava, B Naider, F Becker, JM AF Lee, Byung-Kwon Jung, Kyung-Sik Son, Cagdas Kini, Heejung VerBerknioes, Nathan C. Arshava, Boris Naider, Fred Becker, Jeffrey M. TI Affinity purification and characterization of a G-protein coupled receptor, Saccharomyces cerevisiae Ste2p SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE G-protein coupled receptor; GPCR; yeast; ste2p; purification; mass spectrometry ID ALPHA-FACTOR RECEPTOR; LIGAND SPECIFICITY; EXTRACELLULAR LOOP; MASS-SPECTROMETRY; YEAST; EXPRESSION; PHEROMONE; BINDING; IDENTIFICATION; ACTIVATION AB We present an example of expression and purification of a biologically active G-protein coupled receptor (GPCR) from yeast. An expression vector was constructed to encode the Saccharomyces cerevisiae GPCR a-factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Ligand binding and signaling assays of the epitope-tagged mutated receptor showed it maintained the full wild-type biological activity. For extraction of Ste2p, yeast membranes were solubilize with 0.5% n-dodecyl maltoside (DM). Approximately 120 mu g of purified a-factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (K-d) of the purified a-factor receptor in DM micelles was 28 nM as compared to K-d = 12.7 nM for Ste2p in cell membranes, and approximately 40% of the purified receptor was correctly folded as judged by ligand saturation binding. About 50% of the receptor sequence was retrieved from MALDI-TOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the a-factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast. (c) 2007 Elsevier Inc. All rights reserved. C1 Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10301 USA. RP Becker, JM (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. EM jbeeker@utk.edu RI Son, Cagdas/A-5380-2010; Son, Cagdas/C-8018-2014 OI Son, Cagdas/0000-0002-4076-5441; Son, Cagdas/0000-0002-4076-5441 FU NIGMS NIH HHS [R01 GM022086, GM 22086, GM 22087, R01 GM022087, R56 GM022086, R56 GM022087, R56 GM022087-31A1] NR 33 TC 16 Z9 16 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD NOV PY 2007 VL 56 IS 1 BP 62 EP 71 DI 10.1016/j.pep.2007.06.002 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 227ED UT WOS:000250639100009 PM 17646109 ER PT J AU Vorontsov, II Minasov, G Brunzelle, JS Shuvalova, L Kiryukhina, O Collart, FR Anderson, WF AF Vorontsov, Ivan I. Minasov, George Brunzelle, Joseph S. Shuvalova, Ludmilla Kiryukhina, Olga Collart, Frank R. Anderson, Wayne F. TI Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity SO PROTEIN SCIENCE LA English DT Article DE crystal structure; flavin binding; arsenic resistance; ArsH; NADPH-dependant FMN reductase ID ESCHERICHIA-COLI; ARSENIC DETOXIFICATION; STAPHYLOCOCCUS-AUREUS; DIFFRACTION DATA; HIGH-THROUGHPUT; BINDING-SITE; RESISTANCE; SEQUENCE; REFINEMENT; GENES AB The arsH gene or its homologs are a frequent part of the arsenic resistance system in bacteria and eukaryotes. Although a specific biological function of the gene product is unknown, the ArsH protein was annotated as a member of the NADPH-dependent FMN reductase family based on a conserved (T/S) XRXXSX(T/S) fingerprint motif common for FMN binding proteins. Presented here are the first crystal structure of an ArsH protein from Shigella flexneri refined at 1.7 angstrom resolution and results of enzymatic activity assays that revealed a strong NADPH-dependent FMN reductase and low azoreductase activities. The ArsH apo protein has an alpha/beta/alpha -fold typical for FMN binding proteins. The asymmetric unit consists of four monomers, which form a tetramer. Buried surface analysis suggests that this tetramer is likely to be the relevant biological assembly. Dynamic light scattering experiments are consistent with this hypothesis and show that ArsH in solution at room temperature does exist predominantly in the tetrameric form. C1 Northwestern Univ, Feinberg Sch Med, Dept Mol Pharmacol & Biol Chem, Chicago, IL 60611 USA. Argonne Natl Lab, Adv Photon Source, Life Sci Collaborat Access Team, Argonne, IL 60439 USA. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Anderson, WF (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Mol Pharmacol & Biol Chem, Ward 8-264,303 E Chicago Ave, Chicago, IL 60611 USA. EM wf-anderson@northwestern.edu OI Minasov, George/0000-0001-5460-3462; Collart, Frank/0000-0001-6942-4483 FU NCRR NIH HHS [RR-15301, P41 RR015301]; NIGMS NIH HHS [P50 GM062414, GM-62414] NR 51 TC 19 Z9 21 U1 1 U2 7 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD NOV PY 2007 VL 16 IS 11 BP 2483 EP 2490 DI 10.1110/ps.073029607 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 224JX UT WOS:000250444400015 PM 17962405 ER PT J AU Nauli, S Farr, S Lee, YJ Kim, HY Faham, S Bowie, JU AF Nauli, Sehat Farr, Saman Lee, Yueh-Jung Kim, Hye-Yeon Faham, Salem Bowie, James U. TI Polymer-driven crystallization SO PROTEIN SCIENCE LA English DT Article DE crystallization module; protein crystallization; membrane protein; protein polymer; sterile alpha motif domains ID CYTOCHROME-C-OXIDASE; DEPENDENT K+ CHANNEL; PROTEIN CRYSTALLIZATION; CRYSTAL-STRUCTURES; ESCHERICHIA-COLI; MEMBRANE-PROTEINS; FUSION PROTEINS; ANGSTROM RESOLUTION; MODIFIED FIBRINOGEN; CROSS-LINKING AB Obtaining well-diffracting crystals of macromolecules remains a significant barrier to structure determination. Here we propose and test a new approach to crystallization, in which the crystallization target is fused to a polymerizing protein module, so that polymer formation drives crystallization of the target. We test the approach using a polymerization module called 2TEL, which consists of two tandem sterile alpha motif (SAM) domains from the protein translocation Ets leukemia (TEL). The 2TEL module is engineered to polymerize as the pH is lowered, which allows the subtle modulation of polymerization needed for crystal formation. We show that the 2TEL module can drive the crystallization of 11 soluble proteins, including three that resisted prior crystallization attempts. In addition, the 2TEL module crystallizes in the presence of various detergents, suggesting that it might facilitate membrane protein crystallization. The crystal structures of two fusion proteins show that the TELSAM polymer is responsible for the majority of contacts in the crystal lattice. The results suggest that biological polymers could be designed as crystallization modules. C1 Univ Calif Los Angeles, DOE Inst Genom & Proteom, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90095 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, DOE Inst Genom & Proteom, Dept Chem & Biochem, Boyer Hall,611 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu FU NCI NIH HHS [R01 CA081000]; NIGMS NIH HHS [R01 GM063919-06, R01 GM063919, R01 GM063919-08, R01 GM063919-05, R01 GM063919-07] NR 64 TC 18 Z9 19 U1 1 U2 8 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD NOV PY 2007 VL 16 IS 11 BP 2542 EP 2551 DI 10.1110/ps.073074207 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 224JX UT WOS:000250444400021 PM 17962407 ER PT J AU Zubieta, C Krishna, SS Kapoor, M Kozbial, P McMullan, D Axelrod, HL Miller, MD Abdubek, P Ambing, E Astakhova, T Carlton, D Chiu, HJ Clayton, T Deller, MC Duan, L Elsliger, MA Feuerhelm, J Grzechnik, SK Hale, J Hampton, E Han, GW Jaroszewski, L Jin, KK Mock, HE Knuth, MW Kumar, A Marciano, D Morse, AT Nigoghossian, E Mach, L Oommachen, S Reyes, R Rife, CL Schimmel, P van den Bedem, H Weekes, D White, A Xu, QP Hodgson, KO Wooley, J Deacon, AM Godzik, A Lesley, SA Wilson, IA AF Zubieta, Chloe Krishna, S. Sri Kapoor, Mili Kozbial, Piotr McMullan, Daniel Axelrod, Herbert L. Miller, Mitchell D. Abdubek, Polat Ambing, Eileen Astakhova, Tamara Carlton, Dennis Chiu, Hsiu-Ju Clayton, Thomas Deller, Marc C. Duan, Lian Elsliger, Marc-Andre Feuerhelm, Julie Grzechnik, Slawomir K. Hale, Joanna Hampton, Eric Han, Gye Won Jaroszewski, Lukasz Jin, Kevin K. Klock, Heath E. Knuth, Mark W. Kumar, Abhinav Marciano, David Morse, Andrew T. Nigoghossian, Edward Mach, Linda Oommachen, Silvya Reyes, Ron Rife, Christopher L. Schimmel, Paul van den Bedem, Henry Weekes, Dana White, Aprilfawn Xu, Qingping Hodgson, Keith O. Wooley, John Deacon, Ashley M. Godzik, Adam Lesley, Scott A. Wilson, Ian A. TI Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE heme-binding protein; peroxidase; structural genomics; DyP; X-ray crystallography; isothermal titration; calorimetry ID STRUCTURE VALIDATION; PROTEIN CRYSTALS; NUCLEIC-ACIDS; ACTIVE-SITE; GENE FAMILY; REFINEMENT; SEQUENCE; BASIDIOMYCETE; DIFFRACTION; COMPLEXES AB BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 angstrom, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, alpha+beta ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein). C1 Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. Burnham Inst Med Res, La Jolla, CA USA. Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA 92093 USA. Scripps Res Inst, La Jolla, CA USA. Genom Inst Novartis Res Fdn, San Diego, CA USA. RP Wilson, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009; OI subramanian, srikrishna/0000-0002-3263-1048; Godzik, Adam/0000-0002-2425-852X; Krishna, Sanjeev/0000-0003-0066-0634; Zubieta, Chloe/0000-0003-4558-9333 FU NIGMS NIH HHS [P50 GM62411, U54 GM074898, GM15539, P50 GM062411] NR 42 TC 49 Z9 50 U1 0 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD NOV 1 PY 2007 VL 69 IS 2 BP 223 EP 233 DI 10.1002/prot.21550 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 214CU UT WOS:000249714400002 PM 17654545 ER PT J AU Zubieta, C Joseph, R Krishna, SS McMullan, D Kapoor, M Axelrod, HL Miller, MD Abdubek, P Acosta, C Astakhova, T Carlton, D Chiu, HJ Clayton, T Deller, MC Duan, L Elias, Y Elsliger, MA Feuerhelm, J Grzechnik, SK Hale, J Han, GW Jaroszewski, L Jin, KK Klock, HE Knuth, MW Kozbial, P Kumar, A Marciano, D Morse, AT Murphy, KD Nigoghossian, E Okach, L Oommachen, S Reyes, R Rife, CL Schimmel, P Trout, CV van den Bedem, H Weekes, D White, A Xu, QP Hodgson, KO Wooley, J Deacon, AM Godzik, A Lesley, SA Wilson, IA AF Zubieta, Chloe Joseph, Rosanne Krishna, S. Sri McMullan, Daniel Kapoor, Milli Axelrod, Herbert L. Miller, Mitchell D. Abdubek, Polat Acosta, Claire Astakhova, Tamara Carlton, Dennis Chiu, Hsiu-Ju Clayton, Thomas Deller, Marc C. Duan, Lian Elias, Ylva Elsliger, Marc-Andre Feuerhelm, Julie Grzechnik, Slawomir K. Hale, Joanna Han, Gye Won Jaroszewski, Lukasz Jin, Kevin K. Klock, Heath E. Knuth, Mark W. Kozbial, Piotr Kumar, Abhinav Marciano, David Morse, Andrew T. Murphy, Kevin D. Nigoghossian, Edward Okach, Linda Oommachen, Silvya Reyes, Ron Rife, Christopher L. Schimmel, Paul Trout, Christina V. van den Bedem, Henry Weekes, Dana White, Aprilfawn Xu, Qingping Hodgson, Keith O. Wooley, John Deacon, Ashley M. Godzik, Adam Lesley, Scott A. Wilson, Ian A. TI Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE heme-binding protein; heme conformation; peroxidase; structural genomics; DyP; X-ray crystallography ID CYTOCHROME-C PEROXIDASE; HORSERADISH-PEROXIDASE; COMPOUND-I; PHANEROCHAETE-CHRYSOSPORIUM; CRYSTAL-STRUCTURE; GENE FAMILY; ACTIVE-SITE; DIFFRACTION; CHLOROPEROXIDASE; BASIDIOMYCETE AB TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 angstrom. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases. C1 Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. Burnham Inst Med Res, La Jolla, CA USA. Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA 92093 USA. Genom Inst Novartis Res Fdn, San Diego, CA USA. Scripps Res Inst, La Jolla, CA USA. RP Wilson, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009; OI subramanian, srikrishna/0000-0002-3263-1048; Godzik, Adam/0000-0002-2425-852X; Zubieta, Chloe/0000-0003-4558-9333; van den Bedem, Henry/0000-0003-2358-841X FU NIGMS NIH HHS [GM15539, P50 GM062411, P50 GM62411, U54 GM074898] NR 34 TC 52 Z9 53 U1 0 U2 27 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2007 VL 69 IS 2 BP 234 EP 243 DI 10.1002/prot.21673 PG 10 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 214CU UT WOS:000249714400003 PM 17654547 ER PT J AU Xu, QS Ankoudinova, I Lou, Y Yokota, H Kim, R Kim, SH AF Xu, Qian Steven Ankoudinova, Irina Lou, Yun Yokota, Hisao Kim, Rosalind Kim, Sung-Hou TI Crystal structure of a transcriptional activator of comK gene from Bacillus halodurans SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE Bacillus halodurans; Berkeley Structural Genomics Center (BSGC); comK; crystal structure; gi10175511; Med; structural genomics; transcriptional activator ID ESCHERICHIA-COLI; BINDING PROTEIN; SUBTILIS; COMPETENCE; REPRESSOR; SPECIFICITY; REGULATOR; SOFTWARE; SEQUENCE; RECEPTOR C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Berkeley Struct Genom Ctr, Lawrence Berkeley Natl Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM shkim@cchem.berkeley.edu FU NIGMS NIH HHS [GM 62412] NR 28 TC 1 Z9 1 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2007 VL 69 IS 2 BP 409 EP 414 DI 10.1002/prot.21292 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 214CU UT WOS:000249714400017 PM 17636568 ER PT J AU Krishna, SS Tautz, L Xu, QP McMullan, D Miller, MD Abdubek, P Ambing, E Astakhova, T Axelrod, HL Carlton, D Chiu, HJ Clayton, T DiDonato, M Duan, L Elsliger, MA Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Jaroszewski, L Jin, KK Klock, HE Knuth, MW Koesema, E Morse, AT Mustelin, T Nigoghossian, E Oommachen, S Reyes, R Rife, CL van den Bedem, H Weekes, D White, A Hodgson, KO Wooley, J Deacon, AM Godzik, A Lesley, SA Wilson, IA AF Krishna, S. Sri Tautz, Lutz Xu, Qingping McMullan, Daniel Miller, Mitchell D. Abdubek, Polat Ambing, Eileen Astakhova, Tamara Axelrod, Herbert L. Carlton, Dennis Chiu, Hsiu-Ju Clayton, Thomas DiDonato, Michael Duan, Lian Elsliger, Marc-Andre Grzechnik, Slawomir K. Hale, Joanna Hampton, Eric Han, Gye Won Haugen, Justin Jaroszewski, Lukasz Jin, Kevin K. Klock, Heath E. Knuth, Mark W. Koesema, Eric Morse, Andrew T. Mustelin, Tomas Nigoghossian, Edward Oommachen, Silvya Reyes, Ron Rife, Christopher L. van den Bedem, Henry Weekes, Dana White, Aprilfawn Hodgson, Keith O. Wooley, John Deacon, Ashley M. Godzik, Adam Lesley, Scott A. Wilson, Ian A. TI Crystal structure of NMA1982 from Neisseria meningitidis at 1.5 angstrom resolution provides a structural scaffold for nonclassical, eukaryotic-like phosphatases SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID PROTEIN-TYROSINE PHOSPHATASES; MODEL; VALIDATION; REFINEMENT; SYSTEM; SERVER C1 Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. Burnham Inst Med Res, La Jolla, CA USA. Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. Novartis Res Fdn, Genom Inst, San Diego, CA USA. Scripps Res Inst, La Jolla, CA USA. RP Wilson, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009; Tautz, Lutz/M-9989-2014 OI subramanian, srikrishna/0000-0002-3263-1048; Godzik, Adam/0000-0002-2425-852X; Tautz, Lutz/0000-0002-4075-6238 FU NIGMS NIH HHS [P50 GM062411, P50 GM62411, U54 GM074898] NR 25 TC 6 Z9 6 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD NOV 1 PY 2007 VL 69 IS 2 BP 415 EP 421 DI 10.1002/prot.21314 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 214CU UT WOS:000249714400018 PM 17636569 ER PT J AU Cuff, ME Li, H Moy, S Watson, J Cipriani, A Joachimiak, A AF Cuff, M. E. Li, H. Moy, S. Watson, J. Cipriani, A. Joachimiak, A. TI Crystal structure of an acetyltransferase protein from Vibrio cholerae strain N16961 SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID DATABASE; REFINEMENT; SEQUENCES; ALIGNMENT; SERVER; MODEL C1 Argonne Natl Lab, Midwest Ctr Struct Genom, Biosci Div, Argonne, IL 60439 USA. Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. Birkbeck Coll, European Bioinformat Inst, Biomol Struct & Modeling Grp, Midwest Ctr Struct Genom, Cambridge, England. RP Joachimiak, A (reprint author), Argonne Natl Lab, Midwest Ctr Struct Genom, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM andrzejj@anl.gov FU NIGMS NIH HHS [U54 GM074942-04S2, GM62414, P50 GM062414, U54 GM074942, GM074942, P50 GM062414-02] NR 30 TC 1 Z9 2 U1 0 U2 1 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2007 VL 69 IS 2 BP 422 EP 427 DI 10.1002/prot.21417 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 214CU UT WOS:000249714400019 PM 17623843 ER PT J AU Xu, QP Saikatendu, KS Krishna, SS McMullan, D Abdubek, P Agarwalla, S Ambing, E Astakhova, T Axelrod, HL Carlton, D Chiu, HJ Clayton, T DiDonato, M Duan, L Elsliger, MA Feuerhelm, J Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Jaroszewski, L Jin, KK Klock, HE Knuth, MW Koesema, E Miller, MD Morse, AT Nigoghossian, E Mach, L Oommachen, S Paulsen, J Reyes, R Rife, CL Schwarzenbacher, R van den Bedem, H White, A Wolf, G Hodgson, KO Wooley, J Deacon, AM Godzik, A Lesley, SA Wilson, IA AF Xu, Qingping Saikatendu, Kumar Singh Krishna, S. Sri McMullan, Daniel Abdubek, Polat Agarwalla, Sanjay Ambing, Eileen Astakhova, Tamara Axelrod, Herbert L. Carlton, Dennis Chiu, Hsiu-Ju Clayton, Thomas DiDonato, Michael Duan, Lian Elsliger, Marc-Andr Feuerhelm, Julie Grzechnik, Slawomir K. Hale, Joanna Hampton, Eric Han, Gye Won Haugen, Justin Jaroszewski, Lukasz Jin, Kevin K. Klock, Heath E. Knuth, Mark W. Koesema, Eric Miller, Mitchell D. Morse, Andrew T. Nigoghossian, Edward Mach, Linda Oommachen, Silvya Paulsen, Jessica Reyes, Ron Rife, Christopher L. Schwarzenbacher, Robert van den Bedem, Henry White, Aprilfawn Wolf, Guenter Hodgson, Keith O. Wooley, John Deacon, Ashley M. Godzik, Adam Lesley, Scott A. Wilson, Ian A. TI Crystal structure of MtnX phosphatase from Bacillus subtilis at 2.0 angstrom resolution provides a structural basis for bipartite phosphomonoester hydrolysis of 2-hydroxy3-keto-5-methylthiopentenyl-1-phosphate SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID PHOSPHOSERINE PHOSPHATASE; PROTEIN CRYSTALS; 5-METHYLTHIORIBOSE; MODEL; CLASSIFICATION; INTERMEDIATE; REFINEMENT; DATABASE; PATHWAY; COMPLEX C1 Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. Scripps Res Inst, La Jolla, CA 92037 USA. Burnham Inst Med Res, La Jolla, CA USA. Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA 92093 USA. Novartis Res Fdn, Genom Inst, San Diego, CA USA. RP Wilson, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009 OI subramanian, srikrishna/0000-0002-3263-1048; Godzik, Adam/0000-0002-2425-852X FU NIGMS NIH HHS [P50 GM62411, P50 GM062411, U54 GM074898] NR 32 TC 6 Z9 6 U1 0 U2 5 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2007 VL 69 IS 2 BP 433 EP 439 DI 10.1002/prot.21602 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 214CU UT WOS:000249714400021 PM 17654724 ER PT J AU Ahrendt, AJ Tollaksen, SL Lindberg, C Zhu, WH Yates, JR Nevin, KP Babnigg, G Lovley, DR Giometti, CS AF Ahrendt, Angela J. Tollaksen, Sandra L. Lindberg, Carl Zhu, Wenhong Yates, John R., III Nevin, Kelly P. Babnigg, Gyoergy Lovley, Derek R. Giometti, Carol S. TI Steady state protein levels in Geobacter metallireducens grown with iron (III) citrate or nitrate as terminal electron acceptor SO PROTEOMICS LA English DT Article DE bioremediation; Geobacter protein; metal-reducing; tandem mass spectra ID RESOLUTION 2-DIMENSIONAL ELECTROPHORESIS; URANIUM-CONTAMINATED AQUIFER; HYBRID-CLUSTER PROTEIN; FE(III) REDUCTION; ESCHERICHIA-COLI; GEL-ELECTROPHORESIS; TISSUE PROTEINS; METAL REDUCTION; CELL FRACTIONS; SP-NOV AB Geobacter species predominate in aquatic sediments and submerged soils where organic carbon sources are oxidized with the reduction of Fe(III). The atural occurrence of Geobacter in some waste sites suggests this microorganism could be useful for bioremediation if growth and metabolic activity can be regulated. 2-DE was used to monitor the steady state protein levels of Geobacter metallireducens grown with either Fe(III) citrate or nitrate to elucidate metabolic differences in response to different terminal electron acceptors present in natural environments populated by Geobacter. Forty-six protein spots varied significantly in abundance (p<0.05) between the two growth conditions; proteins were identified by tryptic peptide mass and peptide sequence determined by MS/MS. Enzymes involved in pyruvate metabolism and the tricarboxylic acid (TCA) cycle were more abundant in cells grown with Fe(III) citrate, while proteins associated with nitrate metabolism and sensing cellular redox status along with several proteins of unknown function were more abundant in cells grown with nitrate. These results indicate a higher level of flux through the TCA cycle in the presence of Fe(III) compared to nitrate. The oxidative stress response observed in previous studies of Geobacter sulfurreducens grown with Fe(III) citrate was not seen in G. metaffireducens. C1 Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. Scripps Res Inst, San Diego, CA USA. Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. RP Giometti, CS (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM csgiometti@anl.gov NR 41 TC 5 Z9 7 U1 2 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD NOV PY 2007 VL 7 IS 22 BP 4148 EP 4157 DI 10.1002/pmic.200600955 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 236HG UT WOS:000251293000013 PM 17994620 ER PT J AU Fryer, CL Mazzali, PA Prochaska, J Cappellaro, E Panaitescu, A Berger, E Van Putten, M van den Heuvel, EPJ Young, P Hungerford, A Rockefeller, G Yoon, SC Podsiadlowski, P Nomoto, K Chevalier, R Schmidt, B Kulkarni, S AF Fryer, Chris L. Mazzali, Paolo A. Prochaska, Jason Cappellaro, Enrico Panaitescu, Alin Berger, Edo Van Putten, Maurice van den Heuvel, Ed P. J. Young, Patrick Hungerford, Aimee Rockefeller, Gabriel Yoon, Sung-Chul Podsiadlowski, Philipp Nomoto, Ken'ichi Chevalier, Roger Schmidt, Brian Kulkarni, Shri TI Constraints on type Ib/c supernovae and gamma-ray burst progenitors SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Review ID CORE-COLLAPSE SUPERNOVAE; EVOLVING LUMINOSITY FUNCTION; TIME RADIO OBSERVATIONS; MASSIVE STARS; HOST GALAXIES; HIGH-REDSHIFT; METALLICITY DEPENDENCE; FORMATION RATES; LIGHT CURVES; NEUTRINO RADIATION AB Although there is strong support for the collapsar engine as the power source of long-duration gamma-ray bursts (GRBs), we still do not definitively know the progenitor of these explosions. Here we review the current set of progenitor scenarios for long-duration GRBs and the observational constraints on these scenarios. Examining these models, we find that single stars cannot be the only progenitor for long-duration GRBs. Several binary progenitors can match the solid observational constraints and also have the potential to match the trends that we are currently seeing in the observations. Type Ib/c supernovae are also likely to be produced primarily in binaries; we discuss the relationship between the progenitors of these explosions and those of the long-duration GRBs. C1 [Fryer, Chris L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Fryer, Chris L.; Hungerford, Aimee; Rockefeller, Gabriel] Stat Sci Div, Los Alamos Natl Lab, Los Alamos, NM USA. [Mazzali, Paolo A.] Osserv Astron Trieste, INAF, Trieste, Italy. [Mazzali, Paolo A.] Max Planck Inst Astrophys, Garching, Germany. [Prochaska, Jason] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA USA. [Cappellaro, Enrico] Osserv Astron Padova, INAF, Padua, Italy. [Panaitescu, Alin] Integrated Spectroscopy Resource Div, Los Alamos Natl Lab, Los Alamos, NM USA. [Berger, Edo] Observ Carnegie Inst Washington, Pasadena, CA USA. [Berger, Edo] Princeton Univ Observ, Princeton, NJ USA. [Van Putten, Maurice] MIT, Laser Interferometer Gravit Wave Observ Lab, Cambridge, MA USA. [van den Heuvel, Ed P. J.; Yoon, Sung-Chul] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Young, Patrick] Univ Arizona, Dept Astron, Tucson, AZ USA. [Young, Patrick] Div Appl Phys, Los Alamos Natl Lab, Los Alamos, NM USA. [Podsiadlowski, Philipp] Univ Oxford, Dept Astrophys, Oxford OX1 2JD, England. [Nomoto, Ken'ichi] Univ Tokyo, Dept Astron, RESCUE, Bunkyo Ku, Tokyo, Japan. [Chevalier, Roger] Univ Virginia, Dept Astron, Charlottesville, VA USA. [Schmidt, Brian] Mt Stromlo & Siding Spring Observ, Canberra, ACT, Australia. [Kulkarni, Shri] CALTECH, Caltech Opt Observ, Pasadena, CA USA. RP Fryer, CL (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RI Rockefeller, Gabriel/G-2920-2010; Nomoto, Ken'ichi/A-4393-2011; van Putten, Maurice/F-5237-2011; OI Rockefeller, Gabriel/0000-0002-9029-5097; Cappellaro, Enrico/0000-0001-5008-8619; Schmidt, Brian/0000-0001-6589-1287 NR 155 TC 72 Z9 72 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD NOV PY 2007 VL 119 IS 861 BP 1211 EP 1232 DI 10.1086/523768 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 242PB UT WOS:000251736600001 ER PT J AU Ruhm, W Carroll, KL Egbert, SD Faestermann, T Knie, K Korschinek, G Martinelli, RE Marchetti, AA McAninch, JE Rugel, G Straume, T Wallner, A Wallner, C Fujita, S Hasai, H Hoshi, M Shizuma, K AF Ruehm, W. Carroll, K. L. Egbert, S. D. Faestermann, T. Knie, K. Korschinek, G. Martinelli, R. E. Marchetti, A. A. McAninch, J. E. Rugel, G. Straume, T. Wallner, A. Wallner, C. Fujita, S. Hasai, H. Hoshi, M. Shizuma, K. TI Neutron-induced Ni-63 in copper samples from Hiroshima and Nagasaki: a comprehensive presentation of results obtained at the Munich Maier-Leibnitz Laboratory SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID ACCELERATOR MASS-SPECTROMETRY; DOSIMETRY SYSTEM 1986; ATOMIC-BOMB; TANDEM ACCELERATOR; CL-36; EU-152; CO-60; AMS; DISCREPANCY; DISTANCES AB Those inhabitants of Hiroshima and Nagasaki who were affected by the A-bomb explosions, were exposed to a mixed neutron and gamma radiation field. Few years later about 120,000 survivors of both cities were selected, and since then radiation-induced late effects such as leukemia and solid tumors are being investigated in this cohort. When the present study was initiated, the fast neutron fluences that caused the neutron doses of these survivors had never been determined experimentally. In principle, this would have been possible if radioisotopes produced by fast neutrons from the A-bomb explosions had been detected in samples from Hiroshima and Nagasaki at distances where the inhabitants survived. However, no suitable radioisotope had so far been identified. As a contribution to a large international effort to re-evaluate the A-bomb dosimetry, the concentration of the radionuclide Ni-63 (half-life 100.1 years) has been measured in copper samples from Hiroshima and Nagasaki. These measurements were mainly performed at the Maier-Leibnitz-Laboratory in Munich, Germany, by means of accelerator mass spectrometry. Because the Ni-63 had been produced in these samples by fast A-bomb neutrons via the reaction Cu-63(n,p)Ni-63, these measurements allow direct experimental validation of calculated neutron doses to the members of the LSS cohort, for the first time. The results of these efforts have already been published in a compact form. A more detailed discussion of the methodical aspects of these measurements and their results are given in the present paper. Eight copper samples that had been significantly exposed to fast neutrons from the Hiroshima A-bomb explosion were investigated. In general, measured Ni-63 concentrations decreased in these samples with increasing distance to the hypocenter, from 4 x10(6) Ni-63 nuclei per gram copper at 391 m, to about 1 x10(5) Ni-63 nuclei per gram copper at about 1,400 m. Additional measurements performed on three large-distant copper samples from Hiroshima (distance to the hypocenter 1,880-7,500 m) and on three large-distant copper samples from Nagasaki (distance to the hypocenter 3,931-4,428 m) that were not exposed significantly to A-bomb neutrons, suggest a typical background concentration of about 8 x10(4) Ni-63 nuclei per gram copper. If the observed background is accounted for, the results are consistent with state-of-the-art neutron transport calculations for Hiroshima, in particular for those distances where the victims survived and were included in the life span study cohort. C1 GSF Natl Res Ctr Environm, Inst Radiat Protect, D-85764 Neuherberg, Germany. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Sci Applicat Int Corp, San Diego, CA 92121 USA. Tech Univ Munich, Fac Phys, D-85747 Garching, Germany. Univ Utah, Salt Lake City, UT 84108 USA. Univ Munich, Inst Radiobiol, Munich, Germany. Radiat Effects Res Fdn, Dept Biostat, Minami Ku, Hiroshima 7320815, Japan. Hiroshima Kokusai Gakuin Univ, Aki Ku, Hiroshima 7390321, Japan. Hiroshima Univ, Res Inst Radiat Biol & Med, Int Radiat Informat Ctr, Hiroshima 734, Japan. Hiroshima Univ, Grad Sch Engn, Higashihiroshima 7398527, Japan. RP Ruhm, W (reprint author), GSF Natl Res Ctr Environm, Inst Radiat Protect, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany. EM Werner.ruehm@gsf.de RI Wallner, Anton/G-1480-2011; OI Wallner, Anton/0000-0003-2804-3670; Hoshi, Masaharu/0000-0001-6978-0883; Faestermann, Thomas/0000-0002-6603-8787 NR 39 TC 6 Z9 6 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD NOV PY 2007 VL 46 IS 4 BP 327 EP 338 DI 10.1007/s00411-007-0126-z PG 12 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 221DU UT WOS:000250208400003 PM 17828415 ER PT J AU Batlle, JVI Balonov, M Beaugelin-Seiller, K Beresford, NA Brown, J Cheng, JJ Copplestone, D Doi, M Filistovic, V Golikov, V Horyna, J Hosseini, A Howard, BJ Jones, SR Kamboj, S Kryshev, A Nedveckaite, T Olyslaegers, G Prohl, G Sazykina, T Ulanovsky, A Lynch, SV Yankovich, T Yu, C AF Batlle, J. Vives i Balonov, M. Beaugelin-Seiller, K. Beresford, N. A. Brown, J. Cheng, J-J. Copplestone, D. Doi, M. Filistovic, V. Golikov, V. Horyna, J. Hosseini, A. Howard, B. J. Jones, S. R. Kamboj, S. Kryshev, A. Nedveckaite, T. Olyslaegers, G. Proehl, G. Sazykina, T. Ulanovsky, A. Lynch, S. Vives Yankovich, T. Yu, C. TI Inter-comparison of absorbed dose rates for non-human biota SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID CONVERSION FACTORS; EXTERNAL EXPOSURE AB A number of approaches have been proposed to estimate the exposure of non-human biota to ionizing radiation. This paper reports an inter-comparison of the unweighted absorbed dose rates for the whole organism (compared as dose conversion coefficients, or DCCs) for both internal and external exposure, estimated by 11 of these approaches for selected organisms from the Reference Animals and Plants geometries as proposed by the International Commission on Radiological Protection. Inter-comparison results indicate that DCCs for internal exposure compare well between the different approaches, whereas variation is greater for external exposure DCCs. Where variation among internal DCCs is greatest, it is generally due to different daughter products being included in the DCC of the parent. In the case of external exposures, particularly to low-energy beta-emitters, variations are most likely to be due to different media densities being assumed. On a radionuclide-by-radionuclide basis, the different approaches tend to compare least favourably for H-3, C-14 and the alpha-emitters. This is consistent with models with different source/target geometry assumptions showing maximum variability in output for the types of radiation having the lowest range across matter. The intercomparison demonstrated that all participating approaches to biota dose calculation are reasonably comparable, despite a range of different assumptions being made. C1 Westlakes Sci Consulting Ltd, Princess Royal Bldg, Cumbria CA24 3LN, England. IAEA, A-1400 Vienna, Austria. Inst Radioprotect & Surete Nucl, Clamart, France. Ctr Ecol & Hydrol, Lancaster, England. Norwegian Radiat Protect Authorit, Osteras, Norway. Argonne Natl Lab, Argonne, IL 60439 USA. England & Wales Environm Agcy, Warrington, Cheshire, England. Natl Inst Radiol Sci, Chiba 260, Japan. Inst Phys, Vilnius, Lithuania. Inst Radiat Hyg, St Petersburg, Russia. State Off Nucl Safety, Prague, Czech Republic. SPATyphoon, Obninsk, Russia. SCK CEN, Belgian Nucl Res Ctr, Boeretang, Belgium. GSF Natl Res Ctr Environm & Hlth, Inst Radiat Protect, Neuherberg, Germany. Atom Energy Canada Ltd, Chalk River, ON K0J 1J0, Canada. RP Batlle, JVI (reprint author), Westlakes Sci Consulting Ltd, Princess Royal Bldg, Westlakes Sci & Technol Pk,Moor Row, Cumbria CA24 3LN, England. EM jordi.vives@westlakes.ac.uk RI Howard, Brenda/I-8279-2012; Beresford, Nicholas/I-6188-2012; OI Howard, Brenda/0000-0002-9698-9524; Copplestone, David/0000-0002-1468-9545 NR 45 TC 32 Z9 33 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD NOV PY 2007 VL 46 IS 4 BP 349 EP 373 DI 10.1007/s00411-007-0124-1 PG 25 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 221DU UT WOS:000250208400005 ER PT J AU Mohapatra, RN Antusch, S Babu, KS Barenboim, G Chen, MC de Gouvea, A de Holanda, P Dutta, B Grossman, Y Joshipura, A Kayser, B Kersten, J Keum, YY King, SF Langacker, P Lindner, M Loinaz, W Masina, I Mocioiu, I Mohanty, S Murayama, H Pascoli, S Petcov, ST Pilaftsis, A Ramond, P Ratz, M Rodejohann, W Shrock, R Takeuchi, T Underwood, T Wolfenstein, L AF Mohapatra, R. N. Antusch, S. Babu, K. S. Barenboim, G. Chen, M. -C de Gouvea, A. de Holanda, P. Dutta, B. Grossman, Y. Joshipura, A. Kayser, B. Kersten, J. Keum, Y. Y. King, S. F. Langacker, P. Lindner, M. Loinaz, W. Masina, I. Mocioiu, I. Mohanty, S. Murayama, H. Pascoli, S. Petcov, S. T. Pilaftsis, A. Ramond, P. Ratz, M. Rodejohann, W. Shrock, R. Takeuchi, T. Underwood, T. Wolfenstein, L. TI Theory of neutrinos: a white paper SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID DOUBLE-BETA-DECAY; LEPTON-FLAVOR VIOLATION; LARGE EXTRA DIMENSIONS; RIGHT-HANDED NEUTRINO; ELECTROWEAK SYMMETRY-BREAKING; SUPERSYMMETRIC STANDARD MODEL; SEE-SAW MECHANISM; ANOMALOUS MAGNETIC-MOMENT; HEAVY MAJORANA NEUTRINOS; ELECTRIC-DIPOLE MOMENTS AB This paper is a review of the present status of neutrino mass physics, which grew out of an APS sponsored study of neutrinos in 2004. After a discussion of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, it summarizes what can be learned about neutrino interactions as well as the nature of new physics beyond the Standard Model from the various proposed neutrino experiments. The intriguing possibility that neutrino mass physics may be at the heart of our understanding of a long standing puzzle of cosmology, i.e. the origin of matter-antimatter asymmetry is also discussed. C1 Univ Maryland, College Pk, MD 20742 USA. Univ Autonoma Madrid, E-28049 Madrid, Spain. Oklahoma State Univ, Stillwater, OK 74078 USA. Univ Valencia, Valencia, Spain. Fermilab Natl Accelerator Lab, Batavia, IL 60540 USA. Northwestern Univ, Evanston, IL 60208 USA. Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. Univ Regina, Regina, SK S4S 0A2, Canada. SLAC, Stanford, CA 94305 USA. Phys Res Lab, Ahmadabad 380009, Gujarat, India. Deutsch Elekt Synchrotron DESY, D-22603 Hamburg, Germany. Acad Sinica, Inst Phys, Taipei 115, Taiwan. Univ Southampton, Southampton SO17 1BJ, Hants, England. Univ Penn, Philadelphia, PA 19104 USA. Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. Amherst Coll, Amherst, MA 01002 USA. Fermi Ctr, I-00184 Rome, Italy. Univ Roma La Sapienza, Sez Roma, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Penn State Univ, University Pk, PA 16802 USA. Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. SISSA, Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy. Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. Univ Florida, Gainesville, FL 32611 USA. Tech Univ Munich, D-85748 Garching, Germany. Yale Univ, Sloane Lab, Dept Phys, New Haven, CT 06520 USA. Virginia Tech, Blacksburg, VA 24061 USA. Univ Durham, IPPP, Durham DH1 3LE, England. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Mohapatra, RN (reprint author), Univ Maryland, College Pk, MD 20742 USA. RI Murayama, Hitoshi/A-4286-2011; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Chen, Mu-Chun/0000-0002-5749-2566; Takeuchi, Tatsu/0000-0002-3594-5149; Rodejohann, Werner/0000-0003-1688-1028; Loinaz, William/0000-0001-7501-5002; Lindner, Manfred/0000-0002-3704-6016 NR 909 TC 242 Z9 243 U1 2 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD NOV PY 2007 VL 70 IS 11 BP 1757 EP 1867 DI 10.1088/0034-4885/70/11/R02 PG 111 WC Physics, Multidisciplinary SC Physics GA 228JZ UT WOS:000250727500002 ER PT J AU Brown, KH Schultz, IR Nagler, JJ AF Brown, Kim H. Schultz, Irvin R. Nagler, James J. TI Reduced embryonic survival in rainbow trout resulting from paternal exposure to the environmental estrogen 17 alpha-ethynylestradiol during late sexual maturation SO REPRODUCTION LA English DT Article ID ZEBRAFISH DANIO-RERIO; MEDAKA ORYZIAS-LATIPES; GONADOTROPIN-RELEASING-HORMONE; SEWAGE-TREATMENT PLANTS; MALE FATHEAD MINNOWS; BETA-SUBUNIT GENE; ONCORHYNCHUS-MYKISS; BISPHENOL-A; ENDOCRINE DISRUPTORS; REPRODUCTIVE SUCCESS AB Exposure of fishes to environmental estrogens is known to affect sexual development and spawning, but little information exists regarding effects on gametes. This study evaluated embryonic survival of offspring from male rainbow trout (Oncorhynchus mykiss) exposed to 17 alpha-ethynylestradiol (EE2) using an in vitro fertilization protocol. Males were exposed at either 1800 or 6700 degree days (degrees d) (i.e. 161 or 587 days post-fertilization (dpf)) to test for effects on testes linked to reproductive ontogeny. At 1800 degrees d, fish were beginning testicular differentiation and were exposed to 109 ng EE2/I for 21 days. At 6700 degrees d, fish have testes containing spermatocytes and spermatids and were exposed for 56 days to either 0.8, 8.3, or 65 ng EE2/I, Semen was collected at full sexual maturity in each group and used to fertilize eggs pooled from several non-exposed females. Significant decreases in embryonic survival were observed only with the 6700 degrees d exposure. In 0.8 and 8.3 ng EE2/I treatments, embryo survival was significantly reduced at 19 dpf when compared with the control. In contrast, an immediate decrease in embryonic survival at 0.5 dpf was observed in the 65 ng EE2/I treatment. Blood samples collected at spawning from 6700 degrees d exposed males revealed a significant decrease in 11-ketotestosterone and a significant increase in luteinizing hormone levels for the 65 ng EE2/I treatment when compared with the other treatment groups. Results indicate that sexually maturing male rainbow trout are susceptible to EE2 exposure with these fish exhibiting two possible mechanisms of reduced embryonic survival through sperm varying dependant on EE2 exposure concentrations experienced. C1 Univ Idaho, Ctr Reprod Biol, Dept Biol Sci, Moscow, ID 83844 USA. Battelle PNNL, Marine Sci Lab, Sequim, WA 98382 USA. RP Brown, KH (reprint author), Univ Idaho, Ctr Reprod Biol, Dept Biol Sci, Life Sci Bldg Rm 252, PO Box 443051, Moscow, ID 83844 USA. EM khbrown@uidaho.edu RI Perez , Claudio Alejandro/F-8310-2010 OI Perez , Claudio Alejandro/0000-0001-9688-184X FU NIEHS NIH HHS [ES012446, R01 ES012446, R01 ES012446-04] NR 58 TC 22 Z9 23 U1 2 U2 10 PU BIO SCIENTIFICA LTD PI BRISTOL PA EURO HOUSE, 22 APEX COURT WOODLANDS, BRADLEY STOKE, BRISTOL BS32 4JT, ENGLAND SN 1470-1626 J9 REPRODUCTION JI Reproduction PD NOV PY 2007 VL 134 IS 5 BP 659 EP 666 DI 10.1530/REP-07-0169 PG 8 WC Developmental Biology; Reproductive Biology SC Developmental Biology; Reproductive Biology GA 235CZ UT WOS:000251212400004 PM 17965256 ER PT J AU Yoshida, PG AF Yoshida, Phyllis Genther TI Rising china faces challenges to national innovation goals SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Editorial Material C1 US DOE, Washington, DC 20585 USA. RP Yoshida, PG (reprint author), US DOE, Washington, DC 20585 USA. EM Phyllis.Yoshida@ee.doe.gov NR 3 TC 1 Z9 1 U1 0 U2 1 PU INDUSTRIAL RESEARCH INST, INC PI ARLINGTON PA 2200 CLARENDON BLVD, STE 1102, ARLINGTON, VA 22201 USA SN 0895-6308 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD NOV-DEC PY 2007 VL 50 IS 6 BP 2 EP 5 PG 4 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA 226QV UT WOS:000250604500001 ER PT J AU Allain, JP Nieto, M Hendricks, MR Plotkin, P Harilal, SS Hassanein, A AF Allain, J. P. Nieto, M. Hendricks, M. R. Plotkin, P. Harilal, S. S. Hassanein, A. TI IMPACT: A facility to study the interaction of low-energy intense particle beams with dynamic heterogeneous surfaces SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; LIQUID LITHIUM; ION-SCATTERING; PLASMA; TEMPERATURE; EROSION; FILMS; BOMBARDMENT; GROWTH; MODEL AB The Interaction of Materials with Particles and Components Testing (IMPACT) experimental facility is furnished with multiple ion sources and in situ diagnostics to study the modification of surfaces undergoing physical, chemical, and electronic changes during exposure to energetic particle beams. Ion beams with energies in the range between 20 and 5000 eV can bombard samples at flux levels in the range of 10(10)-10(15) cm(-2) s(-1); parameters such as ion angle of incidence and exposed area are also controllable during the experiment. IMPACT has diagnostics that allow full characterization of the beam, including a Faraday cup, a beam imaging system, and a retarding field energy analyzer. IMPACT is equipped with multiple diagnostics, such as electron (Auger, photoelectron) and ion scattering spectroscopies that allow different probing depths of the sample to monitor compositional changes in multicomponent and/or layered targets. A unique real-time erosion diagnostic based on a dual quartz crystal microbalance measures deposition from an eroding surface with rates smaller than 0.01 nm/s, which can be converted to a sputter yield measurement. The monitoring crystal can be rotated and placed in the target position so that the deposited material on the quartz crystal oscillator surface can be characterized without transfer outside of the vacuum chamber. (C) 2007 American Institute of Physics. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Allain, JP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM allain@purdue.edu RI Harilal, Sivanandan/B-5438-2014; OI Harilal, Sivanandan/0000-0003-2266-7976; Nieto-Perez, Martin/0000-0001-6600-9786; Allain, Jean Paul/0000-0003-1348-262X NR 42 TC 19 Z9 19 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2007 VL 78 IS 11 AR 113105 DI 10.1063/1.2805677 PG 14 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 236TI UT WOS:000251325900008 PM 18052463 ER PT J AU Bondarchuk, O Lyubinetsky, I AF Bondarchuk, O. Lyubinetsky, I. TI Preparation of TiO2(110)-(1x1) surface via UHV cleavage: An scanning tunneling microscopy study SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB TiO2(110) surface was successfully prepared in situ by UHV cleaving of a commercial TiO2 crystal. Scanning tunneling microscopy (STM) imaging revealed atomically flat more than 1 mu m wide terraces with (110) orientation separated by steps running in [001] direction, with very low kink density. Atomically resolved STM images show periodicity in the [001] and [1 (1) over bar0] directions with the unit cell parameters measured to similar to 3 and 6.5 A, respectively, which are closed to the expected values of bulk terminated (1x1) surface.(c) 2007 American Institute of Physics. C1 Univ Texas Austin, Texas Mat Inst, Ctr Mat Chem, Austin, TX 78712 USA. Pacific NW Natl Lab, Fundamental Sci Directorate, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Bondarchuk, O (reprint author), Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany. EM bobon@fhi-berlin.mpg.de OI Bondarchuk, Oleksandr/0000-0001-7380-8930 NR 16 TC 5 Z9 5 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2007 VL 78 IS 11 AR 113907 DI 10.1063/1.2814160 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 236TI UT WOS:000251325900033 PM 18052488 ER PT J AU Macrander, AT Purdy, LM Matey, JR AF Macrander, Albert T. Purdy, Lynn M. Matey, James R. TI Editorial: In memoriam - Simon Foner SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Biographical-Item C1 Argonne Natl Lab, Sci Instrumental Editorial Off, Argonne, IL 60439 USA. Sarnoff Corp, Princeton, NJ 08543 USA. RP Macrander, AT (reprint author), Argonne Natl Lab, Sci Instrumental Editorial Off, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Matey, James/B-4372-2013 OI Matey, James/0000-0002-0508-785X NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2007 VL 78 IS 11 AR 110401 DI 10.1063/1.2819627 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 236TI UT WOS:000251325900001 ER PT J AU Johnson, EL Clabough, TS Peery, CA Bennett, DH Bjornn, TC Caudill, CC Richmond, MC AF Johnson, Eric L. Clabough, Tami S. Peery, Christopher A. Bennett, David H. Bjornn, Theodore C. Caudill, Christopher C. Richmond, Marshall C. TI Estimating adult Chinook salmon exposure to dissolved gas supersaturation downstream of hydroelectric dams using telemetry and hydrodynamic models SO RIVER RESEARCH AND APPLICATIONS LA English DT Article DE fish behaviour; gas bubble disease; hydrologic modelling; Chinook salmon; fish depth; gas supersaturation ID COLUMBIA RIVER BASIN; ONCORHYNCHUS-NERKA; SNAKE RIVERS; UPSTREAM MIGRATION; STEELHEAD; RATES; WATER; RESPONSES; SURVIVAL AB Gas bubble disease (GBD) has been recognized as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid-channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two-dimensional (2-dimensional) hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioural avoidance of the high TDGS plume. We observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of the time spent in the Bonneville Dam tailrace and 88.1% of the time in the Ice Harbor Dam tailrace. The majority of depth uncompensated exposure occurred at TDGS levels > 115%. Adult Chinook salmon tended to migrate near the shoreline and they tended to remain in relatively deep water. Adults moved into the high dissolved-gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. When water depths decreased due to reduced river discharge, adults tended to migrate in the deeper navigation channel downstream from Ice Harbor Dam. The strong influence of dam operations on the position of the high-TDGS plume and shoreline-orientation behaviours of adults suggest that exposure of adult salmonids to high-TDGS conditions may be minimized using operational conditions that direct the spilled water mid-channel. Our approach illustrates the potential for combined field and modelling efforts to estimate the fine-scale environmental conditions encountered by fishes in natural and regulated rivers. Published in 2007 by John Wiley & Sons, Ltd. C1 Univ Idaho, Dept Fish & Wildlife Resources, Idaho Cooperat Fish & Wildlife Res Unit, Moscow, ID 83844 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Johnson, EL (reprint author), Univ Idaho, Dept Fish & Wildlife Resources, Idaho Cooperat Fish & Wildlife Res Unit, Moscow, ID 83844 USA. EM ejohnson@uidaho.edu RI Richmond, Marshall/D-3915-2013; Caudill, Christopher/M-7906-2014 OI Richmond, Marshall/0000-0003-0111-1485; NR 40 TC 11 Z9 12 U1 3 U2 25 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1535-1459 J9 RIVER RES APPL JI River Res. Appl. PD NOV PY 2007 VL 23 IS 9 BP 963 EP 978 DI 10.1002/rra.1019 PG 16 WC Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA 238OE UT WOS:000251456300003 ER PT J AU Hovanski, Y Santella, ML Grant, GJ AF Hovanski, Y. Santella, M. L. Grant, G. J. TI Friction stir spot welding of hot-stamped boron steel SO SCRIPTA MATERIALIA LA English DT Article DE FSW; spot welding; boron steel AB Hot-stamped boron steel was successfully joined via friction stir spot welding using polycrystalline cubic boron nitride tooling. The resulting microstructure, microhardness and mechanical properties are reported, including a brief look into failure mechanisms. Relationships between the unique mechanical mixing, phase transformations and failure initiation sites associated with joining martensitic steels are characterized. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Energy Mat & Mfg, Pacific Northwest Natl Lab, Richland, WA 99352 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Hovanski, Y (reprint author), Energy Mat & Mfg, Pacific Northwest Natl Lab, MSIN K2 03,902 Battelle Blvd PO Box 999, Richland, WA 99352 USA. EM yuri.hovanski@pnl.gov NR 10 TC 45 Z9 45 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2007 VL 57 IS 9 BP 873 EP 876 DI 10.1016/j.scriptamat.2007.06.060 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 208ZB UT WOS:000249356800022 ER PT J AU Kuntz, JD Roberts, JJ Hough, M Cherepy, NJ AF Kuntz, Joshua D. Roberts, Jeffery J. Hough, Meghan Cherepy, Nerine J. TI Multiple synthesis routes to transparent ceramic lutetium aluminum garnet SO SCRIPTA MATERIALIA LA English DT Article DE optical materials; ceramics; sintering; mechanical milling; hot isostatic pressing (HIP) ID FABRICATION; POWDERS; LUAG AB Transparent ceramics may be fabricated using various material sources and processing routes. In an effort to identify key processing parameters, we explored two different particle processing methods for production of ceramic lutetium aluminum garnet doped with cerium (LuAG:Ce): flame spray pyrolysis powder and high-energy-milled commercial powders. Powders were cold-pressed and vacuum sintered prior to hot isostatic pressing. The flame spray pyrolysis route led to phase-pure transparent ceramics, while the high-energy milling route led to multi-phase, translucent ceramics. (c) 2007 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kuntz, JD (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave,L-367, Livermore, CA 94550 USA. EM kuntz2@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X NR 10 TC 17 Z9 17 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2007 VL 57 IS 10 BP 960 EP 963 DI 10.1016/j.scriptamat.2007.07.017 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 214HU UT WOS:000249729000018 ER PT J AU Sun, YG Wiederrecht, GP AF Sun, Yugang Wiederrecht, Gary P. TI Surfactantless synthesis of silver nanoplates and their application in SERS SO SMALL LA English DT Review DE galvanic reactions; nanoplates; roughness; Raman spectroscopy; silver ID ENHANCED RAMAN-SCATTERING; SHAPE-CONTROLLED SYNTHESIS; SURFACE-PLASMON RESONANCE; SELF-ASSEMBLED MONOLAYERS; THIN-FILM TRANSISTORS; GOLD NANORODS; ASPECT-RATIO; BIOMEDICAL APPLICATIONS; GALVANIC DISPLACEMENT; BIOLOGICAL SYNTHESIS AB Silver nanoplates with thicknesses of 50-70 nm and edge lengths ranging from 200 nm to 1,um have been grown on semiconductor wafers at room temperature through a simple galvanic reaction between an aqueous solution of AgNO3 and n-type GaAs. The as-grown Ag structures have chemically clean surfaces due to no surfactant or coordinating molecules being involved in the synthesis. Electron microscopy characterizations indicate that each Ag plate has rough surfaces and a half-moon morphology with one straight edge and one arclike edge. Systematic studies on varying reaction conditions reveal that the oxide (i.e., Ga2O3 and As2O3) layers of GaAs, generated in situ in the reactions, play an important role in assisting the growth of anisotropic nanoplates. The cleanliness of the surfaces of the Ag nanoplates is beneficial to attachment of interesting molecules on their surfaces for various applications, such as plasmonicenhanced photophysical and photochemical processes and surfaceenhanced spectroscopies. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 NR 131 TC 117 Z9 122 U1 15 U2 148 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD NOV PY 2007 VL 3 IS 11 BP 1964 EP 1975 DI 10.1002/smll.200700484 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 232SD UT WOS:000251038800021 PM 17935082 ER PT J AU Ryutova, M Hagenaar, H AF Ryutova, M. Hagenaar, H. TI Magnetic solitons: Unified mechanism for moving magnetic features SO SOLAR PHYSICS LA English DT Article; Proceedings Paper CT Topical Conference on Solar MHD Wave Studies held in Honor of Bernard Robets CY MAY 29-JUN 01, 2006 CL Palma de Mallorca, SPAIN DE The Sun : nonlinear waves; photosphere; chromosphere and corona ID WAVE-PROPAGATION; STRUCTURED ATMOSPHERE; FLUX TUBE; EMERGING FLUX; SUNSPOTS; FIELDS; FILAMENTS; MOTIONS; LONG; MOAT AB In a highly dynamic environment with sources and sinks of energy, flux tubes do not in general obey local conservation laws, nor do the ensembles of flux tubes that exhibit collective phenomena. We use the approach of energetically open dissipative systems to study nonlinear waves in flux tubes and their role in the dynamics of the overlying atmosphere. We present results of theoretical and observational studies of the properties of moving magnetic features (MMFs) around sunspots and the response of the overlying atmosphere to various types of MMFs. We show that all types of MMFs, often having conflicting properties, can be described on a unified basis by employing the model of shocks and solitons propagating along the penumbral filaments co-aligned with Evershed flows. The model is also consistent with the response of the upper atmosphere to individual MMFs, which depends on their type. For example, soliton-type bipolar MMFs mainly participate in the formation of a moat and do not carry much energy into the upper atmosphere, whereas shock-like MMFs, with the appearance of single-polarity features, are often associated with chromospheric jets and microflares. C1 Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. RP Ryutova, M (reprint author), Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. EM ryutova1@llnl.gov NR 37 TC 13 Z9 14 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD NOV PY 2007 VL 246 IS 1 BP 281 EP 294 DI 10.1007/s11207-007-0399-z PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 238DF UT WOS:000251426800021 ER PT J AU Farrar, C AF Farrar, Chuck TI Issues for engineering educators SO SOUND AND VIBRATION LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Farrar, C (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM farrar@lanl.com RI Farrar, Charles/C-6954-2012 NR 0 TC 1 Z9 1 U1 0 U2 0 PU ACOUSTICAL PUBL INC PI BAY VILLAGE PA 27101 E OVIATT RD, PO BOX 40416, BAY VILLAGE, OH 44140 USA SN 1541-0161 J9 SOUND VIB JI Sound Vib. PD NOV PY 2007 VL 41 IS 11 BP 5 EP 6 PG 2 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 237SG UT WOS:000251396100001 ER PT J AU Zotev, VS Matlashov, AN Volegov, PL Urbaitis, AV Espy, MA Kraus, RH AF Zotev, Vadim S. Matlashov, Andrei N. Volegov, Petr L. Urbaitis, Algis V. Espy, Michelle A. Kraus, Robert H., Jr. TI SQUID-based instrumentation for ultralow-field MRI SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th Intenational Superconductive Electronics Conference CY JUN, 2007 CL Washington, DC SP IEEE Council Superconduct ID MICROTESLA MAGNETIC-FIELDS; QUANTUM INTERFERENCE DEVICE; DC-SQUID; RESONANCE; NMR; MAGNETOENCEPHALOGRAPHY; SYSTEM AB Magnetic resonance imaging at ultralow fields ( ULF MRI) is a promising new imaging method that uses SQUID sensors to measure the spatially encoded precession of pre- polarized nuclear spin populations at a microtesla- range measurement field. In this work, a seven- channel SQUID system designed for simultaneous 3D ULF MRI and magnetoencephalography ( MEG) is described. The system includes seven second- order SQUID gradiometers characterized by magnetic field resolutions of 1.2 - 2.8 fT Hz(-1/2). It is also equipped with five sets of coils for 3D Fourier imaging with pre- polarization. Essential technical details of the design are discussed. The system's ULF MRI performance is demonstrated by multi- channel 3D images of a preserved sheep brain acquired at 46 mu T measurement field with pre- polarization at 40 mT. The imaging resolution is 2.5 mm x 2.5 mm x 5 mm. The ULF MRI images are compared to images of the same brain acquired using conventional high- field MRI. Different ways to improve imaging SNR are discussed. C1 Los Alamos Natl Lab, Grp Appl Modern Phys, Los Alamos, NM 87545 USA. RP Zotev, VS (reprint author), Los Alamos Natl Lab, Grp Appl Modern Phys, POB 1663, Los Alamos, NM 87545 USA. EM vzotev@lanl.gov OI Urbaitis, Algis/0000-0002-8626-5987 NR 25 TC 43 Z9 43 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2007 VL 20 IS 11 SI SI BP S367 EP S373 DI 10.1088/0953-2048/20/11/S13 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 228LP UT WOS:000250731700015 ER PT J AU Alfonso, DR AF Alfonso, Dominic R. TI First-principles studies of the root 7 x root 7R19.1 degrees structure of sulfur on the Pd(111) surface SO SURFACE SCIENCE LA English DT Article DE density functional theory calculations; sulfur; palladium; metallic surfaces; surface structure ID GAS-SHIFT REACTION; GENERALIZED GRADIENT APPROXIMATION; RAY STANDING-WAVE; MEMBRANE REACTORS; AB-INITIO; ADSORBATE STRUCTURE; PALLADIUM; PD; SIMULATION; INTERFACE AB Density functional theory is used to investigate the (root/7 x root 7)R19.1 degrees structure of sulfur on the Pd(111) surface. Among the different models that were considered, the densely packed mixed sulfur-metal overlayer structure proposed by Liu et al. [W. Liu, K.A.R. Mitchell, W. Berndt, Surf. Sci. 393 (1997) L119] was found to be the most energetically favorable. This model consists of arrangement of Pd triangles and pentagons on top of Pd(111) with the sulfur atoms at 3/7 monolayer coverage. The dominant mechanism for sulfur interaction with Pd in the overlayer region is the rehybridization of sulfur 3p and metal 4d bands. Simulated scanning tunneling rnicroscopy image for this structure shows some similarity with that obtained from experiment. Our study confirms that surface sulfide with no structural resemblance to its bulk counterparts can form on Pd(111). (c) 2007 Elsevier B.V. All rights reserved. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Parsons, South Pk, PA 15129 USA. RP Alfonso, DR (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM alfonso@netl.doe.gov NR 50 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD NOV 1 PY 2007 VL 601 IS 21 BP 4899 EP 4909 DI 10.1016/j.suse.2007.08.016 PG 11 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 234IG UT WOS:000251153900016 ER PT J AU Mullins, DR McDonald, TS AF Mullins, D. R. McDonald, T. S. TI Adsorption and reaction of hydrogen sulfide on thin-film cerium oxide SO SURFACE SCIENCE LA English DT Article DE cerium; thermal desorption spectroscopy; soft x-ray photoelectron spectroscopy; hydrogen sulfide ID BAND-GAP SIZE; CHEMICAL-REACTIVITY; SINGLE-CRYSTAL; SURFACES; H2S; PHOTOEMISSION; SO2; CHEMISORPTION; SPECTROSCOPY; RU(0001) AB The adsorption and reaction of hydrogen sulfide, H2S, have been studied on cerium oxide thin films that were vapor deposited on Ru(0001). The behavior of the H2S was examined as a function of Ce oxidation state. H2S weakly chemisorbs on fully oxidized CeO2 desorbing near 155 K. Hydrogen from the H2S reacts with the surface O to desorb as water between 200 K and 450 K. When ca. 20% of the Ce4+ is reduced to Ce3+ more H2S dissociates to -OH and -SH and water is produced near 580 K. When the ceria is ca. 70% reduced, water formation is suppressed and H-2 desorbs near 580 K. S 2p photoelectron spectroscopy indicates the decomposition of H2S into -SH and then -S as the sample is annealed from 100 K to 600 K. O Is photoemission indicated the presence of H2O and OH. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6201, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov NR 38 TC 30 Z9 30 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD NOV 1 PY 2007 VL 601 IS 21 BP 4931 EP 4938 DI 10.1016/j.susc.2007.08.007 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 234IG UT WOS:000251153900021 ER PT J AU Mei, DH Deskins, NA Dupuis, M AF Mei, Donghai Deskins, N. Aaron Dupuis, Michel TI A density functional theory study of formaldehyde adsorption on ceria SO SURFACE SCIENCE LA English DT Article DE cerium dioxide; surfaces; stoichiometric; adsorption; formaldehyde; density functional calculations ID WATER-GAS SHIFT; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; CEO2 SURFACES; ELECTRONIC-STRUCTURE; FORMIC-ACID; BASIS-SET; DECOMPOSITION; OXIDE; CATALYSTS AB Molecular adsorption of formaldehyde on the stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory. Two adsorption modes (strong chemisorbed and weak physisorbed) were identified on both surfaces. This is consistent with recent experimental observations. On the (111) surface, formaldehyde strongly chemisorbs with an adsorption energy of 0.86 eV to form a dioxymethylene-like structure, in which a surface O lifts from the surface to bind with the C of formaldehyde. A weak physisorbed state with adsorption energy of 0.28 eV was found with the O of formaldehyde interacting with a surface Ce. On the (110) surface, dioxymethyelene formation was also observed, with an adsorption energy of 1.31 eV. The weakly adsorbed state of formaldehyde on the (110) surface was energetically comparable to the weak adsorption state on the (111) surface. Analysis of the local density of states and charge density differences after adsorption shows that strong covalent bonding occurs between the C of formaldehyde and surface O when dioxymethylene forms. Calculated vibrational frequencies also confirm dioxymethylene formation. Our results show that as the coverage increases, the adsorption of formaldehyde on the (111) surface becomes weak, but is nearly unaffected on the (110) surface. (C) 2007 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Div Mat & Chem Sci, PO Box 999,K1-83, Richland, WA 99352 USA. EM donghai.mei@pnl.gov RI Mei, Donghai/D-3251-2011; Deskins, Nathaniel/H-3954-2012; Mei, Donghai/A-2115-2012 OI Mei, Donghai/0000-0002-0286-4182 NR 27 TC 30 Z9 31 U1 4 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD NOV 1 PY 2007 VL 601 IS 21 BP 4993 EP 5001 DI 10.1016/j.susc.2007.08.027 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 234IG UT WOS:000251153900029 ER PT J AU Marsteller, DA Barbarich-Marsteller, NC Patel, VD Dewey, SL AF Marsteller, Douglas A. Barbarich-Marsteller, Nicole C. Patel, Vinal D. Dewey, Stephen L. TI Brain Metabolic Changes Following 4-Week Citalopram Infusion: Increased (18)FDG Uptake and gamma-Amino Butyric Acid Levels SO SYNAPSE LA English DT Article DE monoamines; amino acids; (18)FDG; depression; antidepressant; small animal imaging ID MAGNETIC-RESONANCE-SPECTROSCOPY; MAJOR DEPRESSIVE DISORDER; RAT-BRAIN; GABA CONCENTRATIONS; ANTIDEPRESSANT TREATMENT; SLEEP-DEPRIVATION; NUCLEUS-ACCUMBENS; SEROTONIN; MICE; TRANSPORTER AB We used 2-week and 4-week citalopram infusion (10 mg/kg/day) to determine how this selective serotonin reuptake inhibitor (SSRI) would alter 2-deoxy-2-[F-18]-fluoro-D-glucose ((18)FDG) uptake and neurotransmitter tissue levels in male Sprague-Dawley rodents. A weekly time course of (18)FDG uptake altered by chronic citalopram treatment was determined in vivo with small animal positron emission tomography (microPET (R)). Additionally, end of study monoamine levels were measured ex vivo using high pressure liquid chromatography (HPLC) and amino acid levels were determined ex vivo with proton nuclear magnetic resonance spectroscopy (H-1-NMRS). We found increased striatal (18)FDG uptake, reduced tissue levels of noradrenaline and serotonin in the striatum and prefrontal cortex, and increased striatal gamma-amino-butyric acid following 4-week citalopram infusion. C1 SUNY Stony Brook, Grad Program Mol & Cellular Pharmacol, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. Columbia Univ, Coll Phys & Surg, Dept Psychiat, New York, NY 10032 USA. New York State Psychiat Inst & Hosp, New York, NY 10032 USA. NYU, Dept Psychiat, New York, NY 10016 USA. RP Marsteller, DA (reprint author), Lundbeck Res USA Inc, 215 Coll Rd, Paramus, NJ 07652 USA. EM doum@lundbeck.com FU NIDA NIH HHS [DA15041] NR 51 TC 8 Z9 9 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-4476 J9 SYNAPSE JI Synapse PD NOV PY 2007 VL 61 IS 11 BP 877 EP 881 DI 10.1002/syn.20428 PG 5 WC Neurosciences SC Neurosciences & Neurology GA 213OT UT WOS:000249677700001 PM 17657806 ER PT J AU Yang, D Fadeev, AG Adams, PN Mattes, BR AF Yang, Dali Fadeev, Andrei G. Adams, Phillip. N. Mattes, Benjamin R. TI GPC characterization of emeraldine, base in NMP containing ionic liquids SO SYNTHETIC METALS LA English DT Article DE polyaniline; emeraldine base; aggregation; ionic liquid; GPC; UV-vis spectroscopy; LiCl; hydrogen bond; molecular weight determination ID GEL-PERMEATION CHROMATOGRAPHY; MOLECULAR-WEIGHT; POLYANILINE NANOFIBERS; MORPHOLOGICAL STRUCTURE; ELECTRONIC-PROPERTIES; CONDUCTING POLYMER; OXIDATION-STATE; TEMPERATURE; DEPENDENCE; NANOTUBES AB Strong aggregation between chains of polyaniline (PANI) emeraldine base (EB) molecules dissolved/dispersed in N-methyl-2-pyrrolidinone (NMP) results in a multi-modal molecular weight distribution in gel permeation chromatograph (GPC) results, regardless of how low the concentration of EB is. The addition of a salt, such as lithium chloride (LiCl), is known to improve EB solubility in NMP by deaggregating the polymer chains. However, we have found that ionic liquids, such as 1-methyl-3-butyl imidazolium teirafluoroborate ([BMIM][BF4]) or 1-methyl-3-ethyl imidazolium tetrafluoroborate ([EMIM][BF4]), not only have less impact on the EB chain conformation than LiCl does, but also deaggregate the EB molecules more effectively. A mono-distributed GPC peak is obtained for EB (M-w up to 3 x 10(5) g/mol) dissolved in the NMP/ionic liquid solutions. Therefore, the EB molecular weight distribution is characterized more accurately by using the NMP/ionic liquid solution than the NMP/LiCl solution. Published by Elsevier B.V. C1 [Yang, Dali; Fadeev, Andrei G.; Adams, Phillip. N.; Mattes, Benjamin R.] Santa Fe Sci & Technol Inc, Santa Fe, NM 87507 USA. RP Yang, D (reprint author), Los Alamos Natl Lab, E 549, MST 7, Los Alamos, NM 87545 USA. EM dyang@lanl.gov NR 47 TC 10 Z9 10 U1 3 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD NOV PY 2007 VL 157 IS 22-23 BP 988 EP 996 DI 10.1016/j.synthmet.2007.10.002 PG 9 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 261SD UT WOS:000253099400018 ER PT J AU Romig, AD Baker, AB Johannes, J Zipperian, T Eijkel, K Kirchhoff, B Mani, HS Rao, CNR Walsh, S AF Romig, A. D., Jr. Baker, Arnold B. Johannes, Justine Zipperian, Thomas Eijkel, Kees Kirchhoff, Bruce Mani, H. S. Rao, C. N. R. Walsh, Steven TI An introduction to nanotechnology policy: Opportunities and constraints for emerging and established economies SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article ID TECHNOLOGIES; INDUSTRY AB Nanotechnology has captured wide attention all over the world and excited the imagination of young and old alike. Interest in the subject has increased remarkably during the last few years because of potential technological applications, and commercial interest has skyrocketed. The promise of nanotechnology as an economic engine that can redefine the wellbeing of regions and nations is pervasive; yet the imprecise language, and overuse of the term nanotechnology, has made that term fuzzier, broader, and trendier than many imagined possible. This is especially evident in nanotechnology market projections, which rose dramatically over the past five years as more traditional "product families" were engulfed by the expanding use of the term. Government policy regarding nanotechnology has often resembled an embrace of imagination rather than a systematic use of what Sun Tzu and others have taught about strategic decision making. Further, if nanotechnology is truly the next wave of technology product paradigms, how will we provide an educated workforce to support it? Moreover, in company with these societal benefits come increased societal risks. This paper is intended to provide policy makers and strategists with observations that might limit actions such as those that led to the "over-hype" of nanotechnology and to the fear (or discounting) of societal risks. In the latter case we might learn from the experiences of policy makers connected with other emerging enabling-technology bases, such as nuclear energy and, to a lesser extent, the "dot-com" boom. (c) 2007 Elsevier Inc. All rights reserved. C1 [Mani, H. S.] Chennai Math Sci Inst, Madras, Tamil Nadu, India. [Romig, A. D., Jr.; Baker, Arnold B.; Johannes, Justine; Zipperian, Thomas] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Eijkel, Kees] Mesa Inst Nanotechnol, Enschede, Netherlands. [Kirchhoff, Bruce] New Jersey Inst Technol, Newark, NJ 07102 USA. [Rao, C. N. R.] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Bangalore 560012, Karnataka, India. [Rao, C. N. R.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Walsh, Steven] Univ New Mexico, Anderson Sch Management, Albuquerque, NM 87131 USA. RP Mani, HS (reprint author), Chennai Math Sci Inst, Madras, Tamil Nadu, India. EM hsmani@gmail.com; swalsh91@comcast.net RI Rao, C.N.R./B-1569-2009 OI Rao, C.N.R./0000-0003-4088-0615 NR 32 TC 42 Z9 43 U1 0 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD NOV PY 2007 VL 74 IS 9 BP 1634 EP 1642 DI 10.1016/j.techfore.2007.04.003 PG 9 WC Business; Planning & Development SC Business & Economics; Public Administration GA 247KQ UT WOS:000252078200006 ER PT J AU Kassicieh, S Rahal, N AF Kassicieh, Sul Rahal, Nabeel TI A model for disruptive technology forecasting in strategic regional economic development SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article ID RESEARCH-AND-DEVELOPMENT; COMMERCIALIZATION; ENTREPRENEURSHIP; CLUSTER; GROWTH; SYSTEM; FIRMS; VIEW AB As regions took to increase their economic development activities, technology-based developments and the penchant for long-term developments in disruptive technologies like nanotechnology become an important part of the options available to these regions. There are typically many technologies and therefore product areas that the region, however, can further develop by investing resources in these areas. At the same time, other regions in the world are considering the same areas of great growth and potential financial and social returns. This paper proposes a model that analyzes several important factors that can lead to success in analyzing these factors promoting the idea that policy makers should analyze the situation from different perspectives to reach justifiable decisions. These factors include the research capabilities of the region, its commercialization and manufacturing capabilities and the markets on which they should focus. Several mathematical models are then presented to help in that endeavor. (c) 2007 Elsevier Inc. All rights reserved. C1 [Kassicieh, Sul] Univ New Mexico, Anderson Sch Management, Albuquerque, NM 87131 USA. [Rahal, Nabeel] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kassicieh, S (reprint author), Univ New Mexico, Anderson Sch Management, Albuquerque, NM 87131 USA. EM sul@unm.edu; nrahal@sandia.gov NR 46 TC 7 Z9 7 U1 1 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD NOV PY 2007 VL 74 IS 9 BP 1718 EP 1732 DI 10.1016/j.techfore.2006.12.005 PG 15 WC Business; Planning & Development SC Business & Economics; Public Administration GA 247KQ UT WOS:000252078200011 ER PT J AU Pasyanos, ME Nyblade, AA AF Pasyanos, Michael E. Nyblade, Andrew A. TI A top to bottom lithospheric study of Africa and Arabia SO TECTONOPHYSICS LA English DT Article DE crust; moho; upper mantle; group velocity; lithosphere; Congo craton ID BENEATH SOUTHERN AFRICA; UPPER-MANTLE BENEATH; SURFACE-WAVE DISPERSION; NORTH-AFRICA; PRECAMBRIAN LITHOSPHERE; KAAPVAAL CRATON; FORM INVERSION; TRAVEL-TIMES; MIDDLE-EAST; VELOCITY AB We study the lithospheric structure of Africa, Arabia and adjacent oceanic regions with fundamental-mode surface waves over a broad period range. Including group velocities with periods shorter than 35 s allows us to examine shallower features than previous studies of the whole continent. In the process, we have developed a crustal thickness map of Africa. Main features include crustal thickness increases under the West African, Congo, and Kalahari cratons. We find crustal thinning under Mesozoic and Cenozoic rifts, including the Benue Trough, Red Sea, and East, Central, and West African rift systems, along with less abrupt crustal thickness changes at passive continental margins. We also find crustal thickness differences in North Africa between the West African Craton and East Saharan Shield. Crustal shear wave velocities are generally faster in oceanic regions and cratons, and slower in more recent crust and in active and remnant orogenic regions. Deeper structure, related to the thickness of cratons and modem rifting, is generally consistent with previous work. Under cratons we find thick lithosphere and fast upper mantle velocities, while under rifts we find thinned lithosphere and slower upper mantle velocities. However, we also find the lack of a thick cratonic keel beneath the central portion of the Congo Craton. There are no consistent effects in areas classified as hotspots, indicating that there seem to be numerous origins for these features. Finally, it appears that the African Superswell, which is responsible for high elevation and uplift over large portions of Africa, has had a significantly different impact (as indicated by features such as temperature, time of influence, etc.) in the north and the south. This is consistent with episodic activity at shallow depths, which is well-expressed in northeastern Africa and Arabia today. (c) 2007 Elsevier B.V All rights reserved. C1 Lawrence Livermore Natl Lab, Div Earth Sci, Livermore, CA 94551 USA. Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. RP Pasyanos, ME (reprint author), Lawrence Livermore Natl Lab, Div Earth Sci, POB 808,L-205, Livermore, CA 94551 USA. EM pasyanosI@llnl.gov RI Pasyanos, Michael/C-3125-2013 NR 60 TC 91 Z9 91 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 EI 1879-3266 J9 TECTONOPHYSICS JI Tectonophysics PD NOV 1 PY 2007 VL 444 IS 1-4 BP 27 EP 44 DI 10.1016/j.tecto.2007.07.008 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 229HF UT WOS:000250793200002 ER PT J AU Tang, ZX Johal, MS Scudder, P Caculitan, N Magyar, RJ Tretiak, S Wang, HL AF Tang, Zhexiong Johal, Malkiat S. Scudder, Paul Caculitan, Nina Magyar, Rudolph J. Tretiak, Sergei Wang, Hsing-Lin TI Study of the non-covalent interactions in Langmuir-Blodgett films: An interplay between pi-pi and dipole-dipole interactions SO THIN SOLID FILMS LA English DT Article DE langmuir-blodgett; azobenzene; noncovalent interaction; aggregate; packing; isotherm; dipole ID DENSITY-FUNCTIONAL THEORY; 2ND-HARMONIC GENERATION; DESIGN; SPECTROSCOPY; POLYMERS; EXCHANGE; SYSTEMS AB This work describes Langmuir-Blodgett (L-B) monolayer and multilayer assemblies constructed from a series of NLO-active azo-benzene derivatives possessing terminal moieties of variable dipole moment. The terminal groups are electron acceptors (acetyl, nitro, and cyano) and are connected to a common amphiphilic azo-benzene segment. Our experimental and theoretical results show that the interplay between two dominant non-covalent interactions within the assemblies, namely dipolar and pi-pi stacking interactions, dictate the packing density, structural order, as well as the electronic properties of the final films. L-B films of the acetyl derivative, which has the weakest total dipole across the azo-benzene chromophore, exhibits the highest packing density and the largest blue shift in the UV-visible absorption spectrum. This is rationalized by relatively strong pi-pi interactions between the azo-benzene chromophores overwhelming weak intermolecular dipole-dipole interactions. More importantly, the small internal dipole in the acetyl functional groups encourages packing in a configuration that lowers the overall energy and increases the packing density. In the case of the cyano and nitro derivatives, both L-B films show decrease in packing density and a weaker electronic coupling due to unfavorable overall dipole interaction that offsets the pi-pi interaction. We show that such unfavorable interactions lead to the formation of a staggered and loosely packed configuration. Our work demonstrates that a subtle difference in molecular structure can have a dramatic impact on aggregation, and consequently on the electronic and optical properties of nano-assemblies. This work demonstrates a way of controlling the formation of nanoscale structures at the molecular level through the control of noncovalent interactions. (C) 2007 Elsevier B.V. All rights reserved. C1 Pomona Coll, Dept Chem, Claremont, CA 91711 USA. Univ S Florida, New Coll, Div Nat Sci, Sarasota, FL 34243 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Wang, HL (reprint author), Pomona Coll, Dept Chem, 645 N Coll Ave, Claremont, CA 91711 USA. EM Malkiat.Johal@pomona.edu; hwang@lanl.gov RI Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 NR 29 TC 9 Z9 9 U1 1 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD NOV 1 PY 2007 VL 516 IS 1 BP 58 EP 66 DI 10.1016/j.tsf.2007.04.149 PG 9 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 227EA UT WOS:000250638800010 ER PT J AU Hossain, M Meyer, HM Abu-Safe, HH Naseem, HA Brown, WD AF Hossain, Maruf Meyer, Harry M., III Abu-Safe, Husam H. Naseem, Hameed A. Brown, William D. TI Corrigendum to "The effect of hydrogen in the mechanism of aluminium-induced crystallization of sputtered amorphous silicon using scanning auger microanalysis" SO THIN SOLID FILMS LA English DT Correction C1 Univ Arkansas, Dept Elect Engn, Arkansas Adv Photovolta Res Ctr, Dept Elect Engn,Bell Engn Ctr 3217, Fayetteville, AR 72701 USA. Oak Ridge Natl Lab, Div Met & Ceram, Microscopy Microanal & Microstruct Grp, Oak Ridge, TN 37831 USA. RP Hossain, M (reprint author), Univ Arkansas, Dept Elect Engn, Arkansas Adv Photovolta Res Ctr, Dept Elect Engn,Bell Engn Ctr 3217, Fayetteville, AR 72701 USA. EM maruf72703@yahoo.com NR 1 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD NOV 1 PY 2007 VL 516 IS 1 BP 106 EP 106 DI 10.1016/j.tsf.2007.06.002 PG 1 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 227EA UT WOS:000250638800018 ER PT J AU Dutta, D Sundaram, SK Teeguarden, JG Riley, BJ Fifield, LS Jacobs, JM Addleman, SR Kaysen, GA Moudgil, BM Weber, TJ AF Dutta, Debamitra Sundaram, Shanmugavelayutham Kamakshi Teeguarden, Justin Gary Riley, Brian Joseph Fifield, Leonard Sheldon Jacobs, Jon Morrell Addleman, Shane Raymond Kaysen, George Alan Moudgil, Brij Mohan Weber, Thomas Joseph TI Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials SO TOXICOLOGICAL SCIENCES LA English DT Article DE scavenger receptor; albumin; carbon nanotube; inflammation ID A SCAVENGER RECEPTORS; ENDOTHELIAL-CELLS; ULTRAFINE PARTICLES; SIGNALING PATHWAYS; MASS-SPECTROMETRY; CARBON NANOTUBES; DRUG-DELIVERY; IN-VITRO; MACROPHAGES; NANOPARTICLES AB The possible combination of specific physicochemical properties operating at unique sites of action within cells and tissues has led to considerable uncertainty surrounding nanomaterial toxic potential. We have investigated the importance of proteins adsorbed onto the surface of two distinct classes of nanomaterials (single-walled carbon nanotubes [SWCNTs]; 10-nm amorphous silica) in guiding nanomaterial uptake or toxicity in the RAW 264.7 macrophage-like model. Albumin was identified as the major fetal bovine or human serum/plasma protein adsorbed onto SWCNTs, while a distinct protein adsorption profile was observed when plasma from the Nagase analbuminemic rat was used. Damaged or structurally altered albumin is rapidly cleared from systemic circulation by scavenger receptors. We observed that SWCNTs inhibited the induction of cyclooxygenase-2 (Cox-2) by lipopolysaccharide (LPS; 1 ng/ml, 6 h) and this anti-inflammatory response was inhibited by fucoidan (scavenger receptor antagonist). Fucoidan also reduced the uptake of fluorescent SWCNTs (Alexa(647)). Precoating SWCNTs with a nonionic surfactant (Pluronic F127) inhibited albumin adsorption and anti-inflammatory properties. Albumin-coated SWCNTs reduced LPS-mediated Cox-2 induction under serum-free conditions. SWCNTs did not reduce binding of LPSAlexa488 to RAW 264.7 cells. The profile of proteins adsorbed onto amorphous silica particles (50-1000 nm) was qualitatively different, relative to SWCNTs, and precoating amorphous silica with Pluronic F127 dramatically reduced the adsorption of serum proteins and toxicity. Collectively, these observations suggest an important role for adsorbed proteins in modulating the uptake and toxicity of SWCNTs and nano-sized amorphous silica. C1 Pacific NW Natl Lab, Dept Cell Biol & Biochem, Div Biol Sci, Richland, WA 99354 USA. Univ Florida, Particle Engn Res Ctr, Gainesville, FL 32611 USA. Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. Pacific NW Natl Lab, Adv Proc & Applicat Grp, Richland, WA 99354 USA. Pacific NW Natl Lab, Environm Technol Directorate, Richland, WA 99354 USA. Univ Calif Davis, Dept Med, Div Nephrol, Davis, CA 95616 USA. Univ Calif Davis, Dept Biochem & Mol Med, Davis, CA 95616 USA. No Calif Hlth Care Syst, Dept Vet Affairs, Mather, CA 95655 USA. RP Weber, TJ (reprint author), Pacific NW Natl Lab, Dept Cell Biol & Biochem, Div Biol Sci, 790 6th St,P7-56, Richland, WA 99354 USA. EM thomas.weber@pnl.gov RI Fifield, Leonard/E-9773-2010; Zhou, Feng/E-9510-2011; OI Fifield, Leonard/0000-0002-7432-5356; Teeguarden, Justin/0000-0003-3817-4391; Riley, Brian/0000-0002-7745-6730 NR 37 TC 270 Z9 272 U1 8 U2 91 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD NOV PY 2007 VL 100 IS 1 BP 303 EP 315 DI 10.1093/toxsci/kfm217 PG 13 WC Toxicology SC Toxicology GA 227VT UT WOS:000250686600032 PM 17709331 ER PT J AU Wu, CB Ramirez, A Cui, BX Ding, J Delcroix, JDM Valletta, JS Liu, JJ Yang, YM Chu, S Mobley, WC AF Wu, Chengbiao Ramirez, Alfredo Cui, Bianxiao Ding, Jianqing Delcroix, Jean-Dominique M. Valletta, Janice S. Liu, Jia-Jia Yang, Yanmin Chu, Steven Mobley, William C. TI A functional dynein-microtubule network is required for NGF signaling through the Rap1/MAPK pathway SO TRAFFIC LA English DT Article DE axon; DRG; dynein; endosome; MAPK; microtubule; NGF; rap1; retrograde transport; TrkA ID NERVE GROWTH-FACTOR; RETROGRADE AXONAL-TRANSPORT; SYMPATHETIC NEURONS; SENSORY NEURONS; EARLY ENDOSOMES; INDUCED DIFFERENTIATION; NEUROTROPHIC FACTORS; TRANSCRIPTION FACTOR; CHOLINERGIC NEURONS; ALZHEIMERS-DISEASE AB Rap1 transduces nerve growth factor (NGF)/tyrosine receptor kinase A (TrkA) signaling in early endosomes, leading to sustained activation of the p44/p42 mitogen-activated protein kinases (MAPK1/2). However, the mechanisms by which NGF, TrkA and Rap1 are trafficked to early endosomes are poorly defined. We investigated trafficking and signaling of NGF, TrkA and Rap1 in PC12 cells and in cultured rat dorsal root ganglion (DRG) neurons. Herein, we show a role for both microtubule- and dynein-based transport in NGF signaling through MAPK1/2. NGF treatment resulted in trafficking of NGF, TrkA and Rap1 to early endosomes in the perinuclear region of PC12 cells where sustained activation of MAPK1/2 was observed. Disruption of microtubules with nocodazole in PC12 cells had no effect on the activation of TrkA and Ras. However, it disrupted intracellular trafficking of TrkA and Rap1. Moreover, NGF-induced activation of Rap1 and sustained activation of MAPK1/2 were markedly suppressed. Inhibition of dynein activity through overexpression of dynamitin (p50) blocked trafficking of Rap1 and the sustained phase of MAPK1/2 activation in PC12 cells. Remarkably, even in the continued presence of NGF, mature DRG neurons that overexpressed p50 became atrophic and most (> 80%) developing DRG neurons died. Dynein- and microtubule-based transport is thus necessary for TrkA signaling to Rap1 and MAPK1/2. C1 Stanford Univ, Sch Med, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA. RP Wu, CB (reprint author), Stanford Univ, Sch Med, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA. EM cbwu@stanford.edu FU NIA NIH HHS [AG16999]; NINDS NIH HHS [NS24054, NS38869, NS055371] NR 65 TC 31 Z9 33 U1 0 U2 6 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1398-9219 J9 TRAFFIC JI Traffic PD NOV PY 2007 VL 8 IS 11 BP 1503 EP 1520 DI 10.1111/j.1600-0854.2007.00636.x PG 18 WC Cell Biology SC Cell Biology GA 223IP UT WOS:000250363800005 PM 17822405 ER PT J AU Igathinathane, C Womac, AR Sokhansanj, S Pordesimo, LO AF Igathinathane, C. Womac, A. R. Sokhansanj, S. Pordesimo, L. O. TI Moisture sorption thermodynamic properties of corn stover fractions SO TRANSACTIONS OF THE ASABE LA English DT Article; Proceedings Paper CT Annual Meeting of the American-Society-of-Agricultural-and-Biological-Engineers CY NOV 09-12, 2005 CL Univ Wisconsin-Madison, Madison, WI HO Univ Wisconsin-Madison DE corn; enthalpy; entropy; isotherms; stover; thermodynamic; water activity ID ENTHALPY-ENTROPY COMPENSATION; ISOTHERMS; EQUILIBRIUM; WATER; TEMPERATURE; COMPONENTS; MODELS; CROPS; HEAT; SEED AB Efficient processing, handling, and storage of corn stover, a major crop-based biomass, require an understanding of the moisture sorption thermodynamic properties of its fractions. Moisture sorption thermodynamic properties of the major corn stover fractions such as leaf, stalk skin, and stalk pith were determined, utilizing the static gravimetric sorption isotherms data in the temperature range of 10 degrees C to 40 degrees C. Brunauer-Emmet-Teller (BET) monolayer moistures of stover fractions, determined using standard and modified BET equations, decreased with an increase in temperature. Mean values of monolayer moisture contents were in the range from 3.8% to 4.9% d.b., and the whole range of associated water activity based on BET equations varied between 0.013 and 0.225. Net isosteric heat of sorption, evaluated using the Clausius-Claperon equation, and differential entropy values of stover fractions decreased exponentially with increased moisture and approached the latent heat of vaporization of pure water at around 20% d.b. The moisture sorption process was determined as enthalpy driven. Inequality in isokinetic and harmonic mean temperatures confirmed the enthalpy-entropy compensation theory. Among stover fractions, leaf had the greatest spreading pressure, followed by stalk skin and stalk pith. Spreading pressures increased with increase in water activity and decreased with temperature increase. Net integral enthalpy increased to a maximum and then decreased with, increasing moisture content, whereas net integral entropy displayed an opposite trend. Mean values of the net integral enthalpy and entropy of stalk pith were the highest and progressively decreased for leaf and stalk skin. C1 [Womac, A. R.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Igathinathane, C.; Pordesimo, L. O.] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Womac, AR (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 EJ Chapman Dr, Knoxville, TN 37996 USA. EM awomac@utk.edu OI Cannayen, Igathinathane/0000-0001-8884-7959 NR 34 TC 8 Z9 8 U1 0 U2 4 PU AMER SOC AGRICULTURAL & BIOLOGICAL ENGINEERS PI ST JOSEPH PA 2950 NILES RD, ST JOSEPH, MI 49085-9659 USA SN 0001-2351 J9 T ASABE JI Trans. ASABE PD NOV-DEC PY 2007 VL 50 IS 6 BP 2151 EP 2160 PG 10 WC Agricultural Engineering SC Agriculture GA 255IZ UT WOS:000252653000024 ER PT J AU Lin, J Gunter, LE Harding, SA Kopp, RF Mccord, RP Tsai, CJ Tuskan, GA Smart, LB AF Lin, Juan Gunter, Lee E. Harding, Scott A. Kopp, Richard F. Mccord, Rachel P. Tsai, Chung-Jui Tuskan, Gerald A. Smart, Lawrence B. TI Development of AFLP and RAPD markers linked to a locus associated with twisted growth in corkscrew willow (Salix matsudana 'Tortuosa') SO TREE PHYSIOLOGY LA English DT Article DE bulked segregant analysis; mapping; molecular; markers; Salix alba; stem development; woodformation ID BULKED SEGREGANT ANALYSIS; MOLECULAR-GENETICS; SEX DETERMINATION; RUST RESISTANCE; WOOD FORMATION; TENSION WOOD; LINKAGE MAP; IDENTIFICATION; POPULUS; RFLP AB Salix matsudana Koidz. cultivar 'Tortuosa'(corkscrew willow) is characterized by extensive stem bending and curling of leaves. To investigate the genetic basis of this trait, controlled crosses were made between a corkscrew female (S. matsudana 'Tortuosa') and a straight-stemmed, wild-type male (Salix alba L. Clone 99010). Seventy-seven seedlings from this family (ID, 99270) were grown in the field for phenotypic observation. Among the progeny, 39 had straight stems and leaves and 38 had bent stems and curled leaves, suggesting that a dominant allele at a single locus controls this phenotype. As a first step in characterizing the locus, we searched for amplified fragment length polymorphism (AFLP) and randomly amplified polymorphic DNA (RAPD) markers linked to the tortuosa allele using bulked segregant analysis. Samples of DNA from 10 corkscrew individuals were combined to produce a corkscrew pool, and DNA from 10 straight progeny was combined to make a wild-type pool. Sixty-four AFLP primer combinations and 640 RAPD primers were screened to identify marker bands amplified from the corkscrew parent and progeny pool, but not from the wild-type parent or progeny pool. An AFLP marker and a RAPD marker linked to and flanking the tortuosa locus were placed on a preliminary linkage map constructed based on segregation among the 77 progeny. Sectioning and analysis of shoot tips revealed that the corkscrew phenotype is associated with vascular cell collapse, smaller cell size in regions near the cambium and less developed phloem fibers than in wild-type progeny. Identification of a gene associated with this trait could lead to greater understanding of the control of normal stem development in woody plants. C1 SUNY Syracuse, Coll Environm Sci & Forestry, Fac Environm & Forest Biol, Syracuse, NY 13210 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Michigan Technol Univ, Biotechnol Res Ctr, Houghton, MI 49931 USA. RP Smart, LB (reprint author), SUNY Syracuse, Coll Environm Sci & Forestry, Fac Environm & Forest Biol, Syracuse, NY 13210 USA. EM lbsmart@esf.edu RI Tsai, CJ/C-2450-2009; Tuskan, Gerald/A-6225-2011; Gunter, Lee/L-3480-2016; OI Tsai, CJ/0000-0002-9282-7704; Tuskan, Gerald/0000-0003-0106-1289; Gunter, Lee/0000-0003-1211-7532; Smart, Lawrence/0000-0002-7812-7736 NR 36 TC 3 Z9 3 U1 1 U2 7 PU HERON PUBLISHING PI VICTORIA PA 202, 3994 SHELBOURNE ST, VICTORIA, BC V8N 3E2, CANADA SN 0829-318X J9 TREE PHYSIOL JI Tree Physiol. PD NOV PY 2007 VL 27 IS 11 BP 1575 EP 1583 PG 9 WC Forestry SC Forestry GA 230AF UT WOS:000250847000008 PM 17669747 ER PT J AU Maillard, O Camenisch, U Clement, FC Blagoev, KB Naegeli, H AF Maillard, Olivier Camenisch, Ulrike Clement, Flurina C. Blagoev, Krastan B. Naegeli, Hanspeter TI DNA repair triggered by sensors of helical dynamics SO TRENDS IN BIOCHEMICAL SCIENCES LA English DT Review ID NUCLEOTIDE EXCISION-REPAIR; GROUP-C PROTEIN; XERODERMA-PIGMENTOSUM; DAMAGED DNA; OPEN COMPLEX; IN-VITRO; RECOGNITION; NUCLEASE; MECHANISM; XPC AB Nucleotide excision repair is a constitutive stress response that eliminates DNA lesions induced by multiple genotoxic agents. Unlike the immune system, which generates billions of immunoglobulins and T cell receptors for antigen recognition, the nucleotide excision repair complex uses only a few generic factors to detect an astounding diversity of DNA modifications. New data favor an unexpected strategy whereby damage recognition is initiated by the detection of abnormal oscillations in the undamaged strand opposite to DNA lesions. Another core subunit recognizes the increased susceptibility of DNA to be kinked at injured sites. We suggest that early nucleotide excision repair factors gain substrate versatility by avoiding direct contacts with modified residues and exploiting instead the altered dynamics of damaged DNA duplexes. C1 Univ Zurich Vetsuisse, Inst Pharmacol & Toxicol, CH-8057 Zurich, Switzerland. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Naegeli, H (reprint author), Univ Zurich Vetsuisse, Inst Pharmacol & Toxicol, Winterthurerstr 260, CH-8057 Zurich, Switzerland. EM naegelih@vetpharm.unizh.ch NR 50 TC 28 Z9 30 U1 0 U2 6 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0968-0004 J9 TRENDS BIOCHEM SCI JI Trends Biochem.Sci. PD NOV PY 2007 VL 32 IS 11 BP 494 EP 499 DI 10.1016/j.tibs.2007.08.008 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 233RY UT WOS:000251109200002 PM 17962020 ER PT J AU Velanki, S Kelly, S Thundat, T Blake, DA Ji, HF AF Velanki, Sreepriya Kelly, Shantell Thundat, Thomas Blake, Diane A. Ji, Hai-Feng TI Detection of Cd(II) using antibody-modified microcantilever sensors SO ULTRAMICROSCOPY LA English DT Article DE MCL; antibody; Cd2+-EDTA complex; adsorption-induced surface stress ID SELF-ASSEMBLED MONOLAYERS; HEAVY-METALS; MICROMECHANICAL CANTILEVER; COATED MICROCANTILEVER; PIEZORESISTIVE SENSORS; HUMAN SERUM; CADMIUM; IMMUNOASSAY; VALIDATION; VAPOR AB This work demonstrated the feasibility of detecting divalent Cd(II) ions using antibody-modified microcantilever (MCL) sensors. Different surface modification methods were compared and multilayer approach was found superior than others for MCL surface modifications for antibody-based Cd(II) sensor development. When the Cd(II)-EDTA complex sample is injected into the fluid cell where the MCL is held, the MCL bends upon the recognition of the Cd(II) complex by the antibody on the surface of the MCL. Control experiments showed that complex that does not contain Cd(II) did not cause any bending of the MCL. The detection limit of the sensor was approximately 10(-9) M. The reaction rate analysis indicated that Langmuir adsorption model is appropriate to describe the absorption of Cd(II)-EDTA-BSA on the antibody-covered MCL surface. (c) 2007 Elsevier B.V. All rights reserved. C1 Louisiana Tech Univ, Chem Program, Ruston, LA 71272 USA. Louisiana Tech Univ, Inst Micromfg, Ruston, LA 71272 USA. Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Tulane Univ, Hlth Sci Ctr, Dept Biochem, New Orleans, LA 70112 USA. RP Ji, HF (reprint author), Louisiana Tech Univ, Chem Program, Ruston, LA 71272 USA. EM hji@chem.latech.edu NR 37 TC 21 Z9 26 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2007 VL 107 IS 12 BP 1123 EP 1128 DI 10.1016/j.ultramic.2007.01.011 PG 6 WC Microscopy SC Microscopy GA 216TQ UT WOS:000249902300001 PM 17353097 ER PT J AU Moore, KT van der Laan, G AF Moore, Kevin T. van der Laan, Gerrit TI Accurate labeling of the light-actinide O-4,O-5 edges SO ULTRAMICROSCOPY LA English DT Article DE EELS; TEM; actinide; absorption ID RAY-ABSORPTION-SPECTROSCOPY; MAGNETIC CIRCULAR-DICHROISM; SPECTRA; PHOTOABSORPTION; PHOTOEMISSION; METAL; PLUTONIUM; 4D AB In this short article, the accurate labeling of the O-4,O-5 edges of the light actinides is addressed. The O-4 and O-5 edges are both contained in what is termed the 'giant resonance' and the smaller 'pre-peak' that is observed is a consequence of first-order perturbation by the 5d spin-orbit interaction on the 5d,5f exchange splitting. Thus, the small pre-peak in the actinide 5d --> 5f transition should not be labeled the OS peak, but rather the Delta S = 1 peak. (c) 2007 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. SERC, Daresbury Lab, Magnet Spectroscopy Grp, Warrington WA4 4AD, Cheshire, England. RP Moore, KT (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. EM moore78@llnl.gov RI van der Laan, Gerrit/Q-1662-2015 OI van der Laan, Gerrit/0000-0001-6852-2495 NR 18 TC 15 Z9 15 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2007 VL 107 IS 12 BP 1201 EP 1206 DI 10.1016/j.ultramic.2007.01.014 PG 6 WC Microscopy SC Microscopy GA 216TQ UT WOS:000249902300010 PM 17363169 ER PT J AU Narasimhan, TN AF Narasimhan, T. N. TI Central ideas of Buckingham (1907): A century later SO VADOSE ZONE JOURNAL LA English DT Review ID POROUS-MEDIA AB A century ago, Edgar Buckingham presented data and a theoretical conceptualization of soil moisture movement. His work constitutes a milestone in the history of soil physics and more generally, of movement of multiple fluid phases in porous media. Starting from first principles, Buckingham formulated a conceptual model to make rational sense of long-term observations of evaporation from soil columns. Central to his model were the notion of a capillary potential, soil moisture retention curve, and potential-dependent hydraulic conductivity. Buckingham recognized that whereas heat capacity and thermal conductivity were independent of temperature in Fourier's heat equation, in the case of soil moisture, the slope of the soil-moisture retention curve ( analogous to specific heat) and capillary conductivity were both strong functions of capillary potential. Noting that available solutions of Fourier's linear differential equation did not apply to moisture movement in soils, Buckingham was skeptical that the nonlinear problem could be solved mathematically. This is perhaps why he did not present a partial differential equation for soil-moisture movement. Such an equation would be gvien in 1931 by Richards. Despite considerable efforts, analytical solutions to Richards' equation can be obtained only under simplifying assumptions. While these solutions give valuable insights into patterns of soil moisture movement, they cannot adequately address problems of the natural soil environment. Although Buckingham's model remains the only workable physical-mathematical conceptualization for studying moisture movement in soils, his own skepticism of its ability to reliably describe moisture movement in soils is still valid. More profound, his skepticism captures the limitations inherent in precisely describing the behavior of earth systems. This paper examines Buckingham's central ideas in light of developments in groundwater hydrology and soil mechanics and reflects on the limits of our ability to quantitatively understand moisture movement in unsaturated soils. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Mat Sci & Engn,Dept Env Sci Policy & Managem, Berkeley, CA 94720 USA. RP Narasimhan, TN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Mat Sci & Engn,Dept Env Sci Policy & Managem, 210 Hearst Mining Bldg, Berkeley, CA 94720 USA. EM tnnarasimhan@LBL.gov NR 26 TC 5 Z9 5 U1 3 U2 11 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 687 EP 693 DI 10.2136/vzj2007.0080 PG 7 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100001 ER PT J AU Newman, BD Hickmott, DD Gram, P AF Newman, Brent D. Hickmott, Donald D. Gram, Peter TI Flow and high explosives transport in a semiarid mesa in New Mexico, USA SO VADOSE ZONE JOURNAL LA English DT Article ID ARID SYSTEM HYDRODYNAMICS; MOUNTAIN-FRONT RECHARGE; SOUTHERN HIGH-PLAINS; GROUNDWATER RECHARGE; DRY SOILS; UNSATURATED ZONE; WATER-MOVEMENT; O-18; DEUTERIUM; NITRATE AB Outfalls from high explosives ( HE) production facilities at Los Alamos National Laboratory discharged HE-contaminated waters onto a semiarid mesa on the Pajarito Plateau for about 50 yr. As part of an initial hydrogeologic characterization to examine the impact of HE contamination, four boreholes were drilled into the vadose zone to depths between 38.1 and 63.3 m. The study objectives were to characterize contaminant nature and extent and to identify potential source areas and transport pathways. Besides providing an example of HE transport in the vadose zone, this study shows the value of integrating chloride and stable isotope tracer approaches with contaminant distribution information, and it provides insights on semiarid vadose zone behavior in the little studied, but widespread ponderosa pine forests of the American Southwest. Chloride-based vadose zone residence time estimates (1950 - 6080 yr) suggest that downward flow and transport over much of the mesa is limited. However, the presence of HE-contaminated transient saturated zones in two boreholes indicates that localized fast pathways also occur. Stable isotope data (delta O-18 and delta D) suggest that the source areas for contamination are former HE outfall discharge ponds that provide focused recharge to the transient saturated zones. C1 [Newman, Brent D.; Hickmott, Donald D.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Gram, Peter] PMC Technol, Los Alamos, NM 87544 USA. RP Newman, BD (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS J495, Los Alamos, NM 87545 USA. EM b.newman@iaea.org RI Hickmott, Donald/C-2886-2011 NR 62 TC 0 Z9 0 U1 2 U2 5 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 774 EP 785 DI 10.2136/vzj2007.0047 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100010 ER PT J AU Cygan, RT Stevens, CT Puls, RW Yabusaki, SB Wauchope, RD McGrath, CJ Curtis, GP Siegel, MD Veblen, LA Turner, DR AF Cygan, Randall T. Stevens, Caroline T. Puls, Robert W. Yabusaki, Steven B. Wauchope, Robert D. McGrath, Christian J. Curtis, Gary P. Siegel, Malcolm D. Veblen, Linda A. Turner, David R. TI Research activities at US government agencies in subsurface reactive transport modeling SO VADOSE ZONE JOURNAL LA English DT Review ID URANYL(VI) ADSORPTION EQUILIBRIA; MOLECULAR-DYNAMICS SIMULATION; CATION-EXCHANGE MODEL; SAVANNA RIVER SITE; OIL SPILL SITE; HANFORD SITE; CRUDE-OIL; HYDROCARBON BIODEGRADATION; CONTAMINATED GROUNDWATER; GEOCHEMICAL TRANSPORT AB The fate of contaminants in the environment is controlled by both chemical reactions and transport phenomena in the subsurface. Our ability to understand the significance of these processes over time requires an accurate conceptual model that incorporates the various mechanisms of coupled chemical and physical processes. Adsorption, desorption, ion exchange, precipitation, dissolution, growth, solid solution, redox, microbial activity, and other processes are often incorporated into reactive transport models for the prediction of contaminant fate and transport. U. S. federal agencies use such models to evaluate contaminant transport and provide guidance to decision makers and regulators for treatment issues. We provide summaries of selected research projects and programs to demonstrate the level of activity in various applications and to present examples of recent advances in subsurface reactive transport modeling. C1 [Cygan, Randall T.; Siegel, Malcolm D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Puls, Robert W.] US EPA, Athens, GA 30605 USA. [Puls, Robert W.] US EPA, Ada, OK 74820 USA. [Yabusaki, Steven B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wauchope, Robert D.] USDA, Tifton, GA 31793 USA. [McGrath, Christian J.] USA, Engn Res & Dev Ctr, Vicksburg, MS 39180 USA. [Curtis, Gary P.] US Geol Survey, Menlo Pk, CA 94025 USA. [Veblen, Linda A.] US Nucl Regulatory Commiss, Washington, DC 20555 USA. [Turner, David R.] SW Res Inst, Ctr Nucl Waste Regulatory Anal, San Antonio, TX 78228 USA. RP Cygan, RT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rtcygan@sandia.gov NR 121 TC 6 Z9 6 U1 1 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 805 EP 822 DI 10.2136/vzj2006.0091 PG 18 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100013 ER PT J AU Duke, CL Roback, RC Reimus, PW Bowman, RS McLing, TL Baker, KE Hull, LC AF Duke, Catherine L. Roback, Robert C. Reimus, Paul W. Bowman, Robert S. McLing, Travis L. Baker, Kristine E. Hull, Larry C. TI Elucidation of flow and transport processes in a variably saturated system of interlayered sediment and fractured rock using tracer tests SO VADOSE ZONE JOURNAL LA English DT Article ID BASALT VADOSE ZONE; CONCEPTUAL-MODEL; YUCCA-MOUNTAIN; UNSATURATED FLOW; CONTINUUM MODEL; WATER-MOVEMENT; IDAHO; FIELD; MECHANISMS; HYDROLOGY AB The objective of this work was to investigate flow and transport in a layered, variably saturated system consisting of both fractured rock and sedimentary material during focused infiltration from the surface. Two tracer tests were performed using the Vadose Zone Research Park (VZRP) at the Idaho National Laboratory (INL). The first test occurred under quasi-steady-state conditions and the second was initiated in a much drier system and thus provided information regarding flow and transport under transient conditions. A one-dimensional analytical model was used to fit breakthrough curves resulting from the two tracer tests. The results of this modeling provide insight into the nature of flow in the fractured basalt, surficial alluvium, and sedimentary interbeds that comprise the vadose zone of the eastern Snake River Plain. Flow through the fractured basalt is focused and preferential in nature, and multiple flow paths arise due to numerous fractures functioning as transmissive pathways in addition to flow splitting along geologic contacts. Flow velocities were significantly higher during the test with the wetter flow domain, presumably due to increases in hydraulic conductivity associated with higher water contents of the geologic materials. Perching was observed above the alluvium-basalt contact and above the lower boundary of a locally continuous sedimentary interbed. The perching behavior between the two contacts was fundamentally different; the perched layer above the alluvium-basalt contact was neither laterally extensive nor temporally persistent in the absence of infiltration from the surface. In contrast, the perched layer along the interbed was significantly thicker and gave rise to lateral flow over distances on the order of hundreds of meters. Vertical transport is shown to occur predominantly through the main bulk of the sedimentary material of the interbed; lateral flow appears to occur primarily in the fractured basalt directly above the interbed. C1 [Duke, Catherine L.] Errol L Montgomery & Assoc Inc, Tucson, AZ 85719 USA. [Roback, Robert C.; Reimus, Paul W.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Bowman, Robert S.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [McLing, Travis L.; Baker, Kristine E.; Hull, Larry C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Duke, CL (reprint author), Errol L Montgomery & Assoc Inc, 1550 E Prince Rd, Tucson, AZ 85719 USA. EM kduke@elmontgomery.com OI Roback, Robert/0000-0003-2748-1580 NR 47 TC 8 Z9 8 U1 1 U2 11 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 855 EP 867 DI 10.2136/vzj2006.0102 PG 13 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100017 ER PT J AU Jana, RB Mohanty, BP Springer, EP AF Jana, Raghavendra B. Mohanty, Binayak P. Springer, Everett P. TI Multiscale pedotransfer functions for soil water retention SO VADOSE ZONE JOURNAL LA English DT Article ID HYDRAULIC-PROPERTIES; BIAS CORRECTION; BULK-DENSITY; MODEL; CONDUCTIVITY; SCALE AB Parametric soil water retention and hydraulic conductivity functions are often used for predicting soil hydrologic behavior using hydrologic, hydroclimatic, and contaminant transport models. The prediction accuracy of any such model is critically dependent on the quality of the input parameters. Limited availability of ( detailed) soil hydraulic data for large-scale hydroclimatic models ( with grids ranging from several kilometers to several hundred kilometers) is a major challenge. To address this need, pedotransfer functions (PTFs) have been used to estimate the required soil hydraulic parameters from other available or easily measurable soil properties. While most previous studies derive and adopt these parameters at matching spatial scales ( 1: 1) of input and output data, we have developed a methodology to derive soil water retention functions at the point or local scale using the PTFs trained with coarser scale input data. This study was a novel application of an artificial neural network ( ANN)-based PTF scheme across two spatial support scales within the Rio Grande basin in New Mexico. The ANN was trained using soil texture and bulk density data from the SSURGO database ( scale 1: 24,000) and then used for predicting soil water contents at different pressure heads with point-scale data ( 1: 1) inputs. The resulting outputs were corrected for bias before constructing the soil water characteristic curve using the van Genuchten equation. A hierarchical approach with training data derived from multiple clustered subwatersheds ( with varying spatial extent) was used to study the effect of the increase in spatial extent. The results show good agreement between the soil water retention curves constructed from the ANN-based PTFs and field observations at the local scale near Las Cruces, NM. The robustness of the multiscale PTF methodology was further tested with a separate data set from the Little Washita watershed region in Oklahoma. Overall, ANN coupled with bias correction was found to be a suitable approach for deriving soil hydraulic parameters at a finer scale from soil physical properties at coarser scales and across different spatial extents. The approach could potentially be used for downscaling soil hydraulic properties. C1 [Jana, Raghavendra B.; Mohanty, Binayak P.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. [Springer, Everett P.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Mohanty, BP (reprint author), Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. EM bmohanty@tamu.edu RI Jana, Raghavendra/A-9750-2010; Poggio, Matteo/D-8973-2011; Springer, Everett/B-6376-2012 OI Springer, Everett/0000-0002-9816-8148 NR 33 TC 23 Z9 24 U1 0 U2 17 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 868 EP 878 DI 10.2136/vzj2007.0055 PG 11 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100018 ER PT J AU Gee, GW Oostrom, M Freshley, MD Rockhold, ML Zachara, JM AF Gee, G. W. Oostrom, M. Freshley, M. D. Rockhold, M. L. Zachara, J. M. TI Hanford site vadose zone studies: An overview SO VADOSE ZONE JOURNAL LA English DT Editorial Material ID WATER-BALANCE; POROUS-MEDIA; RECHARGE; FLOW; SEDIMENTS AB Large quantities of radioactive and chemical wastes resulting from Pu production for nuclear weapons are located in the vadose zone at the USDOE's Hanford Site, north of Richland, WA. The vadose zone here is characterized by often highly stratified glacial-fluvial sediments that give rise to complex subsurface-flow paths that contribute to uncertainty of contaminant fate and transport. Research efforts have focused on answering questions of contaminant transport from the viewpoint of geologic, biologic, geochemical, and hydrologic controls. This special section highlights key research topics concerning vadose zone problems at the Hanford Site. Research indicates that some of the contaminant species (Cs-137, Co-60, Sr-90) are retained by Hanford sediments as a result of geochemical reactions, rendering them effectively immobile except under extremely saline or acidic conditions, while other species (Tc-99, I-129, H-3) are typically mobile and have moved deep into the vadose zone and subsequently into groundwater. In addition, large quantities of organics, including carbon tetrachloride, have moved in complex ways as both vapor and liquid in the subsurface. Observed transport of mobile species is linked to liquid discharges and to elevated recharge rates that occur primarily at waste sites where land surfaces are void of vegetation and where winter rains have subsequently penetrated the subsurface wastes. A series of papers in this issue documents progress to date in understanding transport rates at Hanford, why anisotropy strongly affects the distribution of subsurface contaminants, why organic contaminants are difficult to find in the deep vadose zone, and what the impacts of hypersaline fluids are on waste form degradation and subsequent transport. C1 [Gee, G. W.; Oostrom, M.; Freshley, M. D.; Rockhold, M. L.; Zachara, J. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gee, GW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM glendon.gee@pnl.gov NR 47 TC 23 Z9 23 U1 2 U2 22 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 899 EP 905 DI 10.2136/vzj2006.0179 PG 7 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100021 ER PT J AU Last, GV Murray, CJ Bush, DA Sullivan, EC Rockhold, ML Mackley, RD Bjornstad, BN AF Last, G. V. Murray, C. J. Bush, D. A. Sullivan, E. C. Rockhold, M. L. Mackley, R. D. Bjornstad, B. N. TI Standardization of borehole data to support vadose zone flow and transport modeling SO VADOSE ZONE JOURNAL LA English DT Article ID HETEROGENEITY AB Numerical representation of the geologic framework and its hydrologic and geochemical properties is an integral part of all vadose zone flow-and-transport modeling. Historically, the geologic framework has been represented by simple homogeneous and horizontally stratified hydrogeologic units. However, as computer-processing capabilities have become more advanced, there has been more emphasis on improving spatial resolution and quantifying uncertainty in key model parameters. One of the more popular approaches has focused on geostatistical simulation of the flow-and-transport properties themselves, with little regard to the geologic strata and sedimentary sequences. Newer approaches are focusing more on geostatistical simulation of the sequence-stratigraphic relations of lithofacies and the geostatistical distributions of flow-and-transport properties within those facies. These approaches require more rigorous quantitative treatment of geologic data than is normally supported by the mostly qualitative nature of borehole geologic information. At the USDOE Hanford Site, efforts are being made to standardize borehole geologic data so they can be used in a systematic and quantitative way to define the spatial distribution of flow-and-transport properties in support of vadose zone flow-and-transport simulations. New detailed procedures translate qualitative descriptive information into categorical data and inconsistent quantitative and semiquantitative data into common parametric data sets. A geologic data-management system is being developed to manage and integrate these standardized categorical data sets with other existing databases to support synergistic analysis and to improve numerical representation of the hydrogeologic architecture. These standardized data sets were used to develop lithofacies-based geostatistical representations of hydraulic conductivity beneath one of Hanford's more complex waste sites. C1 [Last, G. V.; Murray, C. J.; Sullivan, E. C.; Rockhold, M. L.; Mackley, R. D.; Bjornstad, B. N.] Pacific NW Natl Lab, Environm Technol Div, Richland, WA 99352 USA. [Bush, D. A.] Geol Consulting, Stevensville, MT 59870 USA. RP Last, GV (reprint author), Pacific NW Natl Lab, Environm Technol Div, POB 999, Richland, WA 99352 USA. EM george.last@pnl.gov NR 27 TC 3 Z9 3 U1 0 U2 1 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 906 EP 912 DI 10.2136/vzj2006.0175 PG 7 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100022 ER PT J AU Ward, AL Zhang, ZF AF Ward, Andy L. Zhang, Z. Fred TI Effective hydraulic properties determined from transient unsaturated flow in anisotropic soils SO VADOSE ZONE JOURNAL LA English DT Article ID SPATIAL VARIABILITY; COMPUTER-PROGRAM; POROUS-MEDIA; LINE SOURCE; CONDUCTIVITY; TRANSPORT; WATER; HETEROGENEITY; SATURATION; PARAMETERS AB An important requirement for accurate modeling of field-scale unsaturated transport using local-scale parameters is a method to account for multiscale heterogeneity and the connectivity of the facies that control flow. A series of infiltration tests were conducted at the Hanford Site along a 60-m-long transect, instrumented at 1-m intervals to measure water content (theta) and capillary pressure head (h) to quantify the spatial correlation structure of hydraulic properties and assess connectivity of the facies. Hydraulic parameters including the pore connectivity-tortuosity tensor (L-i) were inversely estimated using the Subsurface Transport Over Multiple Phases (STOMP) numerical simulator coupled with the parameter estimation code, UCODE. Results show that six of eight parameters required for a modified van Genuchten-Mualem model could be inversely estimated using. measured during transient infiltration from a surface line source and approximated prior information. Soils show evidence of saturation-dependent anisotropy that was well described with the connectivity tensor. Variability of the vertical saturated hydraulic conductivity, K-sv, was larger than the horizontal, K-sh. The autocorrelation ranges for K-sh, K-sv, the inverse of the air-entry value, a, and the horizontal connectivity, L-h, were between 2.4 and 4.6 m, whereas the van Genuchten shape parameter, n, and saturated water content, theta(s), showed no autocorrelation. Accurate upscaling of hydraulic properties requires the correct assessment of the connectivity of facies. C1 [Ward, Andy L.; Zhang, Z. Fred] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ward, AL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM andy.ward@pnl.gov OI Zhang, Fred/0000-0001-8676-6426 NR 47 TC 7 Z9 7 U1 0 U2 6 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 913 EP 924 DI 10.2136/vzj2006.0174 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100023 ER PT J AU Zhang, ZF Oostrom, M Ward, AL AF Zhang, Z. F. Oostrom, M. Ward, A. L. TI Saturation-dependent hydraulic conductivity anisotropy for multifluid systems in porous media SO VADOSE ZONE JOURNAL LA English DT Article ID STEADY-STATE FLOW; UNSATURATED SOILS; PARAMETRIC MODELS; PERMEABILITY; TRANSPORT; WATER; SEDIMENTS; SAND AB The hydraulic conductivity of unsaturated anisotropic soils has recently been described with a tensorial connectivity-tortuosity (TCT) concept. We extend this concept to unsaturated porous media with two or three immiscible fluids. Mathematical expressions to describe the conductivity of each fluid in anisotropic porous media under unsaturated condition are derived in the form of symmetric second order tensors. The theory is applicable to the generalized hydraulic conductivity model and compatible types of saturation-pressure formulation. The extended model shows that the anisotropic coefficient of any one of the fluids is independent of the saturation of other fluids. Synthetic Miller-similar soils generated to be anisotropic were defined by allowing the saturated hydraulic conductivity to have different correlation ranges for different directions of flow. The extended TCT concept was tested using synthetic soils with four levels of heterogeneity and four levels of anisotropy. Numerical experiments of infiltration of two liquid phases, water and the nonaqueous phase liquid (NAPL) carbon tetrachloride, were performed to test the extended model. The results show that, similar to water in a two-fluid (air-water) system, NAPL retention curves in a three-fluid (air-NAPL-water) system were independent of flow direction but dependent on soil heterogeneity, whereas the connectivity-tortuosity coefficients are functions of both soil heterogeneity and anisotropy. The extended TCT model accurately describes unsaturated hydraulic functions of anisotropic soils and can be combined into commonly used relative permeability functions for use in multifluid flow and transport numerical simulations. C1 [Zhang, Z. F.; Oostrom, M.; Ward, A. L.] Pacific NW Natl Lab, Environm Technol Div, Hydrogeol Res, Richland, WA 99352 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Environm Technol Div, Hydrogeol Res, Richland, WA 99352 USA. EM mart.oostrom@pnl.gov OI Zhang, Fred/0000-0001-8676-6426 NR 34 TC 6 Z9 6 U1 0 U2 4 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 925 EP 934 DI 10.2136/vzj2006.0141 PG 10 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100024 ER PT J AU Khaleel, R White, MD Oostrom, M Wood, MI Mann, FM Kristofzski, JG AF Khaleel, Raziuddin White, Mark D. Oostrom, Martinus Wood, Marcus I. Mann, Frederick M. Kristofzski, John G. TI Impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm SO VADOSE ZONE JOURNAL LA English DT Article ID UNSATURATED HYDRAULIC CONDUCTIVITY; STOCHASTIC-ANALYSIS; SUBSURFACE SEDIMENTS; CATION-EXCHANGE; MOISTURE PLUME; CESIUM; MEDIA; SOILS; MODEL; FLOW AB The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr(-1), is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted groundwater concentrations for technetium- 99 at the SX tank farm boundary were exceedingly high, on the order of 10(6) pCi L-1. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr(-1), and compared to the base case (100 mm yr(-1)) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary. C1 [Khaleel, Raziuddin] Fluor Govt Grp, Richland, WA 99352 USA. [White, Mark D.; Oostrom, Martinus] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wood, Marcus I.] Fluor Hanford Inc, Richland, WA 99352 USA. [Mann, Frederick M.; Kristofzski, John G.] CH2M HILL Hanford Grp Inc, Richland, WA 99352 USA. RP Khaleel, R (reprint author), Fluor Govt Grp, POB 1050, Richland, WA 99352 USA. EM raziuddin_khaleel@rl.gov NR 43 TC 12 Z9 12 U1 2 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 935 EP 945 DI 10.2136/vzj2006.0176 PG 11 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100025 ER PT J AU Murray, CJ Ward, AL Wilson, JL AF Murray, Christopher J. Ward, Andy L. Wilson, John L. TI Influence of clastic dikes on vertical migration of contaminants at the Hanford site SO VADOSE ZONE JOURNAL LA English DT Article ID HYDRAULIC CONDUCTIVITY; POROUS-MEDIA; SORPTIVITY; FLOW AB Clastic dikes are subvertical sedimentary features that cut through horizontally layered sediments, and they are common at the Hanford Site. Because of their cross-cutting relationship with the surrounding matrix, they have been proposed as potential fast paths from former contaminant discharge sites at the surface to the water table. However, little was known of the detailed hydrogeologic properties of the dikes, and detailed modeling of flow and transport through the dikes had not been performed. We excavated a 2-m-wide clastic dike at the Hanford Site and characterized it using an air minipermeameter, infrared imagery, and grain size analyses. Field injection experiments were also used to characterize the system. The resulting data were used to prepare a detailed numerical model of the clastic dike and surrounding matrix for a portion of the excavation. Unsaturated flow through the system was modeled for several recharge rates. The highly heterogeneous nature of the system led to complex behavior, with the relative flux rates in the matrix and clastic dike being highly dependent on the recharge rates that were imposed on the system. The occurrence of saturation-dependent complementary flow networks suggests that the contaminant release history may be important to the choice of remedial actions. Contaminants released under high flux conditions could be inaccessible under low fluxes, and vice versa. This phenomenon may also help explain the occurrence of complex breakthrough patterns of contaminants at compliance planes. C1 [Murray, Christopher J.; Ward, Andy L.] Pacific NW Natl Lab, Nat Resources Div, Richland, WA 99352 USA. [Wilson, John L.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. RP Murray, CJ (reprint author), Pacific NW Natl Lab, Nat Resources Div, POB 999, Richland, WA 99352 USA. EM Chris.Murray@pnl.gov NR 44 TC 5 Z9 5 U1 1 U2 3 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 959 EP 970 DI 10.2136/vzj2007.0004 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100027 ER PT J AU Oostrom, M Rockhold, ML Thorne, PD Truex, MJ Last, GV Rohay, VJ AF Oostrom, M. Rockhold, M. L. Thorne, P. D. Truex, M. J. Last, G. V. Rohay, V. J. TI Carbon tetrachloride flow and transport in the subsurface of the 216-Z-9 trench at the Hanford Site SO VADOSE ZONE JOURNAL LA English DT Article ID HYDRAULIC CONDUCTIVITY; POROUS-MEDIA; MODELS; NAPL AB As a result of past practices, up to 580 m(3) carbon tetrachloride (CT) was discharged to waste sites at the 200 West Area of the USDOE's Hanford Site near Richland, WA. Three-dimensional modeling was conducted to enhance the current conceptual model of CT distribution beneath the major disposal site (216-Z-9). The simulations, using the STOMP code, focused on migration of dense nonaqueous phase liquid (DNAPL) consisting of CT and codisposed organics under scenarios with differing sediment properties, sediment distribution, waste properties, and waste disposal history. Simulation results support a conceptual model for CT distribution where CT in the DNAPL phase migrated primarily in a vertical direction below the disposal site and where some CT DNAPL likely migrated across the water table into the regional aquifer. Results also show that the lower permeability Cold Creek unit retained more CT DNAPL within the vadose zone than other hydrologic units during the infiltration and redistribution process. Due to the relatively high vapor pressure of the CT, the resulting vapor plumes are extensive and influenced by density-driven advection. Any continued migration of CT from the vadose zone to the groundwater is likely through interaction of vapor phase CT with the groundwater and not through continued DNAPL migration. Additional simulations assessed the impacts of soil vapor extraction (SVE) as a remediation method. These simulations showed rapid CT removal associated with the assumed local equilibrium of CT between the phases. Additional efforts are needed to enhance the understanding of rate-limited volatilization to improve simulation of the SVE process and to provide a basis for refining the design and operation of SVE systems. C1 [Oostrom, M.; Rockhold, M. L.; Thorne, P. D.; Truex, M. J.; Last, G. V.] Pacific NW Natl Lab, Environm Technol Div, Richland, WA 99352 USA. [Rohay, V. J.] Fluor Hanford Inc, Richland, WA 99352 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Environm Technol Div, POB 999,MS K9-33, Richland, WA 99352 USA. EM mart.oostrom@pnl.gov NR 31 TC 21 Z9 23 U1 1 U2 4 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 971 EP 984 DI 10.2136/vzj2006.0166 PG 14 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100028 ER PT J AU Zachara, JM Serne, J Freshley, M Mann, F Anderson, F Wood, M Jones, T Myers, D AF Zachara, John M. Serne, Jeff Freshley, Mark Mann, Fred Anderson, Frank Wood, Marcus Jones, Tom Myers, Dave TI Geochemical processes controlling migration of tank wastes in Hanford's vadose zone SO VADOSE ZONE JOURNAL LA English DT Review ID COLLOID-FACILITATED TRANSPORT; SURFACE COMPLEXATION MODEL; CATION-EXCHANGE MODEL; K-D APPROACH; SUBSURFACE SEDIMENTS; POROUS-MEDIA; CHELATOBACTER-HEINTZII; REACTIVE TRANSPORT; IONIC-STRENGTH; NUCLEAR-WASTE AB Nuclear wastes from Hanford's processing for separation of plutonium are stored in massive, buried, single-shell tanks in 18 tank farms. These so-called tank wastes were initially thermally hot because of radioactive decay, and many exhibited extreme chemical character in terms of pH, salinity, and radionuclide concentration. At present, 67 of the 149 single shell tanks are suspected to have released over 1.9 million L of tank waste to the vadose zone, with most leak events occurring between 1950 and 1975. Boreholes have been placed through the largest vadose zone plumes to define the extent of contaminant migration and to develop conceptual models of processes governing the transformation, retardation, and overall transport of tank waste residuals. Laboratory studies with sediments so collected have shown that ion exchange, precipitation and dissolution, and surface complexation reactions have occurred between the tank wastes and subsurface sediments, moderating their chemical character and retarding the migration of select contaminants. Processes suspected to facilitate the far-field migration of immobile radionuclides including stable aqueous complex formation and mobile colloids were found to be potentially operative but unlikely to occur in the field, with the exception of cyanide-facilitated migration of Co-60. Certain fission product oxyanions (Mo, Ru, Se, Tc) and nitrates are the most mobile of tank waste constituents because their adsorption is suppressed by large concentrations of waste anions, the vadose zone clay fraction is negative in surface charge, and, unlike Cr, their reduced forms are unstable in oxidizing environments. Reaction/process-based transport modeling is beginning to be used for predictions of future contaminant mobility and plume evolution. C1 [Zachara, John M.; Serne, Jeff; Freshley, Mark] Pacific NW Natl Lab, Richland, WA 99354 USA. [Mann, Fred; Anderson, Frank; Jones, Tom; Myers, Dave] CH2M HILL Hanford Grp Inc, Richland, WA USA. [Wood, Marcus] Fluor Hanford, Richland, WA USA. RP Zachara, JM (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99354 USA. EM john.zachara@pnl.gov NR 147 TC 65 Z9 66 U1 9 U2 54 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 985 EP 1003 DI 10.2136/vzj2006.0180 PG 19 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100029 ER PT J AU McKinley, JP Zachara, JM Wan, J McCready, DE Heald, SM AF McKinley, James P. Zachara, John M. Wan, Jiamin McCready, David E. Heald, Steven M. TI Geochemical controls on contaminant uranium in vadose Hanford formation sediments at the 200 area and 300 area, Hanford Site, Washington SO VADOSE ZONE JOURNAL LA English DT Article ID URANYL; REDUCTION; ADSORPTION; SORPTION; U(VI); ZONE; ION; GROUNDWATER; HYDROLYSIS; SPECIATION AB Long-term historic spills of uranium at the 300 Area fuel fabrication site (58,000 kg of disposed uranium over 32 yr) and at the 200 East Area BX tank farm (7000 kg of spilled uranium in one event), both within the Hanford formation in the Hanford Site, Washington State, were investigated by subsurface sampling and subsequent microscale investigations of excavated samples. The 200 Area sediments contained uranyl silicate mineralization (sodium boltwoodite) in restrictive microfractures in granitic clasts, in the vadose zone over a narrow range in depth. Well logging and column experiments indicated that tank wastes migrated deeper than observed in core samples. The 300 Area sediments included metatorbernite and uranium at low concentrations associated with detrital aluminosilicates, along with other mineral phases that could accommodate uranyl, such as uranophane and calcium carbonate. The association of contaminant uranyl with Hanford formation sediments provided a persistent source of uranium to groundwater. The results of both studies suggest that the formation of secondary solid uranyl-bearing phases influences the subsequent release of uranium to the environment and that our understanding of these processes and individual waste sites is incomplete. C1 [McKinley, James P.; Zachara, John M.; McCready, David E.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Wan, Jiamin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Heald, Steven M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP McKinley, JP (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM james.mckinley@pnl.gov RI Wan, Jiamin/H-6656-2014 NR 58 TC 30 Z9 30 U1 3 U2 19 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 1004 EP 1017 DI 10.2136/vzj2006.0184 PG 14 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100030 ER PT J AU Christensen, JN Conrad, ME DePaolo, DJ Dresel, PE AF Christensen, John N. Conrad, Mark E. DePaolo, Donald J. Dresel, P. Evan TI Isotopic studies of contaminant transport at the Hanford Site, Washington SO VADOSE ZONE JOURNAL LA English DT Article ID TANK WASTE PLUMES; UNSATURATED ZONE; LAKE MISSOULA; PASCO BASIN; FRESH-WATER; NITRATE; OXYGEN; GROUNDWATER; DISSOLUTION; ALKALINE AB Processes of fluid flow and chemical transport through the vadose zone can be characterized through the isotopic systematics of natural soils, minerals, pore fluids, and groundwater. In this contribution, we first review our research using measured isotopic variations, due both to natural and site-related processes, of the elements H, O, N, Sr, and U, to study the interconnection between vadose zone and groundwater contamination at the Hanford Site in south-central Washington State. We follow this brief review with a presentation of new data pertaining to vadose zone and groundwater contamination in the Waste Management Area (WMA) T-TX-TY vicinity. Uranium isotopic data for the C3832 core (WMA TX) indicate the involvement of processed natural U fuel and link the observed U contamination to releases near single-shelled tank TX-104. The data also preclude contamination from an early 1970s TX-107 leak. In the case of the C4104 core (WMA T), the U isotopic data indicate a mixture of processed natural and enriched U fuels consistent with the major leak from T-106 in 1973. Uranium and strontium isotopic data for the cores also provide direct evidence for chemical interaction between high-pH waste fluid and sediment. Isotopic data (delta N-15 and delta O-18) for groundwater nitrate contamination in multidepth samples just to the northeast of WMA T are distinct from that seen in surrounding wells and suggest tank waste (possibly from the 1973 T-106 event) as a source of very high Tc-99 concentrations recently observed at the northeast corner of WMA T. C1 [Christensen, John N.; Conrad, Mark E.; DePaolo, Donald J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Ctr Isotope Geochem, Berkeley, CA 94720 USA. [DePaolo, Donald J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Dresel, P. Evan] Pacific NW Natl Lab, Richland, WA 99353 USA. RP Christensen, JN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Ctr Isotope Geochem, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jnchristensen@lbl.gov RI Conrad, Mark/G-2767-2010; Christensen, John/D-1475-2015 NR 44 TC 2 Z9 2 U1 1 U2 11 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 1018 EP 1030 DI 10.2136/vzj2006.0158 PG 13 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100031 ER PT J AU Conrad, ME DePaolo, DJ Maher, K Gee, GW Ward, AL AF Conrad, Mark E. DePaolo, Donald J. Maher, Katharine Gee, Glendon W. Ward, Anderson L. TI Field evidence for strong chemical separation of contaminants in the Hanford vadose zone SO VADOSE ZONE JOURNAL LA English DT Article ID GROUND-PENETRATING-RADAR; PREFERENTIAL FLOW; UNSATURATED FLOW; POROUS-MEDIA; WASHINGTON; ISOTOPE; SATURATION; PARAMETERS; TRANSPORT; WATER AB Water and chemical transport from a point source within vadose zone sediments at the Hanford Site in Washington State were examined with a leak test consisting of five 3800-L aliquots of water released at 4.5-m depth every week over a 4-wk period. The third aliquot contained bromide, D2O, and Sr-87. Movement of the tracers was monitored for 9 mo by measuring pore water compositions of samples from boreholes drilled 2 to 8 m from the injection point. Graded sedimentary layers acting as natural capillary barriers caused significant lateral spreading of the leak water. Shortly after injections were completed, D2O was found at the 9- to 11-m depth at levels in excess of 50% of the tracer aliquot concentration, while sediment layers with elevated water content at the 6- to 7-m depth had less than 3% of the D2O tracer concentration, suggesting deep penetration of the D2O tracer and limited mixing between different aliquots of leak fluids. Initially, high bromide concentrations decreased more rapidly over time than D2O, suggesting enhanced transport of bromide due to anion exclusion. No significant increase in 87Sr was detected in the sampled pore water, indicating strong retardation of Sr by the sediments. These results highlight some of the processes strongly affecting chemical transport in the vadose zone and demonstrate the significant separation of contaminant plumes that can occur. C1 [Conrad, Mark E.; DePaolo, Donald J.; Maher, Katharine] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Gee, Glendon W.; Ward, Anderson L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Conrad, ME (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MSConrad@lbl.gov RI Maher, Kate/B-3489-2010; Conrad, Mark/G-2767-2010 OI Maher, Kate/0000-0002-5982-6064; NR 31 TC 6 Z9 6 U1 0 U2 5 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 1031 EP 1041 DI 10.2136/vzj2007.0007 PG 11 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100032 ER PT J AU Evans, JC Dresel, PE Farmer, OT AF Evans, John C. Dresel, P. Evan Farmer, Orville T., III TI Inductively coupled plasma/mass spectrometric isotopic determination of nuclear wastes sources associated with Hanford tank leaks SO VADOSE ZONE JOURNAL LA English DT Article ID UNSATURATED ZONE; PASCO BASIN; WASHINGTON; OXYGEN; WATER; SITE; CONTAMINATION; GROUNDWATER AB The subsurface distribution of a nuclear waste tank leak on the USDOE's Hanford Site was sampled by slant drilling techniques to characterize the chemical and radiological characteristics of the leaked material and assess geochemical transport properties of hazardous constituents. Sediment core samples recovered from the borehole were subjected to distilled water and acid leaching procedures with the resulting leachates analyzed for isotopic and chemical signatures. Inductively coupled plasma-mass spectrometry (ICP-MS) techniques were used for determination of isotopic ratios for Cs, and Mo. Analysis of the isotopic patterns of Mo, combined with associated chemical data, showed evidence for at least two separate intrusions of nuclear waste into the subsurface. Isotopic data for Cs was inconclusive with respect to a source attribution signature. C1 [Evans, John C.; Dresel, P. Evan; Farmer, Orville T., III] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Evans, JC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM john.evans@pnl.gov NR 32 TC 5 Z9 5 U1 3 U2 7 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 1042 EP 1049 DI 10.2136/vzj2006.0153 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100033 ER PT J AU Thornton, EC Zhong, L Oostrom, M Deng, B AF Thornton, E. C. Zhong, L. Oostrom, M. Deng, B. TI Experimental and theoretical assessment of the lifetime of a gaseous-reduced vadose zone permeable reactive barrier SO VADOSE ZONE JOURNAL LA English DT Article ID HYDROGEN-SULFIDE; DIFFUSION; REDUCTION; KINETICS; MEDIA; SOILS AB The feasibility of using in situ gaseous reduction to establish a vadose zone permeable reactive barrier was evaluated through a combination of laboratory testing and consideration of fundamental vadose zone transport concepts. For the experimental evaluation, a series of laboratory column tests were conducted in which Hanford formation sediment from the USDOE Hanford Site in Richland, WA, was first treated with a diluted hydrogen sulfide gas mixture to reduce sediment iron oxide to ferrous sulfide. Water containing dissolved oxygen was then pumped through the columns at different flow rates to determine the reoxidation rate and the reductive capacity of the treated sediment. The results indicated that the treated sediment has a significant reductive capacity consistent with the basic reactions associated with the treatment and reoxidation processes. The observed reductive capacity was found to be dependent on the flow rate of water during the reoxidation phase of the tests. The reductive capacity approached the maximum value predicted on the basis of the treatment reaction as the flow rate was decreased. Thus, laboratory treatment tests provide a means for predicting the reductive capacity of the barrier under field conditions. In the theoretical assessment, oxygen diffusion was identified as the dominant mechanism leading to reoxidation of the barrier. Depending on vadose zone characterisitics, the predicted barrier lifetime varies from several years to more than 100 years. C1 [Thornton, E. C.; Zhong, L.; Oostrom, M.] Pacific NW Natl Lab, Environm Technol Div, Richland, WA 99352 USA. [Deng, B.] Univ Missouri, Dept Civil & Environm Engn, Columbia, MO 65211 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Environm Technol Div, Richland, WA 99352 USA. EM mart.oostrom@pnl.gov OI Deng, Baolin/0000-0001-6569-1808 NR 20 TC 3 Z9 3 U1 1 U2 2 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2007 VL 6 IS 4 BP 1050 EP 1056 DI 10.2136/vzj2006.0157 PG 7 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254OO UT WOS:000252596100034 ER PT J AU Malene, SH Park, YD Olson, DL AF Malene, S. H. Park, Y. D. Olson, D. L. TI Response of exothermic additions to the flux cored arc welding electrode - Part 2 SO WELDING JOURNAL LA English DT Article DE flux cored arc (FCA) welding; aluminum; magnesium; electrode; electrical power; heat input; shielded metal arc (SMA); welding AB In Part 1 of this investigation, exothermically reacting magnesiumtype flux additions to the flux cored arc (FCA) welding consumable electrode have resulted in measurable increases in the arc process efficiency. In Part 2 of this investigation, the manufacture and heat delivery of stoichiometric mixtures of aluminum, magnesium, and aluminum/magnesium (50150 wt-%) flux types, with the mineral form of Fe2O3 termed hematite systematically displacing iron powder, were studied in an experimental self-shielded FCA flux formulation. All welds made using Part 2 electrodes were acceptable at the same preassigned welding schedule indicating an increase in usable weld parameter space. The Al/Mg (50150 wt-%) electrodes were significantly more effective than aluminum or magnesium flux additions in net gain value. Since a reduction in the electrical power consumed, brought about for a given welding condition by the addition of chemical heating components, is as beneficial as a directly measurable increase in heat input (in joules) over the baseline condition, a composite normalized energy scale, in relative percent, is composed. By subtracting the percent electrical power (difference from the baseline value) from the percent measured heat input (also the difference from the baseline value) for each welding condition, a net gain value is calculated. The aluminum reactive addition at up to 20 wt-% was found to have a 32% increase over the baseline in specific deposit (g/kW consumed). The magnesium-reactive addition at 40 wt-% yielded a 38% increase in specific deposit and the Al/Mg (50150 wt%) electrode exhibited a 49% increase in specific deposit at only 10 wt-% reactive addition. Consequently, the investigation of Part 2 electrodes with the FCA welding process has shown that a maximum gain value occurs between the 10 and 20 wt-% electrodes of the Al/Mg (50150 wt-%) flux additions. Much less electrical power was used for these electrodes than was consumed in the baseline comparative. C1 Savannah River Natl Lab, Aiken, SC USA. Dong Eui Univ, Dept Adv Mat Sci & Engn, Pusan, South Korea. Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. RP Malene, SH (reprint author), Savannah River Natl Lab, Aiken, SC USA. EM stephen.malene@srnl.doe.gov NR 7 TC 0 Z9 0 U1 1 U2 2 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD NOV PY 2007 VL 86 IS 11 BP 349S EP 359S PG 11 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 227KO UT WOS:000250655800017 ER PT J AU Scannell, DR Butler, G Wolfe, KH AF Scannell, Devin R. Butler, Geraldine Wolfe, Kenneth H. TI Yeast genome evolution - the origin of the species SO YEAST LA English DT Review DE comparative genomics; phylogenetics; gene loss; gene gain; gene duplication; speciation ID MISMATCH REPAIR SYSTEM; HORIZONTAL-GENE-TRANSFER; SACCHAROMYCES-CEREVISIAE; DUPLICATE GENES; ARABIDOPSIS-THALIANA; MOLECULAR EVIDENCE; SPECIATION; EXPRESSION; MODEL; STERILITY AB With almost 20 genomes sequenced from unicellular ascomycetes (Saccharomycotina), and the prospect of many more in the pipeline, we review the patterns and processes of yeast genome evolution. A central core of about 4000 genes is shared by all the sequenced yeast genomes. Gains of genes by horizontal gene transfer seem to be very rare. Gene losses are more frequent, and losses of whole sets of genes in some pathways in some species can be understood in terms of species-specific differences in biology. The wholesale loss of redundant copies of duplicated genes after whole-genome duplication in the ancestor of one clade of yeasts is likely to have caused the emergence of many reproductively isolated lineages of yeasts at that time, but other processes are responsible for species barriers that arose more recently among close relatives of Saccharomyces cerevisiae. Copyright (c) 2007 John Wiley & Sons, Ltd. C1 [Scannell, Devin R.; Wolfe, Kenneth H.] Trinity Coll Dublin, Smurfit Inst Genet, Dublin 2, Ireland. [Scannell, Devin R.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Butler, Geraldine] Univ Coll Dublin, Conway Inst, UCD Sch Biomol & Biomed Sci, Dublin 4, Ireland. RP Wolfe, KH (reprint author), Trinity Coll Dublin, Smurfit Inst Genet, Dublin 2, Ireland. EM khwolfe@tcd.ie RI Wolfe, Kenneth/B-4653-2009; OI Scannell, Devin/0000-0002-8188-5992; Butler, Geraldine/0000-0002-1770-5301; Wolfe, Kenneth/0000-0003-4992-4979 NR 86 TC 73 Z9 75 U1 0 U2 14 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0749-503X J9 YEAST JI Yeast PD NOV PY 2007 VL 24 IS 11 BP 929 EP 942 DI 10.1002/yea.1515 PG 14 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology GA 239WU UT WOS:000251549800001 PM 17621376 ER PT J AU Egatz-Gomez, A Schneider, J Aella, P Yang, D Dominguez-Garcia, P Lindsay, S Picraux, ST Rubio, MA Melle, S Marquez, M Garcia, AA AF Egatz-Gomez, Ana Schneider, John Aella, P. Yang, Dongqing Dominguez-Garcia, P. Lindsay, Solitaire Picraux, S. T. Rubio, Miguel A. Melle, Sonia Marquez, Manuel Garcia, Antonio A. TI Silicon nanowire and polyethylene superhydrophobic surfaces for discrete magnetic microfluidics SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 13th International Conference on Solid Films and Surfaces (ICSFS 13) CY NOV 06-10, 2006 CL San Carlos de Bariloche, ARGENTINA SP Comis Nacl Energia Atom, ANPCyT, CONICET, CLAF DE LDPE; polyethylene; silicon nanowire; microfluidic; magnetofluidic ID LOW-DENSITY POLYETHYLENE; DROPLETS; NANOSTRUCTURES; SYSTEMS AB A microfluidic method to manipulate small drops of water is studied on two different superhydrophobic surfaces. Using this digital magnetofluidic method, water drops containing paramagnetic carbonyl-iron microparticles were displaced on silicon nanowire (Si NW) and low-density polyethylene (LDPE) superhydrophobic surfaces using magnetic fields. Horizontal, vertical, or upside-down drop movement is made possible by the action of capillary forces induced by paramagnetic particles aligning and following a magnetic field, indicating that three-dimensional digital microfluidics is possible. Also, both Si NW and LDPE superhydrophobic surfaces combine surface chemistry with nano and microscale surface roughness to make drop movement possible. Si NW superhydrophobic surfaces were prepared using vapor-liquid-solid growth systems followed by coating with a perfluorinated hydrocarbon. LDPE superhydrophobic surfaces were prepared by growing polyethylene crystals on a polyethylene substrate through careful rate control. (C) 2007 Elsevier B.V. All rights reserved. C1 Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. Univ Nacl Educ Distancia, Dept Fis Fundamental, Madrid 28040, Spain. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Complutense Madrid, Dept Opt, Madrid 28037, Spain. Philip Morris Inc, Res Ctr, Richmond, VA 23234 USA. RP Garcia, AA (reprint author), Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. EM tony.garcia@asu.edu RI rubio, miguel/A-4093-2008; Egatz-Gomez, Ana/B-7213-2011; Dominguez-Garcia, Pablo/B-2443-2009; OI rubio, miguel/0000-0002-4210-0443; Dominguez-Garcia, Pablo/0000-0002-1703-8967; Melle, Sonia/0000-0002-9802-6908 NR 23 TC 25 Z9 25 U1 5 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 31 PY 2007 VL 254 IS 1 SI SI BP 330 EP 334 DI 10.1016/j.apsusc.2007.07.121 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 229JW UT WOS:000250800100074 ER PT J AU Alapati, SV Johnson, JK Sholl, DS AF Alapati, Sudhakar V. Johnson, J. Karl Sholl, David S. TI First principles screening of destabilized metal hydrides for high capacity H-2 storage using scandium SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE metal hydrides; hydrogen absorbing materials; thermodynamic properties; computer simulations ID HYDROGEN; LIBH4; ENERGY; PLANE AB Favorable thermodynamics are a prerequisite for practical H-2 storage materials for vehicular applications. Destabilization of metal hydrides is a versatile route to finding materials that reversibly store large quantities of H-2. First principles calculations have proven to be a useful tool for screening large numbers of potential destabilization reactions when tabulated thermodynamic data are unavailable. We have used first principles calculations to screen potential destabilization schemes that involve Sc-containing compounds. Our calculations use a two-stage strategy in which reactions are initially assessed based on their reaction enthalpy alone, followed by more detailed free energy calculations for promising reactions. Our calculations indicate that mixtures of ScH2 + 2LiBH(4), which will release 8.9 wt.% H-2 at completion and will have an equilibrium pressure of 1 bar at around 330 K, making this compound a promising target for experimental study. Along with thermodynamics, favorable kinetics are also of enormous importance for practical usage of these materials. Experiments would help identify possible kinetic barriers and modify them by developing suitable catalysts. (C) 2006 Elsevier B.V. All rights reserved. C1 Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sholl, DS (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM sholl@andrew.cmu.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 NR 33 TC 34 Z9 34 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 23 EP 27 DI 10.1016/j.jallcom.2006.10.166 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900007 ER PT J AU Tang, X Opalka, SM Laube, BL Wu, FJ Strickler, JR Anton, DL AF Tang, Xia Opalka, Susanne M. Laube, Bruce L. Wu, Feng-Jung Strickler, Jamie R. Anton, Donald L. TI Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE metal hydrides; chemical synthesis; solid state reactions; X-ray diffraction ID SODIUM ALUMINUM-HYDRIDE; ALANATES; LITHIUM; METALS AB Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH4 has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH4 has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thennodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments. (C) 2007 Elsevier B.V. All rights reserved. C1 United Technol Res Ctr, E Hartford, CT 06108 USA. Albemarle Corp, Baton Rouge, LA 70805 USA. Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. RP Tang, X (reprint author), United Technol Res Ctr, 411 Silver Lane, E Hartford, CT 06108 USA. EM tangx@utrc.utc.com NR 16 TC 14 Z9 14 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 228 EP 231 DI 10.1016/j.jallcom.2006.12.089 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900048 ER PT J AU Dobbins, TA Bruster, EL Oteri, EU Ilavsky, J AF Dobbins, Tabbetha A. Bruster, Edward L. Oteri, Ejiroghene U. Ilavsky, Jan TI Ultrasmall-angle X-ray scattering (USAXS) studies of morphological trends in high energy milled NaAlH4 powders SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE metal hydrides; ultrasmall-angle X-ray scattering (USAXS); high energy ball milling ID LOCAL-STRUCTURE; ABSORPTION; TICL3; TI-13-CENTER-DOT-6THF; SPECTROSCOPY; INSTRUMENT; ATOMS AB Transition metal dopants added to complex metal hydrides, specifically to sodium aluminum hydride (NaAlH4), by high energy ball milling enhances dehydrogenation kinetics and induces dehydrogenation reaction reversibility. This study uses the power-law scattering parameter, p, gained from ultrasmall-angle X-ray scattering (USAXS) data to elucidate differences in NaAlH4 particle morphology as dopant type and mill time is varied. Four dopant types were used. Two dopant types were used to represent the best kinetic enhancements having high desorption rates (e.g. TiCl,, TiCl3) and were compared with two dopant types which do not perform as well (e.g. ZrCl3 and VCl4 USAXS data for the doped hydrides were compared with undoped and milled NaAlH4 powders. Mill times used were 0 min (blended), 1, 5, and 25 min. As indicated by the USAXS power-law scattering data, the undoped NaAlH4 powders are comprised of primary particles each having a high surface area. The high particle surface area in the undoped NaAlH4 particle system persists as mill time increases-with only the 25 min sample undergoing a marked a decrease in primary particle surface area. Alternatively, the doped powders milled for 1, 5, and 25 min show uniformly decreasing hydride particle surface area. These decreases in particle surface area may be explained by either the colloidal particles increasing in surface smoothness or decreasing internal void space. TiCl3-doped NaAlH4 powders show the trend of maintaining particles having a morphology comprised of higher particle surface area during the high energy milling stage of powder processing compared with other dopants. (C) 2007 Elsevier B.V. All rights reserved. C1 Louisiana Tech Univ, Inst Micromfg, Ruston, LA 71272 USA. Grambling State Univ, Dept Phys, Grambling, LA 71245 USA. Argonne Natl Lab, Adv Photon Source, Sector 33, Argonne, IL 60439 USA. RP Dobbins, TA (reprint author), Louisiana Tech Univ, Inst Micromfg, POB 10137, Ruston, LA 71272 USA. EM tdobbins@latech.edu RI USAXS, APS/D-4198-2013; OI Dobbins, Tabbetha/0000-0002-2427-3746 NR 13 TC 8 Z9 8 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 248 EP 254 DI 10.1016/j.jallcom.2007.02.161 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900052 ER PT J AU Kabbour, H Ahn, CC Hwang, SJ Bowman, RC Graetz, J AF Kabbour, Houria Ahn, Channing C. Hwang, Son-Jong Bowman, Robert C., Jr. Graetz, Jason TI Direct synthesis and NMR characterization of calcium alanate SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE hydrogen storage materials; mechanochenucal synthesis; nuclear resonances ID 2 SOLVENT ADDUCTS; MAGNESIUM AB In this work, we present a new synthesis path and characterization results of the alanate, Ca(AlH4)(2). We have synthesized for the first time, calcium alanate, directly from starting mixtures of AlH3 and CaH2 using mechanosynthesis. Ca(AlH4)2 has been identified using magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared (FTIR) measurements. (C) 2007 Elsevier B.V. All rights reserved. C1 CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. RP Kabbour, H (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. EM kabbour@caltech.edu OI Kabbour, Houria/0000-0002-9081-3261; Bowman, Robert/0000-0002-2114-1713 NR 9 TC 18 Z9 20 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 264 EP 266 DI 10.1016/j.jallcom.2006.12.050 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900055 ER PT J AU Graetz, J Reilly, JJ Kulleck, JG Bowman, RC AF Graetz, J. Reilly, J. J. Kulleck, J. G. Bowman, R. C. TI Kinetics and thermodynamics of the aluminum hydride polymorphs SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE energy storage materials; hydrogen storage materials; thermal analysis; calorimetry ID THERMAL-DECOMPOSITION; ALH3 AB Polymorphs of AlH3 were prepared by organometallic synthesis. We demonstrate that freshly synthesized, nonsolvated AlH3 releases approximately 10 wt% H-2 at desorption temperatures less than 100 degrees C. The decomposition kinetics, measured by isothermal hydrogen desorption between 30 and 140 degrees C, suggest that the rate of H-2 evolution is limited by nucleation and growth of the aluminum phase. The H-2 evolution rates for small crystallites of alpha and gamma-AlH3 (undoped) meet the DOE full flow target for a 50 kW fuel cell (1 gH(2)/s) above 114 degrees C (based on 100 kg AlH3). The decomposition thermodynamics were measured using differential scanning calorimetry and ex situ X-ray diffraction. The decomposition of the less stable polymorph, gamma-AlH3, occurs by an exothermic transformation to the a phase (similar to 100 degrees C followed by the decomposition of alpha-AlH3. A formation enthalpy of approximately -10 kJ/mol AIH(3) was measured for alpha-AlH3, which is in good agreement with previous experimental and calculated results. (C) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Graetz, J (reprint author), Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. EM graetz@bnl.gov OI Bowman, Robert/0000-0002-2114-1713 NR 15 TC 55 Z9 56 U1 2 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 271 EP 275 DI 10.1016/j.jallcom.2006.11.205 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900057 ER PT J AU Hwang, SJ Bowman, RC Graetz, J Reilly, JJ Langley, W Jensen, CM AF Hwang, Son-Jong Bowman, R. C., Jr. Graetz, Jason Reilly, J. J. Langley, W. Jensen, C. M. TI NMR studies of the aluminum hydride phases and their stabilities SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE hydrogen storage materials; gas-solid reactions; nuclear resonances ID TI-DOPED NAALH4; CRYSTAL-STRUCTURE; THERMAL-DECOMPOSITION; MULTIPLE-QUANTUM; MAS NMR; HYDROGEN; AL-27; ALH3; TRIHYDRIDE; POLYMORPHS AB Multinuclear and multidimensional solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. At least three distinct polymorphic AlH3 phases have been prepared by desolvating the alane etherate product from its organometallic synthesis. MAS-NMR spectra for the H-1 and Al-27 nuclei have been obtained on a variety of AlH3 samples that include the beta- and gamma-phases as well as the alpha-phase. Al-27 MAS NMR was found to respond with high sensitivity for showing differences in spatial arrangements of AlH6 octahedra in the three polymorphs studied. Based on the characteristic NMR signatures determined, phase transition of the gamma-AlH3 to the alpha-AlH3 was studied at room and high temperatures. Direct decomposition of the gamma-AlH3 to aluminum metal at room temperature was also unambiguously confirmed by NMR studies. (C) 2007 Elsevier B.V. All rights reserved. C1 CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. Univ Hawaii, Dept Chem, Honolulu, HI 96822 USA. RP Hwang, SJ (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. EM sonjong@cheme.caltech.edu OI Bowman, Robert/0000-0002-2114-1713 NR 26 TC 23 Z9 23 U1 3 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 290 EP 295 DI 10.1016/j.jallcom.2007.01.115 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900060 ER PT J AU Mosegaard, L Moller, B Jorgensen, JE Bosenberg, U Dornheim, M Hanson, JC Cerenius, Y Walker, G Jakobsen, HJ Besenbacher, F Jensen, TR AF Mosegaard, Lene Moller, Bitten Jorgensen, Jens-Erik Boesenberg, Ulrike Dornheim, Martin Hanson, Jonathan C. Cerenius, Yngve Walker, Gavin Jakobsen, Hans Jorgen Besenbacher, Flemming Jensen, Torbert R. TI Intermediate phases observed during decomposition of LiBH4 SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE energy storage materials; X-ray diffraction ID HYDROGEN-STORAGE MATERIALS; NMR AB Lithium tetrahydridoboranate is among the materials with the highest hydrogen content and has great potential as a possible H-2-storage material, although, the release and uptake of H-2 is not fully understood. In this work, LiBH4 was studied by in situ synchrotron radiation powder X-ray diffraction (PXD) and solid state CP/MAS NNIR both at variable temperatures. This study revealed two new phases observed during dehydrogenation of LiBH4. Phase I is hexagonal, a = 4.93(2) and c = 13.47(3) angstrom and is observed in the temperature range -200-300 degrees C, and phase II is orthorhombic, a = 8.70(1), b = 5.44(1) and c = 4.44](8) angstrom and is observed in the temperature range similar to 300-400 degrees C applying a constant heating rate of 5 degrees C/min. Apparently, I transforms into II, e.g. at a constant temperature of T= 265 degrees C after 5 h. Furthermore, a third phase, III, is observed in the temperature range RT to 70 degrees C, and is caused by a reaction between LiBH4 and water vapor from the atmosphere. Hydrogen release is associated with the decomposition of III at ca. 65 degrees C. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Aarhus, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark. Univ Aarhus, Dept Chem, DK-8000 Aarhus, Denmark. GKSS Forschungszentrum Geesthacht GmbH, Inst Mat Res, D-21502 Geesthacht, Germany. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Lund Univ, MAX Lab, S-22100 Lund, Sweden. Univ Nottingham, Sch Mech Mat & Mfg Engn, Nottingham NG7 2RD, England. RP Jensen, TR (reprint author), Univ Aarhus, Interdisciplinary Nanosci Ctr iNANO, Langelandsgade 140, DK-8000 Aarhus C, Denmark. EM trj@chem.au.dk RI Dornheim, Martin/B-4391-2009; Besenbacher, Flemming/A-9623-2010; Hanson, jonathan/E-3517-2010; OI Dornheim, Martin/0000-0001-8491-435X; Cerenius, Yngve/0000-0001-5805-0113; Jensen, Torben Rene/0000-0002-4278-3221 NR 27 TC 64 Z9 65 U1 1 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 301 EP 305 DI 10.1016/jjailcom.2007.03.057 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900062 ER PT J AU Luo, WF Wang, J Stewart, K Clift, M Gross, K AF Luo, Weifang Wang, Jim Stewart, Ken Clift, Miles Gross, Karl TI Li-Mg-N-H: Recent investigations and development SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE hydrogen storage; metal-amide-hydride; thermodynarmcs ammonia; cyclic stability ID HYDROGEN STORAGE-SYSTEM; NH3; DESTABILIZATION; IMIDES AB Metal amide containing material is one of the more promising hydrogen storage materials for motor vehicular "on-board" applications. One of the issues related to the application of metal-N-H storage systems is NH3-formation that takes place simultaneously with H-2 release. NH3 in desorbed hydrogen, when feeding a fuel cell, will not only damage the catalyst in the fuel cell, but also accelerate the material degradation. Accurate deternimation of the amounts of NH3 in the H-2 is, therefore, very important. A novel method to quantify NH3 in the desorbed H-2, the Draeger Tube, is reported to be suitable for this purpose. The results indicate that the concentration of NH3 in the desorbed H-2 from the (2LiNH(2) + MgH2) systern increases with desorption temperatures, from 180 ppm at 180 degrees C to 720 ppm at 240 degrees C. The capacity loss after 270 cycles at a temperature of 200 degrees C is 25%, with 1/3 of the loss due to NH3-formation. More research is needed to determine the cause for the remaining capacity loss. This cyclic stability is very encouraging for a material prior to any formulation optimization. A water-saturated air exposure of the desorbed sample at 220 degrees C for 21 h, after a sequence of air-exposures at lower temperatures, was found to not affect its capacity or kinetics in subsequent desorption runs. (C) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Livermore, CA 94550 USA. HyEnergy LLC, Newark, CA USA. RP Luo, WF (reprint author), Sandia Natl Labs, 7011 E Eve, Livermore, CA 94550 USA. EM wluo@sandia.gov NR 19 TC 33 Z9 34 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 336 EP 341 DI 10.1016/j.jallcom.2006.11.067 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900070 ER PT J AU Chien, WM Lamb, J Chandra, D Huq, A Richardson, J Maxey, E AF Chien, Wen-Ming Lamb, Joshua Chandra, Dhanesh Huq, Ashfia Richardson, James, Jr. Maxey, Evan TI Phase evolution of Li2ND, LiD and LiND2 in hydriding/dehydriding of Li3N SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE Li2NH; Li3N; LiNH2; neutron diffraction; phase analysis ID NEUTRON POWDER DIFFRACTION; HYDROGEN-STORAGE MATERIALS; CRYSTAL-STRUCTURE; LITHIUM NITRIDE; SYSTEM; AMIDE AB Neutron and synchrotron studies have been performed on in situ hydriding of Li3N. Commercial Li3N is composed of a phase (similar to 70 wt.%) and beta phase (similar to 30 wt.%). We have performed experiments to convert beta -> alpha, and studied in situ deuteration using neutron diffraction experiments. We found concurrent phase evolution of Li2ND, LiD, and LiND2. Mass percentages of the phases evolved as a function of time and temperature have been quantified using General Structure Analysis System (GSAS) refinement of the neutron diffraction data. The problem of formation of the stable LiD is discussed in light of decreasing of the amount of LiD phase when the temperature is increased from 200 to 320 degrees C during dehydriding, and in addition the concentration of Li2ND phase increased at this temperature. Lattice parameters, volume changes, phase evolutions in wt.% as a function of temperature and time are presented. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Nevada, Reno, NV 89557 USA. Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Chandra, D (reprint author), Univ Nevada, MS 388, Reno, NV 89557 USA. EM dchandra@unr.edu RI Huq, Ashfia/J-8772-2013 OI Huq, Ashfia/0000-0002-8445-9649 NR 22 TC 8 Z9 8 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 363 EP 367 DI 10.1016/j.jallcom.2007.02.149 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900076 ER PT J AU Liu, Y Brown, CM Blackburn, JL Neumann, DA Gennett, T Simpson, L Parilla, P Dillon, AC Heben, M AF Liu, Y. Brown, C. M. Blackburn, J. L. Neumann, D. A. Gennett, T. Simpson, L. Parilla, P. Dillon, A. C. Heben, Mt TI Inelastic neutron scattering of H-2 adsorbed on boron substituted single walled carbon nanotubes SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE energy storage materials; hydrogen storage materials; nanostructured materials; neutron scattering ID HYDROGEN; SPECTRA AB We report inelastic neutron scattering investigations of hydrogen adsorbed on both purified boron substituted (<= 1%) single walled carbon nanotube bundles and purified single walled carbon nanotube bundles. Samples of both types were generated by both arc and laser production methods. At H-2 coverages <= 3H(2)/B, a clear splitting is observed for the H-2 rotation transition peak at about 14.7 meV in all arc-produced samples. In contrast. the spectra from laser-produced materials exhibit one broad peak. Further increase in H-2 coverage results in adsorption at lower binding energy sites. No distinct signature of an enhanced boron-hydrogen interaction is observed. However, the overall line width of the rotation transition peak from a laser-produced sample is substantially smaller than that from arc-prepared samples. This difference might imply that some features of the H-2 rotation transition peak might not be due to the intrinsic features of single wall carbon nanotubes. C1 Indiana Univ, Cyclotron Facil, Bloomington, IN 47408 USA. Univ Maryland, Dept Mat Engn, College Pk, MD 20742 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. RP Brown, CM (reprint author), Indiana Univ, Cyclotron Facil, 2401 Milo B Sampson Lane, Bloomington, IN 47408 USA. EM craig.brown@nist.gov RI Liu, Yun/A-2478-2010; Blackburn, Jeffrey/D-7344-2012; Liu, Yun/F-6516-2012; Brown, Craig/B-5430-2009 OI Liu, Yun/0000-0002-0944-3153; Liu, Yun/0000-0002-0944-3153; Brown, Craig/0000-0002-9637-9355 NR 18 TC 13 Z9 13 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 368 EP 372 DI 10.1016/j.jallcom.2007.01.113 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900077 ER PT J AU Kolesnikov, AI Bashkin, IO Antonov, VE Colognesi, D Mayers, J Moravskye, AP AF Kolesnikov, A. I. Bashkin, I. O. Antonov, V. E. Colognesi, D. Mayers, J. Moravskye, A. P. TI Neutron spectroscopy study of single-walled carbon nanotubes hydrogenated under high pressure SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE nanostructured materials; high-pressure; inelastic neutron scattering ID MOLECULAR-HYDROGEN; SCATTERING; C-60; ADSORPTION; NANOSTRUCTURES; DYNAMICS; SPECTRA; SWNTS; H-2 AB Single-walled carbon nanotubes (SWNT) were loaded with 5.2 wt% hydrogen at a hydrogen pressure of 3 GPa and T=620 K, quenched to 80 K and studied at ambient pressure and 15 K by inelastic neutron scattering (INS) in the range of energy transfers 3-400 meV. An analysis of the measured INS spectra showed that the quenched SWNT & H sample contained hydrogen in two different forms, as H atoms covalently bound to the carbon atoms (similar to 4.7 wt%) and as H-2 molecules (similar to 0.5 wt%) exhibiting nearly free rotational behavior. Annealing the sample in vacuum at 332 K removed about 65% of the H-2 molecules and annealing at 623 K removed all of them. This demonstrates that H-2 molecules were kept in this sample more tightly than in earlier studied SWNT & H samples that were hydrogenated at lower pressures and temperatures and lost all molecular hydrogen on heating in vacuum to room temperature. (C) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. Ist Fis Applicata Nello Carrara, Consiglio Nazl Ric, I-50019 Sesto Fiorentino, FI, Italy. Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. MER Corp, Tucson, AZ 85706 USA. RP Kolesnikov, AI (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM akolesnikov@anl.gov RI Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 NR 22 TC 3 Z9 4 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 389 EP 392 DI 10.1016/j.jallcom.2006.11.207 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900082 ER PT J AU Sholl, DS AF Sholl, David S. TI Using density functional theory to study hydrogen diffusion in metals: A brief overview SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE metal hydrides; metals and alloys; diffusion; tunnelling ID RARE-EARTH-METALS; 1ST-PRINCIPLES CALCULATIONS; 1ST PRINCIPLES; ALLOYS; SURFACES; LATTICES; HYDRIDES; FIELD; IDENTIFICATION; INTERSTITIALS AB Density functional theory (DFT) calculations have become a valuable complement to experimental methods for studying the structures and dynamics of H in metal hydrides. This article gives an overview of applications of DFT to the diffusion of H and its isotopes in metals, including pure metals, ordered alloys, and disordered alloys. Several examples are used to illustrate how DFT can be used to predict hopping rates due to activated transport and due to tunnelling using methods that can be applied to large numbers of distinct interstitial sites. The application of DFT to examples where clustering of interstitial H atoms occurs such as Sc is also described. (C) 2006 Elsevier B.V. All rights reserved. C1 Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sholl, DS (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM sholl@andrew.cmu.edu NR 65 TC 39 Z9 39 U1 2 U2 23 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 462 EP 468 DI 10.1016/j.jallcom.2006.10.136 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900099 ER PT J AU Antonov, VE Antonova, TE Fedotov, VK Gnesin, BA Ivanov, AS Kolesnikov, AI AF Antonov, V. E. Antonova, T. E. Fedotov, V. K. Gnesin, B. A. Ivanov, A. S. Kolesnikov, A. I. TI Anharmonicity of optical hydrogen vibrations in RhH SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE interstitial alloys; inelastic neutron scattering ID INELASTIC NEUTRON-SCATTERING; P PHASE-DIAGRAM; AB-INITIO; H SYSTEM; CRYSTAL; SPECTROSCOPY; TEMPERATURES; ANISOTROPY; PRESSURES; HYDRIDES AB A polycrystalline sample of nearly stoichiometric fee rhodium hydride was synthesised under high hydrogen pressure and then studied at ambient pressure and 5 K by inelastic neutron scattering in the range of energy transfers 35-380 meV. The fundamental band of optical hydrogen vibrations was shown to consist of a strong peak centred at 74 meV and broadened towards higher energies. The second and third band demonstrated essentially anharmonic behaviour. which is not typical of monohydrides of 3d- and 4d-metals with close-packed metal lattices. (C) 2006 Elsevier B.V. All rights reserved. C1 Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Moscow Dist, Russia. Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Antonov, VE (reprint author), Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Moscow Dist, Russia. EM antonov@issp.ac.ru RI Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 NR 16 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 508 EP 511 DI 10.1016/j.jallcom.2006.11.150 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900108 ER PT J AU Bach, HT Venhaus, TJ Paglieri, SN Oona, H Allen, TH Schwarz, RB Wermer, JR AF Bach, H. T. Venhaus, T. J. Paglieri, S. N. Oona, H. Allen, T. H. Schwarz, R. B. Wermer, J. R. TI The effect of surface state on the kinetics of cerium-hydride formation SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE cerium-hydride; dioxide; sesquioxide; hydriding kinetics; vacuum annealing; X-ray photoelectron spectroscopy ID X-RAY PHOTOELECTRON; SPECTROSCOPY; CEO2; URANIUM; XPS AB We studied the effects of surface oxidation on the kinetics of hydrogen (H) absorption into two commercial samples of Cc: bulk samples and thin rolled foils. A Sieverts' apparatus was used to measure the H absorption kinetics and X-ray photoelectron spectroscopy (XPS) was used to determine the surface oxidation state and the presence of impurities, notably carbon (Q. In the as-received condition, the bulk Cc specimen was covered by a Ce2O3 film (sesquioxide) whereas the as-received foil was covered with a CeO2 film (dioxide). In this condition, the H absorption rate at room temperature was approximately an order of magnitude faster in the bulk sample than in the foil. Vacuum annealing at P <= 1 x 10(-4) Torr and T = 773 K significantly increased the rate of H uptake, making it similar in both samples. This annealing reduced the Ce2O3 in the bulk samples so that the samples became more metallic, but produced little change in the XPS signal from the CeO2 film on the foil sample. The study suggests that the differences in H uptake kinetics are affected not only by the nature of the oxide (sesquioxide versus dioxide) but also by the integrity of the surface oxide film, which may be affected by the thermal treatment. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bach, HT (reprint author), Los Alamos Natl Lab, POB 1663,MS 927, Los Alamos, NM 87545 USA. EM hbach@lanl.gov NR 17 TC 6 Z9 7 U1 3 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 567 EP 570 DI 10.1016/j.jallcom.2007.01.037 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900121 ER PT J AU Shanahan, KL Holder, JS AF Shanahan, Kirk L. Holder, Jeffrey S. TI Deuterium, tritium, and helium desorption from aged titanium tritides SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE thermal analysis; gas-solid reactions; hydrogen absorbing materials ID HYDROGEN EVOLUTION; THIN-FILMS; THERMAL-STABILITY; DECOMPOSITION; BEHAVIOR; HYDRIDES; SURFACES; RELEASE; H-2 AB Six samples of tritium-aged bulk titanium have been examined by thermal desorption and isotope exchange chemistry. The previously reported discovery of a lower temperature hydrogen desorption state in these materials has been confirmed in one new sample. The samples' helium release shows the more severe effects obtained from longer aging periods, i.e. higher initial He/M ratios. Several of the more aged samples were spontaneously releasing helium. The hydrogen isotope and helium desorption of the samples will be discussed. (C) 2007 Washington Savannah River Company LLC. Published by Elsevier B.V. All rights reserved. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Shanahan, KL (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM kirk.shanahan@srnl.doe.gov NR 24 TC 8 Z9 9 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 670 EP 675 DI 10.1016/j.jallcom.2006.12.056 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900142 ER PT J AU Mosher, DA Arsenault, S Tang, X Anton, DL AF Mosher, D. A. Arsenault, S. Tang, X. Anton, D. L. TI Design, fabrication and testing of NaAlH4 based hydrogen storage systems SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications CY OCT 01-06, 2006 CL Lahaina, HI SP GM Res & Dev, Hawaii Hydrogen Carriers, LLC, Hy Energy, LLC, Jet Propuls Lab, NIST Ctr Neutron Res, Suzuki Shokan Co, Ltd, Toyota Motor Sales DE energy storage materials; hydrides; mechanochemical processing; solid state reactions; kinetics; thermal analysis AB To complement the vigorous search for novel hydrogen storage materials, efforts focused on system implementation of candidate compounds are important parallel activities to identify new or reprioritized system challenges and assess overall performance. The current paper will discuss the design, fabrication and testing of on-board rechargeable storage systems based on the complex hydride NaAlH4. Emphasis is placed on the system elements affected by the different material characteristics compared with conventional metal hydrides such as LaNi5. Design aspects include reaction kinetics modeling, finite element analysis and heat exchanger optimization. Materials related fabrication challenges are discussed associated with catalysis processing and powder densification. Testing facilities and techniques to evaluate a full-scale vessel containing nearly 20 kg of NaAlH4 also are covered. (C) 2007 Elsevier B.V. All rights reserved. C1 United Technol Res Ctr, E Hartford, CT 06108 USA. Savannah River Natl Lab, Aiken, SC 29808 USA. RP Mosher, DA (reprint author), United Technol Res Ctr, 411 Silver Lane, E Hartford, CT 06108 USA. EM mosherda@utrc.utc.com NR 8 TC 44 Z9 44 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 31 PY 2007 VL 446 SI SI BP 707 EP 712 DI 10.1016/j.jallcom.2007.01.042 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 229RW UT WOS:000250822900149 ER PT J AU Yang, B Hanson, PJ Riggs, JS Pallardy, SG Heuer, M Hosman, KP Meyers, TP Wullschleger, SD Gu, LH AF Yang, Bai Hanson, Paul J. Riggs, Jeffery S. Pallardy, Stephen G. Heuer, Mark Hosman, Kevin P. Meyers, Tilden P. Wullschleger, Stan D. Gu, Lian-Hong TI Biases of CO2 storage in eddy flux measurements in a forest pertinent to vertical configurations of a profile system and CO2 density averaging SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CARBON-DIOXIDE EXCHANGE; ENERGY EXCHANGES; TALL VEGETATION; WATER-VAPOR; LONG-TERM; ADVECTION; COVARIANCE AB CO2 storage in a 30-min period in a tall forest canopy often makes significant contributions to net ecosystem exchange ( NEE) in the early morning and at night. When CO2 storage is properly measured and taken into account, underestimations of NEE on calm nights can be greatly reduced. Using CO2 data from a 12-level profile at the Missouri Ozark flux site ( an oak-hickory forest in central Missouri, USA), we demonstrate that the lower canopy layer ( below the thermal inversion) is a disproportionately large contributor to the total CO2 storage. This is because time derivative of CO2 density ( Delta c/Delta t) generally shows increasing magnitude of mean and standard deviation with decreasing heights at night and from sunrise to 1000 h in both growing and dormant seasons. Effects of resolution and configuration in a profiling system on the accuracy of CO2 storage estimation are evaluated by comparing subset profiles to the 12-level benchmark profile. It is demonstrated that the effectiveness of a profiling system in estimating CO2 storage is not only determined by its number of sampling levels but, more importantly, by its vertical configuration. To optimize a profile, one needs to balance the influence of two factors, Delta c/Delta t and layer thickness, among all vertical sections within a forest. As a key contributor to the total CO2 storage, the lower canopy requires a higher resolution in a profile system than the layers above. However, if the upper canopy is oversparsely sampled relative to the lower canopy, the performance of a profile system might be degraded since, in such a situation, the influence of layer thickness dominates over that of Delta c/Delta t. We also find that because of different level of complexity in canopy structure, more sampling levels are necessary at our site in order to achieve the same level of accuracy as at a boreal aspen site. These results suggest that in order to achieve an adequate accuracy in CO2 storage measurements, the number of sampling levels in a profile and its design should be subject to the site properties, e. g., canopy architecture and the resulted thermodynamic and flow structures. If CO2 density from a single profile is averaged in time and then used in assessing CO2 storage to reduce random errors, biases associated with this averaging procedure become inevitable. Generally, larger window sizes used in averaging CO2 density generate poorer estimates of CO2 storage. If absolute errors are concerned, it appears that the more significant the CO2 storage is during a period, the larger effects the averaging procedure has. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Univ Missouri, Dept Forestry, Columbia, MO USA. Natl Ocean & Atmospher Adm, Atmospher Turbulence & Diffus Div, Oak Ridge, TN USA. RP Yang, B (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM yangb@ornl.gov RI Hanson, Paul J./D-8069-2011; Wullschleger, Stan/B-8297-2012; Meyers, Tilden/C-6633-2016; Gu, Lianhong/H-8241-2014 OI Hanson, Paul J./0000-0001-7293-3561; Wullschleger, Stan/0000-0002-9869-0446; Gu, Lianhong/0000-0001-5756-8738 NR 27 TC 15 Z9 18 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 31 PY 2007 VL 112 IS D20 AR D20123 DI 10.1029/2006JD008243 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 228CL UT WOS:000250704600001 ER PT J AU Speziale, S Lee, VE Clark, SM Lin, JF Pasternak, MP Jeanloz, R AF Speziale, S. Lee, V. E. Clark, S. M. Lin, J. F. Pasternak, M. P. Jeanloz, R. TI Effects of Fe spin transition on the elasticity of (Mg, Fe) O magnesiowustites and implications for the seismological properties of the Earth's lower mantle SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID POST-PEROVSKITE PHASE; HIGH-PRESSURE PHASES; X-RAY-DIFFRACTION; V-T EQUATION; THERMOELASTIC PROPERTIES; MGSIO3 PEROVSKITE; MEGABAR PRESSURES; MINERAL PHYSICS; STATE; TEMPERATURE AB High-pressure x-ray diffraction of (Mg0.80Fe0.20)O at room temperature reveals a discontinuity in the bulk modulus at 40 (+/- 5) GPa, similar to the pressure at which an electronic spin-pairing transition of Fe2+ is observed by Mossbauer spectroscopy. We determine the zero-pressure bulk modulus of low-spin magnesiowustite to be between K-T0 = 136 and 246 GPa, with a pressure derivative (partial derivative K-T/partial derivative P)(T0) between 5.2 and 3.9. The best fit unit-cell volume at zero pressure, V-0 = 71 (+/- 5)angstrom(3), is consistent with past estimates of the ionic radius of octahedrally-coordinated low-spin Fe2+ in oxides. A spin transition at lower-mantle depths between 1100 and 1900 km (40-80 GPa) would cause a unit-cell volume decrease (Delta V) of 3.7(+/- 0.5) to 2.0 (+/- 0.1) percent and bulk sound velocity increase (Delta v(phi)) of 7.6 (+/- 4) percent at 40 GPa and 7.6 (+/- 1.2) percent at 80 GPa. Even in the absence of a visible seismic discontinuity, we expect the spin transition of iron to imply a correction to current compositional models of the lower mantle, with up to 10 mol percent increase of magnesiowustite being required to match the seismological data. C1 Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Speziale, S (reprint author), Geoforschungszentrum Potsdam, Telegrafenburg 9, D-14473 Potsdam, Germany. RI Lin, Jung-Fu/B-4917-2011; Clark, Simon/B-2041-2013 OI Clark, Simon/0000-0002-7488-3438 NR 61 TC 29 Z9 29 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT 31 PY 2007 VL 112 IS B10 AR B10212 DI 10.1029/2006JB004730 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 228EH UT WOS:000250709700001 ER PT J AU Yano, J Robblee, J Pushkar, Y Marcus, MA Bendix, J Workman, JM Collins, TJ Solomon, EI George, SD Yachandra, VK AF Yano, Junko Robblee, John Pushkar, Yulia Marcus, Matthew A. Bendix, Jesper Workman, Jose M. Collins, Terrence J. Solomon, Edward I. George, Serena DeBeer Yachandra, Vittal K. TI Polarized X-ray absorption spectroscopy of single-crystal Mn(V) complexes relevant to the oxygen-evolving complex of photosystem II SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOSYNTHETIC WATER OXIDATION; DENSITY-FUNCTIONAL CALCULATIONS; O BOND FORMATION; LIGAND K-EDGE; MANGANESE CLUSTER; P450 CHEMISTRY; MN4CA CLUSTER; S-0 STATE; TRANSITION; MECHANISM AB High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem 11 membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy in order to understand the electronic structure and spectroscopic characteristics of high-valent Mn species. Single crystals of the Mn(V)-nitrido and Mn(V)-oxo compounds were aligned along selected molecular vectors with respect to the X-ray polarization vector using X-ray diffraction. The local electronic structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese is coordinated in a tetragonally distorted octahedral environment, showed a single dominant pre-edge peak along the Mn equivalent to N axis that can be assigned to a strong 3d(z)(2)-4p(z) mixing mechanism. In the square pyramidal Mn(V)-oxo system, on the other hand, an additional peak was observed at 1 eV below the main pre-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4p(x,y) mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach. The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed. C1 Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Yano, J (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jyano@lbl.gov; debeer@stanford.edu RI DeBeer, Serena/G-6718-2012; ID, BioCAT/D-2459-2012; Bendix, Jesper/H-5468-2012; Collins, Terrence/A-9807-2017 OI Bendix, Jesper/0000-0003-1255-2868; Collins, Terrence/0000-0003-2611-9184 FU NIGMS NIH HHS [GM 55302, R01 GM055302, R56 GM055302] NR 64 TC 34 Z9 34 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 31 PY 2007 VL 129 IS 43 BP 12989 EP 13000 DI 10.1021/ja071286b PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 229QK UT WOS:000250818900032 PM 17918832 ER PT J AU Zhai, HJ Dobler, J Sauer, J Wang, LS AF Zhai, Hua-Jin Doebler, Jens Sauer, Joachim Wang, Lai-Sheng TI Probing the electronic structure of early transition-metal oxide clusters: Polyhedral cages of (V2O5)(n)(-) (n = 2-4) and (M2O5)(2)(-) (M = Nb, Ta) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXIDATIVE DEHYDROGENATION REACTIONS; SUPPORTED VANADIUM-OXIDES; GAS-PHASE OXIDATION; PHOTOELECTRON-SPECTROSCOPY; OPTICAL-PROPERTIES; THIN-FILMS; AB-INITIO; MOLECULAR-STRUCTURE; DENSITY; ANIONS AB Vanadium oxide clusters, (V2O5)(n), have been predicted to possess interesting polyhedral cage structures, which may serve as ideal molecular models for oxide surfaces and catalysts. Here we examine the electronic properties of these oxide clusters via anion photoelectron spectroscopy for (V2O5)(n)(-) (n = 2-4), as well as for the 4d/5d species, Nb4O10- and Ta4O10-. Well-resolved photoelectron spectra have been obtained at 193 and 157 nm and used to compare with density functional calculations. Very high electron affinities and large HOMO-LUMO gaps are observed for all the (V2O5)(n)(-) clusters. The HOMOLUMO gaps Of (V2O5), all exceeding that of the band gap of the bulk oxide, are found to increase with cluster size from n = 2-4. For the M4O10 clusters, we find that the Nb/Ta species yield similar spectra, both possessing lower electron affinities and larger HOMO-LUMO gaps relative to V4O10. The structures of the anionic and neutral clusters are optimized; the calculated electron binding energies and excitation spectra for the global minimum cage structures are in good agreement with the experiment. Evidence is also observed for the predicted trend of electron delocalization versus localization in the (V7O7)(n-) clusters. Further insights are provided pertaining to the potential chemical reactivities of the oxide clusters and properties of the bulk oxides. C1 Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. Humboldt Univ, Inst Chem, D-10099 Berlin, Germany. RP Sauer, J (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM js@chemie.hu-berlin.de; ls.wang@pnl.gov RI Sauer, Joachim/B-7020-2016 OI Sauer, Joachim/0000-0001-6798-6212 NR 70 TC 87 Z9 87 U1 5 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 31 PY 2007 VL 129 IS 43 BP 13270 EP 13276 DI 10.1021/ja0750874 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 229QK UT WOS:000250818900063 PM 17924630 ER PT J AU Jesse, S Kalinin, SV Proksch, R Baddorf, AP Rodriguez, BJ AF Jesse, Stephen Kalinin, Sergei V. Proksch, Roger Baddorf, A. P. Rodriguez, B. J. TI The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale SO NANOTECHNOLOGY LA English DT Article ID ATOMIC-FORCE MICROSCOPY AB Mapping energy transformation pathways and dissipation on the nanoscale and understanding the role of local structure in dissipative behavior is a key challenge for imaging in areas ranging from electronics and information technologies to efficient energy production. Here we develop a family of novel scanning probe microscopy ( SPM) techniques in which the cantilever is excited and the response is recorded over a band of frequencies simultaneously, rather than at a single frequency as in conventional SPMs. This band excitation ( BE) SPM allows very rapid acquisition of the full frequency response at each point ( i. e. transfer function) in an image and in particular enables the direct measurement of energy dissipation through the determination of the Q- factor of the cantilever - sample system. The BE method is demonstrated for force - distance and voltage spectroscopies and for magnetic dissipation imaging with sensitivity close to the thermomechanical limit. The applicability of BE for various SPMs is analyzed, and the method is expected to be universally applicable to ambient and liquid SPMs. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Asylum Res, Goleta, CA 93117 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 NR 22 TC 231 Z9 231 U1 8 U2 81 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 31 PY 2007 VL 18 IS 43 AR 435503 DI 10.1088/0957-4484/18/43/435503 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 217XZ UT WOS:000249981900006 ER PT J AU Bostwick, A Ohta, T McChesney, JL Emtsev, KV Seyller, T Horn, K Rotenberg, E AF Bostwick, Aaron Ohta, Taisuke McChesney, Jessica L. Emtsev, Konstantin V. Seyller, Thomas Horn, Karsten Rotenberg, Eli TI Symmetry breaking in few layer graphene films SO NEW JOURNAL OF PHYSICS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; BERRYS PHASE; ELECTRONIC-STRUCTURE; BILAYER GRAPHENE; CARBON NANOTUBES; BACK SCATTERING; SURFACE-STATE; GRAPHITE; ENERGY; GAS AB Recently, it was demonstrated that the quasiparticle dynamics, the layer-dependent charge and potential, and the c-axis screening coefficient could be extracted from measurements of the spectral function of few layer graphene films grown epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this paper we review these findings, and present detailed methodology for extracting such parameters from ARPES. We also present detailed arguments against the possibility of an energy gap at the Dirac crossing E-D. C1 EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany. Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. Univ Erlangen Nurnberg, Lehrstuhl Tech, Inst Phys Kondensierten Mat, D-91058 Erlangen, Germany. RP Rotenberg, E (reprint author), EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM erotenberg@lbl.gov RI Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; McChesney, Jessica/0000-0003-0470-2088 NR 57 TC 118 Z9 119 U1 5 U2 58 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 31 PY 2007 VL 9 AR 385 DI 10.1088/1367-2630/9/10/385 PG 22 WC Physics, Multidisciplinary SC Physics GA 226PF UT WOS:000250600300001 ER PT J AU Smits, M Ghosh, A Bredenbeck, J Yamamoto, S Muller, M Bonn, M AF Smits, Marc Ghosh, Avishek Bredenbeck, Jens Yamamoto, Susumu Muller, Michiel Bonn, Mischa TI Ultrafast energy flow in model biological membranes SO NEW JOURNAL OF PHYSICS LA English DT Article ID SUM-FREQUENCY GENERATION; VIBRATIONAL SPECTROSCOPY; LIPID-BILAYERS; LANGMUIR MONOLAYERS; PHASE-TRANSITIONS; METAL-SURFACE; DYNAMICS; INTERFACE; WATER; RELAXATION AB We report on the energy flow dynamics in model membranes, investigated by surface-specific time-resolved (femtosecond) sum frequency generation spectroscopy. This recently developed technique allows us to probe energy dynamics selectively at the water/lipid interface. We report vibrational relaxation dynamics of C-H stretch modes in the lipid alkyl chains, and reveal that incoherent energy transfer occurs from the excited CH2 groups to the terminal CH3 groups. We also find evidence for strong anharmonic coupling between different CH2 and CH3 modes. Relaxation and the energy transfer processes within the lipid alkyl chain occur on (sub-)picosecond timescales. Studies of the dynamics on different lipid phases (gel or liquid crystalline phase) reveal a marked independence of the dynamics on the precise molecular conformation of the lipids. In addition, we report the energy transfer dynamics between membrane- bound water and lipids, and find that the transfer of heat between water and lipids occurs remarkably fast: heat is transferred across the monolayer, from the polar head group region of the lipid to the end of the alkyl chain, within 1 ps. These results demonstrate the potential of using ultrafast surface-specific spectroscopies to elucidate biomolecular dynamics at membrane surfaces. C1 FOM, Inst Atom & Mol Phys, NL-1098 SJ Amsterdam, Netherlands. Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. Univ Amsterdam, Swammerdam Inst Life Sci, NL-1090 GB Amsterdam, Netherlands. RP Bonn, M (reprint author), FOM, Inst Atom & Mol Phys, Kruislaan 407, NL-1098 SJ Amsterdam, Netherlands. EM bonn@amolf.nl RI Yamamoto, Susumu/C-1584-2008; Ghosh, Avishek/A-3932-2009; Bonn, Mischa/H-7446-2012; OI Yamamoto, Susumu/0000-0002-6116-7993; Bonn, Mischa/0000-0001-6851-8453; Ghosh, Avishek/0000-0002-9968-9308 NR 69 TC 25 Z9 25 U1 6 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 31 PY 2007 VL 9 AR 390 DI 10.1088/1367-2630/9/10/390 PG 20 WC Physics, Multidisciplinary SC Physics GA 226PF UT WOS:000250600300006 ER PT J AU Zhou, H Mao, Y Wong, SS AF Zhou, Hongjun Mao, Yuanbing Wong, Stanislaus S. TI Probing structure-parameter correlations in the molten salt synthesis of BaZrO3 perovskite submicrometer-sized particles SO CHEMISTRY OF MATERIALS LA English DT Article ID SHAPE-CONTROLLED SYNTHESIS; BARIUM ZIRCONATE; HYDROTHERMAL SYNTHESIS; INORGANIC NANOCRYSTALS; STRONTIUM ZIRCONATE; CRYSTAL-STRUCTURES; RIETVELD METHOD; NANOPARTICLES; NANOSTRUCTURES; SPECTROSCOPY AB Single-crystalline perovskite BaZrO3 submicrometer- sized particles were synthesized using a simple, scaleable molten salt method. In this paper, in addition to a time-dependent particle evolution study, we explored primarily the effects of different experimental processing parameters, such as the identity of the salt, annealing temperatures, overall reaction times, cooling rates, and the chemical nature of the precursor in determining their impact upon the purity, size, shape, and morphology of the as-obtained products. We also discuss the role of additional experimentally controllable factors such as the heating rate applied, the amount of salt used, the molar ratios of precursors involved, and the use of surfactant. By a judicious choice of experimental parameters and conditions, we describe herein a rational means of producing pure products with a reproducible composition and morphology. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Mat & Chem Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu RI Zhou, Hongjun/A-1304-2011; Mao, Yuanbing/D-5580-2009 NR 68 TC 52 Z9 53 U1 8 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 30 PY 2007 VL 19 IS 22 BP 5238 EP 5249 DI 10.1021/cm671456j PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 223OF UT WOS:000250379700007 ER PT J AU Dartevelle, S Valentine, GA AF Dartevelle, S. Valentine, G. A. TI Transient multiphase processes during the explosive eruption of basalt through a geothermal borehole (Namafjall, Iceland, 1977) and implications for natural volcanic flows SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE multiphase; magma; turbulent; volcanism; shock ID FLUID MECHANICAL DESCRIPTION; KINETIC-THEORY; GRANULAR FLOW; BEDS; DYNAMICS; SIMULATION; MAGMA; RISER; FLUIDIZATION; PARTICLES AB Experimental and numerical studies have shown that vertical flows of gas-particle mixtures are characterized by transient behavior, with development of waves of high particle concentration separated by regions of relatively clean gas. In contrast, most models of explosive flow in volcanic conduits either treat the multiphase mixture as a single fluid (pseudo-fluid approximation) and/or assume steady flow, thereby eliminating the potential for time-dependent effects related to multiphase dynamics. The 8 September 1977 explosive eruption of basaltic tephra through a geothermal borehole (Namafjall, Iceland) provides a unique test case for multiphase volcanic processes, given that its vertical extent (similar to 1 km) is similar to that of natural volcanic conduits and its geometry is exactly known. We model this eruption by solving separate, time-dependent governing equations for conservation of mass, momentum, and energy of the gas and particle phases, allowing for drag and heat transfer between the phases. Model results are consistent with the development of transient waves of high particle concentration that propagate up the borehole, resulting in complex compressible flow phenomena along with ejection of particles in pulses in a manner that is consistent with observations at Namafjall. These transient processes occur even though the influx of gas and particles at the base of the borehole is treated as constant. Our results indicate that transient multiphase behavior is likely to be common in volcanic conduit flows, and that a key topic of future research is quantifying the types of time-dependent behaviors and their impacts on eruption column dynamics. Published by Elsevier B.V. C1 [Dartevelle, S.; Valentine, G. A.] Los Alamos Natl Lab, EES Div, Los Alamos, NM 87545 USA. RP Dartevelle, S (reprint author), Los Alamos Natl Lab, EES Div, POB 1663, Los Alamos, NM 87545 USA. EM sdart@lanl.gov; gav@lani.gov NR 41 TC 15 Z9 15 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 30 PY 2007 VL 262 IS 3-4 BP 363 EP 384 DI 10.1016/j.epsl.2007.07.053 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 244UL UT WOS:000251890700004 ER PT J AU Badro, J Ryerson, FJ Weber, PK Ricolleau, A Fallon, SJ Hutcheon, ID AF Badro, James Ryerson, Frederick J. Weber, Peter K. Ricolleau, Angele Fallon, Stewart J. Hutcheon, Ian D. TI Chemical imaging with NanoSIMS: A window into deep-Earth geochemistry SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE lower mantle; geochemistry; trace elements; petrology; diamond anvil cell; laser heating; nanoSIMS ID CORE-MANTLE INTERACTION; X-RAY-MICROANALYSIS; SILICATE MELTS; EARLY DIFFERENTIATION; PEROVSKITE; ELEMENTS; COEFFICIENTS; CONSTRAINTS; TRANSITION; GLASSES AB We use a combination of nanometer-resolution secondary ion mass spectrometry (NanoSIMS) and analytical transmission electron microscopy (ATEM) for chemical imaging of material transformed in a laser-heated diamond anvil cell (LH-DAC), in the pressure and temperature range of Earth's lower mantle. MORB (mid-ocean ridge basalt), one of the components of subducted oceanic lithosphere, was transformed to an assemblage of Mg-perovskite, Ca-perovskite, stishovite and a calcium ferrite-structure phase at 55 GPa and 2100 degrees C in an LH-DAC. Elemental imaging spanning the entire range of concentrations, from major elements such as silicon (49.5 wt.% SiO2) to trace elements such as strontium (118 ppm), scandium, and yttrium (both at 40 ppm) was obtained with a Cameca NanoSIMS 50. We observe a preferential partitioning of scandium, yttrium and strontium in the calcium silicate perovskite phase, and we compare this to recently measured solid-liquid partition coefficients and fractionation at lower pressures. This type of measurement demonstrates that even the most complex mineral assemblages can be probed using this combination of techniques and opens new pathways towards the characterization and quantification of geochemical interactions and processes occurring in the deep Earth. (C) 2007 Elsevier B.V. All rights reserved. C1 [Badro, James; Ricolleau, Angele] Univ Paris 06, CNRS, IMPMC, Paris, France. [Badro, James; Ricolleau, Angele] CNRS, Inst Phys Globe, Paris, France. [Badro, James; Ryerson, Frederick J.; Weber, Peter K.; Fallon, Stewart J.; Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Badro, J (reprint author), Univ Paris 06, CNRS, IMPMC, Paris, France. EM badro@ipgp.jussieu.fr RI Fallon, Stewart/G-6645-2011; Badro, James/A-6003-2011 OI Fallon, Stewart/0000-0002-8064-5903; NR 35 TC 10 Z9 12 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 30 PY 2007 VL 262 IS 3-4 BP 543 EP 551 DI 10.1016/j.epsl.2007.08.007 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 244UL UT WOS:000251890700017 ER PT J AU Bawin, M Coon, SA Holstein, BR AF Bawin, M. Coon, Sidney A. Holstein, Barry R. TI Anions and anomalies SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT Festschrift in Honour of Bruce McKellar and Girish Joshi CY NOV 29-30, 2006 CL Univ Melbourne, Sch Phys, Victoria, AUSTRALIA HO Univ Melbourne, Sch Phys ID QUANTUM-MECHANICS; POLAR-MOLECULES; SINGULAR POTENTIALS; ELECTRON; DIPOLAR AB We analyze the recent claim that experimental measurements of binding energies of dipole-bound anions can be understood in terms of a quantum mechanical anomaly. The discrepancy between the experimental critical dipole moments and that predicted by the anisotropic inverse square potential of a static dipole precludes such an explanation. As has long been known, in the physical problem one must include rotational structure so that the long distance behavior changes from 1/r(2) to 1/r(4). In a simple model this can be shown to lead to a modi. cation of the critical dipole moment of 20% or so, bringing it into agreement with experiment. This, together with the fact that inclusion of. finite size effects does not change the critical dipole moment of the static point dipole, strongly suggests that the quantum mechanical anomaly interpretation of the formation of dipole-bound anions cannot be correct. C1 [Bawin, M.] Univ Liege, Inst Phys B5, B-4000 Liege 1, Belgium. [Coon, Sidney A.] US DOE, Off Nucl Phys, Washington, DC 20585 USA. [Holstein, Barry R.] Univ Massachusetts, Dept Phys, LGRT, Amherst, MA 01003 USA. RP Bawin, M (reprint author), Univ Liege, Inst Phys B5, B-4000 Liege 1, Belgium. NR 24 TC 5 Z9 5 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD OCT 30 PY 2007 VL 22 IS 27 BP 4901 EP 4910 DI 10.1142/S0217751X07038268 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GY UT WOS:000251713800004 ER PT J AU Goldman, T AF Goldman, T. TI Sterile neutrinos in a 6 x 6 matrix approach SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT Festschrift in Honour of Bruce McKellar and Girish Joshi CY NOV 29-30, 2006 CL Univ Melbourne, Sch Phys, Victoria, AUSTRALIA HO Univ Melbourne, Sch Phys DE McKellar; neutrinos; sterile; mass; festschrift ID DIRAC NEUTRINOS; ANNIHILATION; OSCILLATIONS; RESONANCE; SEARCH AB Quark-lepton symmetry invites consideration of the existence of sterile neutrinos. Long ago, we showed that this approach predicts large neutrino mixing amplitudes. Using a Weyl spinor approach, we show, in an analytic example, how this, and pseudo-Dirac pairing, can develop within a reduced rank version of the conventional see-saw mechanism, from small intrinsic mixing strengths. We show by numerical examples that mixing of active and sterile neutrinos can affect the structure of oscillations relevant to extraction of neutrino mixing parameters from neutrino oscillation data. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Goldman, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM tgoldman@lanl.gov NR 26 TC 3 Z9 3 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD OCT 30 PY 2007 VL 22 IS 27 BP 4967 EP 4978 DI 10.1142/S0217751X07038323 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GY UT WOS:000251713800010 ER PT J AU Kline, RJ DeLongchamp, DM Fischer, DA Lin, EK Richter, LJ Chabinyc, ML Toney, MF Heeney, M McCulloch, I AF Kline, R. Joseph DeLongchamp, Dean M. Fischer, Daniel A. Lin, Eric K. Richter, Lee J. Chabinyc, Michael L. Toney, Michael F. Heeney, Martin McCulloch, Iain TI Critical role of side-chain attachment density on the order and device performance of polythiophenes SO MACROMOLECULES LA English DT Article ID THIN-FILM TRANSISTORS; FIELD-EFFECT MOBILITY; REGIOREGULAR POLYTHIOPHENE; CONJUGATED POLYMERS; CARRIER MOBILITY; MOLECULAR-WEIGHT; POLY(3-ALKYL THIOPHENE)S; POLY(3-HEXYLTHIOPHENE); SCATTERING; SPECTROSCOPY AB High performance, solution processable semiconductors are critical to the realization of low cost, large area electronics. We show that a signature molecular packing motif-side-chain interdigitation-correlates to high performance for a large and important class of organic semiconductors. The side chains of recently developed high performance copolymers of poly(alkylthiophenes) can and do interdigitate substantially, whereas they do not in the most common form of the extensively studied, lower performance poly(alkythiophenes). Side-chain interdigitation provides a mechanism for three-dimensional ordering; without it, poly(alkylthiophenes) are limited to small domains and poor performance. We propose the synthetic design rule that three-dimensional ordering is promoted by side-chain attachment densities sufficiently low to permit interdigitation. C1 NIST, Gaithersburg, MD 20899 USA. Palo Alto Res Ctr, Palo Alto, CA 94304 USA. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. Merck Chem, Southampton S016 7QD, Hants, England. Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England. RP DeLongchamp, DM (reprint author), NIST, Gaithersburg, MD 20899 USA. EM dean.delongchamp@nist.gov RI Kline, Regis/B-8557-2008; Chabinyc, Michael/E-2387-2011; Heeney, Martin/O-1916-2013; Richter, Lee/N-7730-2016 OI Heeney, Martin/0000-0001-6879-5020; Richter, Lee/0000-0002-9433-3724 NR 39 TC 211 Z9 213 U1 2 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 30 PY 2007 VL 40 IS 22 BP 7960 EP 7965 DI 10.1021/ma0709001 PG 6 WC Polymer Science SC Polymer Science GA 223NQ UT WOS:000250377900034 ER PT J AU Cheng, F Yang, XG Peng, HS Chen, DY Jiang, M AF Cheng, Fei Yang, Xiaogang Peng, Huisheng Chen, Daoyong Jiang, Ming TI Well-controlled formation of polymeric micelles with a nanosized aqueous core and their applications as nanoreactors SO MACROMOLECULES LA English DT Article ID BLOCK-COPOLYMER; GOLD NANOPARTICLES; INDUCED MICELLIZATION; DIBLOCK COPOLYMERS; LIGHT-SCATTERING; WATER; SILVER; CHLOROFORM; OXIDE; ACID AB Polymeric micelles with a polystyrene (PS) shell and a protonated poly(4-vinylpyridine) (P4VP)/ water core were readily prepared via diffusion of HCl and water from the top aqueous phase containing HCl (pH = 1) into the bottom phase of the PS-b-P4VP solution in chloroform. The resultant protonation of the pyridine units of the P4VP block drove the micellization. Meanwhile, due to the high polarity of the core, water molecules also diffused through the chloroform medium into the core. H-1 NMR characterizations demonstrate that at the early stage, the water molecules in the core are the bound and intermediate water; longer diffusion times resulted in the appearance of free water molecules coexisting with the bound and intermediate water in the core. Thus, polymeric micelles with an aqueous core (PMACs) were formed. The process of forming PMACs is well-control] able, and the stability of PMACs in chloroform is high. These characteristics make PMACs promising as nanoreactors to prepare inorganic nanoparticles or for other applications based on the nanosized aqueous core. Similar to reverse mini- and microemulsion systems, the same PMACs can load a large variety of water-soluble inorganic species and be used to prepare various inorganic nanoparticles within the core. Meanwhile, similar to block copolymer micelles, the soluble shell of PMACs can provide a good solubility for the inorganic nanoparticles formed in the core. Therefore, when used as nanoreactors to prepare inorganic nanoparticles, PMACs can combine the advantages of reverse emulsion systems and polymeric micelles dispersed in a low polar solvent. Herein, PMACs with a PS shell and a protonated P4VP/water core prepared in chloroform were used as nanoreactors to prepare various inorganic nanoparticles, such as silica, Fe(SCN)(2+), AgCl, and Ag2CINO3. The formed inorganic nanoparticles were encapsulated in the core and stabilized in chloroform by the soluble PS shell. C1 Fudan Univ, Minist Educ, Dept Macromol Sci, Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chen, DY (reprint author), Fudan Univ, Minist Educ, Dept Macromol Sci, Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China. EM chendy@fudan.edu.cn RI Cheng, Fei/C-6412-2014; Peng, Huisheng/G-8867-2011; OI Yang, Xiaogang/0000-0002-1142-3100 NR 47 TC 18 Z9 20 U1 5 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 30 PY 2007 VL 40 IS 22 BP 8007 EP 8014 DI 10.1021/ma070755r PG 8 WC Polymer Science SC Polymer Science GA 223NQ UT WOS:000250377900040 ER PT J AU Rowland, HD King, WP Sun, AC Schunk, PR Cross, GLW AF Rowland, Harry D. King, William P. Sun, Amy C. Schunk, P. Randy Cross, Graham L. W. TI Predicting polymer flow during high-temperature atomic force microscope nanoindentation SO MACROMOLECULES LA English DT Article ID GLASS-TRANSITION TEMPERATURE; NANOIMPRINT LITHOGRAPHY; DATA-STORAGE; FILMS; MELTS; THIN; ULTRATHIN; SURFACES; SCALE; SIZE AB This paper reports predictions of nanometer-scale polymer deformation during nanoprobe indentation at elevated temperature. The simulations assume continuum polymer properties with modified boundary conditions to model subcontinuum polymer mechanical deformation. The indenter is a heated atomic force microscope (AFM) tip, and the media is a high molecular weight polymer film where tip radius, film thickness, and polymer coil radius are of similar size, in the range 20-50 rim. The simulations model isothermal conditions, where the tip and polymer are at the same temperature, or nonisothermal conditions, where the tip is hot while the polymer is cool. Isothermal simulations with shear-thinning bulk material behavior and full-slip polymer-tip interface predict force, displacement, and displacement rate. Nonisothermal simulations show that the polymer-tip interface temperature governs the indentation process. The temperature-dependent polymer viscosity varies by several orders of magnitude within 50 nm of the polymer-tip interface, causing highly localized polymer deformation near the tip. Steep viscosity gradients near the tip require the polymer-tip interface temperature to exceed the polymer glass transition temperature in order to form indents. In all cases the predictions compare well with experimental data. The continuum simulations allow for improved understanding of high-temperature AFM nanoindentation and nanoembossing. C1 Univ Illinois, Dept Med Sci & Engn, Urbana, IL 61801 USA. Dept 1514, Multiphase Trasport Proc, Sandia Natl Labs, Albuquerque, NM 87185 USA. Trinity Coll Dublin, SFI Trinity Nanosci Lab, Dublin 2, Ireland. RP King, WP (reprint author), Univ Illinois, Dept Med Sci & Engn, Urbana, IL 61801 USA. EM wpk@uiuc.edu RI Rowland, Harry/B-7070-2008; Cross, Graham/B-9447-2008 OI Cross, Graham/0000-0003-2299-6091 NR 52 TC 5 Z9 5 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD OCT 30 PY 2007 VL 40 IS 22 BP 8096 EP 8103 DI 10.1021/ma0704358 PG 8 WC Polymer Science SC Polymer Science GA 223NQ UT WOS:000250377900052 ER PT J AU Bracco, A Camera, F Wieland, O Ormand, WE AF Bracco, A. Camera, F. Wieland, O. Ormand, W. E. TI Progress in the study of the gamma-decay of the giant dipole resonance in hot nuclei SO MODERN PHYSICS LETTERS A LA English DT Review DE GDR; hot nuclei; statistical model ID LEVEL DENSITY PARAMETER; EXCITATION-ENERGY; ANGULAR-MOMENTUM; COMPOUND-NUCLEUS; WIDTH; TEMPERATURE; DEPENDENCE; BEHAVIOR; MOTION AB The problem of the damping of the Giant Dipole Resonance(GDR) at finite temperature at T > 2 MeV is discussed here. The experimental results are based on fusion evaporation reactions. The most recent results on the mass region A=132 (Ce isotopes) obtained in exclusive measurements are compared with the existing results on the A=110-120 region (Sn isotopes). The comparison with the theoretical predictions based on thermal shape fluctuations is also discussed. The GDR width the theoretical predictions based on thermal shape fluctuations is also discussed. The GDR width is found to increase also in the region T > 2 MeV and this is accounted by the combined effect of the increase of the compound nucleus width (smaller lifetime) and to the increase of the average deformation of the nulceus. C1 [Bracco, A.; Camera, F.; Wieland, O.] Univ Milan, INFN, Sez Milano, I-20133 Milan, Italy. [Ormand, W. E.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Wieland, O (reprint author), Univ Milan, INFN, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. EM oliver.wieland@mi.infn.it; nuclear.structure@mi.infn.it RI Wieland, Oliver/G-1784-2011 NR 37 TC 7 Z9 7 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD OCT 30 PY 2007 VL 22 IS 33 BP 2479 EP 2492 DI 10.1142/S0217732307024474 PG 14 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 243NU UT WOS:000251805400001 ER PT J AU Boyle, TJ Pratt, HD Alam, TM Rodriguez, MA Clem, PG AF Boyle, Timothy J. Pratt, Harry D., III Alam, Todd M. Rodriguez, Mark A. Clem, Paul G. TI Synthesis and characterization of solvated trifluoroacetate alkaline earth derivatives SO POLYHEDRON LA English DT Article DE trifluoroacetic acid; alkaline earth; carboxylate; X-ray structure ID THERMAL-BEHAVIOR; STRUCTURAL-CHARACTERIZATION; ALKOXIDE PRECURSORS; CRYSTAL-STRUCTURES; THIN-FILMS; COMPLEXES; BARIUM; LIGANDS; 1,3-BIS(DIMETHYLAMINO)-2-PROPANOLATO; ARYLOXIDES AB The synthesis and characterization of the trifluoroacetic acid (H-TFA) derivatives of a series of alkaline earth congeners was undertaken through the dissolution of the alkaline earth (A(E)) metal in H-TFA. After drying, the resulting reaction powders were independently crystallized from Lewis basic solvents [pyridine (py) or tetrahydrofuran (THF)] as diverse A(E)-TFA derivatives. For the smallest cation, an octahedrally bound monomer Mg(TFA)(2)(PY)(4) (1) was isolated, wherein the TFA ligands were all terminally (TFA) bound. The remaining compounds were found to adopt polymeric structures with: only bridging (mu-TFA) ligands for {[Ca(2)(mu-TFA)(3)(THF)(4)](mu-TFA)}(n) (2); a mixture of mu-TFA and chelating bridging (mu(c)-TFA) ligands in {[(mu-TFA)(2)Sr(mu(c)-TFA)][H-py]py}(n) (3); and only mu(c)-TFA ligands for {[Ba(mu(c)-TFA)(2)([mu(c)-TFA)(py)][H-py]}(n) (4) structure. The later two structures were solved with a pyridinium salt located in the lattice. The trend observed for the TFA ligand was that as the cation increases in size, the ligands transform from bridging to chelating bridging due to the increased coordination sphere of the metals. Elemental analyses, solid-state, and solution multinuclear NMR, and FTIR data confirm the bulk powders were consistent with the X-ray structures. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Boyle, Timothy J.; Pratt, Harry D., III; Alam, Todd M.; Rodriguez, Mark A.; Clem, Paul G.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd,SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov NR 41 TC 10 Z9 10 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD OCT 30 PY 2007 VL 26 IS 17 BP 5095 EP 5103 DI 10.1016/j.poly.2007.07.009 PG 9 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 240VZ UT WOS:000251617600042 ER PT J AU Meinhold, L Smith, JC Kitao, A Zewail, AH AF Meinhold, Lars Smith, Jeremy C. Kitao, Akio Zewail, Ahmed H. TI Picosecond fluctuating protein energy landscape mapped by pressure-temperature molecular dynamics simulation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE critical damping; dynamical transition; energy dissipation; harmonic-anharmonic motions ID COLLECTIVE MOTIONS; NEUTRON-SCATTERING; WATER; SOLVENT; TRANSITION; MYOGLOBIN; LYSOZYME; BINDING AB Microscopic statistical pressure fluctuations can, in principle, lead to corresponding fluctuations in the shape of a protein energy landscape. To examine this, nanosecond molecular dynamics simulations of lysozyme are performed covering a range of temperatures and pressures. The well known dynamical transition with temperature is found to be pressure-independent, indicating that the effective energy barriers separating conformational substates are not significantly influenced by pressure. In contrast, vibrations within substates stiffen with pressure, due to increased curvature of the local harmonic potential in which the atoms vibrate. The application of pressure is also shown to selectively increase the damping of the anharmonic, low-frequency collective modes in the protein, leaving the more local modes relatively unaffected. The critical damping frequency, i.e., the frequency at which energy is most efficiently dissipated, increases linearly with pressure. The results suggest that an invariant description of protein energy landscapes should be subsumed by a fluctuating picture and that this may have repercussions in, for example, mechanisms of energy dissipation accompanying functional, structural, and chemical relaxation. C1 CALTECH, Arthur Amos Noyes Lab Chem Phys, Phys Biol Ctr Ultrafast Sci & Technol, Pasadena, CA 91125 USA. Univ Heidelberg, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany. Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. Univ Tokyo, Inst Mol & Cellular Biosci, Ctr Bioinformat, Lab Mol Design, Tokyo 1130032, Japan. RP Zewail, AH (reprint author), CALTECH, Arthur Amos Noyes Lab Chem Phys, Phys Biol Ctr Ultrafast Sci & Technol, 1200 E California Blvd M-C 127 72, Pasadena, CA 91125 USA. EM zewail@caltech.edu RI Kitao, Akio/B-8371-2008; OI Kitao, Akio/0000-0002-5221-0806; Smith, Jeremy/0000-0002-2978-3227; gaber, sarah/0000-0002-5995-7291 NR 34 TC 41 Z9 41 U1 1 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 30 PY 2007 VL 104 IS 44 BP 17261 EP 17265 DI 10.1073/pnas.0708199104 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 227DW UT WOS:000250638400007 PM 17956984 ER PT J AU Mathews, FS Gordon, MM Chen, Z Rajashankar, KR Ealick, SE Alpers, DH Sukumar, N AF Mathews, F. S. Gordon, M. M. Chen, Z. Rajashankar, K. R. Ealick, S. E. Alpers, D. H. Sukumar, N. TI Crystal structure of human intrinsic factor: Cobalamin complex at 2.6-A resolution SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE incomplete dimer; x-ray; cobalt; transport protein; glycoprotein ID ANGSTROM RESOLUTION; TRANSCOBALAMIN-II; SPERMADHESIN FAMILY; MOLECULAR-GRAPHICS; GENOMIC STRUCTURE; BINDING; PROTEIN; VITAMIN-B-12; RECEPTOR; B-12 AB The structure of intrinsic factor (IF) in complex with cobalamin (Cbl) was determined at 2.6-angstrom resolution. The overall fold of the molecule is that of an alpha(6)/alpha(6) barrel. It is a two-domain protein, and the Cbl is bound at the interface of the domains in a base-on conformation. Surprisingly, two full-length molecules, each comprising an alpha- and a beta-domain and one Cbl, and two truncated molecules with only an alpha-domain are present in the same asymmetric unit. The environment around Cbl is dominated by uncharged residues, and the sixth coordinate position of CO2+ is empty. A detailed comparison between the IF-B12 complex and another Cbl transport protein complex, trans-CblB12, has been made. The pH effect on the binding of Cbl analogues in transport proteins is analyzed. A possible basis for the lack of interchangeability of human and rat IF receptors is presented. C1 Argonne Natl Lab, Northeastern Collaborat Access Team, Argonne, IL 60439 USA. Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA. Washington Univ, Sch Med, Div Gastroenterol, St Louis, MO 63110 USA. Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. RP Sukumar, N (reprint author), Argonne Natl Lab, Northeastern Collaborat Access Team, Bldg 436, Argonne, IL 60439 USA. EM sukumar@aps.anl.gov FU NCRR NIH HHS [P41 RR015301, RR-15301]; NIDDK NIH HHS [P DK01 DK-33487, P01 DK033487]; NIGMS NIH HHS [F32 GM020530, GM20530] NR 54 TC 30 Z9 32 U1 0 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 30 PY 2007 VL 104 IS 44 BP 17311 EP 17316 DI 10.1073/pnas.0703228104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 227DW UT WOS:000250638400017 PM 17954916 ER PT J AU Liu, X Wu, Z Nie, H Liu, Z He, Y Yeung, ES AF Liu, Xia Wu, Zhan Nie, Huagui Liu, Ziling He, Yan Yeung, E. S. TI Single DNA molecules as probes for interrogating silica surfaces after various chemical treatments SO ANALYTICA CHIMICA ACTA LA English DT Article DE single-molecule imaging; total internal reflection; fluorescence microscopy; lambda-DNA; adsorption glass surfaces ID TOTAL INTERNAL-REFLECTION; CAPILLARY-ELECTROPHORESIS; FLUORESCENCE MICROSCOPY; PROTEIN MOLECULES; GLASS; ADSORPTION; INTERFACE; DIFFUSION; DYNAMICS; IMMOBILIZATION AB We examined the adsorption of single YOYO-1-labeled lambda-DNA molecules at glass surfaces after treatment with various chemical cleaning methods by using total internal reflection fluorescence microscopy (TIRFM). The characteristics of these surfaces were further assessed using contact angle (CA) measurements and atomic force microscopy (AFM). By recording the real-time dynamic motion of DNA molecules at the liquid/solid interface, subtle differences in adsorption affinities were revealed. The results indicate that the driving force for adsorption of DNA molecules on glass surfaces is mainly hydrophobic interaction. We also found that surface topography plays a role in the adsorption dynamics. (C) 2007 Elsevier B.V. All rights reserved. C1 Hunan Univ, Coll Chem & Chem Engn, Biomed Engn Ctr, State Key Lab Chemo Biosensing & Chemometr, Changsha, Peoples R China. Iowa State Univ Sci & Technol, Dept Chem, USDOE, Ames Lab, Ames, IA 50011 USA. RP He, Y (reprint author), Hunan Univ, Coll Chem & Chem Engn, Biomed Engn Ctr, State Key Lab Chemo Biosensing & Chemometr, Changsha, Peoples R China. EM yanhe2021@gmail.com; yeung@ameslab.gov NR 40 TC 11 Z9 11 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD OCT 29 PY 2007 VL 602 IS 2 BP 229 EP 235 DI 10.1016/j.aca.2007.09.020 PG 7 WC Chemistry, Analytical SC Chemistry GA 227AO UT WOS:000250629800010 PM 17933608 ER PT J AU Durrell, JH Feldmann, DM Cantoni, C AF Durrell, J. H. Feldmann, D. M. Cantoni, C. TI Suppression of vortex channeling in meandered YBa2Cu3O7-delta grain boundaries SO APPLIED PHYSICS LETTERS LA English DT Article ID CRITICAL-CURRENT DENSITY; COATED CONDUCTORS; DEFORMATION; FILMS AB We report on the in-plane magnetic field (H) dependence of the critical current density (J(c)) in meandered and planar single grain boundaries (GBs) isolated in YBa2Cu3O7-delta (YBCO) coated conductors. The meandered boundaries resulted from metal-organic deposition, and the planar boundaries resulted from physical vapor deposition. The J(c) (H) properties of the planar GB are consistent with those previously seen in single GBs of YBCO films grown on SrTiO3 bicrystals. In the straight boundary, a characteristic flux channeling regime when H is oriented near the GB plane, associated with a reduced Jc, is seen. The meandered GB does not show vortex channeling since it is not possible for a sufficient length of vortex line to lie within it. (C) 2007 American Institute of Physics. C1 Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Durrell, JH (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM jhd25@cam.ac.uk RI Durrell, John/A-4052-2008; Cantoni, Claudia/G-3031-2013 OI Durrell, John/0000-0003-0712-3102; Cantoni, Claudia/0000-0002-9731-2021 NR 19 TC 15 Z9 15 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 29 PY 2007 VL 91 IS 18 AR 182506 DI 10.1063/1.2801696 PG 3 WC Physics, Applied SC Physics GA 227FW UT WOS:000250643600057 ER PT J AU Jiang, Y Kim, YH Zhang, SB Ebert, P Yang, SY Tang, Z Wu, KH Wang, EG AF Jiang, Ying Kim, Yong-Hyun Zhang, S. B. Ebert, Philipp Yang, Shenyuan Tang, Zhe Wu, Kehui Wang, E. G. TI Growing extremely thin bulklike metal film on a semiconductor surface: Monolayer Al(111) on Si(111) SO APPLIED PHYSICS LETTERS LA English DT Article ID GROWTH; OVERLAYERS; ISLANDS; PB AB We report combined scanning tunneling microscopy, x-ray photoelectron emission spectroscopy, electron energy loss spectroscopy, and theoretical study of the growth of ultrathin Al film on the Si(111) substrate. We show that by (i) a modification of the substrate reconstruction with a root 3 x root 3 surface and (ii) a choice of materials with commensurate lattices, atomically flat film can be obtained even at the ultimate one monolayer limit, while maintaining a bulklike atomic structure. Detailed analysis shows that this monolayer Al(111)-1 x 1 film is electronically decoupled from the Si substrate, and it shows metallic characteristics. (C) 2007 American Institute of Physics. C1 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. Natl Renewable Energy Lab, Golden, CO 80401 USA. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. RP Wu, KH (reprint author), Chinese Acad Sci, Inst Phys, POB 603, Beijing 100080, Peoples R China. EM khwu@aphy.iphy.ac.cn RI Kim, Yong-Hyun/C-2045-2011; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013; Jiang, Ying/D-3626-2014; OI Kim, Yong-Hyun/0000-0003-4255-2068; Zhang, Shengbai/0000-0003-0833-5860; Jiang, Ying/0000-0002-6887-5503; Ebert, Ph./0000-0002-2022-2378 NR 20 TC 5 Z9 6 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 29 PY 2007 VL 91 IS 18 AR 181902 DI 10.1063/1.2804010 PG 3 WC Physics, Applied SC Physics GA 227FW UT WOS:000250643600028 ER PT J AU Shaner, EA Cederberg, JG Wasserman, D AF Shaner, E. A. Cederberg, J. G. Wasserman, D. TI Electrically tunable extraordinary optical transmission gratings SO APPLIED PHYSICS LETTERS LA English DT Article AB We report a semiconductor based mechanism for electrically controlling the frequency of light transmitted through extraordinary optical transmission gratings. In doing so, we demonstrate active control over the surface plasmon (SP) resonance at the metal/dielectric interface. The gratings, designed to operate in the midinfrared spectral range, are fabricated upon a doped GaAs epilayer. Tuning of over 25 cm(-1) is achieved, and the devices are modeled to investigate the physical origin of the tuning mechanism. Though our structures are designed for the midinfrared, the tuning mechanism demonstrated could be applied to other wavelength ranges, especially the visible and near infrared. (C) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Shaner, EA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM eashane@sandia.gov RI Wasserman, Daniel/D-3913-2011 NR 8 TC 37 Z9 37 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 29 PY 2007 VL 91 IS 18 AR 181110 DI 10.1063/1.2804572 PG 3 WC Physics, Applied SC Physics GA 227FW UT WOS:000250643600010 ER PT J AU Wang, XJ Watanabe, T Shen, Y Li, RK Murphy, JB Tsang, T AF Wang, X. J. Watanabe, T. Shen, Y. Li, R. K. Murphy, J. B. Tsang, T. TI Efficiency enhancement using electron energy detuning in a laser seeded free electron laser amplifier SO APPLIED PHYSICS LETTERS LA English DT Article ID RADIATION; WIGGLER AB We report the experimental characterization of efficiency enhancement in a single-pass seeded free-electron laser (FEL) where the electron energy is detuned from resonance. Experiments show a doubling of the efficiency for beam energies above the resonant energy. Measurements of the FEL spectra versus energy detuning shows that the wavelength is governed by the seed laser. The variation in the gain length with beam energy was also observed. Good agreement is found between the experiment and numerical simulations using the MEDUSA simulation code. (C) 2007 American Institute of Physics. C1 Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. Sci Applicat Int Corp, Mclean, VA 22102 USA. RP Wang, XJ (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. EM xwang@bnl.gov NR 10 TC 14 Z9 15 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 29 PY 2007 VL 91 IS 18 AR 181115 DI 10.1063/1.2803772 PG 3 WC Physics, Applied SC Physics GA 227FW UT WOS:000250643600015 ER PT J AU Luo, J Zhao, Y Xu, H Kinnibrugh, TL Yang, D Timofeeva, TV Daemen, LL Zhang, J Bao, W Thompson, JD Currier, RP AF Luo, Junhua Zhao, Yusheng Xu, Hongwu Kinnibrugh, Tiffany L. Yang, Dali Timofeeva, Tatiana V. Daemen, Luke L. Zhang, Jianzhong Bao, Wei Thompson, Joe D. Currier, Robert P. TI A novel helical double-layered cobalt(II)-organic framework with tetranuclear [CO4(mu(3)-OH)(2)] clusters linked by an unsymmetrical pyridylbenzoate ligand SO INORGANIC CHEMISTRY LA English DT Article ID METAL-ORGANIC FRAMEWORK; COORDINATION POLYMERS; MOLECULES; COMPLEXES; CHEMISTRY; CHIRALITY; NETWORKS; SORPTION; CHAINS AB A novel cobalt(II)-organic framework, [CO2(OH)(3,4-PBC)(3)](n) (I), has been acquired by the reaction of CoO with an unsymmetrical pyridylbenzoate ligand, 3-pyrid-4-ylbenzoic acid (3,4-PBC). Singlecrystal X-ray diffraction studies reveal that it is comprised of [CO4ll((mu 3)-OH)(2)] clusters linked by the unsymmetrical ligand 3,4- PBC, forming a novel helical double-layered metal-organic architecture. A significant overall antiferromagnetic behavior has been observed for this compound. C1 Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Mat Sci, Los Alamos, NM 87545 USA. New Mexico Highlands Univ, Las Vegas, NM 87701 USA. Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Luo, J (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, POB 1663, Los Alamos, NM 87545 USA. EM jhluo@lanl.gov; yzhao@lanl.gov RI Bao, Wei/E-9988-2011; Lujan Center, LANL/G-4896-2012; Luo, Junhua/G-8928-2011; OI Bao, Wei/0000-0002-2105-461X; Luo, Junhua/0000-0002-3179-7652; Xu, Hongwu/0000-0002-0793-6923; Zhang, Jianzhong/0000-0001-5508-1782 NR 36 TC 80 Z9 80 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 29 PY 2007 VL 46 IS 22 BP 9021 EP 9023 DI 10.1021/ic701003z PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 223BU UT WOS:000250345400002 PM 17887748 ER PT J AU Sanudo, EC Cauchy, T Ruiz, E Laye, RH Roubeau, O Teat, SJ Aromi, G AF Sanudo, E. Carolina Cauchy, Thomas Ruiz, Eliseo Laye, Rebecca H. Roubeau, Olivier Teat, Simon J. Aromi, Guillem TI Molecules composed of two weakly magnetically coupled [Mn-4(III)] clusters SO INORGANIC CHEMISTRY LA English DT Article ID MANGANESE CARBOXYLATE CLUSTER; TRANSITION-METAL-COMPLEXES; CRYSTAL-STRUCTURE; EXCHANGE; MAGNETS; LIGAND; DIMER; CHAINS AB With the help of a bis(beta-diketonate) ligand, a family of robust molecules is formed, all consisting of two [Mn(III)14] subunits that interact slightly magnetically with each other, through two bridging pyrazine ligands. C1 Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Bordeaux 1, Ctr Rech Paul Pascal, CNRS, F-33600 Pessac, France. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Ruiz, E (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 647, E-08028 Barcelona, Spain. EM eliseo.ruiz@qi.ub.es; guillem.aromi@qi.ub.es RI Cauchy, Thomas/A-9343-2011; Roubeau, Olivier/A-6839-2010; Ruiz, Eliseo/A-6268-2011; Aromi, Guillem/I-2483-2015; Sanudo, E. Carolina/A-8384-2014 OI Cauchy, Thomas/0000-0003-4259-3257; Roubeau, Olivier/0000-0003-2095-5843; Ruiz, Eliseo/0000-0001-9097-8499; Aromi, Guillem/0000-0002-0997-9484; Sanudo, E. Carolina/0000-0001-9647-6406 NR 23 TC 43 Z9 43 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 29 PY 2007 VL 46 IS 22 BP 9045 EP 9047 DI 10.1021/ic701467y PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 223BU UT WOS:000250345400010 PM 17900188 ER PT J AU Fielden, J Long, DL Slawin, AMZ Kogerler, P Cronin, L AF Fielden, John Long, De-liang Slawin, Alexandra M. Z. Kogerler, Paul Cronin, Leroy TI Ligand and counterion control of Ag(I) architectures: Assembly of a {Ag-8} ring cluster mediated by hydrophobic and Ag center dot center dot center dot Ag interactions SO INORGANIC CHEMISTRY LA English DT Article ID ALIPHATIC AMINO LIGANDS; COORDINATION POLYMERS; RESONANCE-SPECTROSCOPY; SILVER(I) COMPLEXES; NANOPARTICLES; TETRANUCLEAR; COPPER(II); CHEMISTRY; DINUCLEAR; NETWORKS AB A strategy combining ligand design and counterion variation has been used to investigate the assembly of silver(I) complexes. As a result, dinuclear, octanuclear, and polymeric silver(I) species have been synthesized by complexation of the rigid aliphatic amino ligands cis-3,5-diamino-trans-hydroxycyclohexane (DAHC), cis-3,5-diamino- transmethoxycyclohexane (DAMC), and cis-3,5-diamino-trans-tert-butyidimethylsilylanyloxycyclohexane (DATC) with silver(I) triflate, nitrate, and perchlorate. The compositions of these aggregates, established by X-ray crystallography and elemental analysis, are [fAg(DAHC)}(2)](CF3SO3)(2) (1), [{Ag(DAMC)}(2)](CF3SO3)(2) (2), [{Ag(DAMC)}(2)](NO3)(2) (3), [{Ag-(DATC)}(6){Ag(DAHC)}(2)](NO3)(8) (4), and [{Ag(DATC}(n)](NO3)(n) (5), where the DAHC present in 4 is formed by in situ hydrolysis of the acid labile silyl ether group. The type of aggregate formed depends both upon the noncoordinating O-substituent of the ligand and the (also noncoordinating) counterion, with the normal preference of the ligand topology for forming Ag2L2 structures being broken by introduction of the bulky, lipophilic O-tert-butyidimethylsilyl (TBDMS) group. Of particular note is the octanuclear silver ring structure 4, which is isolated only when both the O-TBDMS group and the nitrate counteranion are present and is formed from four Ag2L2 dimers; connected by Ag center dot center dot center dot Ag and hydrogen-bonding interactions. Diffusion rate measurement of this {Ag-8} complex by H-1 NMR (DOSY) indicates dissociation in CD3OD and CD3CN, showing that this supramolecular ring structure is formed upon crystallization, and establishing a qualitative limit to the strength of Ag center dot center dot center dot Ag interactions in solution. When solutions of the {Ag-8} cluster in methanol are kept for several days though, a new UV-vis absorption is observed at around 430 nm, consistent with the formation of silver nanoparticles. C1 Univ Glasgow, Dept Chem, WestCHEM, Glasgow G12 8QQ, Lanark, Scotland. Univ St Andrews, Sch Chem, EastCHEM, St Andrews KY16 9ST, Fife, Scotland. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Cronin, L (reprint author), Univ Glasgow, Dept Chem, WestCHEM, Joseph Black Bldg,Univ Ave, Glasgow G12 8QQ, Lanark, Scotland. EM L.Cronin@chem.gla.ac.uk RI Cronin, Leroy/B-7752-2008; Long, Deliang/C-3500-2011; Slawin, Alexandra/I-9878-2014; Kogerler, Paul/H-5866-2013 OI Cronin, Leroy/0000-0001-8035-5757; Slawin, Alexandra/0000-0002-9527-6418; Kogerler, Paul/0000-0001-7831-3953 NR 37 TC 46 Z9 46 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 29 PY 2007 VL 46 IS 22 BP 9090 EP 9097 DI 10.1021/ic700872b PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 223BU UT WOS:000250345400018 PM 17892283 ER PT J AU Jin, GB Choi, ES Guertin, RP Brooks, JS Booth, CH Albrecht-Schmitt, TE AF Jin, Geng Bang Choi, Eun Sang Guertin, Robert P. Brooks, James S. Booth, Corwin H. Albrecht-Schmitt, Thomas E. TI Syntheses, structures, magnetism, and optical properties of lutetium-based interlanthanide selenides SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; NEUTRON-DIFFRACTION; SULFIDE; SCANDIUM; CHALCOGENIDES; LANTHANIDES; PEROVSKITES; REFINEMENT; YTTRIUM; SE AB Ln(3)LuSe(6) (Ln = La, Ce), beta-LnLuSe(3) (Ln = Pr, Nd), and Ln(x)LU(4)-,Se-6 (Ln = Sm, Gd; x = 1.82, 1.87) have been synthesized using a Sb2Se3 flux at 1000 degrees C. Ln(3)LuSe(6) (Ln = La, Ce) adopts theU(3)SCS(6)-type three-dimensional structure, which is constructed from two-dimensional 2 infinity [Ln(3)Se(6)](3-) slabs with the gaps between these slabs being filled by octahedrally coordinated Lu3+ ions. The series of beta-LnLuSe(3) (Ln = Pr, Nd) are isotypic with UFeS3. Their structures include layers formed from LuSe6 Octahedra that are separated by eight-coordinate Ln(3+) (Ln = Pr, Nd) ions in bicapped trigonal prismatic environments. Sm1.82Lu2.18Se6 and Gd1.87Lu2.13Se6 crystallize in the disordered F-Ln(2)S(3) type structure with the eight-coordinate bicapped trigonal prismatic Ln(1) ions residing in the one-dimensional channels formed by three different double chains via edge- and corner-sharing. These double chains are constructed from Ln(2)Se-7 monocapped trigonal prisms, Ln(3)Se-6 octahedra, and Ln(4)S-6 octahedra, respectively. The magnetic susceptibilities of beta-PrLuSe3 and beta-NdLuSe3 follow the Curie-Weiss law. Sm1.82Lu2.18Se6 shows van Vleck paramagnetism. Magnetic susceptibility measurements show that Gd1.87Lu2.13Se6 undergoes an antiferromagnetic transition around 4 K. Ce3LuSe6 exhibits soft ferromagnetism below 5 K. The optical band gaps for La3LuSe6, Ce3LuSe6, beta-PrLuSe3, beta-NdLuSe3, Sm1.82Lu2.18Se6, and Gd1.87Lu2.13Se6 are 1.26, 1.10, 1.56, 1.61, 1.51, and 1.56 eV, respectively. C1 Auburn Univ, Ctr Actinide Sci, Dept Chem & Biochem, Auburn, AL 36849 USA. Florida State Univ, Dept Phys, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Albrecht-Schmitt, TE (reprint author), Auburn Univ, Ctr Actinide Sci, Dept Chem & Biochem, Auburn, AL 36849 USA. EM albreth@auburn.edu RI Booth, Corwin/A-7877-2008 NR 38 TC 7 Z9 7 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 29 PY 2007 VL 46 IS 22 BP 9213 EP 9220 DI 10.1021/ic701012j PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 223BU UT WOS:000250345400030 PM 17914809 ER PT J AU Dergachev, A Armstrong, D Smith, A Drake, T Dubois, M AF Dergachev, Alex Armstrong, Darrell Smith, Arlee Drake, Thomas Dubois, Marc TI 3.4-mu m ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mu m Ho : YLF MOPA system SO OPTICS EXPRESS LA English DT Article ID GOOD BEAM QUALITY; HIGH-EFFICIENCY; LASER; PERFORMANCE; YAG AB We report on the first demonstration of ZGP OPO based on Rotated Image Singly-Resonant Twisted RectAngle (RISTRA) cavity. For the OPO signal wave we achieved a near diffraction-limited beam at 3.4 mu m with pulse energy of 10 mJ at repetition rate up to 500 Hz. As a pump source for the ZGP OPO, we utilized a 2-mu m, TEM00, Ho: YLF MOPA system producing > 55 mJ energy per pulse at repetition rate range from single shot to 500 Hz. (C) 2007 Optical Society of America. C1 Q Peak Inc, Bedford, MA 01730 USA. Sandia Natl Labs, Dept 1128, Albuquerque, NM 87185 USA. Lockheed Martin Aeronaut Co, Ft Worth, TX 76108 USA. RP Dergachev, A (reprint author), Q Peak Inc, 135 S Rd, Bedford, MA 01730 USA. EM dergachev@qpeak.com NR 19 TC 96 Z9 99 U1 0 U2 23 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 29 PY 2007 VL 15 IS 22 BP 14404 EP 14413 DI 10.1364/OE.15.014404 PG 10 WC Optics SC Optics GA 235HD UT WOS:000251223400015 PM 19550719 ER PT J AU Turitsyn, SK Mezentsev, VK Dubov, M Rubenchik, AM Fedoruk, MP Podivilov, EV AF Turitsyn, Sergei K. Mezentsev, Vladimir K. Dubov, Mykhaylo Rubenchik, Alexander M. Fedoruk, Michail P. Podivilov, Evgeny V. TI Sub-critical regime of femtosecond inscription SO OPTICS EXPRESS LA English DT Article ID LASER-PULSES; WAVE-GUIDES; GLASS; FABRICATION; WRITTEN; SILICA; BEAMS AB We apply well known nonlinear diffraction theory governing focusing of a powerful light beam of arbitrary shape in medium with Kerr nonlinearity to the analysis of femtosecond (fs) laser processing of dielectric in sub-critical (input power less than the critical power of self-focusing) regime. Simple analytical expressions are derived for the input beam power and spatial focusing parameter (numerical aperture) that are required for achieving an inscription threshold. Application of non-Gaussian laser beams for better controlled fs inscription at higher powers is also discussed. (C) 2007 Optical Society of America. C1 Aston Univ, Photon Res Grp, Birmingham B4 7ET, W Midlands, England. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Inst Computat Technol, Novosibirsk 630090, Russia. Inst Automat & Electrometry, Novosibirsk 630090, Russia. RP Turitsyn, SK (reprint author), Aston Univ, Photon Res Grp, Birmingham B4 7ET, W Midlands, England. EM s.k.turitsyn@aston.ac.uk; rubenchik1@llnl.gov; mife@ict.nsc.ru; Podivilov@iae.nsk.su RI Mezentsev, Vladimir/C-9427-2013; Turitsyn, Sergei/J-5562-2013; Dubov, Mykhaylo/B-5712-2008 OI Mezentsev, Vladimir/0000-0002-8415-1767; Turitsyn, Sergei/0000-0003-0101-3834; Dubov, Mykhaylo/0000-0002-6764-683X NR 20 TC 19 Z9 22 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 29 PY 2007 VL 15 IS 22 BP 14750 EP 14764 DI 10.1364/OE.15.014750 PG 15 WC Optics SC Optics GA 235HD UT WOS:000251223400051 PM 19550755 ER PT J AU Monnard, PA Luptak, A Deamer, DW AF Monnard, Pierre-Alain Luptak, Andrej Deamer, David W. TI Models of primitive cellular life: polymerases and templates in liposomes SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE encapsulated transcription; liposomes; nutrient uptake; origin of life; passive diffusion; protocell ID LIPID VESICLES; RNA; MACROMOLECULES; ENCAPSULATION; ENTRAPMENT; PERMEATION; EXPRESSION; MOLECULES; EVOLUTION; THICKNESS AB Nutrient transport, polymerization and expression of genetic information in cellular compartments are hallmarks of all life today, and must have appeared at some point during the origin and early evolution of life. Because the first cellular life lacked membrane transport systems based on highly evolved proteins, they presumably depended on simpler processes of nutrient uptake. Using a system consisting of an RNA polymerase and DNA template entrapped in submicrometre-sized lipid vesicles (liposomes), we found that the liposome membrane could be made sufficiently permeable to allow access of ionized substrate molecules as large as nucleoside triphosphates (NTPs) to the enzyme. The encapsulated polymerase transcribed the template-specific base sequences of the DNA to the RNA that was synthesized. These experiments demonstrate that units of genetic information can be associated with a functional catalyst in a single compartment, and that transcription of gene-sized DNA fragments can be achieved by relying solely on passive diffusion to supply NTPs substrates. C1 Univ Calif Berkeley, Dept Chem & Biochem, Berkeley, CA 94720 USA. Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA. RP Monnard, PA (reprint author), Los Alamos Natl Lab, EES 6,MS D-462, Los Alamos, NM 87545 USA. EM pmonnard@lanl.gov NR 38 TC 38 Z9 38 U1 1 U2 13 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD OCT 29 PY 2007 VL 362 IS 1486 BP 1741 EP 1750 DI 10.1098/rstb.2007.2066 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 211IE UT WOS:000249516700003 PM 17472931 ER PT J AU McCaskill, JS Packard, NH Rasmussen, S Bedau, MA AF McCaskill, John S. Packard, Norman H. Rasmussen, Steen Bedau, Mark A. TI Evolutionary self-organization in complex fluids SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE molecular evolution; self-assembly; Ising; protocell; amphiphile; self-organization ID MONTE-CARLO-SIMULATION; AMPHIPHILIC SYSTEMS; LIVING MATTER; LATTICE MODEL; WIDOM MODEL; HYPERCYCLE; PRINCIPLE; MICROEMULSIONS; REPLICATION; TRANSITIONS AB This paper explores the ability of molecular evolution to take control of collective physical phases, making the first decisive step from independent replicators towards cell-like collective structures. We develop a physical model of replicating combinatorial molecules in a ternary fluid of hydrocarbons, amphiphiles and water. Such systems are being studied experimentally in various laboratories to approach the synthesis of artificial cells, and are also relevant to the origin of cellular life. The model represents amphiphiles by spins on a lattice (with Ising coupling in the simplest case), coupled to replicating molecules that may diffuse on the lattice and react with each other. The presence of the replicating molecules locally modulates the phases of the complex fluid, and the physical replication process and/or mobility of the replicating molecules is influenced by the local amphiphilic configuration through an energetic coupling. Consequently, the replicators can potentially modify their environment to enhance their own replication. Through this coupling, the system can associate hereditary properties, and the potential for autonomous evolution, to self-assembling mesoscale structures in the complex fluid. This opens a route to analyse the evolution of artificial cells. The models are studied using Monte Carlo simulation, and demonstrate the evolution of phase control. We achieve a unified combinatorial framework for the description of isotropic families of spin-lattice models of complex phases, opening up the physical study of their evolution. C1 Ruhr Univ Bochum, BioMIP, BMZ, D-44227 Dortmund, Germany. ProtoLife Srl, I-30175 Venice, Italy. Santa Fe Inst, Santa Fe, NM 87506 USA. Los Alamos Natl Lab, SOS, Los Alamos, NM 87545 USA. Reed Coll, Portland, OR 97202 USA. European Ctr Living Technol, I-30125 Venice, Italy. RP McCaskill, JS (reprint author), Ruhr Univ Bochum, BioMIP, BMZ, Otto Hahn Str 15, D-44227 Dortmund, Germany. EM John.mccaskill@biomip.rub.de RI McCaskill, John/A-9521-2015 OI McCaskill, John/0000-0002-3408-7357 NR 52 TC 3 Z9 3 U1 0 U2 6 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 EI 1471-2970 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD OCT 29 PY 2007 VL 362 IS 1486 BP 1763 EP 1779 DI 10.1098/rstb.2007.2069 PG 17 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 211IE UT WOS:000249516700005 PM 17553771 ER PT J AU Rocheleau, T Rasmussen, S Nielsen, PE Jacobi, MN Ziock, H AF Rocheleau, Tristan Rasmussen, Steen Nielsen, Peter E. Jacobi, Martin N. Ziock, Hans TI Emergence of protocellular growth laws SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE protocell integration; replication; metabolism; kinetics ID LIVING MATTER; CELL-CYCLE; DYNAMICS; TRANSITIONS; PEPTIDE; LIFE AB Template-directed replication is known to obey a parabolic growth law due to product inhibition ( Sievers & Von Kiedrowski 1994 Nature 369, 221; Lee et al. 1996 Nature 382, 525; Varga & Szathmary 1997 Bull. Math. Biol. 59, 1145). We investigate a template-directed replication with a coupled template catalysed lipid aggregate production as a model of a minimal protocell and show analytically that the autocatalytic template-container feedback ensures balanced exponential replication kinetics; both the genes and the container grow exponentially with the same exponent. The parabolic gene replication does not limit the protocellular growth, and a detailed stoichiometric control of the individual protocell components is not necessary to ensure a balanced gene-container growth as conjectured by various authors ( Ganti 2004 Chemoton theory). Our analysis also suggests that the exponential growth of most modern biological systems emerges from the inherent spatial quality of the container replication process as we show analytically how the internal gene and metabolic kinetics determine the cell population's generation time and not the growth law ( Burdett & Kirkwood 1983 J. Theor. Biol. 103, 11-20; Novak et al. 1998 Biophys. Chem. 72, 185-200; Tyson et al. 2003 Curr. Opin. Cell Biol. 15, 221-231). Previous extensive replication reaction kinetic studies have mainly focused on template replication and have not included a coupling to metabolic container dynamics ( Stadler et al. 2000 Bull. Math. Biol. 62, 1061-1086; Stadler & Stadler 2003 Adv. Comp. Syst. 6, 47). The reported results extend these investigations. Finally, the coordinated exponential gene-container growth law stemming from catalysis is an encouraging circumstance for the many experimental groups currently engaged in assembling self-replicating minimal artificial cells C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Santa Fe Inst, Santa Fe, NM 87501 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Copenhagen, IMBG, DK-2200 Copenhagen, Denmark. Chalmers, S-41296 Gothenburg, Sweden. RP Rasmussen, S (reprint author), Los Alamos Natl Lab, EES 6,MS-D462, Los Alamos, NM 87545 USA. EM steen@1an1.gov RI nilsson jacobi, martin/C-9296-2012 NR 21 TC 15 Z9 16 U1 1 U2 5 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD OCT 29 PY 2007 VL 362 IS 1486 BP 1841 EP 1845 DI 10.1098/rstb.2007.2076 PG 5 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 211IE UT WOS:000249516700012 PM 17472929 ER PT J AU Munteanu, A Attolini, CSO Rasmussen, S Ziock, H Sole, RV AF Munteanu, Andreea Attolini, Camille Stephan-Otto Rasmussen, Steen Ziock, Hans Sole, Ricard V. TI Generic Darwinian selection in catalytic protocell assemblies SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE protocell; replicator dynamics; catalytic coupling; prebiotic evolution ID SELF-REPLICATING HEXADEOXYNUCLEOTIDE; MOLECULAR REPLICATION; LIVING MATTER; TRANSITIONS; SYSTEMS; GROWTH; MODELS; LIFE AB To satisfy the minimal requirements for life, an information carrying molecular structure must be able to convert resources into building blocks and also be able to adapt to or modify its environment to enhance its own proliferation. Furthermore, new copies of itself must have variable fitness such that evolution is possible. In practical terms, a minimal protocell should be characterized by a strong coupling between its metabolism and genetic subsystem, which is made possible by the container. There is still no general agreement on how such a complex system might have been naturally selected for in a prebiotic environment. However, the historical details are not important for our investigations as they are related to assembling and evolution of protocells in the laboratory. Here, we study three different minimal protocell models of increasing complexity, all of them incorporating the coupling between a 'genetic template', a container and, eventually, a toy metabolism. We show that for any local growth law associated with template self-replication, the overall temporal evolution of all protocell's components follows an exponential growth (efficient or uninhibited autocatalysis). Thus, such a system attains exponential growth through coordinated catalytic growth of its component subsystems, independent of the replication efficiency of the involved subsystems. As exponential growth implies the survival of the fittest in a competitive environment, these results suggest that protocell assemblies could be efficient vehicles in terms of evolving through Darwinian selection. C1 Univ Pompeu Fabra, ICREA Complex Syst Lab, Barcelona 08003, Spain. Univ Vienna, A-1090 Vienna, Austria. Los Alamos Natl Lab, SOS, Los Alamos, NM 87545 USA. Santa Fe Inst, Santa Fe, NM 87501 USA. RP Munteanu, A (reprint author), Univ Pompeu Fabra, ICREA Complex Syst Lab, Dr Aiguader 80, Barcelona 08003, Spain. EM andreea.munteanu@upf.edu RI Sole, Ricard/I-3379-2015; OI Stephan-Otto Attolini, Camille/0000-0001-8045-320X NR 28 TC 17 Z9 17 U1 0 U2 8 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD OCT 29 PY 2007 VL 362 IS 1486 BP 1847 EP 1855 DI 10.1098/rstb.2007.2077 PG 9 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 211IE UT WOS:000249516700013 PM 17510015 ER PT J AU Bytautas, L Nagata, T Gordon, MS Ruedenberg, K AF Bytautas, Laimutis Nagata, Takeshi Gordon, Mark S. Ruedenberg, Klaus TI Accurate ab initio potential energy curve of F-2. I. Nonrelativistic full valence configuration interaction energies using the correlation energy extrapolation by intrinsic scaling method SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID COUPLED-CLUSTER THEORY; SELF-CONSISTENT-FIELD; MATRIX RENORMALIZATION-GROUP; BASIS-SET CONVERGENCE; MULTIREFERENCE PERTURBATION-THEORY; ELECTRON-PAIR APPROXIMATION; MINIMAL BASIS-SETS; WAVE-FUNCTIONS; TRANSITION-STATE; BOND-BREAKING AB The recently introduced method of correlation energy extrapolation by intrinsic scaling (CEEIS) is used to calculate the nonrelativistic electron correlations in the valence shell of the F-2 molecule at 13 internuclear distances along the ground state potential energy curve from 1.14 A to 8 A, the equilibrium distance being 1.412 A. Using Dunning's correlation-consistent double-, triple-, and quadruple-zeta basis sets, the full configuration interaction energies are determined, with an accuracy of about 0.3 mhartree, by successively generating up to octuple excitations with respect to multiconfigurational reference functions that strongly change along the reaction path. The energies of the reference functions and those of the correlation energies with respect to these reference functions are then extrapolated to their complete basis set limits. The applicability of the CEEIS method to strongly multiconfigurational reference functions is documented in detail. C1 Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab US DOE, Ames, IA 50011 USA. RP Bytautas, L (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM ruedenberg@iastate.edu NR 154 TC 46 Z9 46 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2007 VL 127 IS 16 AR 164317 DI 10.1063/1.2800017 PG 20 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 226LA UT WOS:000250589400038 PM 17979348 ER PT J AU Kowalski, K Hammond, JR de Jong, WA AF Kowalski, Karol Hammond, Jeff R. de Jong, Wibe A. TI Linear response coupled cluster singles and doubles approach with modified spectral resolution of the similarity transformed Hamiltonian SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FREQUENCY-DEPENDENT POLARIZABILITIES; TRIPLES MODEL CC3; EXCITED ELECTRONIC STATES; POTENTIAL-ENERGY SURFACE; FULL CCSDT MODEL; EXCITATION-ENERGIES; CONFIGURATION-INTERACTION; TRANSITION-PROBABILITIES; PERTURBATION-THEORY; QUANTUM-CHEMISTRY AB This paper discusses practical scheme for correcting the linear response coupled cluster with singles and doubles (CCSD) equations by shifting the poles corresponding to the equation-of-motion CCSD excitation energies by adding noniterative corrections due to triples. A simple criterion is derived for the excited states to be corrected in the spectral resolution of similarity transformed Hamiltonian on the CCSD level. Benchmark calculations were performed to compare the accuracies of static and dynamic polarizabilities obtained in this way with the CC3 and CCSDT counterparts. (C) 2007 American Institute of Physics. C1 Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. Univ Chicago, Dept Chem, Chicago, IL 60637 USA. Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Kowalski, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM karol.kowalski@pnl.gov RI DE JONG, WIBE/A-5443-2008; Hammond, Jeff/G-8607-2013 OI DE JONG, WIBE/0000-0002-7114-8315; Hammond, Jeff/0000-0003-3181-8190 NR 52 TC 11 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2007 VL 127 IS 16 AR 164105 DI 10.1063/1.2795708 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 226LA UT WOS:000250589400007 PM 17979317 ER PT J AU Lee, BC Lee, GW AF Lee, Byeongchan Lee, Geun Woo TI Comparative study of Ti and Ni clusters from first principles SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; MAGNETISM; SYMMETRY AB Icosahedral clusters in Ti and Ni are studied with first-principles density functional calculations. We find significant distortion on the Ti icosahedron caused by the strong interaction between surface atoms on the icosahedron but not between the center atom and surface atoms, whereas no such distortion is observed on Ni clusters. In addition, distortion becomes more severe when atoms are added to the Ti-13 cluster resulting in short bonds. Such distorted icosahedra having short bonds are essential in explaining the structure factor of Ti liquid obtained in experiment. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lee, GW (reprint author), Korea Res Inst Stand & Sci, Div Phys Metrol, Temp Opt Metrol Grp, Taejon 305340, South Korea. EM gwlee@kriss.re.kr NR 25 TC 12 Z9 12 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2007 VL 127 IS 16 AR 164316 DI 10.1063/1.2800026 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 226LA UT WOS:000250589400037 PM 17979347 ER PT J AU Zheng, LQ An, Q Xie, Y Sun, ZH Luo, SN AF Zheng, Lianqing An, Qi Xie, Yun Sun, Zehui Luo, Sheng-Nian TI Homogeneous nucleation and growth of melt in copper SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CRYSTAL NUCLEATION; SYSTEMS; KINETICS AB Molecular dynamics simulations are conducted to investigate homogeneous nucleation and growth of melt in copper described by an embedded-atom method (EAM) potential. The accuracy of this EAM potential for melting is validated by the equilibrium melting point obtained with the solid-liquid coexistence method and the superheating-supercooling hysteresis method. We characterize the atomistic melting process by following the temperature and time evolution of liquid atoms. The nucleation behavior at the extreme superheating is analyzed with the mean-first-passage-time (MFPT) method, which yields the critical size, steady-state nucleation rate, and the Zeldovich factor. The value of the steady-state nucleation rate obtained from the MFPT method is consistent with the result from direct simulations. The size distribution of subcritical nuclei appears to follow a power law similar to three-dimensional percolation. The diffuse solid-liquid interface has a sigmoidal profile with a 10%-90% width of about 12 angstrom near the critical nucleation. The critical size obtained from our simulations is in reasonable agreement with the prediction of classical nucleation theory if the finite interface width is considered. The growth of melt is coupled with nucleation and can be described qualitatively with the Johnson-Meh-Avrami law. System sizes of 10(3)-10(6) atoms are explored, and negligible size dependence is found for bulk properties and for the critical nucleation. C1 Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA. Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Zheng, LQ (reprint author), Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA. EM sluo@lanl.gov RI Zheng, Lianqing/B-4171-2008; An, Qi/G-4517-2011; Luo, Sheng-Nian /D-2257-2010; An, Qi/I-6985-2012 OI Luo, Sheng-Nian /0000-0002-7538-0541; NR 39 TC 47 Z9 47 U1 6 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2007 VL 127 IS 16 AR 164503 DI 10.1063/1.2790424 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 226LA UT WOS:000250589400046 PM 17979356 ER PT J AU Maget, V Bourdarie, S Boscher, D Friedel, RHW AF Maget, V. Bourdarie, S. Boscher, D. Friedel, R. H. W. TI Data assimilation of LANL satellite data into the Salammbo electron code over a complete solar cycle by direct insertion SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID OUTER RADIATION BELT; RELATIVISTIC ELECTRONS; ENERGETIC ELECTRONS; INNER MAGNETOSPHERE; MAGNETIC STORM; CHORUS WAVES; ACCELERATION; DIFFUSION; MODEL; ENERGIES AB Past work of data reanalysis using the Salammbo three-dimensional code and LANL satellite data was done on a magnetic storm timescale. Here, we focus on the solar cycle timescale reanalysis. We study the accuracy of the reconstitution of the electron radiation belts from 1990 to 2005 using data from Los Alamos instruments on GPS and GEO spacecrafts. First, we simulate the 9 October 1990 storm. By predicting fluxes at CRRES orbit, we estimate a confidence level and propose quantitative limitations on the current state of the art for chorus wave-particle interaction modeling. By performing a run covering 15 a, we have been able to distinguish dynamics of different timescales and compare and validate our results with the statistical radiation belt models AE-8 and CRRESELE. The main conclusion is that the history of the radiation belts is of prime importance in order to best fit their real state. Data reanalysis is a new and valuable way to describe them. C1 [Maget, V.; Bourdarie, S.; Boscher, D.] Off Natl Etud & Rech Aerosp, F-31400 Toulouse, France. [Friedel, R. H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Maget, V (reprint author), Off Natl Etud & Rech Aerosp, 2 Ave Edourad Belin, F-31400 Toulouse, France. EM vincent.maget@onecert.fr RI Friedel, Reiner/D-1410-2012 OI Friedel, Reiner/0000-0002-5228-0281 NR 36 TC 11 Z9 11 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT 27 PY 2007 VL 5 IS 10 AR S10003 DI 10.1029/2007SW000322 PG 13 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 261JU UT WOS:000253075700001 ER PT J AU Gritti, F Kazakevich, YV Guiochon, G AF Gritti, Fabrice Kazakevich, Y. V. Guiochon, Georges TI Effect of the surface coverage of endcapped C-18-silica on the excess adsorption isotherms of commonly used organic solvents from water in reversed phase liquid chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE RPLC; excess adsorption isotherm; binary liquid mixtures; organic solvents; surface heterogeneity; C-18 surface coverage; accessible residual silanols; adsorbent surface area; BET nitrogen adsorption (LTNA); methanol; ethanol; 2-propanol; acetonitrile; tetrahydrofuran ID MOLECULAR-DYNAMICS SIMULATIONS; STATIONARY-PHASE; NONLINEAR CHROMATOGRAPHY; COLUMN SELECTIVITY; ELUENT COMPONENTS; DEAD-VOLUME; RETENTION; MECHANISM; DEFINITION; ADSORBENTS AB The excess adsorption isotherms of methanol, ethanol, 2-propanol, acetonitrile, and tetrahydrofuran from water were measured on five different silica-based packing materials by the minor disturbance method. These materials were prepared with the same lot of 5- mu m particles (average pore size 90 angstrom), all endcapped with trimethylchlorosilane (TMS), and bonded to octadecyl chains with different surface coverages (0, 0.42, 1.01, 2.03, and 3.15 mu mol/m(2)). The relative adsorption of one eluent by respect to a second one informs on the heterogeneity of the material (alkyl-bonded and bare silica regions) and on the accessibility of the unreacted silanol groups to the mobile phase. It is shown that the total surface area of the adsorbent decreases with increasing degree of surface coverage with octadecyl chains and that the relative surface area of the regions occupied by accessible silanol groups to the regions occupied by alkyl-bonded groups decreases. For the five columns, an average of 10% of the adsorbent surface area is covered of bare silica accessible to the liquid phase, with a minimum of 5% with tetrahydrofuran and a maximum of 12% with ethanol or 2-propanol. Increasing the surface coverage by the C-18 chains causes a significant increase of the attraction potential of the hydrophobic surface toward the organic solvent. This result is confirmed by the increase of the number of adsorbate monolayers with increasing bonding density of the octadecyl chains. This number is twice larger for the 315C(18) column than for the C-1 column. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Seton Hall Univ, Dept Chem, Seton Orange, NJ USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 28 TC 87 Z9 89 U1 2 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 26 PY 2007 VL 1169 IS 1-2 BP 111 EP 124 DI 10.1016/j.chroma.2007.08.071 PG 14 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 222SD UT WOS:000250316400013 PM 17875311 ER PT J AU Gritti, F Guiochon, G AF Gritti, Fabrice Guiochon, Georges TI Unusual behavior of the height equivalent to a theoretical plate of a new poroshell stationary phase at high temperatures SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE column performance; mass transfer mechanism; RP-HPLC; HETP equation; axial diffusion; eddy dispersion; film mass transfer; transparticle mass transfer; Halo-C-18; naphtho[2,3-a]pyrene; bovine serum albumin ID MASS-TRANSFER KINETICS; LIQUID-CHROMATOGRAPHY; DIFFUSION-COEFFICIENTS; COLUMN EFFICIENCY; BEDS; PARAMETERS; PARTICLES; MECHANICS; SHELL; FLOW AB The reduced HETPs of naphtho[2,3-a]pyrene (a polycyclic aromatic hydrocarbon with six condensed phenyl rings) was measured on three different RP-C,8columns packed with 5 and 3 mu m totally porous silica-B particles, and with 2.7 mu m Halo shell particles. The measurements were made at temperatures between ambient and 323 K, the retention factor being kept constant by modifying the eluent composition (water/acetonitrile mixtures). This compound was chosen because (1) it is strongly retained on RP-C-18 stationary phases and is eluted only by acetonitrile-rich mobile phases, which have a low viscosity (similar or equal to 0.35 cP). As a result, the C-term of the HETP plots was measured very precisely; (2) this compound does not interact strongly with the bare silica surface. Its adsorption isotherm remains linear up to high concentrations, its UV-absorbance (lambda = 294 nm) is high, and its HETP can be measured accurately and precisely (relative error of 2%). The experimental data were fitted to a general HETP model derived recently. The B term was measured independently, using the parking method to validate the fit in the low velocity range. The kinetics parameters derived from this model allow a qualitative comparison of the performances of the three columns. The column packed with the C-18-Halo particles exhibit an unusual rate of HETP increase at high linear velocities, particularly at elevated temperatures (310 and 323 K). A comparison of the HETP data measured for naphtho[2,3-a]pyrene and for bovine serum albumin (BSA), a large protein that is excluded from the mesopore network of all three columns, demonstrates that this behavior is related not to the mass transfer kinetics in the stationary phase but to some unexpected variation of the eddy dispersion with the linear velocity at high temperatures. The coupling theory of eddy dispersion proposed by Giddings fails to describe the data obtained for the Halo column while they predict well those measured on the totally porous materials. The explanation does not reside in the width of the particle size distribution (5% for Halo and similar or equal to 15% for the silica-B particles) but more likely in the roughness of the external surface of the Halo particles. (c) 200,7, Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Dept Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 25 TC 44 Z9 45 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 26 PY 2007 VL 1169 IS 1-2 BP 125 EP 138 DI 10.1016/j.chroma.2007.08.078 PG 14 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 222SD UT WOS:000250316400014 PM 17889884 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carrillo, S Carlsmith, D Carosi, R Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Paoli, FD Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Dorr, C Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S Van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carrillo, S. Carlsmith, D. Carosi, R. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Paoli, F. Delli Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Dorr, C. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. Van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. TI Search for high-mass diphoton states and limits on Randall-Sundrum gravitons at CDF SO PHYSICAL REVIEW LETTERS LA English DT Article ID TO-LEADING ORDER; ELECTROMAGNETIC CALORIMETER; HIERARCHY; DETECTOR AB We have performed a search for new particles which decay to two photons using 1.2 fb(-1) of integrated luminosity from p (p) over bar collisions at root s = 1.96 TeV collected using the CDF II detector at the Fermilab Tevatron. We find the diphoton mass spectrum to be in agreement with the standard model expectation, and set limits on the cross section times branching ratio for the Randall-Sundrum graviton, as a function of diphoton mass. We subsequently derive lower limits for the graviton mass of 230 GeV/c(2) and 850 GeV/c(2), at the 95% confidence level, for coupling parameters (k=(M) over barP(1)) of 0.01 and 0.1, respectively. C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Inst Theoret Phys, Kosice 04001, Slovakia. Comenius Univ, Bratislava 84248, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. CIEMAT, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena & Scuola Normale Super, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Punzi, Giovanni/J-4947-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; OI Punzi, Giovanni/0000-0002-8346-9052; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Lancaster, Mark/0000-0002-8872-7292; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Lazzizzera, Ignazio/0000-0001-5092-7531; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380 NR 20 TC 19 Z9 19 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 26 PY 2007 VL 99 IS 17 AR 171801 DI 10.1103/PhysRevLett.99.171801 PG 7 WC Physics, Multidisciplinary SC Physics GA 225GV UT WOS:000250506000016 PM 17995317 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carrillo, S Carlsmith, D Carosi, R Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Paoli, FD Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Rr, CD Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, S Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carrillo, S. Carlsmith, D. Carosi, R. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Paoli, F. Delli Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Rr, C. Do Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. TI Search for new physics in high-mass electron-positron events in p(p)over-bar collisions at root s p=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHENOMENOLOGY; HIERARCHY AB We report the results of a search for a narrow resonance in electron-positron events in the invariant mass range of 150-950 GeV/c(2) using 1: 3 fb(-1) of p (p) over bar collision data at root s = 1.96 TeV collected by the CDF II detector at Fermilab. No significant evidence of such a resonance is observed and we interpret the results to exclude the standard-model-like Z' with a mass below 923 GeV/c(2) and the Randall-Sundrum graviton with a mass below 807 GeV/c(2) for k root M-p1 = 0: 1, both at the 95% confidence level. Combining with diphoton data excludes the Randall-Sundrum graviton for masses below 889 GeV/c(2) for k root M-p1 = 0.1. C1 Johns Hopkins Univ, Baltimore, MD 21218 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. CIEMAT, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena & Scuola Normale Super, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA. RI De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Kim, Soo-Bong/B-7061-2014; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015 OI Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Turini, Nicola/0000-0002-9395-5230; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580 NR 18 TC 64 Z9 64 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 26 PY 2007 VL 99 IS 17 AR 171802 DI 10.1103/PhysRevLett.99.171802 PG 7 WC Physics, Multidisciplinary SC Physics GA 225GV UT WOS:000250506000017 PM 17995318 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Sman, BA Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I On, MB Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Ment, CC Ment, BC Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Renaudin, SCP Cutts, D Wiok, MC Da Motta, H Das, A Davies, G De, K De Jong, SJ De Jong, P De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Liot, FD Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Mez, BG Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Nendahl, SGR Newald, MWGR Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Fer, DKR Kahn, S Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kothari, B Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurc, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lazoflores, J Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Lesne, V Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Ttig, PMR Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Michaut, M Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Otero, GJ Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perea, PM Peters, K Peters, Y Troff, PP Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pompos, A Pope, BG Popov, AV Potter, C Da Silva, WLP Prosper, B Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Ndez, ASNH Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, RP Snow, J Snow, GR Snyder, S Ldner-Rembold, SSR Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Hmer, RSR Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Telford, P Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B Van den Berg, PJ Van Eijk, B Van Kooten, R Van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Vreeswijk, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Weerts, H Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Williams, MRJ Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Yu, C Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG Garzo, Y AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Sman, B. A. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A.-F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. On, M. Besanc Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Ment, C. Cle Ment, B. Cle Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M.-C. Renaudin, S. Cre Pe Cutts, D. Wiok, M. C. Da Motta, H. Das, A. Davies, G. De, K. De Jong, S. J. De Jong, P. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Liot, F. De Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Mez, B. Go Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J.-F. Grohsjean, A. Nendahl, S. Gru R. Newald, M. W. Gru R. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Fer, D. Ka R. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J.-P. Kopal, M. Korablev, V. M. Kothari, B. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurc, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Ttig, P. Ma R. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Michaut, M. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S.-J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perea, P. M. Peters, K. Peters, Y. Troff, P. Pe Petteni, M. Piegaia, R. Piper, J. Pleier, M.-A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M.-E. Polozov, P. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. Da Silva, W. L. Prado Prosper, B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Ndez, A. Sa Nchez-Herna Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, R. P. Snow, J. Snow, G. R. Snyder, S. Ldner-Rembold, S. So R. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Hmer, R. Stro R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Telford, P. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. Van den Berg, P. J. Van Eijk, B. Van Kooten, R. Van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Weerts, H. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Williams, M. R. J. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Yu, C. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. Garzo, Y. TI Properties of l=1 B-1 and B*(2) Mesons SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXCITED HEAVY MESONS; LIGHT MESONS; B-MESONS; DECAYS; DETECTOR; PHYSICS; SYSTEM AB This Letter presents the first strong evidence for the resolution of the excited B mesons B-1 and B-2(*) as two separate states in fully reconstructed decays to B+(*())pi(-). The mass of B-1 is measured to be 5720.6 +/- 2.4 +/- 1.4 MeV/c(2) and the mass difference Delta M between B-2* and B-1 is 26.2 +/- 3.1 +/- 0: 9 MeV/c(2), giving the mass of the B-2* as 5746.8 +/- 2.4 +/- 1.7 MeV/c(2). The production rate for B-1 and B-2* mesons is determined to be a fraction (13.9 +/- 1.9 +/- 3.2)% of the production rate of the B+ meson. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 11, Orsay, France. Univ Paris 06, CNRS, LPNHE, IN2P3, Orsay, France. Univ Paris 07, CNRS, LPNHE, IN2P3, Orsay, France. CEA, DAPNIA, Serv Phys Particles, Saclay, France. Univ Strasbourg 1, IPHC, Strasbourg, France. Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. Univ Lyon, Lyon, France. Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Gesamthsch Wuppertal, Fachbereich Phys, D-5600 Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM Inst NIKHEF, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Shivpuri, R K/A-5848-2010; Telford, Paul/B-6253-2011; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Mundim, Luiz/A-1291-2012; Nomerotski, Andrei/A-5169-2010; Novaes, Sergio/D-3532-2012; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Sharyy, Viatcheslav/F-9057-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016 OI Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Williams, Mark/0000-0001-5448-4213; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332 NR 26 TC 36 Z9 36 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 26 PY 2007 VL 99 IS 17 AR 172001 DI 10.1103/PhysRevLett.99.172001 PG 7 WC Physics, Multidisciplinary SC Physics GA 225GV UT WOS:000250506000019 PM 17995320 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Eigen, G Ofte, I Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Tackmann, K Wenzel, WA Sanchez, PDA Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Fisher, PH Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Chauveau, J David, P Del Buono, L De la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Perez, A Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G D'Orazio, A Del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Der, HS Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Che, CY Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, H Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Eigen, G. Ofte, I. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. Davier, M. Grosdidier, G. Hocker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Fisher, P. H. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Chauveau, J. David, P. Del Buono, L. De la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. D'Orazio, A. Del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Der, H. Schro Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Che, Ch. Ye Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. TI Improved measurement of CP violation in neutral B decays to ccs SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present updated measurements of time-dependent CP asymmetries in fully-reconstructed neutral B decays to several CP eigenstates containing a charmonium meson. The measurements use a data sample of (383 +/- 4) x 10(6) Y (4S) -> B (B) over bar decays collected with the BABAR detector at the PEP-II B factory. We determine sin2 beta = 0.714 +/- 0.032(stat) +/- 0.018(syst) and |lambda| = 0.952 +/- 0.022(stat) +/- 0.017(syst). C1 IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, CNRS, Lab Leprince Ringuet,IN2P3, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. Univ Paris 11, Ctr Sci, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies, IN2P3, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Roe, Natalie/A-8798-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011 OI Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Raven, Gerhard/0000-0002-2897-5323; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965 NR 18 TC 32 Z9 32 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 26 PY 2007 VL 99 IS 17 AR 171803 DI 10.1103/PhysRevLett.99.171803 PG 7 WC Physics, Multidisciplinary SC Physics GA 225GV UT WOS:000250506000018 ER PT J AU Gorham, PW Barwick, SW Beatty, JJ Besson, DZ Binns, WR Chen, C Chen, P Clem, JM Connolly, A Dowkontt, PF DuVernois, MA Field, RC Goldstein, D Goodhue, A Hast, C Hebert, CL Hoover, S Israel, MH Kowalski, J Learned, JG Liewer, KM Link, JT Lusczek, E Matsuno, S Mercurio, B Miki, C Miocinovic, P Nam, J Naudet, CJ Ng, J Nichol, R Palladino, K Reil, K Romero-Wolf, A Rosen, M Ruckman, L Saltzberg, D Seckel, D Varner, GS Walz, D Wu, F AF Gorham, P. W. Barwick, S. W. Beatty, J. J. Besson, D. Z. Binns, W. R. Chen, C. Chen, P. Clem, J. M. Connolly, A. Dowkontt, P. F. DuVernois, M. A. Field, R. C. Goldstein, D. Goodhue, A. Hast, C. Hebert, C. L. Hoover, S. Israel, M. H. Kowalski, J. Learned, J. G. Liewer, K. M. Link, J. T. Lusczek, E. Matsuno, S. Mercurio, B. Miki, C. Miocinovic, P. Nam, J. Naudet, C. J. Ng, J. Nichol, R. Palladino, K. Reil, K. Romero-Wolf, A. Rosen, M. Ruckman, L. Saltzberg, D. Seckel, D. Varner, G. S. Walz, D. Wu, F. TI Observations of the askaryan effect in ice SO PHYSICAL REVIEW LETTERS LA English DT Article ID COHERENT RADIO EMISSION; NEUTRINO DETECTION; RADIATION; SHOWERS; PULSES; AMANDA; CHARGE AB We report on observations of coherent, impulsive radio Cherenkov radiation from electromagnetic showers in solid ice. This is the first observation of the Askaryan effect in ice. As part of the complete validation process for the ANITA experiment, we performed an experiment at the Stanford Linear Accelerator Center in June 2006 using a 7.5 metric ton ice target. We measure for the first time the largescale angular dependence of the radiation pattern, a major factor in determining the solid-angle acceptance of ultrahigh-energy neutrino detectors. C1 Univ Hawaii, Dept Phys & Astron, Manoa, HI 96822 USA. Univ Calif Irvine, Irvine, CA 92697 USA. Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. Washington Univ, Dept Phys, St Louis, MO 63130 USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. Univ Delaware, Newark, DE 19716 USA. Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gorham, PW (reprint author), Univ Hawaii, Dept Phys & Astron, Manoa, HI 96822 USA. RI Nichol, Ryan/C-1645-2008; Vieregg, Abigail/D-2287-2012; Connolly, Amy/J-3958-2013; Beatty, James/D-9310-2011; OI Beatty, James/0000-0003-0481-4952; Lusczek, Elizabeth/0000-0003-4680-965X NR 25 TC 64 Z9 65 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 26 PY 2007 VL 99 IS 17 AR 171101 DI 10.1103/PhysRevLett.99.171101 PG 5 WC Physics, Multidisciplinary SC Physics GA 225GV UT WOS:000250506000014 PM 17995315 ER PT J AU Huang, JY Ding, F Jiao, K Yakobson, BI AF Huang, J. Y. Ding, Feng Jiao, Kun Yakobson, Boris I. TI Real time microscopy, kinetics, and mechanism of giant fullerene evaporation SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHEMICAL MOLECULAR-DYNAMICS; CARBON NANOTUBES; C-60; BUCKMINSTERFULLERENE; IRRADIATION; DIAMOND; SIMULATIONS; ONIONS; RINGS AB We report in situ high-resolution transmission electron microscopy observing the shrinkage of single-layer giant fullerenes (GF). At temperatures similar to 2000 degrees C, the GF volume reduces by greater than one 100-fold while the fullerene shell remains intact, evolving from a slightly polygonized to a nearly spherical shape with a smaller diameter. The number of carbon atoms in the GF decreases linearly with time until the small subbuckyball cage opens and rapidly disappears. Theoretical modeling indicates that carbon atoms are removed predominantly from the weakest binding energy sites, i. e., the pentagons, leading to the constant evaporation rate. The fullerene cage integrity is attributed to the collective behavior of interacting defects. These results constitute the first experimental evidence for the "shrink-wrapping'' and "hot-giant'' fullerene formation mechanisms. C1 [Huang, J. Y.] Sandia Natl Labs, CINT, Albuquerque, NM 87185 USA. [Ding, Feng; Jiao, Kun; Yakobson, Boris I.] Rice Univ, ME & MS Dept, Houston, TX 77005 USA. RP Huang, JY (reprint author), Sandia Natl Labs, CINT, POB 5800, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov; biy@rice.edu RI Ding, Feng/D-5938-2011; Huang, Jianyu/C-5183-2008 OI Ding, Feng/0000-0001-9153-9279; NR 28 TC 63 Z9 64 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 26 PY 2007 VL 99 IS 17 AR 175503 DI 10.1103/PhysRevLett.99.175503 PG 4 WC Physics, Multidisciplinary SC Physics GA 225GV UT WOS:000250506000044 PM 17995345 ER PT J AU Mukhopadhyay, S Almehed, D Garg, U Frauendorf, S Li, T Rao, PVM Wang, X Ghugre, SS Carpenter, MP Gros, S Hecht, A Janssens, RVF Kondev, FG Lauritsen, T Seweryniak, D Zhu, S AF Mukhopadhyay, S. Almehed, D. Garg, U. Frauendorf, S. Li, T. Rao, P. V. Madhusudhana Wang, X. Ghugre, S. S. Carpenter, M. P. Gros, S. Hecht, A. Janssens, R. V. F. Kondev, F. G. Lauritsen, T. Seweryniak, D. Zhu, S. TI From chiral vibration to static chirality in Nd-135 SO PHYSICAL REVIEW LETTERS LA English DT Article ID BAND; ROTATION; NUCLEI; MODEL AB Electromagnetic transition probabilities have been measured for the intraband and interband transitions in the two sequences in the nucleus Nd-135 that were previously identified as a composite chiral pair of rotational bands. The chiral character of the bands is affirmed and it is shown that their behavior is associated with a transition from a vibrational into a static chiral regime. C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. UGC DAE Consortium Sci Res, Kolkata Ctr, Kolkata 700098, India. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Mukhopadhyay, S (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 32 TC 77 Z9 82 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 26 PY 2007 VL 99 IS 17 AR 172501 DI 10.1103/PhysRevLett.99.172501 PG 4 WC Physics, Multidisciplinary SC Physics GA 225GV UT WOS:000250506000021 PM 17995322 ER PT J AU Slutz, SA Vesey, RA Herrmann, MC AF Slutz, S. A. Vesey, R. A. Herrmann, M. C. TI Compensation for time-dependent radiation-drive Asymmetries in inertial-fusion capsules SO PHYSICAL REVIEW LETTERS LA English DT Article ID DESIGN; TARGETS AB An approach is presented to design inertial- fusion capsules compensated for time-dependent radiation-drive asymmetries. This approach uses in depth variable doping of the capsule ablator, i. e., the addition of small amounts of material to tailor the opacity. Simulations show that an inertial-fusion capsule, using a beryllium ablator variably doped with gold, can be designed to compensate for a constant P-2 radiation asymmetry as high as 20% and still produce nominal yield ( 80% of a symmetrically driven capsule). In contrast, without variable doping the P-2 asymmetry must be less than 2% to obtain nominal yield. Similarly encouraging results are obtained for modes P-1, P-4, and P-6. Simulations also demonstrate that variable doping can compensate for nearly arbitrary time-dependent radiation-drive asymmetries by varying the polar dependence of the doping fraction with depth. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Slutz, SA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 11 TC 3 Z9 3 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 26 PY 2007 VL 99 IS 17 AR 175001 DI 10.1103/PhysRevLett.99.175001 PG 4 WC Physics, Multidisciplinary SC Physics GA 225GV UT WOS:000250506000038 PM 17995339 ER PT J AU Moore, RG Zhang, JD Nascimento, VB Jin, R Guo, JD Wang, GT Fang, Z Mandrus, D Plummer, EW AF Moore, R. G. Zhang, Jiandi Nascimento, V. B. Jin, R. Guo, Jiandong Wang, G. T. Fang, Z. Mandrus, D. Plummer, E. W. TI A surface-tailored, purely electronic, Mott metal-to-insulator transition SO SCIENCE LA English DT Article ID PEROVSKITE AB Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca1.9Sr0.1RuO4, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Florida Int Univ, Dept Phys, Miami, FL 33199 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. RP Moore, RG (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Mandrus, David/H-3090-2014; Fang, Zhong/D-4132-2009; Guo, Jiandong/F-2081-2015 OI Guo, Jiandong/0000-0002-7893-022X NR 30 TC 47 Z9 50 U1 4 U2 47 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 26 PY 2007 VL 318 IS 5850 BP 615 EP 619 DI 10.1126/science.1145374 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 223XL UT WOS:000250409200038 PM 17962556 ER PT J AU Gosling, JT Eriksson, S Blush, LM Phan, TD Luhmann, JG McComas, DJ Skoug, RM Acuna, MH Russell, CT Simunac, KD AF Gosling, J. T. Eriksson, S. Blush, L. M. Phan, T. D. Luhmann, J. G. McComas, D. J. Skoug, R. M. Acuna, M. H. Russell, C. T. Simunac, K. D. TI Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending > 4.26 x 10(6) km in the solar wind at 1 AU SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EXPLORER AB Observations of oppositely directed plasma jets within an extended, bifurcated current sheet in the solar wind by a flotilla of five well- separated spacecraft ( STEREO A and B, ACE, Wind and Geotail) on 11 March 2007 demonstrate that magnetic reconnection X- lines in the solar wind can extend to distances at least as great as 4.26 x 10 6 km ( 0.0284 AU) in the presence of a significant and variable guide field. The observations also indicate that reconnection in the solar wind can persist for at least 5 hours and 20 minutes. These minimum values are the largest yet obtained from direct measurements of reconnection exhaust flows in a space plasma. Both dynamic processes in the reconnection region and the spherical expansion of the solar wind probably contribute to the production of long X- lines in the solar wind. C1 Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gosling, JT (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. EM jack.gosling@lasp.colorado.edu OI Eriksson, Stefan/0000-0002-5619-1577 NR 18 TC 35 Z9 36 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 25 PY 2007 VL 34 IS 20 AR L20108 DI 10.1029/2007GL031492 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 225MB UT WOS:000250520900008 ER PT J AU Tsai, MK Kowalski, K Valiev, M Dupuis, M AF Tsai, Ming-Kang Kowalski, Karol Valiev, Marat Dupuis, Michel TI Signature OH absorption spectrum from cluster models of solvation: A solvent-to-solute charge transfer state SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EXCITED-STATES; WATER AB Ab initio electronic structure theory calculations on cluster models support the characterization of the signature absorption spectrum of a solvated hydroxyl OH radical as a solvent-to-solute charge transfer state modulated by the hydrogen-bonding environment. Vertical excited states in OH(H2O)(n) clusters (n = 0-7, 16) calculated at the TDDFT level of theory (with companion calculations at the EOM-CCSD level of theory for n <= 7) show an intense band in the region of similar to 250 nm. The calculations suggest that the intensity of the solvent-to-solute charge transfer transition depends strongly on a favorable alignment of the donor and acceptor molecular orbitals, as observed in one (n = 16) cluster. In the other (smaller) clusters, the transitions in this region were found to be weak as the clusters do not offer the necessary favorable alignment of orbitals. The present findings are consistent with the experimentally observed absorption at 230 nm that has been assigned to a solvent-to-solute charge transfer and provide insight into the electronic states and orbitals that give rise to the intensity of the band. C1 [Tsai, Ming-Kang; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Kowalski, Karol; Valiev, Marat] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Dupuis, M (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, K1-83,PO 999, Richland, WA 99352 USA. EM michel.dupuis@pnl.gov OI Tsai, Ming-Kang/0000-0001-9189-5572 NR 17 TC 7 Z9 7 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 25 PY 2007 VL 111 IS 42 BP 10478 EP 10482 DI 10.1021/jp074617f PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 245PP UT WOS:000251947900006 PM 17914775 ER PT J AU Lioe, H Laskin, J Reid, GE O'Hair, RAJ AF Lioe, Hadi Laskin, Julia Reid, Gavin E. O'Hair, Richard A. J. TI Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RESONANCE MASS-SPECTROMETRY; CYSTEINE SULFONIC-ACID; POSTTRANSLATIONAL MODIFICATIONS; SULFINIC ACID; IONS; CHEMISTRY; RESIDUES; CLEAVAGE; BEHAVIOR AB The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slowkinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E-0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes are much slower compared to amide bond cleavage, explaining why these selective bond cleavages are not observed if fragmentation is performed under mobile proton conditions. This study further affirms that fragmentation of peptide ions in the gas phase are predominantly governed by entropic effects. C1 [Lioe, Hadi; O'Hair, Richard A. J.] Univ Melbourne, Sch Chem, Melbourne, Vic 3010, Australia. [Lioe, Hadi; O'Hair, Richard A. J.] Univ Melbourne, Inst Mol Sci & Biotechnol Bio21, Melbourne, Vic 3010, Australia. [Laskin, Julia] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. [Reid, Gavin E.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Reid, Gavin E.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Lioe, H (reprint author), Univ Melbourne, Sch Chem, Melbourne, Vic 3010, Australia. EM hlioe@unimelb.edu.au; Julia.Laskin@pnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Reid, Gavin/0000-0002-9675-1444 NR 28 TC 24 Z9 24 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 25 PY 2007 VL 111 IS 42 BP 10580 EP 10588 DI 10.1021/jp073040z PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 245PP UT WOS:000251947900019 PM 17914758 ER PT J AU Ronnebro, E Majzoub, EH AF Roennebro, Ewa Majzoub, Eric H. TI Calcium borohydride for hydrogen storage: Catalysis and reversibility SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIBH4 AB We demonstrate a new solid-state synthesis route to prepare calcium borohydride, Ca(BH4)(2), by reacting a ball-milled mixture of CaB6 and CaH2 in a molar ratio of 1:2 at 700 bar of H-2 pressure and 400-440 degrees C. Moreover, doping with catalysts was found to be crucial to enhance reaction kinetics. Thermogravimetric analysis and differential scanning calorimetry revealed a reversible low-temperature to high-temperature endothermic phase transition at 140 degrees C and another endothermic phase transition at 350-390 degrees C associated with hydrogen release upon formation of CaB6 and CaH2, as was evident from X-ray diffraction analysis. Thus, since Ca(BH4)2 here is shown to be prepared from its anticipated decomposition products, the conclusion is that it has potential to be utilized as a reversible hydrogen storage material. The theoretical reversible capacity was 9.6 wt. % hydrogen. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Ronnebro, E (reprint author), Sandia Natl Labs, 7011 E Ave, Livermore, CA 94551 USA. EM ecronne@sandia.gov NR 20 TC 135 Z9 137 U1 5 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 25 PY 2007 VL 111 IS 42 BP 12045 EP 12047 DI 10.1021/jp0764541 PG 3 WC Chemistry, Physical SC Chemistry GA 221XK UT WOS:000250260500002 PM 17914804 ER PT J AU Parthasarathy, R Rabuka, D Bertozzi, CR Groves, JT AF Parthasarathy, Raghuveer Rabuka, David Bertozzi, Carolyn R. Groves, Jay T. TI Molecular orientation of membrane-anchored mucin glycoprotein mimics SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INTERFERENCE-CONTRAST MICROSCOPY; SUPPORTED BILAYERS; SILICON; DYE AB Mucin glycoproteins contribute to a wide range of cell-surface phenomena. Their dense glycosylation is believed to confer structural rigidity as well as molecular extension beyond the glycocalyx, crucial to interaction with the cellular environment. However, controlled investigations of the relationships between glycosylation, rigidity, and extension of membrane-bound mucins or similar macromolecules are lacking, largely because of the absence of tractable experimental models. We have therefore made use of recently developed synthetic mucin mimetics, in which the core a-GaINAc monosaccharides of natural mucins are conjugated to a lipidated polymer backbone and anchored to fluid, solid-supported lipid membranes, and fluorescence interference contrast microscopy, an optical technique that provides nanometer-scale topographic information about objects near a reflective interface, to measure the orientation of the mucin mimics relative to the membrane plane. Data from two independent probes, fluorophores conjugated directly to the polymer backbone and fluorescent proteins bound to the sugar groups, unexpectedly show that the mucin mimic molecules lie flat along the membrane. Rigidity and core glycosylation are therefore insufficient to ensure molecular projection outward from a membrane surface. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Phys Biosci & Mat Sci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Parthasarathy, R (reprint author), Univ Oregon, Dept Phys, Inst Mat Sci, Eugene, OR 94703 USA. EM rughu@uoregon.edu; jtgroves@lbl.gov RI Parthasarathy, Raghuveer/A-5958-2008 OI Parthasarathy, Raghuveer/0000-0002-6006-4749 FU NIGMS NIH HHS [GM59907] NR 14 TC 6 Z9 6 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 25 PY 2007 VL 111 IS 42 BP 12133 EP 12135 DI 10.1021/jp072136q PG 3 WC Chemistry, Physical SC Chemistry GA 221XK UT WOS:000250260500015 PM 17915910 ER PT J AU Striolo, A McCabe, C Cummings, PT Chan, ER Glotzer, SC AF Striolo, Alberto McCabe, Clare Cummings, Peter T. Chan, Elaine R. Glotzer, Sharon C. TI Aggregation of POSS monomers in liquid hexane: A molecular-simulation study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POLYHEDRAL OLIGOMERIC SILSESQUIOXANES; COMPUTER-SIMULATION; DYNAMICS SIMULATION; FORCE-FIELD; POTENTIALS; POLY(DIMETHYLSILOXANE); SISLESQUIOXANES; COPOLYMERS; POLYMERS AB Polyhedral oligomeric silsesquioxanes (POSS) are multifunctional molecules that can be employed as building blocks to develop nanocomposite materials whose mechanical properties often improve upon those of traditional polymeric materials. We report here molecular simulation results for the effective potential of mean force between octamethyl POSS monomers and between POSS monomers in which one methyl group has been substituted by a linear alkane chain of nine carbon atoms in liquid normal hexane at 300 and 400 K. The results are discussed and compared to available data for the effective interactions between octamethyl POSS monomers in normal hexadecane. Our results show that the effective short-ranged POSS-POSS attraction is significantly weaker in hexane than it is in hexadecane, perhaps explaining why normal hexane is often the solvent of choice for the preparation of POSS-containing materials. Additionally, we provide results for the radial distribution functions between selected sites in the POSS monomers that can be used both to understand the association between POSS monomers in solution and to parametrize coarse-grained simulation models. Such models will be used to study the formation of POSS-containing supramolecular structures such as lamellae or micelles that are currently not accessible by atomistic simulation and can be compared to experimental observations. C1 Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanomat Theory Inst, Oak Ridge, TN 37831 USA. Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Striolo, A (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. EM astriolo@ou.edu RI Striolo, Alberto/G-2926-2011; McCabe, Clare/I-8017-2012; Cummings, Peter/B-8762-2013 OI McCabe, Clare/0000-0002-8552-9135; Cummings, Peter/0000-0002-9766-2216 NR 38 TC 10 Z9 11 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 25 PY 2007 VL 111 IS 42 BP 12248 EP 12256 DI 10.1021/jp071730x PG 9 WC Chemistry, Physical SC Chemistry GA 221XK UT WOS:000250260500030 PM 17918877 ER PT J AU Yao, C Shin, Y Wang, LQ Windisch, CF Samuels, WD Arey, BW Wang, C Risen, WM Exarhos, GJ AF Yao, Chunhua Shin, Yongsoon Wang, Li-Qiong Windisch, Charles F., Jr. Samuels, William D. Arey, Bruce W. Wang, Chongmin Risen, William M., Jr. Exarhos, Gregory J. TI Hydrothermal dehydration of aqueous fructose solutions in a closed system SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LEVULINIC ACID; MICROPOROUS CARBON; HOLLOW SPHERES; 5-HYDROXYMETHYL-2-FURALDEHYDE; PARTICLES; CATALYST; GLUCOSE AB Aqueous monosaccharide solutions including glucose or fructose have been hydrothermally treated in a closed system to form colloidal carbon spheres. In-situ Raman and C-13 NMR have been used to quantify the intramolecular dehydration moiety, HMF, as an intermediate. An aqueous glucose solution forms a carbon sphere via an intermolecular dehydration route without forming HMF during initial hydrothermal treatment and followed by carbonization at 170-180 degrees C. However, an aqueous fructose solution initially forms HMF by intramolecular dehydration at 120-140 degrees C. Upon subsequent polymerization, microscopic carbon-containing spheres assemble to larger spheres, thereby generating a grain-like surface morphology. The carbon sphere contains a dense hydrophobic carbon core and a hydrophilic shell. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Shin, Y (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MS K2-44, Richland, WA 99354 USA. EM yongsoon.shin@pnl.gov; greg.exarhos@pnl.gov NR 20 TC 152 Z9 159 U1 9 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 25 PY 2007 VL 111 IS 42 BP 15141 EP 15145 DI 10.1021/jp0741881 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 224HU UT WOS:000250438900003 ER PT J AU Yi, CW Kwak, JH Szanyi, J AF Yi, Cheol-Woo Kwak, Ja Hun Szanyi, Janos TI Interaction of NO2 with BaO: From cooperative adsorption to Ba(NO3)(2) formation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BARIUM OXIDE; NSR CATALYSTS; FT-IR; STORAGE; REDUCTION; MODEL; MGO; BAO/AL2O3; CHEMISTRY; NITRATE AB The adsorption and reaction of NO2 on a thick (> 30 ML), pure BaO film deposited onto an A]Al2O3/NiAl(110) substrate were investigated using temperature-programmed desorption, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy techniques. For the first time, it was clearly demonstrated that BaO reacts with NO2 to initially form nitrite-nitrate ion pairs by the cooperative adsorption mechanism predicted by theoretical calculation. These NO2-/NO3- ion pairs readily form even at 90 K. In the decomposition process of these ion pairs, first the nitrite species release an NO molecule and then form BaO2. At higher temperatures, nitrate species decompose in two steps: at lower temperature as NO2 only, then, at higher temperature, as NO + O-2. The results of NO2 adsorption/reaction on this model system are identical to those we have found on a high surface area 20 wt % BaO/gamma-Al2O3 sample with the exception of surface nitrates that were only observed on the high surface area material. C1 Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-80, Richland, WA 99352 USA. EM janos.szanyi@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Yi, Cheol-Woo/B-3082-2010 OI Yi, Cheol-Woo/0000-0003-4549-5433 NR 25 TC 49 Z9 49 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 25 PY 2007 VL 111 IS 42 BP 15299 EP 15305 DI 10.1021/jp074179c PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 224HU UT WOS:000250438900023 ER PT J AU Vukmirovic, MB Liu, P Muckerman, JT Adzic, RR AF Vukmirovic, Miomir B. Liu, Ping Muckerman, James T. Adzic, Radoslav R. TI Electrodeposition of pt onto RuO2(110) single-crystal surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RUO2 ELECTRODES; ADSORPTION; GROWTH; SILVER; FACES AB The electrodeposition of Pt on RuO2(110)) from acid solutions of several Pt complexes was studied using programmed potential step or potential sweep methods. The RuO2(110) single-crystal surface was obtained by gas-phase oxidation of Ru(0001). The electrodeposition process is characterized by a large crystallization overpotential and three-dimensional growth from a Pt adlayer. The mismatch between the RuO2(110) and Pt lattices is the likely origin of that overpotential. The nucleation is instantaneous, as verified by potential step experiments. The process starts with depositing a 0.25 ML of Pt, with Pt atoms arranged in a c(2 x 2) array, which is followed by the growth of Pt islands and three-dimensional clusters as in the Stranski-Krastanov growth mode. Density functional theory calculations were used to help in elucidating atomically resolved electrochemical scanning tunneling microscopy (ECSTM) images of the initial stages of Pt deposition. A Pt adlayer on RuO2(110) has lower catalytic activity for the oxygen reduction reaction compared to Pt, which is in agreement with a large calculated upshift of the d-band center of a low-coverage Pt deposit on RuO2(110) as well as a lack of the oxygen adsorption in a bridge configuration on that surface. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Vukmirovic, MB (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM miomir@bnl.gov RI Muckerman, James/D-8752-2013 NR 24 TC 9 Z9 9 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 25 PY 2007 VL 111 IS 42 BP 15306 EP 15311 DI 10.1021/jp0742719 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 224HU UT WOS:000250438900024 ER PT J AU Pan, G Watkins, E Majewski, J Schaefer, DW AF Pan, Guirong Watkins, Erik Majewski, Jaroslaw Schaefer, Dale W. TI Effect of thickness on the water-barrier properties of silane films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NEUTRON REFLECTIVITY; MORPHOLOGY; ALUMINUM; SPECTROSCOPY; RESISTANCE AB Although it is known that certain silane coupling agents can dramatically improve corrosion resistance when deposited on metals, the origin of this effect and its dependence on film characteristics are not understood. To elucidate these issues, neutron reflectivity is used to investigate the morphology and structure of the silane films as well as their response to water exposure. Films with thicknesses approaching practical levels (0.2 mu m) are investigated. This study complements previous work on thinner films. Although some characteristics of thick films are similar to thin films regarding water-barrier properties, there are notable exceptions. Bis-sulfur silane film, for example, provides an adequate water barrier only for films cured at 180 degrees C with thicknesses exceeding 1200 A. For bis-sulfur silane films, therefore, both larger thicknesses and higher cure temperatures are expected to improve anticorrosion performance. C1 Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Schaefer, DW (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM dale.schaefer@uc.edu RI Lujan Center, LANL/G-4896-2012 NR 17 TC 7 Z9 7 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 25 PY 2007 VL 111 IS 42 BP 15325 EP 15330 DI 10.1021/jp075023f PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 224HU UT WOS:000250438900026 ER PT J AU Park, JY Renzas, JR Hsu, BB Somorjai, GA AF Park, Jeong Young Renzas, J. R. Hsu, Bryan B. Somorjai, Gabor A. TI Interfacial and chemical properties of Pt/TiO2, Pd/TiO2, and Pt/GaN catalytic nanodiodes influencing hot electron flow SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-SUPPORT INTERACTION; SCHOTTKY DIODES; BARRIER HEIGHT; CO OXIDATION; SURFACES; HYDROGEN; NANOPARTICLES; DYNAMICS; GAN; ADSORPTION AB The influence of physical and chemical properties of Pt/TiO2, Pd/TiO2, and Pt/GaN metal-semiconductor Schottky diodes on the yield of collected hot electron flow (number of hot electrons per product molecule) was investigated. We measured both the chemicurrent (electron flow) and chemical turnover rate during oxidation of carbon monoxide (at pressures of 100 Torr of O-2 and 40 Torr of CO in the 373-513 K range) using reaction systems equipped for simultaneous reaction rate and current measurements. The chemicurrent was found to be correlated with the turnover rate and can be used to detect the turnover rate for the three diodes. Thermoelectric current was observed in the presence of O-2 or CO gas in the absence of catalytic reaction. The chemicurrent was observed only under catalytic reaction condition. The chemicurrent yield of Pt/GaN ((3.5 +/- 0.8) x 10(-3)) was higher than that of Pt/TiO2 or Pd/TiO2 ((2-3) x 10(-4)) by 1 order of magnitude. We found that the metal-semiconductor interface structure (roughness, grain size, and step-terrace) is important in controlling the magnitude of chemicurrent yield. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008; Hsu, Bryan/F-3006-2012 NR 38 TC 63 Z9 64 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 25 PY 2007 VL 111 IS 42 BP 15331 EP 15336 DI 10.1021/jp074562h PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 224HU UT WOS:000250438900027 ER PT J AU Nanda, J Ivanov, SA Achermann, M Bezel, I Piryatinski, A Klimov, VI AF Nanda, Jagjit Ivanov, Sergei A. Achermann, Marc Bezel, Ilya Piryatinski, Andrei Klimov, Victor I. TI Light amplification in the single-exciton regime using exciton-exciton repulsion in type-II nanocrystal quantum dots SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INVERTED CORE/SHELL NANOCRYSTALS; AMPLIFIED SPONTANEOUS EMISSION; ULTRAFAST CARRIER DYNAMICS; SEMICONDUCTOR NANOCRYSTALS; OPTICAL GAIN; CDSE NANOCRYSTALS; STIMULATED-EMISSION; ABSORPTION; SPECTROSCOPY; TEMPERATURE AB Optical gain in ultrasmall semiconductor nanocrystals requires that some of the nanoparticles in the ensemble be excited with multiple electron-hole pairs (multiexcitons). A significant complication arising from this multiexciton nature of optical amplification is the ultrafast gain decay induced by nonradiative Auger recombination. Here, we develop a simple model for analyzing optical gain in the nanocrystals in the presence of exciton-exciton (X-X) interactions. This analysis indicates that if the X-X interaction is repulsive and its energy is large compared to the ensemble line width of the emitting transition, optical gain can occur in the single-exciton regime without involvement of multiexcitons. We further analyze theoretically and experimentally X-X interactions in type-II heteronanocrystals of US (core)/ZnSe (shell) and ZnTe (core)/ CdSe (shell) and show that they can produce giant repulsion energies of more than 100 meV resulting from a significant local charge density generated as a result of spatial separation between electrons and holes. We observe that the dynamical and spectral properties of optical gain in type-II nanocrystals are distinctly different from those of multiexciton gain in traditional type-I nanocrystals and are consistent with those expected for the single-exciton regime. An important implication of these results is the possibility of a significant increase in the optical-gain lifetime, which could simplify applications of chemically synthesized nanocrystals in practical lasing technologies and perhaps allow for lasing using electrical injection. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI Piryatinski, Andrei/B-5543-2009; Achermann, Marc/A-1849-2011; Ivanov, Sergei/B-5505-2011; OI Achermann, Marc/0000-0002-3939-9309; Klimov, Victor/0000-0003-1158-3179 NR 45 TC 49 Z9 49 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 25 PY 2007 VL 111 IS 42 BP 15382 EP 15390 DI 10.1021/jp0738659 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 224HU UT WOS:000250438900035 ER PT J AU Geng, SJ Zhu, JH Brady, MP Anderson, HU Zhou, XD Yang, ZG AF Geng, Shujiang Zhu, Jiahong Brady, Michael P. Anderson, Harlan U. Zhou, Xiao-Dong Yang, Zhenguo TI A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE solid oxide fuel cell; interconnect alloy; oxidation resistance; spinel; Cr volatility; area specific resistance ID FERRITIC STAINLESS-STEEL; CONTAINING ALLOY; SOFC CATHODE; PERFORMANCE; DEGRADATION; SEPARATOR; CONTACT; LAYERS AB A new low thermal expansion, low-Cr, Fe-Co-Ni base alloy was developed and evaluated as interconnect for intermediate-temperature solid oxide fuel cells (SOFCs). This alloy demonstrated good oxidation resistance, low oxide scale area specific resistance and a reasonable match in coefficient of thermal expansion with adjacent cell components. A double-layer oxide structure with an highly conductive, Cr-free (Fe,Co,Ni)(3)O-4 spinel outer layer and a thin protective Cr2O3 inner layer was formed on the alloy surface upon thermal exposure in air at 800 degrees C. The existence of the Cr-free (Fe,Co,Ni)304 outer layer effectively reduced the Cr evaporation and in transpiration testing resulted in a six-fold decrease in Cr evaporation as compared to a state-of-the-art ferritic interconnect alloy. The new low-Cr alloy also exhibited good scale spallation resistance and adequate compatibility with the cathode material La0.8Sr0.2MnO3 (LSM). (c) 2007 Elsevier B.V. All rights reserved. C1 Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Missouri, Elect Mat Appl Res Ctr, Rolla, MO 65409 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhu, JH (reprint author), Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. EM jzhu@tntech.edu RI Brady, Michael/A-8122-2008; Zhu, Jiahong/C-1230-2017 OI Brady, Michael/0000-0003-1338-4747; NR 29 TC 29 Z9 29 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 25 PY 2007 VL 172 IS 2 BP 775 EP 781 DI 10.1016/j.jpowsour.2007.05.022 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 227KD UT WOS:000250654700033 ER PT J AU Gallardo, JC AF Gallardo, Juan C. TI Call for scientists to speak up for human rights SO NATURE LA English DT Letter C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gallardo, JC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. OI Gallardo, Juan C/0000-0002-5191-3067 NR 1 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 25 PY 2007 VL 449 IS 7165 BP 972 EP 972 DI 10.1038/449972d PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 223TK UT WOS:000250395000020 PM 17960211 ER PT J AU Whitehead, J AF Whitehead, John TI Mars needs technology designed for sample return SO NATURE LA English DT Letter C1 Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94551 USA. RP Whitehead, J (reprint author), Lawrence Livermore Natl Lab, Phys Sci Directorate, L-072 POB 808, Livermore, CA 94551 USA. NR 1 TC 1 Z9 1 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 25 PY 2007 VL 449 IS 7165 BP 972 EP 972 DI 10.1038/449972c PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 223TK UT WOS:000250395000019 PM 17960212 ER PT J AU Harris, D AF Harris, David TI Structures of scientific collaboration SO NATURE LA English DT Book Review C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Harris, D (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. OI Harris, David/0000-0002-8321-2062 NR 1 TC 0 Z9 0 U1 1 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 25 PY 2007 VL 449 IS 7165 BP 983 EP 985 DI 10.1038/449983a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 223TK UT WOS:000250395000030 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, E Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Onoprienko, D Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, A Weber, G Weber, A Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, E. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F Grunendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Onoprienko, D. Oshima, N. Otec, R. Garzon, G. J. Otero Y. Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. . Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, A. Weber, G. Weber, A. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. TI Measurement of the top quark mass in the dilepton channel SO PHYSICS LETTERS B LA English DT Article ID LIKELIHOOD METHOD; MISSING MOMENTUM; EVENTS; RECONSTRUCTION; COLLISIONS; MODEL AB We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb(-1) of data collected by the DO experiment during Run R of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the DO Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m(t) = 178.1 +/- 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV. (c) 2007 Elsevier B.V. All rights reserved. C1 Boston Univ, Boston, MA 02215 USA. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ Prague, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, Phys Corpusculaire Lab, IN2P3 CNRS, Clermont Ferrand, France. Univ Grenoble 1, Lab Phys Subatom & Cosmol, IN2P3 CNRS, Grenoble, France. Univ Aix Marseille 2, CPPM, IN2P3 CNRS, Marseille, France. Lab Accelerateur Lineaire, IN2P3 CNRS, F-91405 Orsay, France. Univ Paris 06, IN2P3 CNRS, Paris, France. Univ Paris 07, IN2P3 CNRS, Paris, France. CEA Saclay, DAPNIA Serv Phys Particules, Saclay, France. Univ Strasbourg 1, IPHC, IN2P3 CNRS, Strasbourg, France. Univ Lyon 1, Inst Phys Nucl Lyon, IN2P3 CNRS, F-69622 Villeurbanne, France. Univ Bonn, Inst Phys, Aachen, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, Freiburg, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM Inst NIKHEF, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Heintz, U (reprint author), Boston Univ, Boston, MA 02215 USA. RI Juste, Aurelio/I-2531-2015; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Bargassa, Pedrame/O-2417-2016; Oguri, Vitor/B-5403-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013 OI Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Fatakia, Sarosh/0000-0003-0430-3191; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Strovink, Mark/0000-0001-7020-7769; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Bean, Alice/0000-0001-5967-8674; Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; NR 23 TC 12 Z9 12 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 25 PY 2007 VL 655 IS 1-2 BP 7 EP 14 DI 10.1016/j.physletb.2007.08.074 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 229SH UT WOS:000250824000002 ER PT J AU Soyez, G AF Soyez, G. TI Saturation QCD predictions with heavy quarks at HERA SO PHYSICS LETTERS B LA English DT Article ID DEEP-INELASTIC SCATTERING; ENERGY-DEPENDENCE; DIPOLE PICTURE; CROSS-SECTION; SMALL-X; MOMENTUM; EQUATION; EVOLUTION; MESON AB The measurement of the proton structure function at HERA is often seen as a hint for the observation of saturation in high-energy QCD e.g. through the observation of geometric scaling. Accordingly, the dipole picture provides a powerful framework in which the QCD-based saturation models can be confronted to the data. In this Letter, we give a parametrisation of proton structure function which is directly constrained by the dynamics of QCD in its high-energy limit and fully includes the heavy quark effects. We obtain a good agreement with the available data. Furthermore, to the contrary of various models in the literature, we do not observe a significant decrease of the saturation momentum due to the heavy quark inclusion. (c) 2007 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Soyez, G (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM g.soyez@ulg.ac.be OI Soyez, Gregory/0000-0002-9490-9025 NR 50 TC 72 Z9 73 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 25 PY 2007 VL 655 IS 1-2 BP 32 EP 38 DI 10.1016/j.physletb.2007.07.076 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 229SH UT WOS:000250824000005 ER PT J AU McNeal, JR Kuehl, JV Boore, JL de Pamphilis, CW AF McNeal, Joel R. Kuehl, Jennifer V. Boore, Jeffrey L. de Pamphilis, Claude W. TI Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta SO BMC PLANT BIOLOGY LA English DT Article ID HOLOPARASITIC FLOWERING PLANTS; ALGA PROTOTHECA-WICKERHAMII; TRANSFER-RNA GENES; NONPHOTOSYNTHETIC PLANT; CHLOROPLAST GENOME; NUCLEOTIDE SUBSTITUTION; PLASMODIUM-FALCIPARUM; ORGANELLAR GENOMES; NDH GENES; EVOLUTION AB Background: Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non- parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Results: Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Conclusion: Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer- RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species. C1 [McNeal, Joel R.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [McNeal, Joel R.; de Pamphilis, Claude W.] Penn State Univ, Dept Biol, Huck Inst Life Sci, University Pk, PA 16802 USA. [McNeal, Joel R.; de Pamphilis, Claude W.] Penn State Univ, Inst Mol Evolutionary Genet, University Pk, PA 16802 USA. [Kuehl, Jennifer V.; Boore, Jeffrey L.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kuehl, Jennifer V.; Boore, Jeffrey L.] Lawrence Berkeley Natl Lab, Walnut Creek, CA 94598 USA. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA. RP McNeal, JR (reprint author), Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. EM jmcneal@plantbio.uga.edu; JVKuehl@lbl.gov; jlboore@calmail.berkeley.edu; cwd3@psu.edu NR 66 TC 68 Z9 214 U1 4 U2 24 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2229 J9 BMC PLANT BIOL JI BMC Plant Biol. PD OCT 24 PY 2007 VL 7 AR 57 DI 10.1186/1471-2229-7-57 PG 22 WC Plant Sciences SC Plant Sciences GA 256LN UT WOS:000252730400001 PM 17956636 ER PT J AU Krishnamurthy, V Faloutsos, M Chrobak, M Cui, JH Lao, L Percus, AG AF Krishnamurthy, Vaishnavi Faloutsos, Michalis Chrobak, Marek Cui, Jun-Hong Lao, Li Percus, Allon G. TI Sampling large Internet topologies for simulation purposes SO COMPUTER NETWORKS LA English DT Article DE graph modeling; graph sampling; graph properties AB In this paper, we develop methods to "sample" a small realistic graph from a large Internet topology. Despite recent activity, modeling and generation of realistic graphs resembling the Internet is still not a resolved issue. All previous work has attempted to grow such graphs from scratch. We address the complementary problem of shrinking an existing topology. In more detail, this work has three parts. First, we propose a number of reduction methods that can be categorized into three classes: (a) deletion methods, (b) contraction methods, and (c) exploration methods. We prove that some of them maintain key properties of the initial graph. We implement our methods and show that we can effectively reduce the nodes of an Internet graph by as much as 70% while maintaining its important properties. Second, we show that our reduced graphs compare favorably against construction-based generators. Finally, we successfully validate the effectiveness of our best methods in an actual performance evaluation study of multicast routing. Apart from its practical applications, the problem of graph sampling is of independent interest. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA. Univ Connecticut, Storrs, CT USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Los Alamos Natl Labs, Los Alamos, NM 87545 USA. RP Faloutsos, M (reprint author), Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA. EM michalis@cs.ucr.edu NR 49 TC 22 Z9 24 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1389-1286 EI 1872-7069 J9 COMPUT NETW JI Comput. Netw. PD OCT 24 PY 2007 VL 51 IS 15 BP 4284 EP 4302 DI 10.1016/j.comnet.2007.06.004 PG 19 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 214NO UT WOS:000249745400004 ER PT J AU Boutt, DF Cook, BK McPherson, BJOL Williams, JR AF Boutt, David F. Cook, Benjamin K. McPherson, Brian J. O. L. Williams, J. R. TI Direct simulation of fluid-solid mechanics in porous media using the discrete element and lattice-Boltzmann methods SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID SEDIMENTARY-ROCK; NUMERICAL SIMULATIONS; MODEL; MICROMECHANICS; DEFORMATION; FRICTION; BEHAVIOR AB A detailed understanding of the coupling between fluid and solid mechanics is important for understanding many processes in Earth sciences. Numerical models are a popular means for exploring these processes, but most models do not adequately handle all aspects of this coupling. This paper presents the application of a micromechanically based fluid- solid coupling scheme, lattice- Boltzmann discrete element method ( LBDEM), for porous media simulation. The LBDEM approach couples the lattice- Boltzmann method for fluid mechanics and a discrete element method for solid mechanics. At the heart of this coupling is a previously developed boundary condition that has never been applied to coupled fluid- solid mechanics in porous media. Quantitative comparisons of model results to a one- dimensional analytical solution for fluid flow in a slightly deformable medium indicate a good match to the predicted continuum- scale fluid diffusion- like profile. Coupling of the numerical formulation is demonstrated through simulation of porous medium consolidation with the model capturing poroelastic behavior, such as the coupling between applied stress and fluid pressure rise. Finally, the LBDEM model is used to simulate the genesis and propagation of natural hydraulic fractures. The model provides insight into the relationship between fluid flow and propagation of fractures in strongly coupled systems. The LBDEM model captures the dominant dynamics of fluid- solid micromechanics of hydraulic fracturing and classes of problems that involve strongly coupled fluid- solid behavior. C1 Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. RP Boutt, DF (reprint author), Univ Massachusetts, Dept Geosci, 233 Morrill Sci Ctr,611 N Pleasant St, Amherst, MA 01003 USA. EM dboutt@geo.umass.edu RI Boutt, David/G-1146-2010 NR 41 TC 22 Z9 22 U1 3 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT 24 PY 2007 VL 112 IS B10 AR B10209 DI 10.1029/2004JB003213 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 225MX UT WOS:000250523100001 ER PT J AU Lei, WW Liu, D Li, XF Zhang, J Zhou, Q Hu, JZ Cui, QL Zou, GT AF Lei, W. W. Liu, D. Li, X. F. Zhang, J. Zhou, Q. Hu, J. Z. Cui, Q. L. Zou, G. T. TI High-pressure study of low-compressibility Ta2N SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 3rd Asian Conference on High Pressure Research (ACHPR-3) CY OCT 16-20, 2006 CL Jilin Univ, Natl Lab Superhard Mat, Lijiang City, PEOPLES R CHINA HO Jilin Univ, Natl Lab Superhard Mat ID INDUCED PHASE-TRANSFORMATION; X-RAY-DIFFRACTION; TRANSITION; NANOCRYSTALS; TEMPERATURE; TANTALUM; NITRIDE; GPA AB Room temperature synchrotron x-ray diffraction experiments were performed on nanocrystal Ta2N in a diamond anvil cell to a pressure of 55.48 GPa. This nitride is a well-known kind of high-hardness material, and it is found to be highly incompressible. The structure is stable with no phase transitions observed in this pressure range. The zero-pressure bulk modulus and its pressure derivative at ambient pressure are B-0 = 360 +/- 3 GPa, B'(0) = 4, and in room conditions, the a and c parameters are 3.054 angstrom, 4.996 angstrom, respectively. The bulk modulus of Ta2N is greater than those of TaC, epsilon-TaN, Cr2N and MoN. The differences in bulk moduli might be due to the differences in structure and the cohesive energy among these phases. C1 Jilin Univ, Natl Lab Superhard Mat, Changchun 130012, Peoples R China. Univ Chicago, Cars, X17C, NSLS, Upton, NY 11973 USA. RP Cui, QL (reprint author), Jilin Univ, Natl Lab Superhard Mat, Changchun 130012, Peoples R China. EM cql@jlu.edu.cn RI Zou, Guangtian /A-1036-2011 NR 25 TC 6 Z9 6 U1 3 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 24 PY 2007 VL 19 IS 42 AR 425233 DI 10.1088/0953-8984/19/42/425233 PG 6 WC Physics, Condensed Matter SC Physics GA 218AD UT WOS:000249987500034 ER PT J AU Sun, YY Kim, YH Zhang, SB AF Sun, Y. Y. Kim, Yong-Hyun Zhang, S. B. TI Effect of spin state on the dihydrogen binding strength to transition metal centers in metal-organic frameworks SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; HYDROGEN STORAGE; SITES; ADSORPTION; COMPLEXES AB In several recent experimental studies, it has been found that exposed transition metal (TM) sites in metal-organic frameworks (MOFs) yield the largest binding to H-2 by about 10 kJ/mol. However, this binding is significantly smaller than what has been observed in the so-called Kubas molecules, also with exposed metal sites. Our ab initio calculations quantitatively account for the experimental findings and further show that the splitting and occupation of the spin orbitals in the MOF systems are the reasons for their unexpected small binding energies. We predict that the binding energy to H-2 in the MOF systems can be tuned between 10 and 50 kJ/mol by using early TM elements, namely, Sc, Ti, V, Cr, and Mn. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhang, SB (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM shengbaj_zhang@nrel.gov RI Kim, Yong-Hyun/C-2045-2011; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013; Sun, Yi-Yang/H-4029-2014 OI Kim, Yong-Hyun/0000-0003-4255-2068; Zhang, Shengbai/0000-0003-0833-5860; NR 17 TC 63 Z9 63 U1 6 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 24 PY 2007 VL 129 IS 42 BP 12606 EP + DI 10.1021/ja0740061 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 222VY UT WOS:000250327000010 PM 17902664 ER PT J AU Zhang, L Nederberg, F Messman, JM Pratt, RC Hedrick, JL Wade, CG AF Zhang, Lei Nederberg, Fredrik Messman, Jamie M. Pratt, Russell C. Hedrick, James L. Wade, Charles G. TI Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHAIN-END CONTROL; RACEMIC LACTIDE; CYCLIC ESTERS; RAC-LACTIDE; LIVING POLYMERIZATION; POLY(LACTIC ACID); SINGLE-SITE; COMPLEXES; INITIATOR; MECHANISM AB Highly isotactic polylactide with a high melting temperature was synthesized from rac-lacticle through an organocatalytic route using dimeric phosphazene base 1-tert -butyl-2,2,4,4,4-pentakis(dimethylamino)-2 Delta(5),4 Delta(5)-catenadi(phosphazene) (P-2-t -Bu) catalyst at low temperature. Microstructural analysis of the prepared polymer using homodecoupled H-1 NMR spectroscopy revealed the formation of a stereoblock architecture containing long isotactic sequence of R and S blocks in the main chain. A proposed mechanism involving chain-end control and stereoerror explains the stereoselective polymerization. C1 IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wade, CG (reprint author), IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA. EM cwade@almaden.ibm.com NR 27 TC 109 Z9 111 U1 10 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 24 PY 2007 VL 129 IS 42 BP 12610 EP + DI 10.1021/ja074131c PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 222VY UT WOS:000250327000012 PM 17900113 ER PT J AU Farha, OK Spokoyny, AM Mulfort, KL Hawthorne, MF Mirkin, CA Hupp, JT AF Farha, Omar K. Spokoyny, Alexander M. Mulfort, Karen L. Hawthorne, M. Frederick Mirkin, Chad A. Hupp, Joseph T. TI Synthesis and hydrogen sorption properties of carborane based metal-organic framework materials SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COORDINATION POLYMERS; ADSORPTION; STORAGE; SITES; TOPOLOGY; EXCHANGE; BINDING AB The synthesis and hydrogen uptake properties of metal-organic framework (MOFs) materials based on carboranes have been investigated. These are the first MOFs to make use of boron-rich components as building blocks- specifically, the deprotonated form of 1,12-dihydroxycarbonyl-1,12-dicarba-closo -dodecaborane. In evacuated form the initially obtained compound, featuring zinc-coordinated solvent molecules, displays modest H-2 uptake at 77 K and 1 atm. Upon removal of the coordinated solvent, however, the uptake triples (2.1 wt. %), the heat of adsorption substantially increases, and the structure adjusts such that the pore size decreases. C1 Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Univ Missouri, Int Inst Nano & Mol Med, Columbia, MO 65212 USA. RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM chadnano@northwestern.edu; j-hupp@northwestern.edu RI Mirkin, Chad/E-3911-2010; Hupp, Joseph/K-8844-2012; Farha, Omar/B-5512-2014 OI Hupp, Joseph/0000-0003-3982-9812; Farha, Omar/0000-0002-9904-9845 NR 31 TC 160 Z9 160 U1 4 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 24 PY 2007 VL 129 IS 42 BP 12680 EP + DI 10.1021/ja076167a PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 222VY UT WOS:000250327000047 PM 17900124 ER PT J AU Chen, Q Schmidt-Rohr, K AF Chen, Qiang Schmidt-Rohr, Klaus TI Backbone dynamics of the Nafion ionomer studied by F-19-C-13 solid-state NMR SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article ID 2-TIME DISTRIBUTION-FUNCTIONS; 2-DIMENSIONAL EXCHANGE NMR; NUCLEAR-MAGNETIC-RESONANCE; CENTERBAND-ONLY DETECTION; HELIX REVERSAL DEFECTS; C-13 NMR; HOMONUCLEAR DIPOLAR; GLASS-TRANSITION; POWDER SAMPLES; FORCE-FIELDS AB The chain dynamics of a perfluorinated ionomer, Nafion (R), have been studied by F-19 and F-19-C-13 solid-state NMR at 295 K. The backbone of Nafion is essentially poly(tetrafluoroethylene) (PTFE), which was investigated for reference. Fast uniaxial rotations of the helical backbone were confirmed in PTFE and detected similarly in Nafion, though with a distribution of amplitudes. The rotations produce motionally averaged F-19(-13) C dipolar couplings and chemical shift anisotropies (CSAs) that are line-arly correlated. Additional narrowing of the CSAs indicated that the backbone axis in hydrated Nafion moves with an amplitude >15 degrees. Motional amplitudes of various backbone and side-branch sites were inferred from motionally averaged F-19 CSA parameters measured with CSA recoupling. They increase with the distance from the branch point, e.g., to >25 degrees inthecenteroitheside branch. Implications for the chain and supramolecular structure of Nafion are discussed. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM srohr@iastate.edu NR 58 TC 40 Z9 40 U1 1 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1022-1352 J9 MACROMOL CHEM PHYSIC JI Macromol. Chem. Phys. PD OCT 24 PY 2007 VL 208 IS 19-20 BP 2189 EP 2203 DI 10.1002/macp.200700200 PG 15 WC Polymer Science SC Polymer Science GA 223EH UT WOS:000250351900014 ER PT J AU Calzolari, A Ferretti, A Nardelli, MB AF Calzolari, Arrigo Ferretti, Andrea Nardelli, Marco Buongiorno TI Ab initio correlation effects on the electronic and transport properties of metal(II)-phthalocyanine-based devices SO NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT Symposium on Nano and Giga Challenges in Electronics and Photonics - From Atoms to Materials to Devices System Architecture CY MAR 12-16, 2007 CL Arizona State Univ, Phoenix, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publishing, Quarles & Brady LLP, ST Microelect, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ ID SCANNING-TUNNELING-MICROSCOPY; ENERGY-LEVEL SHIFT; COPPER-PHTHALOCYANINE; METAL PHTHALOCYANINES; ORGANIC SEMICONDUCTORS; MOLECULAR JUNCTIONS; SPECTROSCOPY; DFT; RESISTANCE; COMPLEXES AB Using first-principles calculations in the framework of density functional theory, we investigated the electronic and transport properties of metal(II)-phthalocyanine (M(II) Pc) systems, both in a single-molecule configuration and in a model device geometry. In particular, using copper(II)-Pc and manganese(II)-Pc as prototypical examples, we studied how electronic correlations on the central metal ion influence the analysis of the electronic structure of the system and we demonstrated that the choice of the exchange-correlation functional, also beyond the standard local or gradient corrected level, is of crucial importance for a correct interpretation of the data. Finally, our electronic transport simulations have shown that M(II) Pc-based devices can act selectively as molecular conductors, as in the case of copper, or as spin valves, as in the case of manganese, demonstrating once more the great potential of these systems for molecular nanoelectronics applications. C1 Ctr Nanostruct & BioSyst Surfaces, INFM CNR S3, I-41100 Modena, Italy. Univ Modena & Reggio Emilia, I-41100 Modena, Italy. N Carolina State Univ, Dept Phys, CHiPS, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, CSMD, Oak Ridge, TN 37831 USA. RP Calzolari, A (reprint author), Ctr Nanostruct & BioSyst Surfaces, INFM CNR S3, I-41100 Modena, Italy. EM calzolari.arrigo@unimore.it RI Ferretti, Andrea/D-4109-2009; Buongiorno Nardelli, Marco/C-9089-2009; Calzolari, Arrigo/B-8448-2015 OI Ferretti, Andrea/0000-0003-0855-2590; Calzolari, Arrigo/0000-0002-0244-7717 NR 54 TC 44 Z9 44 U1 1 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 24 PY 2007 VL 18 IS 42 AR 424013 DI 10.1088/0957-4484/18/42/424013 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 214KG UT WOS:000249735800014 PM 21730446 ER PT J AU Desikan, R Armel, S Meyer, HM Thundat, T AF Desikan, Ramya Armel, Sarah Meyer, Harry M., III Thundat, Thomas TI Effect of chain length on nanomechanics of alkanethiol self-assembly SO NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT Symposium on Nano and Giga Challenges in Electronics and Photonics - From Atoms to Materials to Devices System Architecture CY MAR 12-16, 2007 CL Arizona State Univ, Phoenix, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publ, Quarles & Brady LLP, ST Microelect, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ ID SURFACE STRESS; ADSORPTION-KINETICS; N-ALKANETHIOLS; MONOLAYERS; GOLD; CANTILEVERS; SENSORS; SPECTROSCOPY; DECANETHIOL; MORPHOLOGY AB The ability to generate nanomechanical cantilever motion from molecular interactions between analytes and immobilized receptors offers a unique platform for chemical and biological sensor development. A fundamental understanding of the origins of nanomechanical motion, however, is essential for developing reliable and reproducible sensors. We have investigated the nanomechanical bending of microfabricated cantilevers during the immobilization of alkanethiols of different chain lengths in the liquid phase. The bending of the cantilevers has been monitored using both piezoresistive and optical readout approaches. Our results suggest that the surface packing density in a liquid medium is largely affected by the length of the chains, which will have a profound influence on sensor sensitivity. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Desikan, R (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 36 TC 26 Z9 26 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 24 PY 2007 VL 18 IS 42 AR 424028 DI 10.1088/0957-4484/18/42/424028 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 214KG UT WOS:000249735800029 ER PT J AU Fuentes-Cabrera, M Meunier, V Sumpter, BG AF Fuentes-Cabrera, Miguel Meunier, Vincent Sumpter, Bobby G. TI Benzo-homologated nucleobases in a nanotube-electrode set-up for DNA sequencing SO NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT Symposium on Nano and Giga Challenges in Electronics and Photonics - From Atoms to Materials to Devices System Architecture CY MAR 12-16, 2007 CL Arizona State Univ, Phoenix, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publ, Quarles & Brady LLP, ST Microelect, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ ID SIZE-EXPANDED DNA; PAIRED GENETIC HELIX; CARBON NANOTUBES; AB-INITIO; BASES; TRANSPORT; YDNA; XDNA; AROMATICITY; CONDUCTANCE AB Motivated by the possibility that the conductivity signatures of benzo-homologated DNA bases could be used to sequence DNA, we have investigated the conductivity properties of these bases when they are non-covalently sandwiched between two (5, 5) nanotube electrodes. It is found that these bases conduct poorly, making it very difficult to distinguish them. An analysis of the changes in the conductivity of benzo-adenine as a function of the distance between the tips of the nanotubes revealed that, even though the conductance increases by four orders of magnitude when the electrodes are brought closer together, the net conductance remains rather small. These results suggest that benzo-homologated bases, despite having smaller HOMO-LUMO gaps than their natural counterparts, when non-covalently bound to the electrodes cannot be used to sequence DNA by means of conductivity measurements. C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov RI Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 NR 29 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 24 PY 2007 VL 18 IS 42 AR 424019 DI 10.1088/0957-4484/18/42/424019 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 214KG UT WOS:000249735800020 PM 21730452 ER PT J AU Kalinin, SV Rodriguez, BJ Jesse, S Seal, K Proksch, R Hohlbauch, S Revenko, I Thompson, GL Vertegel, AA AF Kalinin, Sergei V. Rodriguez, Brian J. Jesse, Stephen Seal, Katyayani Proksch, Roger Hohlbauch, Sophia Revenko, Irene Thompson, Gary Lee Vertegel, Alexey A. TI Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment SO NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT Symposium on Nano and Giga Challenges in Electronics and Photonics - From Atoms to Materials to Devices System Architecture CY MAR 12-16, 2007 CL Arizona State Univ, Phoenix, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publ, Quarles & Brady LLP, ST Microelect, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ ID PIEZORESPONSE FORCE MICROSCOPY; FERROELECTRIC THIN-FILMS; OUTER HAIR CELL; PIEZOELECTRIC PROPERTIES; QUANTITATIVE-ANALYSIS; NANOMETER-SCALE; BONE; NANOSCALE; POLARIZATION; ELECTROMOTILITY AB Electromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical phenomena in ferroelectric materials, and in recent years has been employed to study a broad range of non-ferroelectric polar materials, including piezoelectric biomaterials. At the same time, the technique has been extended from ambient to liquid imaging on model ferroelectric systems. Here, we present results on local electromechanical probing of several model cellular and biomolecular systems, including insulin and lysozyme amyloid fibrils, breast adenocarcinoma cells, and bacteriorhodopsin in a liquid environment. The specific features of PFM operation in liquid are delineated and bottlenecks on the route towards nanometre-resolution electromechanical imaging of biological systems are identified. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37931 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37931 USA. Asylum Res, Santa Barbara, CA 93117 USA. Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37931 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483 NR 56 TC 16 Z9 16 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 24 PY 2007 VL 18 IS 42 AR 424020 DI 10.1088/0957-4484/18/42/424020 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 214KG UT WOS:000249735800021 PM 21730453 ER PT J AU Krstic, P Forzani, E Tao, N Korkin, A AF Krstic, Predrag Forzani, Erica Tao, Nongjian Korkin, Anatoli TI Design and function of molecular and bioelectronics devices SO NANOTECHNOLOGY LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Arizona State Univ, Tempe, AZ 85287 USA. RP Krstic, P (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Tao, NJ/B-1628-2008 NR 0 TC 0 Z9 0 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 24 PY 2007 VL 18 IS 42 AR 420201 DI 10.1088/0957-4484/18/42/420201 PG 1 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 214KG UT WOS:000249735800001 PM 21730433 ER PT J AU Meunier, V Sumpter, BG AF Meunier, Vincent Sumpter, Bobby G. TI Tuning the conductance of carbon nanotubes with encapsulated molecules SO NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT Symposium on Nano and Giga Challenges in Electronics and Photonics - From Atoms to Materials to Devices System Architecture CY MAR 12-16, 2007 CL Arizona State Univ, Phoenix, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publishing, Quarles & Brady LLP, ST Microelect, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ ID MEMORY; TRANSISTORS AB It was recently shown that a molecule encapsulated inside a carbon nanotube can be used to devise a novel type of non-volatile memory element. At the heart of the mechanism for storing and reading information is the new concept of a molecular gate where the molecule acts as a passive gate that hinders the flow of electrons for a given position relative to the nanotube host. By systematically exploring the effects of encapsulation of an acceptor molecule in a series of carbon nanotubes, we show that the reliability of the memory mechanism is very sensitive to the interaction between the nanotube host and the molecule guest. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37922 USA. RP Meunier, V (reprint author), Oak Ridge Natl Lab, Bethel Valley Rd, Oak Ridge, TN 37922 USA. EM meunierv@ornl.gov RI Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013 OI Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355 NR 19 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 24 PY 2007 VL 18 IS 42 AR 424032 DI 10.1088/0957-4484/18/42/424032 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 214KG UT WOS:000249735800033 PM 21730464 ER PT J AU Pu, Q Leng, YS Zhao, XC Cummings, PT AF Pu, Qing Leng, Yongsheng Zhao, Xiongce Cummings, Peter T. TI Molecular simulations of stretching gold nanowires in solvents SO NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT Symposium on Nano and Giga Challenges in Electronics and Photonics - From Atoms to Materials to Devices System Architecture CY MAR 12-16, 2007 CL Arizona State Univ, Phoenix, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publ, Quarles & Brady LLP, ST Microelect, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ ID COMPUTER-SIMULATIONS; FORCE-FIELD; DYNAMICS; CONDUCTANCE; BENZENEDITHIOLATE; CLUSTERS; ATOMS AB The effect of solvent on the elongation of gold nanowires has been further studied through molecular simulations. For a simple Lennard-Jones solvent (propane), which is a non-bonded solvent, extensive molecular dynamics (MD) runs demonstrated that below the melting point of gold nanowires, the solvent effect on the elongation properties of Au nanowires is minimal. In thiol organic liquid, such as in benzenedithiol (BDT), the situation is much more complicated due to the Au-BDT chemical bonding. Here, we present the initial adsorption structure of BDT on a stretched gold nanowire through grand canonical Monte Carlo (GCMC) simulations. A recently developed force field for the BDT-Au chemical bonding was implemented in the simulations. We found that the packing density of the bonded BDT on the surface of Au nanowire is larger than that on an extended Au(111) surface. The results from this work are helpful in understanding the underlying mechanism of the formation of Au-BDT-Au junctions implemented in molecular conductance measurements. C1 Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Cummings, PT (reprint author), Vanderbilt Univ, Dept Chem Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM yongsheng.leng@vanderbilt.edu; peter.cummings@vanderbilt.edu RI Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 NR 29 TC 22 Z9 22 U1 0 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 24 PY 2007 VL 18 IS 42 AR 424007 DI 10.1088/0957-4484/18/42/424007 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 214KG UT WOS:000249735800008 PM 21730440 ER PT J AU Zhao, XC Payne, CM Cummings, PT Lee, JW AF Zhao, Xiongce Payne, Christina M. Cummings, Peter T. Lee, James W. TI Single-strand DNA molecule translocation through nanoelectrode gaps SO NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT Symposium on Nano and Giga Challenges in Electronics and Photonics - From Atoms to Materials to Devices System Architecture CY MAR 12-16, 2007 CL Arizona State Univ, Phoenix, AZ SP Int Sci & Technol Ctr, Natl Sci Fdn, Defence Adv Res Agcy, Off Naval Res, Army Res Off, Computat Chem List, Springer Publ, Quarles & Brady LLP, ST Microelect, Oak Ridge Natl Lab, Canadian Consulate Phoenix, Salt River Project HO Arizona State Univ ID POLYMER TRANSLOCATION; MEMBRANE CHANNEL; DYNAMICS; NANOPORE; PORE; DISCRIMINATION; CONDUCTANCE; ORIENTATION; FIELD AB Molecular dynamics simulations were performed to investigate the translocation of single-strand DNA through nanoscale electrode gaps under the action of a constant driving force. The application behind this theoretical study is a proposal to use nanoelectrodes as a screening gap as part of a rapid genomic sequencing device. Preliminary results from a series of simulations using various gap widths and driving forces suggest that the narrowest electrode gap that a single-strand DNA can pass is similar to 1.5 nm. The minimum force required to initiate the translocation within nanoseconds is similar to 0.3 nN. Simulations using DNA segments of various lengths indicate that the minimum initiation force is insensitive to the length of DNA. However, the average threading velocity of DNA varies appreciably from short to long DNA segments. We attribute such variation to the different nature of drag force experienced by the short and long DNA segments in the environment. It is found that DNA molecules deform significantly to fit in the shape of the nanogap during the translocation. C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Zhao, XC (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RI Payne, Christina/C-7338-2011; Cummings, Peter/B-8762-2013 OI Payne, Christina/0000-0001-5264-0964; Cummings, Peter/0000-0002-9766-2216 NR 33 TC 11 Z9 12 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 24 PY 2007 VL 18 IS 42 AR 424018 DI 10.1088/0957-4484/18/42/424018 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 214KG UT WOS:000249735800019 PM 21730451 ER PT J AU Ziv, E Nemenman, I Wiggins, CH AF Ziv, Etay Nemenman, Ilya Wiggins, Chris H. TI Optimal Signal Processing in Small Stochastic Biochemical Networks SO PLOS ONE LA English DT Article AB We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental signals. By posing the problem in terms of information theory, we do this without specifying the function performed by the network. Specifically, we study the maximum mutual information between the input ( chemical) signal and the output ( genetic) response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks' biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative regulators ( overall negative feedback) due to their decreased molecular noise ( a result which we derive analytically). Finally, we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential resolution of the "cross-talk'' phenomenon as well as the previously unexplained observation that transcription factors that undergo proteolysis are more likely to be auto-repressive. C1 [Ziv, Etay] Columbia Univ, Coll Phys & Surg, New York, NY 10027 USA. [Ziv, Etay] Columbia Univ, Dept Biomed Engn, New York, NY USA. [Wiggins, Chris H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Wiggins, Chris H.] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY USA. [Nemenman, Ilya] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. [Nemenman, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Ziv, E (reprint author), Columbia Univ, Coll Phys & Surg, New York, NY 10027 USA. EM ez87@columbia.edu OI Nemenman, Ilya/0000-0003-3024-4244 FU NSF [ECS-0425850]; DOE [DE-AC52-06NA25396]; NIH [1U54CA121852]; Krell Institute's DOE CSGF; DOD NDSEGF; NIH-MSTP FX This work was partially supported by NSF Grant No. ECS-0425850 to CW and IN. IN was further supported by DOE under Contract No. DE-AC52-06NA25396. CW was further funded by NIH Grant No. 1U54CA121852. EZ was funded by the Krell Institute's DOE CSGF grant, DOD NDSEGF grant, and the NIH-MSTP grant. NR 81 TC 67 Z9 67 U1 0 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 24 PY 2007 VL 2 IS 10 AR e1077 DI 10.1371/journal.pone.0001077 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V10IU UT WOS:000207458500022 PM 17957259 ER PT J AU Boano, F Packman, AI Cortis, A Revelli, R Ridolfi, L AF Boano, F. Packman, A. I. Cortis, A. Revelli, R. Ridolfi, L. TI A continuous time random walk approach to the stream transport of solutes SO WATER RESOURCES RESEARCH LA English DT Article ID TRANSIENT STORAGE MODEL; INDUCED HYPORHEIC-EXCHANGE; BED FORMS; LONGITUDINAL DISPERSION; CONTAMINANT TRANSPORT; PARAMETER-ESTIMATION; SUBSURFACE EXCHANGE; MOUNTAIN STREAM; RIVERS; ZONE AB The transport of solutes in rivers is influenced by the exchange of water between the river and the underlying hyporheic zone. The residence times of solutes in the hyporheic zone are typically much longer than traveltimes in the stream, resulting in a significant delay in the downstream propagation of solutes. A new model for this process is proposed here on the basis of the continuous time random walk (CTRW) approach. The CTRW is a generalization of the classic random walk that can include arbitrary distributions of waiting times, and it is particularly suited to deal with the long residence times arising from hyporheic exchange. Inclusion of suitable hyporheic residence time distributions in the CTRW leads to a generalized advection-dispersion equation for instream concentration breakthrough curves that includes the effects of specific hyporheic exchange processes. Here examples are presented for advective hyporheic exchange resulting from regular and irregular series of bedforms. A second major advantage of the CTRW approach is that the combined effects of different processes affecting overall downstream transport can be incorporated in the model by convolving separate waiting time distributions for each relevant process. The utility of this approach is illustrated by analyzing the effects of local-scale sediment heterogeneity on bedform-induced hyporheic exchange. The ability to handle arbitrarily wide residence time distributions and the ability to assess the combined effects of multiple transport processes makes the CTRW model framework very useful for the study of solute transport problems in rivers. The model presented here can be easily extended to represent different types of surface-subsurface exchange processes and the transport of both conservative and nonconservative substances in rivers. C1 Politecn Torino, Dept Hydraul Transports & Civil Infrastruct, I-10129 Turin, Italy. Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Boano, F (reprint author), Politecn Torino, Dept Hydraul Transports & Civil Infrastruct, Corso Duca Abruzzi 24, I-10129 Turin, Italy. EM fulvio.boano@polito.it RI Cortis, Andrea/A-3525-2008; Packman, Aaron/B-7085-2009; OI Boano, Fulvio/0000-0003-4785-3126; Revelli, Roberto/0000-0001-9704-260X; RIDOLFI, Luca/0000-0003-2947-8641 NR 47 TC 56 Z9 56 U1 0 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 24 PY 2007 VL 43 IS 10 AR W10425 DI 10.1029/2007WR006062 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 225NU UT WOS:000250525400003 ER PT J AU Dai, ZX Wolfsberg, A Lu, ZM Ritzi, R AF Dai, Zhenxue Wolfsberg, Andrew Lu, Zhiming Ritzi, Robert, Jr. TI Representing aquifer architecture in macrodispersivity models with an analytical solution of the transition probability matrix SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HETEROGENEOUS FORMATIONS; MARKOV-CHAINS; TRANSPORT; FLOW AB The multi-dimensional transition probability model represents hydrofacies architecture in modeling aquifer heterogeneity. The structure of the aquifer architecture is mathematically characterized by a canonical representation of the transition probability matrix, solved by an eigenvalue decomposition method. Whereas the eigenvalue decomposition has been numerically solved previously, we show here that it can be analytically solved under the assumptions that cross-transition probabilities are dictated by facies proportions and that the juxtapositional tendencies of the facies are symmetric. Although limited by the assumptions, analytical solutions provide more immediate insights about the relationships between transition probability and facies proportion and mean length. The analytical solution is first tested by comparison with the numerical solutions and then used to represent hydrofacies architecture within expressions for the spatial covariance of conductivity and the macrodispersivity. The relationship between the longitudinal macrodispersivity and integral scale, the indicator correlation length, and the facies proportion is represented in an equation for estimating the field-scale dispersivity. An example is used to show how sedimentary structures, conductivity contrasts, and facies mean lengths affect the scales of the macrodispersivity. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. RP Dai, ZX (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, EES-6,T003, Los Alamos, NM 87545 USA. EM daiz@lanl.gov OI Dai, Zhenxue/0000-0002-0805-7621; Lu, Zhiming/0000-0001-5800-3368 NR 18 TC 23 Z9 24 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 23 PY 2007 VL 34 IS 20 AR L20406 DI 10.1029/2007GL031608 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 225LZ UT WOS:000250520700008 ER PT J AU Lee, BD Lo, CT Thiyagarajan, P Winans, RE Li, XF Niu, ZW Wang, Q AF Lee, Byeongdu Lo, Chieh-Tsung Thiyagarajan, P. Winans, Randall E. Li, Xuefa Niu, Zhongwei Wang, Qian TI Effect of interfacial interaction. on the cross-sectional morphology of tobacco mosaic virus using GISAXS SO LANGMUIR LA English DT Article ID X-RAY-SCATTERING; NANOWIRE BUILDING-BLOCKS; ATOMIC-FORCE MICROSCOPY; TEMPLATE MINERALIZATION; ANILINE POLYMERIZATION; CARBON NANOTUBES; ALKALINE PH; NANOPARTICLES; NETWORKS; SURFACES AB We have investigated the effect of the interfacial interaction on the cross-sectional morphology of the tobacco mosaic virus (TMV) in solution and on two types of solid substrates, SiOx (polar) on Si(100) and polystyrene film (nonpolar) on Si(100), using small-angle X-ray scattering (SAXS) and grazing incidence small-angle X-ray scattering (GISAXS), respectively. Results reveal that the flexible chains at the outer surface of TMV either expand or contract depending on the nature of the substrate. Although the unfavorable interaction between the TMV and the PS causes a minimal effect, the stronger attractive interaction between the outer protein surface of TMV and the SiOx substrate induces pronounced deformation of its cross-sectional morphology. C1 Argonne Natl Lab, Adv Photon Source, X ray Sci Div, Argonne, IL 60439 USA. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Univ S Carolina, Nanoctr, Dept Chem & Biochem, Columbia, SC 29208 USA. RP Lee, BD (reprint author), Argonne Natl Lab, Adv Photon Source, X ray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Blee@aps.anl.gov; wang@mail.chem.sc.edu RI niu, zhongwei/C-7671-2011; OI Wang, Qian/0000-0002-2149-384X; Lee, Byeongdu/0000-0003-2514-8805 NR 53 TC 24 Z9 24 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 23 PY 2007 VL 23 IS 22 BP 11157 EP 11163 DI 10.1021/la7009989 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 221LF UT WOS:000250228100047 PM 17894508 ER PT J AU Park, S Fayer, MD AF Park, Sungnarn Fayer, M. D. TI Hydrogen bond dynamics in aqueous NaBr solutions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ultrafast 2D IR spectroscopy; water dynamics in ionic solutions ID ULTRAFAST INFRARED-SPECTROSCOPY; VIBRATIONAL ECHO SPECTROSCOPY; REVERSE MICELLES; MOLECULAR-DYNAMICS; SPECTRAL DIFFUSION; WATER-MOLECULES; LIQUID WATER; ORIENTATIONAL RELAXATION; PUMP-PROBE; SIMULATIONS AB Hydrogen bond dynamics of water in NaBr solutions are studied by using ultrafast 2D IR vibrational echo spectroscopy and polarization-selective IR pump-probe experiments. The hydrogen bond structural dynamics are observed by measuring spectral diffusion of the OD stretching mode of dilute HOD in H2O in a series of high concentration aqueous NaBr solutions with 2D IR vibrational echo spectroscopy. The time evolution of the 2D IR spectra yields frequency-frequency correlation functions, which permit quantitative comparisons of the influence of NaBr concentration on the hydrogen bond dynamics. The results show that the global rearrangement of the hydrogen bond structure, which is represented by the slowest component of the spectral diffusion, slows, and its time constant increases from 1.7 to 4.8 ps as the NaBr concentration increases from pure water to approximate to 6 M NaBr. Orientational relaxation is analyzed with a wobbling-in-a-cone model describing restricted orientational diffusion that is followed by complete orientational randomization described as jump reorientation. The slowest component of the orientational relaxation increases from 2.6 ps (pure water) to 6.7 ps (approximate to 6 M NaBr). Vibrational population relaxation of the OD stretch also slows significantly as the NaBr concentration increases. C1 Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Fayer, MD (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM fayer@stanford.edu RI Park, Sungnam /F-3626-2012 FU NIGMS NIH HHS [2R01 GM 061137-05, R01 GM061137] NR 49 TC 177 Z9 177 U1 2 U2 30 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 23 PY 2007 VL 104 IS 43 BP 16731 EP 16738 DI 10.1073/pnas.0707824104 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 224ZT UT WOS:000250487600005 PM 17940023 ER PT J AU Baskin, JM Prescher, JA Laughlin, ST Agard, NJ Chang, PV Miller, IA Lo, A Codelli, JA Bertozzi, CR AF Baskin, Jeremy M. Prescher, Jennifer A. Laughlin, Scott T. Agard, Nicholas J. Chang, Pamela V. Miller, Isaac A. Lo, Anderson Codelli, Julian A. Bertozzi, Carolyn R. TI Copper-free click chemistry for dynamic in vivo imaging SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE azide; bioorthogonal reaction; cyclooctyne glycan trafficking; molecular imaging ID AZIDE-ALKYNE CYCLOADDITION; STAUDINGER LIGATION; TERMINAL ALKYNES; LIVING SYSTEMS; GOLGI-COMPLEX; CELLS; PROTEINS; VISUALIZATION AB Dynamic imaging of proteins in live cells is routinely performed by using genetically encoded reporters, an approach that cannot be extended to other classes of biomolecules such as glycans and lipids. Here, we report a Cu-free variant of click chemistry that can label these biomolecules rapidly and selectively in living systems, overcoming the intrinsic toxicity of the canonical Cu-catalyzed reaction. The critical reagent, a substituted cyclooctyne, possesses ring strain and electron-withdrawing fluorine substituents that together promote the [3 + 2] dipolar cycloaddition with azides installed metabolically into biornolecules. This Cu-free click reaction possesses comparable kinetics to the Cu-catalyzed reaction and proceeds within minutes on live cells with no apparent toxicity. With this technique, we studied the dynamics of glycan trafficking and identified a population of sialoglycoconjugates with unexpectedly rapid internalization kinetics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, B84 Hildebrand Hall, Berkeley, CA 94720 USA. EM crb@berkeley.edu OI Baskin, Jeremy/0000-0003-2939-3138 FU NIGMS NIH HHS [R37 GM058867, R01 GM058867, GM 58867] NR 28 TC 808 Z9 814 U1 40 U2 479 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 23 PY 2007 VL 104 IS 43 BP 16793 EP 16797 DI 10.1073/pnas.0707090104 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 224ZT UT WOS:000250487600015 PM 17942682 ER PT J AU Welch, BD VanDemark, AP Heroux, A Hill, CP Kay, MS AF Welch, Brett D. VanDemark, Andrew P. Heroux, Annie Hill, Christopher P. Kay, Michael S. TI Potent D-peptide inhibitors of HIV-1 entry SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE microbicide phage display; protein design ID IMMUNODEFICIENCY-VIRUS TYPE-1; ATOMIC-STRUCTURE; CORE STRUCTURE; VIRAL FUSION; COILED-COIL; IN-VITRO; GP41; DESIGN; BINDING; TARGET AB During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS. C1 Univ Utah, Dept Biochem, Salt Lake City, UT 84112 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Kay, MS (reprint author), Univ Utah, Dept Biochem, Emma Eccles Jones Med Res Bldg,Room 4100,15 N Med, Salt Lake City, UT 84112 USA. EM kay@biochem.utah.edu FU NIGMS NIH HHS [P01 GM066521, P50 GM082545, P01 GM 66521] NR 36 TC 148 Z9 152 U1 4 U2 36 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 23 PY 2007 VL 104 IS 43 BP 16828 EP 16833 DI 10.1073/pnas.0708109104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 224ZT UT WOS:000250487600021 PM 17942675 ER PT J AU Wang, HW Wang, J Ding, F Callahan, K Bratkowski, MA Butler, JS Nogales, E Ke, A AF Wang, Hong-Wei Wang, Jianjun Ding, Fang Callahan, Kevin Bratkowski, Matthew A. Butler, J. Scott Nogales, Eva Ke, Ailong TI Architecture of the yeast Rrp44-exosome complex suggests routes of RNA recruitment for 3 ' end processing SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electron microscopy; single-particle reconstruction; exoribonuclease ID MESSENGER-RNA; STRUCTURAL BASIS; ENDONUCLEOLYTIC CLEAVAGE; ARCHAEAL EXOSOME; NUCLEAR EXOSOME; QUALITY-CONTROL; POLYMERASE-II; SKI COMPLEX; DEGRADATION; SUBUNIT AB The eukaryotic core exosome (CE) is a conserved nine-subunit protein complex important for 3' end trimming and degradation of RNA. In yeast, the Rrp44 protein constitutively associates with the CE and provides the sole source of processive 3'-to-5' exoribonuclease activity. Here we present EM reconstructions of the core and Rrp44-bound exosome complexes. The two-lobed Rrp44 protein binds to the RNase PH domain side of the exosome and buttresses the bottom of the exosome-processing chamber. The Rrp44 C-terminal body part containing an RNase II-type active site is anchored to the exosome through a conserved set of interactions mainly to the Rrp45 and Rrp43 subunit, whereas the Rrp44 N-terminal head part is anchored to the Rrp41 subunit and may function as a roadblock to restrict access of RNA to the active site in the body region. The Rrp44-exosorne (RE) architecture suggests an active site sequestration mechanism for strict control of 3' exoribonuclease activity in the RE complex. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. Univ Rochester, Sch Med, Dept Microbiol, Rochester, NY 14642 USA. Univ Rochester, Sch Med, Dept Immunol, Rochester, NY 14642 USA. Univ Rochester, Sch Med, Dept Biochem, Rochester, NY 14642 USA. Univ Rochester, Sch Med, Dept Biophys, Rochester, NY 14642 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Wang, HW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM hwwang@lbl.gov FU NIGMS NIH HHS [GM 59898, R01 GM059898] NR 44 TC 67 Z9 67 U1 2 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 23 PY 2007 VL 104 IS 43 BP 16844 EP 16849 DI 10.1073/pnas.0705526104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 224ZT UT WOS:000250487600024 PM 17942686 ER PT J AU Amaladass, E Ludescher, B Schutz, G Tyliszczak, T Eimuller, T AF Amaladass, E. Ludescher, B. Sch tz, G. Tyliszczak, T. Eim ller, T. TI Size dependence in the magnetization reversal of Fe/Gd multilayers on self-assembled arrays of nanospheres SO APPLIED PHYSICS LETTERS LA English DT Article AB The size dependent magnetization reversal of Fe/Gd multilayers on self-assembled silica nanospheres has been studied by scanning transmission x-ray microscopy. Caps on 800 nm spherules show S-shaped hysteresis loops while the caps on 330 and 160 nm spherules exhibit rectangular loops. This drastic change is attributed to a transition from a radial to a uniaxial magnetization distribution with decreasing diameter and results from the increasing exchange interaction between adjacent moments. Furthermore, element selective studies reveal a transition from an aligned to a twisted magnetic state with reducing size of the nanocaps. (C) 2007 American Institute of Physics. C1 Ruhr Univ Bochum, Junior Res Grp Magnet Microscopy, D-44780 Bochum, Germany. Max Planck Inst Met Res, D-70569 Stuttgart, Germany. LBNL, ALS, Berkeley, CA 94720 USA. RP Eimuller, T (reprint author), Ruhr Univ Bochum, Junior Res Grp Magnet Microscopy, D-44780 Bochum, Germany. EM thomas.eimueller@rub.de NR 13 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 22 PY 2007 VL 91 IS 17 AR 172514 DI 10.1063/1.2802075 PG 3 WC Physics, Applied SC Physics GA 224TB UT WOS:000250468200065 ER PT J AU Kisielowski, C Bartel, TP AF Kisielowski, C. Bartel, T. P. TI Comment on "Three-dimensional atom probe studies of an InxGa1-xN/GaN multiple quantum well structure: Assessment of possible indium clustering" [Appl. Phys. Lett. 90, 061903, (2007)] SO APPLIED PHYSICS LETTERS LA English DT Editorial Material ID TRANSMISSION ELECTRON-MICROSCOPY; INGAN; BEAM C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Kisielowski, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM cfkisielowski@lbl.gov RI Bartel, Til/C-1098-2008 NR 14 TC 9 Z9 9 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 22 PY 2007 VL 91 IS 17 AR 176101 DI 10.1063/1.2783976 PG 2 WC Physics, Applied SC Physics GA 224TB UT WOS:000250468200118 ER PT J AU Martin, LW Chu, YH Zhan, Q Ramesh, R Han, SJ Wang, SX Warusawithana, M Schlom, DG AF Martin, Lane W. Chu, Ying-Hao Zhan, Qian Ramesh, R. Han, Shu-Jen Wang, Shan X. Warusawithana, Maitri Schlom, Darrell G. TI Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID MULTIFERROIC BIFEO3; THIN-FILMS AB We report the growth and characterization of exchange bias and spin valve heterostructures based on the multiferroic antiferromagnet BiFeO3 on Si (001) substrates. Using Co0.9Fe0.1 as the ferromagnet, we demonstrate heterostructures with large negative exchange bias and negligible training (or a decrease in exchange bias field as a function of repeated magnetic cycling) at room temperature. We additionally report the manufacture of spin valve structures that have been found to have current in-plane magnetoresistance of over 2.25% at room temperature. (C) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Martin, LW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM lwmartin@berkeley.edu RI Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Schlom, Darrell/J-2412-2013 OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Schlom, Darrell/0000-0003-2493-6113 NR 19 TC 65 Z9 65 U1 4 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 22 PY 2007 VL 91 IS 17 AR 172513 DI 10.1063/1.2801695 PG 3 WC Physics, Applied SC Physics GA 224TB UT WOS:000250468200064 ER PT J AU Mihajlovic, G Aledealat, K Xiong, P Von Molnar, S Field, M Sullivan, GJ AF Mihajlovic, Goran Aledealat, Khaled Xiong, Peng Von Molnar, Stephan Field, Mark Sullivan, Gerard J. TI Magnetic characterization of a single superparamagnetic bead by phase-sensitive micro-Hall magnetometry SO APPLIED PHYSICS LETTERS LA English DT Article ID SENSORS; MAGNETORESISTANCE; PARTICLES AB Employing phase sensitive micro-Hall magnetometry at room temperature, we map the susceptibility of a single superparamagnetic bead, 1.2 mu m in diameter, as a function of magnetic field. We find that the dependence can be explained by modeling the bead as an ensemble of noninteracting superparamagnetic nanoparticles with log-normal distribution of magnetic moments. We also discuss the effect of possible dipolar interactions between the nanoparticles on the obtained results. (C) 2007 American Institute of Physics. C1 Florida State Univ, MARTECH, Tallahassee, FL 32306 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Teledyne Sci Co LLC, Thousand Oaks, CA 91360 USA. RP Mihajlovic, G (reprint author), Florida State Univ, MARTECH, Tallahassee, FL 32306 USA. EM mihajlovic@anl.gov NR 18 TC 37 Z9 37 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 22 PY 2007 VL 91 IS 17 AR 172518 DI 10.1063/1.2802732 PG 3 WC Physics, Applied SC Physics GA 224TB UT WOS:000250468200069 ER PT J AU Su, HB Welch, DO Wong-Ng, W Cook, LP Yang, Z AF Su, H. B. Welch, D.O. Wong-Ng, W. Cook, L. P. Yang, Z. TI Manifestation of anisotropy in melting systematics of RBa2Cu3O7-delta (R=lanthanides) SO APPLIED PHYSICS LETTERS LA English DT Article ID EFFECTIVE IONIC-RADII; YBCO; SUPERCONDUCTORS; TEMPERATURE; LINDEMANN; TAPES AB The conventional isotropic Debye temperature fails to account for the trend of melting temperatures for the high T-C superconductors, RBa2Cu3O7-delta (R-123), as a function of the ionic radius of R3+. We overcame this problem by calculating Debye temperatures using mean sound velocity along the c axis that features an anisotropic layered structure. Using the "improved" Debye temperature, the trend of derived melting temperatures based on the "Lindemann law" matches well with experimental data. This trend is also confirmed by comparing theoretical and experimental Raman active modes corresponding to the Cu-O (plane copper and apical oxygen) and Ba-O (in-plane) bonds in R-123 series. (C) 2007 American Institute of Physics. C1 Nanyang Technol Univ, Div Mat Sci, Singapore 639798, Singapore. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. Natl Inst Stand & Technol, Div Ceram, Gaithersburg, MD 20899 USA. RP Su, HB (reprint author), Nanyang Technol Univ, Div Mat Sci, 50 Nanyang Ave, Singapore 639798, Singapore. EM hbsu@ntu.edu.sg; dwelch@bnl.gov; winnie.wong-ng@nist.gov OI Su, Haibin/0000-0001-9760-6567 NR 21 TC 12 Z9 12 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 22 PY 2007 VL 91 IS 17 AR 172510 DI 10.1063/1.2799242 PG 3 WC Physics, Applied SC Physics GA 224TB UT WOS:000250468200061 ER PT J AU Wang, LQ Zhou, XD Exarhos, GJ Pederson, LR Wang, C Windisch, CF AF Wang, Li-Qiong Zhou, Xiao-Dong Exarhos, Gregory J. Pederson, Larry R. Wang, Chongmin Windisch, Charles F., Jr. TI Proton dynamics in ZnO nanorods quantified by in situ solid-state H-1 nuclear magnetic resonance spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID BRONSTED ACID SITES; NMR-SPECTROSCOPY; SHALLOW DONOR; ZINC-OXIDE; HYDROGEN; ZEOLITES; HY AB In situ solid-state H-1 NMR spectroscopy was employed to investigate the local chemical environments and dynamic details of protons in ZnO nanorods. The mean correlation time for the 4.8 ppm resonance was found to be similar to 2.1 x 10(-10) s at 500 K and the activation energy for proton hopping was similar to 0.15 eV. Both the small activation energy and short correlation time suggest that the protons are mobile. In contrast to nanometer micrometer particles of ZnO, gamma-Al2O3, and CeO2, a stable resonance at 4.8 ppm indicates that these proton species are most likely associated with the defect sites in the lattice of ZnO nanorods. (C) 2007 American Institute of Physics. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Wang, LQ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM lq.wang@pnl.gov; xiaodong.zhou@pnl.gov NR 15 TC 9 Z9 9 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 22 PY 2007 VL 91 IS 17 AR 173107 DI 10.1063/1.2799734 PG 3 WC Physics, Applied SC Physics GA 224TB UT WOS:000250468200086 ER PT J AU Desai, TG AF Desai, T. G. TI Molecular dynamics study of screening at ionic surfaces SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COULOMBIC SYSTEMS; ALKALI-HALIDES; MELTING-POINT; MOLTEN-SALT; NACL; SIMULATION; PHYSICS; MODEL AB Molecular dynamics simulations of NaCl fluid are used to understand the behavior of ionic fluid to screen the field generated by charges on the ionic crystal surfaces in absence of any external electric field. The NaCl fluid in the strongly coupled regime (corresponding to the melt) in contact with the charged octopolar (111) NaCl surface shows that the spatial correlations decay in an oscillatory manner, with a screening length lambda(Q) given by the envelope of the damped oscillations. By contrast to the Debye-Huckel theory, in the strongly coupled regime, lambda(Q) increases with increasing coupling strength (also seen in bulk ionic simulations). The NaCl fluid confined between neutral (100) NaCl surfaces also shows weak oscillatory charge decay near the surface. Similar oscillatory exponential decay was seen when the NaCl fluid was confined between two analytically smooth neutral walls. The origin of these oscillations was due to the difference in ion sizes. NaCl fluid confined between neutral octopolar (110) and dipolar (110) surface show stronger density oscillations than (100) surface but comparatively very weak charge oscillations. This paper shows that the strength of the charges on the crystal surfaces is enough to induce a characteristic spatial distribution of charges in the contacting fluid and the extent of distribution depends on the type of surface. (C) 2007 American Institute of Physics. C1 Idaho Natl Lab, Dept Mat Sci, Idaho Falls, ID 83415 USA. RP Desai, TG (reprint author), Idaho Natl Lab, Dept Mat Sci, Idaho Falls, Idaho Falls, ID 83415 USA. EM tapan.desai@inl.gov RI Desai, Tapan/B-1247-2008 NR 27 TC 11 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2007 VL 127 IS 15 AR 154707 DI 10.1063/1.2796161 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 222KS UT WOS:000250295900067 PM 17949191 ER PT J AU Leung, K Marsman, M AF Leung, Kevin Marsman, Martijn TI Energies of ions in water and nanopores within density functional theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; PERIODIC BOUNDARY-CONDITIONS; LIQUID-VAPOR INTERFACE; ELECTROSTATIC POTENTIAL TRUNCATION; CARBON NANOTUBE MEMBRANES; FINITE-SIZE CORRECTIONS; AUGMENTED-WAVE METHOD; AB-INITIO; CONTINUUM ELECTROSTATICS; CHARGED MOLECULES AB Accurate calculations of electrostatic potentials and treatment of substrate polarizability are critical for predicting the permeation of ions inside water-filled nanopores. The ab initio molecular dynamics method, based on density functional theory (DFT), accounts for the polarizability of materials, water, and solutes, and it should be the method of choice for predicting accurate electrostatic energies of ions. In practice, DFT coupled with the use of periodic boundary conditions in a charged system leads to large energy shifts. Results obtained using different DFT packages may vary because of the way pseudopotentials and long-range electrostatics are implemented. Using maximally localized Wannier functions, we apply robust corrections that yield relatively unambiguous ion energies in select molecular and aqueous systems and inside carbon nanotubes. Large binding energies are predicted for ions in metallic carbon nanotube arrays, while Na+ and Cl- energies are found to exhibit asymmetry in water that is smaller than but comparable with those computed using nonpolarizable water force fields. (C) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Wien, Inst Matphys, A-1090 Vienna, Austria. RP Leung, K (reprint author), Sandia Natl Labs, POB 5800,MS 1415, Albuquerque, NM 87185 USA. EM kleung@sandia.gov NR 67 TC 20 Z9 20 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2007 VL 127 IS 15 AR 154722 DI 10.1063/1.2772244 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 222KS UT WOS:000250295900082 PM 17949206 ER PT J AU Urdaneta, I Keller, A Atabek, O Mujica, V AF Urdaneta, Ines Keller, Arne Atabek, Osman Mujica, Vladimiro TI Laser-induced nonlinear response in photoassisted resonant electronic transport SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ASSISTED CONDUCTANCE; MOLECULAR WIRES; FIELD-EMISSION; TRAVERSAL TIME; PHOTON; JUNCTION; BARRIER; MODEL AB We consider an extension of our previous model for photoassisted electron transport in molecular and atomic junctions to the study of nonlinear processes, induced by a laser field, that are strongly influenced by a resonant level structure associated with the material structure between the two metal electrodes. Using a Floquet transformation to include the radiation field, we calculate the stationary Landauer current as a function of the intensity and frequency of the laser. The emphasis in this work is in the description of the interplay between the optical response of the junction and its transport properties. Our results may be then of importance in understanding the response of molecular junctions to multiphoton excitations, a regime where nonlinearities are dominant. (C) 2007 American Institute of Physics. [DOI: 10.1063/ 1.2787656] C1 Univ Paris 11, CNRS, Photophys Mol Lab, F-91405 Orsay, France. Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Cent Univ Venezuela, Caracas 1020A, Venezuela. RP Mujica, V (reprint author), Univ Paris 11, CNRS, Photophys Mol Lab, F-91405 Orsay, France. EM vmujica@chem.northwestern.edu NR 28 TC 8 Z9 8 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2007 VL 127 IS 15 AR 154110 DI 10.1063/1.2787656 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 222KS UT WOS:000250295900011 PM 17949135 ER PT J AU Wang, DY Huo, WM AF Wang, Dunyou Huo, Winifred M. TI An eight-degree-of-freedom, time-dependent quantum dynamics study for the H-2+C2H reaction on a new modified potential energy surface SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RATE-CONSTANT MEASUREMENTS; ROTOR TARGET MODEL; DIMENSIONALITY CALCULATIONS; REDUCED DIMENSIONALITY; TEMPERATURE-DEPENDENCE; SCATTERING; C2H; PHOTOCHEMISTRY; ATMOSPHERE; ACETYLENE AB An eight-dimensional time-dependent quantum dynamics wave packet approach is performed for the study of the H-2+C2H -> H+C2H2 reaction system on a new modified potential energy surface (PES) [L.-P. Ju , Chem. Phys. Lett. 409, 249 (2005)]. This new potential energy surface is obtained by modifying Wang and Bowman's old PES [J. Chem. Phys. 101, 8646 (1994)] based on the new ab initio calculation. This new modified PES has a much lower transition state barrier height at 2.29 kcal/mol than Wang and Bowman's old PES at 4.3 kcal/mol. This study shows that the reactivity for this diatom-triatom reaction system is enhanced by vibrational excitations of H-2, whereas the vibrational excitations of C2H only have a small effect on the reactivity. Furthermore, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. The comparison of the rate constant between this calculation and experimental results agrees with each other very well. This comparison indicates that the new modified PES corrects the large barrier height problem in Wang and Bowman's old PES. (C) American Institute of Physics [DOI: 10.1063/1.2974757] C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Wang, DY (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, MS IN K8-91 PO Box 999, Richland, WA 99352 USA. EM dunyou.wang@pnl.gov NR 57 TC 8 Z9 8 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2007 VL 127 IS 15 AR 154304 DI 10.1063/1.2794757 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 222KS UT WOS:000250295900022 PM 17949146 ER PT J AU Whitelam, S Geissler, PL AF Whitelam, Stephen Geissler, Phillip L. TI Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CHAPERONIN PROTEIN; ALGORITHM; SYSTEMS AB We introduce a " virtual- move" Monte Carlo algorithm for systems of pairwise- interacting particles. This algorithm facilitates the simulation of particles possessing attractions of short range and arbitrary strength and geometry, an important realization being self- assembling particles endowed with strong, short- ranged, and angularly specific (" patchy") attractions. Standard Monte Carlo techniques employ sequential updates of particles and can suffer from low acceptance rates when attractions are strong. In this event, collective motion can be strongly suppressed. Our algorithm avoids this problem by proposing simultaneous moves of collections (clusters) of particles according to gradients of interaction energies. One particle first executes a " virtual" trial move. We determine which of its neighbors move in a similar fashion by calculating individual bond energies before and after the proposed move. We iterate this procedure and update simultaneously the positions of all affected particles. Particles move according to an approximation of realistic dynamics without requiring the explicit computation of forces and without the step size restrictions required when integrating equations of motion. We employ a size- and shape- dependent damping of cluster movements, motivated by collective hydrodynamic effects neglected in simple implementations of Brownian dynamics. We discuss the virtual- move algorithm in the context of other Monte Carlo cluster- move schemes and demonstrate its utility by applying it to a model of biological self- assembly. (C) 2007 American Institute of Physics. [DOI: 10.1063/ 1.2790421] C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Whitelam, S (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov NR 35 TC 93 Z9 93 U1 3 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2007 VL 127 IS 15 AR 154101 DI 10.1063/1.2790421 PG 19 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 222KS UT WOS:000250295900002 PM 17949126 ER PT J AU Zhou, J Garand, E Neumark, DM AF Zhou, Jia Garand, Etienne Neumark, Daniel M. TI Slow electron velocity-map imaging spectroscopy of the C4H- and C4D- anions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AB-INITIO; PHOTODETACHMENT SPECTROSCOPY; PHOTOELECTRON-SPECTRA; EXCITED-STATES; NEGATIVE-IONS; C2H; RADICALS; PHOTODISSOCIATION; TRANSITION; BUTADIYNYL AB High resolution photodetachment spectra of C4H- and C4D- obtained via slow electron velocity-map imaging (SEVI) are presented. The spectra reveal closely spaced transitions to the neutral (2)Sigma(+) and (2)Pi states which can be distinguished based on the corresponding photoelectron angular distributions. The C4H ground state is confirmed as the X (2)Sigma(+) state, with the excited A (2)Pi state lying only 213 cm(-1) higher (201 cm(-1) for C4D). The electron affinities (EAs) are slightly revised to EA (C4H)=28 497 +/- 8 cm(-1) and EA (C4D)=28 478 +/- 10 cm(-1). Progressions in low frequency bending vibrations are observed in both states, yielding experimental frequencies of nu(7)=179(169) cm(-1) and nu(6)=408(392) cm(-1) for the X (2)Sigma(+) state of C4H (C4D), and nu(7)=220(215)cm(-1) and nu(6)=446(437) cm(-1) for the A (2)Pi state. (C) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 NR 43 TC 29 Z9 29 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2007 VL 127 IS 15 AR 154320 DI 10.1063/1.2795723 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 222KS UT WOS:000250295900038 PM 17949162 ER PT J AU Tajima, H AF Tajima, Hiroyasu TI Detectors for cosmic rays on ground and in space SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Vienna Conference on Instrumentation CY FEB 19-24, 2007 CL Vienna, AUSTRIA SP Austrian Fed Minist Educ, Sci & Culture, Austrian Fed Minist Transport, Innovat & Technol, Vienna Convent Bur DE neutrino detectors; cosmic ray detectors; gamma-ray telescopes and instrumentation; cosmic rays (sources, origin, acceleration, and interactions) ID COHERENT RADIO EMISSION; SUPERNOVA REMNANT; PARTICLE-ACCELERATION; GLAST; NEUTRINOS; SPECTRUM; ICECUBE; SHOWER; SHELL; AIR AB The origin of cosmic rays has been a great mystery since they were discovered by Victor Hess in 1912. AGASA's observation of ultra-high-energy cosmic-rays (UHECR) possibly beyond the GZK (Greisen, Zatsepin and Kuzmin) cutoff stimulated the field in great deal. In addition, Kamiokande's detection of neutrinos from SN1987A and the detection of TeV gamma-rays from supernova remnants at H.E.S.S. have demonstrated the viability of neutrino and TeV gamma-ray astronomy for cosmic-ray research. A new generation of currently operating or soon-to-be-operating detectors for charged particles, gamma rays and neutrinos from cosmos will get us even closer to understanding the nature and origin of cosmic rays. Detectors for UHECRs, gamma rays and neutrinos are of particular importance in order to study the origins of cosmic rays since these particles are free from deflection due to magnetic fields. Detectors for antiparticles and gamma rays would be useful to detect cosmic rays originating from the decay of dark matter in the Universe. I will review these cosmic-ray detectors with particular emphasis on the differences of ground-based, balloon-borne and satellite-borne detectors. (C) 2007 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Tajima, H (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM htajima@slac.stanford.edu NR 31 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2007 VL 581 IS 1-2 BP 12 EP 24 DI 10.1016/j.nima.2007.07.021 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 232SG UT WOS:000251039100003 ER PT J AU Spieler, H AF Spieler, Helmuth TI Front-end electronics and trigger systems - Status and challenges SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Vienna Conference on Instrumentation CY FEB 19-24, 2007 CL Vienna, AUSTRIA SP Austrian Fed Minist Educ, Sci & Culture, Austrian Fed Minist Transport, Innovat & Technol, Vienna Convent Bur DE electronics; integrated circuits; noise; power; trigger systems; bolometer arrays ID SILICON STRIP DETECTORS; DOMAIN MULTIPLEXED READOUT; INTEGRATED-CIRCUIT; ELECTROTHERMAL FEEDBACK; RADIATION TOLERANCE; PIXEL DETECTOR; TRAPPING TIME; TRACKER; ARRAYS; SENSORS AB The past quarter century has brought about a revolution in front-end electronics for large-scale detector systems. Custom integrated circuits specifically tailored to the requirements of large detector systems have provided unprecedented performance and enabled systems that once were deemed impossible. The evolution of integrated circuit readouts in strip detectors is summarized, the present status described, and challenges posed by the sLHC and ILC are discussed. Performance requirements increase, but key considerations remain as in the past: power dissipation, material, and services. Smaller CMOS feature sizes will not reduce the power required for the desired noise levels, but will improve digital power efficiency. Significant improvements appear to be practical in more efficient power distribution. Enhanced digital electronics have provided powerful trigger processors that greatly improve the trigger efficiency. In data readout systems, they also improve data throughput, while reducing power requirements. Concurrently with new developments in high energy physics, detector systems for cosmology and astrophysics have made great strides. As an example, a large-scale readout for superconducting bolometer arrays is described. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Spieler, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, MS 50B-6222,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM spicier@LBL.gov NR 66 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2007 VL 581 IS 1-2 BP 65 EP 79 DI 10.1016/j.nima.2007.07.025 PG 15 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 232SG UT WOS:000251039100008 ER PT J AU Andriamonje, S Aune, S Brauninger, H Dafni, T Dogan, B Fanourakis, G Ribas, EF Galan, J Geralis, T Giganon, A Giomataris, I Irastorza, IG Kousouris, K Morales, J Mols, JP Papaevangelou, T Pivovaroff, M Riallot, M Ruz, J Soufli, R Zachariadou, K AF Andriamonje, Samuel Aune, Stephan Braeuninger, Heinrich Dafni, Theopisti Dogan, Berkol Fanourakis, George Ribas, Esther Ferrer Galan, Javier Geralis, Theodoros Giganon, Arnaud Giomataris, Ioannis Irastorza, Igor G. Kousouris, Konstantinos Morales, Julio Mols, Jean Philippe Papaevangelou, Thomas Pivovaroff, Mike Riallot, Marc Ruz, Jaime Soufli, Regina Zachariadou, Katherina TI A new Micromegas line for the CAST experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Vienna Conference on Instrumentation CY FEB 19-24, 2007 CL Vienna, AUSTRIA SP Austrian Fed Minist Educ, Sci & Culture, Austrian Fed Minist Transport, Innovat & Technol, Vienna Convent Bur DE Micromegas; X-ray detector; axion; CAST experiment; dark matter ID DETECTOR; AXION AB A low background Micromegas detector has been operating on the Cern Axion Solar Telescope (CAST) experiment at CERN for the search of solar axions during the first phase of the experiment. The detector operated efficiently and achieved a very low level of background rejection (5 x 10(-5) counts keV(-1) cm(-2) S-1) thanks to its good spatial and energy resolution as well as the low radioactivity materials used in the construction of the detector. For the second phase of the experiment, the detector is being upgraded by adding a shielding and including focusing optics. These improvements should allow for a background rejection better than two orders of magnitude. The preliminary results of the first tests in the laboratory and in the PANTER X-ray test facility will be shown. (C) 2007 Elsevier B.V. All rights reserved. C1 Ctr Etud Saclay, DAPNIA, F-91191 Gif Sur Yvette, France. Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. Lawrence Livermore Natl Lab, Livermore, CA USA. Dogus Univ, Istanbul, Turkey. NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. Inst Fis Nucl & Altas Energias, Zaragoza, Spain. CERN, Geneva, Switzerland. RP Ribas, EF (reprint author), Ctr Etud Saclay, DAPNIA, F-91191 Gif Sur Yvette, France. EM esther.ferrer-ribas@cea.fr RI Irastorza, Igor/B-2085-2012; Dafni, Theopisti /J-9646-2012; Pivovaroff, Michael/M-7998-2014; Galan, Javier/F-7986-2016; Papaevangelou, Thomas/G-2482-2016 OI Irastorza, Igor/0000-0003-1163-1687; Dafni, Theopisti /0000-0002-8921-910X; Pivovaroff, Michael/0000-0001-6780-6816; Galan, Javier/0000-0001-7529-9834; Papaevangelou, Thomas/0000-0003-2829-9158 NR 10 TC 2 Z9 2 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2007 VL 581 IS 1-2 BP 217 EP 220 DI 10.1016/j.nima.2007.07.081 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 232SG UT WOS:000251039100044 ER PT J AU Ledermann, B Kaminski, J Kappler, S Muller, T AF Ledermann, Bernhard Kaminski, Jochen Kappler, Steffen Mueller, Thomas TI Development studies for the ILC: Measurements and simulations for a time projection chamber with GEM technology SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Vienna Conference on Instrumentation CY FEB 19-24, 2007 CL Vienna, AUSTRIA SP Austrian Fed Minist Educ, Sci & Culture, Austrian Fed Minist Transport, Innovat & Technol, Vienna Convent Bur DE time projection chamber; TPC; gas electron multiplier; GEM; spatial resolution ID TPC PROTOTYPE; RESOLUTION; READOUT AB A Time Projection Chamber (TPC) with Gas Electron Multiplier (GEM) technology is well suited for usage as central tracker at the International Linear Collider (ILC). To study the high potential of this detector type a small prototype of 25cm length was built in Karlsruhe and used in several experimental setups. In this publication the results of these measurements and of additional Monte Carlo simulations are presented. By introducing the so-called equivalent drift distance a combination of all results was possible leading to a recommended configuration of the multi-GEM tower for the ILC-TPC. It will be shown that for conditions considered in the TESLA-TDR the transverse spatial resolution will be able to reach 65 pm for 10cm and 190 mu m for 200cm drift at the ILC. This as well as the expectations for longitudinal spatial resolution, for energy resolutions of the specific ionization, and for single pad row efficiency should be able to meet the requirements of a future ILC TPC. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. SLAC, Menlo Pk, CA USA. Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. RP Ledermann, B (reprint author), Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. EM Bernhard.Ledermann@iekp.fzk.de NR 7 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2007 VL 581 IS 1-2 BP 232 EP 235 DI 10.1016/j.nima.2007.07.084 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 232SG UT WOS:000251039100047 ER PT J AU Pronko, A AF Pronko, Alexandre TI The CDF silicon detector: Performance and longevity SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Vienna Conference on Instrumentation CY FEB 19-24, 2007 CL Vienna, AUSTRIA SP Austrian Fed Minist Educ, Sci & Culture, Austrian Fed Minist Transport, Innovat & Technol, Vienna Convent Bur DE CDF; silicon detectors; radiation hardness ID RUN-II SILICON; OPERATIONAL EXPERIENCE; RADIATION HARDNESS AB The CDF silicon vertex detector is one of the largest operating silicon detectors in particle physics. Its silicon sensors have 722,432 channels readout by 5456 chips and cover an area of 6m(2). The detector is used for precision tracking and in the hardware trigger for events with a displaced vertex. This paper includes a brief review of the detector performance and mainly focuses on issues of longevity and effects of radiation damage. An analysis of the time evolution of depletion voltages and signal-to-noise ratios indicates that the CDF silicon detector should outlast the Tevatron Run II without major degradation of performance. Published by Elsevier B.V. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Pronko, A (reprint author), Fermilab Natl Accelerator Lab, CDF MS 318,POB 500, Batavia, IL 60510 USA. EM pronko@fnal.gov NR 17 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2007 VL 581 IS 1-2 BP 339 EP 342 DI 10.1016/j.nima.2007.07.140 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 232SG UT WOS:000251039100072 ER PT J AU Harkonen, J Eremin, V Verbitskaya, E Czellar, S Pusa, P Li, Z Niinikoski, TO AF Harkonen, J. Eremin, V. Verbitskaya, E. Czellar, S. Pusa, P. Li, Z. Niinikoski, T. O. TI The Cryogenic Transient Current Technique (C-TCT) measurement setup of CERN RD39 Collaboration SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Vienna Conference on Instrumentation CY FEB 19-24, 2007 CL Vienna, AUSTRIA SP Austrian Fed Minist Educ, Sci & Culture, Austrian Fed Minist Transport, Innovat & Technol, Vienna Convent Bur ID DETECTORS; SILICON AB The CERN RD39 Collaboration has constructed a Transient Current Technique (TCT) measurement setup, which is capable to operate below liquid nitrogen temperatures. By analyzing the current transients, it is possible to extract the full depletion voltage, effective trapping time, electric field distribution and the sign of the space charge in the silicon bulk. Our results show that the effective space charge and trapping can be manipulated by charge injection and temperature. This might allow significantly higher Charge Collection Efficiency (CCE) compared to the detectors operating under normal reverse bias and at temperatures from 0 to -30 degrees C. (C) 2007 Elsevier B.V. All rights reserved. C1 CERN, EP 40 4A 002, CH-1211 Geneva, Switzerland. Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. Univ Helsinki, Accelerator Lab, FIN-00014 Helsinki, Finland. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Harkonen, J (reprint author), CERN, EP 40 4A 002, CH-1211 Geneva, Switzerland. EM jakko.haerkoenen@cern.ch RI Verbitskaya, Elena/D-1521-2014 NR 14 TC 12 Z9 13 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2007 VL 581 IS 1-2 BP 347 EP 350 DI 10.1016/j.nima.2007.08.001 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 232SG UT WOS:000251039100074 ER PT J AU Eremin, V Harkonen, J Luukka, P Li, Z Verbitskaya, E Vayrynen, S Kassamakov, I AF Eremin, V. Harkonen, J. Luukka, P. Li, Z. Verbitskaya, E. Vayrynen, S. Kassamakov, I. TI The operation and performance of Current Injected Detector (CID) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Vienna Conference on Instrumentation CY FEB 19-24, 2007 CL Vienna, AUSTRIA SP Austrian Fed Minist Educ, Sci & Culture, Austrian Fed Minist Transport, Innovat & Technol, Vienna Convent Bur DE Current Injected Detector (CID); radiation hardness; semiconductor detector ID CZOCHRALSKI SILICON AB Radiation hardness up to 1 x 10(16) cm(-2) is required in the future high-energy physics experiments. This is well beyond the radiation tolerance of even the most advanced semiconductor detectors fabricated by commonly adopted technologies. The Current Injected Detector (CID) is a device in which the current is limited by the space charge, which originates from injected carriers trapped by the deep levels. This induces a stable electric field through the entire detector bulk regardless of the irradiation fluence the detector has been exposed to. The steady state density of the trapped charge is defined by the balance between the trapping and emission rates of charge carriers (detrapping). Thus, the amount of charge injection needed for electric field stabilization depends on the temperature. The CID mode has a new specific feature which limits the maximum operational voltage. It is connected with the space charge density saturation and the sharp current rising at the threshold voltage V-T. The value Of VT is proportional to the irradiation fluence and it increases with respect to the irradiation fluence extending the range of the operation voltage. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Helsinki, Accelerator Lab, FIN-00014 Helsinki, Finland. RP Luukka, P (reprint author), Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. EM panja.luukka@urn.ch RI Verbitskaya, Elena/D-1521-2014; OI Luukka, Panja/0000-0003-2340-4641 NR 14 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2007 VL 581 IS 1-2 BP 356 EP 360 DI 10.1016/j.nima.2007.08.003 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 232SG UT WOS:000251039100076 ER PT J AU Adelman, J Annovi, A Aoki, M Bellinger, J Berry, E Bitossi, M Bogdan, M Carosi, R Catastini, P Cerri, A Chappa, S Crescioli, F Orso, MD Di Ruzza, B Donati, S Furic, I Giannetti, P Ginsburg, CM Liu, T Maruyama, T Palla, F Pedron, I Piendibene, M Pitkanen, M Punzi, G Reisert, B Rescigno, M Ristori, L Sanders, H Sartori, L Schifano, F Sforza, F Shochet, M Spinella, F Tang, F Torre, S Tripiccione, R Volpi, G Yang, UK Zanetti, AM AF Adelman, J. Annovi, A. Aoki, M. Bellinger, J. Berry, E. Bitossi, M. Bogdan, M. Carosi, R. Catastini, P. Cerri, A. Chappa, S. Crescioli, F. Orso, M. Dell Di Ruzza, B. Donati, S. Furic, I. Giannetti, P. Ginsburg, C. M. Liu, T. Maruyama, T. Palla, F. Pedron, I. Piendibene, M. Pitkanen, M. Punzi, G. Reisert, B. Rescigno, M. Ristori, L. Sanders, H. Sartori, L. Schifano, F. Sforza, F. Shochet, M. Spinella, F. Tang, F. Torre, S. Tripiccione, R. Volpi, G. Yang, U. K. Zanetti, A. M. TI On-line tracking processors at hadron colliders: The SVT experience at CDF II and beyond SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Vienna Conference on Instrumentation CY FEB 19-24, 2007 CL Vienna, AUSTRIA SP Austrian Fed Minist Educ, Sci & Culture, Austrian Fed Minist Transport, Innovat & Technol, Vienna Convent Bur DE trigger; online tracking; data acquisition; real time pattern recognition; position-sensitive detectors ID ASSOCIATIVE MEMORY; UPGRADE AB The Silicon Vertex Trigger (SVT) provides the CDF experiment with a powerful tool for fast and precise track finding and fitting at trigger level. The system enhances the experiment's reach on B-physics and large PT-physics coupled to b quarks. We review the main design features and the performance of the SVT with particular attention to the recent upgrade that improved its capabilities. Finally, we will focus on additional improvements of the functionality of such a system in a more general experimental context. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Pisa, Ist Nazl Fis Nucl, Pisa, Italy. Univ Chicago, Chicago, IL USA. LNF, Frascati, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Univ Wisconsin, Madison, WI 53706 USA. CERN, CH-1211 Geneva, Switzerland. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Trieste, Italy. Univ Ferrara, Ist Nazl Fis Nucl, Ferrara, Italy. Univ Rome, Ist Nazl Fis Nucl, Rome, Italy. RP Catastini, P (reprint author), Univ Pisa, Ist Nazl Fis Nucl, Pisa, Italy. EM pierluigi.catastini@pi.infn.it RI Zanetti, Anna/I-3893-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Schifano, Sebastiano Fabio/C-3555-2012; OI Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Schifano, Sebastiano Fabio/0000-0002-0132-9196; Volpi, Guido/0000-0003-1058-8883; tripiccione, raffaele/0000-0002-8516-2492 NR 10 TC 2 Z9 2 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2007 VL 581 IS 1-2 BP 473 EP 475 DI 10.1016/j.nima.2007.08.030 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 232SG UT WOS:000251039100103 ER EF