FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Leon, A Wu, PS Hall, LC Johnson, ML Teh, SJ AF Leon, Abimael Wu, Ping-Shi Hall, Linda C. Johnson, Michael L. Teh, Swee J. TI Global gene expression profiling of androgen disruption in Qurt strain medaka SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GONADOTROPIN-RELEASING-HORMONE; SEX-DETERMINING GENE; ORYZIAS-LATIPES; ESTROGEN-RECEPTOR; JAPANESE MEDAKA; TELEOST FISHES; AROMATASE; DMY; SEQUENCE; PATTERNS AB Androgen disrupting chemicals (ADCs) are endocrine disrupting chemicals (EDCs) that mimic or antagonize the effect of physiological androgens. Microarray-based detection of altered gene expression can be used as a biomarker of EDC exposure. Therefore, the purpose of this study was to identify and compare gene expression profiles of the androgen 11-ketotestosterone (11-KT), the antiandrogen flutamide (FLU), and the antiandrogenic fungicide vinclozolin (VIN), on Qurt medaka (Oryzias latipes). Biologically effective concentrations for 11-KT (100 mu g/L), VIN (100 mu g/L), and FLU (1000 mu g/L) determined in range-finding studies were used for exposures. The oligonucleotide microarray included 9379 probes for EDC-affected genes, medaka cDNAs, sequences from the medaka genome project, and the UniGene database. We found that treatment with FLU, VIN, and 11-KT caused significant (false discovery rate = 0.01) differential expression of at least 87, 82, and 578 genes, respectively. Two sets of responsive genes are associated to vertebrate sex differentiation and growth, and 50 genes were useful in discriminating between ADC classes. The discriminating capacity was confirmed by a remarkable similarity of the antiandrogenic expression profiles of VIN and FLU, which were distinct from the androgenic profile of 11-KT. Gene expression profiles characterized in this study allow for reliable screening of ADC activity. C1 [Leon, Abimael; Johnson, Michael L.; Teh, Swee J.] Univ Calif Davis, Aquat Toxicol Program, Sch Vet Med, Davis, CA 95616 USA. [Leon, Abimael; Johnson, Michael L.; Teh, Swee J.] Univ Calif Davis, Ctr Watershed Sci, Davis, CA 95616 USA. [Wu, Ping-Shi] Lehigh Univ, Bethlehem, PA 18015 USA. [Hall, Linda C.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Teh, SJ (reprint author), Univ Calif Davis, Aquat Toxicol Program, Sch Vet Med, Davis, CA 95616 USA. EM sjteh@ucdavis.edu NR 66 TC 18 Z9 19 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 1 PY 2008 VL 42 IS 3 BP 962 EP 969 DI 10.1021/es071785c PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 257CU UT WOS:000252777600053 PM 18323129 ER PT J AU Granite, EJ Presto, AA AF Granite, Evan Jacob Presto, Albert A. TI Response to comment on "Impact of Sulfur Oxides on Mercury Capture by Activated Carbon" SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Letter ID FIRED POWER-PLANTS; FLUE-GAS C1 [Granite, Evan Jacob; Presto, Albert A.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15090 USA. RP Granite, EJ (reprint author), US DOE, Natl Energy Technol Lab, POB 10490,M S 58-106, Pittsburgh, PA 15090 USA. RI Presto, Albert/C-3193-2008 OI Presto, Albert/0000-0002-9156-1094 NR 11 TC 2 Z9 2 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 1 PY 2008 VL 42 IS 3 BP 972 EP 973 DI 10.1021/es7023093 PG 2 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 257CU UT WOS:000252777600055 ER PT J AU Wang, ZG Zu, XT Gao, F Weber, WJ AF Wang, Z. G. Zu, X. T. Gao, F. Weber, W. J. TI Atomistic level studies on the tensile behavior of GaN nanotubes under uniaxial tension SO EUROPEAN PHYSICAL JOURNAL B LA English DT Article ID GALLIUM NITRIDE NANOTUBES; MOLECULAR-DYNAMICS; CARBON NANOTUBES; LOW-TEMPERATURES; DEFORMATION; DEPENDENCE; TRANSITION AB Molecular dynamics method with the Stillinger-Weber (SW) potential has been employed to study the responses of GaN nanotubes (GaNNTs) to a uniaxial tensile load along the axial direction. It has been revealed that GaNNTs exhibits a completely different tensile behavior at different temperatures, i.e. ductility at higher deformation temperatures and brittleness at lower temperatures, leading to a brittle to ductile transition (BDT). Both the BDT temperature and the critical stress increases with increasing thickness of GaNNTs, and the critical stress at higher temperature are lower than those at lower temperature. These results on the tensile behaviors of GaNNTs in an atomic level will provide a good reference to its promising applications. C1 [Wang, Z. G.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, F.; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; NR 31 TC 4 Z9 4 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1434-6028 J9 EUR PHYS J B JI Eur. Phys. J. B PD FEB PY 2008 VL 61 IS 4 BP 413 EP 418 DI 10.1140/epjb/e2008-00091-3 PG 6 WC Physics, Condensed Matter SC Physics GA 274BO UT WOS:000253977000004 ER PT J AU Alwall, J Hoche, S Krauss, F Lavesson, N Lonnblad, L Maltoni, F Mangano, ML Moretti, M Papadopoulos, CG Piccinini, F Schumann, S Treccani, M Winter, J Worek, M AF Alwall, J. Hoche, S. Krauss, F. Lavesson, N. Lonnblad, L. Maltoni, F. Mangano, M. L. Moretti, M. Papadopoulos, C. G. Piccinini, F. Schumann, S. Treccani, M. Winter, J. Worek, M. TI Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DEEP-INELASTIC-SCATTERING; COLOR DIPOLE MODEL; CROSS-SECTIONS; CLUSTERING-ALGORITHM; HELICITY AMPLITUDES; QCD CASCADES; JETS; GENERATION; EVENTS; C++ AB We compare different procedures for combining fixed-order tree-level matrix-element generators with parton showers. We use the case of W-production at the Tevatron and the LHC to compare different implementations of the so-called CKKW and MLM schemes using different matrix-element generators and different parton cascades. We find that although similar results are obtained in all cases, there are important differences. C1 [Alwall, J.] SLAC, Menlo Pk, CA USA. [Hoche, S.; Krauss, F.] IPPP, Durham, England. [Lavesson, N.; Lonnblad, L.] Lund Univ, Dept Theoret Phys, S-22362 Lund, Sweden. [Maltoni, F.] Univ Catholique Louvain, Ctr Particle Phys & Phenomenol CP3, B-1348 Louvain, Belgium. [Mangano, M. L.] CERN, Dept Phys, CH-1211 Geneva, Switzerland. [Moretti, M.; Treccani, M.] Dipartimento Fis, Ferrara, Italy. [Moretti, M.; Treccani, M.] Ist Nazl Fis Nucl, Ferrara, Italy. [Papadopoulos, C. G.] NCSR Demokritos, Inst Nucl Phys, Athens, Greece. [Piccinini, F.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Schumann, S.] TU Dresden, Inst Theoret Phys, Dresden, Germany. [Worek, M.] Univ Karlsruhe, ITP, Karlsruhe, Germany. [Worek, M.] Univ Silesia, Inst Phys, Katowice, Poland. RP Alwall, J (reprint author), SLAC, Menlo Pk, CA USA. EM michelangelo.mangano@cern.ch RI Worek, Malgorzata /M-4575-2013; OI Lonnblad, Leif/0000-0003-1269-1649; MORETTI, Mauro/0000-0001-5778-1803; Krauss, Frank/0000-0001-5043-3099; Hoeche, Stefan/0000-0002-1370-6059 NR 51 TC 301 Z9 301 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB PY 2008 VL 53 IS 3 BP 473 EP 500 DI 10.1140/epjc/s10052-007-0490-5 PG 28 WC Physics, Particles & Fields SC Physics GA 250MA UT WOS:000252303000012 ER PT J AU Gleisberg, T Krauss, F AF Gleisberg, T. Krauss, F. TI Automating dipole subtraction for QCD NLO calculations SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID JET CROSS-SECTIONS; TO-LEADING ORDER; PHASE-SPACE GENERATOR; E+E ANNIHILATION; MONTE-CARLO; CLUSTERING-ALGORITHM; HELICITY AMPLITUDES; MASS SINGULARITIES; HADRON-COLLISIONS; EVENT-SHAPES AB In this publication the construction of an automatic algorithm to subtract infrared divergences in real QCD corrections through the Catani-Seymour dipole subtraction method [1,2] is reported. The resulting computer code has been implemented in the matrix element generator AMEGIC++ [3]. This will allow for the automatic generation of dipole subtraction terms and their integrals over the one-parton emission phase space for any given process. If the virtual matrix element is provided as well, this then directly leads to an NLO QCD parton level event generator. C1 [Gleisberg, T.] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany. [Krauss, F.] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. RP Gleisberg, T (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM tanju@slac.stanford.edu; frank.krauss@durham.ac.uk OI Krauss, Frank/0000-0001-5043-3099 NR 72 TC 116 Z9 116 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB PY 2008 VL 53 IS 3 BP 501 EP 523 DI 10.1140/epjc/s10052-007-0495-0 PG 23 WC Physics, Particles & Fields SC Physics GA 250MA UT WOS:000252303000013 ER PT J AU Brown, EN Rae, PJ Dattelbaum, DM Clausen, B Brown, DW AF Brown, E. N. Rae, P. J. Dattelbaum, D. M. Clausen, B. Brown, D. W. TI In-situ measurement of crystalline lattice strains in polytetrafluoroethylene SO EXPERIMENTAL MECHANICS LA English DT Article DE polytetrafluoroethylene; PTFE; lattice strain; time-of-flight neutron diffraction ID POWDER DIFFRACTION DATA; NEUTRON-DIFFRACTION; CONSTITUTIVE RESPONSE; POLY(TETRAFLUOROETHYLENE); PHASE; PTFE; EVOLUTION; TENSILE; DEFORMATION; TEMPERATURE AB Strain measurements by neutron diffraction are employed as an in situ technique to obtain insight into the deformation modes of crystalline domains in a deformed semi-crystalline polymer. The SMARTS (Spectrometer for MAterials Research at Temperature and Stress) diffractometer has been used to measure the crystalline lattice displacements in polytetrafluoroethylene (PTFE) for crystalline phase IV (at room temperature) in tension and compression and for crystalline phase I (at 60 degrees C) in compression. The chemical structure of PTFE, -(C2F4)-(n), makes it ideally suited for investigation by neutron methods as it is free of hydrogen that results in limited penetration depths and poor diffraction acquisition in most polymers. Deformation parallel to the prismatic plane normals is shown to occur by inter-polymer chain compression with a modulus similar to 10x bulk, while deformation parallel to the basal plane normal occurs by intra-polymer chain compression with a modulus similar to 1000x bulk, corresponding with theoretical values for a PTFE chain modulus. Deformation parallel to the pyramidal plane normals is accommodated by inter-polymer chain shear. C1 [Brown, E. N.; Rae, P. J.; Dattelbaum, D. M.; Clausen, B.; Brown, D. W.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. RP Brown, EN (reprint author), Los Alamos Natl Lab, LANSCE LC, MST-8,MS G-755, Los Alamos, NM 87545 USA. EM en_brown@lanl.gov RI Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Brown, Eric/0000-0002-6812-7820 NR 36 TC 25 Z9 25 U1 0 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD FEB PY 2008 VL 48 IS 1 BP 119 EP 131 DI 10.1007/s11340-007-9075-3 PG 13 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 250CJ UT WOS:000252277300010 ER PT J AU Frank, JH Kaiser, SA AF Frank, Jonathan H. Kaiser, Sebastian A. TI High-resolution imaging of dissipative structures in a turbulent jet flame with laser Rayleigh scattering SO EXPERIMENTS IN FLUIDS LA English DT Article ID SCALAR DISSIPATION; DIFFUSION FLAME; FLOWS; RAMAN AB High-resolution 2-D imaging of laser Rayleigh scattering is used to measure the detailed structure of the thermal dissipation field in a turbulent non-premixed CH4/H-2/N-2 jet flame. Measurements are performed in the near field (x/d = 5-20) of the flame where the primary combustion reactions interact with the turbulent flow. The contributions of both the axial and radial gradients to the mean thermal dissipation are determined from the 2-D dissipation measurements. The relative contributions of the two components vary significantly with radial position. The dissipation field exhibits thin layers of high dissipation. Noise suppression by adaptive smoothing enables accurate determination of the dissipation-layer widths from single-shot measurements. Probability density functions (PDF) of the dissipation-layer widths conditioned on temperature are approximately log-normal distributions. The conditional layer width PDFs are self-similar functions with the layer widths scaling with temperature to the 0.75 power. The high signal-to-noise ratio of the Rayleigh scattering images coupled with an interlacing technique for noise suppression enable fully resolved measurements of the mean power spectral density (PSD) of the temperature gradients. These spectra are used to determine the turbulence microscales by measuring a cutoff wavelength, lambda (C) , at 2% of the peak PSD. The Batchelor scale is estimated from lambda (C) , and the results are compared with estimates from scaling laws in non-reacting flows. At x/d = 20, the different approaches to determining the Batchelor scale are comparable on the jet centerline. However, the estimates from non-reacting flow scaling laws are significantly less accurate in off-centerline regions and at locations closer to the nozzle exit. Throughout the near field of the jet flame, the measured ratio of a characteristic dissipation-layer width to the local Batchelor scale is larger than values previously reported for the far field of non-reacting flows. C1 [Frank, Jonathan H.; Kaiser, Sebastian A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Frank, JH (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM jhfrank@sandia.gov NR 27 TC 25 Z9 25 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0723-4864 J9 EXP FLUIDS JI Exp. Fluids PD FEB PY 2008 VL 44 IS 2 BP 221 EP 233 DI 10.1007/s00348-007-0396-x PG 13 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 252VK UT WOS:000252474600005 ER PT J AU Akhavan, A Crivelli, SN Singh, M Lingappa, VR Muschler, JL AF Akhavan, Armin Crivelli, Silvia N. Singh, Manisha Lingappa, Vishwanath R. Muschler, John L. TI SEA domain proteolysis determines the functional composition of dystroglycan SO FASEB JOURNAL LA English DT Article DE mucin; laminin; autoproteolysis; muscular dystrophy ID PROTEIN-STRUCTURE PREDICTION; DYSTROPHIN-GLYCOPROTEIN COMPLEX; SECONDARY STRUCTURE PREDICTION; MUSCULAR-DYSTROPHIES; ALPHA-DYSTROGLYCAN; BETA-DYSTROGLYCAN; EPITHELIAL-CELLS; LAMININ; GLYCOSYLATION; CLEAVAGE AB Post-translational modifications of the extracellular matrix receptor dystroglycan (DG) determine its functional state, and defects in these modifications are linked to muscular dystrophies and cancers. A prominent feature of DG biosynthesis is a precursor cleavage that segregates the ligand-binding and transmembrane domains into the noncovalently attached alpha-and beta-subunits. We investigate here the structural determinants and functional significance of this cleavage. We show that cleavage of DG elicits a conspicuous change in its ligand-binding activity. Mutations that obstruct this cleavage result in increased capacity to bind laminin, in part, due to enhanced glycosylation of alpha-DG. Reconstitution of DG cleavage in a cell-free expression system demonstrates that cleavage takes place in the endoplasmic reticulum, providing a suitable regulatory point for later processing events. Sequence and mutational analyses reveal that the cleavage occurs within a full SEA (sea urchin, enterokinase, agrin) module with traits matching those ascribed to autoproteolysis. Thus, cleavage of DG constitutes a control point for the modulation of its ligand-binding properties, with therapeutic implications for muscular dystrophies. We provide a structural model for the cleavage domain that is validated by experimental analysis and discuss this cleavage in the context of mucin protein and SEA domain evolution. C1 [Akhavan, Armin; Singh, Manisha; Lingappa, Vishwanath R.; Muschler, John L.] Calif Pacific Med Ctr, Res Inst, San Francisco, CA 94107 USA. [Crivelli, Silvia N.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Muschler, JL (reprint author), Calif Pacific Med Ctr, Res Inst, 475 Brannan St,Ste 220, San Francisco, CA 94107 USA. EM muschler@cpmcri.org FU NCI NIH HHS [R01 CA109579] NR 41 TC 26 Z9 27 U1 1 U2 4 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD FEB PY 2008 VL 22 IS 2 BP 612 EP 621 DI 10.1096/fj.07-8354com PG 10 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 257TY UT WOS:000252822600031 PM 17905726 ER PT J AU Han, Y Liu, F AF Han, Yong Liu, Feng TI Coulomb sink effect on coarsening of metal nanostructures on surfaces SO FRONTIERS OF PHYSICS IN CHINA LA English DT Article DE Coulomb sink; metal nanostructures; coarsening; STM AB We discuss Coulomb effects on the coarsening of metal nanostructures on surfaces. We have proposed a new concept of a "Coulomb sink" [Phys. Rev. Lett., 2004, 93: 106102] to elucidate the effect of Coulomb charging on the coarsening of metal mesas grown on semiconductor surfaces. A charged mesa, due to its reduced chemical potential, acts as a Coulomb sink and grows at the expense of neighboring neutral mesas. The Coulomb sink provides a potentially useful method for the controlled fabrication of metal nanostructures. In this article, we will describe in detail the proposed physical models, which can explain qualitatively the most salient features of coarsening of charged Pb mesas on the Si(111) surface, as observed by scanning tunneling microscopy (STM). We will also describe a method of precisely fabricating large-scale nanocrystals with well-defined shape and size. By using the Coulomb sink effect, the artificial center-full-hollowed or half-hollowed nanowells can be created. C1 [Han, Yong; Liu, Feng] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Han, Yong] US DOE, Ames Lab, Ames, IA 50011 USA. [Han, Yong] US DOE, IPRT, Ames, IA 50011 USA. RP Liu, F (reprint author), Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. EM octavian2009@gmail.com; fliu@eng.utah.edu RI Han, Yong/F-5701-2012 OI Han, Yong/0000-0001-5404-0911 FU National Science Foundation [DMR-0307000] FX This work was supported by the National Science Foundation (Grant No. DMR-0307000). The calculations were performed on an AMD Opteron cluster at the CHPC, University of Utah. NR 23 TC 3 Z9 3 U1 1 U2 3 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 1673-3487 J9 FRONT PHYS CHINA JI Front. Phys. China PD FEB PY 2008 VL 3 IS 1 BP 41 EP 48 DI 10.1007/s11467-008-0006-2 PG 8 WC Physics, Multidisciplinary SC Physics GA V12WD UT WOS:000207628400005 ER PT J AU Gale, TK Lani, BW Offen, GR AF Gale, Thomas K. Lani, Bruce W. Offen, George R. TI Mechanisms governing the fate of mercury in coal-fired power systems SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE mercury speciation; coal combustion; flyash; calcium ID OXIDATION; CHARS AB This paper summarizes the results of a significant research and development investment to understand the fundamental mechanisms governing the speciation of mercury in coal-fired power systems. An extensive experimental search was conducted through all the parameter variations characterizing the majority of full-scale U.S. coal-fired power plants, in an effort to quantify the impact each parameter variation had on mercury oxidation and removal from the gas phase. As a result of this extensive investigation, the mechanisms responsible for mercury speciation differences observed for different coal types, power plants, and pollution control devices were elucidated. Specifically, unburned carbon was found to catalytically enhance mercury oxidation, while the actual differences in chlorine concentration from plant to plant were found to be of secondary importance to carbon. in addition, synergistic enhancement of mercury capture by carbon and calcium in flyash was quantitatively described for various coal-fired configurations, such as coal blending and sorbent injection, including development of contour plots of mercury removal at an ESP inlet and exit as a function of carbon and calcium concentration at the ESP inlet. (c) 2007 Elsevier B.V. All rights reserved. C1 [Gale, Thomas K.] So Res Inst, Birmingham, AL 35205 USA. [Lani, Bruce W.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Offen, George R.] Elect Power Res Inst, Palo Alto, CA 94304 USA. RP Gale, TK (reprint author), So Res Inst, 2000 9th Ave S, Birmingham, AL 35205 USA. EM gale@sri.org NR 13 TC 35 Z9 43 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD FEB PY 2008 VL 89 IS 2 BP 139 EP 151 DI 10.1016/j.fuproc.2007.08.004 PG 13 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 265OA UT WOS:000253368000005 ER PT J AU Costley, AE Johnson, DW AF Costley, A. E. Johnson, D. W. TI Special issue on plasma diagnostics for magnetic fusion research - Preface SO FUSION SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [Johnson, D. W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2 BP V EP VI PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 266AA UT WOS:000253402000002 ER PT J AU Young, KM AF Young, Kenneth M. TI Plasma measurements: An overview of requirements and status SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE plasma diagnostics; magnetized plasmas; tokamaks ID FUSION TEST REACTOR; COLLECTIVE THOMSON SCATTERING; CONFINED ALPHA-PARTICLES; DIII-D PLASMAS; D-T PLASMAS; DIAGNOSTIC SYSTEMS; TEMPERATURE-MEASUREMENTS; TFTR DIAGNOSTICS; CURRENT DRIVE; TOKAMAK AB This paper introduces this special issue on plasma diagnostics for magnetic fusion research. Its primary purpose is to relate the measurements of plasma parameters to the physics challenges to be faced on operating and planned devices and also. to identify the diagnostic techniques that are used to make these measurements. The specific physics involved in the application of the techniques will be addressed in subsequent chapters. This chapter is biased toward measurements for to kamaks because of their proximity to the burning plasma frontier, and to setting the scene for the development work associated with ITER. Hence, there is some emphasis on measurements for alpha-physics studies and the need for plasma measurements as input to actuators to control the plasma, both to optimize the device performance and to protect the surrounding material. The very different approach to the engineering of diagnostics for a burning plasma is considered, emphasizing the needs for new calibration ideas, reliability and hardness against, and compatibility with, radiation. New ideas take a long time to be converted into "workhorse" sophisticated diagnostics so that investment in new developments is essential for ITER, particularly for the measurement of alpha particles. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Young, KM (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM kyoung@pppl.gov NR 66 TC 8 Z9 8 U1 3 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2 BP 281 EP 303 PG 23 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 266AA UT WOS:000253402000003 ER PT J AU Strait, EJ Fredrickson, ED Moret, JM Takechi, M AF Strait, E. J. Fredrickson, E. D. Moret, J. -M. Takechi, M. TI Magnetic diagnostics SO FUSION SCIENCE AND TECHNOLOGY LA English DT Review DE magnetic diagnostics; magnetic confinement; fusion ID INDUCED THERMOELECTRIC SENSITIVITY; SPHERICAL TORUS EXPERIMENT; MINERAL-INSULATED CABLE; CIRCULAR CROSS-SECTION; STEADY-STATE PLASMAS; JOINT EUROPEAN TORUS; RESISTIVE WALL MODE; FUSION TEST REACTOR; DIII-D TOKAMAK; ALCATOR C-MOD AB Magnetic diagnostics are essential for the operation and understanding of a magnetic fusion device. Magnetic data are used in real time to measure and control the current, shape, and position of the discharge; the thermal energy of the plasma; the confining magnetic field; and the currents in the magnet coils. Equilibrium reconstructions based on magnetic data yield the magnetic geometry of the plasma, providing the coordinates for interpretation of all other diagnostic measurements. Magnetic measurements also provide input for the analysis and feedback control of magnetohydrodynamic (MHD) instabilities. This review focuses on the inductive loops and Hall effect probes that are used in nearly all present devices. We describe the principles of magnetic diagnostics and discuss issues related to their practical implementation. The interpretation of magnetic measurements for equilibrium reconstruction and for identification of MHD instabilities are summarized. Magnetic diagnostics based on inductive measurements are well understood in both implementation and interpretation and are expected to meet the needs of ITER. However, the challenges presented by future steady-state burning plasma experiments may require the development of other techniques. The prospects for addressing these challenges are reviewed, in particular, the status of possible approaches to long-pulse magnetic measurements. C1 [Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Fredrickson, E. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Moret, J. -M.] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1007 Lausanne, Switzerland. [Takechi, M.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. RP Strait, EJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM strait@fusion.gat.com NR 178 TC 27 Z9 27 U1 1 U2 11 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2 BP 304 EP 334 PG 31 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 266AA UT WOS:000253402000004 ER PT J AU Luhmann, NC Bindslev, H Park, H Sanchez, J Taylor, G Yu, CX AF Luhmann, N. C., Jr. Bindslev, H. Park, H. Sanchez, J. Taylor, G. Yu, C. X. TI Microwave diagnostics SO FUSION SCIENCE AND TECHNOLOGY LA English DT Review DE microwave; plasma; diagnostics ID ELECTRON-CYCLOTRON EMISSION; DENSITY PROFILE MEASUREMENTS; COLLECTIVE THOMSON SCATTERING; DIII-D TOKAMAK; BERNSTEIN WAVE EMISSION; RADIAL CORRELATION REFLECTOMETRY; CROSS-POLARIZATION SCATTERING; ADIABATIC TOROIDAL COMPRESSOR; UPPER-HYBRID-RESONANCE; TORE-SUPRA TOKAMAK AB Microwave-based diagnostics have found broad application in magnetic fusion plasma diagnostics and are expected to be widely employed in future burning plasma experiments (BPXs). Most of these techniques are based directly on the dispersive properties of the plasma medium that, as shown in the body of the paper, results in the microwave/millimeter wave portion of the electromagnetic spectrum being particularly well suited for a variety of measurements of both magnetic fusion plasma equilibrium parameters and their fluctuations. Electron cyclotron emission provides a measurement of electron temperature and its fluctuations while electron cyclotron absorption potentially can provide a measurement of electron pressure (the product of electron density and temperature) as well as information on the suprathermal electron distribution. Electron Bernstein wave emission is also employed for electron temperature radiometric measurements in devices including reversed field pinches, spherical tori, and higher-aspect-ratio tokamaks and stellarators that operate at high beta. The radar-based microwave reflectometry technique measures the electron density profile and its fluctuations by means of the reflection of electromagnetic waves at the plasma cutoff layer. Coherent Thomson scattering in the microwave region yields information on the fast ion population. Wave number resolved microwave collective scattering is also widely employed for measuring nonthermal (turbulent) density fluctuations or coherent electrostatic waves. The approach taken in this review is to address each technique separately beginning with the physical principles followed by representative implementations on magnetic fusion devices. In each case, the applicability to future BPXs is discussed. It is impossible in a short review to capture fully the numerous significant accomplishments of the many clever scientists and engineers who have advanced microwave plasma diagnostics technology over many decades. Therefore, in this paper, we can reveal only the basic principles together with some of the most exciting highlights while outlining the major trends, and we hope it will serve as an exciting introduction to this rich field of plasma diagnostics. C1 [Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [Bindslev, H.] Riso Natl Lab, DK-4000 Roskilde, Denmark. [Park, H.; Taylor, G.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sanchez, J.] Euratom Ciemat, Madrid 28040, Spain. [Yu, C. X.] Univ Sci & Technol China, Hefei 230026, Peoples R China. RP Luhmann, NC (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM ncluhmann@ucdavis.edu NR 341 TC 35 Z9 35 U1 7 U2 23 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2 BP 335 EP 396 PG 62 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 266AA UT WOS:000253402000005 ER PT J AU Ongena, JPHE Evrard, M McCune, D AF Ongena, J. P. H. E. Evrard, M. McCune, D. TI Numerical transport codes SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 8th Carolus Magnus Summer School on Plasma and Fusion Energy Physics CY SEP 03-14, 2007 CL Bad Honnef, GERMANY SP Trilateral Euregio Cluster TEC, EURATOM Assoc, FOM-Inst Plasma Phys Rijnhuizen, Lab Plasma Phys, Ecole Royale Militaire-Koninklijke Mil Sch ID ION THERMAL-CONDUCTIVITY; TOKAMAK PLASMA; CONFINEMENT AB This paper gives a brief introduction on numerical transport codes. The relevant equations which are used in these codes are established, and on the basis of these equations, the necessary calculations needed to resolve them are pointed out. Finally, some examples are given, illustrating their application. C1 [Ongena, J. P. H. E.; Evrard, M.] EURATOM, Ecole Royale Mil, Plasma Phys Lab, B-1000 Brussels, Belgium. [McCune, D.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ongena, JPHE (reprint author), EURATOM, Ecole Royale Mil, Plasma Phys Lab, B-1000 Brussels, Belgium. NR 20 TC 5 Z9 5 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2T BP 367 EP 376 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 272PM UT WOS:000253871700039 ER PT J AU Stratton, BC Bitter, M Hill, KW Hillis, DL Hogan, JT AF Stratton, B. C. Bitter, M. Hill, K. W. Hillis, D. L. Hogan, J. T. TI Passive spectroscopic diagnostics for magnetically confined fusion plasmas SO FUSION SCIENCE AND TECHNOLOGY LA English DT Review DE plasma diagnostics; plasma spectroscopy; instrumentation ID SOFT-X-RAY; ALCATOR-C-MOD; DIELECTRONIC SATELLITE SPECTRA; SPHERICAL-TORUS-EXPERIMENT; HELIUM-LIKE IONS; THERMONUCLEAR EXPERIMENTAL REACTOR; TRANSMISSION GRATING SPECTROMETER; VACUUM-ULTRAVIOLET SPECTROGRAPH; REVERSED-FIELD PINCH; LARGE HELICAL DEVICE AB Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. Spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed passive spectroscopic diagnostics to distinguish them from active spectroscopic diagnostics involving injected particle and laser beams, are reviewed. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed. C1 [Stratton, B. C.; Bitter, M.; Hill, K. W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hillis, D. L.; Hogan, J. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Stratton, BC (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bstratton@pppl.gov NR 359 TC 29 Z9 30 U1 2 U2 15 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2 BP 431 EP 486 PG 56 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 266AA UT WOS:000253402000007 ER PT J AU Kislyakov, AI Donne, AJH Krupnik, LI Medley, SS Petrov, MP AF Kislyakov, A. I. Donne, A. J. H. Krupnik, L. I. Medley, S. S. Petrov, M. P. TI Particle diagnostics SO FUSION SCIENCE AND TECHNOLOGY LA English DT Review DE charge exchange; Rutherford scattering; heavy ion beam ID SPHERICAL TORUS EXPERIMENT; FUSION TEST REACTOR; ION TEMPERATURE-MEASUREMENTS; NATURAL DIAMOND DETECTOR; BEAM PLASMA DIAGNOSTICS; REVERSED-FIELD PINCH; TJ-II STELLARATOR; POLOIDAL DIVERTOR EXPERIMENT; SPATIAL PROFILE MEASUREMENTS; CHARGE-EXCHANGE DIAGNOSTICS AB Three techniques for particle diagnostics of magnetically confined fusion plasmas are reviewed: charge exchange neutral particle analysis, Rutherford scattering, and heavy ion beam probes. The physical basis and instrumentation for each technique are described Typical examples obtained by these diagnostics are presented Charge exchange analysis is used for ion temperature measurements in small- and medium-sized plasma devices and for the study of the ion energy distribution function, especially in the suprathermal energy range. It also provides an ion isotope composition determination that is a high-priority task for ITER. Rutherford scattering enables local measurements of the ion temperature as well as measurements of the ion collective velocity. The heavy ion beam probe diagnostic gives a unique opportunity to measure locally the electric plasma potential and, by that, the electric field profile in a plasma and its influence on confinement. Other significant options of this diagnostic are the measurements of the local electron density and fluctuations in these quantities. Prospects for the application of the various techniques to ITER are discussed. C1 [Kislyakov, A. I.] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 196140, Russia. [Donne, A. J. H.] EURATOM, FOM Inst Plasma Phys Rijnhuizen Partner Trilatera, NL-3430 BE Nieuwegein, Netherlands. [Krupnik, L. I.] NSC KIPT, Inst Plasma Phys, UA-310108 Kharkov, Ukraine. [Medley, S. S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Petrov, M. P.] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Kislyakov, AI (reprint author), Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 196140, Russia. EM kisl@npd.ioffe.rssi.ru NR 125 TC 5 Z9 5 U1 1 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2 BP 577 EP 603 PG 27 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 266AA UT WOS:000253402000010 ER PT J AU Lasnier, CJ Allen, SL Boedo, JA Groth, M Brooks, NH McLean, A LaBombard, B Skinner, CH Rudakov, DL West, WP Wong, CPC AF Lasnier, C. J. Allen, S. L. Boedo, J. A. Groth, M. Brooks, N. H. McLean, A. LaBombard, B. Skinner, C. H. Rudakov, D. L. West, W. P. Wong, C. P. C. TI First wall and operational diagnostics SO FUSION SCIENCE AND TECHNOLOGY LA English DT Review DE diagnostics; first wall; operational ID DIII-D DIVERTOR; SCRAPE-OFF LAYER; ALCATOR C-MOD; PLASMA-FACING COMPONENTS; HIGH CONFINEMENT MODE; TOKAMAK EDGE PLASMAS; JET MKIIGB DIVERTOR; FAST SCANNING PROBE; LANGMUIR PROBE; TEMPERATURE-FLUCTUATIONS AB In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. Infrared cameras, visible and vacuum ultraviolet cameras, pressure gauges and residual gas analyzers, thermocouples, and erosion and deposition measurements by insertable probes, quartz microbalances, and a rather extensive review of Langmuir probes are discussed. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and infrared cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER. C1 [Lasnier, C. J.; Allen, S. L.; Groth, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boedo, J. A.; Rudakov, D. L.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Brooks, N. H.; West, W. P.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [McLean, A.] Univ Toronto, Toronto, ON M3H 5T6, Canada. [LaBombard, B.] MIT, Cambridge, MA 02139 USA. [Skinner, C. H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lasnier, CJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Lasnier@fusion.gat.com RI Groth, Mathias/G-2227-2013 NR 153 TC 6 Z9 6 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2 BP 640 EP 666 PG 27 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 266AA UT WOS:000253402000012 ER PT J AU Johnson, DW Costley, AE AF Johnson, D. W. Costley, A. E. TI Challenges in fusion diagnostic development: A virtual tour of ITER SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE ITER; plasma diagnostics; remote handling AB The physics basis for almost all the diagnostics planned for ITER is reasonably well in hand. However, the radiation environment near the ITER plasma creates unique challenges for diagnostic engineering. To illustrate this, we take a virtual tour of the ITER complex, beginning in the control room and diagnostic hall, where familiar components are configured much as they are in existing facilities. As we move more closely to the plasma, however, crossing into different zones for access and hazard confinement, the nuclear and plasma edge environment drives diagnostic designs in new directions, with new uncertainties. In each region, anticipated advances in supporting technology will be described, and new strategies for diagnostic implementation will be explained. The need for new standards of reliability will be highlighted, due to the difficulty of robotic maintenance and repair. C1 [Johnson, D. W.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Costley, A. E.] ITER Int Org Cadarache Ctr, F-13108 St Paul Les Durance, France. RP Johnson, DW (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08540 USA. EM djohnson@pppl.gov NR 6 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2008 VL 53 IS 2 BP 751 EP 759 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 266AA UT WOS:000253402000015 ER PT J AU Castain, RH Woodall, TS Daniel, DJ Squyres, JM Barrett, B Fagg, GE AF Castain, R. H. Woodall, T. S. Daniel, D. J. Squyres, J. M. Barrett, B. Fagg, G. E. TI The open run-time environment (OpenRTE): A transparent multicluster environment for high-performance computing SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING THEORY METHODS AND APPLICATIONS LA English DT Article; Proceedings Paper CT 12th EuroPVM/MPI Conference CY SEP 18-21, 2005 CL Sorrento, ITALY DE distributed computing; distributed architectures; heterogeneous (hybrid) systems AB The Open Run-Time Environment (OpenRTE) - a spin-off from the Open MPI project - was developed to support distributed high-performance computing applications operating in a heterogeneous environment. The system transparently provides support for interprocess communication, resource discovery and allocation, and process launch across a variety of platforms. In addition, users can launch their applications remotely from their desktop, disconnect from them, and reconnect at a later time to monitor progress. This paper will describe the capabilities of the OpenRTE system, describe its architecture, and discuss future directions for the project. (c) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Int Space & Response Div, Los Alamos, NM 87545 USA. NetQos Inc, Austin, TX 78746 USA. Server Virtualizat Business Unit, San Jose, CA 95134 USA. Microsoft Corp, Redmond, WA 98052 USA. Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Castain, RH (reprint author), Los Alamos Natl Lab, Int Space & Response Div, POB 1663, Los Alamos, NM 87545 USA. EM rhc@lani.gov NR 10 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD FEB PY 2008 VL 24 IS 2 BP 153 EP 157 DI 10.1016/j.future.2007.03.010 PG 5 WC Computer Science, Theory & Methods SC Computer Science GA 231FC UT WOS:000250930900007 ER PT J AU Devezas, T LePoire, D Matias, JCO Silva, AMP AF Devezas, Tessaleno LePoire, David Matias, Joao C. O. Silva, Abilio M. P. TI Energy scenarios: Toward a new energy paradigm SO FUTURES LA English DT Article ID EFFICIENCY AB Primary energy sources exhibited regular long-term logistic substitution trends from the mid-19th century through the third quarter of the 20th century. This analysis, based on an extension of the Fisher-Pry substitution model, accounted for the observed historical shifts of primary energy use from sources of wood, coal, oil, natural gas, and nuclear. In the mid-1980s the substitution dynamics was replaced by a relatively constant contribution from oil, natural gas, coal, nuclear power, and hydropower. However, a major factor in energy use dynamics in this recent period was substitution of conservation and efficiency for actual fuel use. The energy efficiency is measured as the ratio of economic activity to the rate of energy use (energy intensity). To incorporate these data into the logistic analysis, a method for estimating the fraction of energy saved by the increased efficiency was used. With this interpretation, energy efficiency fits within the substitution model. Furthermore, to identify indications of future energy scenarios, as well as to test the logistic substitution analysis, another statistical approach using ternary diagrams was developed. The consistent results from both logistic substitution and statistical analysis are compared with recent energy projections, trends in decarbonization, Kondratieff waves, and other efficiency measures. While the specific future mix of renewables and nuclear energy sources is uncertain, the more general logistic dynamics pattern of the energy system seems to be continuing as it has for about 150 years now. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Devezas, Tessaleno; Matias, Joao C. O.; Silva, Abilio M. P.] Univ Beira Interior, Fac Engn, P-6200001 Covilha, Portugal. [LePoire, David] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. RP Devezas, T (reprint author), Univ Beira Interior, Fac Engn, P-6200001 Covilha, Portugal. EM tessalen@ubi.pt RI Silva, Abilio/O-1474-2013; Devezas, Tessaleno/F-7479-2016; OI Silva, Abilio/0000-0002-2100-7223; Devezas, Tessaleno/0000-0002-7993-4919; Matias, Joao/0000-0003-4329-6246 NR 33 TC 24 Z9 24 U1 0 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-3287 J9 FUTURES JI Futures PD FEB PY 2008 VL 40 IS 1 BP 1 EP 16 DI 10.1016/j.futures.2007.06.005 PG 16 WC Economics; Planning & Development SC Business & Economics; Public Administration GA 261XL UT WOS:000253113200001 ER PT J AU Linder, EV AF Linder, Eric V. TI The dynamics of quintessence, the quintessence of dynamics SO GENERAL RELATIVITY AND GRAVITATION LA English DT Article ID DARK ENERGY; COSMOLOGICAL CONSTANT; SCALAR-FIELD; MODELS; SUPERNOVAE; UNIVERSE; CONSEQUENCES; VACUUM; GROWTH; MATTER AB Quintessence theories for cosmic acceleration imbue dark energy with a non-trivial dynamics that offers hope in distinguishing the physical origin of this component. We review quintessence models with an emphasis on the dynamics and discuss classifications of the different physical behaviors. The pros and cons of various parameterizations are examined as well as the extension from scalar fields to other modifications of the Friedmann expansion equation. New results on the ability of cosmological data to distinguish among and between thawing and freezing fields are presented. C1 [Linder, Eric V.] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. RP Linder, EV (reprint author), Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. EM EVLinder@lbl.gov NR 88 TC 85 Z9 85 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 EI 1572-9532 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD FEB PY 2008 VL 40 IS 2-3 BP 329 EP 356 DI 10.1007/s10714-007-0550-z PG 28 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 259MK UT WOS:000252943200007 ER PT J AU McAllister, L Silverstein, E AF McAllister, Liam Silverstein, Eva TI String cosmology: a review SO GENERAL RELATIVITY AND GRAVITATION LA English DT Review ID PROBE WMAP OBSERVATIONS; HETEROTIC M-THEORY; BRANE INFLATION; DEPENDENT SOLUTIONS; EXPANDING UNIVERSE; PHASE-TRANSITIONS; QUANTUM-GRAVITY; NON-GAUSSIANITY; F-THEORY; CONSTANT AB We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory. C1 [Silverstein, Eva] Stanford Univ, SLAC, Dept Phys, Stanford, CA 94305 USA. [McAllister, Liam] Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA. RP Silverstein, E (reprint author), Stanford Univ, SLAC, Dept Phys, Stanford, CA 94305 USA. EM evas@stanford.edu NR 315 TC 218 Z9 220 U1 0 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD FEB PY 2008 VL 40 IS 2-3 BP 565 EP 605 DI 10.1007/s10714-007-0556-6 PG 41 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 259MK UT WOS:000252943200013 ER PT J AU Bousso, R AF Bousso, Raphael TI The cosmological constant SO GENERAL RELATIVITY AND GRAVITATION LA English DT Article ID STRING LANDSCAPE; UNIVERSE; NEUTRALIZATION; SUPERNOVAE; CREATION; LAMBDA; ZERO AB The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda = 0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua. C1 [Bousso, Raphael] Univ Calif Berkeley, Ctr Theor Phys, Dept Phys, Berkeley, CA 94720 USA. [Bousso, Raphael] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Ctr Theor Phys, Dept Phys, Berkeley, CA 94720 USA. EM bousso@lbl.gov NR 79 TC 80 Z9 80 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD FEB PY 2008 VL 40 IS 2-3 BP 607 EP 637 DI 10.1007/s10714-007-0557-5 PG 31 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 259MK UT WOS:000252943200014 ER PT J AU Kunin, V He, S Warnecke, F Peterson, SB Martin, HG Haynes, M Ivanova, N Blackall, LL Breitbart, M Rohwer, F McMahon, KD Hugenholtz, P AF Kunin, Victor He, Shaomei Warnecke, Falk Peterson, S. Brook Martin, Hector Garcia Haynes, Matthew Ivanova, Natalia Blackall, Linda L. Breitbart, Mya Rohwer, Forest McMahon, Katherine D. Hugenholtz, Philip TI A bacterial metapopulation adapts locally to phage predation despite global dispersal SO GENOME RESEARCH LA English DT Article ID BIOLOGICAL PHOSPHORUS REMOVAL; COMMUNITY STRUCTURE; IDENTIFICATION; SEQUENCE; PROKARYOTES; DIVERSIFICATION; POPULATIONS; ORGANISMS; DIVERSITY; DATABASE AB \Using a combination of bacterial and phage-targeted metagenomics, we analyzed two geographically remote sludge bioreactors enriched in a single bacterial species Candidatus Accumulibacter phosphatis (CAP). We inferred unrestricted global movement of this species and identified aquatic ecosystems as the primary environmental reservoirs facilitating dispersal. Highly related and geographically remote CAP strains differed principally in genomic regions encoding phage defense mechanisms. We found that CAP populations were high density, clonal, and nonrecombining, providing natural targets for "kill-the-winner" phage predation. Community expression analysis demonstrated that phages were consistently active in the bioreactor community. Genomic signatures linking CAP to past phage exposures were observed mostly between local phage and host. We conclude that CAP strains disperse globally but must adapt to phage predation pressure locally. C1 [Kunin, Victor; Warnecke, Falk; Martin, Hector Garcia; Hugenholtz, Philip] Microbial Ecol Program, Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [He, Shaomei; McMahon, Katherine D.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. [Peterson, S. Brook] Univ Wisconsin, Dept Plant Pathol, Madison, WI 53706 USA. [Haynes, Matthew; Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Ivanova, Natalia] Genome Biol Program, Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Blackall, Linda L.] Univ Queensland, Adv Wastewater Management Ctr, St Lucia, Qld 4072, Australia. [Breitbart, Mya] Univ S Florida, St Petersburg, FL 33701 USA. RP Hugenholtz, P (reprint author), Microbial Ecol Program, Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. EM phugenholtz@lbl.gov RI Breitbart, Mya/B-1366-2009; Garcia Martin, Hector/B-5357-2009; Hugenholtz, Philip/G-9608-2011; McMahon, Katherine/I-3651-2012; Blackall, Linda/H-1947-2013; OI Breitbart, Mya/0000-0003-3210-2899; Garcia Martin, Hector/0000-0002-4556-9685; Blackall, Linda/0000-0002-8848-7698; hugenholtz, philip/0000-0001-5386-7925; McMahon, Katherine D./0000-0002-7038-026X NR 33 TC 90 Z9 98 U1 3 U2 26 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD FEB PY 2008 VL 18 IS 2 BP 293 EP 297 DI 10.1101/gr.6835308 PG 5 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 258ID UT WOS:000252860700012 PM 18077539 ER PT J AU Pelletier, JD DeLong, SB Cline, ML Harrington, CD Keating, GN AF Pelletier, Jon D. DeLong, Stephen B. Cline, Michael L. Harrington, Charles D. Keating, Gordon N. TI Dispersion of channel-sediment contaminants in distributary fluvial systems: Application to fluvial tephra and radionuclide redistribution following a potential volcanic eruption at Yucca Mountain SO GEOMORPHOLOGY LA English DT Article DE contaminant transport; drainage networks; flood scour; radionuclides ID GEOMORPHIC PROCESSES; EPHEMERAL STREAM; SOUTHERN NEVADA; RIVER; TRANSPORT; METALS AB Predicting the fluvial transport and mixing of channel-sediment contaminants is necessary for assessing and mitigating heavy-metal and nuclear-waste contamination in rivers. The dilution-mixing model is widely used for this purpose in tributary channel systems that transport contaminants as bed-material load without significant overbank sedimentation. Here a more general, three-dimensional (3D) contaminant transport numerical model is developed and tested based on bed scour, turbulent mixing of contaminant material with uncontaminated channel-bed sediments, and re-deposition of the mixture by the cumulative effect of many flood events. First, the model is applied to a synthetic alluvial-fan environment downstream from a localized contaminant source in order to illustrate the model behavior. Second, the model is validated against measured tephra concentrations in channels downstream from the Lathrop Wells scoria cone volcano, a localized source of basaltic tephra to downstream channels otherwise comprised of non-basaltic sediments. Third, the model is applied to the problem of predicting the concentration of radionuclide-bound tephra in channels downstream from the proposed nuclear-waste repository at Yucca Mountain, Nevada, in the event of a volcanic eruption through the repository. Contaminated tephra is mobilized from the landscape in this model using threshold criteria for hillslope gradient and channel stream power. Mobilized contaminated tephra is mixed with uncontaminated channel-bed sediments using the contaminant transport model and deposited in channels of the Fortymile Wash alluvial fan where the residents nearest to the proposed repository live. The results of twenty Monte Carlo simulations of eruption fallout and post-eruption redistribution corresponding to a range of wind conditions and eruption magnitudes provide information on the mean and variability of contaminated tephra concentrations to be expected in channels of the Fortymile Wash alluvial fan in the event of an eruption. Mean tephra concentrations are approximately 1% but vary from nearly zero to as high as 26%, reflecting the combined effects of wind direction, eruption magnitude, and dilution of tephra with uncontaminated channel-bed sediments during transport. (C) 2007 Elsevier B.V. All rights reserved. C1 [Pelletier, Jon D.; DeLong, Stephen B.; Cline, Michael L.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Harrington, Charles D.; Keating, Gordon N.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Pelletier, JD (reprint author), Univ Arizona, Dept Geosci, 1040 E 4th St, Tucson, AZ 85721 USA. EM jdpellet@email.arizona.edu OI DeLong, Stephen/0000-0002-0945-2172 NR 31 TC 3 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X J9 GEOMORPHOLOGY JI Geomorphology PD FEB 1 PY 2008 VL 94 IS 1-2 BP 226 EP 246 DI 10.1016/j.geomorph.2007.05.014 PG 21 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 257WJ UT WOS:000252829200015 ER PT J AU Commer, M Newman, GA AF Commer, Michael Newman, Gregory A. TI New advances in three-dimensional controlled-source electromagnetic inversion SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE numerical solutions; inverse theory; marine electromagnetics ID EXPLORATION; EQUATIONS; 3D AB New techniques for improving both the computational and imaging performance of the three-dimensional (3-D) electromagnetic inverse problem are presented. A non-linear conjugate gradient algorithm is the framework of the inversion scheme. Full wave equation modelling for controlled sources is utilized for data simulation along with an efficient gradient computation approach for the model update. Improving the modelling efficiency of the 3-D finite difference (FD) method involves the separation of the potentially large modelling mesh, defining the set of model parameters, from the computational FD meshes used for field simulation. Grid spacings and thus overall grid sizes can be reduced and optimized according to source frequencies and source-receiver offsets of a given input data set. Further computational efficiency is obtained by combining different levels of parallelization. While the parallel scheme allows for an arbitrarily large number of parallel tasks, the relative amount of message passing is kept constant. Image enhancement is achieved by model parameter transformation functions, which enforce bounded conductivity parameters and thus prevent parameter overshoots. Further, a remedy for treating distorted data within the inversion process is presented. Data distortions simulated here include positioning errors and a highly conductive overburden, hiding the desired target signal. The methods are demonstrated using both synthetic and field data. C1 [Commer, Michael; Newman, Gregory A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Commer, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-116, Berkeley, CA 94720 USA. EM MCommer@lbl.gov; GANewman@lbl.gov RI Newman, Gregory/G-2813-2015; Commer, Michael/G-3350-2015 OI Commer, Michael/0000-0003-0015-9217 NR 25 TC 83 Z9 89 U1 1 U2 16 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD FEB PY 2008 VL 172 IS 2 BP 513 EP 535 DI 10.1111/j.1365-246X.2007.03663.x PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 252FW UT WOS:000252433400003 ER PT J AU Tenma, N Yamaguchi, T Zyvoloski, G AF Tenma, Norio Yamaguchi, Tsutomu Zyvoloski, George TI The Hijiori Hot Dry Rock test site, Japan Evaluation and optimization of heat extraction from a two-layered reservoir SO GEOTHERMICS LA English DT Article DE HDR; EGS; long-term circulation test; FEHM code; two-layered reservoir; Hijiori; Japan AB The Hijiori hot dry rock (HDR) system, Japan, consists of a shallow and a deep reservoir, both ill fractured granitic rocks. During, a long-term circulation test (LTCT) lasting, approximately 18 months and which tested different fluid production scenarios, large changes were observed in Output fluid temperatures, pressures, and flow rates. A multi-reservoir, numerical model of the Hijiori HDR system was developed using the finite element heat and mass (FEHM) transfer code and applied to simulations of the LTCT. The model reproduced the pressure, temperature, and flow data observed during the test. Based oil the modeling study, it was Concluded that most of the produced fluid came from the shallow reservoir, that the permeability of the deep reservoir changed during the initial part of the LTCT, and that the redistribution of injected water between the two reservoirs had little impact oil the relative amounts of deep and shallow fluid production. After validating, the model oil the LTCT, it was used to optimize injection rates in both reservoirs. The model was also used ill simulations of reservoir performance where an additional heat transfer surface area has been created in the subsurface through hydraulic fracturing. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Tenma, Norio; Yamaguchi, Tsutomu] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058569, Japan. [Zyvoloski, George] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Tenma, N (reprint author), Natl Inst Adv Ind Sci & Technol, 16-1 Onogawa, Tsukuba, Ibaraki 3058569, Japan. EM tenma-n@aist.go.jp NR 40 TC 20 Z9 26 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 J9 GEOTHERMICS JI Geothermics PD FEB PY 2008 VL 37 IS 1 BP 19 EP 52 DI 10.1016/j.geothermics.2007.11.002 PG 34 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA 291YB UT WOS:000255232200002 ER PT J AU Kueppers, LM Snyder, MA Sloan, LC Cayan, D Jin, J Kanamaru, H Kanamitsu, M Miller, NL Tyree, M Due, H Weare, B AF Kueppers, Lara M. Snyder, Mark A. Sloan, Lisa C. Cayan, Dan Jin, Jiming Kanamaru, Hideki Kanamitsu, Masao Miller, Norman L. Tyree, Mary Due, Hui Weare, Bryan TI Seasonal temperature responses to land-use change in the western United States SO GLOBAL AND PLANETARY CHANGE LA English DT Article DE irrigated agriculture; land-use change; regional climate model (RCM); surface radiation budget; urban land-cover ID URBAN HEAT-ISLAND; CLIMATE-CHANGE; GLOBAL CLIMATE; FUTURE CLIMATE; WATER-VAPOR; MODEL; COVER; CALIFORNIA; PARAMETERIZATION; PRECIPITATION AB In the western United States, more than 79 000 km 2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land-atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) - RSM, RegCM3, MM5-CLM3, and DRCM - to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (- 1.4 to -3.1 degrees C) and maximum (-2.9 to -6.1 degrees C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest. (c) 2007 Elsevier B.V. All rights reserved. C1 [Kueppers, Lara M.; Snyder, Mark A.; Sloan, Lisa C.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Cayan, Dan; Kanamaru, Hideki; Kanamitsu, Masao; Tyree, Mary] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Cayan, Dan] Univ Calif San Diego, US Geol Survey, La Jolla, CA 92093 USA. [Jin, Jiming; Miller, Norman L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Due, Hui; Weare, Bryan] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. RP Kueppers, LM (reprint author), Univ Calif, Sch Nat Sci, POB 2039, Merced, CA 95344 USA. EM Ikueppers@ucmerced.edu RI Snyder, Mark/B-6835-2008; Miller, Norman/E-6897-2010; Jin, Jiming/A-9678-2011; Kueppers, Lara/M-8323-2013 OI Snyder, Mark/0000-0001-8242-7697; Kueppers, Lara/0000-0002-8134-3579 NR 65 TC 49 Z9 52 U1 7 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8181 EI 1872-6364 J9 GLOBAL PLANET CHANGE JI Glob. Planet. Change PD FEB PY 2008 VL 60 IS 3-4 BP 250 EP 264 DI 10.1016/j.gloplacha.2007.03.005 PG 15 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 268JU UT WOS:000253576900006 ER PT J AU Teh, YA Dubinsky, EA Silver, WL Carlson, CM AF Teh, Yit Arn Dubinsky, Eric A. Silver, Whendee L. Carlson, Charlotte M. TI Suppression of methanogenesis by dissimilatory Fe(III)-reducing bacteria in tropical rain forest soils: implications for ecosystem methane flux SO GLOBAL CHANGE BIOLOGY LA English DT Article DE acetate competition; carbon isotope tracers; dissimilatory iron-reducing bacteria; methane biogeochemistry ID RICE FIELD SOIL; IRON REDUCTION; PUERTO-RICO; PHOSPHORUS SOLUBILIZATION; AQUATIC SEDIMENTS; MARINE SEDIMENT; FERRIC IRON; ACETATE; EMISSIONS; OXIDATION AB Tropical forests are an important source of atmospheric methane (CH(4)), and recent work suggests that CH(4) fluxes from humid tropical environments are driven by variations in CH(4) production, rather than by bacterial CH4 oxidation. Competition for acetate between methanogenic archaea and Fe(III)-reducing bacteria is one of the principal controls on CH(4) flux in many Fe-rich anoxic environments. Upland humid tropical forests are also abundant in Fe and are characterized by high organic matter inputs, steep soil oxygen (02) gradients, and fluctuating redox conditions, yielding concomitant methanogenesis and bacterial Fe(III) reduction. However, whether Fe(III)-reducing bacteria coexist with methanogens or competitively suppress methanogenic acetate use in wet tropical soils is uncertain. To address this question, we conducted a process-based laboratory experiment to determine if competition for acetate between methanogens and Fe(III)-reducing bacteria influenced CH(4) production and C isotope composition in humid tropical forest soils. We collected soils from a poor to moderately drained upland rain forest and incubated them with combinations of (13)C-bicarbonate, (13)C-methyl labeled acetate ((13)CH(3)COO(-)), poorly crystalline Fe(III), or fluoroacetate. CH(4) production showed a greater proportional increase than Fe(2+) production after competition for acetate was alleviated, suggesting that Fe(III)-reducing bacteria were suppressing methanogenesis. Methanogenesis increased by approximately 67 times while Fe(2+) production only doubled after the addition of (13)CH(3)COO(-). Large increases in both CH(4) and Fe(2+) production also indicate that the two process were acetate limited, suggesting that acetate may be a key substrate for anoxic carbon (C) metabolism in humid tropical forest soils. C isotope analysis suggests that competition for acetate was not the only factor driving CH(4) production, as (13)C partitioning did not vary significantly between (13)CH(3)COO(-) and (13)CH(3)COO(-) + Fe(III) treatments. This suggests that dissimilatory Fe(III)-reduction suppressed both hydrogenotrophic and aceticlastic methanogenesis. These findings have implications for understanding the CH(4) biogeochemistry of highly weathered wet tropical soils, where CH(4) efflux is driven largely by CH(4) production. C1 [Teh, Yit Arn; Dubinsky, Eric A.; Silver, Whendee L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Teh, Yit Arn; Carlson, Charlotte M.] Lawrence Berkeley Natl Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA. [Carlson, Charlotte M.] Middlebury Coll, Dept Chem & Biochem, Middlebury, VT 05753 USA. RP Teh, YA (reprint author), Univ St Andrews, Sch Geog & Geosci, St Andrews KY16 9AL, Fife, Scotland. EM yat@st-andrews.ac.uk RI Silver, Whendee/H-1118-2012; Teh, Yit Arn/K-3812-2013; Dubinsky, Eric/D-3787-2015 OI Teh, Yit Arn/0000-0001-7976-6794; Dubinsky, Eric/0000-0002-9420-6661 NR 48 TC 22 Z9 23 U1 1 U2 42 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2008 VL 14 IS 2 BP 413 EP 422 DI 10.1111/j.1365-2486.2007.01487.x PG 10 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 264TN UT WOS:000253313400017 ER PT J AU Musolino, SV DeFranco, J Schlueck, R AF Musolino, Stephen V. DeFranco, Joseph Schlueck, Richard TI The ALARA principle in the context of a radiological or nuclear emergency SO HEALTH PHYSICS LA English DT Editorial Material DE as low as reasonably achievable; emergencies; radiological; emergency planning; terrorism AB Traditionally, the concept of As Low As Reasonably Achievable (ALARA) has been applied to the workplace and to protect the public. The goals are to minimize small incremental exposures on a daily basis or per specific task, and on a yearly basis, thereby to keep the total annual dose equivalent as far below regulatory limits as practical. In an extreme emergency caused by radiological or nuclear terrorism, or a large scale radiological accident, it is proposed that the same principles can be applied to protect First Responders against potentially large exposures. C1 [Musolino, Stephen V.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA. [DeFranco, Joseph] New York City Dept Hlth & Mental Hyg, New York, NY 10007 USA. [Schlueck, Richard] Fire Dept, Brooklyn, NY 11201 USA. RP Musolino, SV (reprint author), Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, POB 5000, Upton, NY 11973 USA. NR 3 TC 6 Z9 6 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2008 VL 94 IS 2 BP 109 EP 111 PG 3 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 251AK UT WOS:000252342400001 PM 18188044 ER PT J AU Miller, G AF Miller, Guthrie TI Analytical approximation of exact Poisson-lognormal likelihood functions SO HEALTH PHYSICS LA English DT Article DE analysis; statistical; biostatistics; computer calculations; dosimetry; internal AB Simple analytical approximations of exact Poisson-lognormal likelihood functions are obtained numerically. The Poisson-lognormal statistical model describes counting measurements with lognormally distributed normalization factors. The analytical expressions for the likelihood function allow maximum likelihood data fitting using nonlinear-least-squares-minimization computer programs. A computer program that converts count data into analytical approximation parameters as described in this note is freely available for downloading from the Los Alamos Bayesian Web site (www.lanl.gov/bayesian). C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Miller, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM guthrie@lanl.gov NR 6 TC 3 Z9 3 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2008 VL 94 IS 2 BP 188 EP 191 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 251AK UT WOS:000252342400010 PM 18188053 ER PT J AU Lu, ZY Whickert, JJ AF Lu Zhengyong Whickert, Jeffrey J. TI Considerations for data processing lay continuous air monitors based on accumulation sampling techniques SO HEALTH PHYSICS LA English DT Article DE operational topics; aerosols; air sampling; exposure; internal AB Continuous air monitors (CAMS) sample air and alarm when concentration levels of radioactivity in air exceed preset alarm levels. The air concentrations through time are calculated based on accumulation sampling techniques. Accumulation air sampling is the process in which radioactive aerosol is continually deposited onto a collection medium and a radiation detector provides continuous measurements of the radioactivity on the filter. To assess the air concentration, time intervals are established for the counting and sampling times, and the measurement of concentration represents an average over the measurement interval. There are multiple methods that can be used to determine the concentration far the most recent measurement interval, and based on the method used, each can result in significantly different values for concentrations, associated uncertainties, and response times. We evaluate and compare several methods for determining air concentrations based on accumulation counting techniques. Further, we provide a real-life example of accumulation counting and the effects of compensating for background radiation in the context of monitoring for plutonium concentrations against a fluctuating radon progeny background. Results show the importance of selecting a method that provides for a balance of response time, measurement interval, background compensation technique, and uncertainty for optimal protection of workers. C1 [Lu Zhengyong] China Inst Radiat Protect, Taiyuan 030006, Peoples R China. [Whickert, Jeffrey J.] Los Alamos Natl Lab, Hlth Phys Measurements Grp, Los Alamos, NM 87545 USA. RP Lu, ZY (reprint author), China Inst Radiat Protect, POB 120, Taiyuan 030006, Peoples R China. NR 9 TC 1 Z9 1 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2008 VL 94 IS 2 SU S BP S4 EP S15 PG 12 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 252IE UT WOS:000252439400002 ER PT J AU Schwahn, SO May, RT Welch, KB AF Schwahn, Scott O. May, Robert T. Welch, Keith B. TI Screening methods for estimating tritium dose SO HEALTH PHYSICS LA English DT Article DE operational topics; air sampling; dose assessment; tritium AB Tritium intake may occur in certain workplaces by design or by accident. If the health physics staff has developed a formal bioassay program, then it is likely that dose estimates from tritium intake are readily determinable. However, in the case of tritium intake at a facility where no formal program exists, it may be necessary to make simple confirmatory estimates of dose due to tritium exposure. Lifetime dose estimates may be calculated by using data from urine samples taken over a period of time. If urine data are unavailable, estimates of committed dose equivalent may be made with air sample data and knowledge of workplace activities. C1 [Schwahn, Scott O.] US DOE, Idaho Operat Off, Idaho Falls, ID 83415 USA. [May, Robert T.; Welch, Keith B.] LLC, Jefferson Sci Assoc, Newport News, VA 23606 USA. RP Schwahn, SO (reprint author), US DOE, Idaho Operat Off, Idaho Falls, ID 83415 USA. EM scottschwahn@cableone.net RI Schwahn, Scott/C-2530-2016 OI Schwahn, Scott/0000-0001-7105-3095 NR 5 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2008 VL 94 IS 2 SU S BP S34 EP S37 DI 10.1097/01.HP.0000296282.99441.4e PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 252IE UT WOS:000252439400006 PM 18192797 ER PT J AU Pollycove, M Feinendegen, LE AF Pollycove, Myron Feinendegen, Ludwig E. TI Low-dose radioimmuno-therapy of cancer SO HUMAN & EXPERIMENTAL TOXICOLOGY LA English DT Article DE lowdose radiation; radiobiology; DNA; mutation; cancer prevention ID TOTAL-BODY IRRADIATION; NON-HODGKINS-LYMPHOMA; IONIZING-RADIATION; DNA-DAMAGE; RESPONSES; MECHANISMS; BIOLOGY; REPAIR; SYSTEM AB Four decades of genomic, cellular, animal and human data have shown that low-dose ionizing radiation stimulates positive genomic and cellular responses associated with effective cancer prevention and therapy and increased life span of mammals and humans.(1-8) Nevertheless, this data is questioned because it seems to contradict the well demonstrated linear relation between ionizing radiation dose and damage to DNA without providing a clear mechanistic explanation of how low-dose radiation could produce such beneficial effects. This apparent contradiction is dispelled by current radiobiology that now includes DNA damage both from ionizing radiation and from endogenous metabolic free radicals, and coupled with the biological response to low-dose radiation. Acceptance of current radiobiology would invalidate long established recommendations and regulations of worldwide radiation safety organizations and so destroy the basis of the very expensive existing system of regulation and remediation. More importantly, current radiobiology would facilitate urgently needed clinical trials of low dose radiation (LDR) cancer therapy. C1 [Pollycove, Myron] Univ Calif San Francisco, Sch Med, San Francisco, CA USA. [Feinendegen, Ludwig E.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Pollycove, M (reprint author), 11441 Hollowstone Dr, Bethesda, MD 20852 USA. EM pollycove@comcast.net NR 31 TC 8 Z9 10 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0960-3271 J9 HUM EXP TOXICOL JI Hum. Exp. Toxicol. PD FEB PY 2008 VL 27 IS 2 BP 169 EP 175 DI 10.1177/0960327107083411 PG 7 WC Toxicology SC Toxicology GA 310KG UT WOS:000256527200017 PM 18480144 ER PT J AU Martin, FD Paller, MH AF Martin, F. Douglas Paller, Michael H. TI Ichthyoplankton transport in relation to floodplain width and inundation and tributary creek discharge in the lower Savannah River of Georgia and South Carolina SO HYDROBIOLOGIA LA English DT Article DE ichthyoplankton; floodplains; Flood pulse; larval transport; tributary streams; Southeastern United States ID UPPER MISSISSIPPI RIVER; EARLY-LIFE-HISTORY; LARVAL FISH; REGULATED RIVERS; DAM REMOVAL; PATTERNS; ABUNDANCE; DYNAMICS; CALIFORNIA; SURVIVAL AB We report the results of a 3-year study of ichthyoplankton in the lower Savannah River and its coastal plain tributaries. Sampling was weekly from February through July in 1983, 1984 and 1985. Ichthyoplankton transport was used as an estimate of ichthyoplankton production. Ichthyoplankton transport in the river, for both total and most common taxa, was highest in 1983 and lowest in 1985. Ichthyoplankton transport into the river from tributary streams was also highest in 1983 and lowest in 1985. Ichthyoplankton transported from these tributaries sometimes comprised a significant percent of the larval transport at the next river station downstream from the tributary mouth. The highest larval transport occurred when the spring flood pulse was most elevated for the longest time, and larval transport at particular river stations or creeks was correlated with floodplain width in 1983 and 1984, years when flood pulses were high enough so that the adjacent floodplain was inundated during or following spawning. In 1985 the flood pulse was brief, inundation levels were low, and inundation occurred in February before most fish had spawned. Except for American shad and sunfishes, larval transport for all common taxa was greatly reduced in 1985 compared to 1983. C1 [Martin, F. Douglas; Paller, Michael H.] Savannah River Natl Lab, Environm Sci & Biotechnol Dept, Environm Anal Sect, Aiken, SC 29808 USA. RP Martin, FD (reprint author), Savannah River Natl Lab, Environm Sci & Biotechnol Dept, Environm Anal Sect, Aiken, SC 29808 USA. EM doug.martin@srnl.doe.gov NR 39 TC 11 Z9 12 U1 2 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0018-8158 J9 HYDROBIOLOGIA JI Hydrobiologia PD FEB PY 2008 VL 598 BP 139 EP 148 DI 10.1007/s10750-007-9146-6 PG 10 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 244OD UT WOS:000251874300012 ER PT J AU Shenoy, GK Rohlsberger, R AF Shenoy, G. K. Roehlsberger, R. TI Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution SO HYPERFINE INTERACTIONS LA English DT Article; Proceedings Paper CT 29th International Conference on the Applications of the Mossbauer Effect (ICAME) CY OCT 14-19, 2007 CL Indian Inst Technol, Kanpur, INDIA HO Indian Inst Technol DE Synchrotron radiation; Nuclear resonance spectroscopy; Nuclear forward scattering; Inelastic x-ray scattering; Diffusion; Storage-rings; X-ray free-electron lasers ID X-RAY-SCATTERING; SYNCHROTRON-RADIATION; SPIN-CROSSOVER; MOSSBAUER; LASER; DIFFRACTION; DIFFUSION; CRYSTALS; SPECTRA; DOMAIN AB From the beginning of its discovery the Mossbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, to a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena. C1 [Shenoy, G. K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Roehlsberger, R.] DESY, D-22607 Hamburg, Germany. RP Shenoy, GK (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gks@aps.anl.gov RI Rohlsberger, Ralf/J-4173-2013 OI Rohlsberger, Ralf/0000-0001-6005-5183 NR 51 TC 6 Z9 6 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD FEB PY 2008 VL 182 IS 1-3 BP 157 EP 172 DI 10.1007/s10751-008-9720-y PG 16 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 368QO UT WOS:000260637800016 ER PT J AU Miller, EK AF Miller, E. K. TI Response to R. C. Hansen's "Sinusoidal current duality" SO IEEE ANTENNAS AND PROPAGATION MAGAZINE LA English DT Letter DE electromagnetic fields; electromagnetic radiation; antenna radiation patterns; antenna theory; wire antennas; degrees of freedom; sinusoidal current filament; singular values; far field C1 [Miller, E. K.] Los Alamos Natl Lab, Lincoln, NE USA. EM e.miller@ieee.org NR 10 TC 0 Z9 0 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1045-9243 EI 1558-4143 J9 IEEE ANTENN PROPAG M JI IEEE Antennas Propag. Mag. PD FEB PY 2008 VL 50 IS 1 BP 192 EP 195 DI 10.1109/MAP.2008.4494539 PG 4 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 293EL UT WOS:000255318000026 ER PT J AU Tuncer, E Sauers, I James, DR Ellis, AR Duckworth, RC AF Tuncer, Enis Sauers, Isidor James, D. Randy Ellis, Alvin R. Duckworth, Robert C. TI Nanodielectric system for cryogenic applications: Barium titanate filled polyvinyl alcohol SO IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION LA English DT Article DE dielectric relaxation; composites; dielectric breakdown; nanodielectric ID DIELECTRIC MIXTURES; BREAKDOWN; STATISTICS; FILMS; RELAXATION; INCLUSIONS AB In the current study we focus on dielectric properties (as a function of frequency and temperature) of a polymeric composite system composed of polyvinyl alcohol and barium titanate nano powder. In the investigations, the temperature range is between 50-295 K, and the frequency range is between 20 Hz - 1 MHz. Polarization and conduction processes are investigated in the linear regime. Dielectric breakdown strengths of samples are also reported. The materials presented have potential to be implemented in cryogenic capacitor or field grading applications. C1 [Tuncer, Enis; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.; Duckworth, Robert C.] Oak Ridge Natl Lab, Div Fus Energy, Appl Superconductiv Grp, Oak Ridge, TN 37831 USA. RP Tuncer, E (reprint author), Oak Ridge Natl Lab, Div Fus Energy, Appl Superconductiv Grp, Oak Ridge, TN 37831 USA. OI Tuncer, Enis/0000-0002-9324-4324 NR 40 TC 17 Z9 17 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1070-9878 J9 IEEE T DIELECT EL IN JI IEEE Trns. Dielectr. Electr. Insul. PD FEB PY 2008 VL 15 IS 1 BP 236 EP 242 DI 10.1109/T-DEI.2008.4446756 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 257CW UT WOS:000252777800027 ER PT J AU Dobbs, M Bissonnette, E Spieler, H AF Dobbs, Matt Bissonnette, Eric Spieler, Helmuth TI Digital frequency domain multiplexer for millimeter-wavelength telescopes SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference 2007 CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE digital signal processing; field programmable gate arrays; frequency division multiplexing; millimeter wave astronomy; real time systems; SQUIDs ID ARRAYS AB An FPGA based digital signal processing (DSP) system for biasing and reading out multiplexed bolometric detectors for mm-wavelength telescopes is presented. This readout system is being deployed for balloon-borne and ground based cosmology experiments with the primary goal of measuring the signature of inflation with the Cosmic Microwave Background Radiation. The system consists of analog superconducting electronics running at 250 mK and 4 K, coupled to digital room temperature backend electronics described here. The digital electronics perform the real time functionality with DSP algorithms implemented in firmware. A soft embedded processor provides all of the slow housekeeping control and communications. Each board in the system synthesizes multi-frequency combs of 8 to 32 carriers in the MHz band to bias the detectors. After the carriers have been modulated with the sky-signal by the detectors, the same boards digitize the comb directly. The carriers are mixed down to base-band and low pass filtered. The signal bandwidth of 0.050 Hz-100 Hz places extreme requirements on stability and requires powerful filtering techniques to recover the sky-signal from the MHz carriers. C1 [Dobbs, Matt; Bissonnette, Eric] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Spieler, Helmuth] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. RP Dobbs, M (reprint author), McGill Univ, Montreal, PQ H3A 2T8, Canada. EM matt.dobbs@mcgill.ca; bissonnette@astro.umontreal.ca; hgspieler@lbl.gov NR 10 TC 24 Z9 24 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 21 EP 26 DI 10.1109/TNS.2007.911601 PN 1 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700005 ER PT J AU Riu, I Abolins, M Adragna, P Avolio, G Backlund, S Badescu, E Baines, J Batreanu, S Battaglia, A Beck, HP Bee, C Bell, P Blair, RR Bogaerts, A Bold, T Bosman, M Boyd, J Burckhart-Chromek, D Caprini, M Cimino, D Ciobotaru, M Corso-Radu, A Costa, MJ Torres, RC Cranfield, R Crone, G Dawson, J Simoes, JDA DellaPietra, M Demers, S Di Mattia, A Dobson, M Dos Anjos, A Dotti, A Drake, G Ellis, N Emeliyanov, D Ermoline, Y Eschrich, I Ferland, J Ferrari, R Ferrer, ML Francis, D Gadomski, S Gameiro, S Garitaonandia, H Gaudio, G Gorini, B Gowdy, S Green, B Haberichter, W Hadavand, H Haeberli, C Hauschild, M Hauser, R Hillier, S Hinkelbein, C Hughes-Jones, R Idarraga, J Joos, M Kazarov, A Kehoe, R Kieft, G Kirk, J Kolos, S Kordas, K Korcyl, K Kugel, A Leahu, L Leahu, M Miotto, GL Lellouch, D Mapelli, L Martin, B Masik, J Mcpherson, R Meessen, C Meirosu, C Mineev, M Misiejuk, A Mornacchi, G Mueller, M Garcia, RM Nagasaka, Y Negri, A Padilla, C Parodi, F Pasqualucci, E Pauly, T Petersen, J Pope, B Renkel, P Roda, C Salvatore, D Scannicchio, D Schiavi, C Schlereth, J Scholtes, I Sivoklokov, S Sloper, JE Soloviev, I Spiwoks, R Stancu, S Stelzer, J Strong, J Sushkov, S Tremblet, L Unel, G Vandelli, W Vermeulen, J Von Der Schmitt, J Werner, P Wheeler-Ellis, S Wickens, F Wiedenmann, W Wilkens, H Winklmeier, F Wu, X Yasu, Y Zema, F Zhang, J Zobernig, H AF Riu, I. Abolins, M. Adragna, P. Avolio, G. Backlund, S. Badescu, E. Baines, J. Batreanu, S. Battaglia, A. Beck, H. P. Bee, C. Bell, P. Blair, R. R. Bogaerts, A. Bold, T. Bosman, M. Boyd, J. Burckhart-Chromek, D. Caprini, M. Cimino, D. Ciobotaru, M. Corso-Radu, A. Costa, M. J. Torres, R. Coura Cranfield, R. Crone, G. Dawson, J. Simoes, J. De Almeida DellaPietra, M. Demers, S. Di Mattia, A. Dobson, M. Dos Anjos, A. Dotti, A. Drake, G. Ellis, N. Emeliyanov, D. Ermoline, Y. Eschrich, I. Ferland, J. Ferrari, R. Ferrer, M. L. Francis, D. Gadomski, S. Gameiro, S. Garitaonandia, H. Gaudio, G. Gorini, B. Gowdy, S. Green, B. Haberichter, W. Hadavand, H. Haeberli, C. Hauschild, M. Hauser, R. Hillier, S. Hinkelbein, C. Hughes-Jones, R. Idarraga, J. Joos, M. Kazarov, A. Kehoe, R. Kieft, G. Kirk, J. Kolos, S. Kordas, K. Korcyl, K. Kugel, A. Leahu, L. Leahu, M. Miotto, G. Lehmann Lellouch, D. Mapelli, L. Martin, B. Masik, J. Mcpherson, R. Meessen, C. Meirosu, C. Mineev, M. Misiejuk, A. Mornacchi, G. Mueller, M. Garcia, R. Murillo Nagasaka, Y. Negri, A. Padilla, C. Parodi, F. Pasqualucci, E. Pauly, T. Petersen, J. Pope, B. Renkel, P. Roda, C. Salvatore, D. Scannicchio, D. Schiavi, C. Schlereth, J. Scholtes, I. Sivoklokov, S. Sloper, J. E. Soloviev, I. Spiwoks, R. Stancu, S. Stelzer, J. Strong, J. Sushkov, S. Tremblet, L. Unel, G. Vandelli, W. Vermeulen, J. Von Der Schmitt, J. Werner, P. Wheeler-Ellis, S. Wickens, F. Wiedenmann, W. Wilkens, H. Winklmeier, F. Wu, X. Yasu, Y. Zema, F. Zhang, J. Zobernig, H. TI Integration of the trigger and data acquisition systems in ATLAS SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE ATLAS; DAQ; high energy physics; integration; trigger AB During 2006 and spring 2007, integration and commissioning of trigger and data acquisition (TDAQ) equipment in the ATLAS experimental area has progressed. Much of the work has focused on a final prototype setup consisting of around eighty computers representing a subset of the full TDAQ system. There have been a series of technical runs using this setup. Various tests have been run including those where around 6 k Level-1 preselected simulated proton-proton events have been processed in a loop mode through the trigger and dataflow chains. The system included the readout buffers containing the events, event building, second level and third level trigger processors. Aspects critical for the final system, such as event processing times, have been studied using different trigger algorithms as well as the different dataflow components. C1 [Riu, I.; Bosman, M.; Garitaonandia, H.; Sushkov, S.] Univ Autonoma Barcelona, IFAE, Bellaterra, Spain. [Abolins, M.; Di Mattia, A.; Ermoline, Y.; Hauser, R.; Pope, B.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Adragna, P.] Univ London Queen Mary & Westfield Coll, Dept Phys, London E1 4NS, England. [Avolio, G.; Backlund, S.; Batreanu, S.; Bogaerts, A.; Boyd, J.; Burckhart-Chromek, D.; Ciobotaru, M.; Dobson, M.; Ellis, N.; Francis, D.; Gorini, B.; Hauschild, M.; Joos, M.; Leahu, L.; Miotto, G. Lehmann; Mapelli, L.; Martin, B.; Mornacchi, G.; Garcia, R. Murillo; Padilla, C.; Pauly, T.; Petersen, J.; Scholtes, I.; Sloper, J. E.; Soloviev, I.; Spiwoks, R.; Stancu, S.; Stelzer, J.; Tremblet, L.; Unel, G.; Vandelli, W.; Werner, P.; Wilkens, H.; Winklmeier, F.; Zema, F.] CERN, Geneva, Switzerland. [Badescu, E.; Batreanu, S.; Caprini, M.; Ciobotaru, M.; Leahu, L.; Meirosu, C.; Stancu, S.] Natl Inst Phys & Nucl Engn, Inst Atom Phys, R-76900 Bucharest, Romania. [Baines, J.; Emeliyanov, D.; Kirk, J.; Wickens, F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Battaglia, A.; Beck, H. P.; Gadomski, S.; Haeberli, C.; Kordas, K.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bee, C.; Meessen, C.] CNRS, IN2P3, Ctr Phys Particules Marseille, Marseille, France. [Bell, P.; Hughes-Jones, R.; Masik, J.] Univ Manchester, Dept Phys & Astron, Manchester, Lancs, England. [Blair, R. R.; Dawson, J.; Drake, G.; Haberichter, W.; Schlereth, J.; Zhang, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bold, T.; Ciobotaru, M.; Corso-Radu, A.; Eschrich, I.; Kolos, S.; Negri, A.; Stancu, S.; Unel, G.; Wheeler-Ellis, S.] Univ Calif Irvine, Irvine, CA USA. [Cimino, D.; Dotti, A.; Roda, C.] Univ Pisa, Dipartimento Fis, Pisa, Italy. [Costa, M. J.] Univ Valencia, Inst Fis Corpuscular, IFIC, Valencia, Spain. [Torres, R. Coura] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cranfield, R.; Crone, G.] UCL, Dept Phys & Astron, London, England. [Simoes, J. De Almeida; Gameiro, S.] Univ Catolica Figueira Foz, Lisbon, Portugal. [Simoes, J. De Almeida; Gameiro, S.] Univ Nova Lisboa, P-1200 Lisbon, Portugal. [DellaPietra, M.] Univ Naples Federico 2, Dipartimento Sci Fis, Naples, Italy. [DellaPietra, M.] Ist Nazl Fis Nucl, I-80125 Naples, Italy. [Demers, S.; Gowdy, S.] SLAC, Stanford, CA USA. [Dos Anjos, A.; Wiedenmann, W.; Zobernig, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ferland, J.; Idarraga, J.] Univ Montreal, Montreal, PQ, Canada. [Ferrari, R.; Gaudio, G.; Scannicchio, D.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Ferrari, R.; Gaudio, G.; Scannicchio, D.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Ferrer, M. L.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Green, B.; Misiejuk, A.; Strong, J.] Univ London Royal Holloway & Bedford New Coll, Dept Phys, Egham TW20 0EX, Surrey, England. [Hadavand, H.; Kehoe, R.; Renkel, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Hillier, S.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Hinkelbein, C.; Kugel, A.; Mueller, M.] Univ Mannheim, Lehrstuhl Informat 5, Mannheim, Germany. [Kazarov, A.] PNPI, St Petersburg, Russia. [Kieft, G.; Vermeulen, J.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Kieft, G.; Vermeulen, J.] FOM, Inst SAF NIKHEF, Amsterdam, Netherlands. [Korcyl, K.] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Lellouch, D.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Mcpherson, R.] Univ Victoria, Victoria, BC, Canada. [Mineev, M.] Joint Inst Nucl Res, Dubna, Russia. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima, Japan. [Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Parodi, F.; Schiavi, C.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Pasqualucci, E.] Univ Rome 1 La Sapienza, Dipartimento Fis, Rome, Italy. [Pasqualucci, E.] Ist Nazl Fis Nucl, Rome, Italy. [Salvatore, D.] Univ Calabria, Dipartimento Fis, I-87036 Cosenza, Italy. [Salvatore, D.] Ist Nazl Fis Nucl, I-87036 Cosenza, Italy. [Sivoklokov, S.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Von Der Schmitt, J.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukub, Japan. RP Riu, I (reprint author), Univ Autonoma Barcelona, IFAE, Bellaterra, Spain. EM Imma.Riu@cern.ch RI Della Pietra, Massimo/J-5008-2012; Bosman, Martine/J-9917-2014; Scholtes, Ingo/A-8251-2012 OI Della Pietra, Massimo/0000-0003-4446-3368; Bosman, Martine/0000-0002-7290-643X; Scholtes, Ingo/0000-0003-2253-0216 NR 13 TC 4 Z9 4 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 106 EP 112 DI 10.1109/TNS.2007.914030 PN 1 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700017 ER PT J AU Jones, M Abulencia, A Azzurri, P Brian, W Cochran, E Dittmann, JR Donati, S Efron, J Erbacher, R Errede, D Fedorko, I Flanagan, G Forrest, R Frank, M Gartner, J Gerberich, H Hewamanage, S Holm, S Hughes, R Ivanov, A Johnson, M Junk, T Kasten, M Kilminster, B Klein, R Krumnack, N Lannon, K Levine, S Lister, A McKim, J Mokos, R Olivito, D Parks, B Pitts, K Rogers, E Schmidt, EE Scott, L Shaw, T Slaunwhite, J Soha, A Staveris, A Veramendi, G Wilson, JS Wilson, PJ Winer, B AF Jones, M. Abulencia, A. Azzurri, P. Brian, W. Cochran, E. Dittmann, J. R. Donati, S. Efron, J. Erbacher, R. Errede, D. Fedorko, I. Flanagan, G. Forrest, R. Frank, M. Gartner, J. Gerberich, H. Hewamanage, S. Holm, S. Hughes, R. Ivanov, A. Johnson, M. Junk, T. Kasten, M. Kilminster, B. Klein, R. Krumnack, N. Lannon, K. Levine, S. Lister, A. McKim, J. Mokos, R. Olivito, D. Parks, B. Pitts, K. Rogers, E. Schmidt, E. E. Scott, L. Shaw, T. Slaunwhite, J. Soha, A. Staveris, A. Veramendi, G. Wilson, J. S. Wilson, P. J. Winer, B. TI The CDF II level 1 track trigger upgrade SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference 2007 CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE collider detector at fermilab (CDF); extremely fast tracker (XFT); on-line track processor; trigger ID PROCESSOR; DESIGN AB The CDF II detector uses dedicated hardware to identify charged tracks that are used in an important class of level 1 trigger decisions. Until now, this hardware identified track segments based on patterns of hits on only the axial sense wires in the tracking chamber and determined the transverse momentum of track candidates from patterns of track segments. This identification is efficient but produces trigger rates that grow rapidly with increasing instantaneous luminosity. High trigger rates are a consequence of the large numbers of low momentum tracks produced in inelastic pp collisions which generate overlapping patterns of hits that match those expected for high-momentum tracks. A recently completed upgrade to the level 1 track trigger system makes use of information from stereo wires in the tracking chamber to reduce the rate of false triggers while maintaining high efficiency for real high momentum particles. We describe the new electronics used to instrument the additional sense wires, identify track segments and correlate these with the track candidates found by the original track trigger system. The performance of this system is characterized in terms of the efficiency for identifying charged particles and the improved rejection of axial track candidates that do not correspond to real particles. C1 [Jones, M.; Flanagan, G.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Abulencia, A.; Errede, D.; Gerberich, H.; Junk, T.; Kasten, M.; Levine, S.; Mokos, R.; Pitts, K.; Rogers, E.; Veramendi, G.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Azzurri, P.; Donati, S.; Fedorko, I.; Staveris, A.] Inst Nazl Fis Nucl, I-56000 Pisa, Italy. [Brian, W.; Dittmann, J. R.; Frank, M.; Hewamanage, S.; Krumnack, N.; Wilson, J. S.] Baylor Univ, Dept Phys, Waco, TX 76798 USA. [Cochran, E.; Efron, J.; Gartner, J.; Hughes, R.; Johnson, M.; Kilminster, B.; Lannon, K.; McKim, J.; Olivito, D.; Parks, B.; Slaunwhite, J.; Winer, B.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Erbacher, R.; Forrest, R.; Ivanov, A.; Lister, A.; Soha, A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Holm, S.; Klein, R.; Schmidt, E. E.; Scott, L.; Shaw, T.; Wilson, P. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Jones, M (reprint author), Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. EM mjones@physics.purdue.edu RI Ivanov, Andrew/A-7982-2013 OI Ivanov, Andrew/0000-0002-9270-5643 NR 18 TC 0 Z9 0 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 126 EP 132 DI 10.1109/TNS.2007.911618 PN 1 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700020 ER PT J AU Beck, HP Abolins, M Battaglia, A Blair, R Bogaerts, A Bosman, M Ciobotaru, M Cranfield, R Crone, G Dawson, J Dobinson, R Dobson, M Dos Anjos, A Drake, G Ermoline, Y Ferrari, R Ferrer, ML Francis, D Gadomski, S Gameiro, S Gorini, B Green, B Haberichter, W Haberli, C Hauser, R Hinkelbein, C Hughes-Jones, R Joos, M Kieft, G Klous, S Korcyl, K Kordas, K Kugel, A Leahu, L Lehmann, G Martin, B Mapelli, L Meessen, C Meirosu, C Misiejuk, A Momacchi, G Muller, M Nagasaka, Y Negri, A Pasqualucci, E Pauly, T Petersen, J Pope, B Schlereth, J Spiwoks, R Stancu, S Strong, J Sushkov, S Szymocha, T Tremblet, L Unel, G Vandelli, W Vernieulen, J Werner, P Wheeler-Ellis, S Wickens, F Wiedenmann, W Yu, M Yasu, Y Zhang, J Zobernig, H AF Beck, Hans Peter Abolins, Maris Battaglia, Andreas Blair, Robert Bogaerts, Andre Bosman, Martine Ciobotaru, Matei Cranfield, Robert Crone, Gordon Dawson, John Dobinson, Robert Dobson, Marc Dos Anjos, Andre Drake, Gary Ermoline, Yuri Ferrari, Roberto Ferrer, Maria Lorenza Francis, David Gadomski, Szymon Gameiro, Sonia Gorini, Benedetto Green, Barry Haberichter, William Haeberli, Christian Hauser, Reiner Hinkelbein, Christian Hughes-Jones, Richard Joos, Markus Kieft, Gerard Klous, Sander Korcyl, Krzystof Kordas, Konstantinos Kugel, Andreas Leahu, Lucian Lehmann, Glovanna Martin, Brian Mapelli, Livio Meessen, Christophe Meirosu, Catalin Misiejuk, Andrzej Momacchi, Giuseppe Mueller, Matthias Nagasaka, Yasushi Negri, Andrea Pasqualucci, Enrico Pauly, Thilo Petersen, Jorgen Pope, Bernard Schlereth, James Spiwoks, Ralf Stancu, Stefan Strong, John Sushkov, Sergey Szymocha, Tadeusz Tremblet, Louis Unel, Gokhan Vandelli, Wainer Vernieulen, Joseph Werner, Per Wheeler-Ellis, Sarah Wickens, Fred Wiedenmann, Werner Yu, Maoyuan Yasu, Yasushi Zhang, Jinlong Zobernig, Haimo TI Performance of the final Event Builder for the ATLAS experiment SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE ATLAS; event building; high energy physics; LHC; TDAQ AB Event data from proton-proton collisions at the LHC will be selected by the ATLAS experiment by a three lev trigger system, which reduces the initial bunch crossing rate of 40 MHz at its first two trigger levels (LVL1+LVL2) to similar to 3 kHz. At this rate the Event-Builder collects the data from all Read-Out system PCs (ROSs) and provides fully assembled events to the the Event-Filter (EF), which is the third level trigger, to achieve a further rate reduction to similar to 200 Hz for permanent storage. The Event-Builder is based on a farm of O(100) PCs, interconnected via Gigabit Ethernet to O (150) ROSs. These PCs run Linux and multi-threaded software applications implemented in C++. All the ROSs and one third of the Event-Builder PCs are already installed and commissioned. Performance measurements have been exercised on this initial system, which show promising results that the required final data rates and bandwidth for the ATLAS event builder are in reach. C1 [Beck, Hans Peter; Battaglia, Andreas; Gadomski, Szymon; Haeberli, Christian; Kordas, Konstantinos] Univ Bern, Lab High Energy Phys Dept, CH-3012 Bern, Switzerland. [Abolins, Maris; Ermoline, Yuri; Hauser, Reiner; Pope, Bernard] Michigan State Univ, E Lansing, MI 48824 USA. [Blair, Robert; Dawson, John; Drake, Gary; Haberichter, William; Schlereth, James; Zhang, Jinlong] Argonne Natl Lab, Argonne, IL 60439 USA. [Bogaerts, Andre; Dobinson, Robert; Dobson, Marc; Francis, David; Gameiro, Sonia; Gorini, Benedetto; Joos, Markus; Lehmann, Glovanna; Martin, Brian; Mapelli, Livio; Momacchi, Giuseppe; Pauly, Thilo; Petersen, Jorgen; Spiwoks, Ralf; Tremblet, Louis; Unel, Gokhan; Vandelli, Wainer; Werner, Per] CERN, CH-1211 Geneva, Switzerland. [Bosman, Martine; Sushkov, Sergey] Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. [Ciobotaru, Matei; Negri, Andrea; Stancu, Stefan; Wheeler-Ellis, Sarah] Univ Calif Irvine, Irvine, CA 92697 USA. [Cranfield, Robert; Crone, Gordon] UCL, London WC1E 6BT, England. [Dos Anjos, Andre; Wiedenmann, Werner; Zobernig, Haimo] Univ Wisconsin, Madison, WI 53706 USA. [Ferrari, Roberto] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Ferrer, Maria Lorenza] INFN Frascati, I-00044 Frascati, Italy. [Green, Barry; Misiejuk, Andrzej; Strong, John] Univ London, Royal Holloway & Bedford New Coll, Dept Phys, Egham TW20 0EX, Surrey, England. [Haeberli, Christian; Kugel, Andreas; Mueller, Matthias; Yu, Maoyuan] Univ Mannheim, D-68131 Mannheim, Germany. [Hughes-Jones, Richard] Univ Manchester, Manchester M13 9PL, Lancs, England. [Kieft, Gerard; Klous, Sander; Vernieulen, Joseph] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Korcyl, Krzystof; Szymocha, Tadeusz] PAS, Henryk Niewodniczanski Inst Nucl PHys, PL-31342 Krakow, Poland. [Leahu, Lucian; Meirosu, Catalin] Natl Inst Phys & Nucl Engn Horia Hulubei, Bucharest 077125, Romania. [Meessen, Christophe] CPPM Marseille, F-13288 Marseille, France. [Nagasaka, Yasushi] Hiroshima Inst Technol, Hiroshima 7315193, Japan. [Pasqualucci, Enrico] Univ Roma La Sapienza, I-00185 Rome, Italy. [Pasqualucci, Enrico] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Wickens, Fred] CCLRC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Yasu, Yasushi] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. RP Beck, HP (reprint author), Univ Bern, Lab High Energy Phys Dept, CH-3012 Bern, Switzerland. EM Hans.Peter.Beck@cern.ch RI Bosman, Martine/J-9917-2014 OI Bosman, Martine/0000-0002-7290-643X NR 12 TC 6 Z9 6 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 176 EP 181 DI 10.1109/TNS.2007.910868 PN 1 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700028 ER PT J AU Bauer, G Boyer, V Branson, J Brett, A Cano, E Carboni, A Ciganek, M Cittolin, S Ethan, S Gigi, D Glege, F Gomez-Reino, R Gulmini, M Mlot, EG Gutleber, J Jacobs, C Kim, JC Klute, M Lipeles, E Perez, JAL Maron, G Meijers, F Meschi, E Moser, R Murray, S Oh, A Orsini, L Paus, C Petrucci, A Pieri, M Pollet, L Racz, A Sakulin, H Sani, M Schieferdecker, P Schwick, C Sumorok, K Suzuki, I Tsirigkas, D Varela, J AF Bauer, Gerry Boyer, Vincent Branson, James Brett, Angela Cano, Eric Carboni, Andrea Ciganek, Marek Cittolin, Sergio Ethan, Samim Gigi, Dominique Glege, Frank Gomez-Reino, Robert Gulmini, Michele Mlot, Esteban Gutierrez Gutleber, Johannes Jacobs, Claude Kim, Jin Cheol Klute, Markus Lipeles, Elliot Perez, Juan Antonio Lopez Maron, Gaetano Meijers, Frans Meschi, Emilio Moser, Roland Murray, Steven Oh, Alexander Orsini, Luciano Paus, Christoph Petrucci, Andrea Pieri, Marco Pollet, Lucien Racz, Attila Sakulin, Hannes Sani, Matteo Schieferdecker, Philipp Schwick, Christoph Sumorok, Konstanty Suzuki, Ichiro Tsirigkas, Dimitrios Varela, Joao TI Effects of adaptive wormhole routing in event builder networks SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE computer network performance; multistage interconnection networks; queuing analysis; routing ID COMMUNICATION; MYRINET AB The data acquisition system of the CMS experiment at the Large Hadron Collider features a two-stage event builder, which combines data from about 500 sources into full events at an aggregate throughput of 100 GB/s. To meet the requirements, several architectures and interconnect technologies have been quantitatively evaluated. Myrinet will be used for the communication from the underground frontend devices to the surface event building system. Gigabit Ethernet is deployed in the surface event building system. Nearly full bi-section throughput can be obtained using a custom software driver for Myrinet based on barrel shifter traffic shaping. This paper discusses the use of Myrinet dual-port network interface cards supporting channel bonding to achieve virtual 5 GBit/s links with adaptive routing to alleviate the throughput limitations associated with wormhole routing. Adaptive routing is not expected to be suitable for high-throughput event builder applications in high-energy physics. To corroborate this claim, results from the CMS event builder preseries installation at CERN are presented and the problems of wormhole routing networks are discussed. C1 [Bauer, Gerry; Klute, Markus; Paus, Christoph; Sumorok, Konstanty] MIT, Cambridge, MA 02139 USA. [Boyer, Vincent; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; Ethan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gulmini, Michele; Mlot, Esteban Gutierrez; Gutleber, Johannes; Jacobs, Claude; Perez, Juan Antonio Lopez; Meijers, Frans; Meschi, Emilio; Moser, Roland; Oh, Alexander; Orsini, Luciano; Pollet, Lucien; Racz, Attila; Sakulin, Hannes; Schieferdecker, Philipp; Schwick, Christoph; Tsirigkas, Dimitrios; Varela, Joao] CERN, CH-1211 Geneva 23, Switzerland. [Branson, James; Lipeles, Elliot; Pieri, Marco; Sani, Matteo] Univ Calif San Diego, La Jolla, CA 92093 USA. [Ethan, Samim] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gulmini, Michele; Maron, Gaetano; Petrucci, Andrea] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Kim, Jin Cheol] Kyungpook Natl Univ, Taegu, Kyungpook, South Korea. [Moser, Roland] Vienna Univ Technol, Vienna, Austria. [Murray, Steven; Suzuki, Ichiro] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Varela, Joao] LIP, P-1000 Lisbon, Portugal. RP Bauer, G (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM Roland.Moser@cern.ch RI Petrucci, Andrea/J-4207-2014; Varela, Joao/K-4829-2016 OI Petrucci, Andrea/0000-0003-2524-8355; Meschi, Emilio/0000-0003-4502-6151; Varela, Joao/0000-0003-2613-3146 NR 33 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 182 EP 189 DI 10.1109/TNS.2008.915925 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700029 ER PT J AU Bauer, G Boyer, V Branson, J Brett, A Cano, E Carboni, A Ciganek, M Cittolin, S Ethan, S Gigi, D Glege, F Gomez-Reino, R Gulmini, M Mlot, EG Gutleber, J Jacobs, C Kim, JC Klute, M Lipeles, E Perez, JAL Maron, G Meijers, F Meschi, E Moser, R Murray, S Oh, A Orsini, L Paus, C Petrucci, A Pieri, M Pollet, L Racz, A Sakulin, H Sani, M Schieferdecker, P Schwick, C Sumorok, K Suzuki, I Tsirigkas, D Varela, J AF Bauer, Gerry Boyer, Vincent Branson, James Brett, Angela Cano, Eric Carboni, Andrea Ciganek, Marek Cittolin, Seruio Ethan, Sarrum Gigi, Dominique Glege, Frank Gomez-Reino, Robert Gulmini, Michele Mlot, Esteban Gutierrez Gutleber, Johannes Jacobs, Claude Kim, Jin Cheol Klute, Markus Lipeles, Elliot Perez, Juan Antonio Lopez Maron, Gaetano Meijers, Frans Meschi, Emilio Moser, Roland Murray, Steven Oh, Alexander Orsini, Luciano Paus, Christoph Petrucci, Andrea Pieri, Marco Pollet, Lucien Racz, Attila Sakulin, Hannes Sani, Matteo Schieferdecker, Philipp Schwick, Christoph Sumorok, Konstanty Suzuki, Ichiro Tsirigkas, Dimitrios Varela, Joao TI The terabit/s Super-Fragment builder and Trigger Throttling System for the Compact Muon Solenoid experiment at CERN SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE data acquisition; feedback systems; multistage interconnection networks; triggering AB The Data Acquisition System of the Compact Muon Solenoid experiment at the Large Hadron Collider reads out event fragments of an average size of 2 kB from around 650 detector front-ends at a rate of up to 100 kHz. The first stage of event-building is performed by the Super-Fragment Builder employing custom-built electronics and a Myrinet optical network. It reduces the number of fragments by one order of magnitude, thereby greatly decreasing the requirements for the subsequent event-assembly stage. Back-pressure from the down-stream event-processing or variations in the size and rate of events may give rise to buffer overflows in the subdetector's front-end electronics, which would result in data corruption and would require a time-consuming re-sync procedure to recover. The Trigger-Throttling System protects against these buffer overflows. It provides fast feedback from any of the subdetector front-ends to the trigger so that the trigger can be throttled before buffers overflow. This paper reports on new performance measurements and on the recent successful integration of a scaled-down setup of the described system with the trigger and with front-ends of all major subdetectors. The on-going commissioning of the full-scale system is discussed. C1 [Bauer, Gerry; Klute, Markus; Paus, Christoph; Sumorok, Konstanty] MIT, Cambridge, MA 02139 USA. [Bauer, Gerry; Boyer, Vincent; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Seruio; Ethan, Sarrum; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gulmini, Michele; Mlot, Esteban Gutierrez; Gutleber, Johannes; Jacobs, Claude; Perez, Juan Antonio Lopez; Meijers, Frans; Meschi, Emilio; Moser, Roland; Oh, Alexander; Orsini, Luciano; Pollet, Lucien; Racz, Attila; Sakulin, Hannes; Schieferdecker, Philipp; Schwick, Christoph; Tsirigkas, Dimitrios; Varela, Joao] CERN, CH-1211 Geneva, Switzerland. [Branson, James; Lipeles, Elliot; Pieri, Marco; Sani, Matteo] Univ Calif San Diego, La Jolla, CA 92093 USA. [Ethan, Sarrum] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Kim, Jin Cheol] Kyungpook Natl Univ, Taegu 702701, Kyungpook, South Korea. [Maron, Gaetano; Petrucci, Andrea] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Moser, Roland] Vienna Univ Technol, A-1040 Vienna, Austria. [Murray, Steven; Suzuki, Ichiro] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Varela, Joao] LIP, P-1000149 Lisbon, Portugal. RP Bauer, G (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM Hannes.Sakulin@cern.ch RI Petrucci, Andrea/J-4207-2014; Varela, Joao/K-4829-2016 OI Petrucci, Andrea/0000-0003-2524-8355; Meschi, Emilio/0000-0003-4502-6151; Varela, Joao/0000-0003-2613-3146 NR 10 TC 4 Z9 4 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 190 EP 197 DI 10.1109/TNS.2007.911884 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700030 ER PT J AU Bauer, G Boyer, V Branson, J Brett, A Cano, E Carboni, A Ciganek, M Cittolin, S Erhan, S Gigi, D Glege, F Gomez-Reino, R Gulmini, M Mlot, EG Gutleber, J Jacobs, C Kim, JC Klute, M Lipeles, E Perez, JAL Maron, G Meijers, F Meschi, E Moser, R Murray, S Oh, A Orsini, L Paus, C Petrucci, A Pieri, M Pollet, L Racz, A Sakulin, H Sani, M Schieferdecker, P Schwick, C Sumorok, K Suzuki, I Tsirigkas, D Varela, J AF Bauer, G. Boyer, V. Branson, J. Brett, A. Cano, E. Carboni, A. Ciganek, M. Cittolin, S. Erhan, S. Gigi, D. Glege, F. Gomez-Reino, R. Gulmini, M. Mlot, E. Gutierrez Gutleber, J. Jacobs, C. Kim, J. C. Klute, M. Lipeles, E. Perez, J. A. Lopez Maron, G. Meijers, F. Meschi, E. Moser, R. Murray, S. Oh, A. Orsini, L. Paus, C. Petrucci, A. Pieri, M. Pollet, L. Racz, A. Sakulin, H. Sani, M. Schieferdecker, P. Schwick, C. Sumorok, K. Suzuki, I. Tsirigkas, D. Varela, J. TI CMS DAQ event builder based on Gigabit Ethernet SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference 2007 CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE CMS DAQ; Ethernet; event builder AB The CMS data acquisition system is designed to build and filter events originating from 476 detector data sources at a maximum trigger rate of 100 kHz. Different architectures and switch technologies have been evaluated to accomplish this purpose. Events will be built in two stages: the first stage will be a set of event builders called front-end driver (FED) builders. These will be based on Myrinet technology and will pre-assemble groups of about eight data sources. The second stage will be a set of event builders called readout builders. These will perform the building of full events. A single readout builder will build events from about 60 sources of 16 kB fragments at a rate of 12.5 kHz. In this paper, we present the design of a readout builder based on TCP/IP over Gigabit Ethernet and the refinement that was required to achieve the design throughput. This refinement includes architecture of the readout builder, the setup of TCP/IP, and hardware selection. C1 [Bauer, G.; Klute, M.; Paus, C.; Sumorok, K.] MIT, Cambridge, MA 02139 USA. [Boyer, V.; Brett, A.; Cano, E.; Carboni, A.; Ciganek, M.; Cittolin, S.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Gulmini, M.; Mlot, E. Gutierrez; Gutleber, J.; Jacobs, C.; Perez, J. A. Lopez; Meijers, F.; Meschi, E.; Moser, R.; Oh, A.; Orsini, L.; Racz, A.; Sakulin, H.; Schieferdecker, P.; Schwick, C.; Tsirigkas, D.; Varela, J.] CERN, CH-1211 Geneva, Switzerland. [Branson, J.; Lipeles, E.; Pieri, M.; Sani, M.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Erhan, S.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gulmini, M.; Maron, G.; Petrucci, A.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Kim, J. C.] Kyungpook Natl Univ, Taegu 702701, Kyungpook, South Korea. [Moser, R.] Vienna Univ Technol, A-1020 Vienna, Austria. [Murray, S.; Suzuki, I.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Varela, J.] LIP, P-1000149 Lisbon, Portugal. RP Bauer, G (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Petrucci, Andrea/J-4207-2014; Varela, Joao/K-4829-2016 OI Petrucci, Andrea/0000-0003-2524-8355; Varela, Joao/0000-0003-2613-3146 NR 8 TC 13 Z9 13 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 198 EP 202 DI 10.1109/TNS.2007.914036 PN 1 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700031 ER PT J AU Junnarkar, SS Fried, J Southekal, S Pratte, JF O'Connor, P Radeka, V Vaska, P Purschke, M Tornasi, D Woody, C Fontaine, R AF Junnarkar, Sachin S. Fried, Jack Southekal, Sudeepti Pratte, Jean-Francois O'Connor, Paul Radeka, Veljko Vaska, Paul Purschke, Martin Tornasi, Dardo Woody, Craig Fontaine, Rejean TI Next generation of real time data acquisition, calibration and control system for the RatCAP scanner SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference 2007 CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE data acquisition; FPGA; PCI; PET; RatCAP; real-time; TDC ID PET AB RatCAP (Rat Conscious Animal PET) is miniature positron emission tomography scanner intended for neurological and behavioral study of small awake animal. The RatCAP system comprises of three distinct modules: rigid-flex technology based Printed Circuit Board (PCB) which houses the detector components and front end Application Specific Integrated Circuit (ASIC), Time to Digital Converter and Signal Processing module (TSPM) which receives and processes ASIC signals and transmits processed data over two Giga bit fiber optic links to PCI based data acquisition and control PCB (PACRAT). TSPM-3 is redesigned from previous versions to accommodate second generation front end ASIC and possible future two scanner expansion. ASIC's programmable features are exploited using new additional TSPM electronics for scanner calibration and test. Designs of these three modules and corresponding firmware and software upgrades are complete. Results from fully integrated next generation RatCAP on the bench are presented. C1 [Junnarkar, Sachin S.; Fried, Jack; Southekal, Sudeepti; Pratte, Jean-Francois; O'Connor, Paul; Radeka, Veljko; Vaska, Paul; Purschke, Martin; Tornasi, Dardo; Woody, Craig] Brookhaven Natl Lab, Upton, NY 11973 USA. [Fontaine, Rejean] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada. RP Junnarkar, SS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM sachin@bnl.gov RI Southekal, Sudeepti/E-6100-2015 OI Southekal, Sudeepti/0000-0002-5540-5000 NR 8 TC 16 Z9 17 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 220 EP 224 DI 10.1109/TNS.2007.914037 PN 1 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700035 ER PT J AU Prosser, A Cardoso, G Chramowicz, J Marriner, J Rivera, R Turqueti, M AF Prosser, Alan Cardoso, Guilherme Chramowicz, John Marriner, John Rivera, Ryan Turqueti, Marcos TI Distributed data acquisition and storage architecture for the SuperNova Acceleration Probe SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference 2007 CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE data acquisition; data compression; distributed memories; space vehicle electronics AB The SuperNova Acceleration Probe (SNAP) instrument is being designed to collect image and spectroscopic data for the study of dark energy in the universe. In this paper, we describe a distributed architecture for the data acquisition system which interfaces to visible light and infrared imaging detectors. The architecture includes the use of NAND flash memory for the storage of exposures in a file system. Also described is an FPGA-based lossless data compression algorithm with a configurable pre-scaler based on a novel square root data compression method to improve compression performance. The required interactions of the distributed elements with an instrument control unit will be described as well. C1 [Prosser, Alan; Cardoso, Guilherme; Chramowicz, John; Marriner, John; Rivera, Ryan; Turqueti, Marcos] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Prosser, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM aprosser@fnal.gov; bcardoso@aguilatech.com; chramowicz@fnal.gov; marriner@fnal.gov; rrivera@fnal.gov; turqueti@fnal.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 246 EP 250 DI 10.1109/TNS.2007.913941 PN 1 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700039 ER PT J AU Poirot, PE Nogiec, J Ren, SP AF Poirot, Pierre-Etienne Nogiec, Jerzy Ren, Shangping TI A framework for constructing adaptive and reconfigurable systems SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE adaptation; control loop; observation; separation of concerns AB This paper presents a software approach to augmenting existing real-time systems with self-adaptation capabilities. In this approach, based on the control loop paradigm commonly used in industrial control, self-adaptation is decomposed into observing system events, inferring necessary changes based on a system's functional model, and activating appropriate adaptation procedures. The solution adopts an architectural decomposition that emphasizes independence and separation of concerns. It encapsulates observation, modeling and adaptation into separate modules to allow for easier customization of the adaptive behavior and flexibility in selecting implementation technologies. C1 [Poirot, Pierre-Etienne] IIT, Dept Comp Sci, Chicago, IL 60606 USA. [Poirot, Pierre-Etienne; Nogiec, Jerzy] Fermilab Natl Accelerator Lab, Tech Div, Batavia, IL 60510 USA. [Ren, Shangping] IIT, Dept Comp Sci, Chicago, IL 60616 USA. RP Poirot, PE (reprint author), Fermilab Natl Accelerator Lab, Tech Div, POB 500, Batavia, IL 60510 USA. NR 10 TC 0 Z9 0 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 284 EP 289 DI 10.1109/TNS.2007.913488 PN 1 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700046 ER PT J AU Dong, P Eusebi, R Schrupp, C Sfyrla, A Tesarek, R Wallny, R AF Dong, Peter Eusebi, Ricardo Schrupp, Charlie Sfyrla, Anna Tesarek, Rick Wallny, Rainer TI Beam condition monitoring with diamonds at CDF SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 15th IEEE/NPSS Real-Time Conference 2007 CY APR 29-MAY 04, 2007 CL Batavia, IL SP IEEE, NPSS DE accelerators; diamond; particle beam stability; radiation detectors; radiation monitoring AB Particle physics collider experiments at the high energy frontier are being performed in increasingly harsh radiation environments. While designing adequate detectors is a challenge in itself, their safe operation relies on fast, radiation-hard beam condition monitoring (BCM) systems to protect these fragile devices from beam-accidents. This paper will present a BCM system based on polycrystalline chemical vapor deposition (pCVD) diamond sensors used at the Collider Detector at Fermilab (CDF) experiment operating at Fermilab's Tevatron proton-antiproton synchrotron. We report our operational experience with this system, including the recently commissioned abort system. The system is currently the largest of its kind at a hadron collider. It is similar to designs being pursued at the CERN Large Hadron Collider (LHC) experiments. C1 [Dong, Peter; Schrupp, Charlie; Wallny, Rainer] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Eusebi, Ricardo; Tesarek, Rick] Fermilab Natl Accelerator Lab, Fermilab Expt, Batavia, IL 60510 USA. [Sfyrla, Anna] Univ Geneva, Dept Phys, CH-1211 Geneva, Switzerland. RP Dong, P (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. EM dong@physics.ucla.edu; eusebi@fnal.gov; cschrupp@fnal.gov; sfyrla@fnal.gov; tesarek@fnal.gov; wallny@physics.ucla.edu NR 5 TC 5 Z9 5 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 328 EP 332 DI 10.1109/TNS.2007.913492 PN 1 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NV UT WOS:000253224700053 ER PT J AU Park, SJ Southekal, S Purschke, M Junnarkar, SS Pratte, JF Stoll, SP Woody, CL Schlyer, DJ Vaska, P AF Park, S. -J. Southekal, S. Purschke, M. Junnarkar, S. S. Pratte, J. -F. Stoll, S. P. Woody, C. L. Schlyer, D. J. Vaska, P. TI Digital coincidence processing for the RatCAP conscious rat brain PET scanner SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE awake rat; offset delay correction; RatCAP; singular value decomposition (SVD) ID HEAD-MOUNTED PET; TIMING ALIGNMENT; ANESTHESIA; TOMOGRAPH AB The RatCAP has been designed and constructed to image the awake rat brain. In order to maximize system performance, offline digital coincidence data processing algorithms including offset delay correction and prompt and delayed coincidence detection have been developed and validated. With offset delay correction using a singular value decomposition (SVD) technique, overall time resolution was improved from 32.6 to 17.6 ns. FWHM. The experimental results confirm that the ratio of prompts to randoms was improved because a narrower timing window could be used. F-18-fluoride rat bone scan data were reconstructed using our fully 3-D ML-EM algorithm With a highly accurate detector response model created from Monte Carlo simulation. C1 [Park, S. -J.; Purschke, M.; Junnarkar, S. S.; Pratte, J. -F.; Stoll, S. P.; Woody, C. L.; Schlyer, D. J.; Vaska, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Southekal, S.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. RP Park, SJ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM sangjune.park@gmail.com RI Southekal, Sudeepti/E-6100-2015 OI Southekal, Sudeepti/0000-0002-5540-5000 NR 21 TC 20 Z9 20 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 510 EP 515 DI 10.1109/TNS.2007.912876 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NW UT WOS:000253224800008 ER PT J AU Rehak, P AF Rehak, Pavel TI Josef Kemmer - (1938-2007) - In memoriam SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Biographical-Item C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Rehak, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM rehak2@bnl.gov NR 1 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 570 EP 571 DI 10.1109/TNS.2007.914369 PN 3 PG 2 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NX UT WOS:000253224900001 ER PT J AU Chichester, DL Blackburn, BW Caffrey, AJ AF Chichester, David L. Blackburn, Brandon W. Caffrey, Augustine J. TI Radiation fields in the vicinity of compact accelerator neutron generators SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE neutron dosimetry; neutron generator; neutron shielding ID CONTRABAND AB Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators. C1 [Chichester, David L.; Blackburn, Brandon W.; Caffrey, Augustine J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Chichester, DL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM David.Chichester@inl.gov; Brandon.Blackburn@inl.gov; Gus.Caffrey@inl.gov RI Caffrey, Augustine/C-2005-2009 NR 13 TC 2 Z9 2 U1 2 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2008 VL 55 IS 1 BP 614 EP 619 DI 10.1109/TNS.2007.914021 PN 3 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 263NX UT WOS:000253224900007 ER PT J AU Sanford, TWL AF Sanford, Thomas W. L. TI Overview of the dynamic hohlraum X-ray source at Sandia National Laboratories SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT International Conference on Megagauss Magnetic Field Generation and Related Topics CY NOV 10, 2003 CL Santa Fe, NM DE electric field effects; plasma pinch ID ARRAY Z-PINCHES; 2-DIMENSIONAL SIMULATIONS; INERTIAL FUSION; ICF EXPERIMENTS; Z-ACCELERATOR; WIRE; POWER; RADIATION; DRIVEN; MODES AB Progress in understanding the physics of dynamic hohlraums is reviewed for a system that is capable of generating 10 TW of axial radiation for high-temperature (> 200 eV) radiation-flow experiments and inertial confinement fusion capsule implosions. Two-dimensional magneto-hydrodynamic simulation comparisons with data show the need to include wire initiation physics and subsequent discrete-wire dynamics in the simulations if a predictive capability is to be achieved. C1 Sandia Natl Labs, Diagnost & Target Phys Dept, Albuquerque, NM 87185 USA. RP Sanford, TWL (reprint author), Sandia Natl Labs, Diagnost & Target Phys Dept, POB 5800, Albuquerque, NM 87185 USA. EM twlsanford@comcast.net NR 50 TC 4 Z9 4 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD FEB PY 2008 VL 36 IS 1 BP 22 EP 36 DI 10.1109/TPS.2007.914165 PN 1 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 263NY UT WOS:000253225000005 ER PT J AU Turchi, PJ AF Turchi, Peter J. TI Imploding liner compression of plasma: Concepts and issues SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE controlled thermonuclear fusion; imploding liners; magnetized-target fusion; Rayleigh-Taylor instability ID FIELD-REVERSED CONFIGURATIONS; MAGNETIZED TARGET FUSION; GENERATION; IMPLOSION; ROTATION AB Several plasma targets have been proposed for compression by imploding liners, ranging from magnetically-confined to wall-supported concepts. In all cases, a critical issue remains one of preventing the high atomic-number material of the liner from penetrating the plasma and countering the gain in plasma temperature sought by compression. Two factors foster development of such deleterious penetration: the creation of a liquid/vapor layer at the liner surface at high magnetic fields, and disruption of this layer by Rayleigh-Taylor instability in the final stages of plasma compression. Within a general consideration of issues of liner compression of plasma, we discuss reactor cost optimization by use of plasma at pressures intermediate between the values of conventional magnetically- or inertially-confined fusion concepts. We also describe the development of an equilibrium layer of vapor adjacent to the liner surface at high magnetic fields, the instability of such a thin layer, and the consequences of liner deceleration and rebound for reactor concepts and research progress. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Turchi, PJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM turchi@lanl.gov NR 31 TC 12 Z9 13 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD FEB PY 2008 VL 36 IS 1 BP 52 EP 61 DI 10.1109/TPS.2007.914173 PN 1 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 263NY UT WOS:000253225000008 ER PT J AU Degnan, JH Amdahl, DJ Brown, A Cavazos, T Coffey, SK Domonkos, MT Frese, MH Frese, SD Gale, DG Grabowski, TC Intrator, TP Kirkpatrick, RC Kiuttu, GF Lehr, FM Letterio, JD Parker, JV Peterkin, RE Roderick, NF Ruden, EL Siemon, RE Sommars, W Tucker, W Turchi, PJ Wurden, GA AF Degnan, James H. Amdahl, David J. Brown, Aaron Cavazos, Thomas Coffey, Sean K. Domonkos, Matthew T. Frese, Michael H. Frese, Sherry D. Gale, Donald G. Grabowski, Theodore C. Intrator, Thomas P. Kirkpatrick, Ronald C. Kiuttu, Gerald F. Lehr, Frederick M. Letterio, James D. Parker, Jerald V. Peterkin, Robert E., Jr. Roderick, Norman F. Ruden, Edward L. Siemon, Richard E. Sommars, Wayne Tucker, Wesley Turchi, Peter J. Wurden, Glen A. TI Experimental and computational progress on liner implosions for compression of FRCs SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE field-reversed configuration; liner implosion; magnetized plasma compression; magnetized target fusion ID MAGNETIZED TARGET FUSION; FIELD-REVERSED CONFIGURATION; CONVERGING FLUX CONSERVER; THETA-PINCH; PLASMA; TRANSPORT; PARTICLE AB Magnetized target fusion (MTF) is a means to compress plasmas to fusion conditions that uses magnetic fields to greatly reduce electron thermal conduction, thereby greatly reducing compression power density requirements. The compression is achieved by imploding the boundary, a metal shell. This effort pursues formation of the field-reversed configuration (FRC) type of magnetized plasma, and implosion of the metal shell by means of magnetic pressure from a high current flowing through the shell. We reported previously on experiments demonstrating that we can use magnetic pressure from high current capacitor discharges to implode long cylindrical metal shells (liners) with size, symmetry, implosion velocity, and overall performance suitable for compression of FRCs. We also presented considerations of using deformable liner-electrode contacts of Z-pinch geometry liners or theta pinch-driven liners, in order to have axial access to inject FRCs and to have axial diagnostic access. Since then, we have experimentally implemented the Z-pinch discharge driven deformable liner-electrode contact, obtained full axial coverage radiography of such a liner implosion, and obtained 2 1/2 dimensional MHD simulations for a variety of profiled thickness long cylindrical liners. The radiographic results indicate that at least 16 times radial compression of the inner surface of a 0.11-cm-thick Al liner was achieved, with a symmetric implosion, free of instability growth in the plane of the symmetry axis. We have also made progress in combining 2 1/2-D MHD simulations of FRC formation with imploding liner compression of FRCs. These indicate that capture of the injected FRC by the imploding liner can be achieved with suitable relative timing of the FRC formation and liner implosion discharges. C1 [Degnan, James H.; Domonkos, Matthew T.; Lehr, Frederick M.; Letterio, James D.; Ruden, Edward L.; Tucker, Wesley] USAF, Res Lab, Kirtland AFB, NM 87117 USA. [Amdahl, David J.; Brown, Aaron; Coffey, Sean K.; Frese, Michael H.; Frese, Sherry D.] NumerEx, Albuquerque, NM 87106 USA. [Cavazos, Thomas; Gale, Donald G.; Grabowski, Theodore C.; Parker, Jerald V.; Peterkin, Robert E., Jr.; Sommars, Wayne] SAIC, Albuquerque, NM 87110 USA. [Intrator, Thomas P.; Kirkpatrick, Ronald C.; Turchi, Peter J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kiuttu, Gerald F.] VariTech Serv, Albuquerque, NM 87110 USA. [Roderick, Norman F.] Univ New Mexico, Albuquerque, NM 87131 USA. [Siemon, Richard E.] Univ Nevada, Reno, NV 89557 USA. RP Degnan, JH (reprint author), USAF, Res Lab, Kirtland AFB, NM 87117 USA. EM james.degnan@kirtland.af.mil RI Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 NR 38 TC 19 Z9 21 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD FEB PY 2008 VL 36 IS 1 BP 80 EP 91 DI 10.1109/TPS.2007.913814 PN 1 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 263NY UT WOS:000253225000011 ER PT J AU Turchi, PJ Roderick, NF Degnan, JH Frese, MH Amdahl, DJ AF Turchi, Peter J. Roderick, Norman F. Degnan, James H. Frese, Michael H. Amdahl, David J. TI Preparation and liner compression of plasma from an ultrahigh speed flow SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE controlled fusion; imploding liners; plasma dynamics; pulsed-power ID SWITCH; FLUX AB Preparation of the target plasma represents a critical issue in liner compression techniques to achieve fusion conditions. We consider the use of an ultrahigh speed plasma flow from a special coaxial-gun arrangement known as the plasma flow switch. Experiments have demonstrated that this arrangement can provide plasma flows with speeds in excess of 2000 km/s. Stagnation of such a plasma flow results in fully stripped aluminum plasma with electron temperatures of 30 keV. Substitution of deuterium or a deuterium-tritium mixture could provide target plasma at kilovolt temperatures within an imploding liner. Such temperatures suggest that, even if substantial heat loss occurred during liner compression, fusion-level temperatures would be possible. The concatenation of events to generate the ultrahigh speed flow, to direct it into the implosion chamber, and to arrange liner dynamics for effective compression demands numerical simulation, which is based on initial analytical estimates. Both types of calculation for exploring this concept are discussed. C1 [Turchi, Peter J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roderick, Norman F.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Degnan, James H.] USAF, Res Lab, Kirtland AFB, NM 87117 USA. [Frese, Michael H.; Amdahl, David J.] NumerEx, Albuquerque, NM 87106 USA. RP Turchi, PJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM turchi@lanl.gov NR 11 TC 6 Z9 7 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD FEB PY 2008 VL 36 IS 1 BP 92 EP 103 DI 10.1109/TPS.2007.914169 PN 1 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 263NY UT WOS:000253225000012 ER PT J AU Buyko, AM Zmushko, VV Atchison, WL Reinovsky, RE AF Buyko, Anatoly M. Zmushko, Vadim V. Atchison, Walter L. Reinovsky, Robert E. TI Results and prospects of material strength studies on electrophysical facilities based on perturbation growth in liner systems SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE growth of initial perturbations; magnetic implosion; multilayer liner systems; Rayleigh-Taylor instability; shear strength of materials; strain rate; 2-D computations AB Data are presented describing refined simulations of perturbation growth in a three-layer cylindrical liner system tested with disk explosive magnetic flux compression generators (DEMGs) to study the strength properties of copper and polyethylene at shocklessly applied pressures of up to similar to 15 GPa. The calculated performance for the same liner system in the experiments to study the strength properties of copper at shockless loading of up to similar to 40-GPa pressures is presented. The feasibility of similar strength experiments with quasi-isentropic material compression to similar to 2000 GPa using DEMGs is demonstrated. C1 [Buyko, Anatoly M.; Zmushko, Vadim V.] All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Sarov 607190, Nizhniy Novgoro, Russia. [Atchison, Walter L.; Reinovsky, Robert E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Buyko, AM (reprint author), All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Sarov 607190, Nizhniy Novgoro, Russia. EM a.m.buyko@vniief.ru; vadimzm@vniief.ru; wla@lanl.gov; bobr@lanl.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD FEB PY 2008 VL 36 IS 1 BP 104 EP 111 DI 10.1109/TPS.2007.914072 PN 1 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 263NY UT WOS:000253225000013 ER PT J AU Reinovsky, RE Atchison, WL Dimonte, G Kaul, AM Rodriguez, G Rousculp, CL Reardon, PT Turchi, PJ AF Reinovsky, Robert E. Atchison, Walter L. Dimonte, Guy Kaul, Ann M. Rodriguez, George Rousculp, Christopher L. Reardon, Patrick T. Turchi, Peter J. TI Pulsed-power hydrodynamics: An application of pulsed-power and high magnetic fields to the exploration of material properties and problems in experimental hydrodynamics SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE capacitor banks; circuit model; damage; friction; high current; hydrodynamics; hydrodynamic simulation; liner implosion; material properties; pulsed-power; radiography; spall ID IMPLOSION EXPERIMENT; COMPRESSION; INSTABILITY; LINER AB Pulsed-power hydrodynamics (PPH) is an evolving application of low-impedance pulsed-power technology. PPH is particularly useful for the study of problems in advanced hydrodynamics, instabilities, turbulence, and material properties. PPH techniques provide a precisely characterized controllable environment at the currently achievable extremes of pressure and material velocity. The Atlas facility, which is designed and built by Los Alamos National Laboratory, is the world's first, and only, laboratory pulsed-power system designed specifically for this relatively new family of pulsed-power applications. Atlas joins a family of low-impedance high-current drivers around the world, which is advancing the field of PPH. The high-precision cylindrical magnetically imploded liner is the tool most frequently used to convert electromagnetic energy into the hydrodynamic (particle kinetic) energy needed to drive strong shocks, quasi-isentropic compression, or large-volume adiabatic compression for the experiments. At typical parameters, a 30-g 1-mm-thick liner with an initial radius of 5 cm and a moderate current of 20 MA can be accelerated to 7.5 km/s, producing megabar shocks in medium density targets. Velocities of up to 20 km/s and pressures of > 20 Mbar in high-density targets are possible. The first Atlas liner implosion experiments were conducted in Los Alamos in September 2001. Sixteen experiments were conducted in the first year of operation before Atlas was disassembled, moved to the Nevada Test Site (NTS), and recommissioned in 2005. The experimental program resumed at the NTS in July 2005. The first Atlas experiments at the NTS included two implosion dynamics experiments, two experiments exploring damage and material failure, a new advanced hydrodynamics series aimed at studying the behavior of particles of damaged material ejected from a free surface into a gas, and a series exploring friction at sliding interfaces under conditions of high normal pressure and high relative velocities. Longer term applications of PPH and the Atlas system include the study of material interfaces subjected to multimegagauss magnetic fields, material strength at high strain rate, the properties of strongly coupled plasmas, and the equation of state of materials at pressures approaching 10 Mbar. C1 [Reinovsky, Robert E.; Atchison, Walter L.; Dimonte, Guy; Kaul, Ann M.; Rodriguez, George; Rousculp, Christopher L.; Reardon, Patrick T.; Turchi, Peter J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Reinovsky, RE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Rodriguez, George/G-7571-2012 OI Rodriguez, George/0000-0002-6044-9462 NR 39 TC 3 Z9 3 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD FEB PY 2008 VL 36 IS 1 BP 112 EP 124 DI 10.1109/TPS.2007.914708 PN 1 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 263NY UT WOS:000253225000014 ER PT J AU Puckett, CD Hennessy, TP Heffner, GC Goldman, CA AF Puckett, Curt D. Hennessy, Timothy P. Heffner, Grayson C. Goldman, Charles A. TI Regional approaches to measurement and verification of load management programs SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE air conditioning; demand management; electricity markets; estimation; load control; load management; load modeling; load shedding; statistics; water heating AB Conventional measurement and verification for non-interval metered, direct load control (DLC) programs bidding into wholesale electricity markets usually requires a PURPA-compliant load research study. This requirement contributes to high operating costs and has been a factor in recent reductions in the amount of emergency demand response available to regional transmission system operators. This paper describes a collaborative effort by PJM members to determine whether regional modeling using pooled historical data could satisfy DLC measurement and verification (M&V) requirements without sacrificing estimation accuracy. This paper also describes how PJM incorporated the regional "deemed savings estimates" into its Load Data Systems Manual. This paper concludes that regional approaches to M&V could yield large cost savings for DLC resource providers around the country. C1 [Puckett, Curt D.; Hennessy, Timothy P.] RLW Analyt, Clark Lake, MI 49234 USA. [Heffner, Grayson C.] Global Energy Associates Inc, N Potomac, MD 20878 USA. [Goldman, Charles A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Puckett, CD (reprint author), RLW Analyt, Clark Lake, MI 49234 USA. EM curt.puckett@rlw.com; tim.hennessy@rlw.com; gcheffner@verizon.net; cagoldman@lbl.gov NR 22 TC 4 Z9 4 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD FEB PY 2008 VL 23 IS 1 BP 204 EP 212 DI 10.1109/TPWRS.2007.913305 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 254YG UT WOS:000252623300022 ER PT J AU Beauchamp, MJ Hauck, S Underwood, KD Hemmert, KS AF Beauchamp, Michael J. Hauck, Scott Underwood, Keith D. Hemmert, K. Scott TI Architectural modifications to enhance the floating-point performance of FPGAs SO IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS LA English DT Article DE field-programmable gate array (FPGA); floating-point arithmetic; reconfigurable architecture AB With the density of field-programmable gate arrays (FPGAs) steadily increasing, FPGAs have reached the point where they are capable of implementing complex floating-point applications. However, their general-purpose nature has limited the use of FPGAs in scientific applications that require floating-point arithmetic due to the large amount of FPGA resources that floating-point operations still require. This paper considers three architectural modifications that make floating-point operations more efficient on FPGAs. The first modification embeds floating-point multiply-add units in an island-style FPGA. While offering a dramatic reduction in area and improvement in clock rate, these embedded units are a significant change and may not be justified by the market. The next two modifications target a major component of IEEE compliant floating-point computations: variable length shifters. The first alternative to lookup tables (LUTs) for implementing the variable length shifters is a coarse-grained approach: embedded variable length shifters in the FPGA fabric. These shifters offer a significant reduction in area with a modest increase in clock rate and are smaller and more general than embedded floating-point units. The next alternative is a fine-grained approach: adding a 4:1 multiplexer unit inside a configurable logic block (CLB), in parallel to each 4-LUT. While this offers the smallest overall area improvement, it does offer a significant improvement in clock rate with only a trivial increase in the size of the CLB. C1 [Beauchamp, Michael J.] MIPS Technol, Mountain View, CA 94043 USA. [Hauck, Scott] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Underwood, Keith D.; Hemmert, K. Scott] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Beauchamp, MJ (reprint author), MIPS Technol, Mountain View, CA 94043 USA. EM michael@mips.com; hauck@ee.washington.edu; kdunder@sandia.gov; ksherrune@sandia.gov NR 26 TC 17 Z9 20 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-8210 EI 1557-9999 J9 IEEE T VLSI SYST JI IEEE Trans. Very Large Scale Integr. (VLSI) Syst. PD FEB PY 2008 VL 16 IS 2 BP 177 EP 187 DI 10.1109/TVLSI.2007.912041 PG 11 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 254HO UT WOS:000252577900008 ER PT J AU Man, L Punnoose, R Liu, H AF Man, Liang Punnoose, Ratish Liu, Huaping TI Simplified receiver design for STBC binary continuous phase modulation SO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS LA English DT Article; Proceedings Paper CT IEEE International Conference on Communications (ICC 2006) CY JUN, 2006 CL Istanbul, TURKEY SP IEEE DE continuous phase modulation; wireless communications; space-time block codes; low-complexity decoding ID 2 TRANSMIT ANTENNAS; CPM SYSTEM AB Existing space-time codes have focused on multiple-antenna systems with linear modulation schemes such as phase-shift keying and quadrature amplitude modulation. Continuous phase modulation (CPM) is an attractive scheme for digital transmission because of its constant envelope which is needed for power efficient transmitters. Recent research has shown that space-time coded CPM can achieve transmit diversity to improve performance while maintaining the compact spectrum of CPM signals. However, these efforts mainly combine space-time coding (STC) with CPM to achieve spatial diversity at the cost of a high decoding complexity. In this paper, we design space-time block codes (STBC) for binary CPM with modulation index h = 1/2 and derive low-complexity receivers for these systems. The proposed scheme has a much lower decoding complexity than STC CPM with the Viterbi decoder and still achieves near-optimum error performances. C1 [Man, Liang; Liu, Huaping] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. [Punnoose, Ratish] Sandia Natl Labs, Inst Syst Engn Dept, Livermore, CA 94551 USA. RP Man, L (reprint author), Focus Labs, Hillsboro, OR 97124 USA. EM liangx@focussemi.com; rjpunno@sandia.gov; hliu@eecs.oregonstate.edu NR 20 TC 0 Z9 0 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1536-1276 J9 IEEE T WIREL COMMUN JI IEEE Trans. Wirel. Commun. PD FEB PY 2008 VL 7 IS 2 BP 452 EP 457 DI 10.1109/TWC.2008.060628 PG 6 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 262LL UT WOS:000253149900005 ER PT J AU Fisk, W AF Fisk, William TI Comentary on predictive models of control strategies involved in containing indoor airborne infections SO INDOOR AIR LA English DT Letter C1 Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. RP Fisk, W (reprint author), Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. EM wjfisk@lbl.cgov NR 9 TC 2 Z9 2 U1 1 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0905-6947 J9 INDOOR AIR JI Indoor Air PD FEB PY 2008 VL 18 IS 1 BP 72 EP 73 DI 10.1111/j.1600-0668.2007.00498.x PG 2 WC Construction & Building Technology; Engineering, Environmental; Public, Environmental & Occupational Health SC Construction & Building Technology; Engineering; Public, Environmental & Occupational Health GA 252FZ UT WOS:000252433700009 PM 18211478 ER PT J AU Konidaris, KF Perlepes, SP Aromi, G Teat, SJ Escuer, A Manessi-Zoupa, E AF Konidaris, Konstantis F. Perlepes, Spyros P. Aromi, Guillem Teat, Simon J. Escuer, Albert Manessi-Zoupa, Evy TI First use of 1,4-dihydro-2,3-quinoxalinedione in the chemistry of coordination polymers: A 3D copper(II) complex containing the 2,3-dioxyquinoxalinate(-2) ligand in a novel coordination mode SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE coordination polymers; copper(II); 1,4-dihydro-2,3-quinoxalinedione; 2,3-dioxyquinoxalinate(-2) metal complexes; magneticproperties ID METAL-ORGANIC FRAMEWORKS; IN-SITU FORMATION; SUCCINAMATE(-1) LIGAND; CRYSTAL-STRUCTURE; SOLID-STATE; NETS; ARCHITECTURES; NETWORKS; BINDING; UNITS AB The reaction of 1,4-dihydro-2,3-quinoxalinedione (H2L') with CuCl2 in the presence of LiOH in DMF has led to the 3D coordination polymer [Cu3L2Cl2(DMF)(4)](n) (1) with an (8(2).10)-a, lig (LiGe), topology, where L2- is 2,3-dioxyquinoxalinate(-2). This compound is the first coordination polymer of any transition metal featuring L2- and contains the ligand in a novel 3.1111 (Harris notation) coordination mode. IR data are discussed in terms of the chemical composition of the polymer and the coordination mode of L2-. Variable-temperature (2-300 K) magnetic susceptibility and variable-field (0-5 T) magnetization studies reveal that L2- propagates weak antiferromagnetic exchange interactions through its "quinoxaline" moiety. (C) 2007 Elsevier B.V. All rights reserved. C1 [Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Konidaris, Konstantis F.; Perlepes, Spyros P.; Manessi-Zoupa, Evy] Univ Patras, Dept Chem, Patras 26504, Greece. [Aromi, Guillem; Escuer, Albert] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Aromi, Guillem; Escuer, Albert] Univ Barcelona, Inst Nanociencia & Nanotecnol IN2UB, E-08028 Barcelona, Spain. RP Teat, SJ (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd,Mail Stop 2-400, Berkeley, CA 94720 USA. EM SJTeat@lbl.gov; albert.escuer@qi.ub.es; emane@upatras.gr RI Escuer, Albert/L-4706-2014; Aromi, Guillem/I-2483-2015; OI Escuer, Albert/0000-0002-6274-6866; Aromi, Guillem/0000-0002-0997-9484; Konidaris, Konstantis/0000-0002-7366-5682 NR 33 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD FEB PY 2008 VL 11 IS 2 BP 186 EP 191 DI 10.1016/j.inoche.2007.11.017 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 271LZ UT WOS:000253791200014 ER PT J AU Tang, ZH Kramer, MJ Akinc, M AF Tang, Zhihong Kramer, M. J. Akinc, Mufit TI Evaluation of phase equilibria in the Nb-rich portion of Nb-B system SO INTERMETALLICS LA English DT Article DE intermetallics; miscellaneous; phase diagrams; thermal properties; microstructure ID REGION AB The phase equilibria in the Nb-rich portion of Nb-B system have been evaluated experimentally using metallographic analysis, differential thermal analysis (DTA) and X-ray diffraction. It showed that Nb-ss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L <-> Nb-ss + NbB exists, instead of the generally accepted reaction L <-> Nb-ss + Nb3B2, as indicated in the Nb-B phase diagram. The Nb3B2 phase, however, forms by the peritectoid reaction Nb-ss + NbB <-> Nb3B2. DTA tests were conducted on annealed Nb-14B, Nb-16B, Nb-18B and Nb-40B alloys, and temperature and heat of phase transition were determined. The eutectic reaction (L <-> Nb-ss + NbB) temperature was determined to be 2104 +/- 5 degrees C, and the heat of phase transition was estimated as 22-30 kJ/mol, depending on the method of calibration used. The thermal event associated with peritectoid reactions was not observed in DTA curves due to sluggish solid state transformation, but the thermal annealing experiments show that peritectoid temperature is above 1900 degrees C. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Tang, Zhihong; Kramer, M. J.; Akinc, Mufit] Iowa State Univ, Dept Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. RP Akinc, M (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames Lab, 2220L Hoover Hall, Ames, IA 50011 USA. EM makinc@iastate.edu NR 13 TC 6 Z9 6 U1 3 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 J9 INTERMETALLICS JI Intermetallics PD FEB PY 2008 VL 16 IS 2 BP 255 EP 261 DI 10.1016/j.intermet.2007.10.004 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 264GI UT WOS:000253275200017 ER PT J AU Jiang, Y He, YH Xu, NP Zou, J Huang, BY Liu, CT AF Jiang, Y. He, Y. H. Xu, N. P. Zou, J. Huang, B. Y. Liu, C. T. TI Effects of the Al content on pore structures of porous Ti-Al alloys SO INTERMETALLICS LA English DT Article DE titanium aluminides; reaction synthesis ID FILTRATION; MEMBRANE AB Porous Ti-Al alloys with different nominal compositions were fabricated through a reactive synthesis of Ti and Al elemental powders. It has been found that the pore parameters vary with the Al contents, indicating that the nature of the pores can be manipulated through changing the Al contents. In addition, detailed structural characterizations showed that the fabricated porous Ti-Al alloys can have three crystalline phases (i.e., alpha(2)-Ti3Al, gamma-TiAl, and TiAl3) when using different compositions. The fundamental reasons behind these phenomena have been explored. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Jiang, Y.; He, Y. H.; Huang, B. Y.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. [Xu, N. P.] Nanjing Inst Univ Technol, Membrane Sci & Technol Res Ctr, Nanjing 210009, Peoples R China. Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia. Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Liu, C. T.] Oak Ridge Natl Lab, Met & Ceram Div, Oak Ridge, TN 37831 USA. RP He, YH (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. EM yuehui@mail.csu.edu.cn; j.zou@uq.edu.au RI Zou, Jin/B-3183-2009 OI Zou, Jin/0000-0001-9435-8043 NR 21 TC 40 Z9 46 U1 4 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 EI 1879-0216 J9 INTERMETALLICS JI Intermetallics PD FEB PY 2008 VL 16 IS 2 BP 327 EP 332 DI 10.1016/j.intermet.2007.11.002 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 264GI UT WOS:000253275200026 ER PT J AU Houf, W Schefer, R AF Houf, W. Schefer, R. TI Analytical and experimental investigation of small-scale unintended releases of hydrogen SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE hydrogen; buoyant jet; concentration decay; unintended release ID AXISYMMETRICAL TURBULENT JETS; HIGH-PRESSURE JETS; DECAY AB Knowledge of the concentration field and flammability envelope from a small-scale hydrogen leak is an issue of importance for the safe use of hydrogen. A combined experimental and modeling program is being carried out by Sandia National Laboratories to characterize and predict the behavior of small-scale hydrogen releases. in contrast to the previous work performed by Sandia on large, momentum-dominated hydrogen leaks, these studies are focusing on small leaks in the Froude number range where both buoyant and inertial forces are important or, in the limit, where buoyancy dominates leak behavior. in the slow leak regime-buoyant forces affect the trajectory and rate of air entrainment of the hydrogen jet leak and significant curvature can occur in the jet trajectory. Slow leaks may occur from leaky fittings or o-ring seals on hydrogen vehicles or other hydrogen-based systems where large amounts of pressure drop occur across the leak path. Low-pressure electrolyzers or vents on buildings or storage facilities containing hydrogen are also potential sources for slow leaks. The small-scale leak investigation is a combined experimental and modeling program. As part of the modeling effort a fast-running engineering model for the buoyant jet from a hydrogen slow leak was developed. The model computes the trajectory of the buoyant jet and the hydrogen concentration decay along the jet trajectory. Simulation times for the slow-leak engineering model are a few seconds on a computer workstation as compared to many hours for a Navier-Stokes equation simulation of the same leak. As part of the experimental effort, a planar laser-Rayleigh scattering and CCD camera technique were used to measure high-speed images of the concentration field from slow hydrogen leaks. Planar laser-Rayleigh scattering is a laser-based diagnostic technique that is sensitive to gas density and is, hence, well suited to accurately measure the flow behavior of hydrogen exiting a leak into ambient air. Comparisons are made between the measured slow leak concentration fields and predictions from the slow leak engineering model. Calculations from the model and experimental results are presented to explain the behavior of slow leaks over the Froude number range of interest. Published by Elsevier Ltd. on behalf of International Association for Hydrogen Energy. C1 [Houf, W.; Schefer, R.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Houf, W (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM will@sandia.gov RI Schefer, Jurg/G-3960-2012 NR 16 TC 41 Z9 42 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2008 VL 33 IS 4 BP 1435 EP 1444 DI 10.1016/j.ijhydene.2007.11.031 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 284KQ UT WOS:000254705700040 ER PT J AU Joseck, F Wang, M Wu, Y AF Joseck, Fred Wang, Michael Wu, Ye TI Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in US steel mills SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE hydrogen; coke oven gas; fuel cell vehicles; well-to-wheels analysis AB For this study, we examined the energy and emission effects of hydrogen production from coke oven gas (COG) on a well-to-wheels basis and compared these effects with those of other hydrogen production options, as well as with those of conventional gasoline and diesel options. We then estimated the magnitude of hydrogen production from COG in the United States and the number of hydrogen fuel cell vehicles (FCVs) that could potentially be fueled with the hydrogen produced from COG. Our analysis shows that this production pathway can achieve energy and greenhouse gas emission reduction benefits. This pathway is especially worth considering because first, the sources of COG are concentrated in the upper Midwest and in the Northeast United States, which would facilitate relatively cost-effective collection, transportation, and distribution of the produced hydrogen to refueling stations in these regions. Second, the amount of hydrogen that could be produced may fuel about 1.7 million cars, thus providing a vital near-term hydrogen production option for FCV applications. (c) 2007 Published by Elsevier Ltd. on behalf of International Association for Hydrogen Energy. C1 [Joseck, Fred] US DOE, Off Hydrogen Fuel Cells & Infrastruct Technol, Washington, DC 20585 USA. [Wang, Michael; Wu, Ye] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Joseck, F (reprint author), US DOE, Off Hydrogen Fuel Cells & Infrastruct Technol, Washington, DC 20585 USA. EM Fred.Joseck@ee.doe.gov RI Wu, Ye/O-9779-2015 NR 17 TC 58 Z9 59 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2008 VL 33 IS 4 BP 1445 EP 1454 DI 10.1016/j.ijhydene.2007.10.022 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 284KQ UT WOS:000254705700041 ER PT J AU Wang, J Yang, B Cool, TA Hansen, N Kasper, T AF Wang, Juan Yang, Bin Cool, Terrill A. Hansen, Nils Kasper, Tina TI Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE photoionization cross-section; hydrocarbon; photoionization mass spectrometry (PIMS); combustion chemistry ID ADVANCED LIGHT-SOURCE; FUEL-RICH FLAMES; MASS-SPECTROMETRY; VACUUM-ULTRAVIOLET; GAS-PHASE; DISSOCIATIVE PHOTOIONIZATION; PHOTOELECTRON SPECTROSCOPY; IONIZATION POTENTIALS; CHEMICAL-DYNAMICS; ORGANIC-MOLECULES AB The use of photoionization mass spectrometry for the development of quantitative kinetic models for the complex combustion chemistry of both conventional hydrocarbon fuels and oxygenated biofuels requires near-threshold measurements of absolute photoionization cross-sections for numerous reaction intermediates. Near-threshold absolute cross-sections for molecular and dissociative photoionization for 20 stable reaction intermediates (methane, ethane, propane, n-butane, cyclopropane, methylcyclopentane, 1-butene, cis-2-butene, isobutene, 1-pentene, cyclohexene. 33 -dimethyl-1-butene, 1,3-hexadiene, 1,3-cyclohexadiene, methyl acetate, ethyl acetate, tetrahydrofuran, propanal, 1-butyne, 2-butyne) are presented. Previously measured total photoionization cross-sections for 9 of these molecules are in good agreement with the present results. The measurements are performed with photoionization mass spectrometry (PIMS) using a monochromated VUV synchrotron light source with an energy resolution of 40 meV (fwhm) comparable to that used for flame-sampling molecular beam PIMS studies of flame chemistry and reaction kinetics. (C) 2007 Elsevier B.V. All rights reserved. C1 [Wang, Juan; Yang, Bin; Cool, Terrill A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Hansen, Nils; Kasper, Tina] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Cool, TA (reprint author), Cornell Univ, Sch Appl & Engn Phys, 228 Clark Hall, Ithaca, NY 14853 USA. EM tac13@cornell.edu RI Yang, Bin/A-7158-2008; Hansen, Nils/G-3572-2012; Kasper, Tina/A-2975-2017 OI Yang, Bin/0000-0001-7333-0017; Kasper, Tina/0000-0003-3993-5316 NR 68 TC 90 Z9 92 U1 11 U2 76 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 1 PY 2008 VL 269 IS 3 BP 210 EP 220 DI 10.1016/j.ijms.2007.10.013 PG 11 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 262YJ UT WOS:000253184500006 ER PT J AU Lestone, JP AF Lestone, J. P. TI An evaporation-based model of thermal neutron induced ternary fission of plutonium SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article ID CHARGED-PARTICLE-EMISSION; ALPHA PARTICLES; NUCLEAR MASSES; CF-252; YIELDS; DEFORMATIONS AB Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be similar to 1.2 MeV and similar to 10(-22) s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Lestone, JP (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. NR 38 TC 1 Z9 1 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD FEB PY 2008 VL 17 IS 2 BP 323 EP 349 DI 10.1142/S0218301308009045 PG 27 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 286TE UT WOS:000254868100002 ER PT J AU Rutqvist, J Birkholzer, JT Tsang, CF AF Rutqvist, J. Birkholzer, J. T. Tsang, Chin-Fu TI Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE CO2 sequestration; coupled fluid flow and geomechanical modeling; shear failure; fracturing; caprock ID NORTHERN NORTH-SEA; FLUID-FLOW; FAULT REACTIVATION; POROUS ROCK; STORAGE AB Coupled reservoir-geomechanical simulations were conducted to study the potential for tensile and shear failure-e.g., tensile fracturing and shear slip along pre-existing fractures-associated with underground CO2-injection in a multilayered geological system. This failure analysis aimed to study factors affecting the potential for breaching a geological CO2-storage system and to study methods for estimating the maximum CO2-injection pressure that could be sustained without causing such a breach. We pay special attention to geomechanical stress changes resulting from upward migration of the CO2 and how the initial stress regime affects the potential for inducing failure. We conclude that it is essential to have an accurate estimate of the three-dimensional in situ stress field to support the design and performance assessment of a geological CO2-injection operation. Moreover, we also conclude that it is important to consider mechanical stress changes that might occur outside the region of increased reservoir fluid pressure (e.g., in the overburden rock) between the CO2-injection reservoir and the ground surface. (c) 2007 Published by Elsevier Ltd. C1 [Rutqvist, J.; Birkholzer, J. T.; Tsang, Chin-Fu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Rutqvist, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90-1116, Berkeley, CA 94720 USA. EM Jrutqvist@lbl.gov RI Birkholzer, Jens/C-6783-2011; Rutqvist, Jonny/F-4957-2015 OI Birkholzer, Jens/0000-0002-7989-1912; Rutqvist, Jonny/0000-0002-7949-9785 NR 22 TC 137 Z9 147 U1 6 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD FEB PY 2008 VL 45 IS 2 BP 132 EP 143 DI 10.1016/j.ijrmms.2007.04.006 PG 12 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA 270MA UT WOS:000253723700003 ER PT J AU Song, SJ Moon, JH Park, HS Dorris, SE Balachandran, U AF Song, S. -J. Moon, J. -H. Park, H. -S. Dorris, S. E. Balachandran, U. TI Fast proton conduction path in Ni-BaCe(0.8)Y(0.2)O2.9-delta SO IONICS LA English DT Article DE space charge potential; Ni-BCY; hydrogen separation membrane ID HYDROGEN PERMEABILITY; TRANSPORT-PROPERTIES; ELECTRICAL-PROPERTIES; STRONTIUM CERATE; DEFECT STRUCTURE; SPACE-CHARGE; SEPARATION; SRCE0.95EU0.05O3-DELTA; PERMEATION; MEMBRANE AB The effect of metal-to-oxide grain boundary layer in Ni-BaCe0.8Y0.2O3-delta (BCY) cermet membrane on hydrogen permeation was studied by applying the different size of oxide grain on Ni-BCY membranes. Two types of cermet membranes having different grain size of oxide were prepared by using different starting particle size of oxide powder. The hydrogen flux of coarse-oxide-grain membrane showed higher flux than that of small-oxide-grain membrane. It was understood that the negative potential at metal-to-oxide grain boundary, reference to the bulk oxide (phi(0) < phi(infinity) = 0), was developed, and the accumulation of the effectively positively charged protons may occur at the grain boundary layer (space charge layer), which may result in providing highly conductive proton path by shifting the charge neutrality condition from [OHO center dot] = [Y-Ce(/)] to [OHO center dot] = n. C1 [Song, S. -J.; Moon, J. -H.; Park, H. -S.] Chonnam Natl Univ, Sch Mat Sci & Engn, Kwangju 500757, South Korea. [Dorris, S. E.; Balachandran, U.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Song, SJ (reprint author), Chonnam Natl Univ, Sch Mat Sci & Engn, 300 Yongbong Dong, Kwangju 500757, South Korea. EM song@chonnam.ac.kr NR 23 TC 3 Z9 3 U1 2 U2 10 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0947-7047 J9 IONICS JI Ionics PD FEB PY 2008 VL 14 IS 1 BP 37 EP 42 DI 10.1007/s11581-007-0127-6 PG 6 WC Chemistry, Physical; Electrochemistry; Physics, Condensed Matter SC Chemistry; Electrochemistry; Physics GA 261PE UT WOS:000253091700006 ER PT J AU McLean, JS Ona, ON Majors, PD AF McLean, Jeffrey S. Ona, Ositadinma N. Majors, Paul D. TI Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy SO ISME JOURNAL LA English DT Article DE biofilm; diffusion; metabolism; NMR; Shewanella oneidensis; Streptococcus mutans ID BACTERIAL BIOFILMS; GENOME SEQUENCE; MASS-TRANSPORT; NMR; DIFFUSION; HYDRODYNAMICS; COMMUNITIES; RESISTANCE; REDUCTION; H-1-NMR AB Bacterial biofilms are complex, three-dimensional communities found nearly everywhere in nature and are also associated with many human diseases. Detailed metabolic information is critical to understand and exploit beneficial biofilms as well as combat anti biotic-resistant, disease-associated forms. However, most current techniques used to measure temporal and spatial metabolite profiles in these delicate structures are invasive or destructive. Here, we describe imaging, transport and metabolite measurement methods and their correlation for live, non-invasive monitoring of biofilm processes. This novel combination of measurements is enabled by the use of an integrated nuclear magnetic resonance (NMR) and confocal laser scanning microscope (CLSM). NMR methods provide macroscopic structure, metabolic pathway and rate data, spatially resolved metabolite concentrations and water diffusion profiles within the biofilm. In particular, current depth-resolved spectroscopy methods are applied to detect metabolites in 140-190nl volumes within biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1 and the oral bacterium implicated in caries disease, Streptococcus mutans strain UA159. The perfused sample chamber also contains a transparent optical window allowing for the collection of complementary fluorescence information using a unique, in-magnet CLSM. In this example, the entire three-dimensional biofilm structure was imaged using magnetic resonance imaging. This was then correlated to a fluorescent CLSM image by employing a green fluorescent protein reporter construct of S. oneidensis. Non-invasive techniques such as described here, which enable measurements of dynamic metabolic processes, especially in a depth-resolved fashion, are expected to advance our understanding of processes occurring within biofilm communities. C1 [McLean, Jeffrey S.] J Craig Venter Inst, La Jolla, CA 92037 USA. [Ona, Ositadinma N.; Majors, Paul D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP McLean, JS (reprint author), J Craig Venter Inst, 111 49 N Torrey Pines Rd,Suite 220, La Jolla, CA 92037 USA. EM jmclean@jcvi.org RI McLean, Jeffrey/A-8014-2012 OI McLean, Jeffrey/0000-0001-9934-5137 FU NIDCR NIH HHS [R21 DE017232-02, R21 DE017232, R21 DE017232-01A2] NR 40 TC 42 Z9 42 U1 3 U2 30 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD FEB PY 2008 VL 2 IS 2 BP 121 EP 131 DI 10.1038/ismej.2007.107 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 267ES UT WOS:000253492900001 PM 18253132 ER PT J AU Martin, CD Meng, Y Prakapenka, V Parise, JB AF Martin, C. David Meng, Yue Prakapenka, Vitali Parise, John B. TI Gasketing optimized for large sample volume in the diamond anvil cell: first application to MgGeo(3) and implications for structural systematics of the perovskite to post-perovskite transition SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID EARTHS LOWERMOST MANTLE; X-RAY-DIFFRACTION; PHASE-TRANSITION; HIGH-PRESSURES; MGSIO3 PEROVSKITE; BOUNDARY; DEFORMATION; DISTORTION; GEOMETRY; EQUATION AB Structure models of MgGeO3 post-perovskite (Cmcm) are presented, along with a structure survey, demonstrating that all perovskite, post-perovskite and CaIrO3-type structures (ABX(3)) have specific ranges of the volume ratio between cation-centered polyhedra (V-A:V-B). The quality of the reported diffraction data and MgGeO3 structure models is enhanced via implementation of a new graphite gasket for the diamond anvil cell, which stabilizes a larger sample volume, improving powder statistics during X-ray diffraction, and via the thermal insulation required to achieve ultra-high temperatures while laser-heating samples at pressures near 100 GPa. The structure survey supports the theory that the pressure-temperature conditions under which the perovskite/post-perovskite phase transition occurs can be estimated by extrapolating the change in VA:VB to a value of 4, which corresponds to a maximum tilt of BX6 octahedra in the perovskite structure (Pbnm) where inter-octahedral anion-anion distances match the average intra-octahedral anion-anion distance. Once these short inter-octahedral distances between anions are reached in the perovskite structure, further tilting of octahedra and decrease of the V-A:V-B ratio does not occur, driving the transition to post-perovskite structure as pressure is increased. C1 [Martin, C. David; Parise, John B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Meng, Yue] Carnegie Inst Sci, HPCAT, Argonne, IL 60439 USA. [Prakapenka, Vitali] Univ Chicago, CARS, Argonne, IL 60439 USA. [Parise, John B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Martin, CD (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM martin@anl.gov NR 45 TC 6 Z9 6 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2008 VL 41 BP 38 EP 43 DI 10.1107/S0021889807050029 PN 1 PG 6 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 270KJ UT WOS:000253719400006 ER PT J AU Lee, B Lo, CT Thiyagarajan, P Lee, DR Niu, Z Wang, Q AF Lee, Byeongdu Lo, Chieh-Tsung Thiyagarajan, P. Lee, Dong R. Niu, Zhongwei Wang, Qian TI Structural characterization using the multiple scattering effects in grazing-incidence small-angle X-ray scattering SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID THIN-FILMS; STANDING WAVES; APPROXIMATION; INTERFERENCE; MULTILAYERS; SURFACES; GISAXS; LAYERS AB The multiple scattering effects present in grazing-incidence small-angle X-ray scattering (GISAXS) data and interference between them are addressed theoretically as well as experimentally with measurement of a series of patterns at different incident angles, referred to as 'incident-angle-resolved GISAXS' (IAR-GISAXS). X-ray reflectivity (XR), GISAXS and IAR-GISAXS of virus particles on Si-substrate supported-polystyrene films have been measured and all the data have been analyzed with appropriate formalisms. It was found that under certain conditions it is possible to extract the correct structural features of the materials from the GISAXS/IAR-GISAXS data using the kinematic SAXS formalisms, without the need to use the distorted-wave Born approximation. Furthermore, the Kiessig fringes in GISAXS enable the measurement of the average distance between the particle and the substrate, similar to the measurement of film thickness using the fringes in the XR data. It is believed that the methods developed here will expand the application of GISAXS as they enable the application of model-independent and kinematic SAXS theories to nanostructured two-dimensional ordered films. C1 [Lee, Byeongdu; Lo, Chieh-Tsung; Thiyagarajan, P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Lee, Dong R.] POSTECH, Pohang Accelerator Lab, Pohang 790784, South Korea. [Niu, Zhongwei] Univ S Carolina, Dept Chem & Biochem & Nanoctr, Columbia, SC 29208 USA. RP Lee, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM blee@aps.anl.gov RI niu, zhongwei/C-7671-2011; OI Wang, Qian/0000-0002-2149-384X; Lee, Byeongdu/0000-0003-2514-8805 NR 28 TC 13 Z9 13 U1 0 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2008 VL 41 BP 134 EP 142 DI 10.1107/S0021889807051345 PN 1 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 270KJ UT WOS:000253719400017 ER PT J AU Gonzalez, A Moorhead, P McPhillips, SE Song, J Sharp, K Taylor, JR Adams, PD Sauter, NK Soltis, SM AF Gonzalez, A. Moorhead, P. McPhillips, S. E. Song, J. Sharp, K. Taylor, J. R. Adams, P. D. Sauter, N. K. Soltis, S. M. TI Web-Ice: integrated data collection and analysis for macromolecular crystallography SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID DIFFRACTION DATA; CRYSTALS; SYSTEM; SOFTWARE AB New software tools are introduced to facilitate diffraction experiments involving large numbers of crystals. While existing programs have long provided a framework for lattice indexing, Bragg spot integration, and symmetry determination, these initial data processing steps often require significant manual effort. This limits the timely availability of data analysis needed for high-throughput procedures, including the selection of the best crystals from a large sample pool, and the calculation of optimal data collection parameters to assure complete spot coverage with minimal radiation damage. To make these protocols more efficient, a network of software applications and application servers has been developed, collectively known as Web-Ice. When the package is installed at a crystallography beamline, a programming interface allows the beamline control software (e.g. Blu-Ice, DCSS) to trigger data analysis automatically. Results are organized based on a list of samples that the user provides, and are examined within a Web page, accessible both locally at the beamline and remotely. Optional programming interfaces permit the user to control data acquisition through the Web browser. The system as a whole is implemented to support multiple users and multiple processors, and can be expanded to provide additional scientific functionality. Web-Ice has a distributed architecture consisting of several stand-alone software components working together via a well defined interface. Other synchrotrons or institutions may integrate selected components or the whole of Web-Ice with their own data acquisition software. Updated information about current developments may be obtained at http://smb.slac.stanford.edu/research/developments/webice. C1 [Gonzalez, A.; Moorhead, P.; McPhillips, S. E.; Song, J.; Sharp, K.; Soltis, S. M.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Taylor, J. R.; Adams, P. D.] Berkeley Ctr Struct Biol, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Taylor, J. R.; Adams, P. D.; Sauter, N. K.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Gonzalez, A (reprint author), Stanford Synchrotron Radiat Lab, 2575 Sand Hill Rd,MS99, Menlo Pk, CA 94025 USA. EM ana@slac.stanford.edu RI Sauter, Nicholas/K-3430-2012; Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 NR 25 TC 57 Z9 57 U1 0 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2008 VL 41 BP 176 EP 184 DI 10.1107/S0021889807057822 PN 1 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 270KJ UT WOS:000253719400022 ER PT J AU Andersa, A Andersson, J Ehiasarian, A AF Andersa, Andre Andersson, Joakim Ehiasarian, Arutiun TI High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering (vol 102, art no 113303, 2007) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 [Andersa, Andre; Andersson, Joakim] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ehiasarian, Arutiun] Sheffield Hallam Univ, Mat & Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England. RP Andersa, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009 OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505 NR 1 TC 16 Z9 17 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 1 PY 2008 VL 103 IS 3 AR 039901 DI 10.1063/1.2875523 PG 1 WC Physics, Applied SC Physics GA 263SZ UT WOS:000253238100097 ER PT J AU Chen, PT Sun, Y Kim, E McIntyre, PC Tsai, W Garner, M Pianetta, P Nishi, Y Chui, CO AF Chen, P. T. Sun, Y. Kim, E. McIntyre, P. C. Tsai, W. Garner, M. Pianetta, P. Nishi, Y. Chui, C. O. TI HfO(2) gate dielectric on (NH(4))(2)S passivated (100) GaAs grown by atomic layer deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SYNCHROTRON-RADIATION PHOTOEMISSION; GALLIUM-ARSENIDE; GAAS(100); SURFACES; FILMS; OXIDE; MODEL AB The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH(4))(2)S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As(2)O(3) formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out diffusion into the hafnia film were observed after a 450 degrees C postdeposition anneal and may be the origins for the electrically active defects. Transmission electron microscopy cross section images showed thicker HfO(2) films for a given precursor exposure on sulfur treated GaAs versus the nontreated sample. In addition, the valence-band and the conduction-band offsets at the HfO(2)/GaAs interface were deduced to be 3.18 eV and a range of 0.87-1.36 eV, respectively. It appears that HCl+(NH(4))(2)S treatments provide a superior chemical passivation for GaAs and initial surface for atomic layer deposition. (c) 2008 American Institute of Physics. C1 [Chen, P. T.; Kim, E.; McIntyre, P. C.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Sun, Y.; Pianetta, P.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Tsai, W.; Garner, M.] Intel Corp, Santa Clara, CA 95052 USA. [Nishi, Y.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Chui, C. O.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. RP Chen, PT (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM jptchen@stanford.edu RI Chui, Chi On/F-1754-2015 OI Chui, Chi On/0000-0001-9413-2511 NR 26 TC 51 Z9 51 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 1 PY 2008 VL 103 IS 3 AR 034106 DI 10.1063/1.2838471 PG 6 WC Physics, Applied SC Physics GA 263SZ UT WOS:000253238100054 ER PT J AU Melnichenko, YB Wignall, GD AF Melnichenko, Yuri B. Wignall, George D. TI Small-angle neutron scattering in materials science: Recent practical applications (vol 102, art no 021101, 2007) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 [Melnichenko, Yuri B.; Wignall, George D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Melnichenko, YB (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM yui@ornl.gov NR 2 TC 1 Z9 1 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 1 PY 2008 VL 103 IS 3 AR 039902 DI 10.1063/1.2840127 PG 1 WC Physics, Applied SC Physics GA 263SZ UT WOS:000253238100098 ER PT J AU Jordanova, V Roussev, I Papitashvili, V AF Jordanova, Vania Roussev, Ilia Papitashvili, Vladimir TI International Symposium on Recent Observations and Simulations of the Sun-Earth System (ISROSES), Varna, Bulgaria, 17-22 September, 2006 - Preface SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Editorial Material C1 [Jordanova, Vania] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Roussev, Ilia] Inst Astron, Honolulu, HI USA. [Papitashvili, Vladimir] Univ Michigan, Ann Arbor, MI 48109 USA. RP Jordanova, V (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM vania@lanl.gov; iroussev@ifa.hawaii.edu; papita@umich.edu RI Roussev, Ilia/E-9141-2011 NR 0 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD FEB PY 2008 VL 70 IS 2-4 BP 193 EP 194 DI 10.1016/j.jastp.2007.09.009 PG 2 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 276JN UT WOS:000254137200001 ER PT J AU Farrugia, CJ Gratton, FT Jordanova, VK Matsui, H Muhlbachler, S Torbert, RB Ogilvie, KW Singer, HJ AF Farrugia, C. J. Gratton, F. T. Jordanova, V. K. Matsui, H. Muehlbachler, S. Torbert, R. B. Ogilvie, K. W. Singer, H. J. TI Tenuous solar winds: Insights on solar wind-magneto sphere interactions SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article; Proceedings Paper CT International Symposium on Recent Observations and Simulations of the Sun-Earth System (ISROSES) CY SEP 17-22, 2006 CL Varna, BULGARIA DE low density solar wind; dayside erosion; quiet-time ring current constants; magnetosheath waves ID PLASMA INSTRUMENT; POLAR; EQUATORIAL; SPACECRAFT; ELECTRONS; EROSION; RING AB During solar cycle 23 quasi-dropouts of the solar wind (density < 1 cm(-3)) were observed. These tenuous winds allow us to probe properties of the magnetosphere and its coupling to the solar wind which would otherwise be obscured by the effect of high density. We focus on five areas which provided new insights into the response of geospace to solar wind variations: (i) the magnetospheric magnetic configuration; (ii) the polar rain; (iii) dayside flux erosion; (iv) magnetosheath waves; and (v) ring current constants. We find: (i) the geostationary field had dipolar strength and was inclined by <= 5 degrees to the dipolar direction; (ii) the solar wind strahl, and consequently the polar rain, were intensified; (iii) the depression of the geostationary field (Delta B-GS) due to dayside flux erosion could be measured and was related to IMF B-2 by Delta B-GS -2.8 + 2.3 B-z (nT); (iv) right-hand electromagnetic ion cyclotron waves were excited alone in the magnetosheath and were generated directly from the temperature anisotropy of the solar wind; (v) ring and magnetopause currents decreased to asymptotic values of 5 and 3 nT, respectively, which are substantially smaller than quiet-time values obtained from statistics. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Farrugia, C. J.; Matsui, H.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Gratton, F. T.] UBA, CONICET, FCEyN, INFIP, Buenos Aires, DF, Argentina. [Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Muehlbachler, S.] Max Planck Inst Sonnensyst Forsch, Kathlenburg, Lindau, Germany. [Ogilvie, K. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Singer, H. J.] NOAA, Space Environm Ctr, Boulder, CO USA. RP Farrugia, CJ (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM charlie.farrugia@unh.edu OI Jordanova, Vania/0000-0003-0475-8743 NR 19 TC 1 Z9 1 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD FEB PY 2008 VL 70 IS 2-4 BP 371 EP 376 DI 10.1016/j.jastp.2007.08.032 PG 6 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 276JN UT WOS:000254137200023 ER PT J AU Zaharia, S Jordanova, VK Thomsen, MF Reeves, GD AF Zaharia, Sorin Jordanova, V. K. Thomsen, M. F. Reeves, G. D. TI Self-consistent geomagnetic storm simulation: The role of the induced electric fields SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article; Proceedings Paper CT International Symposium on Recent Observations and Simulations of the Sun-Earth System (ISROSES) CY SEP 17-22, 2006 CL Varna, BULGARIA DE geomagnetic storms; inner magnetosphere; self-consistent model; particle acceleration; electric fields ID MODEL AB We employ a recently developed 2-way (self-consistent) coupling between a kinetic ring current model and a 3-D plasma force-balance model to simulate the inner magnetosphere during a geomagnetic storm. We find notable differences in the self-consistent results compared to those from the kinetic model with a dipole magnetic field (with the same particle boundary conditions and electric fields). In addition to large depressions in the night-side magnetic field compared to dipolar, we also find lower density and perpendicular plasma pressure in the self-consistent case, as well as localized regions of pressure peaks and enhanced plasma beta on the night side. There is also a dichotomy between the energization of high and low-pitch angle particles, respectively, with the latter energized significantly more than in a dipole field. Finally, we describe a method for computing the electric fields induced by the time change of the self-consistent magnetic fields; for a moderate storm, we find that while the induced electric fields are in general relatively weak compared to the convective ones, at some local times and near the peak of storm activity they can be important. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Zaharia, Sorin; Jordanova, V. K.; Thomsen, M. F.; Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zaharia, S (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM szaharia@lanl.gov RI Reeves, Geoffrey/E-8101-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Jordanova, Vania/0000-0003-0475-8743 NR 24 TC 5 Z9 5 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD FEB PY 2008 VL 70 IS 2-4 BP 511 EP 518 DI 10.1016/j.jastp.2007.08.067 PG 8 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 276JN UT WOS:000254137200041 ER PT J AU Puhl-Quinn, PA Matsui, H Jordanova, VK Khotyaintsev, Y Lindqvist, PA AF Puhl-Quinn, P. A. Matsui, H. Jordanova, V. K. Khotyaintsev, Y. Lindqvist, P. -A. TI An effort to derive an empirically based, inner-magnetospheric electric field model: Merging Cluster EDI and EFW data SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article; Proceedings Paper CT International Symposium on Recent Observations and Simulations of the Sun-Earth System (ISROSES) CY SEP 17-22, 2006 CL Varna, BULGARIA DE inner magnetosphere; electric fields; current system; plasma convection; instrumentation for space plasma physics; magnetosphere ID INTERPLANETARY MAGNETIC-FIELD; ASYMMETRIC RING CURRENT; PLASMA SHEET ACCESS; SOLAR-WIND; POTENTIAL PATTERNS; IMF-DEPENDENCE; LARGE-SCALE; CONVECTION; STORM; IONOSPHERE AB A key ingredient for modelling many inner-magnetospheric processes is the realistic representation of the spatio-temporal dynamics of the inner-magnetospheric electric field, or, IMEF The Cluster Mission provides a unique opportunity to construct an IMEF model using electric field measurements from both the electron drift instrument (EDI) and the electric fields and waves instrument (EFW). A superset of IMEF data is formed by merging EDI and EFW data. Challenges presented by the merging process include the handling of compromised perpendicular electric field (E-L) calculations, electric field offsets, scaling problems, and spurious fields. The present goal is to produce the highest quality merged IMEF data set possible which is minimally affected by these issues. Preliminary investigation of the merging process on Cluster I for the years 2001-2003 has revealed that merging is a worthwhile exercise. The data sets are shown to be complementary, and the IMEF merged data set is superior to either data set alone in terms of improved spatial coverage, and coverage of a wider range of geomagnetic activity levels. Preliminary use of the merged IMEF data set to construct a parameterized, equatorial, electric field model for the inner magnetosphere, the UNH-IMEF model, is also presented. The electric field morphology produced by this preliminary version of the UNH-IMEF model shows the expected sensitivity to IMF orientation. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Puhl-Quinn, P. A.; Matsui, H.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Khotyaintsev, Y.] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden. [Lindqvist, P. -A.] Royal Inst Technol, SE-10044 Stockholm, Sweden. RP Puhl-Quinn, PA (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM pamela.puhlquinn@unh.edu RI Khotyaintsev, Yuri/C-4745-2008; Lindqvist, Per-Arne/G-1221-2016; OI Lindqvist, Per-Arne/0000-0001-5617-9765; Jordanova, Vania/0000-0003-0475-8743 NR 52 TC 10 Z9 10 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD FEB PY 2008 VL 70 IS 2-4 BP 564 EP 573 DI 10.1016/j.jastp.2007.08.069 PG 10 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 276JN UT WOS:000254137200048 ER PT J AU Rodrigues, JV Victor, BL Huber, H Saraiva, LM Soares, CM Cabelli, DE Teixeira, M AF Rodrigues, Joao V. Victor, Bruno L. Huber, Harald Saraiva, Ligia M. Soares, Claudio M. Cabelli, Diane E. Teixeira, Miguel TI Superoxide reduction by Nanoarchaeum equitans neelaredoxin, an enzyme lacking the highly conserved glutamate iron ligand SO JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY LA English DT Article DE superoxide reductase; neelaredoxin; desulfoferrodoxin; Nanoarchaeum; detoxification ID DESULFOARCULUS-BAARSII; DESULFOVIBRIO-VULGARIS; TREPONEMA-PALLIDUM; ACTIVE-SITE; ARCHAEOGLOBUS-FULGIDUS; PYROCOCCUS-FURIOSUS; PULSE-RADIOLYSIS; RUBREDOXIN OXIDOREDUCTASE; OXYGEN DETOXIFICATION; PROTEIN AB Superoxide reductases (SORs) are antioxidant enzymes present in many prokaryotes, either anaerobes or microaerophiles, which detoxify superoxide by reducing it to hydrogen peroxide. The reaction mechanism involves the diffusion-limited encounter of superoxide with the reduced iron site and concomitant formation of an Fe3+-(hydro)peroxo adduct that, upon protonation, leads to the formation of hydrogen peroxide. By the end of this process, a glutamate residue coordinates the ferric ion, acting as a sixth ligand. Although this residue is able to shuttle protons to the intermediate at low pH, it seems to have a minor relevance to the overall reduction mechanism. Nevertheless, this ligand is conserved in most SORs known thus far, with the notable exception of neelaredoxin from Nanoarchaeum equitans. The protein of this organism was cloned and overexpressed, and its spectroscopic characterization revealed distinct pH-equilibrium properties in comparison with those of glutamate-containing SORs. A three-dimensional model of this protein was generated in an effort to identify structural properties that could explain these distinct features. Pulse radiolysis measurements showed that the efficiency of this enzyme in reducing superoxide is comparable to that of glutamate-containing SORs, thus definitely ruling out the requirement for such a ligand in the reduction mechanism. C1 [Rodrigues, Joao V.; Victor, Bruno L.; Saraiva, Ligia M.; Soares, Claudio M.; Teixeira, Miguel] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-2781901 Oeiras, Portugal. [Huber, Harald] Univ Regensburg, Lehrstuhl Mikrobiol, D-93053 Regensburg, Germany. [Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Teixeira, M (reprint author), Univ Nova Lisboa, Inst Tecnol Quim & Biol, Av Republ EAN, P-2781901 Oeiras, Portugal. EM miguel@itqb.unl.pt RI Rodrigues, Joao/B-4235-2008; Victor, Bruno/C-2013-2008; Soares, Claudio/E-2675-2012; Saraiva, Ligia/H-8537-2012; Teixeira, Miguel/A-9098-2011; Rodrigues, Joao/B-4877-2016 OI Rodrigues, Joao/0000-0002-5605-656X; Soares, Claudio/0000-0003-1154-556X; Saraiva, Ligia/0000-0002-0675-129X; Teixeira, Miguel/0000-0003-4124-6237; Rodrigues, Joao/0000-0002-5605-656X NR 51 TC 15 Z9 15 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0949-8257 J9 J BIOL INORG CHEM JI J. Biol. Inorg. Chem. PD FEB PY 2008 VL 13 IS 2 BP 219 EP 228 DI 10.1007/s00775-007-0313-z PG 10 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 255QV UT WOS:000252673400006 PM 17968598 ER PT J AU Harris, HH Vogt, S Eastgate, H Lay, PA AF Harris, Hugh H. Vogt, Stefan Eastgate, Harold Lay, Peter A. TI A link between copper and dental caries in human teeth identified by X-ray fluorescence elemental mapping SO JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY LA English DT Article DE dental caries; copper; X-ray fluorescence imaging; human teeth ID MICROPROBE AB Quantitative X-ray fluorescence imaging of sections of human teeth revealed an increased concentration of copper and zinc in carious regions of dentine compared with unaffected portions of the tooth. Higher-resolution images provided strong evidence that the copper was transported and localized mainly in the dentinal tubules. While similar levels of zinc were found in these areas and concentrated in the tubules, zinc was also more evident in the hydroxyapatite, and the increase in zinc levels compared with the levels in background (normal) areas was less than that for copper. These results suggest a role for copper and zinc in the formation and progression of dental caries and present a potential point of intervention for treatment. C1 [Harris, Hugh H.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Harris, Hugh H.; Lay, Peter A.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Eastgate, Harold] Eastmac Pty Ltd, Knoxfield, Vic 3180, Australia. RP Harris, HH (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. EM hugh.harris@adelaide.edu.au RI Harris, Hugh/A-4983-2008; Lay, Peter/B-4698-2014; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Lay, Peter/0000-0002-3232-2720; Harris, Hugh/0000-0002-3472-8628 NR 13 TC 17 Z9 17 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0949-8257 J9 J BIOL INORG CHEM JI J. Biol. Inorg. Chem. PD FEB PY 2008 VL 13 IS 2 BP 303 EP 306 DI 10.1007/s00775-007-0321-z PG 4 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 255QV UT WOS:000252673400013 PM 18034269 ER PT J AU Varghese, SS Frankel, SH Fischer, PF AF Varghese, Sonu S. Frankel, Steven H. Fischer, Paul F. TI Modeling transition to turbulence in eccentric stenotic flows SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID MODERATE REYNOLDS-NUMBERS; PULSATILE FLOW; STENOSED TUBE; BLOOD-FLOW; VESSELS; STEADY; ATHEROSCLEROSIS; ARTERIES AB Mean flow predictions obtained from a host of turbulence models were found to be in poor agreement with recent direct numerical simulation results for turbulent flow distal to an idealized eccentric stenosis. Many of the widely used turbulence models, including a large eddy simulation model, were unable to accurately capture the poststenotic transition to turbulence. The results suggest that efforts toward developing more accurate turbulence models for low-Reynolds number, separated transitional flows are necessary before such models can be used confidently under hemodynamic conditions where turbulence may develop. C1 [Varghese, Sonu S.; Frankel, Steven H.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Fischer, Paul F.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Varghese, SS (reprint author), Purdue Univ, Sch Mech Engn, 585 Purdue Mall, W Lafayette, IN 47907 USA. NR 28 TC 15 Z9 15 U1 1 U2 8 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0148-0731 J9 J BIOMECH ENG-T ASME JI J. Biomech. Eng.-Trans. ASME PD FEB PY 2008 VL 130 IS 1 AR 014503 DI 10.1115/1.28008321 PG 7 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 293VY UT WOS:000255364700018 PM 18298194 ER PT J AU Koo, J Park, S Satija, S Tikhonov, A Sokolov, JC Rafailovich, MH Koga, T AF Koo, Jaseung Park, Seongchan Satija, Sushil Tikhonov, Aleksey Sokolov, Jonathan C. Rafailovich, Miriam H. Koga, Tadanori TI Characterization of Langmuir-Blodgett organoclay films using X-ray reflectivity and atomic force microscopy SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE organoclay; Langmuir-Blodgett technique; X-ray reflectivity; cation exchange capacity ID NANOCOMPOSITES; CLAY; BLENDS; MORPHOLOGY; RHEOLOGY AB Monolayers of organoclay platelets were formed at the air/water interface using the Langmuir technique and were then investigated either by in situ or lifted onto Si wafers and studied ex situ, using X-ray reflectivity (XR) methods. The XR data showed that the surfactant molecules on the clay platelets formed a dense, self-assembled monolayer where the molecules were tilted at an angle of 35 degrees +/- 6 degrees from the normal to the dry clay surface. The surfactant layers only covered a fraction of the clay platelet surface area, where the fractional surface coverage for the three clays studied (C6A, C15A, and C20A) was found to be 0.90, 0.86, and 0.73, respectively. These values were significantly higher than those estimated from the cation exchange capacity (CEC) values. Rather than being uniformly distributed, the surfactant was clustered in patchy regions, indicating that the surface of the clay platelets had both polar and non-polar segments. This heterogeneity confirmed the hypothesis which was previously invoked to explain the distribution of the clay platelets in melt mixed homopolymer and polymer blend nanocomposites. (c) 2007 Elsevier C1 [Koo, Jaseung; Park, Seongchan; Sokolov, Jonathan C.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Satija, Sushil] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Tikhonov, Aleksey; Rafailovich, Miriam H.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Tikhonov, Aleksey] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. [Koga, Tadanori] SUNY Stony Brook, Chem & Mol Engn Program, Stony Brook, NY 11794 USA. RP Koo, J (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM jkoo@ic.sunysb.edu RI Koga, Tadanori/A-4007-2010; Tikhonov, Aleksey/N-1111-2016 NR 24 TC 9 Z9 10 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD FEB 1 PY 2008 VL 318 IS 1 BP 103 EP 109 DI 10.1016/j.jcis.2007.09.079 PG 7 WC Chemistry, Physical SC Chemistry GA 240AL UT WOS:000251559300014 PM 17942107 ER PT J AU Matsubara, T Dupuis, M Aida, M AF Matsubara, Toshiaki Dupuis, Michel Aida, Misako TI An insight into the environmental effects of the pocket of the active site of the enzyme. Ab initio ONIOM-molecular dynamics (MD) study on cytosine deaminase SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE ab initio ONIOM-molecular dynamics (MD) method; cytosine deaminase; active site; environmental effects; thermal motion ID FREE-ENERGY PERTURBATION; MO+MM IMOMM METHOD; CYTIDINE DEAMINASE; CRYSTAL-STRUCTURE; GENE-THERAPY; YEAST; WATER; MECHANISM; EVOLUTION; CANCER AB We applied the ONIOM-molecular dynamics (MD) method to cytosine deaminase to examine the environmental effects of the amino acid residues in the pocket of the active site on the substrate taking account of their thermal motion. The ab initio ONIOM-MD simulations show that the substrate uracil is strongly perturbed by the amino acid residue Ile33, which sandwiches the uracil with His62, through the steric contact due to the thermal motion. As a result, the magnitude of the thermal oscillation of the potential energy and structure of the substrate uracil significantly increases. (C) 2007 Wiley Periodicals, Inc. C1 [Matsubara, Toshiaki; Aida, Misako] Hiroshima Univ, Ctr Quantum Life Sci, Higashihiroshima 7398530, Japan. [Matsubara, Toshiaki; Aida, Misako] Hiroshima Univ, Grad Sch Sci, Higashihiroshima 7398530, Japan. [Dupuis, Michel] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Matsubara, T (reprint author), Hiroshima Univ, Ctr Quantum Life Sci, Higashihiroshima 7398530, Japan. EM matsu05@hiroshima-u.ac.jp RI Aida, Misako/D-1670-2010 OI Aida, Misako/0000-0001-8788-1071 NR 24 TC 7 Z9 7 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PD FEB PY 2008 VL 29 IS 3 BP 458 EP 465 DI 10.1002/jcc.20805 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 258JP UT WOS:000252864500014 PM 17663441 ER PT J AU Ripoll, JF Wray, AA AF Ripoll, J.-F. Wray, A. A. TI A 3-D multiband closure for radiation and neutron transfer moment models SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE radiative transfer; neutron transfer; moment models; maximum entropy closure; multi-band models; ODF; multi-bin models ID ENTROPY EDDINGTON FACTORS; ABSORPTION-COEFFICIENTS; NUMERICAL SIMULATIONS; OPACITY DISTRIBUTION; TIME INTEGRATION; HEAT-TRANSFER; DIFFUSION; SOLAR; HYDRODYNAMICS; CONVECTION AB We derive a 3D multi-band moment model and its associated closure for radiation and neutron transfer. The new closure is analytical and nonlinear but very simple. Its derivation is based on the maximum entropy closure and assumes a Wien shape for the intensity when used in the Eddington tensor. In the multi-band approach, the opacity is re-arranged (binned) according to the opacity value. The multi-band model propagates identically all photons/neutrons having the same opacity. This has been found to be a good approximation on average since the transport is mostly determined by the opacities and less by the frequencies. This same concept is used to derive the closure. We prove on two complex test atmospheres (the solar atmosphere and an artificial atmosphere) that the closure we have derived has good accuracy. All approximations made in deriving the model have been carefully numerically checked and quantified. Published by Elsevier Inc. C1 [Ripoll, J.-F.] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Wray, A. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ripoll, JF (reprint author), Los Alamos Natl Lab, Space & Remote Sensing Sci ISR 2, MS D436,POB 1663, Los Alamos, NM 87545 USA. EM ripoll@lanl.gov; wray@nas.nasa.gov NR 65 TC 6 Z9 6 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2008 VL 227 IS 4 BP 2212 EP 2237 DI 10.1016/j.jcp.2007.08.028 PG 26 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 268SA UT WOS:000253598500004 ER PT J AU Donev, A Garcia, AL Alder, BJ AF Donev, Aleksandar Garcia, Alejandro L. Alder, Berni J. TI Stochastic Event-Driven Molecular Dynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE polymer suspension; complex flow; DSMC; event-driven molecular dynamics ID SIMULATION MONTE-CARLO; CONSISTENT BOLTZMANN ALGORITHM; NONSPHERICAL HARD PARTICLES; SINGLE TETHERED POLYMER; SHEAR-FLOW; COLLISION DYNAMICS; NUMERICAL-SOLUTION; ENSKOG EQUATION; FLUID; DNA AB A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer chains suspended in a solvent. SEDMD combines event-driven molecular dynamics (EDMD) with the Direct Simulation Monte Carlo (DSMC) method. The polymers are represented as chains of hard-spheres tethered by square wells and interact with the solvent particles with hard-core potentials. The algorithm uses EDMD for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in EDMD, rather, the momentum and energy exchange in the solvent is determined stochastically using DSMC. The coupling between the solvent and the solute is consistently represented at the particle level retaining hydrodynamic interactions and thermodynamic fluctuations. However, unlike full MD simulations of both the solvent and the solute, in SEDMD the spatial structure of the solvent is ignored. The SEDMD algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard-wall subjected to uniform shear. SEDMD closely reproduces results obtained using traditional EDMD simulations with two orders of magnitude greater efficiency. Results question the existence of periodic (cycling) motion of the polymer chain. (c) 2007 Elsevier Inc. All rights reserved. C1 [Donev, Aleksandar; Alder, Berni J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Garcia, Alejandro L.] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA. RP Donev, A (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM aleks.donev@gmail.com NR 58 TC 17 Z9 17 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2008 VL 227 IS 4 BP 2644 EP 2665 DI 10.1016/j.jcp.2007.11.010 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 268SA UT WOS:000253598500024 ER PT J AU Coltrin, ME Hsu, JWP Scrymgeour, DA Creighton, JR Simmons, NC Matzke, CM AF Coltrin, Michael E. Hsu, Julia W. P. Scrymgeour, David A. Creighton, J. Randall Simmons, Nell C. Matzke, Carolyn M. TI Chemical kinetics and mass transport effects in solution-based selective-area growth of ZnO nanorods SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE diffusion; growth models; mass transfer; nanostructures; growth from solutions; zinc compounds ID ROOM-TEMPERATURE; DEPOSITION; NANOSTRUCTURES; FILMS AB We present a combined experimental and modeling study of the dependence of solution-based zinc oxide (ZnO) selective-area growth rates on pattern dimension. Selective growth is achieved by patterning a portion of the substrate with an organic template that inhibits growth. The density of ZnO nanorods and the mass grown per unit area of exposed surface increases as the distance between the exposed growth regions is increased and as the width of the exposed lines is decreased. A 2-D model was developed to calculate selective growth at the exposed surface regions, the loss of reactant material due to a competing reaction in solution, liquid-phase and surface diffusive mass transport to (or on) the growth surface, and the ZnO growth reaction at the surface. To explain the experimental results, we found it necessary to include a reaction by-product in the chemistry model, the desorption of which is the rate limiting step. A relatively simple, three-step reaction mechanism, combined with the species mass transport model, provides a good, semi-quantitative description of the experimental observations in the selective-area growth of ZnO from supersaturated solutions. Published by Elsevier B.V. C1 [Coltrin, Michael E.; Hsu, Julia W. P.; Scrymgeour, David A.; Creighton, J. Randall; Simmons, Nell C.; Matzke, Carolyn M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Coltrin, ME (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mecoltr@sandia.gov RI Scrymgeour, David/C-1981-2008 NR 19 TC 13 Z9 13 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 1 PY 2008 VL 310 IS 3 BP 584 EP 593 DI 10.1016/j.jcrysgro.2007.11.030 PG 10 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 260NL UT WOS:000253016900013 ER PT J AU Chen, X Glans, PA Qiu, X Dayal, S Jennings, WD Smith, KE Burda, C Guo, J AF Chen, Xiaobo Glans, Per-Anders Qiu, Xiaofeng Dayal, Smita Jennings, Wayne D. Smith, Kevin E. Burda, Clemens Guo, Jinghua TI X-ray spectroscopic study of the electronic structure of visible-light responsive N-, C- and S-doped TiO2 SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE electronic structure; doped TiO2; X-ray absorption; X-ray emission; X-ray photoelectron ID NAA ZEOLITE MEMBRANE; PHOTOELECTRON-SPECTROSCOPY; TITANIUM-DIOXIDE; ABSORPTION-SPECTROSCOPY; PHOTOCATALYTIC ACTIVITY; SEMICONDUCTOR PHOTOCATALYSIS; POLARIZATION DEPENDENCE; SYNCHROTRON-RADIATION; EMISSION-SPECTROSCOPY; MICROWAVE-RADIATION AB The electronic origins of the visible-light response of N-, C- and S-doped TiO2 have been studied using X-ray absorption, X-ray emission, and X-ray photoelectron spectroscopies. New electronic states are observed in the bulk band gap, above the valence band edge of pure TiO2, which can be directly related to the visible-light absorption of the N-, C- and S-doped TiO2 materials. (C) 2007 Elsevier B.V. All rights reserved. C1 [Glans, Per-Anders; Guo, Jinghua] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chen, Xiaobo; Qiu, Xiaofeng; Dayal, Smita; Burda, Clemens] Case Western Reserve Univ, Dept Chem, Ctr Chem Dynam & Nanomat Res, Cleveland, OH 44106 USA. [Glans, Per-Anders; Smith, Kevin E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Jennings, Wayne D.] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. RP Guo, J (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jguo@lbl.gov RI Burda, Clemens/C-5107-2008; dayal, smita/F-2756-2011; Glans, Per-Anders/G-8674-2016 OI Burda, Clemens/0000-0002-7342-2840; NR 65 TC 85 Z9 88 U1 6 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD FEB PY 2008 VL 162 IS 2 BP 67 EP 73 DI 10.1016/j.elspec.2007.09.002 PG 7 WC Spectroscopy SC Spectroscopy GA 262ZB UT WOS:000253186300003 ER PT J AU Browder, T Ciuchini, M Gershon, T Hazumi, M Hurth, T Okada, Y Stocchi, A AF Browder, T. Ciuchini, M. Gershon, T. Hazumi, M. Hurth, T. Okada, Y. Stocchi, A. TI On the physics case of a super flavour factory SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE CP violation; B-physics; rare decays; weak decays ID LARGE TAN-BETA; STANDARD MODEL; BOUNDS AB We summarize the physics case of a high-luminosity e(+)e(-) flavour factory collecting an integrated luminosity of 50-75 ab(-1). Many New Physics sensitive measurements involving B and D mesons and tau leptons, unique to Super Flavour Factory, can be performed with excellent sensitivity to new particles with masses up to similar to 100 (or even similar to 1000) TeV. Flavour- and CP-violating couplings of new particles that may be discovered at the LHC can be measured in most scenarios, even in unfavourable cases assuming minimal flavour violation. Together with the LHC, a Super Flavour Factory, following either the Super KEKB or the SuperB proposal, could be soon starting the project of reconstructing the New Physics Lagrangian. C1 [Browder, T.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Ciuchini, M.] Univ Roma Tre, Ist Nazl Fis Nucl, I-00189 Rome, Italy. [Ciuchini, M.] Univ Roma Tre, Dept Fis, I-00189 Rome, Italy. [Gershon, T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Hazumi, M.; Okada, Y.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hurth, T.] CERN, Dept Phys, Theory Unit, CH-1211 Geneva, Switzerland. [Hurth, T.] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Hazumi, M.; Okada, Y.] Grad Univ Adv Studies, Dept Particle & Nucl Phys, Tsukuba, Ibaraki 3050801, Japan. [Stocchi, A.] Univ Paris 11, CNRS, Lab Accelerateur IN2P3, F-91898 Orsay, France. RP Browder, T (reprint author), Univ Hawaii Manoa, Dept Phys & Astron, 2505 Correa Rd,WAT 232, Honolulu, HI 96822 USA. EM teb@phys.hawaii.edu; ciuchini@roma3.infn.it; t.j.gershon@warwick.ac.uk; masashi.hazumi@kek.jp; tobias.hurth@cern.ch; yasuhiro.okada@kek.jp; stocchi@lal.in2p3.fr NR 36 TC 18 Z9 18 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2008 IS 2 AR 110 PG 24 WC Physics, Particles & Fields SC Physics GA 285GD UT WOS:000254764400002 ER PT J AU Craig, NJ AF Craig, Nathaniel J. TI ISS-flation SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE supersymmetry breaking; supersymmetry and duality; cosmology of theories beyond the SM ID DYNAMICAL SUPERSYMMETRY BREAKING; INFLATIONARY UNIVERSE SCENARIO; DENSITY PERTURBATIONS; SPLIT SUPERSYMMETRY; COSMOLOGY; SCALE; FLATNESS; HORIZON; VACUUM; MODELS AB Inflation may occur while rolling into the metastable supersymmetry-breaking vacuum of massive supersymmetric QCD. We explore the range of parameters in which slow-roll inflation and long-lived metastable supersymmetry breaking may be simultaneously realized. The end of slow-roll inflation in this context coincides with the spontaneous breaking of a global symmetry, which may give rise to significant curvature perturbations via inhomogenous preheating. Such spontaneous symmetry breaking at the end of inflation may give rise to observable non-gaussianities, distinguishing this scenario from more conventional models of supersymmetric hybrid inflation. C1 [Craig, Nathaniel J.] Stanford Linear Accelerator Ctr, Theory Grp, Menlo Pk, CA 94025 USA. [Craig, Nathaniel J.] Stanford Univ, Inst Theoret Phys, Palo Alto, CA 94306 USA. RP Craig, NJ (reprint author), Stanford Linear Accelerator Ctr, Theory Grp, Menlo Pk, CA 94025 USA. EM ncraig@stanford.edu NR 47 TC 11 Z9 11 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2008 IS 2 AR 059 PG 26 WC Physics, Particles & Fields SC Physics GA 285GD UT WOS:000254764400053 ER PT J AU De Fazio, F Feldmann, T Hurth, T AF De Fazio, Fulvia Feldmann, Thorsten Hurth, Tobias TI SCET sum rules for B -> P and B -> V transition form factors SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE heavy quark physics; QCD; B-physics ID COLLINEAR EFFECTIVE THEORY; MESON DISTRIBUTION AMPLITUDE; TO-LEADING ORDER; LARGE RECOIL; DECAYS; FACTORIZATION; SYMMETRY; ENERGY; QCD AB We investigate sum rules for heavy-to-light transition form factors at large recoil derived from correlation functions with interpolating currents for light pseudoscalar or vector fields in soft-collinear effective theory (SCET). We consider both, factorizable and non-factorizable contributions at leading power in the Lambda/m(b) expansion and to first order in the strong coupling constant alpha(s), neglecting contributions from 3-particle distribution amplitudes in the B-meson. We pay particular attention to various sources of parametric and systematic uncertainties. We also discuss certain form factor ratios where part of the hadronic uncertainties related to the B-meson distribution amplitude and to logarithmically enhanced alpha(s) corrections cancel. C1 [De Fazio, Fulvia] Sezione Bari, Ist Nazl Fis Nucl, Bari, Italy. [Feldmann, Thorsten] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Hurth, Tobias] CERN, Dept Phys, Div Theory, CH-1211 Geneva, Switzerland. [Hurth, Tobias] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP De Fazio, F (reprint author), Sezione Bari, Ist Nazl Fis Nucl, Via Orabona 4, Bari, Italy. EM Fulvia.Defazio@ba.infn.it; feldmann@hep.physik.uni-siegen.de; tobias.hurth@cern.ch NR 40 TC 16 Z9 16 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2008 IS 2 AR 031 PG 31 WC Physics, Particles & Fields SC Physics GA 285GD UT WOS:000254764400081 ER PT J AU Ellis, RK Zanderighi, G AF Ellis, R. Keith Zanderighi, Giulia TI Scalar one-loop integrals for QCD SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE NLO computations; QCD ID N-POINT INTEGRALS; FEYNMAN DIAGRAMS; D-DIMENSIONS; BOX; SINGULARITIES; AMPLITUDES; COLLISIONS; REDUCTION AB We construct a basis set of infra-red and/or collinearly divergent scalar oneloop integrals and give analytic formulas, for tadpole, bubble, triangle and box integrals, regulating the divergences (ultra-violet, infra-red or collinear) by regularization in D = 4 - 2 epsilon dimensions. For scalar triangle integrals we give results for our basis set containing 6 divergent integrals. For scalar box integrals we give results for our basis set containing 16 divergent integrals. We provide analytic results for the 5 divergent box integrals in the basis set which are missing in the literature. Building on the work of van Oldenborgh, a general, publicly available code has been constructed, which calculates both finite and divergent one-loop integrals. The code returns the coefficients of 1/epsilon(2), 1/epsilon(1) and 1/epsilon(0) as complex numbers for an arbitrary tadpole, bubble, triangle or box integral. C1 [Ellis, R. Keith] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Zanderighi, Giulia] Univ Oxford, Dept Phys, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. RP Ellis, RK (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM ellis@fnal.gov; g.zanderighi1@physics.ox.ac.uk NR 28 TC 169 Z9 169 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2008 IS 2 AR 002 PG 27 WC Physics, Particles & Fields SC Physics GA 285GD UT WOS:000254764400110 ER PT J AU Freitas, A Kong, K AF Freitas, Ayres Kong, Kyoungchul TI Two universal extra dimensions and spinless photons at the ILC SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE field theories in higher dimensions; beyond standard model ID DARK-MATTER AB We study the ILC phenomenology of Kaluza-Klein (KK) modes along two universal extra dimensions compactified on the chiral square. We compute production cross sections of various (1,0) particles at the ILC with root s = 1TeV, focusing on decays of KK-leptons and the KK partner of the hypercharge gauge boson down to the "spinless photon", which is the lightest KK particle. We contrast this model to one universal extra dimension with KK-photon (spin-1) and supersymmetry with neutralino (spin-1/2) or gravitino (spin3/2) dark matter. We also investigate the discovery potential for ( 1,1) KK bosons as s-channel resonances. C1 [Freitas, Ayres] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Kong, Kyoungchul] Fermilab Natl Accelerator Lab, Dept Phys Theor, Batavia, IL 60510 USA. RP Freitas, A (reprint author), Univ Chicago, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM afreitas@hep.anl.gov; kckong@fnal.gov NR 28 TC 19 Z9 19 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2008 IS 2 AR 068 PG 22 WC Physics, Particles & Fields SC Physics GA 285GD UT WOS:000254764400044 ER PT J AU Deshpande, A Wheeler, CM Hunt, WC Peyton, CL White, PS Valdez, YE Nolan, JP AF Deshpande, Alina Wheeler, Cosette M. Hunt, William C. Peyton, Cheri L. White, P. Scott Valdez, Yolanda E. Nolan, John P. TI Variation in HLA class I antigen-processing genes and susceptibility to human papillomavirus type 16 - Associated cervical cancer SO JOURNAL OF INFECTIOUS DISEASES LA English DT Article; Proceedings Paper CT 22nd International Congress of the International-Society-for-Analytical-Cytology CY MAY 22-27, 2004 CL Montpellier, FRANCE SP Ins Soc Analyt Cytol ID MAJOR HISTOCOMPATIBILITY COMPLEX; MHC CLASS-I; LINKAGE DISEQUILIBRIUM; MEIOTIC RECOMBINATION; DIABETES-MELLITUS; INTERFERON-GAMMA; TAP2 GENE; RISK; POLYMORPHISMS; TRANSPORTER AB Background. Persistent infection with human papillomavirus type 16 (HPV16) is a primary etiological factor for the development of cervical cancer. Genes involved in antigen processing influence both the repertoire of antigens presented by HPV16-infected cells and the nature of HPV16-specific immune responses. Genetic variation in these genes may affect protein structure and function and, consequently, the ability of an individual to clear HPV infection. Methods. Thirty-five single-nucleotide polymorphisms (SNPs) in 5 genes (LMP2, TAP1, LMP7, TAP2, and Tapasin) were investigated for association with susceptibility to HPV16-associated cervical cancer. Sequencing of these genes resulted in the discovery of 15 previously unreported SNPs. Microsphere-array flow cytometry-based genotyping was conducted on 787 samples from Hispanic and non-Hispanic white women (241 randomly selected control subjects, 205 HPV16-positive control subjects, and 341 HPV16-positive case subjects with cervical cancer). Results. For 9 SNPs, 8 of which had not previously been reported in the context of cervical cancer, there were statistically significant differences between the genotype distribution in case subjects and that in control subjects. Haplotype analysis of 3 haplotype blocks revealed 3 haplotypes with significant differences in frequency in case-control comparisons. Both HPV16-specific and non-type-specific differences in genotype distribution were seen. Conclusions. Genes involved in antigen processing for HLA class I presentation may contribute to susceptibility to cervical cancer. C1 [Deshpande, Alina] Los Alamos Natl Lab, Dec Applicat Div, Los Alamos, NM USA. [White, P. Scott; Valdez, Yolanda E.; Nolan, John P.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Wheeler, Cosette M.; Hunt, William C.; Peyton, Cheri L.] Univ New Mexico, Hlth Sci Ctr, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA. [Wheeler, Cosette M.; Hunt, William C.; Peyton, Cheri L.] Univ New Mexico, Hlth Sci Ctr, Dept Obstet & Gynecol, Albuquerque, NM 87131 USA. [Nolan, John P.] La Jolla Bioengn Inst, La Jolla, CA USA. RP Wheeler, CM (reprint author), Univ New Mexico, 1816 Sigma Chi Rd,Bldg 191, Albuquerque, NM 87131 USA. EM cwheeler@salud.unm.edu FU NCRR NIH HHS [RR01315, RR14101]; NIAID NIH HHS [AI07538, AI/CA32917]; NIBIB NIH HHS [EB03824] NR 50 TC 15 Z9 16 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0022-1899 J9 J INFECT DIS JI J. Infect. Dis. PD FEB 1 PY 2008 VL 197 IS 3 BP 371 EP 381 DI 10.1086/524300 PG 11 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 262EK UT WOS:000253131600008 PM 18248301 ER PT J AU Schorder, L Schmitz, CHJ Bachert, P AF Schoerder, Leif Schmitz, Christian H. J. Bachert, Peter TI Carnosine as molecular probe for sensitive detection of Cu(II) ions using localized H-1 NMR spectroscopy SO JOURNAL OF INORGANIC BIOCHEMISTRY LA English DT Article DE H-1 NMR spectroscopy; carnosine; Cu(II) chelation; relaxation transfer ID ALANYL-L-HISTIDINE; COPPER(II)-CARNOSINE COMPLEX; AQUEOUS-SOLUTION; SKELETAL-MUSCLE; METAL-COMPLEXES; IN-VIVO; ANSERINE; HOMOCARNOSINE; RELAXATION; EXCHANGE AB Complex formation of carnosine (Csn) with Cu(II) is suspected to be of significant biochemical importance and can be detected by NMR via ion-induced paramagnetic relaxation of Csn signals. Here, we present quantification of the sensitivity achieved with localized H-1 NMR spectroscopy at physiological pH and high ligand-to-metal ratios. While characterizing the highly effective relaxation transfer onto a huge Csn pool due to fast ligand exchange, it is demonstrated that a metal-to-ligand ratio of similar to 100 ppm suffices to reduce Csn signals by similar to 50% in vitro, thus making the dipeptide a sensitive probe for such ions. Variation of the donor accessibility reveals that the paramagnetic effect is transferred onto a similar to 1370-fold donor abundance for a given ion concentration. A method is presented to characterize such effective ligand exchange relaxation transfer. These studies focus on the monomer formation since comparison with H-1 NMR data of human calf muscle demonstrates that the dimer complex is insignificant in vivo. Observed line broadening in living tissue yields an upper limit of ca. 195 ppm for the Csn-related copper concentration in human skeletal muscle. (c) 2007 Elsevier Inc. All rights reserved. C1 [Schoerder, Leif] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Div Mat Sci, Berkeley, CA 94720 USA. [Schoerder, Leif; Bachert, Peter] Deutsch Krebsforschungszentrum, D-69126 Heidelberg, Germany. [Schmitz, Christian H. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Schorder, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Div Mat Sci, Berkeley, CA 94720 USA. EM schroeder@waugh.cchem.berkeley.edu RI Bohm, Christian/E-6103-2011; Schroder, Leif/H-6036-2011 OI Schroder, Leif/0000-0003-4901-0325 NR 33 TC 2 Z9 2 U1 2 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0162-0134 J9 J INORG BIOCHEM JI J. Inorg. Biochem. PD FEB PY 2008 VL 102 IS 2 BP 174 EP 183 DI 10.1016/j.jinorgbio.2007.07.033 PG 10 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 268BN UT WOS:000253553000003 ER PT J AU Abat, E Addy, TN Akesson, TP Alison, J Anghinolfi, F Arik, E Arik, M Atoian, G Auerbach, B Baker, OK Banas, E Baron, S Bault, C Becerici, N Beddall, A Beddall, AJ Bendotti, J Benjamin, DP Bertelsen, H Bingul, A Blampey, H Bocci, A Bochenek, M Bondarenko, VG Bychkov, V Callahan, J Garrido, MC Sas, LC Catinaccio, A Cetin, SA Chandler, T Chritin, R Cwetanski, P Dam, M Danielsson, H Danilevich, E David, E Degenhardt, J Di Girolamo, B Dittus, F Dixon, N Dogan, OB Dolgoshein, BA Dressnandt, N Driouchi, C Ebenstein, WL Eerola, P Egede, U Egorov, K Evans, H Farthouat, P Fedin, OL Fowler, AJ Fratina, S Froidevaux, D Fry, A Gagnon, P Gavrilenko, IL Gay, C Ghodbane, N Godlewski, J Goulette, M Gousakov, I Grigalashvili, N Grishkevich, Y Grognuz, J Hajduk, Z Hance, M Hansen, F Hansen, JB Hansen, PH Hanson, G Hare, GA Harvey, A Hauviller, C High, A Hulsbergen, W Huta, W Issakov, V Istin, S Jain, V Jarlskog, G Jeanty, L Kantserov, VA Kaplan, B Kapliy, AS Katounine, S Kayumov, F Keener, PT Kekelidze, GD Khabarova, E Khristachev, A Kisielewski, B Kittelmann, TH Kline, C Klinkby, EB Klopov, NV Ko, BR Koffas, T Kondratieva, NV Konovalov, SP Koperny, S Korsmo, H Kovalenko, S Kowalski, TZ Kruger, K Kramarenko, V Kudin, LG Le Bihan, AC LeGeyt, BC Levterov, K Lichard, P Lindahl, A Lisan, V Lobastov, S Loginov, A Loh, CW Lokwitz, S Long, MC Lucas, S Lucotte, A Luehring, F Lundberg, B Mackeprang, R Maleev, VP Manara, A Mandl, M Martin, AJ Martin, FF Mashinistov, R Mayers, GM McFarlane, KW Mialkovski, V Mills, BM Mindur, B Mitsou, VA Mjornmark, JU Morozov, SV Morris, E Mouraviev, SV Muir, AM Munar, A Nadtochi, AV Nesterov, SY Newcomer, FM Nikitin, N Novgorodova, O Novodvorski, EG Ogren, H Oh, SH Oleshko, SB Olivito, D Olszowska, J Ostrowicz, W Passmore, MS Patrichev, S Penwell, J Perez-Gomez, F Peshekhonov, VD Petersen, TC Petti, R Placci, A Poblaguev, A Pons, X Price, MJ Rohne, O Reece, RD Reilly, MB Rembser, C Romaniouk, A Rousseau, D Rust, D Ryabov, YF Ryjov, V Soderberg, M Savenkov, A Saxon, J Scandurra, M Schegelsky, VA Scherzer, MI Schmidt, MP Schmitt, C Sedykh, E Seliverstov, DM Shin, T Shmeleva, A Sivoklokov, S Smirnov, SY Smirnova, L Smirnova, O Smith, P Sosnovtsev, VV Sprachmann, G Subramania, S Suchkov, SI Sulin, VV Szczygiel, RR Tartarelli, G Thomson, E Tikhomirov, VO Tipton, P Ferrer, JAV Van Berg, R Vassilakopoulos, VI Vassilieva, L Wagner, P Wall, R Wang, C Whittington, D Williams, HH Zhelezkop, A Zhukovo, K AF Abat, E. Addy, T. N. Akesson, T. P. Alison, J. Anghinolfi, F. Arik, E. Arik, M. Atoian, G. Auerbach, B. Baker, O. K. Banas, E. Baron, S. Bault, C. Becerici, N. Beddall, A. Beddall, A. J. Bendotti, J. Benjamin, D. P. Bertelsen, H. Bingul, A. Blampey, H. Bocci, A. Bochenek, M. Bondarenko, V. G. Bychkov, V. Callahan, J. Garrido, M. Capeans Sas, L. Cardiel Catinaccio, A. Cetin, S. A. Chandler, T. Chritin, R. Cwetanski, P. Dam, M. Danielsson, H. Danilevich, E. David, E. Degenhardt, J. Di Girolamo, B. Dittus, F. Dixon, N. Dogan, O. B. Dolgoshein, B. A. Dressnandt, N. Driouchi, C. Ebenstein, W. L. Eerola, P. Egede, U. Egorov, K. Evans, H. Farthouat, P. Fedin, O. L. Fowler, A. J. Fratina, S. Froidevaux, D. Fry, A. Gagnon, P. Gavrilenko, I. L. Gay, C. Ghodbane, N. Godlewski, J. Goulette, M. Gousakov, I. Grigalashvili, N. Grishkevich, Y. Grognuz, J. Hajduk, Z. Hance, M. Hansen, F. Hansen, J. B. Hansen, P. H. Hanson, G. Hare, G. A. Harvey, A., Jr. Hauviller, C. High, A. Hulsbergen, W. Huta, W. Issakov, V. Istin, S. Jain, V. Jarlskog, G. Jeanty, L. Kantserov, V. A. Kaplan, B. Kapliy, A. S. Katounine, S. Kayumov, F. Keener, P. T. Kekelidze, G. D. Khabarova, E. Khristachev, A. Kisielewski, B. Kittelmann, T. H. Kline, C. Klinkby, E. B. Klopov, N. V. Ko, B. R. Koffas, T. Kondratieva, N. V. Konovalov, S. P. Koperny, S. Korsmo, H. Kovalenko, S. Kowalski, T. Z. Krueger, K. Kramarenko, V. Kudin, L. G. Le Bihan, A-C. LeGeyt, B. C. Levterov, K. Lichard, P. Lindahl, A. Lisan, V. Lobastov, S. Loginov, A. Loh, C. W. Lokwitz, S. Long, M. C. Lucas, S. Lucotte, A. Luehring, F. Lundberg, B. Mackeprang, R. Maleev, V. P. Manara, A. Mandl, M. Martin, A. J. Martin, F. F. Mashinistov, R. Mayers, G. M. McFarlane, K. W. Mialkovski, V. Mills, B. M. Mindur, B. Mitsou, V. A. Mjornmark, J. U. Morozov, S. V. Morris, E. Mouraviev, S. V. Muir, A. M. Munar, A. Nadtochi, A. V. Nesterov, S. Y. Newcomer, F. M. Nikitin, N. Novgorodova, O. Novodvorski, E. G. Ogren, H. Oh, S. H. Oleshko, S. B. Olivito, D. Olszowska, J. Ostrowicz, W. Passmore, M. S. Patrichev, S. Penwell, J. Perez-Gomez, F. Peshekhonov, V. D. Petersen, T. C. Petti, R. Placci, A. Poblaguev, A. Pons, X. Price, M. J. Rohne, O. Reece, R. D. Reilly, M. B. Rembser, C. Romaniouk, A. Rousseau, D. Rust, D. Ryabov, Y. F. Ryjov, V. Soderberg, M. Savenkov, A. Saxon, J. Scandurra, M. Schegelsky, V. A. Scherzer, M. I. Schmidt, M. P. Schmitt, C. Sedykh, E. Seliverstov, D. M. Shin, T. Shmeleva, A. Sivoklokov, S. Smirnov, S. Yu. Smirnova, L. Smirnova, O. Smith, P. Sosnovtsev, V. V. Sprachmann, G. Subramania, S. Suchkov, S. I. Sulin, V. V. Szczygiel, R. R. Tartarelli, G. Thomson, E. Tikhomirov, V. O. Tipton, P. Ferrer, J. A. Valls Van Berg, R. Vassilakopoulos, V. I. Vassilieva, L. Wagner, P. Wall, R. Wang, C. Whittington, D. Williams, H. H. Zhelezkop, A. Zhukovo, K. TI The ATLAS TRT barrel detector SO JOURNAL OF INSTRUMENTATION LA English DT Article DE particle tracking detectors; large detector systems for particle and astroparticle physics; transition radiation detectors; particle identification methods ID TRANSITION RADIATION TRACKER; STRAW PROPORTIONAL TUBES; PROTOTYPE; LHC; PERFORMANCE; IDENTIFICATION; CONSTRUCTION AB The ATLAS TRT barrel is a tracking drift chamber using 52,544 individual tubular drift tubes. It is one part of the ATLAS Inner Detector, which consists of three sub-systems: the pixel detector spanning the radius range 4 to 20 cm, the semiconductor tracker (SCT) from 30 to 52 cm, and the transition radiation tracker ( TRT) from 56 to 108 cm. The TRT barrel covers the central pseudo-rapidity region |eta| < 1, while the TRT endcaps cover the forward and backward eta regions. These TRT systems provide a combination of continuous tracking with many measurements in individual drift tubes ( or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. This paper describes the recently-completed construction of the TRT Barrel detector, including the quality control procedures used in the fabrication of the detector. C1 [Callahan, J.; Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Hanson, G.; Jain, V.; Kline, C.; Luehring, F.; Manara, A.; Morris, E.; Ogren, H.; Penwell, J.; Rust, D.; Scandurra, M.; Smith, P.; Subramania, S.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Petti, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Anghinolfi, F.; Baron, S.; Bault, C.; Bendotti, J.; Blampey, H.; Garrido, M. Capeans; Sas, L. Cardiel; Catinaccio, A.; Cetin, S. A.; Danielsson, H.; David, E.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Farthouat, P.; Froidevaux, D.; Godlewski, J.; Goulette, M.; Grognuz, J.; Hauviller, C.; Hulsbergen, W.; Huta, W.; Koffas, T.; Lichard, P.; Lucas, S.; Mandl, M.; Passmore, M. S.; Perez-Gomez, F.; Petersen, T. C.; Placci, A.; Pons, X.; Price, M. J.; Rembser, C.; Ryjov, V.; Schmitt, C.; Sprachmann, G.] CERN, CH-1211 Geneva 23, Switzerland. [Bertelsen, H.; Dam, M.; Driouchi, C.; Hansen, F.; Hansen, J. B.; Hansen, P. H.; Klinkby, E. B.; Lindahl, A.; Mackeprang, R.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Bochenek, M.; Koperny, S.; Kowalski, T. Z.; Mindur, B.] AGH UST, FPACS, PL-30059 Krakow, Poland. [Banas, E.; Hajduk, Z.; Kisielewski, B.; Olszowska, J.; Ostrowicz, W.] H Niewodniczanski Inst Nucl Phys, Polish Acad Sci, PL-31342 Krakow, Poland. [Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Rousseau, D.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Chritin, R.] Univ Geneva, Sect Phys, CH-1211 Geneva, Switzerland. [Lucotte, A.] Univ Grenoble 1, CNRS, IN2P3,INPG, Lab Phys Subatom & Cosmol, FR-38026 Grenoble, France. [Addy, T. N.; Degenhardt, J.; Fry, A.; Harvey, A., Jr.; Long, M. C.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Bychkov, V.; Gousakov, I.; Grigalashvili, N.; Kekelidze, G. D.; Khabarova, E.; Lisan, V.; Lobastov, S.; Mialkovski, V.; Peshekhonov, V. D.; Savenkov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Moscow, Russia. [Akesson, T. P.; Eerola, P.; Egede, U.; Jarlskog, G.; Korsmo, H.; Lundberg, B.; Mjornmark, J. U.; Soderberg, M.; Smirnova, O.] Lunds Univ, Inst Fys, SE-22100 Lund, Sweden. [Tartarelli, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Tartarelli, G.] Ist Nazl Fis Nucl, Dipartimento Fis, IT-20133 Milan, Italy. [Gavrilenko, I. L.; Kayumov, F.; Konovalov, S. P.; Mouraviev, S. V.; Novgorodova, O.; Shmeleva, A.; Sulin, V. V.; Tikhomirov, V. O.; Vassilieva, L.; Zhukovo, K.] PN Lebedev Phys Inst, Acad Sci, RU-117924 Moscow, Russia. [Bondarenko, V. G.; Dolgoshein, B. A.; Kantserov, V. A.; Kondratieva, N. V.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Sosnovtsev, V. V.; Suchkov, S. I.; Zhelezkop, A.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Grishkevich, Y.; Kramarenko, V.; Nikitin, N.; Sivoklokov, S.; Smirnova, L.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, RU-119992 Moscow, Russia. [Ghodbane, N.] Max Planck Inst Phys & Astrophys, DE-80805 Munich, Germany. Univ Paris 11, LAL, IN2P3, CNRS, Orsay, France. [Levterov, K.; Rohne, O.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Alison, J.; Danilevich, E.; Dressnandt, N.; Fedin, O. L.; Fratina, S.; Hance, M.; Hare, G. A.; High, A.; Kapliy, A. S.; Katounine, S.; Keener, P. T.; Khristachev, A.; Klopov, N. V.; Kovalenko, S.; Krueger, K.; Kudin, L. G.; Le Bihan, A-C.; LeGeyt, B. C.; Maleev, V. P.; Martin, F. F.; Mayers, G. M.; Munar, A.; Nadtochi, A. V.; Nesterov, S. Y.; Newcomer, F. M.; Novodvorski, E. G.; Oleshko, S. B.; Olivito, D.; Patrichev, S.; Reece, R. D.; Reilly, M. B.; Ryabov, Y. F.; Saxon, J.; Schegelsky, V. A.; Scherzer, M. I.; Sedykh, E.; Seliverstov, D. M.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Kittelmann, T. H.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Mitsou, V. A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Mitsou, V. A.] UVEG, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Mitsou, V. A.] Univ Valencia, Dept Fis At Mol & Mol Nucl, Barcelona 08193, Spain. [Gay, C.; Jeanty, L.; Loh, C. W.; Mills, B. M.; Muir, A. M.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Atoian, G.; Auerbach, B.; Baker, O. K.; Chandler, T.; Issakov, V.; Kaplan, B.; Loginov, A.; Lokwitz, S.; Martin, A. J.; Schmidt, M. P.; Tipton, P.] Yale Univz, Dept Phys, New Haven, CT 06520 USA. [Abat, E.; Arik, E.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bingul, A.; Dogan, O. B.; Istin, S.] Bogazici Univ, Dept Phys, Fac Sci, TR-80815 Bebek, Turkey. [Mitsou, V. A.] CSIC, CNM, IMB, Barcelona 08193, Spain. RP Ogren, H (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM ogren@indiana.edu RI SULIN, VLADIMIR/N-2793-2015; Fedin, Oleg/H-6753-2016; vasilyeva, lidia/M-9569-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; kayumov, fred/M-6274-2015; Gavrilenko, Igor/M-8260-2015; Konovalov, Serguei/M-9505-2015; Smirnova, Oxana/A-4401-2013; Mitsou, Vasiliki/D-1967-2009; Szczygiel, Robert/B-5662-2011; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Kramarenko, Victor/E-1781-2012; Morozov, Sergey/C-1396-2014; Klopov, Nikolay/J-5041-2015; Shmeleva, Alevtina/M-6199-2015; Tikhomirov, Vladimir/M-6194-2015 OI SULIN, VLADIMIR/0000-0003-3943-2495; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Egede, Ulrik/0000-0001-5493-0762; Evans, Harold/0000-0003-2183-3127; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Klinkby, Esben Bryndt/0000-0002-1908-5644; Smirnova, Oxana/0000-0003-2517-531X; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnov, Sergei/0000-0002-6778-073X; Morozov, Sergey/0000-0002-6748-7277; Klopov, Nikolay/0000-0003-3688-8008; Tikhomirov, Vladimir/0000-0002-9634-0581 NR 27 TC 24 Z9 24 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2008 VL 3 AR P02014 DI 10.1088/1748-0221/3/02/P02014 PG 48 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 269MG UT WOS:000253652500001 ER PT J AU Abat, E Addy, TN Akesson, TP Alison, J Anghinolfi, F Arik, E Arik, M Atoian, G Auerbach, B Baker, OK Banas, E Baron, S Bault, C Becerici, N Beddall, A Beddall, AJ Bendotti, J Benjamin, DP Bertelsen, H Bingul, A Blampey, H Bocci, A Bochenek, M Bondarenko, VG Bychkov, V Callahan, J Garrido, MC Sas, LC Catinaccio, A Cetin, SA Chandler, T Chritin, R Cwetanski, P Dam, M Danielsson, H Danilevich, E David, E Degenhardt, J Di Girolamo, B Dittus, F Dixon, N Dogan, OB Dolgoshein, BA Dressnandt, N Driouchi, C Ebenstein, WL Eerola, P Egede, U Egorov, K Evans, H Farthouat, P Fedin, OL Fowler, AJ Fratina, S Froidevaux, D Fry, A Gagnon, P Gavrilenko, IL Gay, C Ghodbane, N Godlewski, J Goulette, M Gousakov, I Grigalashvili, N Grishkevich, Y Grognuz, J Hajduk, Z Hance, M Hansen, F Hansen, JB Hansen, PH Hare, GA Harvey, A Hauviller, C High, A Hulsbergen, W Huta, W Issakov, V Istin, S Jain, V Jarlskog, G Jeanty, L Kantserov, VA Kaplan, B Kapliy, AS Katounine, S Kayumov, F Keener, PT Kekelidze, GD Khabarova, E Khristachev, A Kisielewski, B Kittelmann, TH Kline, C Klinkby, EB Klopov, NV Ko, BR Koffas, T Kondratieva, NV Konovalov, SP Koperny, S Korsmo, H Kovalenko, S Kowalski, TZ Kruger, K Kramarenko, V Kudin, LG Le Bihan, AC LeGeyt, BC Levterov, K Lichard, P Lindahl, A Lisan, V Lobastov, S Loginov, A Loh, CW Lokwitz, S Long, MC Lucas, S Lucotte, A Luehring, F Lundberg, B Mackeprang, R Maleev, VP Manara, A Mandl, M Martin, AJ Martin, FF Mashinistov, R Mayers, GM McFarlane, KW Mialkovski, V Mills, BM Mindur, B Mitsou, VA Mjornmark, JU Morozov, SV Morris, E Mouraviev, SV Muir, AM Munar, A Nadtochi, AV Nesterov, SY Newcomer, FM Nikitin, N Novgorodova, O Novodvorski, EG Ogren, H Oh, SH Oleshko, SB Olivito, D Olszowska, J Ostrowicz, W Passmore, MS Patrichev, S Penwell, J Perez-Gomez, F Peshekhonov, VD Petersen, TC Petti, R Placci, A Poblaguev, A Pons, X Price, MJ Rohne, O Reece, RD Reilly, MB Rembser, C Romaniouk, A Rousseau, D Rust, D Ryabov, YF Ryjov, V Soderberg, M Savenkov, A Saxon, J Scandurra, M Schegelsky, VA Scherzer, MI Schmidt, MP Schmitt, C Sedykh, E Seliverstov, DM Shin, T Shmeleva, A Sivoklokov, S Smirnov, SY Smirnova, L Smirnova, O Smith, P Sosnovtsev, VV Sprachmann, G Subramania, S Suchkov, SI Sulin, VV Szczygiel, RR Tartarelli, G Thomson, E Tikhomirov, VO Tipton, P Ferrer, JAV Van Berg, R Vassilakopoulos, VI Vassilieva, L Wagner, P Wall, R Wang, C Whittington, D Williams, HH Zhelezkop, A Zhukovo, K AF Abat, E. Addy, T. N. Akesson, T. P. Alison, J. Anghinolfi, F. Arik, E. Arik, M. Atoian, G. Auerbach, B. Baker, O. K. Banas, E. Baron, S. Bault, C. Becerici, N. Beddall, A. Beddall, A. J. Bendotti, J. Benjamin, D. P. Bertelsen, H. Bingul, A. Blampey, H. Bocci, A. Bochenek, M. Bondarenko, V. G. Bychkov, V. Callahan, J. Garrido, M. Capeans Sas, L. Cardiel Catinaccio, A. Cetin, S. A. Chandler, T. Chritin, R. Cwetanski, P. Dam, M. Danielsson, H. Danilevich, E. David, E. Degenhardt, J. Di Girolamo, B. Dittus, F. Dixon, N. Dogan, O. B. Dolgoshein, B. A. Dressnandt, N. Driouchi, C. Ebenstein, W. L. Eerola, P. Egede, U. Egorov, K. Evans, H. Farthouat, P. Fedin, O. L. Fowler, A. J. Fratina, S. Froidevaux, D. Fry, A. Gagnon, P. Gavrilenko, I. L. Gay, C. Ghodbane, N. Godlewski, J. Goulette, M. Gousakov, I. Grigalashvili, N. Grishkevich, Y. Grognuz, J. Hajduk, Z. Hance, M. Hansen, F. Hansen, J. B. Hansen, P. H. Hare, G. A. Harvey, A., Jr. Hauviller, C. High, A. Hulsbergen, W. Huta, W. Issakov, V. Istin, S. Jain, V. Jarlskog, G. Jeanty, L. Kantserov, V. A. Kaplan, B. Kapliy, A. S. Katounine, S. Kayumov, F. Keener, P. T. Kekelidze, G. D. Khabarova, E. Khristachev, A. Kisielewski, B. Kittelmann, T. H. Kline, C. Klinkby, E. B. Klopov, N. V. Ko, B. R. Koffas, T. Kondratieva, N. V. Konovalov, S. P. Koperny, S. Korsmo, H. Kovalenko, S. Kowalski, T. Z. Krueger, K. Kramarenko, V. Kudin, L. G. Le Bihan, A-C. LeGeyt, B. C. Levterov, K. Lichard, P. Lindahl, A. Lisan, V. Lobastov, S. Loginov, A. Loh, C. W. Lokwitz, S. Long, M. C. Lucas, S. Lucotte, A. Luehring, F. Lundberg, B. Mackeprang, R. Maleev, V. P. Manara, A. Mandl, M. Martin, A. J. Martin, F. F. Mashinistov, R. Mayers, G. M. McFarlane, K. W. Mialkovski, V. Mills, B. M. Mindur, B. Mitsou, V. A. Mjornmark, J. U. Morozov, S. V. Morris, E. Mouraviev, S. V. Muir, A. M. Munar, A. Nadtochi, A. V. Nesterov, S. Y. Newcomer, F. M. Nikitin, N. Novgorodova, O. Novodvorski, E. G. Ogren, H. Oh, S. H. Oleshko, S. B. Olivito, D. Olszowska, J. Ostrowicz, W. Passmore, M. S. Patrichev, S. Penwell, J. Perez-Gomez, F. Peshekhonov, V. D. Petersen, T. C. Petti, R. Placci, A. Poblaguev, A. Pons, X. Price, M. J. Rohne, O. Reece, R. D. Reilly, M. B. Rembser, C. Romaniouk, A. Rousseau, D. Rust, D. Ryabov, Y. F. Ryjov, V. Soderberg, M. Savenkov, A. Saxon, J. Scandurra, M. Schegelsky, V. A. Scherzer, M. I. Schmidt, M. P. Schmitt, C. Sedykh, E. Seliverstov, D. M. Shin, T. Shmeleva, A. Sivoklokov, S. Smirnov, S. Yu. Smirnova, L. Smirnova, O. Smith, P. Sosnovtsev, V. V. Sprachmann, G. Subramania, S. Suchkov, S. I. Sulin, V. V. Szczygiel, R. R. Tartarelli, G. Thomson, E. Tikhomirov, V. O. Tipton, P. Ferrer, J. A. Valls Van Berg, R. Vassilakopoulos, V. I. Vassilieva, L. Wagner, P. Wall, R. Wang, C. Whittington, D. Williams, H. H. Zhelezkop, A. Zhukovo, K. TI The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance SO JOURNAL OF INSTRUMENTATION LA English DT Article DE gaseous detectors; particle tracking detectors; transition radiation detectors. ID IDENTIFICATION; ELECTRONICS; PROTOTYPE; DETECTOR; LHC AB A straw proportional counter is the basic element of the ATLAS Transition Radiation Tracker (TRT). Its detailed properties as well as the main properties of a few TRT operating gas mixtures are described. Particular attention is paid to straw tube performance in high radiation conditions and to its operational stability. C1 [Bondarenko, V. G.; Dolgoshein, B. A.; Kantserov, V. A.; Kondratieva, N. V.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Sosnovtsev, V. V.; Suchkov, S. I.; Zhelezkop, A.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Abat, E.; Arik, E.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bingul, A.; Dogan, O. B.; Istin, S.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Petti, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Anghinolfi, F.; Baron, S.; Bault, C.; Bendotti, J.; Blampey, H.; Garrido, M. Capeans; Sas, L. Cardiel; Catinaccio, A.; Cetin, S. A.; Danielsson, H.; David, E.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Farthouat, P.; Froidevaux, D.; Godlewski, J.; Goulette, M.; Grognuz, J.; Hauviller, C.; Hulsbergen, W.; Huta, W.; Koffas, T.; Lichard, P.; Lucas, S.; Mandl, M.; Passmore, M. S.; Perez-Gomez, F.; Petersen, T. C.; Placci, A.; Pons, X.; Price, M. J.; Rembser, C.; Ryjov, V.; Schmitt, C.; Sprachmann, G.] CERN, CH-1211 Geneva 23, Switzerland. [Bertelsen, H.; Dam, M.; Driouchi, C.; Hansen, F.; Hansen, J. B.; Hansen, P. H.; Klinkby, E. B.; Lindahl, A.; Mackeprang, R.] Univ Copenhagen, Neils Bohr Inst, DK-2100 Copenhagen, Denmark. [Bochenek, M.; Koperny, S.; Kowalski, T. Z.; Mindur, B.] UST, AGH, FPACS, PL-30059 Krakow, Poland. [Banas, E.; Hajduk, Z.; Kisielewski, B.; Olszowska, J.; Ostrowicz, W.] H Niewodniczanski Inst Nucl Phys, Polish Acad Sci, PL-31342 Krakow, Poland. [Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Rousseau, D.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Chritin, R.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Lucotte, A.] Univ Grenoble 1, CNRS, IN2PS,INPG, Lab Phys Subautom & Cosmol, FR-38026 Grenoble, France. [Addy, T. N.; Degenhardt, J.; Fry, A.; Harvey, A., Jr.; Long, M. C.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Callahan, J.; Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Kline, C.; Luehring, F.; Manara, A.; Morris, E.; Ogren, H.; Penwell, J.; Rust, D.; Scandurra, M.; Smith, P.; Subramania, S.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Bychkov, V.; Gousakov, I.; Grigalashvili, N.; Kekelidze, G. D.; Khabarova, E.; Lisan, V.; Lobastov, S.; Mialkovski, V.; Peshekhonov, V. D.; Savenkov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Moscow, Russia. [Akesson, T. P.; Eerola, P.; Egede, U.; Jarlskog, G.; Korsmo, H.; Lundberg, B.; Mjornmark, J. U.; Soderberg, M.; Smirnova, O.] Lunds Univ, Inst Fys, SE-22100 Lund, Sweden. [Tartarelli, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Tartarelli, G.] Ist Nazl Fis Nucl, IT-20133 Milan, Italy. [Gavrilenko, I. L.; Kayumov, F.; Konovalov, S. P.; Mouraviev, S. V.; Novgorodova, O.; Shmeleva, A.; Sulin, V. V.; Tikhomirov, V. O.; Vassilieva, L.; Zhukovo, K.] PN Lebedev Phys Inst, Acad Sci, RU-117924 Moscow, Russia. [Grishkevich, Y.; Kramarenko, V.; Nikitin, N.; Sivoklokov, S.; Smirnova, L.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, RU-119992 Moscow, Russia. [Ghodbane, N.] Max Planck Inst Phys & Astrophys, DE-80805 Munich, Germany. Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Levterov, K.; Rohne, O.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Alison, J.; Dressnandt, N.; Fratina, S.; Hance, M.; Hare, G. A.; High, A.; Kapliy, A. S.; Keener, P. T.; LeGeyt, B. C.; Martin, F. F.; Mayers, G. M.; Saxon, J.; Scherzer, M. I.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Danilevich, E.; Fedin, O. L.; Katounine, S.; Khristachev, A.; Klopov, N. V.; Kovalenko, S.; Krueger, K.; Kudin, L. G.; Le Bihan, A-C.; Maleev, V. P.; Nadtochi, A. V.; Nesterov, S. Y.; Novodvorski, E. G.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Kittelmann, T. H.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Mitsou, V. A.] UVEG, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Mitsou, V. A.] Univ Valencia, Dept Fis At Mol & Nucl, Barcelona 08193, Spain. [Mitsou, V. A.] CSIC, CNM, INB, Barcelona 08193, Spain. [Gay, C.; Jeanty, L.; Loh, C. W.; Mills, B. M.; Muir, A. M.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Atoian, G.; Auerbach, B.; Baker, O. K.; Chandler, T.; Issakov, V.; Kaplan, B.; Loginov, A.; Lokwitz, S.; Martin, A. J.; Poblaguev, A.; Schmidt, M. P.; Tipton, P.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Romaniouk, A (reprint author), Moscow Engn & Phys Inst MEPhI, Kashirskoe Shosse 31, RU-115409 Moscow, Russia. EM Anatoli.Romaniouk@cern.ch RI SULIN, VLADIMIR/N-2793-2015; Fedin, Oleg/H-6753-2016; vasilyeva, lidia/M-9569-2015; Maleev, Victor/R-4140-2016; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Konovalov, Serguei/M-9505-2015; Smirnova, Oxana/A-4401-2013; Mitsou, Vasiliki/D-1967-2009; Szczygiel, Robert/B-5662-2011; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Kramarenko, Victor/E-1781-2012; Morozov, Sergey/C-1396-2014; Klopov, Nikolay/J-5041-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva, Alevtina/M-6199-2015; kayumov, fred/M-6274-2015; Gavrilenko, Igor/M-8260-2015 OI SULIN, VLADIMIR/0000-0003-3943-2495; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Egede, Ulrik/0000-0001-5493-0762; Evans, Harold/0000-0003-2183-3127; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Smirnova, Oxana/0000-0003-2517-531X; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnov, Sergei/0000-0002-6778-073X; Morozov, Sergey/0000-0002-6748-7277; Klopov, Nikolay/0000-0003-3688-8008; Tikhomirov, Vladimir/0000-0002-9634-0581; NR 16 TC 20 Z9 20 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2008 VL 3 AR P02013 DI 10.1088/1748-0221/3/02/P02013 PG 25 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 269MG UT WOS:000253652500002 ER PT J AU Chung, SH Grimsditch, M Hoffmann, A Bader, SD Xie, J Peng, S Sun, S AF Chung, Seok-Hwan Grimsditch, Marcos Hoffmann, Axel Bader, Samuel D. Xie, Jin Peng, Sheng Sun, Shouheng TI Magneto-optic measurement of Brownian relaxation of magnetic nanoparticles SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE magneto-optic; AC susceptibility; Brownian relaxation; magnetic nanoparticle; biosensing ID HALL SENSOR; FERROFLUIDS; PARTICLES; BIOSENSOR; DYNAMICS; LIQUIDS; FE AB We demonstrate a magneto-optic technique to measure Brownian relaxation of magnetic nanoparticles suspended in liquids. We used AC susceptibility data as a function of frequency of the applied AC magnetic field to verify that the results agree with those obtained via a conventional inductive detection technique. However, compared with a commercial AC susceptometer using the conventional detection scheme, our magneto-optic setup is able to detect a density of nanoparticles at least three orders smaller. This technique has the potential of being used as a sensor for magnetic nanoparticles such as in local temperature, viscoelasticity, or molecular-binding measurements. (C) 2007 Elsevier B.V. All rights reserved. C1 [Chung, Seok-Hwan; Grimsditch, Marcos; Hoffmann, Axel; Bader, Samuel D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Xie, Jin; Peng, Sheng; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Chung, SH (reprint author), Natl Inst Stand & Technol, CNST, Gaithersburg, MD 20899 USA. EM seok-hwan.chung@nist.gov RI Peng, Sheng/E-7988-2010; Xie, Jin/E-8193-2010; Hoffmann, Axel/A-8152-2009; Bader, Samuel/A-2995-2013 OI Hoffmann, Axel/0000-0002-1808-2767; NR 27 TC 15 Z9 15 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD FEB PY 2008 VL 320 IS 3-4 BP 91 EP 95 DI 10.1016/j.jmmm.2007.05.016 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 239WN UT WOS:000251549100007 ER PT J AU Sefat, AS Bud'ko, SL Canfield, PC AF Sefat, Athena S. Bud'ko, Sergey L. Canfield, Paul C. TI Magnetization, resistivity and heat capacity of the anisotropic RVSb3 crystals (R=La-Nd, Sm, Gd-Dy) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE triantimonide; flux growth; single crystal x-ray; magnetization; heat capacity; resistivity; anisotropic behavior ID TRANSPORT-PROPERTIES; LN=LA-ND; LA-ND; ANTIMONIDES; CE; TEMPERATURE; PR; FERROMAGNETISM; DEPENDENCE; MAGNETISM AB Single crystals of rare-earth vanadium triantimonides RVSb3, with R=La-Nd, Sm and Gd-Dy are grown out of solution. The substitution of heavier rare-earths makes the orthorhombic structure contract and accompanies changes in the magnetic properties throughout the series. Characterization of RVSb3 family was made with single-crystal X-ray diffraction, temperature and field-dependent magnetization M(T, H), heat capacity C( T) and resistivity rho( T). All of the compounds are metallic, and all, with the exceptions of nonmagnetic LaVSb3 and ferromagnetic CeVSb3, show features typical of antiferromagnetic order. Thermodynamic and transport measurements indicate that these materials are highly anisotropic magnetically, due to the crystal electric field splitting of the Hund's ground state, but only manifest a moderate electrical anisotropy. Given the relative scarcity of Ce-based ferromagnets, the temperature-dependent magnetization of CeVSb3 was measured under applied hydrostatic pressure up to 10 kbar, and T-c increases at the rate of 0.14( 1) Kkbar(-1). Published by Elsevier B.V. C1 [Sefat, Athena S.; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RP Sefat, AS (reprint author), Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. EM asefat@ameslab.gov RI Canfield, Paul/H-2698-2014; Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 NR 38 TC 13 Z9 13 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD FEB PY 2008 VL 320 IS 3-4 BP 120 EP 141 DI 10.1016/j.jmmm.2007.05.013 PG 22 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 239WN UT WOS:000251549100012 ER PT J AU McGuigan, M Davenport, JW Glimm, J AF McGuigan, Michael Davenport, J. W. Glimm, James TI Computational approach to finite size and shape effects in iron nanomagnets SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE nanomagnetism; magnons; spin waves ID SPIN-WAVES; TEMPERATURE-DEPENDENCE; MAGNETIZATION; FERROMAGNET; CLUSTERS; NICKEL; FIELD AB We examine a computational approach to the calculation of finite size and shape effects to magnetic systems based on the spin wave approximation to a Heisenberg ferromagnet. The method can be used for high throughput analysis of a variety of nanomagnetic materials. We compute the dependence of the magnetization of an iron nanomagnet on temperature, size and shape. The approach is applied to magnets in the range of 432 atoms to 59 million atoms, a size which is several orders of magnitude beyond the scalability of density functional theory. (C) 2007 Elsevier B.V. All rights reserved. C1 [McGuigan, Michael; Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Glimm, James] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP McGuigan, M (reprint author), Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. EM mcguigan@bnl.gov; jdaven@bnl.gov; glimm@ams.sunysb.edu NR 23 TC 1 Z9 1 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD FEB PY 2008 VL 320 IS 3-4 BP 190 EP 196 DI 10.1016/j.jmmm.2007.05.041 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 239WN UT WOS:000251549100019 ER PT J AU Chen, HT Bockenfeld, D Rempfer, D Kaminski, MD Liu, XQ Rosengart, AJ AF Chen, Haitao Bockenfeld, Danny Rempfer, Dietmar Kaminski, Michael D. Liu, Xianqiao Rosengart, Axel J. TI Preliminary 3-D analysis of a high gradient magnetic separator for biomedical applications SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE magnetic separation; magnetic separator; blood detoxification; magnetic sphere ID MAGNETOLIPOSOMES; NANOPARTICLES; SYSTEM AB A prototype portable high-gradient magnetic separator is being developed for in vivo magnetic separation from human blood flow. In this separator design, an array of biocompatible capillary tubing and magnetizable wires is immersed in an external magnetic field, which is generated by two parallel permanent magnets. The wires are magnetized and the high magnetic field gradient from the magnetized wires helps to collect blood-borne magnetic nanospheres. In this study, a 3-D mathematical model was created and the effect of tubing-wire configurations on the capture efficiency (CE) of the system was analyzed using COMSOL Multiphysics 3.3 (R). The results show that an optimal design was a configuration characterized by bi-directionally alternating wires and tubes as an optimal design. In vitro experiments verified the theoretical predictions for the CE. The CE of the optimal design was more than 20% higher than that of the other design at 20 cm/s. The results further optimized a prototype portable magnetic separator suitable for rapid sequestration of magnetic nanospheres from the human blood stream while accommodating necessary clinical boundary conditions. (c) 2007 Elsevier B.V. All rights reserved. C1 [Chen, Haitao; Liu, Xianqiao; Rosengart, Axel J.] Univ Chicago, Pritzker Sch Med, Dept Neurol, Chicago, IL 60637 USA. [Rosengart, Axel J.] Univ Chicago, Pritzker Sch Med, Chicago, IL 60637 USA. [Bockenfeld, Danny; Rempfer, Dietmar] IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA. [Kaminski, Michael D.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. [Chen, Haitao] IIT, Dept Biomed Engn, Chicago, IL 60616 USA. RP Rosengart, AJ (reprint author), Univ Chicago, Pritzker Sch Med, Dept Neurol, Chicago, IL 60637 USA. EM hachen@neurology.bsd.uchicago.edu NR 22 TC 11 Z9 12 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD FEB PY 2008 VL 320 IS 3-4 BP 279 EP 284 DI 10.1016/j.jmmm.2007.06.001 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 239WN UT WOS:000251549100034 ER PT J AU Vannette, MD Sefat, AS Jia, S Law, SA Lapertot, G Bud'ko, SL Canfield, PC Schmalian, J Prozorov, R AF Vannette, M. D. Sefat, A. S. Jia, S. Law, S. A. Lapertot, G. Bud'ko, S. L. Canfield, P. C. Schmalian, J. Prozorov, R. TI Precise measurements of radio-frequency magnetic susceptibility in ferromagnetic and antiferromagnetic materials SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE dynamic magnetic susceptibility; magnetic transitions; critical scaling ID AC SUSCEPTIBILITY; SINGLE-CRYSTALS; RAGSB2 R; LA-ND; TEMPERATURE; PHASE; SUPERCONDUCTORS; YBA2CU3O6.95; RESISTIVITY; CE3AL11 AB Dynafgmic magnetic susceptibility, chi, was studied in several intermetallic materials exhibiting ferromagnetic, antiferromagnetic and metamagnetic transitions. Precise measurements by using a 14 MHz tunnel diode oscillator (TDO) allow detailed insight into the field and temperature dependence of chi. In particular, local moment ferromagnets show a sharp peak in chi(T) near the Curie temperature, T-C. The peak amplitude decreases and shifts to higher temperatures with very small applied dc fields. Anisotropic measurements of CeVSb3 show that this peak is present provided the magnetic easy axis is aligned with the excitation field. In a striking contrast, small moment, itinerant ferromagnets (i.e., ZrZn2) show a broad maximum in chi(T) that responds differently to applied field. We believe that TDO measurements provide a very sensitive way to distinguish between local and itinerant moment magnetic orders. Local moment antiferromagnets do not show a peak at the Neel temperature, T-N, but only a sharp decrease of chi below T-N due to the loss of spin-disorder scattering changing the penetration depth of the ac excitation field. Furthermore, we show that the TDO is capable of detecting changes in spin order as well as metamagnetic transitions. Finally, critical scaling of chi(T,H) in the vicinity of T-C is discussed in CeVSb3 and CeAgSb2. (c) 2007 Elsevier B.V. All rights reserved. C1 [Vannette, M. D.; Sefat, A. S.; Jia, S.; Law, S. A.; Bud'ko, S. L.; Canfield, P. C.; Schmalian, J.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. [Lapertot, G.] CEA, SPSMS, Dept Rech Fondamentale La Matiere Condense, F-38054 Grenoble, France. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI LAPERTOT, Gerard/B-3354-2008; Schmalian, Joerg/H-2313-2011; Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014; Sefat, Athena/R-5457-2016 OI Prozorov, Ruslan/0000-0002-8088-6096; Sefat, Athena/0000-0002-5596-3504 NR 27 TC 18 Z9 18 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD FEB PY 2008 VL 320 IS 3-4 BP 354 EP 363 DI 10.1016/j.jmmm.2007.06.018 PG 10 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 239WN UT WOS:000251549100045 ER PT J AU Qu, J Blau, PJ AF Qu, Jun Blau, Peter J. TI A new model to calculate friction coefficients and shear stresses in thermal drilling SO JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article AB A new analytical model for thermal drilling (also known as friction drilling) has been developed. The model distinguishes itself from recent work of other investigators by improving on two aspects: (1) the new model defines material plastic flow in terms of the yield in shear rather than the yield in compression, and (2) it uses a single, variable friction coefficient instead of assuming two unrelated friction coefficients in fixed values. The time dependence of the shear stress and friction coefficient at the hole walls, which cannot be measured directly in thermal drilling, can be calculated using this model from experimentally measured values of the instantaneous thrust force and torque. Good matches between the calculated shear strengths and the handbook values for thermally drilling low carbon steel confirm the model's validity. C1 [Qu, Jun; Blau, Peter J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS 6063, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov NR 5 TC 2 Z9 2 U1 0 U2 5 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1087-1357 J9 J MANUF SCI E-T ASME JI J. Manuf. Sci. Eng.-Trans. ASME PD FEB PY 2008 VL 130 IS 1 AR 014502 DI 10.1115/1.2815341 PG 4 WC Engineering, Manufacturing; Engineering, Mechanical SC Engineering GA 290ON UT WOS:000255132200019 ER PT J AU Bell, NS Tallan, DR Raymond, R Boyle, TJ AF Bell, Nelson S. Tallan, David R. Raymond, Rebecca Boyle, Timothy J. TI Synthesis and self-assembly of zinc oxide nanoparticles with septahedral morphology SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID COLLOIDAL PLATINUM NANOPARTICLES; SEMICONDUCTOR CLUSTERS; ZNO NANOPARTICLES; IN2O3 NANOCUBES; II-VI; NANOCRYSTALS; SIZE; GROWTH; NANORODS; PHOTOLUMINESCENCE AB The formation of 10-nm ZnO nanopyramids using a simple synthetic route has been isolated from the reaction of Zn(OAc)(2).2H(2)O in 1,4-butanediol followed by ripening at 90 degrees C. This was accomplished by establishing control over the Ostwald ripening process through the use of a carboxylic acid specific adsorbate. Using a variety of analytical methods, it is proposed that the carboxylate groups in the acetate precursor stabilize the {101} habit planes, creating septahedral shapes or nanopyramids. Particle assembly into crystallographically oriented dimers was observed with high specificity, and the association mechanism is suggested to relate to the crystal polarity and the variation in specific adsorption of the carboxylic acid to the surface facets. These materials are a candidate for biological labeling applications in living cells. C1 [Bell, Nelson S.; Tallan, David R.; Raymond, Rebecca; Boyle, Timothy J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bell, NS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nsbell@sandia.gov NR 45 TC 5 Z9 5 U1 1 U2 12 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2008 VL 23 IS 2 BP 529 EP 535 DI 10.1557/JMR.2008.0053 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 260LC UT WOS:000253010800031 ER PT J AU Akhtar, R Daymond, MR Almer, JD Mummery, PM AF Akhtar, R. Daymond, M. R. Almer, J. D. Mummery, P. M. TI Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID NEUTRON-DIFFRACTION; APATITE CRYSTALS; COLLAGEN PHASES; CORTICAL BONE; DEFORMATION; MICROCRACKING; COMPOSITES; NANOSCALE; STRESSES; STRENGTH AB High-energy synchrotron x-ray diffraction (XRD) has been used to quantify load transfer in bovine plexiform bone. By using both wide-angle and small-angle XRD, strains in the mineral as well as the collagen phase of bone were measured as a function of applied compressive stress. We suggest that a greater proportion of the load is borne by the more mineralized woven bone than the lamellar bone as the applied stress increases. With a further increase in stress, load is shed back to the lamellar regions until macroscopic failure occurs. The reported data fit well with reported mechanisms of microdamage accumulation in bovine plexiform bone. C1 [Akhtar, R.; Mummery, P. M.] Univ Manchester, Sch Mat, Manchester M1 7HS, Lancs, England. [Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. RP Akhtar, R (reprint author), Univ Manchester, Sch Mat, Manchester M1 7HS, Lancs, England. EM riaz.akhtar@manchester.ac.uk RI Akhtar, Riaz/D-3139-2012; OI Daymond, Mark/0000-0001-6242-7489 NR 27 TC 12 Z9 12 U1 0 U2 2 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2008 VL 23 IS 2 BP 543 EP 550 DI 10.1557/JMR.2008.0068 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 260LC UT WOS:000253010800033 ER PT J AU Oryshchyn, DB Dogan, ON AF Oryshchyn, Danylo B. Dogan, Oemer N. TI An examination of effects of solidification parameters on permeability of a mushy zone in castings SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID INTERDENDRITIC FLUID-FLOW; ALUMINUM-COPPER ALLOYS; LIQUID AB A model describing the development of dendritic structure and the resulting gradient of flow resistance to interdendritic liquid is presented. The Hagen-Pousielle version of D'Arcy's equation for flow through a porous structure is developed as a function of cooling rate and liquid volume fraction. Applied to finite elements in a unidirectionally cooled casting model, permeability gradient, feeding flow-rate required to prevent porosity, and mushy-zone liquid pressure drop at this flow rate are evaluated for the simple Fe-2Cr-0.5C and Al-5Cu castings exhibiting asymptotic and linear temperature profiles, respectively. The model shows permeability of the dendritic structure in the mushy zone dropping sharply, approaching the root of solidification front (solidus). Also shown is the effect of relative magnitude of primary and secondary arm spacing. If secondary dendrite arm spacing approaches primary arm spacing, the permeability for flow normal to primary dendrite arms approaches or even surpasses the permeability for flow parallel to primary dendrite arms. C1 [Oryshchyn, Danylo B.; Dogan, Oemer N.] DOE Natl Energy Technol Lab, Albany, OR 97321 USA. RP Dogan, ON (reprint author), DOE Natl Energy Technol Lab, 1450 Queen Ave, Albany, OR 97321 USA. EM omer.dogan@netl.doe.gov NR 14 TC 1 Z9 1 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2008 VL 43 IS 4 BP 1471 EP 1479 DI 10.1007/s10853-007-2325-z PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 248YE UT WOS:000252192300038 ER PT J AU Marco, EJ Abidi, FE Bristow, J Dean, WB Cotter, P Jeremy, RJ Schwartz, CE Sherr, EH AF Marco, E. J. Abidi, F. E. Bristow, J. Dean, W. B. Cotter, P. Jeremy, R. J. Schwartz, C. E. Sherr, E. H. TI ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal SO JOURNAL OF MEDICAL GENETICS LA English DT Article ID EXCHANGE FACTOR COLLYBISTIN; RHO GTPASES; GENE; INACTIVATION; GEPHYRIN; IDENTIFICATION; TRANSLOCATION; CHROMOSOME; EXPRESSION; MUTATION AB Introduction: We identified a female patient with mental retardation and sensory hyperarousal. She has a de novo paracentric inversion of one X chromosome with completely skewed inactivation of the normal X chromosome. Objective: We aimed to identify whether a single gene or gene region caused her cognitive and behavioural impairment and that of others. Results: Fluorescent in situ hybridisation (FISH) showed that the centromeric breakpoint disrupts a single gene: ARHGEF9 (CDC42 guanine nucleotide exchange factor (GEF) 9). The telomeric break lies in a gene poor region. We also found that the levels of the ARHGEF9 transcript from the patient are 10-fold less than those found in control samples. Consequently, we sequenced the coding exons and intron/exon borders of the ARHGEF9 gene in 99 probands from families with X linked mental retardation (XLMR) and 477 mentally retarded males in whom a diagnosis of Fragile X syndrome had been excluded. We did not identify any pathogenic changes; however, we did identify intronic nucleotide changes that might alter splicing. Conclusion: ARHGEF9 encodes a RhoGEF family protein: collybistin (hPEM), which is highly expressed in the developing and adult brain. Collybistin can regulate actin cytoskeletal dynamics and may also modulate GABAergic and glycinergic neurotransmission through binding of a scaffolding protein, gephyrin, at the synapse. This potential dual role may explain both the mental retardation and hyperarousal observed in our patient. While ARHGEF9 appears to be an uncommon cause of mental retardation in males, it should be considered in patients with mental retardation and sensory hyperarousal. C1 [Marco, E. J.; Sherr, E. H.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA USA. [Abidi, F. E.; Schwartz, C. E.] Greenwood Genet Ctr, Greenwood, SC USA. [Bristow, J.] Joint Genome Inst, Lawrence Berkeley Lab, Berkeley, CA USA. [Dean, W. B.] Univ Calif San Francisco, Inst Cardiovasc Res, San Francisco, CA USA. [Cotter, P.] Childrens Hosp, Res Ctr, Dept Pathol, Oakland, CA USA. [Jeremy, R. J.] Univ Calif San Francisco, Pediat Clin Res Ctr, San Francisco, CA USA. RP Sherr, EH (reprint author), 350 Parnassus Ave, Suite 609, San Francisco, CA 94143 USA. EM sherre@neuropeds.ucsf.edu FU NCRR NIH HHS [UL RR024131-01]; NICHD NIH HHS [HD26202, T32 HD044331]; NINDS NIH HHS [K12 NS01692-07] NR 29 TC 33 Z9 33 U1 1 U2 3 PU B M J PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 0022-2593 J9 J MED GENET JI J. Med. Genet. PD FEB PY 2008 VL 45 IS 2 BP 100 EP 105 DI 10.1136/jmg.2007.052324 PG 6 WC Genetics & Heredity SC Genetics & Heredity GA 258MF UT WOS:000252871300006 PM 17893116 ER PT J AU Gozalo, AS Chavera, A Montoya, EJ Takano, J Weller, RE AF Gozalo, Alfonso S. Chavera, Alfonso Montoya, Enrique J. Takano, Juan Weller, Richard E. TI Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans) SO JOURNAL OF MEDICAL PRIMATOLOGY LA English DT Article; Proceedings Paper CT 34th Annual Workshop for the Association-of-Primate-Veterinarians CY OCT 12-14, 2006 CL Park City, UT SP Assoc Primate Veterinarians, Alpha Genesis, ANILAB LLC, Bio-Serv, Charles River BRF, Covance Res Prod Inc, RC Hartelust BV, Shared Enterprises Ltd, VRL Lab, Three Spring Sci Inc, BioReliance Inc, Suburban Surg Co Inc, Allentown Inc, Animal Specialties & Provis LLC, Frames Animal Transportat, Buckshire Corp, Instech Solomon, Brain & Software Int, Purina Lab Diets, Lab Prod Inc, Zoologix Inc, Mannheimers Fdn DE Cebidae; hypertension; primates; serum chemistry; urinalysis ID URINARY ALBUMIN EXCRETION; ESSENTIAL-HYPERTENSION; BLOOD-PRESSURE; DNA VACCINE; JOB STRAIN; TRIVIRGATUS; NANCYMAE; CHALLENGE; LESIONS; VIRUS AB Background The purpose of this study was to determine serum reference values for creatine kinase (CK), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Methods Blood samples were collected for CK, AST and LDH determinations. In addition, urine samples were collected and semiquantitative tests performed. Results There was no statistically significant difference between CK, AST and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition the CK/AST ratio revealed that 29% of the animals included in this study had values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman's capsule and peritubular space fibroplasia. Conclusions These findings suggest that CK, AST and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction. C1 [Gozalo, Alfonso S.; Montoya, Enrique J.] Univ Nacl Mayor San Marcos, Inst Vet Invest Trop & Altura, Fac Med Vet, Iquitos, Peru. [Chavera, Alfonso; Takano, Juan] Univ Nacl Mayor San Marcos, Fac Med Vet, Dept Patol, Lima 14, Peru. [Weller, Richard E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gozalo, AS (reprint author), NIAID, Comparat Med Branch, Bldg 14B S,Room 228,9000 Rockville Pike, Bethesda, MD 20892 USA. EM gozaloa@niaid.nih.gov NR 46 TC 2 Z9 2 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0047-2565 J9 J MED PRIMATOL JI J. Med. Primatol. PD FEB PY 2008 VL 37 SU 1 BP 29 EP 38 DI 10.1111/j.1600-0684.2007.00258.x PG 10 WC Veterinary Sciences; Zoology SC Veterinary Sciences; Zoology GA 261ZE UT WOS:000253117700007 PM 18269526 ER PT J AU Vesper, S McKinstry, C Hartmann, C Neace, M Yoder, S Vesper, A AF Vesper, Stephen McKinstry, Craig Hartmann, Chris Neace, Michelle Yoder, Stephanie Vesper, Alex TI Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA) SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE viability; infectious fungi; blue LED; PMA ID REAL-TIME; PATHOGENIC ASPERGILLUS; DISTRIBUTION-SYSTEMS; INFECTIONS; BIOFILMS; INDOOR; CELLS AB A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 degrees C or held at 5 degrees C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 mu m pore size) were placed on "welled" slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivate remaining PMA and secure intercalation of PMA with DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing. (C) 2007 Elsevier B.V. All rights reserved. C1 [Vesper, Stephen] US EPA, NERL, Cincinnati, OH 45268 USA. [McKinstry, Craig] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hartmann, Chris] Xavier Univ, Dept Biol, Cincinnati, OH 45207 USA. [Neace, Michelle; Yoder, Stephanie] Univ Cincinnati, Dept Pathobiol & Mol Med, Cincinnati, OH USA. [Vesper, Alex] Novitran, Cincinnati, OH USA. RP Vesper, S (reprint author), US EPA, NERL, 26 W ML King Ave,ML 314, Cincinnati, OH 45268 USA. EM vesper.stephen@epa.gov NR 26 TC 74 Z9 80 U1 3 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD FEB PY 2008 VL 72 IS 2 BP 180 EP 184 DI 10.1016/j.mimet.2007.11.017 PG 5 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 263JY UT WOS:000253214600009 PM 18160156 ER PT J AU Hall, NA Okandan, M Littrell, R Serkland, DK Keeler, GA Peterson, K Bicen, B Garcia, CT Degertekin, FL AF Hall, Neal A. Okandan, Murat Littrell, Robert Serkland, Darwin K. Keeler, Gordon A. Peterson, Ken Bicen, Baris Garcia, Caesar T. Degertekin, F. Levent TI Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE acceleration measurement; diffraction; feedback system; optical interferometry ID DISPLACEMENT DETECTION; FORCE MICROSCOPY; FABRICATION AB A micromachined accelerometer device structure with diffraction-based optical detection and integrated electrostatic actuation is introduced. The sensor consists of a bulk silicon proof mass electrode that moves vertically with respect to a rigid diffraction grating backplate electrode to provide interferometric detection resolution of the proof-mass displacement when illuminated with coherent light. The sensor architecture includes a monolithically integrated electrostatic actuation port that enables the application of precisely controlled broadband forces to the proof mass while the displacement is simultaneously and independently measured optically. This enables several useful features such as dynamic self-characterization and a variety of force-feedback modalities, including alteration of device dynamics in situ. These features are experimentally demonstrated with sensors that have been optoelectronically integrated into sub-cubic-millimeter volumes using an entirely surface-normal, rigid, and robust embodiment incorporating vertical cavity surface emitting lasers and integrated photodetector arrays. In addition to small form factor and high acceleration resolution, the ability to self-characterize and alter device dynamics in situ may be advantageous. This allows periodic calibration and in situ matching of sensor dynamics among an array of accelerometers or seismo-meters configured in a network. C1 [Hall, Neal A.; Okandan, Murat; Littrell, Robert; Serkland, Darwin K.; Keeler, Gordon A.; Peterson, Ken] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bicen, Baris; Garcia, Caesar T.; Degertekin, F. Levent] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP Hall, NA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nahall@alumni.utexas.net FU NIDCD NIH HHS [R01 DC005762-04, R01 DC005762] NR 20 TC 25 Z9 27 U1 0 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD FEB PY 2008 VL 17 IS 1 BP 37 EP 44 DI 10.1109/JMEMS.2007.910243 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 264BG UT WOS:000253259600005 PM 19079635 ER PT J AU Serrano, JR Phinney, LM AF Serrano, Justin R. Phinney, Leslie M. TI Displacement and thermal performance of laser-heated asymmetric MEMS actuators SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article; Proceedings Paper CT ASME InterPACK Conference CY JUL 08-12, 2007 CL Vancouver, CANADA SP ASME, Elect & Photon Packaging Div DE actuators; laser radiation effects; microelectromechanical devices; Raman spectroscopy; temperature measurement ID MICROELECTROMECHANICAL SYSTEMS; ELECTROTHERMAL ACTUATORS; MECHANICAL SYSTEMS; RAMAN THERMOMETRY; SILICON; DAMAGE; SCATTERING; DESIGN; LIGHT AB Optical actuators are fundamental building blocks in the development of all-optical microelectromechanical devices. Photothermally actuated devices are inevitably limited by overheating and device damage resulting from the absorption of laser power. Optimal actuator design requires an efficient use of the applied laser power while minimizing the susceptibility of device damage. Surface micromachined polycrystalline silicon flexure-style optical actuators, which are powered using an 808-nm continuous-wave laser, were evaluated for displacement performance and susceptibility to damage. Actuator displacement is linear with incident power for laser powers below those that cause damage to the irradiated surface, up to a maximum displacement of 7-9 mu m. Damage of the irradiated surface causes viscous relaxation of the polysilicon film and leads to recession of the displacement during the heating and additional recession after the optical power is removed. The first spatially resolved temperature measurements during device operation were obtained using micro-Raman thermometry. The temperature measurements revealed the influence of temperature-dependent optical properties in the thermal behavior of the irradiated devices. C1 [Serrano, Justin R.; Phinney, Leslie M.] Sandia Natl Labs, Microscale Sci & Technol Dept, Albuquerque, NM 87185 USA. RP Serrano, JR (reprint author), Sandia Natl Labs, Microscale Sci & Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM jrserra@sandia.gov NR 31 TC 6 Z9 6 U1 3 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD FEB PY 2008 VL 17 IS 1 BP 166 EP 174 DI 10.1109/JMEMS.2007.911945 PG 9 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 264BG UT WOS:000253259600019 ER PT J AU He, YT Wan, JM Tokunaga, T AF He, Y. Thomas Wan, Jiamin Tokunaga, Tetsu TI Kinetic stability of hematite nanoparticles: the effect of particle sizes SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE hematite; nanoparticles; kinetic stability; particle size; DLVO theory; agglomeration; soil contamination; environment ID DYNAMIC LIGHT-SCATTERING; AGGREGATION KINETICS; COLLOIDAL SUSPENSIONS; IRON NANOPARTICLES; METAL TRANSPORT; ZERO CHARGE; ACID; REMEDIATION; PH; REACTIVITY AB Nanoparticles are ubiquitous in environment and are potentially important in many environmental processes such as sorption, coprecipitation, redox reactions, and dissolution. To investigate particle size effects on nanoparticle aggregation and stability, this study tested aggregation behavior of 12(+/- 2), 32(+/- 3), and 65(+/- 3) nm (hydrated radius) hematite particles under environmental relevant pH and ionic strength conditions. The results showed that at the same ionic strength and pH conditions, different particle sizes show different tendency to aggregate. At the same ionic strength, aggregation rates are higher for smaller particles. The critical coagulation concentration also depends on particle size, and decreases as particle size decreases. As the particle size decreases, fast aggregation shifted to lower pH. This may be related to a dependence of PZC on particle size originating from change of structure and surface energy characteristics as particle size decreases. Under the same conditions, aggregation occurs faster as particle concentration increases. Even though the nanoparticles of different sizes show different response to the same pH and ionic strength, DLVO theory can be used to qualitatively understand hematite nanoparticle aggregation behavior. C1 [He, Y. Thomas; Wan, Jiamin; Tokunaga, Tetsu] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP He, YT (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM yhe@caltech.edu RI Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014 OI Tokunaga, Tetsu/0000-0003-0861-6128; NR 31 TC 140 Z9 142 U1 11 U2 96 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 EI 1572-896X J9 J NANOPART RES JI J. Nanopart. Res. PD FEB PY 2008 VL 10 IS 2 BP 321 EP 332 DI 10.1007/s11051-007-9255-1 PG 12 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242MW UT WOS:000251730400009 ER PT J AU Riedel, O Klotsche, J Spottke, A Deuschl, G Forstl, H Henn, F Heuser, I Oertel, W Reichmann, H Riederer, P Trenkwalder, C Dodel, R Wittchen, HU AF Riedel, Oliver Klotsche, Jens Spottke, Annika Deuschl, Guenther Foerstl, Hans Henn, Fritz Heuser, Isabella Oertel, Wolfgang Reichmann, Heinz Riederer, Peter Trenkwalder, Claudia Dodel, Richard Wittchen, Hans-Ulrich TI Cognitive impairment in 873 patients with idiopathic Parkinson's disease - Results from the German Study on epidemiology of Parkinson's disease with dementia (GEPAD) SO JOURNAL OF NEUROLOGY LA English DT Article DE Parkinson's disease; dementia; cognitive impairment; MMSE; CDT; PANDA ID CLOCK-DRAWING TEST; ALZHEIMERS-DISEASE; LEWY BODIES; DEPRESSION; VALIDITY; PREVALENCE; COMMUNITY; RISK AB Background Parkinson's disease (PD) is often accompanied by non-motor complications, such as dementia, depression, and psychotic symptoms, which worsen the prognosis and increase the personal and socioeconomic burden of disease. Prevalence estimates of these complications are quite variable and are lacking for the outpatient care sector. Methods As part of a larger, nationwide, cross-sectional epidemiological study in n = 315 neurological outpatient settings in Germany, this paper estimates the frequency of dementia and cognitive impairment in n = 873 outpatients meeting the UK Brain Bank criteria for idiopathic PD. Assessments were based on a clinical interview and neuropsychological assessments, including the Hoehn & Yahr rating and Unified Parkinson's Disease Rating Scale (UPDRS). Cognitive impairment was assessed by the Mini-Mental State Exam (MMSE), Clock Drawing Test (CDT) and the Parkinson Neuropsychometric Dementia Assessment (PANDA) and the clinician's diagnosis of dementia was based on the diagnostic criteria of DSMIV. Results Using standardized cutoff scores, the prevalence of cognitive impairment in the study sample as measured by various methods was 17.5% by MMSE (<= 24), 41.8% by CDT (<= 3), 43.6% by PANDA (<= 14), and 28.6% met the DSM-IV criteria for dementia. All estimates increased with age and PD severity. Gender was an inconsistent contributor while illness duration had no significant impact on cognition. Multiple regression analyses revealed PD severity to be the strongest predictor of dementia risk (OR = 4.3; 95% CI: 2.1-9.1), while neuropsychiatric syndromes had independent, although modest additional contributions (OR = 2.5, 95% CI: 1.6-3.8). Conclusion Estimates of cognitive impairment and dementia in PD patients are largely dependent on the diagnostic measure used. Using established clinical diagnostic standards for dementia the overall rate on routine outpatient neurological care is 28.6%, but using more sensitive neuropsychological measures, rates for cognitive impairment might be up to 2-fold higher. The MMSE revealed strikingly low sensitivity. Neuropsychiatric syndromes, in addition to PD severity and age, have an independent - although modest - additional contribution to patients' risk for cognitive impairment and dementia. C1 [Riedel, Oliver; Klotsche, Jens; Wittchen, Hans-Ulrich] Tech Univ Dresden, Inst Clin Psychol & Psychotherapy, D-01187 Dresden, Germany. [Spottke, Annika] Univ Bonn, Dept Neurol, D-5300 Bonn, Germany. [Oertel, Wolfgang; Dodel, Richard] Univ Marburg, Dept Neurol, Marburg, Germany. [Deuschl, Guenther] Univ Kiel, Dept Neurol, D-2300 Kiel, Germany. [Foerstl, Hans] Tech Univ Munich, Dept Psychiat & Psychotherapy, Munich, Germany. [Henn, Fritz] Brookhaven Natl Lab, Upton, NY 11973 USA. [Heuser, Isabella] Charite Univ Med Berlin, D-13353 Berlin, Germany. [Reichmann, Heinz] Fac Med Carl Gustav Carus, Dept Neurol, Dresden, Germany. [Riederer, Peter] Univ Wurzburg, Dept Clin Neurochem, D-97070 Wurzburg, Germany. [Riederer, Peter] Univ Wurzburg, NPF Ctr Excellence Labs, D-97070 Wurzburg, Germany. [Trenkwalder, Claudia] Paracelsus Elena Clin, Kassel, Germany. RP Wittchen, HU (reprint author), Tech Univ Dresden, Inst Clin Psychol & Psychotherapy, Chemnitzer Str 46, D-01187 Dresden, Germany. EM wittchen@psychologie.tu-dresden.de RI forstl, hans/B-5869-2008; Wittchen, Hans-Ulrich/A-8507-2014; Deuschl, Gunther/A-7986-2010; OI Wittchen, Hans-Ulrich/0000-0002-6311-7711 NR 34 TC 147 Z9 151 U1 0 U2 20 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0340-5354 J9 J NEUROL JI J. Neurol. PD FEB PY 2008 VL 255 IS 2 BP 255 EP 264 DI 10.1007/s00415-008-0720-2 PG 10 WC Clinical Neurology SC Neurosciences & Neurology GA 269HV UT WOS:000253641000015 PM 18204803 ER PT J AU Riley, BJ Sundaram, SK Johnson, BR Saraf, LV AF Riley, Brian J. Sundaram, S. K. Johnson, Bradley R. Saraf, Laxmikant V. TI Differential etching of chalcogenides for infrared photonic waveguide structures SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE planar waveguides; chemical vapor deposition; chalcogenides; infrared properties ID GLASSES; FABRICATION AB Chemical etching rates for two different chalcogenide glass compositions, AS(40)S(60) and AS(24)S(38)Se(38), were studied using sodium hydroxide based etchant solutions. Etching was performed using a variation of standard photolithographic masking and wet-etching techniques. Variations in etch rate with NaOH concentration and glass composition were observed. The depth of etch was characterized using an optical profilometer. Etch rate differences as large as three orders of magnitude between these two glasses were observed at low NaOH concentration (0.053 M). We present a single variable etch rate curve of etch depth per time (nm/s) versus NaOH overall solution concentration (in M) for these two different chalcogenide glasses. This technology shows promise for fabricating photonic structures and has potential applications in fabricating novel photonic bandgap structures that will function in the long-wave infrared (LWIR) regime. Published by Elsevier B.V. C1 [Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Sundaram, SK (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, PO Box 999, Richland, WA 99354 USA. EM sk.sundaram@pnl.gov OI Riley, Brian/0000-0002-7745-6730 NR 18 TC 3 Z9 3 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD FEB 1 PY 2008 VL 354 IS 10-11 BP 813 EP 816 DI 10.1016/j.jnoncrysol.2007.08.061 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 263KT UT WOS:000253216700001 ER PT J AU Pan, W Dunn, RG Carroll, MS Banks, JC Brewer, LN AF Pan, Wei Dunn, R. G. Carroll, M. S. Banks, J. C. Brewer, L. N. TI Photoluminescence in silicon rich oxide thin films under different thermal treatments SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE silicon; nanocrystals; luminescence ID SI NANOCRYSTALS; OPTICAL-PROPERTIES; ELECTRONIC STATES; EMISSION; LIGHT; LUMINESCENCE; ABSORPTION; OXYGEN AB Photoluminescence (PL) was studied in silicon rich oxide (with the atomic percentage ranges of Si from 35% to 75%) thin film samples, fabricated by the plasma assisted CVD technique. A broad PL peak, blue-shifted from the bulk silicon band edge of similar to 1.1 eV, was observed. In one typical sample, the PL peak intensity shows a non-monotonic temperature dependence. This non-monotonic dependence was also observed in previous work by others and attributed to an energy splitting between the excitonic singlet and triplet levels in silicon nanocrystals, a consequence of quantum confinement effect. Finally, in more than 20 samples under different thermal treatments (with the annealing temperature range from 800 degrees C to 1100 degrees C), the wavelength of PL peak was observed to be pinned between similar to 900 and similar to 1000 rim, independent of thermal budget. This pinning effect, we believe, is probably due to the formation of oxygen-related interface states. (C) 2007 Elsevier B.V. All rights reserved. C1 [Pan, Wei; Dunn, R. G.; Carroll, M. S.; Banks, J. C.; Brewer, L. N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pan, W (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wpan@sandia.gov NR 22 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD FEB 1 PY 2008 VL 354 IS 10-11 BP 975 EP 977 DI 10.1016/j.jnoncrysol.2007.08.008 PG 3 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 263KT UT WOS:000253216700022 ER PT J AU Leigh, CD Bertozzi, CR AF Leigh, Clifton D. Bertozzi, Carolyn R. TI Synthetic studies toward Mycobacterium tuberculosis sulfolipid-I SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID PROTECTING GROUPS; STRAIN H37RV; VIRULENCE; BIOSYNTHESIS; SULFATIDE; ACIDS; ENANTIOMERS; INHIBITION; CONVERSION; TREHALOSE AB [GRAPHICS] Sulfolipid-I (SL-I) is an abundant metabolite found in the cell wall of Mycobacterium tuberculosis that is comprised of a trehalose 2-sulfate core modified with four fatty acyl substituents. The correlation of its abundance with the virulence of clinical isolates suggests a role for SL-I in pathogenesis, although its biological functions remain unknown. Here we describe the synthesis of a SL-I analogue bearing unnatural lipid substituents. A key feature of the synthesis was application of an intramolecular aglycon delivery reaction to join two differentially protected glucose monomers, one prepared with a novel alpha-selective glycosylation. The route developed for the model compound can be readily extended to the synthesis of native SL-I as well as additional analogues for use in the investigation of SL-I's functions. C1 [Leigh, Clifton D.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu FU Howard Hughes Medical Institute; NIAID NIH HHS [AI51622, R01 AI051622, R01 AI051622-05] NR 41 TC 33 Z9 33 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD FEB 1 PY 2008 VL 73 IS 3 BP 1008 EP 1017 DI 10.1021/jo702032c PG 10 WC Chemistry, Organic SC Chemistry GA 255VQ UT WOS:000252686400026 PM 18173284 ER PT J AU Boore, JL AF Boore, Jeffrey L. TI Detecting evolutionary transfer of genes using PhIGs SO JOURNAL OF PHYCOLOGY LA English DT Article; Proceedings Paper CT Botany and Plant Sciences Joint Congress Symposium on Borrowed Chloroplasts: Secondary Endosymbiosis and the Chromalveolates CY JUL 07-11, 2007 CL Chicago, IL SP Amer Fern Soc, Amer Soc Plant Taxonomists, Botan Soc Amer, Natl Sci Fdn DE algae; bioinformatics; cyanobacteria; endosymbiosis; evolution; gene transfer; genome; orthology; paralogy; PhIGs ID COG DATABASE; HUMAN GENOME; ORTHOLOGS; TOOL; EUKARYOTES; PROTEINS; SEQUENCE; NUCLEUS AB Organisms have acquired plastids by convoluted paths that have provided multiple opportunities for gene transfer into a host nucleus from intracellular organisms, including the cyanobacterial ancestor of plastids, the proteobacterial ancestor of mitochondria, and both green and red algae whose engulfment has led to secondary acquisition of plastids. These gene movements are most accurately demonstrated by building phylogenetic trees that identify the evolutionary origin of each gene, and one effective tool for this is "PhIGs" (Phylogenetically Inferred Groups; http: // PhIGs.org), a set of databases and computer tools with a Web interface for whole-genome evolutionary analysis. PhIGs takes as input gene sets of completely sequenced genomes, builds clusters of genes using a novel, graph-based approach, and reconstructs the evolutionary relationships among all gene families. The user can view and download the sequence alignments, compare intron-exon structures, and follow links to functional genomic databases. Currently, PhIGs contains 652,756 genes from 45 genomes grouped into 61,059 gene families. Graphical displays show the relative positions of these genes among genomes. PhIGs has been used to detect the evolutionary transfer of hundreds of genes from cyanobacteria and red algae into oomycete nuclear genomes, revealing that even though they have no plastids, their ancestors did, having secondarily acquired them from an intracellular red alga. A great number of genomes are soon to become available that are relevant to our broader understanding of the movement of genes among intracellular compartments after engulfing other organisms, and PhIGs will be an effective tool to interpret these gene movements. C1 Genome Project Solut, Hercules, CA 94547 USA. [Boore, Jeffrey L.] Lawrence Berkeley Natl Lab, DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Boore, Jeffrey L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Boore, JL (reprint author), Genome Project Solut, Hercules, CA 94547 USA. EM jlboore@genomeprojectsolutions.com NR 29 TC 3 Z9 3 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD FEB PY 2008 VL 44 IS 1 BP 19 EP 22 DI 10.1111/j.1529-8817.2007.00436.x PG 4 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 260BO UT WOS:000252986000006 PM 27041035 ER PT J AU Famiano, MA Boyd, RN Kajino, T Otsuki, K Terasawa, M Mathews, GJ AF Famiano, M. A. Boyd, R. N. Kajino, T. Otsuki, K. Terasawa, M. Mathews, G. J. TI Effects of beta-decays of excited-state nuclei on the astrophysical r-process SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID NEUTRINO-DRIVEN WINDS; METAL-POOR STARS; GROSS THEORY; PROCESS NUCLEOSYNTHESIS; PROCESS ABUNDANCES; ELEMENTS; CAPTURE; HOT AB A rudimentary calculation is employed to evaluate the possible effects of beta-decays of excited-state nuclei on the astrophysical r-process. Single-particle levels calculated with the FRDM are adapted to the calculation of beta-decay rates of these excited-state nuclei. Quantum numbers are determined based on proximity to Nilson model levels. The resulting rates are used in an r-process network calculation in which a supernova hot-bubble model is coupled to an extensive network calculation including all nuclei between the valley of stability and the neutron drip line and with masses 1 <= A <= 283. beta-decay rates are included as functional forms of the environmental temperature. While the decay rate model used is simple and phenomenological, it is consistent across all 3700 nuclei involved in the r-process network calculation. This represents an approximate first estimate to gauge the possible effects of excited-state beta-decays on r-process freeze-out abundances. C1 [Famiano, M. A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Boyd, R. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kajino, T.] Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Kajino, T.] Grad Univ Adv Studies, Dept Astron Sci, Tokyo 1818588, Japan. [Kajino, T.] Natl Astron Observ, Tokyo 1818588, Japan. [Otsuki, K.] Univ Chicago, Dept Phys & Astron, Chicago, IL 60637 USA. [Terasawa, M.] Univ Tokyo, Ctr Nucl Study, Wako, Saitama 3510198, Japan. [Mathews, G. J.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Famiano, MA (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM michael.famiano@wmich.edu; boyd11@llnl.gov; kajino@nao.ac.jp; otsuki@uchicago.edu; mariko@cns.s.u-tokyo.ac.jp; gmathews@nd.edu NR 41 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2008 VL 35 IS 2 AR 025203 DI 10.1088/0954-3899/35/2/025203 PG 33 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 264HW UT WOS:000253279400016 ER PT J AU Kahana, DE Kahana, SH AF Kahana, D. E. Kahana, S. H. TI Suppression of high transverse momentum pi(0) spectra in Au+Au collisions at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review ID ULTRARELATIVISTIC NUCLEAR COLLISIONS; ENERGY HADRON-COLLISIONS; HEAVY-ION COLLISIONS; DUAL PARTON MODEL; PARTICLE-PRODUCTION; SEMIHARD PROCESSES; THERMALIZATION; QCD; FRAGMENTATION; DISTRIBUTIONS AB Au+Au, s(1/2) = 200 GeV measurements at RHIC, obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors, have all indicated a suppression of high p. particle production, relative to an appropriately normalized NN level. For central collisions and vanishing pseudo-rapidity these experiments exhibit suppression in charged meson production, especially at medium-to-large transverse momenta. In the PHENIX experiment similar behaviour has been reported for pi(0) spectra. In a recent work [1] on the simpler D+Au interaction, to be considered perhaps as a tune-up for Au+Au, we reported on a pre-hadronic cascade mechanism which can explain the mixed observation of moderately reduced p. suppression at higher pseudo-rapidity as well as the Cronin enhancement at mid-rapidity. Here, we present the extension of this work to the more massive ion-ion collisions. Our major thesis is that much of the suppression is generated in a late stage cascade of colourless pre-hadrons produced after an initial short-lived coloured phase. We present a pQCD argument to justify this approach and to estimate the time duration tau(p) of this initial phase. Of essential importance is the brevity in time of the coloured phase existence relative to that of the strongly interacting pre-hadron phase, the latter essentially an interactive cascade. These distinctions in phase are of course not strict, but adequate for treating the suppression of moderate and high p(perpendicular to) mesons. C1 [Kahana, D. E.; Kahana, S. H.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kahana, DE (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. OI Kahana, David Ewan/0000-0003-1266-9089; Kahana, Sidney/0000-0002-5790-9384 NR 99 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2008 VL 35 IS 2 AR 025102 DI 10.1088/0954-3899/35/2/025102 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 264HW UT WOS:000253279400010 ER PT J AU Narayanaswamy, A McBride, J Swafford, LA Dhar, S Budai, JD Feldman, LC Rosenthal, SJ AF Narayanaswamy, Arun McBride, James Swafford, Laura A. Dhar, Sarit Budai, John D. Feldman, Leonard C. Rosenthal, Sandra J. TI Synthesis and characterization of porous TiO2 with wormhole-like framework structure SO JOURNAL OF POROUS MATERIALS LA English DT Article DE mesoporous; titanium dioxide; acid hydrolysis; XRD; TEM; macropores ID MESOPOROUS MOLECULAR-SIEVES; TITANIA THIN-FILMS; THERMAL-STABILITY; ANATASE WALLS; TEMPLATE; ZIRCONIA; SYSTEMS; OXIDES AB A fast and reliable synthetic route for preparing contaminant-free porous TiO2 with a wormhole-like framework and close packed macropores is demonstrated based on a sol-gel process involving acid hydrolysis of an alkoxide in the presence of a cationic surfactant. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements have been used to characterize the porous structure and the crystallinity. The XRD patterns, TEM and scanning electron microscopy (SEM) images confirm that these materials have disordered wormhole-like topology with close-packed nearly hexagonal macropores. The mesopore diameters and surface area of titanium dioxide, evaluated from the N-2-sorption isotherms, indicate average pore diameters of about 7 and 6 nm and surface areas of about 100 and 335 m(2)/g, for as-prepared and calcined samples at 400 degrees C. C1 [Narayanaswamy, Arun; McBride, James; Swafford, Laura A.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37203 USA. [Dhar, Sarit; Feldman, Leonard C.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Budai, John D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, 221 Kirkland Hall, Nashville, TN 37203 USA. EM sandra.j.rosenthal@vanderbilt.edu RI McBride, James/D-2934-2012; Budai, John/R-9276-2016 OI McBride, James/0000-0003-0161-7283; Budai, John/0000-0002-7444-1306 NR 40 TC 5 Z9 5 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-2224 J9 J POROUS MAT JI J. Porous Mat. PD FEB PY 2008 VL 15 IS 1 BP 21 EP 27 DI 10.1007/s10934-006-9047-5 PG 7 WC Chemistry, Applied; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 243KO UT WOS:000251795500004 ER PT J AU Lee, TH Hwang, IS Chung, HS Park, JY AF Lee, Tae Hyun Hwang, Il Soon Chung, Han Sub Park, Jang Yul TI A new technique for intergranular crack formation in alloy 600 steam generator tubing SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE alloy 600 steam generator tubing; laboratory-degraded tube (LDT); direct current potential drop (DCPD); finite element method (FEM); eddy current test (ECT) AB For the integrity management of steam generator (SG) tubes, nondestructive evaluation performed using eddy current test (ECT) is necessary in the assessment. The reliability of ECT evaluation is dependent on the accuracy of ECT for various kinds of defects. For basic calibration and qualification of these techniques, cracked SG tube specimens having mechanical and microstructural characteristics of intergranular cracks in the field are needed. To produce libraries of laboratory-degraded SG tubes with intergranular cracks, a radial denting method was explored for generating inside diameter and outside diameter axial cracks by three-dimensional finite element analysis and experimental demonstration. The technique is proven to be applicable for generating axial cracks with long and shallow geometries as opposed to the semicircular cracks typically obtained by the internal-pressurization method. In addition, a direct current potential drop method with array probes was developed for accurate monitoring and controlling of crack size and shape. By these methods, long and shallow intergranular axial cracks more typical of actual degraded SG tubes were successfully produced. C1 [Lee, Tae Hyun; Hwang, Il Soon] Seoul Natl Univ, Seoul 151742, South Korea. [Chung, Han Sub] Korea Elect Power Res Inst, Taejon 305380, South Korea. [Park, Jang Yul] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lee, TH (reprint author), Seoul Natl Univ, 56-1 Shillim Kwanak, Seoul 151742, South Korea. EM ehfaks2@snu.ac.kr NR 11 TC 4 Z9 5 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD FEB PY 2008 VL 130 IS 1 AR 011403 DI 10.1115/1.2826423 PG 11 WC Engineering, Mechanical SC Engineering GA 270TP UT WOS:000253743400019 ER PT J AU Wang, JJA Wright, IG Lance, MJ Liu, KC AF Wang, John Jy-An Wright, Ian G. Lance, Michael J. Liu, Ken C. TI A new approach for bimaterial interface fracture toughness evaluation SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 17-21, 2005 CL Denver, CO SP Amer Soc Mech Engineers DE interface fracture toughness; thin film coating material; composite material; spiral notch; torsion test ID THERMAL BARRIER COATINGS; SINGLE-CRYSTAL; MECHANISMS; ALUMINA; CRACKS; MODE; INSTABILITY; SPALLATION; OXIDATION; STRENGTH AB A material configuration of central importance in composite materials or in protective coating technology is a thin film of one material deposited onto a substrate of a different material. Fabrication of such a structure inevitably gives rise to stress in the film due to lattice mismatch, differing coefficient of thermal expansion, chemical reactions, or other physical effects. Therefore, in general, the weakest link in this composite system often resides at the interface between the thin film and the substrate. In order to make multilayered electronic devices and structural composites with long-term reliability, the fracture behavior of the material interfaces must be known. This project offers an innovative testing procedure of using a spiral notch torsion bar method for the determination of interface fracture toughness that is applicable to thin coating materials in general. The feasibility study indicated that this approach for studying thin film interface fracture is repeatable and reliable, and the demonstrated test method closely adheres to and is consistent with classical fracture mechanics theory. C1 [Wang, John Jy-An; Wright, Ian G.; Lance, Michael J.; Liu, Ken C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, JJA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wangja@ornl.gov RI Lance, Michael/I-8417-2016; OI Lance, Michael/0000-0001-5167-5452; Wang, Jy-An/0000-0003-2402-3832 NR 39 TC 0 Z9 0 U1 0 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD FEB PY 2008 VL 130 IS 1 AR 011401 DI 10.1115/1.2826408 PG 9 WC Engineering, Mechanical SC Engineering GA 270TP UT WOS:000253743400017 ER PT J AU Muske, KR Jones, JCP Howse, JW AF Muske, Kenneth R. Jones, James C. Peyton Howse, James W. TI A model-based approach to automotive three-way catalyst on-board monitoring SO JOURNAL OF PROCESS CONTROL LA English DT Article DE automotive catalyst monitoring; model-based fault detection; automotive three-way catalyst ID EMISSION CONTROL; SENSORS AB A model-based three-way automotive catalyst monitoring and fault detection strategy is presented in this work. The performance of the catalyst is inferred from the error between the post-catalyst exhaust gas oxygen sensor air fuel ratio measurement and the model predicted value. A simplified catalyst oxygen storage and reversible deactivation model is employed to predict the post-catalyst air fuel ratio. The model-based strategy is based on the use of a test statistic that is computed from a window of post-catalyst air fuel ratio prediction error data updated in real-time. A fault is assumed to be present when the value of this statistic exceeds a threshold determined from some specified confidence level. We illustrate several test statistics using engine operating data and conclude with an evaluation of this strategy. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Muske, Kenneth R.] Villanova Univ, Dept Chem Engn, Villanova, PA 19085 USA. [Jones, James C. Peyton] Villanova Univ, Dept Elect & Comp Engn, Villanova, PA 19085 USA. [Howse, James W.] Los Alamos Natl Lab, Modeling Algorithms & Informat Grp, Los Alamos, NM 87545 USA. RP Muske, KR (reprint author), Villanova Univ, Dept Chem Engn, Villanova, PA 19085 USA. EM kenneth.muske@villanova.edu NR 18 TC 5 Z9 6 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-1524 J9 J PROCESS CONTR JI J. Process Control PD FEB PY 2008 VL 18 IS 2 BP 163 EP 172 DI 10.1016/j.jprocont.2007.07.011 PG 10 WC Automation & Control Systems; Engineering, Chemical SC Automation & Control Systems; Engineering GA 270AL UT WOS:000253692000004 ER PT J AU Ansong, C Yoon, H Norbeck, AD Gustin, JK McDermott, JE Mottaz, HM Rue, J Adkins, JN Heffron, F Smith, RD AF Ansong, Charles Yoon, Hyunjin Norbeck, Angela D. Gustin, Jean K. McDermott, Jason E. Mottaz, Heather M. Rue, Joanne Adkins, Joshua N. Heffron, Fred Smith, Richard D. TI Proteomics analysis of the causative agent of typhoid fever SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Salmonella typhi; Salmonella typhimurium; proteomics; pathogen; mass spectrometry ID ENTERICA SEROVAR TYPHIMURIUM; CYTOLETHAL DISTENDING TOXIN; TANDEM MASS-SPECTROMETRY; COMPLETE GENOME SEQUENCE; PATHOGENICITY ISLAND 2; III SECRETION SYSTEM; SALMONELLA-ENTERICA; ESCHERICHIA-COLI; GENE-EXPRESSION; PROTEIN AB Typhoid fever is a potentially fatal disease caused by the bacterial pathogen Salmonella enterica serotype Typhi (S. typhi). S. typhi infection is a complex process that involves numerous bacterially encoded virulence determinants, and these are thought to confer both stringent human host specificity and a high mortality rate. In the present study, we used a liquid chromatography-mass spectrometry (LC-MS)-based proteomics strategy to investigate the proteome of logarithmic, stationary phase, and low pH/ low magnesium (MgM) S. typhi cultures. This represents the first large-scale comprehensive characterization of the S. typhi proteome. Our analysis identified a total of 2066 S. typhi proteins. In an effort to identify putative S. typhi-specific virulence factors, we then compared our S. typhi results to those obtained in a previously published study of the S. typhimurium proteome under similar conditions (Adkins, J. N. et al. Mol. Cell. Proteomics 2006, 5, 1450-1461). Comparative proteornics analysis of S. typhi strain Ty2 and S. typhimurium strain LT2 revealed a subset of highly expressed proteins unique to S. typhi that were exclusively detected under conditions that are thought to mimic the infective state in macrophage cells. These proteins included CdtB, HlyE, and gene products of t0142, t1108, t1109, t1476, and t1602. The differential expression of T1108, T1476, and HlyE was confirmed by Western blot analysis. When our observations are taken together with the current literature they suggest that this subset of proteins may play a role in S. typhi pathogenesis and human host specificity. C1 [Ansong, Charles; Norbeck, Angela D.; McDermott, Jason E.; Adkins, Joshua N.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Mottaz, Heather M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Yoon, Hyunjin; Gustin, Jean K.; Rue, Joanne; Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; McDermott, Jason/0000-0003-2961-2572 FU NIAID NIH HHS [Y1-AI-4894-01] NR 63 TC 40 Z9 43 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2008 VL 7 IS 2 BP 546 EP 557 DI 10.1021/pr070434u PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 258JO UT WOS:000252864400008 PM 18166006 ER PT J AU Jacobs, JM Waters, KM Kathmann, LE David, G Wiley, HS Smith, RD Thrall, BD AF Jacobs, Jon M. Waters, Katrina M. Kathmann, Loel E. Camp, David G., II Wiley, H. Steven Smith, Richard D. Thrall, Brian D. TI The mammary epithelial cell secretome and its regulation by signal transduction pathways SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE proteome of secreted proteins; mammary epithelial cell; phorbol ester; epidermal growth factor receptor; mass spectrometry ID GROWTH-FACTOR RECEPTOR; CYSTEINYL-PEPTIDE ENRICHMENT; TANDEM MASS-SPECTROMETRY; KALLIKREIN GENE FAMILY; NECROSIS-FACTOR-ALPHA; BREAST-CANCER CELLS; HIGH-THROUGHPUT; ACCURATE MASS; MATRIX METALLOPROTEINASES; PROTEOME ANALYSIS AB Extracellular proteins released by mammary epithelial cells are critical mediators of cell communication, proliferation, and organization, yet the actual spectrum of proteins released by any given cell (the secretome) is poorly characterized. To define the set of proteins secreted by human mammary epithelial cells (HMEC), we combined analytical and computational approaches to define a secretome protein set based upon probable biological significance. Analysis of HMEC-conditioned medium by liquid chromatography mass spectrometry resulted in identification of 889 unique proteins, of which 151 were found to be specifically enriched in the extracellular compartment when compared with a database of proteins expressed in whole HMEC lysates. Additional high mass accuracy analysis revealed 36 proteins whose extracellular abundance increased after treatment with phorbol ester (PMA), a protein kinase C agonist and general secretagogue. Many of the PMA stimulated proteins have been reported to be aberrantly expressed in human cancers and appear to be coregulated as multigene clusters. By inhibiting PMA-mediated transactivation of the epidermal growth factor receptor (EGFR), a pathway critically required for normal HMEC function, we found that the secretion of specific matrix metallo-proteases was also coordinately regulated through EGFR transactivation. This study demonstrates a tiered strategy by which extracellular proteins can be identified and progressively assigned to classes of increasing confidence and regulatory importance. C1 [Jacobs, Jon M.; Waters, Katrina M.; Kathmann, Loel E.; Camp, David G., II; Wiley, H. Steven; Smith, Richard D.; Thrall, Brian D.] Pacific NW Natl Lab, Cell Biol & Biochem Grp, Syst Biol Program, Richland, WA 99352 USA. [Jacobs, Jon M.; Waters, Katrina M.; Camp, David G., II; Wiley, H. Steven; Smith, Richard D.; Thrall, Brian D.] Pacific NW Natl Lab, Biol Separat & Mass Spectrometry Grp, Syst Biol Program, Richland, WA 99352 USA. [Jacobs, Jon M.; Waters, Katrina M.; Camp, David G., II; Wiley, H. Steven; Smith, Richard D.; Thrall, Brian D.] Pacific NW Natl Lab, Computat Biol Grp, Syst Biol Program, Richland, WA 99352 USA. [Jacobs, Jon M.; Waters, Katrina M.; Camp, David G., II; Wiley, H. Steven; Smith, Richard D.; Thrall, Brian D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Thrall, BD (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, Syst Biol Program, Box 999,Mail Stop P7-56, Richland, WA 99352 USA. EM brian.thrall@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Wiley, Steven/0000-0003-0232-6867 FU NCRR NIH HHS [RR018522, P41 RR018522, P41 RR018522-05] NR 73 TC 19 Z9 20 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2008 VL 7 IS 2 BP 558 EP 569 DI 10.1021/pr0704377 PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 258JO UT WOS:000252864400009 PM 18166007 ER PT J AU Thompson, MR Thompson, DK Hettich, RL AF Thompson, Melissa R. Thompson, Dorothea K. Hettich, Robert L. TI Systematic assessment of the benefits and caveats in mining microbial post-translational modifications from shotgun proteomic data: The response of Shewanella oneidensis to chromate exposure SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE post-translational modifications; mass spectrometry; linear trapping quadrupole; proteomics; methylation; acetylation; oxidation; chromate; Shewanella oneidensis ID TANDEM MASS-SPECTROMETRY; SPECTRAL ABUNDANCE FACTORS; BACTERIAL CHEMOTAXIS; TOP-DOWN; PROTEIN; IDENTIFICATION; PHOSPHORYLATION; MR-1; REGULATOR; COMPLEXES AB Microbes are known to regulate both gene expression and protein activity through the use of post-translational modifications (PTMs). Common PTMs involved in cellular signaling and gene control include methylations, acetylations, and phosphorylations, whereas oxidations have been implicated. as an indicator of stress. Shewanella oneidensis MR-1 is a Gram-negative bacterium that demonstrates both respiratory versatility and the ability to sense and adapt to diverse environmental conditions. The data set used in this study consisted of tandem mass spectra derived from midlog phase aerobic cultures of S. oneidensis either native or shocked with 1 mM chromate [Cr(VI)]. In this study, three algorithms (DBDigger, Sequest, and InsPecT) were evaluated for their ability to scrutinize shotgun proteomic data for evidence of PTMs. The use of conservative scoring filters for peptides or proteins versus creating a subdatabase first from a nonmodification search was evaluated with DBDigger. The use of higher-scoring filters for peptide identifications was found to result in optimal identifications of PTM peptides with a 2% false discovery rate (FDR) for the total data set using the DBDigger algorithm. However, the FDR climbs to unacceptably high levels when only PTM peptides are considered. Sequest was evaluated as a method for confirming PTM peptides putatively identified using DBDigger; however, there was a low identification rate (similar to 25%) for the searched spectra. InsPecT was found to have a much lower, and thus more acceptable, FDR than DBDigger for PTM peptides. Comparisons between InsPecT and DBDigger were made with respect to both the FDR and PTM peptide identifications. As a demonstration of this approach, a number of S. oneidensis chemotaxis proteins as well as low-abundance signal transduction proteins were identified as being post-translationally modified in response to chromate challenge. C1 [Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Thompson, Melissa R.] Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Knoxville, TN 37830 USA. [Thompson, Melissa R.] Univ Tennessee, Knoxville, TN 37830 USA. [Thompson, Dorothea K.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. RP Hettich, RL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008,MS-6131, Oak Ridge, TN 37831 USA. EM hettichrl@ornl.gov RI Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X NR 48 TC 10 Z9 10 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2008 VL 7 IS 2 BP 648 EP 658 DI 10.1021/pr070531n PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 258JO UT WOS:000252864400018 PM 18171020 ER PT J AU Chin, MH Qian, WJ Wang, HX Petyuk, VA Bloom, JS Sforza, DM Lacan, G Liu, DH Khan, AH Cantor, RM Bigelow, DJ Melega, WP Camp, DG Smith, RD Smith, DJ AF Chin, Mark H. Qian, Wei-Jun Wang, Haixing Petyuk, Vladislav A. Bloom, Joshua S. Sforza, Daniel M. Lacan, Goran Liu, Dahai Khan, Arshad H. Cantor, Rita M. Bigelow, Diana J. Melega, William P. Camp, David G., II Smith, Richard D. Smith, Desmond J. TI Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Parkinson's disease; transcriptomics; proteomics; codon usage; miRNA; mouse model ID METHAMPHETAMINE-INDUCED NEUROTOXICITY; CYSTEINYL-PEPTIDE ENRICHMENT; TANDEM MASS-SPECTROMETRY; NEURONAL APOPTOSIS; SUBSTANTIA-NIGRA; DOPAMINE NEURONS; CELL-DEATH; MICE; EXPRESSION; MECHANISMS AB The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson's disease (PD) are not completely understood. Here, we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 86 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA, following neurotoxin treatment. The combined protein and gene list provides a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response, and apoptosis. These results constitute one of the largest descriptive data sets integrating protein and transcript changes for these neurotoxin models with many similar end point phenotypes but distinct mechanisms. C1 [Chin, Mark H.; Bloom, Joshua S.; Lacan, Goran; Khan, Arshad H.; Melega, William P.; Smith, Desmond J.] Univ Calif Los Angeles, David Geffen Sch Med, Lab Neuroimaging, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA. [Sforza, Daniel M.; Liu, Dahai] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA 90095 USA. [Qian, Wei-Jun; Wang, Haixing; Petyuk, Vladislav A.; Bigelow, Diana J.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Qian, Wei-Jun; Wang, Haixing; Petyuk, Vladislav A.; Bigelow, Diana J.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Smith, DJ (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Lab Neuroimaging, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA. EM dsmith@mednet.ucla.edu RI Qian, Weijun/C-6167-2011; Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Petyuk, Vladislav/0000-0003-4076-151X FU NCRR NIH HHS [P41 RR018522, P41 RR018522-05, RR18522]; NIDA NIH HHS [R01 DA015802]; NINDS NIH HHS [R01 NS050148, U24 NS052108] NR 54 TC 56 Z9 60 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2008 VL 7 IS 2 BP 666 EP 677 DI 10.1021/pr070546l PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 258JO UT WOS:000252864400020 PM 18173235 ER PT J AU Metz, TO Qian, WJ Jacobs, JM Gritsenko, MA Moore, RJ Polpitiya, AD Monroe, ME David, G Mueller, PW Smith, RD AF Metz, Thomas O. Qian, Wei-Jun Jacobs, Jon M. Gritsenko, Marina A. Moore, Ronald J. Polpitiya, Ashoka D. Monroe, Matthew E. Camp, David G., II Mueller, Patricia W. Smith, Richard D. TI Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE diabetes; proteomics; Fourier transform ion cyclotron resonance; label-free quantitation; liquid chromatography; mass spectrometry ID LIPID-MOBILIZING FACTOR; TIME TAG STRATEGY; MASS-SPECTROMETRY; LIQUID-CHROMATOGRAPHY; ACCURATE MASS; URINARY TRANSFERRIN; PLASMA-PROTEOME; DATA-MANAGEMENT; MOUSE-BRAIN; EXPRESSION AB Novel biomarkers of type 1 diabetes must be identified and validated in initial, exploratory studies before they can be assessed in proficiency evaluations. Currently, untargeted "-omics" approaches are underutilized in profiling studies of clinical samples. This report describes the evaluation of capillary liquid chromatography (LC) coupled with mass spectrometry (MS) in a pilot proteomic analysis of human plasma and serum from a subset of control and type 1 diabetic individuals enrolled in the Diabetes Autoantibody Standardization Program, with the goal of identifying candidate biomarkers of type 1 diabetes. Initial high-resolution capillary LC-MS/MS experiments were performed to augment an existing plasma peptide database, while subsequent LC-FTICR studies identified quantitative differences in the abundance of plasma proteins. Analysis of LC-FTICR proteomic data identified five candidate protein biomarkers of type 1 diabetes. alpha-2-Glycoprotein 1 (zinc), corticosteroid-binding globulin, and lumican were 2-fold up-regulated in type 1 diabetic samples relative to control samples, whereas clusterin and serotrahsferrin were 2-fold up-regulated in control samples relative to type 1 diabetic samples. Observed perturbations in the levels of all five proteins are consistent with the metabolic aberrations found in type 1 diabetes. While the discovery of these candidate protein biomarkers of type 1 diabetes is encouraging, follow up studies are required for validation in a larger population of individuals and for determination of laboratory-defined sensitivity and specificity values using blinded samples. C1 [Metz, Thomas O.; Qian, Wei-Jun; Jacobs, Jon M.; Gritsenko, Marina A.; Moore, Ronald J.; Polpitiya, Ashoka D.; Monroe, Matthew E.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Mueller, Patricia W.] US Ctr Dis Control & Prevent, Mol Risk Assessment Lab, Atlanta, GA USA. RP Metz, TO (reprint author), POB 999,MS K8-98, Richland, WA 99352 USA. EM thomas.metz@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Metz, Tom/0000-0001-6049-3968 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-05, RR18522]; NIDDK NIH HHS [R21 DK070146, DK070146, R33 DK070146, R33 DK070146-03]; PHS HHS [106-310, 106-554, 107-360, PL105-33] NR 45 TC 33 Z9 34 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2008 VL 7 IS 2 BP 698 EP 707 DI 10.1021/pr700606w PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 258JO UT WOS:000252864400023 PM 18092746 ER PT J AU McClarren, RG Holloway, JP Brunner, TA AF McClarren, Ryan G. Holloway, James Paul Brunner, Thomas A. TI Analytic P-1 solutions for time-dependent, thermal radiative transfer in several geometries SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE time-dependent radiation transport; P-1 approximation; thermal radiation transport ID BENCHMARK; TRANSPORT; DIFFUSION AB We present several solutions for the time-dependent P, approximation (telegrapher's equation) coupled to thermal radiative transfer with C, alpha T-3. Our solutions are based on the energy density Green's function in slab geometry, which we derive exactly. The analytic P-1 solution is compared with analytic transport and diffusion solutions on one of the Su-Olson benchmark problems. Also, we transform the slab geometry Green's function into the solution from a point source (the 1 D spherical Green's function) and an infinite line source (the 1 D cylindrical Green's function). We evaluate the P-1 solution to the line source and compare the result with a solution generated by a P-n numerical method. Published by Elsevier Ltd. C1 [McClarren, Ryan G.] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA. [Holloway, James Paul] Univ Michigan, Coll Engn, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Brunner, Thomas A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McClarren, RG (reprint author), Los Alamos Natl Lab, Computat Phys & Methods Grp, POB 1663, Los Alamos, NM 87545 USA. EM ryanmc@lanl.gov NR 15 TC 18 Z9 19 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2008 VL 109 IS 3 BP 389 EP 403 DI 10.1016/j.jqsrt.2007.08.006 PG 15 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 243XR UT WOS:000251831100003 ER PT J AU Silver, GL AF Silver, G. L. TI Plutonium speciation: The one-oxidation-state method SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID ENVIRONMENTAL PLUTONIUM; SEAWATER AB The distribution of plutonium oxidation-states in acid solutions can be estimated if the pH and the fraction of one oxidation state can be determined. The approach applies to plutonium in laboratory solutions and to plutonium in water of the environment. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Silver, GL (reprint author), Los Alamos Natl Lab, POB 1663,MS E517, Los Alamos, NM 87545 USA. NR 11 TC 6 Z9 6 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2008 VL 275 IS 2 BP 457 EP 458 DI 10.1007/s10967-007-7044-z PG 2 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 258TC UT WOS:000252891400033 ER PT J AU Sefat, AS Palasyuk, AM Bud'ko, SL Corbett, JD Canfield, PC AF Sefat, Athena S. Palasyuk, Andriy M. Bud'ko, Sergey L. Corbett, John D. Canfield, Paul C. TI Crystal structures and magnetic properties of CeAu4Si2 and CeAu2Si2 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE flux growth; single crystal; X-ray diffraction; CeAu2Si2; CeAu4Si2; electrical resistivity; magnetization; specific heat ID KONDO-LATTICE SYSTEMS; RARE-EARTH COMPOUNDS; SINGLE-CRYSTAL; SUSCEPTIBILITY; GROWTH; ANTIFERROMAGNETISM; FERROMAGNETISM; PRESSURE; CERU2SI2; CERH2SI2 AB Single crystals of CeAu4Si2 and CeAu2Si2 have been grown out of ternary fluxes rich in Au, and the former, also by sintering the stoichiometric composition at 750 degrees C. The single-crystal X-ray refinement result for CeAu4Si2 is orthorhombic, Cmmm (No. 65, Z = 2), different from a tetragonal result found from an X-ray powder diffraction refinement [H. Nakashima, et al., J. Alloys Compds. 424 (2006) 7]. For CeAu2Si2, this is the first report of the stoichiometric crystalline phase, in the known tetragonal I4/mmm structure. The anisotropic field- and temperature-dependent magnetizations, as well as specific heat and resistivity data are compared. Although both compounds have related structural packing, they present unique magnetic features. CeAu2Si2 is a typical antiferromagnet with T-N = 8.8(1) K and CeAu4Si2 features a ferromagnetic component below T-c = 3.3(1) K. Both phases have effective moments close in value to that of free Ce3+. Published by Elsevier Inc. C1 [Sefat, Athena S.; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Sefat, Athena S.; Palasyuk, Andriy M.; Bud'ko, Sergey L.; Corbett, John D.; Canfield, Paul C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Palasyuk, Andriy M.; Corbett, John D.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Sefat, AS (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM asefat@ameslab.gov RI Canfield, Paul/H-2698-2014; Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 NR 37 TC 6 Z9 6 U1 0 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2008 VL 181 IS 2 BP 282 EP 293 DI 10.1016/j.jssc.2007.11.029 PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 262YX UT WOS:000253185900011 ER PT J AU Assefa, Z Haire, RG Sykora, RE AF Assefa, Zerihun Haire, Richard G. Sykora, Richard E. TI Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)(2)](3)center dot 3H(2)O and Pr[M(CN)(2)](3)center dot 3H(2)O(M = Ag, Au) 2. Hetero-bimetallic coordination polymers consisting of trans-plutonium and transition metal elements SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE trans-plutonium complexes; coordination polymer; emission; hydrothermal syntheses ID LANTHANIDE ION COMPLEXES; STATE ENERGY-TRANSFER; ANTI-STOKES LUMINESCENCE; SPECTROSCOPIC PROPERTIES; SILVER DICYANIDES; THEORETICAL CHEMISTRY; MAGNETIC-PROPERTIES; OPTICAL-ABSORPTION; CRYSTAL-STRUCTURE; GOLD AB We have prepared Cm[Au(CN)(2)](3)center dot 3H(2)O and Cm[Ag(CN)(2)](3)center dot 3H(2)O as a part of our continuing investigations into the chemistry of the 5f-elements' dicyanometallates. Single crystals of Cm[Au(CN)(2)](3)center dot 3H(2)O were obtained from the reaction Of CMCl3 and KAu(CN)(2) under mild hydrothermal conditions. Due to similarities in size, the related praseodymium compounds were also synthesized and characterized for comparison with the actinide systems. The compounds crystallize in the hexagonal space group P6(3)/mcm, where the curium and the transition metals interconnect through cyanide bridging. Crystallographic data (Mo K alpha, lambda = 0.71073 angstrom): Cm[Au(CN)(2)](3)center dot 3H(2)O (1), a = 6.6614(5) angstrom, c = 18.3135(13) angstrom, V = 703.77(9), Z = 2; Pr[Au(CN)(2)](3)center dot 3H(2)O (3), a = 6.6662(8) angstrom, c = 18.497(3) angstrom, V = 711.83(17), Z = 2; Pr[Ag(CN)(2)](3)center dot 3H(2)O (4), a = 6.7186(8) angstrom, c = 18.678(2) angstrom, V = 730.18(14), Z = 2. The CM3+ and/or Pr3+ ions are coordinated to six N-bound CN- groups resulting in a trigonal prismatic arrangement. Three oxygen atoms of coordinated water molecules tricap the trigonal prismatic arrangement providing a coordination number of nine for the f-elements. The curium ions in both compounds exhibit a strong red emission corresponding to the D-6(7/2)-> S-8(7/2) transition. This transition is observed at 16,780 cm(-1), with shoulders at 17,080 and 16,840 cm(-1) for the Ag complex, while the emission is red shifted by similar to 100 cm(-1) in the corresponding gold complex. The Pr systems also provide well-resolved emissions upon f-f excitation. (c) 2008 Elsevier Inc. All rights reserved. C1 [Assefa, Zerihun] N Carolina Agr & Tech State Univ, Dept Chem, Greensboro, NC 27411 USA. [Haire, Richard G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Sykora, Richard E.] Univ S Alabama, Dept Chem, Mobile, AL 36688 USA. RP Assefa, Z (reprint author), N Carolina Agr & Tech State Univ, Dept Chem, Greensboro, NC 27411 USA. EM zassefa@neat.edu NR 58 TC 14 Z9 14 U1 1 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2008 VL 181 IS 2 BP 382 EP 391 DI 10.1016/j.jssc.2007.11.036 PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 262YX UT WOS:000253185900024 ER PT J AU Stock, SR de Carlo, F Almer, JD AF Stock, S. R. de Carlo, F. Almer, J. D. TI High energy X-ray scattering tomography applied to bone SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE high energy X-ray scattering; bone; synchrotron X-radiation; computed tomography ID NEUTRON-DIFFRACTION; COMPUTED-TOMOGRAPHY; CARBONATED APATITE; CRYSTALLITE SIZE; TEXTURE ANALYSIS; COLLAGEN PHASES; POLE FIGURES; ORIENTATION; MICRODIFFRACTION; MICROTOMOGRAPHY AB High energy synchrotron X-ray scattering was developed for reconstruction of specimen cross-sections. The technique was applied to a model specimen of cortical bone containing a capillary tube of silicon, and reconstructions were produced with either full diffraction rings or texture-related subsets of a given ring. The carbonated apatite (cAp) 00.2 and 22.2 reconstructions and the Si 3 1 1 reconstructions agreed with ab sorption-based reconstructions from the measured X-ray transmissivity recorded during diffraction pattern acquisition and from reconstructions produced subsequently of the same specimen using a commercial microCT (microComputed Tomography) scanner. (C) 2007 Elsevier Inc. All rights reserved. C1 [Stock, S. R.] Northwestern Univ, Feinberg Sch Med, Dept Biol Chem & Mol Pharmacol, Chicago, IL 60611 USA. [de Carlo, F.; Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stock, SR (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Biol Chem & Mol Pharmacol, Mail Code S215,303 E Chicago Ave, Chicago, IL 60611 USA. EM s-stock@northwestern.edu NR 41 TC 44 Z9 44 U1 1 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD FEB PY 2008 VL 161 IS 2 BP 144 EP 150 DI 10.1016/j.jsb.2007.10.001 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 256TJ UT WOS:000252752500004 PM 18006333 ER PT J AU Stock, SR Vieira, AEM Delbem, ACB Cannon, ML Xiao, X Carlo, F AF Stock, S. R. Vieira, A. E. M. Delbem, A. C. B. Cannon, M. L. Xiao, X. De Carlo, F. TI Synchrotron microComputed tomography of the mature bovine dentinoenamel junction SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE microCT; dentinoenamel junction (DEJ); dentin; enamel; tooth; synchrotron X-radiation; computed tomography; microtomography ID X-RAY MICROTOMOGRAPHY; DENTIN-ENAMEL JUNCTION; FATIGUE-CRACK PROPAGATION; ADVANCED-PHOTON-SOURCE; MECHANICAL-PROPERTIES; HUMAN TEETH; ELASTIC PROPERTIES; BONE; FRACTURE; TOOTH AB The mature dentinoenamel junction (DEJ) is viewed by some investigators and the current authors, not as a fossilized, sharp transition between enamel and dentin, but as a relatively broad structural transition zone including the mantle dentin and the inner aprismatic enamel. In this study, the DEJ structure in bovine incisors was studied with synchrotron microComputed Tomography (microCT) using small cubes cut parallel to the tooth surface. The reconstructions revealed a zone of highly variable punctate contrast between bulk dentin and enamel; the mean linear attenuation coefficients and their standard deviations demonstrated that this zone averaged less mineral than dentin or enamel but had more highly variable structure than either. The region with the punctuate contrast is, therefore, the mantle dentin. The thickness of the mantle dentin seen in a typical data set was about 30 mu m, and the mantle dentin-enamel interface deviated +/- 15 mu m from the average plane over a distance of 520 mu m. In the highest resolution data (similar to 1.5 mu m isotropic voxels, volume elements), tubules in the dentin could be discerned in the vicinity of the DEJ. Contrast sensitivity was high enough to detect differences in mineral content between near-surface and near-DEJ volumes of the enamel. Reconstructions before and after two cubes were compressed to failure revealed cracks formed only in the enamel and did not propagate across the mantle dentin, regardless of whether loading was parallel to or perpendicular to the DEJ. (C) 2007 Elsevier Inc. All rights reserved. C1 [Stock, S. R.] Northwestern Univ, Feinberg Sch Med, Dept Biol Chem & Mol Pharmacol, Chicago, IL 60611 USA. [Vieira, A. E. M.; Delbem, A. C. B.] Univ Estadual Paulista, Sao Paulo, Brazil. [Cannon, M. L.] Childrens Mem Med Ctr, Chicago, IL USA. [Xiao, X.; De Carlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stock, SR (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Biol Chem & Mol Pharmacol, Mail Code S215,303 E Chicago Ave, Chicago, IL 60611 USA. EM s-stock@nortbwestern.edu RI Delbem, Alberto/E-8621-2012 OI Delbem, Alberto/0000-0002-8159-4853 NR 55 TC 24 Z9 24 U1 3 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD FEB PY 2008 VL 161 IS 2 BP 162 EP 171 DI 10.1016/j.jsb.2007.10.006 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 256TJ UT WOS:000252752500006 PM 18054250 ER PT J AU Hong, L Fidler, E Enick, R Marentis, R AF Hong, Lei Fidler, Elizabeth Enick, Robert Marentis, Rodger TI Tri-tert-butylphenol: A highly CO2-soluble sand binder SO JOURNAL OF SUPERCRITICAL FLUIDS LA English DT Article DE tri-tert-butyl phenol; sand binders; phase behavior; supercritical CO2; melting point depression ID SUPERCRITICAL CARBON-DIOXIDE; PHASE-BEHAVIOR; BINARY-SYSTEM; SOLUBILITY; CO2; CO2-PHILES; POLYMERS AB Tri-tert-butylphenol (TTBP) holds great promise as a CO2-recyclable sand binder. TTBP powder can be easily combined with sand, heated to at least its melting point (400 K) and then cooled to form rigid molds for metal forming operations. Further, TTBP exhibits significant melting point depression in the presence of dense CO2 and very high solubility in liquid and supercritical CO2. These properties facilitate the separation of TTBP from used molds via dissolution into dense CO2 and its subsequent recovery - via depressurization - for reuse. Pressure-composition diagrams at 301, 328 and 343 K indicate that TTBP is about 18, 50 and 70 wt% soluble in dense CO2, at pressures above 8, 14 and 16 MPa, respectively. At each temperature, the solubility of TTBP decreased slightly when pressure was increased above roughly 50 MPa. The TTBP-rich liquid phase composition at three-phase VFS equilibrium pressures of 6.76, 9.76 and 9.24 MPa at 301, 328 and 343 K is 8.5, 52 and 70 wt% TTBP, respectively. A pressure-temperature projection of this system has been proposed as the fluid-phase features of a Scott and Van Konynenburg type I system. (c) 2007 Elsevier B.V. All rights reserved. C1 [Hong, Lei; Fidler, Elizabeth; Enick, Robert; Marentis, Rodger] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Enick, Robert] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Marentis, Rodger] Supercrit Solut LLC, Allentown, PA 18106 USA. RP Hong, L (reprint author), Univ Pittsburgh, Dept Chem & Petr Engn, 1249 Benedum Hall, Pittsburgh, PA 15261 USA. EM leh30@pitt.edu NR 18 TC 10 Z9 10 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0896-8446 J9 J SUPERCRIT FLUID JI J. Supercrit. Fluids PD FEB PY 2008 VL 44 IS 1 BP 1 EP 7 DI 10.1016/j.supflu.2007.09.036 PG 7 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 258ZV UT WOS:000252909800001 ER PT J AU Rankin, RB Campos, A Tian, HJ Siriwardane, R Roy, A Spivey, JJ Sholl, DS Johnson, JK AF Rankin, Rees B. Campos, Andrew Tian, Hanjing Siriwardane, Ranjani Roy, Amitava Spivey, James J. Sholl, David S. Johnson, J. Karl TI Characterization of bulk structure in zinc orthotitanate: A density functional theory and EXAFS investigation SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HOT GAS DESULFURIZATION; AUGMENTED-WAVE METHOD; METAL-OXIDE SORBENTS; AB-INITIO; ULTRASOFT PSEUDOPOTENTIALS; SYSTEM ZNO-TIO2; REACTIVITY; ALGORITHM; HYDROGEN; SRTIO3 AB Development of high-efficiency multicontaminant sorbents is critical for commercialization of power plants utilizing integrated gasification combined cycle technologies. A known prototypical sorbent for this application is the compound zinc orthotitanate, Zn2TiO4 (ZTO). Previous work has not completely resolved the atomic-level structure of ZTO. Results from both experimental X-ray absorption fine structure measurements and density functional theory (DFT) calculations are presented and are in quantitative agreement. The DFT calculations identify the octahedral site occupation of Zn and Ti atoms that give the lowest energy ground state structure. We have supplemented our DFT calculations with a cluster expansion model used to parameterize Monte Carlo (MC) simulations. The results of the MC simulations reveal the temperature dependence of the equilibrium octahedral site occupation in Zn2TiO4. C1 [Rankin, Rees B.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15260 USA. [Campos, Andrew; Spivey, James J.] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. [Tian, Hanjing; Siriwardane, Ranjani] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Roy, Amitava] Louisiana State Univ, J Bennet Johnston Sr Ctr Adv Microstruct & Device, Baton Rouge, LA 70806 USA. [Sholl, David S.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Sholl, David S.; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15260 USA. EM karlj@pitt.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 NR 41 TC 11 Z9 11 U1 2 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD FEB PY 2008 VL 91 IS 2 BP 584 EP 590 DI 10.1111/j.1551-2916.2007.02186.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 259HJ UT WOS:000252930100037 ER PT J AU Seong, TY Booker, GR Norman, AG Glas, F Stringfellow, GB AF Seong, Tae-Yeon Booker, G. R. Norman, A. G. Glas, F. Stringfellow, G. B. TI Modulated contrast and associated diffracted intensity of GaPySb1-y layers grown using organometallic vapor phase epitaxy SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE modulated structures; diffracted intensity ID SPINODAL DECOMPOSITION; ELECTRON-DIFFRACTION; MOBILITY; ALLOYS AB We have investigated the modulated structures and its associated diffracted diffuse intensity, of organometallic vapor phase epitaxially grown GaPSb (001) layers by using transmission electron microscopy (TEM) and transmission electron diffraction (TED). The TEM results reveal the coexistence of a fine-scale modulated contrast and a fine-scale speckled contrast. In addition, a fine needle-like contrast is observed. The [001] TED results show lines of [110]-oriented diffuse intensity diffuse streaks passing through the fundamental reflections, satellite spots at 1/4g[220] positions, and a [010]-oriented diffuse intensity with spacing of 1/6g[040]. Simulations using the Valence Force Field model were performed to understand the origin of the diffracted features. The observed distributions of diffuse intensity are shown to be partially consistent with random disorder. Furthermore, the [110]-oriented diffuse lines are attributed to a static displacement of the sites of the mixed sublattices. C1 [Seong, Tae-Yeon] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea. [Booker, G. R.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Norman, A. G.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Glas, F.] CNET, France Telecom, F-92225 Bagneux, France. [Stringfellow, G. B.] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. RP Seong, TY (reprint author), Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea. EM tyseong@korea.ac.kr RI Norman, Andrew/F-1859-2010 OI Norman, Andrew/0000-0001-6368-521X NR 20 TC 1 Z9 1 U1 1 U2 10 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD FEB PY 2008 VL 52 IS 2 BP 471 EP 475 PG 5 WC Physics, Multidisciplinary SC Physics GA 264BE UT WOS:000253259400052 ER PT J AU Vogler, TJ Clayton, JD AF Vogler, T. J. Clayton, J. D. TI Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE microstructures; crystal plasticity; plate impact; finite elements; probability and statistics ID POLYCRYSTALLINE BRITTLE MATERIALS; GRAIN LEVEL MODEL; DYNAMIC PLASTICITY; FAILURE INITIATION; CONSTITUTIVE MODEL; SINGLE-CRYSTALS; SHEAR BANDS; STRAIN-RATE; TRANSITION; BEHAVIOR AB The role of microstructure in the dynamic deformation and fracture of a dual phase, polycrystalline tungsten alloy under high-rate impact loading is investigated via experiments and modeling. The material studied consists of pure tungsten crystals embedded in a ductile binder alloy comprised of tungsten, nickel, and iron. The tungsten crystals are elongated in a preferred direction of extrusion during processing. Plate impact tests were conducted on samples oriented either perpendicular or parallel to the extrusion direction. Spatially resolved interferometric data from these tests were used to extract wave propagation behavior and spall strength dependent upon position in the sample microstructure. Finite element simulations of impact and spall in digitally reproduced microstructural geometries were conducted in parallel with the experiments. Finite deformation crystal plasticity theory describes the behavior of the pure tungsten and binder phases, and a stress- and temperature-based cohesive zone model captures fracture at grain and phase boundaries in the microstructure. In results from both experiments and modeling, the grain orientations affect the free-surface velocity profile and spall behavior. Some aspects of distributions of free-surface velocity and spall strength among different microstructure configurations are qualitatively similar between experimental and numerical results, while others are not as a result of differing scales of resolution and modeling assumptions. Following a comparison of experimental and numerical results for different microstructures, intergranular fracture is identified as an important mechanism underlying the spall event. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Vogler, T. J.] Sandia Natl Labs, Solid Dynam & Energt Mat Dept, Albuquerque, NM 87185 USA. [Clayton, J. D.] USA, Ballist Res Lab, Impact Phys Branch, Aberdeen Proving Ground, MD 21005 USA. RP Vogler, TJ (reprint author), Sandia Natl Labs, Solid Dynam & Energt Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM tjvogle@sandia.gov RI Vogler, Tracy/B-4489-2009; Clayton, John/C-7760-2009 NR 79 TC 44 Z9 46 U1 10 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD FEB PY 2008 VL 56 IS 2 BP 297 EP 335 DI 10.1016/j.jmps.2007.06.013 PG 39 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 271JQ UT WOS:000253785100001 ER PT J AU Jonnalagadda, K Cho, SW Chasiotis, I Friedmann, T Sullivan, J AF Jonnalagadda, Krishna Cho, Sung Woo Chasiotis, Ioannis Friedmann, Thomas Sullivan, John TI Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE fracture; stress gradient; thin films; size effects ID THIN-FILMS; POLYCRYSTALLINE SILICON; STRENGTH; GROWTH AB The influence of intrinsic stress gradient on the mode-I fracture of thin films with various thicknesses fabricated for Microelectromechanical Systems (MEMS) was investigated. The material system employed in this study was hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C). Uniform gauge microscale specimens with thicknesses 0.5, 1, 2.2, and 3 mu m, containing mathematically sharp edge pre-cracks were tested under mode-I loading in fixed grip configuration. The effective opening mode fracture toughness, as calculated from boundary force measurements, was 4.25 +/- 0.7 MPa root m for 0.5-mu m thick specimens, 4.4 +/- 0.4 MPa root m for 1-mu m specimens, 3.74 +/- 0.3 MPa root m for 2.2-mu m specimens, and 3.06 +/- 0.17MPa root m for 3-mu m specimens. Thus, the apparent fracture toughness decreased with increasing film thickness. Local elastic property measurements showed no substantial change as a function of film thickness, which provided evidence for the stability of the sp(2)/sp(3) carbon binding stoichiometry in films of different thicknesses. Detailed experiments and finite element analysis pointed out that the dependence of the effective fracture toughness on specimen thickness was due to the intrinsic stress gradient developed during fabrication and post-process annealing. This stress gradient is usually unaccounted for in mode-I fracture experiments with thin films. Thicker films, fabricated from multiple thin layers, underwent annealing for extended times, which resulted in a stress gradient across their thickness. This stress gradient caused an out-of-plane curvature upon film release from its substrate and, thus, combined bending and tensile mode-I loading at the crack tip under in-plane forces. Since the bending component cannot be isolated from the applied boundary force measurements, its contribution, becoming important for thick films, remains unaccounted for in the calculation of the critical stress intensity factor, thus resulting in reduced apparent fracture toughness that varies with film thickness and curvature. It was concluded that in the presence of a stress gradient, accounting only for the average intrinsic stresses could lead in an overestimate of the fracture resistance of a brittle film. Under these considerations the material fracture toughness of ta-C, as determined from specimens with negligible curvature, is K(IC) = 4.4 +/- 0.4 MPa root m. Published by Elsevier Ltd. C1 [Jonnalagadda, Krishna; Chasiotis, Ioannis] Univ Illinois, Urbana, IL 61801 USA. [Cho, Sung Woo] Univ Virginia, Charlottesville, VA 22904 USA. [Friedmann, Thomas; Sullivan, John] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chasiotis, I (reprint author), Univ Illinois, Urbana, IL 61801 USA. EM chasioti@uiuc.edu RI Jonnalagadda, Krishna/C-7270-2015 NR 30 TC 16 Z9 16 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD FEB PY 2008 VL 56 IS 2 BP 388 EP 401 DI 10.1016/j.jmps.2007.05.013 PG 14 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 271JQ UT WOS:000253785100005 ER PT J AU Gao, YF Xu, HT Oliver, WC Pharr, GM AF Gao, Y. F. Xu, H. T. Oliver, W. C. Pharr, G. M. TI Effective elastic modulus of film-on-substrate systems under normal and tangential contact SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE effective elastic modulus; thin film substrate system; Dundurs parameters ID SLIPPING ADHESIVE CONTACT; MECHANICAL-PROPERTIES; DETERMINING HARDNESS; THIN-FILMS; INDENTATION; NANOINDENTATION; STIFFNESS; PUNCH; MODEL AB Load and depth sensing indentation methods have been widely used to characterize the mechanical properties of the thin film-substrate systems. The measurement accuracy critically depends on our knowledge of the effective elastic modulus of this heterogeneous system. In this work, based on the exact solution of the Green's function in Fourier space, we have derived an analytical relationship between the surface tractions and displacements, which depends on the ratio of the film thickness to contact size and the generalized Dundurs parameters that describe the modulus mismatch between the film and substrate materials. The use of the cumulative superposition method shows that the contact stiffness of any axisymmetric contact is the same as that of a fiat-ended punch contact. Therefore, assuming a surface traction of the form of [1-(r/a)(2)](-1/2) with radial coordinate r and contact size a, we can obtain an approximate representation of the effective elastic moduli, which agree extremely well with the finite element simulations for both normal and tangential contacts. Motivated by a recently developed multidimensional nanocontact system, we also explore the dependence of the ratio of tangential to normal contact stiffness on the ratio of film thickness to contact radius and the Dundurs parameters. The analytical representations of the correction factors in the relationship between the contact stiffness and effective modulus are derived at infinite friction conditions. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Gao, Y. F.; Xu, H. T.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Oliver, W. C.] MTS Syst Corp, Nano Instrument Innovat Ctr, Oak Ridge, TN 37830 USA. [Pharr, G. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Gao, YF (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM ygao7@utk.edu RI Gao, Yanfei/F-9034-2010 OI Gao, Yanfei/0000-0003-2082-857X NR 31 TC 35 Z9 36 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD FEB PY 2008 VL 56 IS 2 BP 402 EP 416 DI 10.1016/j.jmps.2007.05.015 PG 15 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 271JQ UT WOS:000253785100006 ER PT J AU Kaur, A Di Mascio, M Barabasz, A Rosenzweig, M McClure, HM Perelson, AS Ribeiro, RM Johnson, RP AF Kaur, Amitinder Di Mascio, Michele Barabasz, Amy Rosenzweig, Michael McClure, Harold M. Perelson, Alan S. Ribeiro, Ruy M. Johnson, R. Paul TI Dynamics of T- and B-lymphocyte turnover in a natural host of simian immunodeficiency virus SO JOURNAL OF VIROLOGY LA English DT Article ID ACTIVE ANTIRETROVIRAL THERAPY; HIV-INFECTED PATIENTS; SOOTY MANGABEYS; RHESUS MACAQUES; SIV INFECTION; RAPID TURNOVER; CELL TURNOVER; IN-VIVO; CD4(+); CD8(+) AB Increased lymphocyte turnover is a hallmark of pathogenic lentiviral infection. To investigate perturbations in lymphocyte dynamics in natural hosts with nonpathogenic simian immunodeficiency virus (SIV) infection, the nucleoside analog bromodeoxyuridine (BrdU) was administered to six naturally SIV-infected and five SIV-negative sooty mangabeys. As a measure of lymphocyte turnover, we estimated the mean death rate by fitting a mathematical model to the fraction of BrdU-labeled cells during a 2-week labeling and a median 10-week delabeling period. Despite significantly lower total T- and B-lymphocyte counts in SIV-infected sooty mangabeys than in SIV-negative mangabeys, the turnover rate of B lymphocytes and CD4(+) and CD8(+) T lymphocytes was not increased in the SIV-infected animals. A small, rapidly proliferating CD45RA(+) memory subset and a large, slower-proliferating CD45RA(-) central memory subset of CD4(+) T lymphocytes identified in the peripheral blood of sooty mangabeys also did not show evidence of increased turnover in the context of SIV infection. Independently of SIV infection, the turnover of CD4(+) T lymphocytes in sooty mangabeys was significantly higher (P < 0.01) than that of CD8(+) T lymphocytes, a finding hitherto not reported in rhesus macaques or humans. The absence of aberrant T-lymphocyte turnover along with an inherently high rate of CD4(+) T-lymphocyte turnover may help to preserve the pool of central memory CD4(+) T lymphocytes in viremic SIV-infected sooty mangabeys and protect against progression to AIDS. C1 [Kaur, Amitinder; Barabasz, Amy; Rosenzweig, Michael; Johnson, R. Paul] Harvard Univ, Sch Med, Div Immunol, New England Reg Primate Res Ctr, Southborough, MA 01772 USA. [Di Mascio, Michele] NIAID, NIH, Off Clin Res, Biostat Res Branch, Bethesda, MD 20892 USA. [McClure, Harold M.] Emory Univ, Yerkes Natl Primate Res Ctr, Atlanta, GA 30322 USA. [Perelson, Alan S.; Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Johnson, R. Paul] Massachusetts Gen Hosp, Infect Dis Unit, Boston, MA 02115 USA. [Johnson, R. Paul] Massachusetts Gen Hosp, Partners AIDS Res Ctr, Boston, MA 02115 USA. RP Kaur, A (reprint author), Harvard Univ, Sch Med, Div Immunol, New England Reg Primate Res Ctr, 1 Pine Hill Dr,POB 9102, Southborough, MA 01772 USA. EM amitinder_kaur@hms.harvard.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU NCRR NIH HHS [K26 RR000168, P20 RR018754, P20-RR18754, P51 RR000168, R01 RR006555, RR 00168, RR06555]; PHS HHS [A149809] NR 32 TC 33 Z9 33 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD FEB PY 2008 VL 82 IS 3 BP 1084 EP 1093 DI 10.1128/JVI.02197-07 PG 10 WC Virology SC Virology GA 253JH UT WOS:000252514000003 PM 18032490 ER PT J AU Graeter, GJ Rothermel, BB Gibbons, JW AF Graeter, Gabrielle J. Rothermel, Betsie B. Gibbons, J. Whitfield TI Habitat selection and movement of pond-breeding amphibians in experimentally fragmented pine forests SO JOURNAL OF WILDLIFE MANAGEMENT LA English DT Article DE Ambystoma opacum; Bufo terrestris; forest management; marbled salamander; movement behavior; permeability; powder tracking; Rana sphenocephala; southern leopard frog; southern toad ID SOUTHEASTERN UNITED-STATES; AMBYSTOMA-TALPOIDEUM; LANDSCAPE RESISTANCE; TERRESTRIAL ACTIVITY; RANA-CLAMITANS; LEOPARD FROGS; BUFFER ZONES; SALAMANDERS; TOADS; BEHAVIOR AB Population-level responses of amphibians to forest management regimes are partly dictated by individual behavioral responses to habitat alteration. We examined the short-term (i.e., 24-hr) habitat choices and movement patterns of 3 amphibian species----southern leopard frogs (Rana sphenocephala), marbled salamanders (Ambystoma opacum), and southern toads (Bufo terrestris)-released on edges between forest habitats and recent clear-cuts in the Upper Coastal Plain of South Carolina, USA. We predicted that adult frogs and salamanders would preferentially select forest using environmental cues as indicators of habitat suitability. We also predicted that movement patterns would differ in dear-cuts relative to forests, resulting in lower habitat permeability of clear-cuts for some or all of the species. Using fluorescent powder tracking, we determined that marbled salamanders selected habitat at random, southern toads preferred clear-cuts, and southern leopard frogs initially selected clear-cuts but ultimately preferred forests. Frogs exhibited long-distance, directional movement with few turns. In contrast, toads exhibited wandering behavior and salamanders moved relatively short distances before locating cover. Southern toads and southern leopard frogs moved farther in forests, and all 3 species made more turns in clear-cuts than in forests. Habitat selection by southern toads did not vary according to body size, sex, or the environmental cues we measured. However, marbled salamanders were more likely to enter dear-cuts when sod moisture was high, and southern leopard frogs were more likely to enter clear-cuts when relative humidity and air temperature were higher in the clear-cut than in adjacent forest. Although we found evidence of reduced habitat permeability of clear-cuts for southern leopard frogs and southern toads, none of the species exhibited strong behavioral avoidance of the small (4-ha) dear-cuts in our study. Further studies of long-term habitat use and the potential physiological and other costs to individuals in altered forests are needed to understand the effects of forest management on population persistence. To reduce potentially detrimental effects of clear-cutting on amphibians in the Southeast, wildlife managers should consider the vagility and behavior of species of concern, especially in relation to the size of planned harvests adjacent to breeding sites. C1 [Graeter, Gabrielle J.; Rothermel, Betsie B.; Gibbons, J. Whitfield] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Graeter, GJ (reprint author), N Carolina Wildlife Resources Commiss, 172 Davenport Rd, Asheville, NC 28806 USA. EM g.graeter@earthlink.net RI Rothermel, Betsie/L-6774-2013 NR 60 TC 33 Z9 37 U1 6 U2 48 PU WILDLIFE SOC PI BETHESDA PA 5410 GROSVENOR LANE, BETHESDA, MD 20814-2197 USA SN 0022-541X J9 J WILDLIFE MANAGE JI J. Wildl. Manage. PD FEB PY 2008 VL 72 IS 2 BP 473 EP 482 DI 10.2193/2006-330 PG 10 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA 263IG UT WOS:000253210200020 ER PT J AU Williams, PT AF Williams, Paul T. TI Asymmetric weight gain and loss from increasing and decreasing exercise SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE obesity; running; aging; regional adiposity; prevention ID PHYSICAL-ACTIVITY; VIGOROUS EXERCISE; AGED MEN; WOMEN; RUNNERS; INTENSITY; INTERVENTION; MAINTENANCE; OVERWEIGHT AB Purpose: Although increases and decreases in physical activity are known to cause weight loss and weight gain, respectively, it is not known whether the magnitudes of these changes in weight are equal. Unequal (asymmetric) weight changes could contribute to overall weight gain or loss among individuals with seasonal or irregular activity. Methods: Changes in adiposity were compared with the running distances at baseline and follow-up in men and women whose reported exercise increased (N = 4632 and 1953, respectively) or decreased (17,280 and 5970, respectively) during 7.7 yr of follow-up. Results: Per km.wk(-1), decreases in running distance caused more than four times greater weight gain between 0 and 8 km.wk(-1) (slope SE, males: -0.068 +/- 0.005 kg.m(-2); females: -0.080 +/- 0.01 kg.m(-2)) than between 32 and 48 km.wk(-1) (-0.017 +/- 0.002 and -0.010 +/- 0.005 kg.m(-2) respectively). In contrast, increases in running distance produced the smallest weight losses between 0 and 9 km.wk(-1) and statistically significant weight loss only above 16 km.wk(-1). Above 32 km.wk(-1) (30 kcal-kg(-1)) in men and 16 km.wk(-1) (15 kcal-kg(-1)) in women, weight loss from increasing exercise was equal to or greater than weight gained from decreasing exercise; otherwise, weight gain exceeded weight loss. Conclusion: Weight gained because of reductions in weekly exercise below 30 kcal-kg(-1) in men and 15 kcal-kg(-1) in women may not be reversed by resuming prior activity. Current IOM guidelines (i.e., maintain total energy expenditure at 160% of basal) agree with the men's exercise threshold for symmetric weight change with changing exercise levels. Asymmetric weight changes below this threshold may contribute to weight gain among less-active subjects. C1 Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU NHLBI NIH HHS [R01 HL072110-01A2, HL 072110, HL 45652, R01 HL072110, R01 HL072110-02, R01 HL072110-03, R01 HL072110-04]; NIDDK NIH HHS [DK 066738, R01 DK066738, R01 DK066738-01, R01 DK066738-02, R01 DK066738-03, R01 DK066738-04] NR 30 TC 23 Z9 24 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD FEB PY 2008 VL 40 IS 2 BP 296 EP 302 DI 10.1249/mss.0b013e31815b6475 PG 7 WC Sport Sciences SC Sport Sciences GA 254SM UT WOS:000252608300015 PM 18202572 ER PT J AU Hackett, MJ Busby, JT Was, GS AF Hackett, M. J. Busby, J. T. Was, G. S. TI The mechanism of Zr and Hf in reducing radiation-induced segregation in 316 stainless steel SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Materials Issues for Advanced Nuclear Systems held at the 2007 TMS Annual Meeting CY FEB 25-MAR 01, 2007 CL Orlando, FL SP Minerals, Met & Mat Soc ID AUSTENITIC STAINLESS-STEELS; GRAIN-BOUNDARY SEGREGATION; OVERSIZED SOLUTE ADDITIONS; STRESS-CORROSION CRACKING; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CR-NI ALLOYS; ELECTRON-IRRADIATION; MOLECULAR-DYNAMICS; METALS AB The addition of oversized solutes has the potential to reduce the effects of radiation-induced segregation (RIS) in austenitic alloys. This RIS has been implicated as one of several factors in enhancing stress corrosion cracking (SCC) under irradiation, so oversized solute additions could promote SCC resistance. Either Zr or Hf was added to 316-type stainless steel, at levels between 0.05 and 0.37 at. pct. Samples were irradiated with 3 MeV protons to 3 dpa at 400 degrees C and analyzed using high-resolution-scanning transmission electron microscopy (HR-STEM) with energy-dispersive X-ray spectroscopy (EDS), to measure the grain-boundary (GB) composition. The Zr additions substantially reduced the amount of RIS, while the Hf was much less effective. Despite similar sizes, first-principles calculations using the Vienna Ab Initio Simulation Package (VASP) demonstrate that solute-vacancy binding for Zr is 1.05 eV vs 0.69 eV for Hf. This difference results in the greater effectiveness of Zr in reducing RIS, as determined by kinetic rate theory calculations, in agreement with experimentally-measured results. C1 [Hackett, M. J.; Was, G. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Busby, J. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. RP Hackett, MJ (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM mjhacket@umich.edu NR 29 TC 10 Z9 10 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2008 VL 39A IS 2 BP 218 EP 224 DI 10.1007/s11661-007-9296-1 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 255GK UT WOS:000252645600003 ER PT J AU Rebak, RB Day, SD Lian, TG Hailey, PD Farmer, JC AF Rebak, Raul B. Day, S. Daniel Lian, Tiangan Hailey, Phillip D. Farmer, Joseph C. TI Environmental testing of iron-based amorphous alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Materials Issues for Advanced Nuclear Systems held at the 2007 TMS Annual Meeting CY FEB 25-MAR 01, 2007 CL Orlando, FL SP Minerals, Met & Mat Soc ID CORROSION AB Iron (Fe)-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl(2) solution at 105 degrees C. Salt fog tests of 316L SS and alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings. C1 [Rebak, Raul B.] GE Global Res, Schenectady, NY 12308 USA. [Day, S. Daniel; Hailey, Phillip D.; Farmer, Joseph C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lian, Tiangan] Elect Power Res Inst, Palo Alto, CA 94304 USA. RP Rebak, RB (reprint author), GE Global Res, Schenectady, NY 12308 USA. EM rebak@ge.com OI Rebak, Raul/0000-0002-8070-4475 NR 21 TC 10 Z9 10 U1 2 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2008 VL 39A IS 2 BP 225 EP 234 DI 10.1007/s11661-007-9460-7 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 255GK UT WOS:000252645600004 ER PT J AU Cowen, CJ Boehlert, CJ AF Cowen, C. J. Boehlert, C. J. TI Microstructure, tensile, and creep behavior of boron-modified Ti-15Al-33Nb (at.%) SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID PLUS ORTHORHOMBIC ALLOY; HIGH-CYCLE-FATIGUE; MECHANICAL-PROPERTIES; TITANIUM ALUMINIDE; ELASTIC-CONSTANTS; GRAIN-BOUNDARIES; TIB; COMPOSITES; NI3AL; EVOLUTION AB The effect of boron on the microstructure, tensile, and creep behavior of a Ti-15Al-33Nb (at. pct) alloy was investigated. In addition to the normal constituent phases present in the unmodified alloy, the boron-modified alloys contained borides enriched in titanium and niobium. These borides made up to 9 pct of the volume and were present in the form of needles/laths. Boron additions of 5 at. pct resulted in significant strengthening and stiffening and reduced elongation-to-failure. Smaller boron additions of 0.5 at. pct did not as significantly impact the RT tensile properties, but reduced the 650 degrees C yield strength by 45 pct. Constant load, tensile-creep experiments were performed in the stress range of 150 to 400 MPa and the temperature range of 650 degrees C to 710 degrees C, in both air and vacuum environments. The addition of 5 at. pct boron significantly improved the creep resistance, whereas the addition of 0.5 at. pct boron degraded the creep resistance. In-situ tensile-creep experiments indicated that localized grain boundary cracking was prevalent at the prior-beta grain boundaries. C1 [Cowen, C. J.; Boehlert, C. J.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. RP Cowen, CJ (reprint author), US DOE, Nat Energy Technol Lab, Proc Dev Div, Albany, OR 97321 USA. EM boehlert@egr.msu.edu NR 41 TC 2 Z9 2 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2008 VL 39A IS 2 BP 279 EP 293 DI 10.1007/s11661-007-9392-2 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 255GK UT WOS:000252645600010 ER PT J AU Meyers, MA Schneider, MS Jarmakani, H Kad, B Remington, BA Kalantar, DH McNaney, J Cao, B Wark, J AF Meyers, M. A. Schneider, M. S. Jarmakani, H. Kad, B. Remington, B. A. Kalantar, D. H. McNaney, J. Cao, B. Wark, J. TI Deformation substructures and their transitions in laser shock-compressed copper-aluminum alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Dynamic Behavior of Materials held at the 2007 TMS Annual Meeting CY FEB 25-MAR 01, 2007 CL Orlando, FL SP Minerals, Met & Mat Soc, TMS Struct Mat Div, TMS ASM Mech Behav Mat Comm ID STACKING-FAULT ENERGY; MOLECULAR-DYNAMICS SIMULATIONS; CU-AL ALLOYS; MONOCRYSTALLINE COPPER; DISLOCATION DENSITY; PERFECT CRYSTALS; SINGLE-CRYSTALS; HIGH-PRESSURE; METALS; ORIENTATION AB It is shown that the short pulse durations (0.1 to 10 ns) in laser shock compression ensure a rapid decay of the pulse and quenching of the shocked sample in times that are orders of magnitude lower than in conventional explosively driven plate impact experiments. Thus, laser compression, by virtue of a much more rapid cooling, enables the retention of a deformation structure closer to the one existing during shock. The smaller pulse length also decreases the propensity for localization. Copper and copper aluminum (2 and 6 wt pct Al) with orientations [001] and [(1) over bar 34] were subjected to high intensity laser pulses with energy levels of 70 to 300 J delivered in an initial pulse duration of approximately 3 ns. The [001] and [(1) over bar 34] orientations were chosen, because they respectively maximize and minimize the number of slip systems with highest resolved shear stresses. Systematic differences of the defect substructure were observed as a function of pressure, stacking-fault energy, and crystalline orientation. The changes in the mechanical properties for each condition were compared using micro- and nanohardness measurements and correlated well with observations of the defect substructure. Three regimes of plastic deformation were identified and their transitions modeled: dislocation cells, stacking faults, and twins. An existing constitutive description of the slip to twinning transition, based on the critical shear stress, was expanded to incorporate the effect of stacking-fault energy. A new physically based criterion accounting for stacking-fault energy was developed that describes the transition from perfect loop to partial loop homogeneous nucleation, and consequently from cells to stacking faults. These calculations predict transitions that are in qualitative agreement with the effect of SFE. C1 [Meyers, M. A.; Schneider, M. S.; Jarmakani, H.; Kad, B.] Univ Calif San Diego, Mat Sci & Engn Program, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Remington, B. A.; Kalantar, D. H.; McNaney, J.] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. [Wark, J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Meyers, MA (reprint author), Univ Calif San Diego, Mat Sci & Engn Program, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. EM mameyers@ucsd.edu RI McNaney, James/F-5258-2013; Meyers, Marc/A-2970-2016 OI Meyers, Marc/0000-0003-1698-5396 NR 51 TC 20 Z9 24 U1 2 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2008 VL 39A IS 2 BP 304 EP 321 DI 10.1007/s11661-007-9359-3 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 255GK UT WOS:000252645600012 ER PT J AU Millett, JCF Bourne, NK Gray, GT AF Millett, J. C. F. Bourne, N. K. Gray, G. T., III TI The behavior of Ni, Ni-60Co, and Ni(3)Al during one-dimensional shock loading SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID STACKING-FAULT ENERGY; DISLOCATION CELL-SIZE; CU-AL ALLOYS; POLYCRYSTALLINE NI3AL; ELEVATED-TEMPERATURES; STRESS MEASUREMENT; PULSE DURATION; LATERAL STRESS; LOADED NICKEL; DEFORMATION AB The response of pure nickel (Ni), a binary Ni-60 at. pct cobalt (Co) alloy exhibiting a low stacking fault energy (SFE), and the ordered face-centered-cubic (fcc) alloy Ni-24Al-0.01B to shock loading has been studied using the technique of plate impact. Changes in the variation of mechanical properties with shock amplitude and pulse duration have been explained in terms of a shift from dislocation dominated to twin dominated plasticity in the case of the Ni-Co alloy and the increasing effect of brittle failure in the case of Ni(3)Al. C1 [Millett, J. C. F.; Bourne, N. K.] AWE, Reading RG7 4PR, Berks, England. [Gray, G. T., III] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. RP Millett, JCF (reprint author), AWE, Reading RG7 4PR, Berks, England. EM Jeremy.Millett@awe.co.uk RI Bourne, Neil/A-7544-2008 NR 52 TC 17 Z9 17 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2008 VL 39A IS 2 BP 322 EP 334 DI 10.1007/s11661-007-9427-8 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 255GK UT WOS:000252645600013 ER PT J AU Liu, DM Nie, ZH Wang, YD Liu, YD Wang, G Ren, Y Zuo, L AF Liu, D. M. Nie, Z. H. Wang, Y. D. Liu, Y. D. Wang, G. Ren, Y. Zuo, L. TI New sequences of phase transition in ni-mn-ga ferromagnetic shape memory nanoparticles SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID FIELD-INDUCED STRAINS; CRYSTAL-STRUCTURE; MARTENSITIC PHASES; NI2MNGA; ALLOYS; TRANSFORMATION; COMPOSITES; POLYMER; NIMNGA AB In-situ high-energy X-ray diffraction was used for tracing the structural transitions in Ni2MnGa and Ni47Mn25Ga22Co6 nanoparticles that were prepared by a ball-milling and subsequent annealing process. A decrease in martensitic transformation temperature was evidenced in all annealed nanoparticles. It was found that a three-layered modulated structure, usually observed as a metastable premartensitic phase in coarse-grained alloys, becomes a stable phase in the annealed Ni2MnGa nanoparticles up to 4 K. C1 [Liu, D. M.; Nie, Z. H.; Wang, Y. D.; Liu, Y. D.; Wang, G.; Zuo, L.] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110004, Peoples R China. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Liu, DM (reprint author), Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110004, Peoples R China. EM ydwang@mail.neu.edu.cn RI Nie, Zhihua/G-9459-2013; wang, yandong/G-9404-2013 OI Nie, Zhihua/0000-0002-2533-933X; NR 23 TC 9 Z9 10 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2008 VL 39A IS 2 BP 466 EP 469 DI 10.1007/s11661-007-9435-8 PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 255GK UT WOS:000252645600027 ER PT J AU Lin, YJ McHugh, KM Zhou, YZ Lavernia, EJ AF Lin, Yaojun McHugh, Kevin M. Zhou, Yizhang Lavernia, Enrique J. TI Evolution of carbides during aging of a spray-formed chromium-containing tool steel SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article AB The evolution of carbides during aging of a spray-formed chromium-containing tool steel was studied. In the as-spray-formed steel, there are two prominent types of carbides: the V-rich proeutectoid MC and the Fe-rich M(3)C in lower bainite. Evolution of the carbides during aging can be described as follows. While the proeutectoid MC remains unchanged, a portion of the M(3)C dissolves into the bainitic ferrite matrix, and another portion of it is transformed into Cr-rich M(7)C(3). In addition, fine alloyed carbides, such as M(7)C(3), MC, Cr-rich M(23)C(6), and Mo-rich M(6)C, precipitate from the matrix consisting of bainitic ferrite, martensite, and retained austenite. C1 [Lin, Yaojun] Praxair Elect, Dept Technol, Orangeburg, NY 10962 USA. [Lin, Yaojun; Zhou, Yizhang; Lavernia, Enrique J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [McHugh, Kevin M.] Idaho Natl Lab, Ind & Mat Technol Dept, Idaho Falls, ID 83415 USA. RP Lin, YJ (reprint author), Praxair Elect, Dept Technol, Orangeburg, NY 10962 USA. EM yaojun81@yahoo.com RI Lavernia, Enrique/I-6472-2013 OI Lavernia, Enrique/0000-0003-2124-8964 NR 7 TC 1 Z9 2 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2008 VL 39A IS 2 BP 473 EP 476 DI 10.1007/s11661-007-9345-9 PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 255GK UT WOS:000252645600029 ER PT J AU Maiti, A AF Maiti, Amitesh TI Multiscale modeling with carbon nanotubes SO MICROELECTRONICS JOURNAL LA English DT Article; Proceedings Paper CT European Nano System Conference (ENS '05) CY DEC, 2005 CL Paris, FRANCE DE DFT (density functional theory); molecular modeling; NEGF (nonequilibrium green's function); mesoscale modeling; nanotubes; sensors; nanocomposites; NEMS (nanoclectromechanical sensors) ID DISSIPATIVE PARTICLE DYNAMICS; TIGHT-BINDING METHOD; ELECTRONIC-PROPERTIES; OXYGEN-ADSORPTION; LENGTH SCALES; FORCE-FIELD; SIMULATIONS; MOLECULES; TRANSISTORS; POLYMER AB Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and non-equilibrium quantum mechanics.. to force-field-based molecular mechanics and kinetic Monte Carlo, mesoscale simulation of evolving morphology, and finite-element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites. (C) 2006 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Maiti, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM maiti2@llnl.gov NR 109 TC 28 Z9 28 U1 5 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0026-2692 EI 1879-2391 J9 MICROELECTRON J JI Microelectron. J. PD FEB PY 2008 VL 39 IS 2 BP 208 EP 221 DI 10.1016/j.mejo.2006.06.003 PG 14 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 268ET UT WOS:000253562400008 ER PT J AU Peng, YP Oxley, MP Lupini, AR Chisholm, MF Pennycook, SJ AF Peng, Yiping Oxley, Mark P. Lupini, Andrew R. Chisholm, Matthew F. Pennycook, Stephen J. TI Spatial resolution and information transfer in scanning transmission electron microscopy SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT Pre Meeting Congress on Materials Research in an Aberration-Free Evironment CY JUL, 2006 CL Chicago, IL SP Microscopy Soc Amer DE ADF; STEM; resolution; information transfer; noise; defocus; thickness; detector inner angle ID ADF-STEM; CONTRAST; LATTICE; IMAGES; SCATTERING; CRYSTALS; PROBES; TEM AB The relation between image resolution and information transfer is explored. It is shown that the existence of higher frequency transfer in the image is just a necessary but not sufficient condition for the achievement of higher resolution. Adopting a two-point resolution criterion, we suggest that a 10% contrast level between two features in an image should be used as a practical definition of resolution. in the context of scanning transmission electron microscopy, it is shown that the channeling effect does not have a direct connection with image resolution because sharp channeling peaks do not move with the scanning probe. Through a quantitative comparison between experimental image and simulation, a Fourier-space approach is proposed to estimate defocus and sample thickness. The effective atom size in Z-contrast imaging depends on the annular detector's inner angle. Therefore, an optimum angle exists for the highest resolution as a trade-off between reduced atom size and reduced signal with limited information transfer due to noise. C1 [Peng, Yiping; Oxley, Mark P.; Lupini, Andrew R.; Chisholm, Matthew F.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Oxley, MP (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM Oxleymp@ornl.gov NR 28 TC 19 Z9 19 U1 2 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2008 VL 14 IS 1 BP 36 EP 47 DI 10.1017/S1431927608080161 PG 12 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 262IS UT WOS:000253142800005 PM 18171501 ER PT J AU Findlay, SD Xley, MP Allen, LJ AF Findlay, Scott D. Xley, Mark P. Allen, Leslie J. TI Modeling atomic-resolution scanning transmission electron microscopy images SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT Pre Meeting Congress on Materials Research in an Aberration-Free Evironment CY JUL, 2006 CL Chicago, IL SP Microscopy Soc Amer DE scanning transmission electron microscopy (STEM); aberration correction; inelastic scattering; core-loss spectroscopy; nonlocality ID CORE-LOSS SPECTROSCOPY; HIGH-ENERGY ELECTRONS; INELASTIC-SCATTERING; MULTISLICE THEORY; CRYSTALS; DIFFRACTION; STEM; SIMULATION; SILICON; PHONON AB A real-space description of inelastic scattering in scanning transmission electron microscopy is derived with particular attention given to the implementation of the projected potential approximation. A hierarchy of approximations to expressions for inelastic images is presented. Emphasis is placed on the conditions that must hold in each case. The expressions that justify the most direct, visual interpretation of experimental data are also the most approximate. Therefore, caution must be exercised in selecting experimental parameters that validate the approximations needed for the analysis technique used. To make the most direct, visual interpretation of electron-energy-loss spectroscopic images from core-shell excitations requires detector improvements commensurate with those that aberration correction provides for the probe-forming lens. Such conditions can be relaxed when detailed simulations are performed as part of the analysis of experimental data. C1 [Findlay, Scott D.; Allen, Leslie J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Xley, Mark P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Findlay, SD (reprint author), Univ Tokyo, Sch Engn, Crystal Interface Lab, Bunkyo Ku, Yayoi 2-11-16, Tokyo 1138656, Japan. EM scott@sigma.t.u-tokyo.ac.jp RI Findlay, Scott/C-9764-2013 OI Findlay, Scott/0000-0003-4862-4827 NR 33 TC 17 Z9 17 U1 2 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2008 VL 14 IS 1 BP 48 EP 59 DI 10.1017/S1431927608080112 PG 12 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 262IS UT WOS:000253142800006 PM 18096101 ER PT J AU Blom, DA Allard, LF Narula, CK Moses-DeBusk, MJ AF Blom, Douglas A. Allard, Lawrence F. Narula, Chaitanya K. Moses-DeBusk, Melanie J. TI Aberration-corrected STEM Imaging of ag on gamma-Al(2)O(3) SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT Pre Meeting Congress on Materials Research in an Aberration-Free Evironment CY JUL, 2006 CL Chicago, IL SP Microscopy Soc Amer DE aberration-corrected scanning transmission electron microscopy; high-angle annular dark-field imaging; lean NO(x) catalyst; single-atom imaging; atomic resolution; ex situ STEM ID SELECTIVE CATALYTIC-REDUCTION; AG/AL2O3 CATALYSTS; NITRIC-OXIDE; SILVER/ALUMINA CATALYSTS; HIGHER HYDROCARBONS; SILVER; NOX; REMOVAL; ALUMINA; MECHANISM AB Ag on gamma-alumina is a promising catalyst for hydrocarbon selective catalytic reduction in lean-burn gasoline and diesel engines for transportation applications. Although much is known about the mechanism of NO(x) reduction and the various intermediates, little agreement exists on the nature of the active silver species. In the present work, aberration-corrected STEM has provided new information about the nature of Ag on alumina both as impregnated and following treatments at various temperatures with exposure to simulated exhaust gas. Ex situ techniques have provided new insights into the evolution of Ag on alumina following exposure to temperature and simulated exhaust gas. C1 [Blom, Douglas A.; Allard, Lawrence F.; Narula, Chaitanya K.; Moses-DeBusk, Melanie J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Blom, DA (reprint author), Univ S Carolina, EM Ctr, Columbia, SC 29208 USA. EM Doug.Blom@sc.edu NR 18 TC 3 Z9 3 U1 2 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2008 VL 14 IS 1 BP 98 EP 103 DI 10.1017/S143192760808015X PG 6 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 262IS UT WOS:000253142800011 PM 18096099 ER PT J AU Klie, RE Johnson, C Zhu, YM AF Klie, Robert E. Johnson, Craig Zhu, Yimei TI Atomic-resolution STEM in the aberration-corrected JEOL JEM2200FS SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT Pre Meeting Congress on Materials Research in an Aberration-Free Evironment CY JUL, 2006 CL Chicago, IL SP Microscopy Soc Amer DE TEM; STEM; EELS; aberration correction ID TRANSMISSION ELECTRON-MICROSCOPY; GRAIN-BOUNDARIES; LATTICE; SRTIO3 AB We report on the performance of our aberration-corrected JEOL-JEM2200FS electron microscope. This high-resolution field-mission TEM/STEM is equipped with a Schottky field-emission gun operated at 200 W, a CEOS probe corrector, and an in-column energy filter. We focus on the performance of the probe corrector and show that the Si [110] dumbbell structure can be routinely resolved in STEM mode with the power spectrum indicating a probe size of similar to 1 angstrom. Ronchigram analysis suggests that the constant phase area is extended from 15 mrad to 35 mrad after corrector tuning. We also report the performance of our newly installed JEOL-JEM2200MCO, an upgraded version of the JEM2200FS, equipped with two CEOS aberration correctors (and a monochromator), one for the probe-forming lens and the other for the postspecimen objective lens. Based on Young's fringe analysis of Au particles on amorphous Ge, initial results show that the information limit in TEM mode with the aberration correction (C-s = -3.8 mu m) is similar to 0.12 nm. Materials research applications using these two instruments are described including atomic-column-resolved Z-contrast imaging and electron energy-loss spectroscopy of oxide hetero-interfaces and strain mapping of a SrTiO3 tilt-grain boundary. The requirements for a high-precision TEM laboratory to house an aberration-corrected microscope are also discussed. C1 [Klie, Robert E.; Johnson, Craig; Zhu, Yimei] Brookhaven Natl Lab, Inst Adv Electron Microscopy, Upton, NY 11973 USA. RP Klie, RE (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM rfklie@uic.edu NR 27 TC 7 Z9 7 U1 5 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2008 VL 14 IS 1 BP 104 EP 112 DI 10.1017/S1431927608080136 PG 9 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 262IS UT WOS:000253142800012 PM 18171499 ER PT J AU Aigeldinger, G Yang, CYP Skala, DM Morse, DH Talin, AA Griffiths, SK Hachman, JT Ceremuga, JT AF Aigeldinger, G. Yang, C.-Y. P. Skala, D. M. Morse, D. H. Talin, A. A. Griffiths, S. K. Hachman, J. T. Ceremuga, J. T. TI Influence of mask substrate materials on resist sidewall roughness in deep X-ray lithography SO MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS LA English DT Article ID FABRICATION; CARBON; PMMA AB Absorption of X-rays in deep X-ray lithography masks can significantly increase exposure time, harden the X-ray spectrum and lead to heating and distortion of the mask. To reduce the impact of such absorption, we have evaluated low atomic mass (low-z) materials that allow the utilization of thick substrates (> 100 mu m) for reliable mask fabrication. Various forms of graphite, vitreous carbon (VC), boron nitride and beryllium were chosen for testing. Transmission tests were conducted to evaluate resulting surface roughness in the X-ray resist sidewalls. We found that VC, beryllium and pyrolytic graphite all have minimal effect on the resist sidewall surface roughness; however, graphite and boron nitride both significantly increase the roughness to about 300 nm RMS. We could show that this increase in surface roughness is directly related to the crystal structure of these materials. From the tests conducted, VC proves a promising mask substrate, superior to the more expensive and hazardous beryllium that is commonly used for thick high precision masks. VC has been successfully employed as a mask substrate and corresponding resist structures are introduced. C1 Sandia Natl Labs, Livermore, CA 94550 USA. RP Aigeldinger, G (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94550 USA. EM gaigeld@sandia.gov NR 21 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0946-7076 J9 MICROSYST TECHNOL JI Microsyst. Technol. PD FEB PY 2008 VL 14 IS 2 BP 277 EP 286 DI 10.1007/s00542-007-0419-9 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 217UF UT WOS:000249972100018 ER PT J AU Brown, GE Wang, Y Gelabert, A Ha, J Cismasu, C Ona-Nguema, G Benzerara, K Miot, J Menguy, N Morin, G Juillot, F Guyot, F Calas, G Farges, F Trainor, TP Gescher, J Cordova, C Spormann, AM AF Brown, G. E., Jr. Wang, Y. Gelabert, A. Ha, J. Cismasu, C. Ona-Nguema, G. Benzerara, K. Miot, J. Menguy, N. Morin, G. Juillot, F. Guyot, F. Calas, G. Farges, F. Trainor, T. P. Gescher, J. Cordova, C. Spormann, A. M. TI Synchrotron X-ray studies of heavy metal mineral-microbe interactions SO MINERALOGICAL MAGAZINE LA English DT Article; Proceedings Paper CT 8th International Symposium on the Geochemistry of the Earths Surface (GES-8) CY AUG 18-22, 2008 CL London, ENGLAND SP Mineral Soc Great Britain & Ireland, Int Assoc Geochem & Cosmochem Working Grp Geochem Earths Surface, Nat Hist Museum C1 [Brown, G. E., Jr.; Wang, Y.; Gelabert, A.; Ha, J.; Cismasu, C.; Ona-Nguema, G.] Stanford Univ, Dept Geol & Environm Sci, Surface & Interface Geochem Grp, Stanford, CA 94305 USA. [Brown, G. E., Jr.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Wang, Y.; Ona-Nguema, G.; Benzerara, K.; Miot, J.; Menguy, N.; Morin, G.; Juillot, F.; Guyot, F.; Calas, G.] Univ Paris 06, CNRS, UMR 7590, Inst Mineral & Phys Milieux Condenses, F-75015 Paris, France. [Wang, Y.; Ona-Nguema, G.; Benzerara, K.; Miot, J.; Menguy, N.; Morin, G.; Juillot, F.; Guyot, F.; Calas, G.] Univ Paris 07, F-75015 Paris, France. [Wang, Y.; Ona-Nguema, G.; Benzerara, K.; Miot, J.; Menguy, N.; Morin, G.; Juillot, F.; Guyot, F.; Calas, G.] IPGP, F-75015 Paris, France. [Farges, F.] Museum Natl Hist Nat, Unite Mineral Petrol USM 201, F-75231 Paris, France. [Farges, F.] CNRS, UMR 7160, Paris, France. [Trainor, T. P.] Univ Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA. [Gescher, J.; Cordova, C.; Spormann, A. M.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. RP Brown, GE (reprint author), Stanford Univ, Dept Geol & Environm Sci, Surface & Interface Geochem Grp, Stanford, CA 94305 USA. EM gordon.brown@stanford.edu RI gelabert, alexandre/A-5684-2011; Calas, Georges/B-2445-2012; MENGUY, Nicolas/F-5607-2012; Gescher, Johannes/I-1672-2013; Wang, Yuheng/K-3988-2012; Benzerara, Karim/J-1532-2016; GUYOT, Francois/C-3824-2016; JUILLOT, Farid/G-7943-2016; IMPMC, Geobio/F-8819-2016 OI Calas, Georges/0000-0003-0525-5734; MENGUY, Nicolas/0000-0003-4613-2490; Gescher, Johannes/0000-0002-1625-8810; Wang, Yuheng/0000-0002-1786-5970; Benzerara, Karim/0000-0002-0553-0137; GUYOT, Francois/0000-0003-4622-2218; NR 9 TC 2 Z9 2 U1 0 U2 7 PU MINERALOGICAL SOC PI TWICKENHAM PA 12 BAYLIS MEWS, AMYAND PARK ROAD,, TWICKENHAM TW1 3HQ, MIDDLESEX, ENGLAND SN 0026-461X J9 MINERAL MAG JI Mineral. Mag. PD FEB PY 2008 VL 72 IS 1 BP 169 EP 173 DI 10.1180/minmag.2008.072.1.169 PG 5 WC Mineralogy SC Mineralogy GA 344RV UT WOS:000258945900037 ER PT J AU Thieme, J Gleber, SC Guttmann, P Prietzel, J McNulty, I Coates, J AF Thieme, J. Gleber, S. -C. Guttmann, P. Prietzel, J. McNulty, I. Coates, J. TI Microscopy and spectroscopy with X-rays for studies in the environmental sciences SO MINERALOGICAL MAGAZINE LA English DT Article; Proceedings Paper CT 8th International Symposium on the Geochemistry of the Earths Surface (GES-8) CY AUG 18-22, 2008 CL London, ENGLAND SP Mineral Soc Great Britain & Ireland, Int Assoc Geochem & Cosmochem Working Grp Geochem Earths Surface, Nat Hist Museum DE X-ray spectromicroscopy; environmental science; soils; tomography ID SOIL COLLOIDS; SPECTROMICROSCOPY; RESOLUTION AB X-ray spectromicroscopy is a powerful tool for addressing key questions in the environmental sciences due to its high spectral and spatial resolution. It has been used successfully for material research, biology and environmental studies, e.g. in the form of mu-X-ray fluorescence and spectromicroscopy with a spatial resolution of <100 nm. With the combination of high-resolution microscopy and spectroscopy it is possible to determine elemental composition as well as chemical speciation, and also identify trace elements to nm-resolution. Samples from soils and groundwater aquifers have been imaged to visualize the appearance of structures on the nm- and mu m-scale. The effect of changing chemical conditions in ail aqueous environment on the appearance of these structures has been imaged and evaluated. Clay dispersions, microhabitats and morphological effects of biologically-induced redox changes Of humic substances have been imaged tomographically, conveying a detailed three-dimensional presentation of the specimen structure. Using the spectromicroscopy potential, the distribution of organic and inorganic components, as well as different inorganic components, has been studied. Spectra were analysed for major chemical constituents and were used, for example, to assess different sulphur species in ail entire soil profile. C1 [Thieme, J.; Gleber, S. -C.] Univ Gottingen, Inst Roentgenphys, D-37077 Gottingen, Germany. [Guttmann, P.] Univ Goettingen, BESSY GmbH, Inst Roentgenphys, D-12489 Berlin, Germany. [Prietzel, J.] Tech Univ Muenchen, Lehrstuhl Bodenkunde, D-85350 Freising Weihenstephan, Germany. [McNulty, I.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Coates, J.] Univ Calif Berkeley, Dept Plant & Microbial Sci, Berkeley, CA 94720 USA. RP Thieme, J (reprint author), Univ Gottingen, Inst Roentgenphys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. EM jthieme@gwdg.de RI Thieme, Juergen/D-6814-2013; Guttmann, Peter/H-9869-2015 OI Guttmann, Peter/0000-0002-0534-238X NR 11 TC 10 Z9 11 U1 0 U2 10 PU MINERALOGICAL SOC PI TWICKENHAM PA 12 BAYLIS MEWS, AMYAND PARK ROAD,, TWICKENHAM TW1 3HQ, MIDDLESEX, ENGLAND SN 0026-461X J9 MINERAL MAG JI Mineral. Mag. PD FEB PY 2008 VL 72 IS 1 BP 211 EP 216 DI 10.1180/minmag.2008.072.1.211 PG 6 WC Mineralogy SC Mineralogy GA 344RV UT WOS:000258945900045 ER PT J AU Wickett, NJ Zhang, Y Hansen, SK Roper, JM Kuehl, JV Plock, SA Wolf, PG dePamphilis, CW Boore, JL Goffinet, B AF Wickett, Norman J. Zhang, Yan Hansen, S. Kellon Roper, Jessie M. Kuehl, Jennifer V. Plock, Sheila A. Wolf, Paul G. dePamphilis, Claude W. Boore, Jeffrey L. Goffinet, Bernard TI Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article DE Aneura mirabilis; Cryptothallus; parasitic plants; liverworts; bryophytes; chloroplast genome ID COMPLETE NUCLEOTIDE-SEQUENCE; PLANT CUSCUTA-REFLEXA; CHLOROPLAST GENOME; FLOWERING PLANT; LAND PLANTS; PHYLOGENETIC SIGNIFICANCE; ORGANELLAR GENOMES; DNA-SEQUENCES; NDH GENES; NUCLEUS AB Aneura mirabilis is a parasitic liverwort that exploits an existing mycorrhizal association between a basidiomycete and a host tree. This unusual liverwort is the only known parasitic seedless land plant with a completely nonphotosynthetic life history. The complete plastid genome of A. mirabilis was sequenced to examine the effect of its nonphotosynthetic life history on plastid genome content. Using a partial genomic fosmid library approach, the genome was sequenced and shown to be 108,007 bp with a structure typical of green plant plastids. Comparisons were made with the plastid genome of Marchantia polymorpha, the only other liverwort plastid sequence available. All ndh genes are either absent or pseudogenes. Five of 15 psb genes are pseudogenes, as are 2 of 6 psa genes and 2 of 6 pet genes. Pseudogenes of cysA, cysT, ccsA, and ycf3 were also detected. The remaining complement of genes present in M. polymorpha is present in the plastid of A. mirabilis with intact open reading frames. All pseudogenes and gene losses co-occur with losses detected in the plastid of the parasitic angiosperm Epifagus virginiana, though the latter has functional gene losses not found in A. mirabilis. The plastid genome sequence of A. mirabilis represents only the second liverwort, and first mycoheterotroph, to have its plastid genome sequenced. We observed a pattern of genome evolution congruent with functional gene tosses in parasitic angiosperms but suggest that its plastid genome represents a genome in the early stages of decay following the relaxation of selection pressures. C1 [Wickett, Norman J.] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA. [Zhang, Yan; Plock, Sheila A.; dePamphilis, Claude W.] Penn State Univ, Dept Biol, University Pk, PA 16802 USA. [Hansen, S. Kellon; Roper, Jessie M.; Goffinet, Bernard] Genome Project Solut, Hercules, CA USA. [Kuehl, Jennifer V.; Boore, Jeffrey L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Walnut Creek, CA USA. [Kuehl, Jennifer V.; Boore, Jeffrey L.] Dept Energy Joint Genome Inst, Walnut Creek, CA USA. [Wolf, Paul G.] Utah State Univ, Dept Biol, Logan, UT 84322 USA. RP Wickett, NJ (reprint author), Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA. EM norman.wickett@uconn.edu RI Wolf, Paul/F-7664-2010; dePamphilis, Claude/P-6652-2016 OI Wolf, Paul/0000-0002-4317-6976; NR 60 TC 55 Z9 89 U1 6 U2 20 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD FEB PY 2008 VL 25 IS 2 BP 393 EP 401 DI 10.1093/molbev/msm267 PG 9 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA 269FL UT WOS:000253634800017 PM 18056074 ER PT J AU Betanzos-Cabrera, G Harker, BW Doktycz, MJ Weber, JL Beattie, KL AF Betanzos-Cabrera, Gabriel Harker, Brent W. Doktycz, Mitchel J. Weber, James L. Beattie, Kenneth L. TI Channel glass-based detection of human short insertion/deletion polymorphisms by tandem hybridization SO MOLECULAR BIOTECHNOLOGY LA English DT Article DE indels; channel glass; tandem hybridization; arrayed probes; detection ID STACKING HYBRIDIZATION; DNA; MICROARRAY; GENOME; OLIGONUCLEOTIDES; ARRAYS; ASSAYS; CHIP; SNPS AB The development and critical evaluation of new technologies for identifying genetic polymorphisms will rapidly accelerate the discovery and diagnosis of disease-related genes. We report a novel way for distinguishing a new class of human DNA polymorphisms, short insertion/deletion polymorphisms (indels). A sensor with cylindrical pores named channel glass in combination with tandem hybridization, which uses a 5'-fluorescent labeled stacking probe and microarray-based short allele-specific oligonucleotide (capture probe) was investigated. This methodology allows indels to be detected individually and rapidly with small quantities of target DNA. This establishes a reliable quantitative test. Approaches for simultaneously hybridizing different targets to arrayed probes, designed to detect various indels in parallel, were examined. Five markers were consistently detected in a single hybridization. Possible factors impeding the hybridization reaction process are discussed. C1 [Betanzos-Cabrera, Gabriel] Univ Autonoma Estado Hidalgo, Inst Ciencias Salud, Area Acad Nutr, Hidalgo 42000, Mexico. [Harker, Brent W.] Univ Notre Dame, Dept Biol Sci, Ctr Global Hlth & Infectious Dis, Notre Dame, IN 46556 USA. [Doktycz, Mitchel J.; Beattie, Kenneth L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Weber, James L.] Marshfield Clin Med Res Fdn, Ctr Genet Med, Marshfield, WI USA. RP Betanzos-Cabrera, G (reprint author), Univ Autonoma Estado Hidalgo, Inst Ciencias Salud, Area Acad Nutr, Abasolo 600 Pachuca Soto, Hidalgo 42000, Mexico. EM gbetanzo@uaeh.reduaeh.mx RI Doktycz, Mitchel/A-7499-2011 OI Doktycz, Mitchel/0000-0003-4856-8343 FU NHLBI NIH HHS [R01 HL62681-01] NR 41 TC 2 Z9 2 U1 0 U2 1 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 1073-6085 J9 MOL BIOTECHNOL JI Mol. Biotechnol. PD FEB PY 2008 VL 38 IS 2 BP 145 EP 153 DI 10.1007/s12033-007-9004-9 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 255RP UT WOS:000252675400007 PM 18219594 ER PT J AU Groppe, J Hinck, CS Samavarchi-Tehrani, P Zubieta, C Schuermann, JP Taylor, AB Schwarz, PM Wrana, JL Hinck, AP AF Groppe, Jay Hinck, Cynthia S. Samavarchi-Tehrani, Payman Zubieta, Chloe Schuermann, Jonathan P. Taylor, Alexander B. Schwarz, Patricia M. Wrana, Jeffrey L. Hinck, Andrew P. TI Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding SO MOLECULAR CELL LA English DT Article ID BONE MORPHOGENETIC PROTEIN; II-RECEPTOR; LIGAND-BINDING; CRYSTAL-STRUCTURE; MOLECULAR RECOGNITION; BIOLOGICAL-ACTIVITY; DIFFRACTION DATA; STRUCTURAL BASIS; ACTIVIN; IDENTIFICATION AB Dimeric ligands of the transforming growth factor-beta (TGF-beta) superfamily signal across cell membranes in a distinctive manner by assembling heterotetrameric complexes of structurally related serine/threonine-kinase receptor pairs. Unlike complexes of the bone morphogenetic protein (BMP) branch that apparently form due to avidity from membrane localization, TGF-beta complexes assemble cooperatively through recruitment of the low-affinity (type I) receptor by the ligand-bound high-affinity (type II) pair. Here we report the crystal structure of TGF-beta 3 in complex with the extracellular domains of both pairs of receptors, revealing that the type I docks and becomes tethered via unique extensions at a composite ligand-type II interface. Disrupting the receptor-receptor interactions conferred by these extensions abolishes assembly of the signaling complex and signal transduction (Smad activation). Although structurally similar, BMP and TGF-beta receptors bind in dramatically different modes, mediating graded and switch-like assembly mechanisms that may have coevolved with branch-specific groups of cytoplasmic effectors. C1 [Samavarchi-Tehrani, Payman; Wrana, Jeffrey L.] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada. [Zubieta, Chloe] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Groppe, Jay; Hinck, Cynthia S.; Schuermann, Jonathan P.; Taylor, Alexander B.; Schwarz, Patricia M.; Hinck, Andrew P.] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, San Antonio, TX 78229 USA. RP Groppe, J (reprint author), Texas A&M Univ, Syst Hlth Sci Ctr, Baylor Coll Dent, Dept Biomed Sci, 3302 Gaston Ave, Dallas, TX 75246 USA. EM jgroppe@bcd.tamhsc.edu; wrana@mshri.on.ca; hinck@uthscsa.edu RI Wrana, Jeffrey/F-8857-2013; OI Zubieta, Chloe/0000-0003-4558-9333 NR 58 TC 123 Z9 125 U1 1 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD FEB 1 PY 2008 VL 29 IS 2 BP 157 EP 168 DI 10.1016/j.molcel.2007.11.039 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 259MZ UT WOS:000252944700005 PM 18243111 ER PT J AU Porter, TM Schadt, CW Rizvi, L Martin, AP Schmidt, SK Scott-Denton, L Vilgalys, R Moncalvo, JM AF Porter, T. M. Schadt, C. W. Rizvi, L. Martin, A. P. Schmidt, S. K. Scott-Denton, L. Vilgalys, R. Moncalvo, J. M. TI Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life SO MOLECULAR PHYLOGENETICS AND EVOLUTION LA English DT Article DE fungi; Ascomycota; environmental sampling; soil; novel taxa; rDNA ID RIBOSOMAL DNA-SEQUENCES; RNA-POLYMERASE-II; SUB-ALPINE FOREST; MICROBIAL DIVERSITY; EUKARYOTIC DIVERSITY; HIGH-ELEVATION; 18S RDNA; ECTOMYCORRHIZAL; EVOLUTION; COMMUNITIES AB Fungi are one of the most diverse groups of Eukarya and play essential roles in terrestrial ecosystems as decomposers, pathogens and mutualists. This study unifies disparate reports of unclassified fungal sequences from soils,of diverse origins and anchors many of them in a well-supported clade of the Ascomycota equivalent to a subphylum. We refer to this clade as Soil Clone Group I (SCGI). We expand the breadth of environments surveyed and develop a taxon-specific primer to amplify 2.4 kbp rDNA fragments directly from soil. Our results also expand the known range of this group from North America to Europe and Australia. The ancient origin of SCGI implies that it may represent an important transitional form among the basal Ascomycota groups. SCGI is unusual because it currently represents the only major fungal lineage known only from sequence data. This is an important contribution towards building a more complete fungal phylogeny and highlights the need for further work to determine the function and biology of SCGI taxa. (C) 2007 Elsevier Inc. All rights reserved. C1 [Porter, T. M.; Moncalvo, J. M.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada. [Schadt, C. W.] Oak Ridge Natl Lab, Microbial Ecol & Physiol Grp, Biosci Div, Oak Ridge, TN 37831 USA. [Rizvi, L.; Moncalvo, J. M.] Royal Ontario Museum, Dept Nat Hist, Toronto, ON M5S 2C6, Canada. [Schadt, C. W.; Martin, A. P.; Schmidt, S. K.; Scott-Denton, L.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Vilgalys, R.] Duke Univ, Dept Biol, Durham, NC 27708 USA. RP Porter, TM (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada. EM terri.mclenon@utoronto.ca RI Schadt, Christopher/B-7143-2008; Schmidt, Steven/G-2771-2010; Porter, Teresita/H-4072-2011; OI Schadt, Christopher/0000-0001-8759-2448; Schmidt, Steven/0000-0002-9175-2085; Vilgalys, Rytas/0000-0001-8299-3605 NR 68 TC 51 Z9 53 U1 1 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1055-7903 J9 MOL PHYLOGENET EVOL JI Mol. Phylogenet. Evol. PD FEB PY 2008 VL 46 IS 2 BP 635 EP 644 DI 10.1016/j.ympev.2007.10.002 PG 10 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA 276ID UT WOS:000254133600017 PM 18032071 ER PT J AU Motter, AE Gulbahce, N Almaas, E Barabasi, AL AF Motter, Adilson E. Gulbahce, Natali Almaas, Eivind Barabasi, Albert-Laszlo TI Predicting synthetic rescues in metabolic networks SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE complex networks; genetic interactions; genetic recovery; metabolism; systems biology ID ESCHERICHIA-COLI MG1655; GENETIC INTERACTIONS; CELL BIOLOGY; YEAST; GENOME; EVOLUTION; GROWTH; OPTIMIZATION; ORGANIZATION; FERMENTATION AB An important goal of medical research is to develop methods to recover the loss of cellular function due to mutations and other defects. Many approaches based on gene therapy aim to repair the defective gene or to insert genes with compensatory function. Here, we propose an alternative, network-based strategy that aims to restore biological function by forcing the cell to either bypass the functions affected by the defective gene, or to compensate for the lost function. Focusing on the metabolism of single-cell organisms, we computationally study mutants that lack an essential enzyme, and thus are unable to grow or have a significantly reduced growth rate. We show that several of these mutants can be turned into viable organisms through additional gene deletions that restore their growth rate. In a rather counterintuitive fashion, this is achieved via additional damage to the metabolic network. Using flux balance-based approaches, we identify a number of synthetically viable gene pairs, in which the removal of one enzyme-encoding gene results in a non-viable phenotype, while the deletion of a second enzyme-encoding gene rescues the organism. The systematic network-based identification of compensatory rescue effects may open new avenues for genetic interventions. C1 [Motter, Adilson E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Motter, Adilson E.] Northwestern Univ, Norwegian Inst Complex Syst, Evanston, IL 60208 USA. [Gulbahce, Natali] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Gulbahce, Natali] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Gulbahce, Natali] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Gulbahce, Natali; Barabasi, Albert-Laszlo] Northeastern Univ, Ctr Complex Network Res, Boston, MA 02115 USA. [Gulbahce, Natali] Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA. [Almaas, Eivind] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Network Biol & Microbial Syst Grp, Livermore, CA USA. [Barabasi, Albert-Laszlo] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Barabasi, Albert-Laszlo] Northeastern Univ, Dept Biol, Boston, MA 02115 USA. [Barabasi, Albert-Laszlo] Northeastern Univ, Dept Comp Sci, Boston, MA 02115 USA. [Barabasi, Albert-Laszlo] Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA. [Barabasi, Albert-Laszlo] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Barabasi, Albert-Laszlo] Univ Notre Dame, Dept Comp Sci, Notre Dame, IN 46556 USA. RP Motter, AE (reprint author), Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM motter@northwestern.edu OI Almaas, Eivind/0000-0002-9125-326X FU NCI NIH HHS [1P20 CA11300-01]; PHS HHS [U01 A1070499-01] NR 53 TC 68 Z9 68 U1 3 U2 15 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD FEB PY 2008 VL 4 AR 168 DI 10.1038/msb.2008.1 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 271AM UT WOS:000253761300001 PM 18277384 ER PT J AU Conselice, CJ Bundy, K Vivian, U Eisenhardt, P Lotz, J Newman, J AF Conselice, C. J. Bundy, K. Vivian, U. Eisenhardt, P. Lotz, J. Newman, J. TI The faint and extremely red K-band-selected galaxy population in the DEEP2/Palomar fields SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies : evolution; galaxies : formation; galaxies : structure ID NEAR-INFRARED OBSERVATIONS; HIGH-REDSHIFT GALAXIES; STAR-FORMING GALAXIES; ORIGINS DEEP SURVEY; EARLY DATA RELEASE; NUMBER COUNTS; MASSIVE GALAXIES; PHOTOMETRIC REDSHIFTS; LUMINOSITY FUNCTION; IMAGING SURVEY AB We present in this paper an analysis of the faint and red near-infrared (NIR) selected galaxy population found in NIR imaging from the Palomar Observatory Wide-Field Infrared Survey. This survey covers 1.53 deg(2) to 5 sigma detection limits of K-vega = 20.5-21 and J(vega) = 22.5, and overlaps with the DEEP2 spectroscopic redshift survey. We discuss the details of this NIR survey, including our J- and K-band counts. We show that the K-band galaxy population has a redshift distribution that varies with K magnitude, with most K < 17 galaxies at z < 1.5 and a significant fraction (38.3 +/- 0.3 per cent) of K > 19 systems at z > 1.5. We further investigate the stellar masses and morphological properties of K-selected galaxies, particularly extremely red objects (EROs), as defined by ( R - K) > 5.3 and (I - K) > 4. One of our conclusions is that the ERO selection is a good method for picking out galaxies at z > 1.2, and within our magnitude limits, the most massive galaxies at these redshifts. The ERO limit finds 75 per cent of all M-* > 10(11)M(circle dot) galaxies at z similar to 1.5 down to K-vega = 19.7. We further find that the morphological breakdown of K < 19.7 EROs is dominated by early-types ( 57 +/- 3 per cent) and peculiars ( 34 +/- 3 per cent). However, about a fourth of the early-types are distorted ellipticals, and within CAS ( concentration, asymmetry, clumpiness) parameter space these bridge the early-type and peculiar population, suggesting a morphological evolutionary sequence. We also investigate the use of a (I - K) > 4 selection to locate EROs, finding that it selects galaxies at slightly higher average redshifts (< z > = 1.43 +/- 0.32) than the ( R - K) > 5.3 limit with < z > = 1.28 +/- 0.23. Finally, by using the redshift distribution of K < 20 selected galaxies, and the properties of our EROs, we are able to rule out all monolithic collapse models for the formation of massive galaxies. C1 [Conselice, C. J.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bundy, K.] Univ Toronto, Dept Astron, Toronto, ON, Canada. [Vivian, U.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Eisenhardt, P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lotz, J.] Natl Opt Astron Observ, Tucson, AZ USA. [Newman, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Conselice, CJ (reprint author), Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. EM conselice@nottingham.ac.uk RI Conselice, Christopher/B-4348-2013; OI Conselice, Christopher/0000-0003-1949-7638 NR 88 TC 47 Z9 48 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2008 VL 383 IS 4 BP 1366 EP 1384 DI 10.1111/j.1365-2966.2007.12686.x PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 252LB UT WOS:000252446900007 ER PT J AU Cumings, J Olsson, E Petford-Long, AK Zhu, YM AF Cumings, John Olsson, Eva Petford-Long, Amanda K. Zhu, Yimei TI Electric and magnetic phenomena studied by in situ transmission electron microscopy SO MRS BULLETIN LA English DT Article ID SCANNING TUNNELING MICROSCOPE; INDIVIDUAL CARBON NANOTUBES; P-N-JUNCTIONS; TEM-STM; HOLOGRAPHY; DEVICES; GROWTH; HOLDER; ELECTRODEPOSITION; NANOMEASUREMENTS AB There is a wide array of technologically significant materials whose response to electric and magnetic fields can make or break their utility for specific applications. Often, these electrical and magnetic properties are determined by nanoscale features that can be most effectively understood through electron microscopy studies. Here, we present an overview of the capabilities for transmission electron microscopy for uncovering information about electric and magnetic properties of materials in the context of operational devices. When devices are operated during microscope observations, a wealth of information is available about dynamics, including metastable and transitional states. Additionally, because the imaging beam is electrically charged, it can directly capture information about the electric and magnetic fields in and around devices of interest. This is perhaps most relevant to the growing areas of nanomaterials and nanodevice research. Several specific examples are presented of materials systems that have been explored with these techniques. We also provide a view of the future directions for research. C1 [Cumings, John] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Olsson, Eva] Chalmers, SE-41296 Gothenburg, Sweden. [Petford-Long, Amanda K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zhu, Yimei] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Cumings, J (reprint author), Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. EM cumings@umd.edu; eva.olsson@fy.chalmers.se; petford.long@anl.gov; zhu@bnl.gov RI Cumings, John/A-3595-2012; Petford-Long, Amanda/P-6026-2014 OI Petford-Long, Amanda/0000-0002-3154-8090 NR 67 TC 8 Z9 8 U1 3 U2 20 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD FEB PY 2008 VL 33 IS 2 BP 101 EP 106 DI 10.1557/mrs2008.22 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 265YZ UT WOS:000253399200013 ER PT J AU Sutter, E Sutter, P AF Sutter, Eli Sutter, Peter TI Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires SO NANO LETTERS LA English DT Article ID OPTOELECTRONIC DEVICES; SILICON NANOWIRES; GE NANOWIRES; CORE-SHELL; HETEROSTRUCTURES; SI; TEMPERATURE AB We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries. C1 [Sutter, Eli; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov NR 29 TC 97 Z9 97 U1 6 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2008 VL 8 IS 2 BP 411 EP 414 DI 10.1021/nl0719630 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 262RR UT WOS:000253166200007 PM 18193910 ER PT J AU Han, WQ Yu, HG Zhi, C Wang, J Liu, Z Sekiguchi, T Bando, Y AF Han, Wei-Qiang Yu, Hua-Gen Zhi, Chunyi Wang, Jianbin Liu, Zhenxian Sekiguchi, Takashi Bando, Yoshio TI Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes SO NANO LETTERS LA English DT Article ID PURE BN NANOTUBES; OPTICAL-PROPERTIES; BXCYNZ NANOTUBES; SPECTROSCOPY; PRECURSOR; DENSITY AB We have carried out an isotope study on the band gap and radiative transition spectra of boron nitride nanotubes (BNNTs) using both experimental and theoretical approaches. The direct band gap of BNNTs was determined at 5.38 eV, independent of the nanotube size and isotope substitution, by cathodoluminescences (CL) spectra. At lower energies, several radiative transitions were observed, and an isotope effect was revealed. In particular, we confirmed that the rich CL spectra between 3.0 and 4.2 eV reflect a phonon-electron coupling mechanism, which is characterized by a radiative transition at 4.09 eV. The frequency. red shift and peak broadening due to isotopic effect have been observed. Our Fourier transform infrared spectra and density functional theory calculations suggest that those radiative transitions in BNNTs could be generated by a replacement of some nitrogen atoms with oxygen. C1 [Han, Wei-Qiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Yu, Hua-Gen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zhi, Chunyi; Wang, Jianbin; Sekiguchi, Takashi; Bando, Yoshio] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan. [Liu, Zhenxian] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. RP Han, WQ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov RI zhi, chunyi/H-2604-2011; takashi, Sekiguchi/D-2603-2010; Han, WQ/E-2818-2013; Yu, Hua-Gen/N-7339-2015; OI ZHI, Chunyi/0000-0001-6766-5953 NR 29 TC 50 Z9 50 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2008 VL 8 IS 2 BP 491 EP 494 DI 10.1021/nl0726151 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 262RR UT WOS:000253166200021 PM 18173295 ER PT J AU Tong, T Zhao, Y Delzeit, L Kashani, A Meyyappan, M Majumdar, A AF Tong, Tao Zhao, Yang Delzeit, Lance Kashani, Ali Meyyappan, M. Majumdar, Arun TI Height independent compressive modulus of vertically aligned carbon nanotube arrays SO NANO LETTERS LA English DT Article ID MULTILAYERED METAL-CATALYSTS; GROWTH; COMPOSITES; STRENGTH AB The compressive modulus of dense vertically aligned multiwalled carbon nanotube (CNT) arrays synthesized by chemical vapor deposition was investigated using an optically probed precision-loading platform. For CNT arrays with heights ranging from 15 to 500 mu m, the moduli were measured to be about 0.25 MPa and were found to be independent of array height. A continuum mechanics model based on multimode buckling guided by the wavy features of CNT arrays is derived and explains well the measured compressive properties. The measured compressive modulus of the CNT arrays also satisfies the "Dahlquist tack criterion" for pressure sensitive adhesives, which was previously observed for these vertically aligned CNT arrays (Zhao, Y., et al. J. Vac. Sci. Technol., B 2006, 24, 331-335). C1 [Tong, Tao; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Zhao, Yang; Kashani, Ali] Atlas Sci Inc, San Jose, CA 95120 USA. [Delzeit, Lance; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Majumdar, Arun] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM majumdar@me.berkeley.edu NR 25 TC 60 Z9 61 U1 6 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2008 VL 8 IS 2 BP 511 EP 515 DI 10.1021/nl072709a PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 262RR UT WOS:000253166200025 PM 18189439 ER PT J AU Yue, M Stachowiak, JC Lin, H Datar, R Cote, R Majumdar, A AF Yue, Min Stachowiak, Jeanne C. Lin, Henry Datar, Ram Cote, Richard Majumdar, Arun TI Label-free protein recognition two-dimensional array using nanomechanical sensors SO NANO LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; POLY(ETHYLENE GLYCOL); CANTILEVER ARRAY; DNA; BINDING; CANCER; ASSAY; GOLD AB We demonstrate two-dimensional multiplexed real-time, label-free anti body-antigen binding assays by optically detecting nanoscale motions of two-dimensional arrays of microcantilever beams. Prostate specific antigen (PSA) was assayed using antibodies covalently bound to one surface of the cantilevers by two different surface chemistries, while the nonreaction surfaces were passivated by poly(ethylene glycol)-silane. PSA as low as 1 ng/mL was detected while 2 mg/mu l of bovine serum albumin induced only negligible deflection on the cantilevers. C1 [Yue, Min; Stachowiak, Jeanne C.; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Lin, Henry; Datar, Ram; Cote, Richard] Univ So Calif, Dept Pathol, Los Angeles, CA 90089 USA. [Majumdar, Arun] Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM majumdar@me.berkeley.edu NR 19 TC 90 Z9 94 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2008 VL 8 IS 2 BP 520 EP 524 DI 10.1021/nl072740c PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 262RR UT WOS:000253166200027 PM 18179277 ER PT J AU Park, JY Zhang, Y Grass, M Zhang, T Somorjai, GA AF Park, Jeong Young Zhang, Yawen Grass, Michael Zhang, Tianfu Somorjai, Gabor A. TI Tuning of catalytic CO oxidation by changing composition of Rh-Pt bimetallic nanoparticles SO NANO LETTERS LA English DT Article ID HETEROGENEOUS CATALYSIS; PLATINUM NANOPARTICLES; SURFACE-COMPOSITION; ADSORPTION; PRESSURE; NANOCRYSTALS; SELECTIVITY; INTERFACES; SCIENCE; SYSTEM AB Recent breakthroughs in synthesis in nanoscience have achieved control of size and composition of nanoparticles that are relevant for catalyst design. Here, we show that the catalytic activity of CO oxidation by Rh/Pt bimetallic nanoparticles can be changed by varying the composition at a constant size (9 +/- 1 nm). Two-dimensional Rh/Pt bimetallic nanoparticle arrays were formed on a silicon surface via the Langmuir-Blodgett technique. Composition analysis with X-ray photoelectron spectroscopy agrees with the reaction stoichiometry of Rh/(Pt + Rh). CO oxidation rates that exhibit a 20-fold increase from pure Pt to pure Rh show a nonlinear increase with surface composition of the bimetallic nanoparticles that is consistent with the surface segregation of Pt. The results demonstrate the possibility of controlling catalytic activity in metal nanoparticle-oxide systems via tuning the composition of nanoparticles with potential applications for nanoscale design of industrial catalysts. C1 [Park, Jeong Young; Zhang, Yawen; Grass, Michael; Zhang, Tianfu; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Park, Jeong Young; Zhang, Yawen; Grass, Michael; Zhang, Tianfu; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem & Mat Sci, Berkeley, CA 94720 USA. [Zhang, Yawen] Peking Univ, PKU HKU Joint Lab Rare Eart Mat & Bioinorgan Chem, Beijing 100871, Peoples R China. [Zhang, Yawen] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 NR 27 TC 128 Z9 128 U1 7 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2008 VL 8 IS 2 BP 673 EP 677 DI 10.1021/nl073195i PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 262RR UT WOS:000253166200055 PM 18225941 ER PT J AU Baheti, K Malen, JA Doak, P Reddy, P Jang, SY Tilley, TD Majumdar, A Segalman, RA AF Baheti, Kanhayalal Malen, Jonathan A. Doak, Peter Reddy, Pramod Jang, Sung-Yeon Tilley, T. Don Majumdar, Arun Segalman, Rachel A. TI Probing the chemistry of molecular heterojunctions using thermoelectricity SO NANO LETTERS LA English DT Article ID CONDUCTANCE; JUNCTIONS; CELLS AB Thermopower measurements offer an alternative transport measurement that can characterize the dominant transport orbital and is independent of the number of molecules in the junction. This method is now used to explore the effect of chemical structure on the electronic structure and charge transport. We interrogate junctions, using a modified scanning tunneling microscope break junction technique, where: (i) the-1,4-benzenedithiol (BDT) molecule has been modified by the addition of electron-withdrawing or -donating groups such as fluorine, chlorine, and methyl on the benzene ring; and (ii) the thiol end groups on BDT have been replaced by the cyanide end groups. Cyanide end groups were found to radically change transport relative to BDT such that transport is dominated by the lowest unoccupied molecular orbital in 1,4-benzenedicyanide, while substituents on BDT generated small and predictable changes in transmission. C1 [Baheti, Kanhayalal; Doak, Peter; Jang, Sung-Yeon; Majumdar, Arun; Segalman, Rachel A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Baheti, Kanhayalal; Doak, Peter; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Malen, Jonathan A.; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Reddy, Pramod; Majumdar, Arun; Segalman, Rachel A.] Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA. [Jang, Sung-Yeon; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Majumdar, Arun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM majumdar@me.berkeley.edu; segalman@berkeley.edu RI Malen, Jonathan/D-5954-2013; Doak, Peter/A-1910-2016; OI Malen, Jonathan/0000-0003-4560-4476; Doak, Peter/0000-0001-6039-9752; Segalman, Rachel/0000-0002-4292-5103 NR 19 TC 171 Z9 171 U1 5 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2008 VL 8 IS 2 BP 715 EP 719 DI 10.1021/nl072738l PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 262RR UT WOS:000253166200063 PM 18269258 ER PT J AU Mathivanan, S Ahmed, M Ahn, NG Hainard, A Amanchy, R Andrews, PC Bader, JS Balgley, BM Bantscheff, M Bennett, KL Bjorling, E Blagoev, B Bose, R Brahmachari, SK Burlingame, AS Bustelo, XR Cagney, G Cantin, GT Cardasis, HL Celis, JE Chaerkady, R Chu, FX Cole, PA Costello, CE Cotter, RJ Crockett, D DeLany, JP De Marzo, AM DeSouza, LV Deutsch, EW Dransfield, E Drewes, G Droit, A Dunn, MJ Elenitoba-Johnson, K Ewing, RM Van Eyk, J Faca, V Falkner, J Fang, XM Fenselau, C Figeys, D Gagne, P Gelfi, C Gevaert, K Gimble, JM Gnad, F Goel, R Gromov, P Hanash, SM Hancock, WS Harsha, HC Hart, G Hays, F He, FC Hebbar, P Helsens, K Hermeking, H Hide, W Hjerno, K Hochstrasser, DF Hofmann, O Horn, DM Hruban, RH Ibarrola, N James, P Jensen, ON Jensen, PH Jung, P Kandasamy, K Kheterpal, I Kikuno, RF Korf, U Korner, R Kuster, B Kwon, MS Lee, HJ Lee, YJ Lefevre, M Lehvaslaiho, M Lescuyer, P Levander, F Lim, MS Lobke, C Loo, JA Mann, M Martens, L Martinez-Heredia, J McComb, M McRedmond, J Mehrle, A Menon, R Miller, CA Mischak, H Mohan, SS Mohmood, R Molina, H Moran, MF Morgan, JD Moritz, R Morzel, M Muddiman, DC Nalli, A Navarro, JD Neubert, TA Ohara, O Oliva, R Omenn, GS Oyama, M Paik, YK Pennington, K Pepperkok, R Periaswamy, B Petricoin, EF Poirier, GG Prasad, TSK Purvine, SO Rahiman, BA Ramachandran, P Ramachandra, YL Rice, RH Rick, J Ronnholm, RH Salonen, J Sanchez, JC Sayd, T Seshi, B Shankari, K Sheng, SJ Shetty, V Shivakumar, K Simpson, RJ Sirdeshmukh, R Siu, KWM Smith, JC Smith, RD States, DJ Sugano, S Sullivan, M Superti-Furga, G Takatalo, M Thongboonkerd, V Trinidad, JC Uhlen, M Vandekerckhove, J Vasilescu, J Veenstra, TD Vidal-Taboada, JM Vihinen, M Wait, R Wang, XY Wiemann, S Wu, B Xu, T Yates, JR Zhong, J Zhou, M Zhu, YP Zurbig, P Pandey, A AF Mathivanan, Suresh Ahmed, Mukhtar Ahn, Natalie G. Hainard, Alexandre Amanchy, Ramars Andrews, Philip C. Bader, Joel S. Balgley, Brian M. Bantscheff, Marcus Bennett, Keiryn L. Bjoerling, Erik Blagoev, Blagoy Bose, Ron Brahmachari, Samir K. Burlingame, Alma S. Bustelo, Xose R. Cagney, Gerard Cantin, Greg T. Cardasis, Helene L. Celis, Julio E. Chaerkady, Raghothama Chu, Feixia Cole, Philip A. Costello, Catherine E. Cotter, Robert J. Crockett, David DeLany, James P. De Marzo, Angelo M. DeSouza, Leroi V. Deutsch, Eric W. Dransfield, Eric Drewes, Gerard Droit, Arnaud Dunn, Michael J. Elenitoba-Johnson, Kojo Ewing, Rob M. Van Eyk, Jennifer Faca, Vitor Falkner, Jayson Fang, Xiangming Fenselau, Catherine Figeys, Daniel Gagne, Pierre Gelfi, Cecilia Gevaert, Kris Gimble, Jeffrey M. Gnad, Florian Goel, Renu Gromov, Pavel Hanash, Samir M. Hancock, William S. Harsha, H. C. Hart, Gerald Hays, Faith He, Fuchu Hebbar, Prashantha Helsens, Kenny Hermeking, Heiko Hide, Winston Hjerno, Karin Hochstrasser, Denis F. Hofmann, Oliver Horn, David M. Hruban, Ralph H. Ibarrola, Nieves James, Peter Jensen, Ole N. Jensen, Pia Honnerup Jung, Peter Kandasamy, Kumaran Kheterpal, Indu Kikuno, Reiko F. Korf, Ulrike Koerner, Roman Kuster, Bernhard Kwon, Min-Seok Lee, Hyoung-Joo Lee, Young-Jin Lefevre, Michael Lehvaslaiho, Minna Lescuyer, Pierre Levander, Fredrik Lim, Megan S. Loebke, Christian Loo, Joseph A. Mann, Matthias Martens, Lennart Martinez-Heredia, Juan McComb, Mark McRedmond, James Mehrle, Alexander Menon, Rajasree Miller, Christine A. Mischak, Harald Mohan, S. Sujatha Mohmood, Riaz Molina, Henrik Moran, Michael F. Morgan, James D. Moritz, Robert Morzel, Martine Muddiman, David C. Nalli, Anuradha Navarro, J. Daniel Neubert, Thomas A. Ohara, Osamu Oliva, Rafael Omenn, Gilbert S. Oyama, Masaaki Paik, Young-Ki Pennington, Kyla Pepperkok, Rainer Periaswamy, Balamurugan Petricoin, Emanuel F. Poirier, Guy G. Prasad, T. S. Keshava Purvine, Samuel O. Rahiman, B. Abdul Ramachandran, Prasanna Ramachandra, Y. L. Rice, Robert H. Rick, Jens Ronnholm, Ragna H. Salonen, Johanna Sanchez, Jean-Charles Sayd, Thierry Seshi, Beerelli Shankari, Kripa Sheng, Shi Jun Shetty, Vivekananda Shivakumar, K. Simpson, Richard J. Sirdeshmukh, Ravi Siu, K. W. Michael Smith, Jeffrey C. Smith, Richard D. States, David J. Sugano, Sumio Sullivan, Matthew Superti-Furga, Giulio Takatalo, Maarit Thongboonkerd, Visith Trinidad, Jonathan C. Uhlen, Mathias Vandekerckhove, Joel Vasilescu, Julian Veenstra, Timothy D. Vidal-Taboada, Jose-Manuel Vihinen, Mauno Wait, Robin Wang, Xiaoyue Wiemann, Stefan Wu, Billy Xu, Tao Yates, John R. Zhong, Jun Zhou, Ming Zhu, Yunping Zurbig, Petra Pandey, Akhilesh TI Human Proteinpedia enables sharing of human protein data SO NATURE BIOTECHNOLOGY LA English DT Letter C1 [Mathivanan, Suresh; Ahmed, Mukhtar; Chaerkady, Raghothama; Goel, Renu; Harsha, H. C.; Hebbar, Prashantha; Kandasamy, Kumaran; Mohan, S. Sujatha; Nalli, Anuradha; Navarro, J. Daniel; Periaswamy, Balamurugan; Prasad, T. S. Keshava; Shankari, Kripa; Shivakumar, K.] Inst Bioinformat, Bangalore 560066, Karnataka, India. [Amanchy, Ramars; Chaerkady, Raghothama; Molina, Henrik; Zhong, Jun; Pandey, Akhilesh] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD 21205 USA. [Amanchy, Ramars; Chaerkady, Raghothama; Molina, Henrik; Zhong, Jun; Pandey, Akhilesh] Johns Hopkins Univ, Dept Pathol, Baltimore, MD 21205 USA. [Amanchy, Ramars; Chaerkady, Raghothama; Molina, Henrik; Zhong, Jun; Pandey, Akhilesh] Johns Hopkins Univ, Dept Oncol, Baltimore, MD 21205 USA. [Mathivanan, Suresh; Kandasamy, Kumaran; Mohmood, Riaz; Periaswamy, Balamurugan; Rahiman, B. Abdul; Ramachandra, Y. L.; Shivakumar, K.] Kuvempu Univ, Dept Biotechnol, Shankaraghatta 577451, Karnataka, India. [Ahn, Natalie G.] Univ Colorado, Howard Hughes Med Inst, Dept Chem & Biochem, Boulder, CO 80309 USA. [Hainard, Alexandre; Hochstrasser, Denis F.; Lescuyer, Pierre; Sanchez, Jean-Charles] Univ Geneva, Fac Med, Dept Struct Biol & Bioinformat, Biomed Proteom Res Grp, CH-1211 Geneva, Switzerland. [Andrews, Philip C.; Falkner, Jayson] Univ Colorado, Dept Biol Chem, Ann Arbor, MI 48109 USA. [Bader, Joel S.] Johns Hopkins Univ, High Throughput Biol Ctr, Baltimore, MD 21205 USA. [Bader, Joel S.; Balgley, Brian M.] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA. [Balgley, Brian M.] Calbrant Biosyst, Gaithersburg, MD 20878 USA. [Bantscheff, Marcus; Drewes, Gerard; Kuster, Bernhard; Rick, Jens] Cellzone AG, D-69117 Heidelberg, Germany. [Bennett, Keiryn L.; Superti-Furga, Giulio] Res Ctr Mol Med, A-1090 Vienna, Austria. [Bjoerling, Erik; Uhlen, Mathias] AlbaNova Univ Ctr, Royal Inst Technol, Sch Biotechnol, SE-10691 Stockholm, Sweden. [Blagoev, Blagoy; Hjerno, Karin; Jensen, Ole N.; Jensen, Pia Honnerup; Mann, Matthias] Univ So Denmark, Dept Biochem & Mol Biol, DK-5230 Odense, Denmark. [Bose, Ron; Cole, Philip A.] Johns Hopkins Univ, Sch Med, Dept Pharmacol, Baltimore, MD 21205 USA. [Bose, Ron; Brahmachari, Samir K.; Cole, Philip A.] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21205 USA. [Brahmachari, Samir K.] CSIR, GN Ramchandran Knowledge Ctr Genome Informat, Inst Genome & Integrat Biol, Delhi 110007, India. [Burlingame, Alma S.; Chu, Feixia; Trinidad, Jonathan C.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Bustelo, Xose R.; Ibarrola, Nieves] Univ Salamanca, CSIC, Ctr Invest Canc, E-37007 Salamanca, Spain. [Bustelo, Xose R.; Ibarrola, Nieves] Univ Salamanca, CSIC, Inst Biol Mol & Celular Canc, E-37007 Salamanca, Spain. [Cagney, Gerard; Dunn, Michael J.; McRedmond, James; Pennington, Kyla; Sullivan, Matthew] UCD Conway Inst Biomol & Biomed Res, Proteome Res Ctr, Dublin 4, Ireland. [Cantin, Greg T.; Xu, Tao; Yates, John R.] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA. [Cardasis, Helene L.; Neubert, Thomas A.; Shetty, Vivekananda] NYU, Sch Med, Skirball Inst Biomol Med, New York, NY 10016 USA. [Cardasis, Helene L.; Neubert, Thomas A.; Shetty, Vivekananda] NYU, Sch Med, Dept Pharmacol, New York, NY 10016 USA. [Celis, Julio E.; Gromov, Pavel] Danish Ctr Translat Breast Canc Res, DK-2100 Copenhagen, Denmark. [Celis, Julio E.; Gromov, Pavel] Danish Canc Soc, Inst Canc Biol, Dept Proteom Canc, DK-2100 Copenhagen, Denmark. [Costello, Catherine E.; McComb, Mark] Boston Univ, Sch Med, Cardiovasc Proteom Ctr, Boston, MA 02118 USA. [Cotter, Robert J.] Johns Hopkins Univ, Sch Med, Dept Pharmacol & Mol Sci, Ann Arbor, MI 48109 USA. [Crockett, David; Elenitoba-Johnson, Kojo; Lim, Megan S.] Univ Michigan, Sch Med, Dept Pathol, Ann Arbor, MI 48109 USA. [DeLany, James P.] Univ Pittsburgh, Dept Med, Div Endocrinol & Metab, Pittsburgh, PA 15213 USA. [De Marzo, Angelo M.; Morgan, James D.] Johns Hopkins Univ, Sch Med, Dept Urol, Baltimore, MD 21287 USA. [De Marzo, Angelo M.; Morgan, James D.] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD 21287 USA. [DeSouza, Leroi V.; Siu, K. W. Michael] York Univ, Ctr Res Mass Spect, N York, ON M3J 1P3, Canada. [DeSouza, Leroi V.; Siu, K. W. Michael] York Univ, Dept Chem, N York, ON M3J 1P3, Canada. [Deutsch, Eric W.] Inst Syst Biol, Seattle, WA 98103 USA. [Dransfield, Eric; Sayd, Thierry] Wageningen Ctr Food Sci, NL-6700 AN Wageningen, Netherlands. [Droit, Arnaud; Gagne, Pierre; Poirier, Guy G.] Univ Laval, CHU Laval, Med Res Ctr, Environm & Hlth Unit,Fac Med, Quebec City, PQ G1V 4G2, Canada. [Ewing, Rob M.] Protana Transit Therapeut, Toronto, ON M5G 1L7, Canada. [Ewing, Rob M.] Infochrom, Toronto, ON M5G 1L7, Canada. [Van Eyk, Jennifer; Sheng, Shi Jun] Johns Hopkins Univ, Johns Hopkins Bayview Proteom Ctr, Dept Med, Baltimore, MD 21224 USA. [Faca, Vitor; Hanash, Samir M.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA. [Fang, Xiangming] GenWay Biotech Inc, San Diego, CA 92121 USA. [Fenselau, Catherine; Hays, Faith] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Figeys, Daniel; Smith, Jeffrey C.; Vasilescu, Julian] Univ Ottawa, Ottawa Inst Syst Biol, Ottawa, ON K1H 8M5, Canada. [Gelfi, Cecilia] Univ Milan, Fac Med, Dept Biomed Sci & Technol, Milan, Italy. [Gevaert, Kris; Helsens, Kenny; Martens, Lennart; Vandekerckhove, Joel] Univ Ghent, Fac Med, Dept Biochem & Med Prot Res, B-9000 Ghent, Belgium. [Gimble, Jeffrey M.; Lefevre, Michael] Louisiana State Univ Syst, Pennington Biomed Res Ctr, Stem Cell Lab, Baton Rouge, LA 70808 USA. [Gimble, Jeffrey M.; Kheterpal, Indu; Ohara, Osamu] Louisiana State Univ Syst, Pennington Biomed Res Ctr, Cell Biol Core Facil, Baton Rouge, LA 70808 USA. [Gnad, Florian; Mann, Matthias] Max Planck Inst Biochem, Dept Proteom & Signal Transduct, D-82152 Martinsried, Germany. [Hancock, William S.; Wu, Billy] NE Univ, Barnett Inst, Boston, MA 02115 USA. [Hancock, William S.; Wu, Billy] NE Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. [He, Fuchu; Zhu, Yunping] Beijing Inst Radiat Med, Beijing Proteome Res Ctr, Beijing 100850, Peoples R China. [He, Fuchu] Fudan Univ, Inst Biomed Sci, Shanghai 200032, Peoples R China. [Hermeking, Heiko; Jung, Peter] Max Planck Inst Biochem, Independent Max Planck Res Grp, D-82152 Martinsried, Germany. [Hide, Winston; Hofmann, Oliver; Lehvaslaiho, Minna] Univ Western Cape, S African Natl Bioinformat Inst, ZA-7535 Bellville, South Africa. [Hochstrasser, Denis F.] Univ Hosp Geneva, Cent Lab Clin Chem, Geneva, Switzerland. [Horn, David M.; Miller, Christine A.] Agilent Technol, Santa Clara, CA 95051 USA. [Hruban, Ralph H.] Johns Hopkins Med Inst, Sol Goldman Pancreat Canc Res Ctr, Dept Pathol & Oncol, Baltimore, MD 21231 USA. [James, Peter; Levander, Fredrik] Lund Univ, Lund, Sweden. [Kikuno, Reiko F.] Kazusa DNA Res Inst, Dept Human Genome Technol, Chiba 2920818, Japan. [Korf, Ulrike; Loebke, Christian; Mehrle, Alexander; Wiemann, Stefan] DKFZ Heidelberg, German Canc Res Ctr, Div Mol Genome Anal, D-69120 Heidelberg, Germany. [Koerner, Roman] Max Planck Inst Biochem, Dept Cell Biol, D-82152 Martinsried, Germany. [Kwon, Min-Seok; Lee, Hyoung-Joo; Paik, Young-Ki] Yonsei Univ, Dept Biochem, Yonsei Proteome Res Ctr, Seoul 120749, South Korea. [Kwon, Min-Seok; Lee, Hyoung-Joo; Paik, Young-Ki] Yonsei Univ, Biomed Proteome Res Ctr, Seoul 120749, South Korea. [Lee, Young-Jin; Rice, Robert H.] Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA. [Lefevre, Michael] Louisiana State Univ Syst, Pennington Biomed Res Ctr, Lipoprot Lab, Baton Rouge, LA 70808 USA. [Loo, Joseph A.; Ramachandran, Prasanna] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Loo, Joseph A.; Ramachandran, Prasanna] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90095 USA. [Martens, Lennart] European Bioinformat Inst, EMBL Outstn, Cambridge CB10 1SD, England. [Martinez-Heredia, Juan; Oliva, Rafael; Vidal-Taboada, Jose-Manuel] Univ Barcelona, Fac Med, Human Genet Res Grp, IDIBAPS, Barcelona 08023, Spain. [Menon, Rajasree; States, David J.] Univ Michigan, Bioinformat Program, Ann Arbor, MI 48109 USA. [Mischak, Harald; Zurbig, Petra] Mosaiques Diag & Therapeut AG, D-30625 Hannover, Germany. [Moran, Michael F.] Hosp Sick Children, Canc Program, Toronto, ON M5G 1L7, Canada. [Moran, Michael F.] Hosp Sick Children, McLaughlin Ctr Mol Med, Toronto, ON M5G 1L7, Canada. [Moran, Michael F.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada. [Moran, Michael F.] Univ Toronto, Dept Mol & Med Genet, Toronto, ON M5G 1L6, Canada. [Moritz, Robert; Simpson, Richard J.] Ludwig Inst Canc Res, Joint Proteom Lab, Melbourne Branch, Melbourne, Vic 3050, Australia. [Moritz, Robert; Simpson, Richard J.] Walter & Eliza Hall Inst Med Res, Melbourne, Vic 3050, Australia. [Morzel, Martine] INRA, UR 370, F-63122 St Genes Champanelle, France. [Muddiman, David C.] N Carolina State Univ, Dept Chem, WM Keck FT ICR Mass Spect Lab, Raleigh, NC 27695 USA. [Ohara, Osamu] RIKEN, Yokohama Inst, Res Ctr Allergy & Immunol, Lab Immunogenom,Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan. [Omenn, Gilbert S.] Univ Michigan, Dept Internal Med, Ctr Comp Med & Biol Proteom Alliance Canc Res, Ann Arbor, MI 48109 USA. [Oyama, Masaaki; Sugano, Sumio] Univ Tokyo, Inst Med Sci, Med Proteom Lab, Tokyo 1088639, Japan. [Pepperkok, Rainer] European Mol Biol Lab, Cell Biol & Biophys Programme, D-69117 Heidelberg, Germany. [Petricoin, Emanuel F.] George Mason Univ, Ctr Appl Proteom & Mol Med, Manassas, VA 20110 USA. [Purvine, Samuel O.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Purvine, Samuel O.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Ronnholm, Ragna H.; Takatalo, Maarit] Univ Helsinki, Dept Biol & Environm Sci, Div Biochem, FI-00014 Helsinki, Finland. [Salonen, Johanna; Vihinen, Mauno] Univ Tampere, Inst Med Technol, FI-33014 Tampere, Finland. [Seshi, Beerelli] Univ Calif Los Angeles, Med Ctr, David Geffen Sch Med, Dept Pathol,Los Angeles Biomed Res Inst Harbor, Torrance, CA 90502 USA. [Sirdeshmukh, Ravi] Ctr Cellular & Mol Biol, Hyderabad 500007, Andhra Pradesh, India. [Thongboonkerd, Visith] Mahidol Univ, Siriraj Hosp, Off Res & Dev, Med Mol Biol Unit,Fac Med, Bangkok 10700, Thailand. [Veenstra, Timothy D.; Zhou, Ming] NCI Frederick, SAIC Frederick Inc, Lab Proteom & Analyt Technol, Ft Detrick, MD 21702 USA. [Wait, Robin] Univ London Imperial Coll Sci Technol & Med, Fac Med, Kennedy Inst Rheumatol, London SW7 2AZ, England. [Amanchy, Ramars; Harsha, H. C.; Hart, Gerald; Molina, Henrik; Wang, Xiaoyue; Pandey, Akhilesh] Johns Hopkins Univ, Dept Biol Chem, Baltimore, MD 21205 USA. RP Mathivanan, S (reprint author), Inst Bioinformat, Int Tech Pk, Bangalore 560066, Karnataka, India. EM pandey@jhmi.edu RI Korner, Roman/G-8565-2011; Bader, Joel/A-1818-2009; Cagney, Gerard/A-4648-2009; Pandey, Akhilesh/B-4127-2009; THONGBOONKERD, VISITH /C-6920-2009; Hide, Winston Hide/C-7217-2009; Kandasamy, Kumaran/C-8981-2009; Ahmed, Dr. Mukhtar/F-7056-2010; Wang, Xiaoyue/D-1046-2010; Oliva, Rafael/C-9741-2009; Xu, Tao/A-9353-2009; Chaerkady, Raghothama/D-5718-2011; Mischak, Harald/E-8685-2011; Vidal-Tabaoada, Jose Manuel/L-4777-2014; Wiemann, Stefan/E-4424-2013; Prasad, T. S. Keshava/F-7631-2010; Mann, Matthias/A-3454-2013; Superti-Furga, Giulio/F-4755-2015; Lee, Young Jin/F-2317-2011; Ohara, Osamu/G-5448-2015; Gelfi, Cecilia/L-1490-2016; Kuster, Bernhard/Q-6031-2016; Lefevre, Michael/B-5030-2014; Gevaert, Kris/D-6489-2017; Vihinen, Mauno/A-8452-2012; Ohara, Osamu/A-9119-2012; Simpson, Richard/A-6947-2012; Zhong, Jun/D-1662-2010; Martens, Lennart/E-8816-2010; Smith, Richard/J-3664-2012; Jensen, Ole/J-1763-2012; Faca, Vitor/A-3989-2013; Hofmann, Oliver/F-1800-2013; Korf, Ulrike/G-2795-2013; DeSouza, Leroi/H-3831-2013; Gevaert, Kris/H-3637-2013; Mathivanan, Suresh/D-2045-2009; OI Korner, Roman/0000-0001-9285-9290; Bader, Joel/0000-0002-6020-4625; Pandey, Akhilesh/0000-0001-9943-6127; Hide, Winston Hide/0000-0002-8621-3271; Oliva, Rafael/0000-0003-4876-2410; Vidal-Tabaoada, Jose Manuel/0000-0001-5667-4133; Wiemann, Stefan/0000-0003-4683-3174; Prasad, T. S. Keshava/0000-0002-6206-2384; Mann, Matthias/0000-0003-1292-4799; Superti-Furga, Giulio/0000-0002-0570-1768; Lee, Young Jin/0000-0002-2533-5371; Ohara, Osamu/0000-0002-3328-9571; Gelfi, Cecilia/0000-0002-2996-6912; Kuster, Bernhard/0000-0002-9094-1677; Lefevre, Michael/0000-0002-2046-3593; Gevaert, Kris/0000-0002-4237-0283; Ewing, Rob/0000-0001-6510-4001; Pepperkok, Rainer/0000-0002-9762-3583; Vihinen, Mauno/0000-0002-9614-7976; Zhong, Jun/0000-0003-3148-4143; Martens, Lennart/0000-0003-4277-658X; Smith, Richard/0000-0002-2381-2349; Jensen, Ole/0000-0003-1862-8528; Hofmann, Oliver/0000-0002-7738-1513; Gevaert, Kris/0000-0002-4237-0283; Mathivanan, Suresh/0000-0002-7290-5795; Balgley, Brian/0000-0002-3509-4567; Costello, Catherine/0000-0003-1594-5122; Blagoev, Blagoy/0000-0002-3596-0066; Amanchy, Ramars/0000-0001-9315-8488; Lescuyer, Pierre/0000-0001-6986-8738; Levander, Fredrik/0000-0002-0710-9792; KEERTHIKUMAR, SHIVAKUMAR/0000-0001-9865-9767; Cagney, Gerard/0000-0001-7189-9496; Takatalo, Maarit/0000-0003-4825-6358 FU NCI NIH HHS [R01 CA073735]; NCRR NIH HHS [U54 RR020839]; NHLBI NIH HHS [P01 HL081427-040003, N01 HV028178, N01 HV028180, N01-HV-28180, P01 HL077180, P01 HL077180-010001, P01 HL077180-020001, P01 HL077180-030001, P01 HL077180-040001, P01 HL077180-050001, P01 HL081427, P01 HL081427-010003, P01 HL081427-020003, P01 HL081427-030003, P01 HL081427-050003, P50 HL084946, P50 HL084946-019003, P50 HL084946-029003, P50 HL084946-039003] NR 0 TC 103 Z9 107 U1 3 U2 44 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD FEB PY 2008 VL 26 IS 2 BP 164 EP 167 DI 10.1038/nbt0208-164 PG 5 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 263BQ UT WOS:000253193000013 PM 18259167 ER PT J AU Lynd, LR Laser, MS Brandsby, D Dale, BE Davison, B Hamilton, R Himmel, M Keller, M McMillan, JD Sheehan, J Wyman, CE AF Lynd, Lee R. Laser, Mark S. Bransby, David Dale, Bruce E. Davison, Brian Hamilton, Richard Himmel, Michael Keller, Martin McMillar, James D. Sheehan, John Wyman, Charles E. TI How biotech can transform biofuels SO NATURE BIOTECHNOLOGY LA English DT Editorial Material ID ENERGY; ETHANOL C1 Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. Auburn Univ, Dept Agr & Soils, Auburn, AL USA. Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI USA. Oak Ridge Natl Lab, Div Biosci, Oak Ridge, TN USA. Ceres Inc, Thousand Oaks, CA USA. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, 800 Cummings Hall, Hanover, NH 03755 USA. EM lee.lynd@dartmouth.edu RI Keller, Martin/C-4416-2012; Lynd, Lee/N-1260-2013; Davison, Brian/D-7617-2013 OI Lynd, Lee/0000-0002-5642-668X; Davison, Brian/0000-0002-7408-3609 NR 20 TC 582 Z9 602 U1 13 U2 173 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD FEB PY 2008 VL 26 IS 2 BP 169 EP 172 DI 10.1038/nbt0208-169 PG 4 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 263BQ UT WOS:000253193000014 PM 18259168 ER PT J AU Visel, A Prabhakar, S Akiyama, JA Shoukry, M Lewis, KD Holt, A Plajzer-Frick, I Afzal, V Rubin, EM Pennacchio, LA AF Visel, Axel Prabhakar, Shyam Akiyama, Jennifer A. Shoukry, Malak Lewis, Keith D. Holt, Amy Plajzer-Frick, Ingrid Afzal, Veena Rubin, Edward M. Pennacchio, Len A. TI Ultraconservation identifies a small subset of extremely constrained developmental enhancers SO NATURE GENETICS LA English DT Article ID CONSERVED NONCODING SEQUENCES; CIS-REGULATORY ELEMENTS; MOUSE GENOME; VERTEBRATE AB Extended perfect human-rodent sequence identity of at least 200 base pairs (ultraconservation) is potentially indicative of evolutionary or functional uniqueness. We used a transgenic mouse assay to compare the embryonic enhancer activity of 231 noncoding ultraconserved human genome regions with that of 206 extremely conserved regions lacking ultraconservation. Developmental enhancers were equally prevalent in both populations, suggesting instead that ultraconservation identifies a small, functionally indistinct subset of similarly constrained cis-regulatory elements. C1 [Visel, Axel; Prabhakar, Shyam; Akiyama, Jennifer A.; Shoukry, Malak; Lewis, Keith D.; Holt, Amy; Plajzer-Frick, Ingrid; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Rubin, Edward M.; Pennacchio, Len A.] US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pennacchio, LA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, MS 84-171, Berkeley, CA 94720 USA. EM LAPennacchio@lbl.gov RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 FU NHGRI NIH HHS [HG003988, R01 HG003988, R01 HG003988-02]; NHLBI NIH HHS [HL066681, U01 HL066681] NR 15 TC 171 Z9 177 U1 1 U2 8 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD FEB PY 2008 VL 40 IS 2 BP 158 EP 160 DI 10.1038/ng.2007.55 PG 3 WC Genetics & Heredity SC Genetics & Heredity GA 256MJ UT WOS:000252732900013 PM 18176564 ER PT J AU Lepot, K Benzerara, K Brown, GE Philippot, P AF Lepot, Kevin Benzerara, Karim Brown, Gordon E., Jr. Philippot, Pascal TI Microbially influenced formation of 2,724-million-year-old stromatolites SO NATURE GEOSCIENCE LA English DT Article ID CARBONATE PRECIPITATION; CALCIUM-CARBONATE; FRENCH-POLYNESIA; TIKEHAU ATOLL; FOSSILS; METAMORPHISM; AUSTRALIA; ARAGONITE; SEAWATER; SHALES AB Laminated accretionary carbonate structures known as stromatolites are a prominent feature of the sedimentary record over the past 3,500Myr ( ref. 1). The macroscopic similarity to modern microbial structures has led to the inference that these structures represent evidence of ancient life(1,2). However, as Archaean stromatolites only rarely contain microfossils, the possibility of abiogenic origins has been raised(2). Here, we present the results of nanoscale studies of the 2,724- Myr-old stromatolites from the Tumbiana Formation (Fortescue Group, Australia) showing organic globule clusters within the thin layers of the stromatolites. Aragonite nanocrystals are also closely associated with the organic globules, a combination that is remarkably similar to the organo-mineral building blocks of modern stromatolites(3-5). Our results support microbial mediation for the formation of the Tumbiana stromatolites, and extend the geologic record of primary aragonite by more than 2,300Myr ( ref. 6). C1 [Lepot, Kevin; Benzerara, Karim; Philippot, Pascal] CNRS, Inst Phys Globe, Equipe Geobiosphere Actuelle & Primit, F-75252 Paris, France. [Lepot, Kevin; Benzerara, Karim; Philippot, Pascal] Univ Paris 07, F-75252 Paris, France. [Benzerara, Karim] Inst Mineral & Phys Milieux Condenses, F-75015 Paris, France. [Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Brown, Gordon E., Jr.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Lepot, K (reprint author), CNRS, Inst Phys Globe, Equipe Geobiosphere Actuelle & Primit, Case 89,4 Pl Jussieu, F-75252 Paris, France. EM lepot@ipgp.jussieu.fr; philippot@ipgp.jussieu.fr RI Lepot, Kevin/C-7072-2014; Benzerara, Karim/J-1532-2016; IMPMC, Geobio/F-8819-2016 OI Lepot, Kevin/0000-0003-0556-0405; Benzerara, Karim/0000-0002-0553-0137; NR 30 TC 75 Z9 78 U1 2 U2 44 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD FEB PY 2008 VL 1 IS 2 BP 118 EP 121 DI 10.1038/ngeo107 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 309AY UT WOS:000256433300016 ER PT J AU Shan, ZW Mishra, RK Asif, SAS Warren, OL Minor, AM AF Shan, Z. W. Mishra, Raja K. Asif, S. A. Syed Warren, Oden L. Minor, Andrew M. TI Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals SO NATURE MATERIALS LA English DT Article ID PLASTIC-DEFORMATION; LENGTH SCALES; SIZE; COMPRESSION; STRENGTH; GOLD; WHISKERS; ONSET; FILMS AB The fundamental processes that govern plasticity and determine strength in crystalline materials at small length scales have been studied for over fifty years(1-3). Recent studies of single-crystal metallic pillars with diameters of a few tens of micrometres or less have clearly demonstrated that the strengths of these pillars increase as their diameters decrease(4-7), leading to attempts to augment existing ideas about pronounced size effects(8,9) with new models and simulations(10-17). Through in situ nanocompression experiments inside a transmission electron microscope we can directly observe the deformation of these pillar structures and correlate the measured stress values with discrete plastic events. Our experiments show that submicrometre nickel crystals microfabricated into pillar structures contain a high density of initial defects after processing but can be made dislocation free by applying purely mechanical stress. This phenomenon, termed 'mechanical annealing', leads to clear evidence of source-limited deformation where atypical hardening occurs through the progressive activation and exhaustion of dislocation sources. C1 [Shan, Z. W.; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Shan, Z. W.; Asif, S. A. Syed; Warren, Oden L.] Hysitron Inc, Minneapolis, MN 55344 USA. [Mishra, Raja K.] GM Corp, Ctr Res & Dev, Warren, MI 48090 USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM aminor@lbl.gov RI Shan, Zhiwei/B-8799-2014 NR 26 TC 460 Z9 469 U1 21 U2 194 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2008 VL 7 IS 2 BP 115 EP 119 DI 10.1038/nmat2085 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 255QR UT WOS:000252673000015 PM 18157134 ER PT J AU Xiong, ZT Yong, CK Wu, GT Chen, P Shaw, W Karkamkar, A Autrey, T Jones, MO Johnson, SR Edwards, PP David, WIF AF Xiong, Zhitao Yong, Chaw Keong Wu, Guotao Chen, Ping Shaw, Wendy Karkamkar, Abhi Autrey, Thomas Jones, Martin Owen Johnson, Simon R. Edwards, Peter P. David, William I. F. TI High-capacity hydrogen storage in lithium and sodium amidoboranes SO NATURE MATERIALS LA English DT Article ID AMMONIA BORANE DEHYDROGENATION; N-H COMPOUNDS; THERMAL-DECOMPOSITION; HYDRIDES; RELEASE; AMIDES; B-11; NMR AB The safe and efficient storage of hydrogen is widely recognized as one of the key technological challenges in the transition towards a hydrogen-based energy economy(1,2). Whereas hydrogen for transportation applications is currently stored using cryogenics or high pressure, there is substantial research and development activity in the use of novel condensed-phase hydride materials. However, the multiple-target criteria accepted as necessary for the successful implementation of such stores have not yet been met by any single material. Ammonia borane, NH3BH3, is one of a number of condensed-phase compounds that have received significant attention because of its reported release of similar to 12wt% hydrogen at moderate temperatures (similar to 150 degrees C). However, the hydrogen purity suffers from the release of trace quantities of borazine. Here, we report that the related alkali-metal amidoboranes, LiNH2BH3 and NaNH2BH3, release similar to 10.9wt% and similar to 7.5wt% hydrogen, respectively, at significantly lower temperatures (similar to 90 degrees C) with no borazine emission. The low-temperature release of a large amount of hydrogen is significant and provides the potential to fulfil many of the principal criteria required for an on-board hydrogen store. C1 [Xiong, Zhitao; Yong, Chaw Keong; Wu, Guotao; Chen, Ping] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Chen, Ping] Natl Univ Singapore, Dept Chem, Singapore 117542, Singapore. [Shaw, Wendy; Karkamkar, Abhi; Autrey, Thomas] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jones, Martin Owen; Johnson, Simon R.; Edwards, Peter P.] Univ Oxford, Inorgan Chem Lab, Oxford OX1 3QR, England. [David, William I. F.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Chen, P (reprint author), Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. EM phychenp@nus.edu.sg RI Johnson, Simon/C-2911-2008; OI Yang, Shuman/0000-0002-9638-0890 NR 24 TC 413 Z9 419 U1 18 U2 169 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2008 VL 7 IS 2 BP 138 EP 141 DI 10.1038/nmat2081 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 255QR UT WOS:000252673000020 PM 18157135 ER PT J AU Schmidt, K Schoberth, HG Ruppel, M Zettl, H Hansel, H Weiss, TM Urban, V Krausch, G Boker, A AF Schmidt, Kristin Schoberth, Heiko G. Ruppel, Markus Zettl, Heiko Haensel, Helmut Weiss, Thomas M. Urban, Volker Krausch, Georg Boeker, Alexander TI Reversible tuning of a block-copolymer nanostructure via electric fields SO NATURE MATERIALS LA English DT Article ID SYMMETRIC DIBLOCK COPOLYMER; INDUCED ALIGNMENT; MOLECULAR-WEIGHT; HOMOPOLYMER; MICROSTRUCTURE; MICRODOMAINS; TRANSITION; MIXTURES; KINETICS; BLENDS AB Block copolymers consisting of incompatible components self-assemble into microphase-separated domains yielding highly regular structures with characteristic length scales of the order of several tens of nanometres. Therefore, in the past decades, block copolymers have gained considerable potential for nanotechnological applications, such as in nanostructured networks and membranes, nanoparticle templates and high-density data storage media(1-4). However, the characteristic size of the resulting structures is usually determined by molecular parameters of the constituent polymer molecules and cannot easily be adjusted on demand. Here, we show that electric d. c. fields can be used to tune the characteristic spacing of a block-copolymer nanostructure with high accuracy by as much as 6% in a fully reversible way on a timescale in the range of several milliseconds. We discuss the influence of various physical parameters on the tuning process and study the time response of the nanostructure to the applied field. A tentative explanation of the observed effect is given on the basis of anisotropic polarizabilities and permanent dipole moments of the monomeric constituents. This electric-field-induced effect further enhances the high technological potential of block-copolymer-based soft-lithography applications(5,6). C1 [Schmidt, Kristin; Schoberth, Heiko G.; Zettl, Heiko; Haensel, Helmut; Krausch, Georg; Boeker, Alexander] Univ Bayreuth, Lehrstuhl Phys Chem 2, D-95440 Bayreuth, Germany. [Ruppel, Markus] Univ Bayreuth, Lehrstuhl Makromol Chem 2, D-95440 Bayreuth, Germany. [Weiss, Thomas M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Urban, Volker] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Boker, A (reprint author), Univ Bayreuth, Lehrstuhl Phys Chem 2, POB 101251, D-95440 Bayreuth, Germany. EM Alexander.Boeker@uni-bayreuth.de RI Krausch, Georg/B-9022-2009; Boker, Alexander/C-2055-2009; Urban, Volker/N-5361-2015; OI Boker, Alexander/0000-0002-5760-6631; Urban, Volker/0000-0002-7962-3408; Krausch, Georg/0000-0002-1310-5579 NR 30 TC 59 Z9 59 U1 5 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2008 VL 7 IS 2 BP 142 EP 145 DI 10.1038/nmat2068 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 255QR UT WOS:000252673000021 PM 18037892 ER PT J AU Thallapally, PK McGrail, BP Dalgarno, SJ Schaef, HT Tian, J Atwood, JL AF Thallapally, Praveen K. McGrail, B. Peter Dalgarno, Scott J. Schaef, Herbert T. Tian, Jian Atwood, Jerry L. TI Gas-induced transformation and expansion of a non-porous organic solid SO NATURE MATERIALS LA English DT Article ID CRYSTAL; DIFFRACTION; FRAMEWORKS; HYDROGEN; SORPTION; NMR AB Organic solids composed by weak van der Waals forces are attracting considerable attention owing to their potential applications in gas storage, separation and sensor applications(1). Herein we report a gas-induced transformation that remarkably converts the high-density guest-free form of a well-known organic host (p-tert-butylcalix[4] arene) to a low-density form and vice versa(1), a process that would be expected to involve surmounting a considerable energy barrier(2). This transformation occurs despite the fact that the high-density form is devoid of channels or pores(3). Gas molecules seem to diffuse through the non-porous solid into small lattice voids, and initiate the transition to the low-density kinetic form with similar to 10% expansion of the crystalline organic lattice, which corresponds to absorption of CO2 and N2O (refs 4,5). This suggests the possibility of a more general phenomenon that can be exploited to find more porous materials from non-porous organic and metal-organic frameworks that possess void space large enough to accommodate the gas molecules(6-13). C1 [Thallapally, Praveen K.; McGrail, B. Peter; Schaef, Herbert T.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Dalgarno, Scott J.; Tian, Jian; Atwood, Jerry L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM Praveen.Thallapally@pnl.gov; atwoodj@missouri.edu RI Tian, Jian/I-8637-2012; thallapally, praveen/I-5026-2014; Dalgarno, Scott/A-7358-2010 OI thallapally, praveen/0000-0001-7814-4467; Dalgarno, Scott/0000-0001-7831-012X NR 24 TC 115 Z9 115 U1 1 U2 46 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2008 VL 7 IS 2 BP 146 EP 150 DI 10.1038/nmat2097 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 255QR UT WOS:000252673000022 PM 18193053 ER PT J AU Fox, BG Goulding, C Malkowski, MG Stewart, L Deacon, A AF Fox, Brian G. Goulding, Celia Malkowski, Michael G. Stewart, Lance Deacon, Ashley TI Structural genomics: from genes to structures with valuable materials and many questions in between SO NATURE METHODS LA English DT Editorial Material ID PROTEIN EXPRESSION; HIGH-THROUGHPUT; MYCOBACTERIUM-TUBERCULOSIS; TARGET SELECTION; NMR STRUCTURE; CLONING; PREDICTION; CRYSTALLIZATION; IDENTIFICATION; AUTOINDUCTION AB The Protein Structure Initiative (PSI), funded by the US National Institutes of Health (NIH), provides a framework for the development and systematic evaluation of methods to solve protein structures. Although the PSI and other structural genomics efforts around the world have led to the solution of many new protein structures as well as the development of new methods, methodological bottlenecks still exist and are being addressed in this ' production phase' of PSI. C1 [Fox, Brian G.] Univ Wisconsin, Ctr Eukaryot Struct Genom, Madison, WI 53706 USA. [Goulding, Celia] Univ Calif Los Angeles, Integrated Ctr Struct & Funct Innovat, Inst Mol Biol, Los Angeles, CA 90095 USA. [Malkowski, Michael G.] Hauptmann Woodward Med Res Inst, Ctr High Throughput Struct Biol, Buffalo, NY 14203 USA. [Stewart, Lance] deCODE Biostruct, Accelerated Technol Ctr Gene 3D Struct, Bainbridge Isl, WA 98110 USA. [Deacon, Ashley] Stanford Synchrotron Radiat Lab, Joint Ctr Struct Genom, Menlo Pk, CA 94025 USA. RP Fox, BG (reprint author), Univ Wisconsin, Ctr Eukaryot Struct Genom, 433 Babcock Dr, Madison, WI 53706 USA. EM bgfox@biochem.wisc.edu RI Malkowski, Michael/G-4939-2011 OI Malkowski, Michael/0000-0003-1025-0014 FU NIGMS NIH HHS [U54 GM074899] NR 41 TC 26 Z9 29 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD FEB PY 2008 VL 5 IS 2 BP 129 EP 132 DI 10.1038/nmeth0208-129 PG 4 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 256SR UT WOS:000252750700011 PM 18235432 ER PT J AU Graslund, S Nordlund, P Weigelt, J Bray, J Hallberg, BM Gileadi, O Knapp, S Oppermann, U Arrowsmith, C Hui, R Ming, J Dhe-Paganon, S Park, HW Savchenko, A Yee, A Edwards, A Vincentelli, R Cambillau, C Kim, R Kim, SH Rao, Z Shi, Y Terwilliger, TC Kim, CY Hung, LW Waldo, GS Peleg, Y Albeck, S Unger, T Dym, O Prilusky, J Sussman, JL Stevens, RC Lesley, SA Wilson, IA Joachimiak, A Collart, F Dementieva, I Donnelly, MI Eschenfeldt, WH Kim, Y Stols, L Wu, R Zhou, M Burley, SK Emtage, JS Sauder, JM Thompson, D Bain, K Luz, J Gheyi, T Zhang, F Atwell, S Almo, SC Bonanno, JB Fiser, A Swaminathan, S Studier, FW Chance, MR Sali, A Acton, TB Xiao, R Zhao, L Ma, LC Hunt, JF Tong, L Cunningham, K Inouye, M Anderson, S Janjua, H Shastry, R Ho, CK Wang, DY Wang, H Jiang, M Montelione, GT Stuart, DI Owens, RJ Daenke, S Schutz, A Heinemann, U Yokoyama, S Bussow, K Gunsalus, KC AF Graslund, Susanne Nordlund, Paer Weigelt, Johan Bray, James Hallberg, B. Martin Gileadi, Opher Knapp, Stefan Oppermann, Udo Arrowsmith, Cheryl Hui, Raymond Ming, Jinrong dhe-Paganon, Sirano Park, Hee-won Savchenko, Alexei Yee, Adelinda Edwards, Aled Vincentelli, Renaud Cambillau, Christian Kim, Rosalind Kim, Sung-Hou Rao, Zihe Shi, Yunyu Terwilliger, Thomas C. Kim, Chang-Yub Hung, Li-Wei Waldo, Geoffrey S. Peleg, Yoav Albeck, Shira Unger, Tamar Dym, Orly Prilusky, Jaime Sussman, Joel L. Stevens, Ray C. Lesley, Scott A. Wilson, Ian A. Joachimiak, Andrzej Collart, Frank Dementieva, Irina Donnelly, Mark I. Eschenfeldt, William H. Kim, Youngchang Stols, Lucy Wu, Ruying Zhou, Min Burley, Stephen K. Emtage, J. Spencer Sauder, J. Michael Thompson, Devon Bain, Kevin Luz, John Gheyi, Tarun Zhang, Fred Atwell, Shane Almo, Steven C. Bonanno, Jeffrey B. Fiser, Andras Swaminathan, Sivasubramanian Studier, F. William Chance, Mark R. Sali, Andrej Acton, Thomas B. Xiao, Rong Zhao, Li Ma, Li Chung Hunt, John F. Tong, Liang Cunningham, Kellie Inouye, Masayori Anderson, Stephen Janjua, Heleema Shastry, Ritu Ho, Chi Kent Wang, Dongyan Wang, Huang Jiang, Mei Montelione, Gaetano T. Stuart, David I. Owens, Raymond J. Daenke, Susan Schutz, Anja Heinemann, Udo Yokoyama, Shigeyuki Bussow, Konrad Gunsalus, Kristin C. CA Struct Genomics Consortium Architecture Fonction Macromol Berkeley Struct Genomics Ctr China Struct Genomics Consortium Integrated Ctr Struct Function Israel Struct Proteomics Ctr Joint Ctr Struct Genomics Midwest Ctr Struct Genomics New York Struct GenomiX Res Ctr NE Struct Genomics Consortium Oxford Prot Prod Facility Prot Sample Prod Facility Max Delbruck Ctr Mol Med RIKEN Struct Genomics Proteomics SPINE2 Complexes TI Protein production and purification SO NATURE METHODS LA English DT Review ID SITE-SPECIFIC RECOMBINATION; STRUCTURAL GENOMICS CONSORTIUM; HIGH-LEVEL EXPRESSION; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; AFFINITY-CHROMATOGRAPHY; BINDING-PROTEIN; FUSION PROTEINS; INSECT CELLS; PROTEOMICS AB In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus 'what to try first' strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that could be applied at the outset of any project, a prioritized list of alternate strategies and a list of pitfalls that trip many new investigators. C1 [Arrowsmith, Cheryl; Hui, Raymond; Ming, Jinrong; dhe-Paganon, Sirano; Park, Hee-won; Savchenko, Alexei; Yee, Adelinda; Edwards, Aled] Univ Toronto, Toronto, ON M5G 1L6, Canada. [Graslund, Susanne; Nordlund, Paer; Weigelt, Johan] Karolinska Inst, S-17177 Stockholm, Sweden. [Bray, James; Gileadi, Opher; Knapp, Stefan; Oppermann, Udo; Struct Genomics Consortium] Univ Oxford, Oxford OX3 7DQ, England. [Vincentelli, Renaud; Cambillau, Christian; Architecture Fonction Macromol] CNRS, F-13288 Marseille 09, France. [Kim, Rosalind; Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kim, Rosalind; Kim, Sung-Hou; Berkeley Struct Genomics Ctr] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Rao, Zihe] Tsinghua Univ, Beijing 100084, Peoples R China. [Shi, Yunyu; China Struct Genomics Consortium] Univ Sci & Technol China, Hefei 230027, Peoples R China. [Terwilliger, Thomas C.; Kim, Chang-Yub; Hung, Li-Wei; Waldo, Geoffrey S.; Integrated Ctr Struct Function] Los Alamos Natl Lab, Los Alamos, NM 87507 USA. [Peleg, Yoav; Albeck, Shira; Unger, Tamar; Dym, Orly; Prilusky, Jaime; Sussman, Joel L.; Israel Struct Proteomics Ctr] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Stevens, Ray C.; Lesley, Scott A.; Wilson, Ian A.] Scripps Res Inst, La Jolla, CA 92037 USA. [Lesley, Scott A.; Wilson, Ian A.; Joint Ctr Struct Genomics] Novartis Res Fdn, Genom Inst, San Diego, CA 92121 USA. [Joachimiak, Andrzej; Collart, Frank; Dementieva, Irina; Donnelly, Mark I.; Eschenfeldt, William H.; Kim, Youngchang; Stols, Lucy; Wu, Ruying; Zhou, Min; Midwest Ctr Struct Genomics] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Burley, Stephen K.; Emtage, J. Spencer; Sauder, J. Michael; Thompson, Devon; Bain, Kevin; Luz, John; Gheyi, Tarun; Zhang, Fred; Atwell, Shane] SGX Pharmaceut Inc, San Diego, CA 92121 USA. [Almo, Steven C.; Bonanno, Jeffrey B.; Fiser, Andras] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA. [Swaminathan, Sivasubramanian; Studier, F. William] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Chance, Mark R.] Case Western Reserve Univ, Cleveland, OH 44016 USA. [Sali, Andrej] Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA. [Sali, Andrej; New York Struct GenomiX Res Ctr] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Acton, Thomas B.; Xiao, Rong; Zhao, Li; Ma, Li Chung; Cunningham, Kellie; Inouye, Masayori; Anderson, Stephen; Janjua, Heleema; Shastry, Ritu; Ho, Chi Kent; Wang, Dongyan; Wang, Huang; Jiang, Mei; Montelione, Gaetano T.; Gunsalus, Kristin C.] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. [Hunt, John F.; Tong, Liang; NE Struct Genomics Consortium] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA. [Stuart, David I.; Owens, Raymond J.; Daenke, Susan; Oxford Prot Prod Facility; SPINE2 Complexes] Wellcome Trust Ctr Human Genet, Div Struct Biol, Oxford OX3 7BN, England. [Schutz, Anja; Heinemann, Udo; Bussow, Konrad; Prot Sample Prod Facility; Max Delbruck Ctr Mol Med] Max Delbruck Ctr Mol Med MDC, D-13092 Berlin, Germany. [Yokoyama, Shigeyuki; RIKEN Struct Genomics Proteomics] RIKEN, Yokohama Inst, Genom Sci Ctr, Prot Res Grp, Yokohama, Kanagawa 2300045, Japan. RP Edwards, A (reprint author), Univ Toronto, 100 Coll St, Toronto, ON M5G 1L6, Canada. EM aled.edwards@utoronto.ca RI Hallberg, B. Martin/C-5361-2009; Min, Jinrong/G-3449-2011; Terwilliger, Thomas/K-4109-2012; Gileadi, Opher/F-1105-2013; Heinemann, Udo/S-3379-2016; Yokoyama, Shigeyuki/N-6911-2015; Stevens, Raymond/K-7272-2015; OI Hallberg, B. Martin/0000-0002-6781-0345; Sussman, Joel/0000-0003-0306-3878; Terwilliger, Thomas/0000-0001-6384-0320; Gileadi, Opher/0000-0001-6886-898X; Heinemann, Udo/0000-0002-8191-3850; Yokoyama, Shigeyuki/0000-0003-3133-7338; Stevens, Raymond/0000-0002-4522-8725; Collart, Frank/0000-0001-6942-4483 FU Medical Research Council [G0400717]; NIGMS NIH HHS [GM074942, GM62412, P50 GM062412, U54 GM074898, U54 GM074942, U54 GM074942-02, U54 GM074945, U54 GM074958]; Wellcome Trust NR 90 TC 313 Z9 343 U1 36 U2 304 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 EI 1548-7105 J9 NAT METHODS JI Nat. Methods PD FEB PY 2008 VL 5 IS 2 BP 135 EP 146 DI 10.1038/nmeth.f.202 PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 256SR UT WOS:000252750700013 PM 18235434 ER PT J AU Ellingson, R AF Ellingson, Randy TI Solar cells - Slicing and dicing photons SO NATURE PHOTONICS LA English DT News Item ID MULTIPLE EXCITON GENERATION; ENERGY-TRANSFER; NANOCRYSTALS AB Solar cells take advantage of our most abundant source of energy, the Sun. A technique that improves the conversion of photons to electrons could potentially lead to a dramatic improvement in device efficiency. C1 [Ellingson, Randy] Natl Renewable Energy Lab, Ctr Chem Sci & Biosci, Golden, CO 80401 USA. RP Ellingson, R (reprint author), Natl Renewable Energy Lab, Ctr Chem Sci & Biosci, Golden, CO 80401 USA. EM Randy_Ellingson@nrel.gov RI Ellingson, Randy/H-3424-2013 NR 6 TC 2 Z9 3 U1 0 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD FEB PY 2008 VL 2 IS 2 BP 72 EP 73 DI 10.1038/nphoton.2007.288 PG 3 WC Optics; Physics, Applied SC Optics; Physics GA 264BK UT WOS:000253260000008 ER PT J AU Jamshidi, A Pauzauskie, PJ Schuck, PJ Ohta, AT Chiou, PY Chou, J Yang, PD Wu, MC AF Jamshidi, Arash Pauzauskie, Peter J. Schuck, P. James Ohta, Aaron T. Chiou, Pei-Yu Chou, Jeffrey Yang, Peidong Wu, Ming C. TI Dynamic manipulation and separation of individual semiconducting and metallic nanowires SO NATURE PHOTONICS LA English DT Article ID SUBWAVELENGTH PHOTONICS INTEGRATION; ONE-DIMENSIONAL NANOSTRUCTURES; OPTOELECTRONIC TWEEZERS; ARRAYS; ALIGNMENT; SILICON; CELLS; ASSEMBLIES; NETWORKS; WATER AB The synthesis of nanowires has advanced in the past decade to the point where a vast range of insulating, semiconducting and metallic materials(1) are available for use in integrated, heterogeneous optoelectronic devices at nanometre scales(2). However, a persistent challenge has been the development of a general strategy for the manipulation of individual nanowires with arbitrary composition. Here we report that individual semiconducting and metallic nanowires with diameters below 20 nm are addressable with forces generated by optoelectronic tweezers(3). Using 100,000 times less optical power density than optical tweezers, optoelectronic tweezers are capable of transporting individual nanowires with speeds four times greater than the maximum speeds achieved by optical tweezers. A real-time array of silver nanowires is formed using photopatterned virtual electrodes, demonstrating the potential for massively parallel assemblies. Furthermore, optoelectronic tweezers enable the separation of semiconducting and metallic nanowires, suggesting a broad range of applications for the separation and heterogeneous integration of one-dimensional nanoscale materials. C1 [Jamshidi, Arash; Ohta, Aaron T.; Chou, Jeffrey; Wu, Ming C.] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA. [Pauzauskie, Peter J.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Pauzauskie, Peter J.; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schuck, P. James] Lawrence Berkeley Natl Lab, Mol Foundary, Berkeley, CA 94720 USA. [Chiou, Pei-Yu] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. RP Jamshidi, A (reprint author), Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu; wu@eecs.berkeley.edu RI Chiou, Pei-Yu/D-5496-2011; Pauzauskie, Peter/A-1316-2014 FU NEI NIH HHS [PN2 EY018228, PN2 EY018228-01] NR 36 TC 80 Z9 81 U1 2 U2 59 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD FEB PY 2008 VL 2 IS 2 BP 85 EP 89 DI 10.1038/nphoton.2007.277 PG 5 WC Optics; Physics, Applied SC Optics; Physics GA 264BK UT WOS:000253260000013 PM 19789729 ER PT J AU Gilbert, SD Rambo, RP Van Tyne, D Batey, RT AF Gilbert, Sunny D. Rambo, Robert P. Van Tyne, Daria Batey, Robert T. TI Structure of the SAM-II riboswitch bound to S-adenosylmethionine SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID METABOLITE-BINDING RIBOSWITCHES; GENE-EXPRESSION; CRYSTAL-STRUCTURE; TERTIARY INTERACTIONS; RNA PSEUDOKNOTS; MK BOX; RECOGNITION; TELOMERASE; RIBOZYME; BACTERIA AB In bacteria, numerous genes harbor regulatory elements in the 5' untranslated regions of their mRNA, termed riboswitches, which control gene expression by binding small-molecule metabolites. These sequences influence the secondary and tertiary structure of the RNA in a ligand-dependent manner, thereby directing its transcription or translation. The crystal structure of an S-adenosylmethionine-responsive riboswitch found predominantly in proteobacteria, SAM-II, has been solved to reveal a second means by which RNA interacts with this important cellular metabolite. Notably, this is the first structure of a complete riboswitch containing all sequences associated with both the ligand binding aptamer domain and the regulatory expression platform. Chemical probing of this RNA in the absence and presence of ligand shows how the structure changes in response to S-adenosylmethionine to sequester the ribosomal binding site and affect translational gene regulation. C1 [Gilbert, Sunny D.; Van Tyne, Daria; Batey, Robert T.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Rambo, Robert P.] Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Batey, RT (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM robert.batey@colorado.edu RI Batey, Robert/A-8265-2009 OI Batey, Robert/0000-0002-1384-6625 FU NIGMS NIH HHS [GM 073850, T32 GM008759] NR 46 TC 127 Z9 131 U1 0 U2 24 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD FEB PY 2008 VL 15 IS 2 BP 177 EP 182 DI 10.1038/nsmb.1371 PG 6 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 259IG UT WOS:000252932400018 PM 18204466 ER PT J AU Volkow, ND Wang, GJ Telang, F Fowler, JS Logan, J Childress, AR Jayne, M Wong, C Ma, YM AF Volkow, Nora D. Wang, Gene-Jack Telang, Frank Fowler, Joanna S. Logan, Jean Childress, Anna-Rose Jayne, Millard Wong, Christopher Ma, Yeming TI Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues SO NEUROIMAGE LA English DT Article DE PET imaging; raclopride; addiction; caudate; putamen; conditioned responses; D2 receptors ID VENTRAL TEGMENTAL AREA; HUMAN BRAIN; NUCLEUS-ACCUMBENS; SEEKING BEHAVIOR; DORSAL STRIATUM; EXTRACELLULAR DOPAMINE; INTRAVENOUS COCAINE; PREFRONTAL CORTEX; C-11 RACLOPRIDE; BED NUCLEUS AB Imaging studies have shown an association between dopamine increases in striatum and cue induced craving in cocaine abusers. However, the extent to which dopamine increases reflect a primary rather than a secondary response to the cues remains unclear. Here we evaluated the extent to which dopamine increases by themselves can induce craving in cocaine abusers. Using PET and [C-11]raclopride (D2 receptor radioligand sensitive to competition with endogenous dopamine) we show that in cocaine abusers (n=20) oral methylphenidate (20 mg), which significantly increased dopamine in striatum, did not induce craving unless subjects were concomitantly exposed to cocaine cues (video scenes of subjects self-administering cocaine). This suggests that dopamine increases associated with conditioned cues are not primary responses but reflect downstream stimulation of dopamine cells (presumably glutamatergic afferents from prefrontal cortex and/or amygdala). Inasmuch as afferent stimulation of dopamine neurons results in phasic cell firing these findings suggest that "fast" dopamine increases, in contrast to the "slow" dopamine increases as achieved when using oral methylphenidate (mimicking tonic dopamine cell firing), are required for cues to trigger craving. The fact that methylphenidate induced craving only when given with the cocaine cues highlights the context dependency of methylphenidate's effects and suggests that its use for the treatment of ADHD subjects with co-morbid drug abuse should not increase craving. Published by Elsevier Inc. C1 [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. [Volkow, Nora D.; Telang, Frank; Jayne, Millard; Ma, Yeming] NIAAA, Bethesda, MD 20892 USA. [Wang, Gene-Jack] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Childress, Anna-Rose] Univ Penn, Sch Med, Dept Psychiat, Philadelphia, PA 19104 USA. [Childress, Anna-Rose] Philadelphia Dept Vet Affairs, Philadelphia, PA 19104 USA. [Fowler, Joanna S.; Logan, Jean; Wong, Christopher] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, 6001 Execut Blvd,Room 5274, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov OI Logan, Jean/0000-0002-6993-9994 FU Intramural NIH HHS [Z01 DA*00001-05]; NCRR NIH HHS [M01 RR010710, M01RR10710]; NIDA NIH HHS [DA06278-15, R01 DA006278] NR 60 TC 92 Z9 93 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD FEB 1 PY 2008 VL 39 IS 3 BP 1266 EP 1273 DI 10.1016/j.neuroimage.2007.09.059 PG 8 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 255XN UT WOS:000252691800032 PM 18024160 ER PT J AU Massoudi, M Vaidya, A Wulandana, R AF Massoudi, Mehrdad Vaidya, Ashwin Wulandana, Rachmadian TI Natural convection flow of a generalized second grade fluid between two vertical walls SO NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS LA English DT Article DE natural convection; feneralized second grade non-Newtonian fluids; temperature and shear dependent viscosity ID NON-NEWTONIAN FLUID; TEMPERATURE-DEPENDENT VISCOSITY; COAL-WATER MIXTURES; VARIABLE VISCOSITY; HEAT-TRANSFER; POROUS PLATE; STABILITY; GRADE; THERMODYNAMICS; FILM AB We study the flow due to natural convection of a non-Newtonian fluid, modeled as a generalized second grade fluid. between two vertical parallel walls. The flow results from the two walls being held at different temperatures. The viscosity of the fluid is taken to be a function of temperature according to Reynolds' exponential law. We solve for the dimensionless velocity and temperature profiles and study their dependence upon certain material parameters. (c) 2006 Elsevier Ltd. All rights reserved. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Florida State Univ, Geophys Fluid Dynam Inst, Dept Math, Tallahassee, FL 32306 USA. Emory Univ, Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA. RP Massoudi, M (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM massoudi@netl.doe.gov NR 39 TC 7 Z9 7 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1468-1218 J9 NONLINEAR ANAL-REAL JI Nonlinear Anal.-Real World Appl. PD FEB PY 2008 VL 9 IS 1 BP 80 EP 93 DI 10.1016/j.nonrwa.2006.09.003 PG 14 WC Mathematics, Applied SC Mathematics GA 239RZ UT WOS:000251536700007 ER PT J AU Geist, DR Arntzen, EV Murray, CJ McGrath, KE Bott, YJ Hanrahan, TP AF Geist, David R. Arntzen, Evan V. Murray, Christopher J. McGrath, Kathleen E. Bott, Yi-Ju Hanrahan, Timothy P. TI Influence of river level on temperature and hydraulic gradients in chum and fall Chinook salmon spawning areas downstream of Bonneville Dam, Columbia river SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Article ID REDD-SITE SELECTION; ONCORHYNCHUS-TSHAWYTSCHA; ATLANTIC SALMON; BROWN TROUT; FLOW; STREAM; WATER; BED; SEGREGATION; GROUNDWATER AB Chum salmon Oncorhynchus keta and fall Chinook salmon O. tshawytscha segregate spatially during spawning in the Ives Island side channel of the lower Columbia River downstream from Bonneville Dam. Previous research during one spawning season (2000) suggested that these species selected spawning habitats based on differences in hyporheic temperature and vertical hydraulic gradient (VHG). In this study we confirmed the spatial segregation of spawning based on hypotheic characteristics over 4 years (2001-2004) and examined the effects of load-following operations (power generation to meet short-term electrical demand) at Bonneville Dam on hyporheic function and characteristics. We found that during the study period hyporheic temperature and VHG in chum salmon spawning areas were highly variable during periods of load-following operation, when river levels fluctuated. In contrast, hyporheic water temperature and VHG within chum salmon spawning areas fluctuated less when river levels were not changing owing to load-following operation. Variable temperature and VHG could affect chum and fall Chinook salmon spawning segregation and incubation success by altering the cues each species uses to select redd sites. Additional research will be required to fully assess the effects of load-following operations on the hyporheic environment, spawning site selection, and incubation success of chum and fall Chinook salmon downstream from Bonneville Dam. C1 [Geist, David R.; Arntzen, Evan V.; Murray, Christopher J.; McGrath, Kathleen E.; Bott, Yi-Ju; Hanrahan, Timothy P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Geist, DR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. NR 47 TC 9 Z9 9 U1 3 U2 13 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA SN 0275-5947 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PD FEB PY 2008 VL 28 IS 1 BP 30 EP 41 DI 10.1577/M07-009.1 PG 12 WC Fisheries SC Fisheries GA 274WC UT WOS:000254032500003 ER PT J AU Evans, TE Fenstermacher, ME Moyer, RA Osborne, TH Watkins, JG Gohil, P Joseph, I Schaffer, MJ Baylor, LR Becoulet, M Boedo, JA Burrell, KH Degrassie, JS Finken, KH Jernigan, T Jakubowski, MW Lasnier, CJ Lelmen, M Leonard, AW Lonnroth, J Nardon, E Parail, V Schmitz, O Unterberg, B West, WP AF Evans, T. E. Fenstermacher, M. E. Moyer, R. A. Osborne, T. H. Watkins, J. G. Gohil, P. Joseph, I. Schaffer, M. J. Baylor, L. R. Becoulet, M. Boedo, J. A. Burrell, K. H. deGrassie, J. S. Finken, K. H. Jernigan, T. Jakubowski, M. W. Lasnier, C. J. Lelmen, M. Leonard, A. W. Lonnroth, J. Nardon, E. Parail, V. Schmitz, O. Unterberg, B. West, W. P. TI RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 3rd Workshop on Stochasticity in Fusion Plasmas CY MAR 05-07, 2007 CL Julich, GERMANY ID MAGNETIC PERTURBATIONS; ERROR-FIELD; D TOKAMAK; PARTICLE; TRANSPORT; ENERGY AB Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, (delta) over bar = 0.26, plasmas and in ITER similar shaped (ISS) plasmas, delta = 0.53, with ITER relevant collisionalities v(e)* <= 0.2. Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q(95) window required for ELM suppression is smaller in ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER. C1 [Evans, T. E.; Osborne, T. H.; Joseph, I.; Baylor, L. R.; Finken, K. H.; Jernigan, T.; Leonard, A. W.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Moyer, R. A.; Joseph, I.; Boedo, J. A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Baylor, L. R.; Jernigan, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Becoulet, M.; Nardon, E.] CEN Cadarache, EURATOM Assoc, F-13108 Cadarache, France. [Finken, K. H.; Lelmen, M.; Schmitz, O.; Unterberg, B.] Forschungszentrum Julich, Assoc FZJ EURATOM, Inst Plasmaphys, Julich, Germany. [Jakubowski, M. W.] EURATOM, Max Planck Inst Plasmaphys, Teilinst Greifswald, Greifswald, Germany. [Lonnroth, J.] Helsinki Univ Technol, Assoc EURATOM TEKES, Espoo, Finland. [Parail, V.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. RP Evans, TE (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM evans@fusion.gat.com OI Baylor, Larry/0000-0002-0325-7771; Unterberg, Bernhard/0000-0003-0866-957X NR 19 TC 213 Z9 213 U1 9 U2 47 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2008 VL 48 IS 2 AR 024002 DI 10.1088/0029-5515/48/2/024002 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 290OD UT WOS:000255131200003 ER PT J AU Schaffer, MJ Menard, JE Aldan, MP Bialek, JM Evans, TE Moyer, RA AF Schaffer, M. J. Menard, J. E. Aldan, M. P. Bialek, J. M. Evans, T. E. Moyer, R. A. TI Study of in-vessel nonaxisymmetric ELM suppression coil concepts for ITER SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 3rd Workshop on Stochasticity in Fusion Plasmas CY MAR 05-07, 2007 CL Julich, GERMANY ID EDGE LOCALIZED MODES; RESONANT MAGNETIC PERTURBATIONS; TOROIDAL-MOMENTUM DISSIPATION; DIII-D PLASMAS; ERROR-FIELD; TOKAMAKS AB Large Type-I edge-localized mode (ELM) heat pulses may limit the life of divertor targets in a burning plasma. Recent experiments show that pitch-resonant nonaxisymmetric magnetic perturbations of the plasma edge of 0.0005 or less of the main magnetic field offer a useful solution, but there is little room in the presently designed ITER for even small perturbation coils. We present proposed coil requirements for ITER ELM suppression, derived primarily from DIII-D ELM suppression experiments. We show by calculated examples that large arrays of coils (e.g. four toroidal rows of nine coils each) on the outboard wall near the plasma (at the radius of the blanket-vacuum vessel interface R similar to 8 m) can meet the known requirements, expressed in terms of the toroidal helical Fourier harmonic spectrum, for both low- and high-q ITER plasmas, when coil currents are distributed to concentrate the magnetic perturbation into a single dominant Fourier spectral peak. Fields from arrays of less than four rows of nine coils (a) penetrate relatively more strongly into the core plasma, and (b) generate more and larger nonresonant spectral peaks. Both features are expected to brake desirable plasma rotation. We found that the Moire effect from approximating sinusoidal perturbations by a limited discrete coil set can be used to control nonfundamental harmonics in large arrays. We show that a judicious choice of current distribution among the coils ameliorates effects of an 80 degrees toroidal gap where no coils are allowed in the ITER midplane. C1 [Schaffer, M. J.; Evans, T. E.] Gen Atom Co, San Diego, CA 92186 USA. [Menard, J. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Aldan, M. P.] San Diego State Univ Fdn, San Diego, CA 92182 USA. [Bialek, J. M.] Columbia Univ, New York, NY 10027 USA. [Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Schaffer, MJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM schaffer@fusion.gat.com OI Menard, Jonathan/0000-0003-1292-3286 NR 36 TC 88 Z9 88 U1 3 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2008 VL 48 IS 2 AR 024004 DI 10.1088/0029-5515/48/2/024004 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 290OD UT WOS:000255131200005 ER PT J AU Neuffer, D AF Neuffer, David TI Low-energy ionization cooling of ions for beta beam sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE beam cooling; beta-beams; ionization cooling AB Rubbia et al. [C. Rubbia, A. Ferrari, Y. Kadi, V. Vlachoudis, Nucl. Instr. and Meth. A 568 (2006) 475.] have recently suggested that multiturn passage of a low-energy ion beam (nu/c congruent to 0.1) through a low-Z target can be used in the production of ions useable for beta-beam sources and that ionization cooling techniques can increase the circulating beam lifetime and thus enhance that production. Some parameters in their initial discussion are somewhat optimistic, and the conditions for 3-D cooling are not completely developed. In the present paper, we reconsider some features of the scenarios and suggest some variations that may be more practical. While 3-D cooling is possible at these energies, mixing of longitudinal motion with both horizontal and vertical motion is necessary to obtain simultaneous cooling in all dimensions; we suggest lattice variations that would be needed. Direct and reverse kinematics are described and explored. (C) 2007 Elsevier B.V. All rights reserved. C1 [Neuffer, David] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Neuffer, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM neuffer@fnal.gov NR 8 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2008 VL 585 IS 3 BP 109 EP 116 DI 10.1016/j.nima.2007.10.047 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 264OA UT WOS:000253296300001 ER PT J AU Jordan, DV Renholds, AS Jaffe, JE Anderson, KK Corrales, LR Peurrung, AJ AF Jordan, David V. Renholds, Andrea S. Jaffe, John E. Anderson, Kevin K. Corrales, L. Ren Peurrung, Anthony J. TI Simple classical model for Fano statistics in radiation detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Fano factor; Fano statistics; energy resolution; impact ionization cascade ID PARTICLES AB A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ("bathtub") with a small dipping implement ("shot or whiskey glass"). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the "Fano effect"). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, "microscopic" physical models of detector material response to ionizing radiation is discussed. (C) 2007 Elsevier B.V. All rights reserved. C1 [Jordan, David V.; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; Corrales, L. Ren; Peurrung, Anthony J.] Pacific NW Natl Lab, Natl Secur Div, Radiol & Chem Sci Grp, Richland, WA 99352 USA. RP Jordan, DV (reprint author), Pacific NW Natl Lab, Natl Secur Div, Radiol & Chem Sci Grp, PO Box 999, Richland, WA 99352 USA. EM David.Jordan@pnl.gov OI Anderson, Kevin/0000-0001-5613-5893 NR 15 TC 4 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2008 VL 585 IS 3 BP 146 EP 154 DI 10.1016/j.nima.2007.11.009 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 264OA UT WOS:000253296300006 ER PT J AU Fuchs, O Maier, F Weinhardt, L Weigand, M Blum, M Zharnikovc, M Denlinger, J Grunze, M Heske, C Umbach, E AF Fuchs, Oliver Maier, Florian Weinhardt, Lothar Weigand, Markus Blum, Monika Zharnikovc, Michael Denlinger, Jonathan Grunze, Michael Heske, Clemens Umbach, Eberhard TI A liquid flow cell to study the electronic structure of liquids with soft X-rays SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE liquid cell; water; soft X-ray spectroscopy; X-ray absorption; X-ray emission ID ABSORPTION-SPECTROSCOPY; WATER; REARRANGEMENTS; SCATTERING; INTERFACE; EMISSION AB We describe the design of a temperature-controlled flow-through liquid cell dedicated to the study of liquids with soft X-rays. The cell can be operated with internal ambient pressure and is mounted on a standard vacuum manipulator, making it compatible to the ultra-high vacuum environment required in synchrotron beamlines. The liquid is separated from the vacuum by a thin membrane, allowing the use of soft X-ray photon-in-photon-out techniques such as X-ray emission and fluorescence-yield X-ray absorption spectroscopy to study the electronic structure of liquids and liquid-solid interfaces. Special care was taken for a rapid and effective flow of the liquid inside the cell in order to minimize local heating and beam damage effects. To illustrate the capabilities, oxygen K X-ray emission spectra of D2O and H2O are presented and briefly discussed together with possible problems that may arise from X-ray-induced oxide formation at the membrane-liquid interface. (C) 2007 Elsevier B.V. All rights reserved. C1 [Fuchs, Oliver; Maier, Florian; Weigand, Markus; Blum, Monika; Umbach, Eberhard] Univ Wurzburg, D-97074 Wurzburg, Germany. [Weinhardt, Lothar; Heske, Clemens] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Zharnikovc, Michael; Grunze, Michael] Univ Heidelberg, Angewandte Phys Chem, D-69120 Heidelberg, Germany. [Denlinger, Jonathan] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Umbach, Eberhard] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany. RP Fuchs, O (reprint author), Univ Wurzburg, An Hubland, D-97074 Wurzburg, Germany. EM oliver.fuchs@physik.uni-wuerzburg.de RI Weinhardt, Lothar/G-1689-2013; Grunze, Michael/H-1600-2013 NR 20 TC 34 Z9 34 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2008 VL 585 IS 3 BP 172 EP 177 DI 10.1016/j.nima.2007.10.029 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 264OA UT WOS:000253296300009 ER PT J AU Ward, SJ Jansen, K Shertzer, J Macek, JH AF Ward, S. J. Jansen, Krista Shertzer, J. Macek, J. H. TI Near-threshold positron impact ionization of hydrogen SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low-Energy Positron and Positronium Physics CY AUG 01-04, 2007 CL Univ Reading, Reading, ENGLAND HO Univ Reading DE positrons; ionization; hydrogen; theory ID ATOMIC-HYDROGEN; SCATTERING; HELIUM AB The hyperspherical hidden crossing method (HHCM) is used to investigate positron impact ionization of hydrogen near threshold. An important feature of this method is that it can provide valuable insight into scattering processes. In the calculation of positron-hydrogen ionization, the adiabatic Hamiltonian is expanded about the Wannier saddle point; anharmonic corrections are treated perturbatively. The S-wave results are consistent with the Wannier threshold law and with the extended threshold law that was previously derived using the HHCM. We have extended the previous HHCM calculation to higher angular momenta L and have calculated the absolute ionization cross-section for L = 0, 1 and 2. The HHCM calculation confirms that the S-wave ionization cross-section is small and provides the reason why it is small. The HHCM ionization cross-section (summed over the lowest partial waves) is compared with a convergent close-coupling calculation, a 33-state close-coupling calculation and experimental data. (c) 2007 Elsevier B.V. All rights reserved. C1 [Ward, S. J.; Jansen, Krista] Univ N Texas, Dept Phys, Denton, TX 76203 USA. [Shertzer, J.] Coll Holy Cross, Dept Phys, Worcester, MA 01610 USA. [Macek, J. H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Macek, J. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ward, SJ (reprint author), Univ N Texas, Dept Phys, Denton, TX 76203 USA. EM sward@unt.edu NR 16 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD FEB PY 2008 VL 266 IS 3 BP 410 EP 415 DI 10.1016/j.nimb.2007.12.017 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 298FK UT WOS:000255671600014 ER PT J AU Wright, RQ Hopper, CM AF Wright, Richard Q. Hopper, Calvin M. TI Calculation of the minimum critical mass of fissile nuclides SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB The OB-1 method for the calculation of the minimum critical mass of fissile actinides in metal/water systems was described in a previous paper. A fit to the calculated minimum critical mass data using the extended criticality parameter is the basis of the revised method. The solution density (grams/liter) for the minimum critical mass is also obtained by a fit to calculated values. Input to the calculation consists of the Maxwellian averaged fission and absorption cross sections and the thermal values of nubar. The revised method gives more accurate values than the original method does for both the minimum critical mass and the solution densities. The OB-1 method has been extended to calculate the uncertainties in the minimum critical mass for 12 different fissile nuclides. The uncertainties for the fission and capture cross sections and the estimated nubar uncertainties are used to determine the uncertainties in the minimum critical mass, either in percent or grams. Results have been obtained for U-233, U-235, Pu-236, Pu-239, Pu-241, Am-242m, Cm-243, Cm-245, Cf-249, Cf-251, Cf-253, and Es-254. Eight of these 12 nuclides are included in the ANS-8.15 standard. C1 [Wright, Richard Q.; Hopper, Calvin M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wright, RQ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM hoppercm@ornl.gov NR 9 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2008 VL 158 IS 2 BP 203 EP 209 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 256VT UT WOS:000252758700006 ER PT J AU Poskas, P Kilda, R Ragaisis, V Sullivan, TM AF Poskas, Povilas Kilda, Raimondas Ragaisis, Valdas Sullivan, Terry M. TI Impact of spatial heterogeneity of source term in near-surface repository on releases to groundwater pathway SO NUCLEAR TECHNOLOGY LA English DT Article DE radioactive waste source term; groundwater flow and transport; safety assessment AB Safety assessment of a near-surface repository of radioactive waste usually assumes a homogeneous distribution of activity within the vaults of the repository. However, in some cases there is radioactive waste, e.g., disused sealed sources, which should result in so-called "hot spots" when disposed of with other radioactive waste. An uneven distribution of waste activity is obtained in that case. The impact of heterogeneities in source distribution on radionuclide releases from a near-surface repository to the groundwater is analyzed in the paper. The conditions that stand for the application of homogeneous distribution of radioactive waste are revealed. The assessment has been performed using the methodology of the Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities (ISAM) study recommended by the International Atomic Energy Agency for the safety analysis of the near-surface repository. A description of the ISAM methodology and its application for the analysis of heterogeneity including a brief description of the disposal system of radioactive waste, the scenarios for the radionuclide migration, and the developed conceptual models are presented in the paper. The calculations have been carried out using the DUST and GWSCREEN computer codes, designed to simulate radionuclide transport. The modeling results for the case of homogeneous distribution of radioactive waste in the repository are considered. The impact of heterogeneities has been analyzed by comparing the modeling results of radionuclide transport for the heterogeneous case of waste distribution to the homogeneous case. C1 [Sullivan, Terry M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sullivan, TM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM TSullivan@bnl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2008 VL 161 IS 2 BP 140 EP 155 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 256VV UT WOS:000252758900005 ER PT J AU Mazeika, J Petrosius, R Jakimaviciute-Maseliene, V Baltrunas, D Mazeika, K Remeikis, V Sullivan, T AF Mazeika, J. Petrosius, R. Jakimaviciute-Maseliene, V. Baltrunas, D. Mazeika, K. Remeikis, V. Sullivan, T. TI Long-term safety assessment of a (near-surface) short-lived radioactive waste repository in lithuania SO NUCLEAR TECHNOLOGY LA English DT Article DE groundwater flow and transport; radioactive waste disposal; safety assessment ID MIGRATION AB The paper presents the long-term safety assessment of the Maisiagala radioactive waste repository (Lithuania) using the advanced computer codes DUST, FEFLOW, and AMBER. The software DUST was employed for calculations of the one-dimensional leaching flux of radionuclides from the repository vault and subsequent transport in the unsaturated zone. Using the mass flux of radionuclides calculated in DUST as a source to the aquifer, the software FEFLOW was used for two-dimensional assessment of activity concentrations of radionuclides in groundwater. Using the groundwater concentrations calculated in FEFLOW, the code AMBER was used to calculate the dose over time at four hypothetical wells downstream from the repository. The well distances ranged from 150 to 1600 m. When the hypothetical drinking water well is installed 150 m from the repository (close to the outside perimeter of the controlled area), the highest effective doses will arise from H-3, Cl-36, and Pu-239. The doses determined by H-3 and Cl-36 may exceed a dose limit of 1 mSv/yr for 50 to 230 yr after the closure of the facility (1989). The dose of Pu-231 will remain almost constant for >60000 yr after the closure, yet it will not exceed the dose limit value. According to previous studies, the intrusion scenario is much more critical compared to the groundwater exposure pathway in the case of Pu-239 (as well as Ra-226). C1 [Sullivan, T.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Mazeika, J.; Petrosius, R.; Jakimaviciute-Maseliene, V.] Inst Geol & Geog, LT-2600 Vilnius, Lithuania. [Jakimaviciute-Maseliene, V.; Baltrunas, D.; Mazeika, K.; Remeikis, V.] Inst Phys, LT-2053 Vilnius, Lithuania. [Mazeika, J.] Vilnius Univ, LT-03101 Vilnius, Lithuania. RP Sullivan, T (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM TSullivan@bnl.gov NR 22 TC 2 Z9 2 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2008 VL 161 IS 2 BP 156 EP 168 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 256VV UT WOS:000252758900006 ER PT J AU Farmer, JC Choi, JS Saw, CK Rebak, RH Day, SD Lian, T Hailey, PD Payer, JH Branagan, DJ Aprigliano, LF AF Farmer, J. C. Choi, J. -S. Saw, C. -K. Rebak, R. H. Day, S. D. Lian, T. Hailey, P. D. Payer, J. H. Branagan, D. J. Aprigliano, L. F. TI Corrosion resistance of amorphous Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 coating: A new criticality control material SO NUCLEAR TECHNOLOGY LA English DT Article DE amorphous metals; iron-based; corrosion-resistant ID BULK METALLIC GLASSES; BEHAVIOR; YTTRIUM; ALLOYS AB An iron-based amorphous metal with good corrosion resistance and a high absorption cross section for thermal neutrons has been developed and is reported here. This amorphous alloy has the approximate formula Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 and is known as SAM2X5. Chromium, molybdenum, and tungsten were added to provide corrosion resistance, while boron was added to promote glass formation and the absorption of thermal neutrons. Since this amorphous metal has a higher boron content than conventional borated stainless steels, it provides the nuclear engineer with design advantages for criticality control structures with enhanced safety. While melt-spun ribbons with limited practical applications were initially produced, large quantities (several tons) of gas-atomized powder have now been produced on an industrial scale, and applied as thermal-spray coatings on prototypical half-scale spent-nuclear-fuel containers and neutron-absorbing baskets. These prototypes and other SAM2X5 samples have undergone a variety of corrosion testing, including both salt-fog and long-term immersion testing. Modes and rates of corrosion have been determined in various relevant environments and are reported here. While these coatings have less corrosion resistance than melt-spun ribbons and optimized coatings produced in the laboratory, substantial corrosion resistance has been achieved. C1 [Farmer, J. C.; Choi, J. -S.; Saw, C. -K.; Rebak, R. H.; Day, S. D.; Lian, T.; Hailey, P. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Payer, J. H.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Branagan, D. J.] NanoSteel Co, Idaho Falls, ID 83402 USA. [Aprigliano, L. F.] Strateg Anal, Arlington, VA 22201 USA. RP Farmer, JC (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM farmer4@llnl.gov NR 34 TC 9 Z9 9 U1 3 U2 22 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2008 VL 161 IS 2 BP 169 EP 189 PG 21 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 256VV UT WOS:000252758900007 ER PT J AU Tang, KH Niebuhr, M Aulabaugh, A Tsai, MD AF Tang, Kuo-Hsiang Niebuhr, Marc Aulabaugh, Ann Tsai, Ming-Daw TI Solution structures of 2 : 1 and 1 : 1 DNA polymerase - DNA complexes probed by ultracentrifugation and small-angle X-ray scattering SO NUCLEIC ACIDS RESEARCH LA English DT Article ID BASE EXCISION-REPAIR; SWINE-FEVER VIRUS; DEOXYRIBOSE PHOSPHATE LYASE; POLYMERASE-BETA; BIOLOGICAL MACROMOLECULES; VIRAL-DNA; CONFORMATIONAL-CHANGES; QUANTITATIVE-ANALYSIS; CATALYTIC MECHANISM; KINETIC MECHANISMS AB We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme - DNA complexes of rat DNA polymerase beta (Pol beta) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2:1 Pol beta - DNA complex, whereas only 1:1 Pol X - DNA complex was observed. Three-dimensional structural models for the 2:1 Pol beta - DNA and 1:1 Pol X - DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5'-dRP lyase domain of the second Pol beta molecule with the active site of the 1:1 Pol beta - DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5'-dRP lyase domain, it is reasonable not to form a 2:1 complex. Based on the enhanced activities of the 2:1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5-dRP lyase reaction in the crystal structures of the closed ternary enzymeDNAdNTP complexes, we propose that the asymmetric 2:1 Pol beta - DNA complex enhances the function of Pol beta. C1 [Tang, Kuo-Hsiang; Tsai, Ming-Daw] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Tang, Kuo-Hsiang; Tsai, Ming-Daw] Ohio State Univ, Dept Biochem, Columbus, OH 43210 USA. [Tang, Kuo-Hsiang; Tsai, Ming-Daw] Acad Sinica, Genom Res Ctr, Taipei, Taiwan. [Niebuhr, Marc] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Aulabaugh, Ann] Wyeth Res Biophys Enzymol Screening Sci, Pearl River, NY 10965 USA. [Tsai, Ming-Daw] Acad Sinica, Inst Biol Chem, Taipei, Taiwan. RP Tsai, MD (reprint author), Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. EM tsai@chemistry.ohio-state.edu RI ID, BioCAT/D-2459-2012; OI Tsai, Ming-Daw/0000-0003-1374-0414 FU NCI NIH HHS [CA69472, R01 CA069472]; NIGMS NIH HHS [GM43268, R01 GM043268] NR 59 TC 12 Z9 12 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD FEB PY 2008 VL 36 IS 3 BP 849 EP 860 DI 10.1093/nar/gkm1101 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 267EC UT WOS:000253491300020 PM 18084022 ER PT J AU Sidje, RB Williams, AB Burrage, K AF Sidje, Roger B. Williams, Alan B. Burrage, Kevin TI Fast generalized cross validation using Krylov subspace methods SO NUMERICAL ALGORITHMS LA English DT Article DE Lanczos; linear systems; generalized cross validation ID CONJUGATE-GRADIENT METHODS; ITERATIVE SOLUTION METHOD; SMOOTHING NOISY DATA; LINEAR-SYSTEMS; LANCZOS-ALGORITHM; SPLINE FUNCTIONS; EQUATIONS; MATRIX; DEFLATION; GMRES AB The task of fitting smoothing spline surfaces to meteorological data such as temperature or rainfall observations is computationally intensive. The generalized cross validation (GCV) smoothing algorithm, if implemented using direct matrix techniques, is O(n(3)) computationally, and memory requirements are O(n(2)). Thus, for data sets larger than a few hundred observations, the algorithm is prohibitively slow. The core of the algorithm consists of solving series of shifted linear systems, and iterative techniques have been used to lower the computational complexity and facilitate implementation on a variety of supercomputer architectures. For large data sets though, the execution time is still quite high. In this paper we describe a Lanczos based approach that avoids explicitly solving the linear systems and dramatically reduces the amount of time required to fit surfaces to sets of data. C1 [Sidje, Roger B.; Burrage, Kevin] Univ Queensland, Dept Math, Adv Computat Modelling Ctr, Brisbane, Qld 4072, Australia. [Williams, Alan B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sidje, RB (reprint author), Univ Queensland, Dept Math, Adv Computat Modelling Ctr, Brisbane, Qld 4072, Australia. EM rbs@maths.uq.edu.au; williams@ca.sandia.gov; kb@maths.uq.edu.au RI Burrage, Kevin/J-1289-2012; OI Burrage, Kevin/0000-0002-8111-1137 NR 42 TC 1 Z9 1 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1017-1398 J9 NUMER ALGORITHMS JI Numer. Algorithms PD FEB PY 2008 VL 47 IS 2 BP 109 EP 131 DI 10.1007/s11075-007-9150-y PG 23 WC Mathematics, Applied SC Mathematics GA 269CQ UT WOS:000253627500001 ER PT J AU Cox, S Posner, SF Kourtis, AP Jamieson, DJ AF Cox, Shanna Posner, Samuel F. Kourtis, Athena P. Jamieson, Denise J. TI Hospitalizations with amphetamine abuse among pregnant women SO OBSTETRICS AND GYNECOLOGY LA English DT Article ID COMMUNITY SAMPLE; SUBSTANCE-ABUSE; USE DISORDERS; ALCOHOL-USE; COCAINE; METHAMPHETAMINE; DRUG; USERS AB OBJECTIVE: To examine trends in pregnancy hospitalizations with a diagnosis of amphetamine or cocaine abuse and the prevalence of associated medical complications. METHODS: Data were obtained from the Nationwide Inpatient Sample. Hospitalization ratios per 100 deliveries for amphetamine or cocaine abuse from 1998 to 2004 were tested for linear trends. Amphetamine-abuse hospitalizations were compared with cocaine-abuse hospitalizations and non-substance-abuse hospitalizations. A chi(2) analysis was used to compare hospitalization characteristics. Conditional probabilities estimated by logistic regression were used to calculate adjusted prevalence ratios for each medical diagnosis of interest. RESULTS: From 1998 to 2004, the hospitalization ratio for cocaine abuse decreased 44%, whereas the hospitalization ratio for amphetamine abuse doubled. Pregnancy hospitalizations with a diagnosis of amphetamine abuse were geographically concentrated in the West (82%), and were more likely to be among women younger than 24 years than the cocaine-abuse or non-substance-abuse hospitalizations. Most medical conditions were more prevalent in the amphetamine-abuse group than the non-substance-abuse group. When the substance abuse groups were compared with each other, obstetric diagnoses associated with infant morbidity such as premature delivery and poor fetal growth were more common in the cocaine-abuse group, whereas vasoconstrictive effects such as cardiovascular disorders and hypertension complicating pregnancy were more common in the amphetamine-abuse group. CONCLUSION: As pregnancy hospitalizations with a diagnosis of amphetamine abuse continue to increase, clinicians should familiarize themselves with the adverse consequences of amphetamine abuse during pregnancy and evidence-based guidelines to deal with this high-risk population. C1 [Cox, Shanna; Posner, Samuel F.; Kourtis, Athena P.; Jamieson, Denise J.] Ctr Dis Control & Prevent, Div Reprod Hlth, Atlanta, GA 30341 USA. [Cox, Shanna; Posner, Samuel F.; Kourtis, Athena P.; Jamieson, Denise J.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Cox, S (reprint author), Ctr Dis Control & Prevent, Div Reprod Hlth, 4770 Buford Highway MS K-20, Atlanta, GA 30341 USA. EM cio8@cdc.gov RI Cox, Shanna/F-4806-2011; OI Posner, Samuel/0000-0003-1574-585X NR 30 TC 15 Z9 15 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0029-7844 J9 OBSTET GYNECOL JI Obstet. Gynecol. PD FEB PY 2008 VL 111 IS 2 BP 341 EP 347 DI 10.1097/01.AOG.000300377.82722.ad PN 1 PG 7 WC Obstetrics & Gynecology SC Obstetrics & Gynecology GA 256XD UT WOS:000252762300012 PM 18238971 ER PT J AU Yellowhair, J Burge, JH AF Yellowhair, Julius Burge, James H. TI Measurement of optical flatness using electronic levels SO OPTICAL ENGINEERING LA English DT Article DE slope testing; metrology; electronic levels; large flat mirrors; optical manufacturing AB Conventional measurement methods for large flat mirrors are generally difficult and expensive. In most cases, comparison with a master or a reference flat similar in size is required. Using gravity, as in modern pendulum-type electronic levels, takes advantage of a free reference to precisely measure inclination or surface slopes. We describe using two electronic levels to measure flatness of large mirrors. We provide measurement results on a 1.6-m-diameter flat mirror to an accuracy of 50 nm rms of low-order Zernike aberrations. (C) 2008 Society of Photo-Optical Instrumentation Engineers. C1 [Yellowhair, Julius; Burge, James H.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Burge, James H.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Yellowhair, J (reprint author), Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87123 USA. EM jeyello@sandia.gov NR 6 TC 1 Z9 1 U1 1 U2 6 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD FEB PY 2008 VL 47 IS 2 AR 023604 DI 10.1117/1.2831131 PG 9 WC Optics SC Optics GA 281TV UT WOS:000254522700009 ER PT J AU Matsukawa, Y Osetsky, YN Stoller, RE Zinkle, SJ AF Matsukawa, Y. Osetsky, Y. N. Stoller, R. E. Zinkle, S. J. TI Mechanisms of stacking fault tetrahedra destruction by gliding dislocations in quenched gold SO PHILOSOPHICAL MAGAZINE LA English DT Article ID PLASTIC-FLOW LOCALIZATION; INDUCED DEFECT CLUSTERS; IRRADIATED COPPER; GLISSILE DISLOCATIONS; VACANCY CLUSTERS; FCC METALS; MICROSTRUCTURE; ACCUMULATION; DEFORMATION; SIMULATIONS AB The destruction processes of stacking fault tetrahedra (SFTs) induced by gliding dislocations were examined by transmission electron microscopy (TEM) in situ straining experiments for SFTs with edge lengths ranging from 10 to 50 nm. At least four distinct SFT destruction processes were identified: (1) consistent with a Kimura-Maddin model for both screw and 60 degrees dislocations, (2) stress-induced SIFT collapse into a triangular Frank loop, (3) partial annihilation leaving an apex portion and (4) complete annihilation. Process (4) was observed at room temperature only for small SFTs (similar to 10 nm); however, this process was also frequently observed for larger SFTs (similar to 30 nm) at higher temperature (similar to 853 K). When this process was induced, the dislocation always cross-slipped, indicating only screw dislocations can induce this process. C1 [Matsukawa, Y.; Osetsky, Y. N.; Stoller, R. E.; Zinkle, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Matsukawa, Y.] Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37996 USA. [Osetsky, Y. N.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Matsukawa, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM ym2@uiuc.edu RI Matsukawa, Yoshitaka/C-2274-2011; Stoller, Roger/H-4454-2011; OI Matsukawa, Yoshitaka/0000-0002-7888-3478; Zinkle, Steven/0000-0003-2890-6915; Osetskiy, Yury/0000-0002-8109-0030 NR 46 TC 26 Z9 27 U1 1 U2 33 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 1 PY 2008 VL 88 IS 4 BP 581 EP 597 DI 10.1080/14786430801898644 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 300PQ UT WOS:000255838100008 ER PT J AU Sjostrom, M Grilli, F Spreafico, S AF Sjostrom, M. Grilli, F. Spreafico, S. TI Modelling of a three-phase concentric HTS-cable SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 6th International Symposium on Hysteresis and Modeling Micromagnetics CY JUN 04-06, 2007 CL Naples, ITALY SP Univ Studi Napoli, Federico II, Univ Studi Sannio DE hysteresis; superconductors; Preisach model; power cable ID SUPERCONDUCTING CABLE AB We have considered a three-phase concentric high-T, superconducting (HTS)-cable with a copper shield neutral wire in a three-phase system. An equivalent circuit model describing the cable by the global quantities current and voltage has been developed, by which the effects of design parameters such as material, layer radii and pitch length can be investigated. The equivalent circuit consists of a nonlinear resistance, a hysteretic inductance (to model HTS), and an inductance (to model mutual inductances). The equivalent circuit is here extended with a by-pass resistance that models the silver matrix of the HTS tape. This enables to consider over-critical currents (i.e. beyond hysteresis saturation), whereby extra care must be taken for the numerical simulations. We have considered a design of fixed radii and have optimized the pitch length of each layer in order to have equal reactances for all phases. (c) 2007 Elsevier B.V. All rights reserved. C1 [Sjostrom, M.] Mid Sweden Univ, SE-85170 Sundsvall, Sweden. [Grilli, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Spreafico, S.] Premech SA, CH-6814 Cadempino, Switzerland. RP Sjostrom, M (reprint author), Mid Sweden Univ, SE-85170 Sundsvall, Sweden. EM m.sjostrom@icee.org NR 14 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 1 PY 2008 VL 403 IS 2-3 BP 405 EP 409 DI 10.1016/j.physb.2007.08.061 PG 5 WC Physics, Condensed Matter SC Physics GA 259BE UT WOS:000252913300045 ER PT J AU Bouchard, LS Sushkov, AO Budker, D Ford, JJ Lipton, AS AF Bouchard, L. -S. Sushkov, A. O. Budker, D. Ford, J. J. Lipton, A. S. TI Nuclear-spin relaxation of (207)Pb in ferroelectric powders SO PHYSICAL REVIEW A LA English DT Article ID LATTICE-RELAXATION; NMR AB Motivated by a recent proposal by Sushkov and co-workers [Phys. Rev. A 72, 034501 (2005); 73, 022107 (2006)] to search for a P,T-violating Schiff moment of the (207)Pb nucleus in a ferroelectric solid, we have carried out a high-field nuclear magnetic resonance study of the longitudinal and transverse spin relaxation of the lead nuclei from room temperature down to 10 K for powder samples of lead titanate (PT), lead zirconium titanate, and a PT monocrystal. For all powder samples and independently of temperature, transverse relaxation times were found to be T(2)approximate to 1.5 ms, while the longitudinal relaxation times exhibited a temperature dependence, with T(1) of over an hour at the lowest temperatures, decreasing to T(1)approximate to 7 s at room temperature. At high temperatures, the observed behavior is consistent with a two-phonon Raman process, while in the low-temperature limit, the relaxation appears to be dominated by a single-phonon (direct) process involving magnetic impurities. We discuss the implications of the results for the Schiff-moment search. C1 [Bouchard, L. -S.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sushkov, A. O.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Div Nucl Sci, Berkeley, CA 94720 USA. [Ford, J. J.; Lipton, A. S.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Bouchard, LS (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM louis.bouchard@gmail.com; alexsushkov@gmail.com; budker@berkeley.edu; Joseph.Ford@pnl.gov; AS.Lipton@pnl.gov NR 17 TC 7 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2008 VL 77 IS 2 AR 022102 DI 10.1103/PhysRevA.77.022102 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 271BM UT WOS:000253763900015 ER PT J AU Chiaverini, J Lybarger, WE AF Chiaverini, J. Lybarger, W. E., Jr. TI Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays SO PHYSICAL REVIEW A LA English DT Article ID ATOM CHIPS; STATE; COMPUTATION; MANIPULATION; ARCHITECTURE; REALIZATION; COMPUTER; DESIGN; SYSTEM; GATE AB We propose an architecture and methodology for large-scale quantum simulations using hyperfine states of trapped ions in an arbitrary-layout microtrap array with laserless interactions. An ion is trapped at each site, and the electrode structure provides for the application of single and pairwise evolution operators using only locally created microwave and radio-frequency fields. The avoidance of short-lived atomic levels during evolution effectively eliminates errors due to spontaneous scattering; this may allow scaling of quantum simulators based on trapped ions to much larger systems than currently estimated. Such a configuration may also be particularly appropriate for one-way quantum computing with trapped-ion cluster states. C1 [Chiaverini, J.; Lybarger, W. E., Jr.] Los Alamos Natl Lab, Appl Modern Phys Grp, Los Alamos, NM 87545 USA. [Lybarger, W. E., Jr.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Chiaverini, J (reprint author), Los Alamos Natl Lab, Appl Modern Phys Grp, MS D454, Los Alamos, NM 87545 USA. EM johnc@lanl.gov NR 58 TC 59 Z9 59 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2008 VL 77 IS 2 AR 022324 DI 10.1103/PhysRevA.77.022324 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 271BM UT WOS:000253763900051 ER PT J AU Humble, TS Grice, WP AF Humble, Travis S. Grice, Warren P. TI Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM; INFORMATION; PHOTONS; OPTICS; STATE AB We examine how spectral entanglement in polarization-entangled photon states generated from bulk-crystal, spontaneous parametric down-conversion affects the success of entanglement swapping and type-I fusion gates. We quantify the success of the entanglement swapping and fusion gates by calculating the bipartite concurrence and residual tangle, respectively, in terms of the joint spectral probability amplitudes of the initial broad-bandwidth polarization-entangled states. We find that both polarization-entanglement measures depend strongly on the initial spectral entanglement, as well as on the configuration of the independent sources. Specifically, when spectral differences correlate with polarization, the optimal source configuration is different for the two protocols. We conclude that this distinction is founded in how the underlying Bell-state measurement and quantum-erasure techniques respond differently to distinguishing spectral information. C1 [Humble, Travis S.; Grice, Warren P.] Oak Ridge Natl Lab, Ctr Engn Syst Adv Res, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Humble, TS (reprint author), Oak Ridge Natl Lab, Ctr Engn Syst Adv Res, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM humblets@orn1.gov; gricew@orn1.gov RI Grice, Warren/L-8466-2013; OI Grice, Warren/0000-0003-4266-4692 NR 34 TC 20 Z9 20 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2008 VL 77 IS 2 AR 022312 DI 10.1103/PhysRevA.77.022312 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 271BM UT WOS:000253763900039 ER PT J AU Zhaunerchyk, V Geppert, WD Osterdahl, F Larsson, M Thomas, RD Bahati, E Bannister, ME Fogle, MR Vane, CR AF Zhaunerchyk, V. Geppert, W. D. Osterdahl, F. Larsson, M. Thomas, R. D. Bahati, E. Bannister, M. E. Fogle, M. R. Vane, C. R. TI Dissociative recombination dynamics of the ozone cation SO PHYSICAL REVIEW A LA English DT Article ID ABSOLUTE CROSS-SECTIONS; BRANCHING RATIOS; INTERSTELLAR CLOUDS; DIELECTRONIC RECOMBINATION; IONS; EXCITATION; PHOTODISSOCIATION; FRACTIONS; PRODUCTS; STATES AB The dissociative recombination of the ozone cation has been studied at the heavy-ion storage ring CRYRING. The total cross section and branching fractions have been measured. The cross section from approximate to 0 eV to 0.2 eV follows a nearly E(-1) dependence, which was theoretically predicted to be a characteristic of the direct dissociative recombination mechanism. The thermal rate coefficient has been deduced from the cross section to be 7.37x10(-7)(T/300)(-0.55) cm(3) s(-1). The branching fraction analysis carried out at approximate to 0 eV interaction energy has shown a strong propensity (94%) to dissociate through the three-body channel. Due to the overwhelming dominance of this channel it has been investigated in more detail. Of the six energetically available three-body pathways only three are significantly populated, such that the production of O((1)S) is highly unfavored and all atomic oxygen fragments are predominantly formed in (3)P and (1)D states. Analysis of the breakup geometries has been performed by means of the Dalitz plot. It is observed that the molecules dissociating through the O((3)P)+O((3)P)+O((3)P) and O((3)P)+O((3)P)+O((1)D) channels have an open linear geometry where the cleavage of two valence bonds occurs preferentially in unison, while the O((3)P)+O((1)D)+O((1)D) breakup might proceed partly through a sequential mechanism. C1 [Zhaunerchyk, V.; Geppert, W. D.; Osterdahl, F.; Larsson, M.; Thomas, R. D.] Stockholm Univ, Dept Phys, Albanova Univ Ctr, SE-10691 Stockholm, Sweden. [Bahati, E.; Bannister, M. E.; Fogle, M. R.; Vane, C. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Zhaunerchyk, V (reprint author), Stockholm Univ, Dept Phys, Albanova Univ Ctr, SE-10691 Stockholm, Sweden. EM vz@physto.se RI Zhaunerchyk, Vitali/E-9751-2016; OI Bannister, Mark E./0000-0002-9572-8154 NR 65 TC 10 Z9 10 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2008 VL 77 IS 2 AR 022704 DI 10.1103/PhysRevA.77.022704 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 271BM UT WOS:000253763900069 ER PT J AU Alatas, A Said, AH Sinn, H Bortel, G Hu, MY Zhao, J Burns, CA Burkel, E Alp, EE AF Alatas, A. Said, A. H. Sinn, H. Bortel, G. Hu, M. Y. Zhao, J. Burns, C. A. Burkel, E. Alp, E. E. TI Atomic form-factor measurements in the low-momentum transfer region for Li, Be, and Al by inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-ION CORRELATION; CHARGE-DENSITY; ENERGY RESOLUTION; ALUMINUM; BERYLLIUM; APPROXIMATION; SPECTROSCOPY; DYNAMICS; PHONONS; LIQUIDS AB We report measurements of the atomic form factor of lithium, beryllium, and aluminum single crystals at low-momentum transfers (Q=1.6-50 nm(-1)) from the intensity of phonons observed by inelastic x-ray scattering. Comparing to Hartree-Fock calculations, the form factor deviates significantly in the case of lithium and beryllium around k(F). These deviations can be mostly understood on the basis of electron redistribution by a pseudopotential. The influence of multiple scattering due to coherent phonon scattering and possible deviations from the adiabatic approximation are also discussed. C1 [Alatas, A.; Said, A. H.; Sinn, H.; Bortel, G.; Zhao, J.; Alp, E. E.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bortel, G.] Hungarian Acad Sci, Res Inst Solid State Phys & Opt, Budapest, Hungary. [Hu, M. Y.] Carnegie Inst Washington, Argonne, IL 60439 USA. [Hu, M. Y.] HP CAT, Argonne, IL 60439 USA. [Said, A. H.; Burns, C. A.] Western Michigan Univ, Kalamazoo, MI 49008 USA. [Burkel, E.] Univ Rostock, D-18055 Rostock, Germany. RP Alatas, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alatas@aps.anl.gov NR 32 TC 4 Z9 4 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 064301 DI 10.1103/PhysRevB.77.064301 PG 7 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100035 ER PT J AU Alberi, K Blacksberg, J Bell, LD Nikzad, S Yu, KM Dubon, OD Walukiewicz, W AF Alberi, K. Blacksberg, J. Bell, L. D. Nikzad, S. Yu, K. M. Dubon, O. D. Walukiewicz, W. TI Band anticrossing in highly mismatched Sn(x)Ge(1-x) semiconducting alloys SO PHYSICAL REVIEW B LA English DT Article ID GAP AB We show that at dilute Sn concentrations (x < 10%), the composition dependence of the direct band gap and spin-orbit splitting energies of Sn(x)Ge(1-x) can be described by a valence band anticrossing model. Hybridization of the extended and localized p-like states of the Ge host matrix and the Sn minority atoms, respectively, leads to a restructuring of the valence band into E(+) and E(-) subbands. The notably large reduction in the band gap follows from an upward shift in the valence band edge by approximately 22 meV per x=0.01. These results demonstrate that like III-V and II-VI compound semiconductors, group IV elements may form highly mismatched alloys in which the band anticrossing phenomenon is responsible for their unique properties. C1 [Alberi, K.; Yu, K. M.; Dubon, O. D.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alberi, K.; Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Blacksberg, J.; Bell, L. D.; Nikzad, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Alberi, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Yu, Kin Man/J-1399-2012 OI Yu, Kin Man/0000-0003-1350-9642 NR 15 TC 46 Z9 46 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 7 AR 073202 DI 10.1103/PhysRevB.77.073202 PG 4 WC Physics, Condensed Matter SC Physics GA 271BP UT WOS:000253764200006 ER PT J AU Bei, H Gao, YF Shim, S George, EP Pharr, GM AF Bei, H. Gao, Y. F. Shim, S. George, E. P. Pharr, G. M. TI Strength differences arising from homogeneous versus heterogeneous dislocation nucleation SO PHYSICAL REVIEW B LA English DT Article ID ANISOTROPIC HALF-SPACES; INCIPIENT PLASTICITY; YIELD STRENGTH; MICRO-PILLARS; INDENTATION; NI3AL; NANOINDENTATION; DEFORMATION; DEPENDENCE; CRYSTALS AB We show that it is possible to distinguish between homogeneous and heterogeneous dislocation nucleation on the basis of differences in experimentally measured theoretical strengths. From nanoindentation tests, the critical shear stress for dislocation nucleation in two different Mo-alloy single crystals (Mo-3Nb and Mo-10Al-4Ni) is found to be similar to 1/8 of the shear modulus. The corresponding stress in uniaxially compressed Mo-10Al-4Ni micropillars is similar to 1/26 of the shear modulus. This strength difference is due to the higher critical stress required to nucleate a full dislocation loop homogeneously in the bulk as opposed to a half or quarter loop heterogeneously at a surface or edge. C1 [Bei, H.; Shim, S.; George, E. P.; Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Gao, Y. F.; Shim, S.; George, E. P.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Bei, H (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM ygao7@utk.edu RI Gao, Yanfei/F-9034-2010; George, Easo/L-5434-2014; OI Gao, Yanfei/0000-0003-2082-857X; Bei, Hongbin/0000-0003-0283-7990 NR 25 TC 79 Z9 80 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 060103 DI 10.1103/PhysRevB.77.060103 PG 4 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100003 ER PT J AU Chen, B Mukhopadhyay, S Halperin, WP Guptasarma, P Hinks, DG AF Chen, Bo Mukhopadhyay, Sutirtha Halperin, W. P. Guptasarma, Prasenjit Hinks, D. G. TI Evidence for intrinsic impurities in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+delta) from (17)O nuclear magnetic resonance SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-CRYSTALS; ATOMIC-SCALE; NMR; ZN; NI; TC; SUSCEPTIBILITY; SPECTROSCOPY; STATE; PROBE AB We have found that high quality crystals of Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi-2212) have intrinsic magnetic defects that depend on oxygen doping. Our (17)O nuclear magnetic resonance spectra provide evidence that local moments form in the CuO(2) plane in both normal and superconducting states. We suggest that these magnetic impurities are related to the electronic disorder that scanning tunneling microscopy experiments identify with the oxygen dopant atoms. C1 [Chen, Bo; Mukhopadhyay, Sutirtha; Halperin, W. P.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Guptasarma, Prasenjit] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA. [Hinks, D. G.] Argonne Natl Lab, Mat Sci & Technol Div, Argonne, IL 60439 USA. RP Chen, B (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RI Chen, Bo/F-3573-2015 NR 27 TC 9 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 5 AR 052508 DI 10.1103/PhysRevB.77.052508 PG 4 WC Physics, Condensed Matter SC Physics GA 271BN UT WOS:000253764000024 ER PT J AU Chen, SY Gong, XG Wei, SH AF Chen, Shiyou Gong, X. G. Wei, Su-Huai TI Ground-state structure of coherent lattice-mismatched zinc-blende A(1-x)B(x)C semiconductor alloys (x=0.25 and 0.75) SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; PHASE-DIAGRAMS; 1ST-PRINCIPLES CALCULATION; SPECIAL POINTS; BASIS-SET; DIAMOND; STRAIN AB Using valence force-field and first-principles total-energy calculations, we investigate the relative stability of possible ground-state structures, famatinite, Q8, and Q16, proposed in previous ground-state searches for coherent lattice-mismatched zinc-blende A(1-x)B(x)C (x=0.25 and 0.75) semiconductor alloys. Our total-energy calculations show that among all the alloys, the Q8 or Q16 are the possible ground-state structures with the lowest total energies, whereas the famatinite structure is not. The observed trends are explained in terms of strain and the Coulomb energy contributions in these lattice-mismatched semiconductor alloys. C1 [Chen, Shiyou; Gong, X. G.] Fudan Univ, Surface Sci Lab Natl Key, Shanghai 200433, Peoples R China. [Chen, Shiyou; Gong, X. G.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chen, SY (reprint author), Fudan Univ, Surface Sci Lab Natl Key, Shanghai 200433, Peoples R China. RI gong, xingao /B-1337-2010; gong, xingao/D-6532-2011 NR 25 TC 9 Z9 9 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 7 AR 073305 DI 10.1103/PhysRevB.77.073305 PG 4 WC Physics, Condensed Matter SC Physics GA 271BP UT WOS:000253764200015 ER PT J AU Chen, XQ Fu, CL Podloucky, R AF Chen, Xing-Qiu Fu, C. L. Podloucky, R. TI Bonding and strength of solid nitrogen in the cubic gauche (cg-N) structure SO PHYSICAL REVIEW B LA English DT Article ID POLYMERIC NITROGEN; HIGH-PRESSURES; ELECTRON-GAS; TRANSFORMATION; DIAMOND; ENERGY; CARBON; STATE; GPA AB Recently, the unusual high-pressure cubic gauche structure of solid nitrogen (cg-N) was experimentally synthesized. Our first-principles calculations reveal that cg-N represents a new class of covalent solids in which the atoms are threefold coordinated, yet the structure is stabilized by the presence of near-tetrahedral sp(3)-hybridized electronic states. This bonding scheme results in a strong covalency, exceptional mechanical properties, and the stabilization of cg-N as a high-energy-capacity material. The cg-N is an insulator with a wide gap that is nearly constant over a wide pressure range. The mechanical failure mode in cg-N is dominated by the shear type, and the calculated (110) < 1 $(1) over bar $0 > shear strength of 41.3 GPa (at which the lattice becomes unstable) sets an upper bound for its ideal strength. This shear-induced structural instability is associated with the structural transformation from the cg-N structure to the monoclinic structure. C1 [Chen, Xing-Qiu; Fu, C. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Podloucky, R.] Univ Vienna, Inst Phys Chem, A-1090 Vienna, Austria. RP Chen, XQ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM chenx@ornl.gov NR 31 TC 20 Z9 21 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 064103 DI 10.1103/PhysRevB.77.064103 PG 6 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100016 ER PT J AU Drichko, IL Dyakonov, AM Smirnov, IY Suslov, AV Galperin, YM Vinokur, V Myronov, M Mironov, OA Leadley, DR AF Drichko, I. L. Dyakonov, A. M. Smirnov, I. Yu. Suslov, A. V. Galperin, Y. M. Vinokur, V. Myronov, M. Mironov, O. A. Leadley, D. R. TI Magnetotransport in low-density p-Si/SiGe heterostructures: From metal through hopping insulator to Wigner glass SO PHYSICAL REVIEW B LA English DT Article ID HIGH MAGNETIC-FIELDS; ELECTRON-GAS; CONDUCTIVITY; FREQUENCY; PHASE; DYNAMICS; CRYSTAL; SYSTEMS; TRANSITION; RESONANCE AB We study dc and ac transport in low-density p-Si/SiGe heterostructures at low temperatures and in a broad domain of magnetic fields up to 18 T. Complex ac conductance is determined from simultaneous measurement of velocity and attenuation of a surface acoustic wave propagating in close vicinity of the two-dimensional hole layer. The observed behavior of dc and ac conductances is interpreted as an evolution from metallic conductance at B=0 through hopping between localized states in intermediate magnetic fields (close to the plateau of the integer quantum Hall effect corresponding to the Landau-level filling factor nu=1) to formation of the Wigner glass in the extreme quantum limit (B greater than or similar to 14, T less than or similar to 0.8 K). C1 [Drichko, I. L.; Dyakonov, A. M.; Smirnov, I. Yu.; Galperin, Y. M.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Suslov, A. V.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Galperin, Y. M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Galperin, Y. M.] Univ Oslo, Ctr Adv Mat & Nanotechnol, N-0316 Oslo, Norway. [Galperin, Y. M.; Vinokur, V.] Argonne Natl Lab, Argonne, IL 60439 USA. [Myronov, M.] Musashi Inst Technol, Setagaya Ku, Tokyo 1580082, Japan. [Mironov, O. A.] Univ Warwick, Warwick SEMINANO R&D Ctr, Coventry CV4 7EZ, W Midlands, England. [Leadley, D. R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Drichko, IL (reprint author), Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. EM irina.l.drichko@mail.ioffe.ru RI Leadley, David/D-4651-2011; Smirnov, Ivan/E-4685-2014; Suslov, Alexey/M-7511-2014; OI Leadley, David/0000-0002-7185-2046; Suslov, Alexey/0000-0002-2224-153X; Mironov, Oleg A./0000-0002-9787-944X NR 35 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 8 AR 085327 DI 10.1103/PhysRevB.77.085327 PG 10 WC Physics, Condensed Matter SC Physics GA 271BQ UT WOS:000253764300081 ER PT J AU Ehlers, G Gardner, JS Qiu, Y Fouquet, P Wiebe, CR Balicas, L Zhou, HD AF Ehlers, G. Gardner, J. S. Qiu, Y. Fouquet, P. Wiebe, C. R. Balicas, L. Zhou, H. D. TI Dynamic spin correlations in stuffed spin ice Ho2+xTi2-xO7-delta SO PHYSICAL REVIEW B LA English DT Article ID ZERO-POINT ENTROPY; MAGNETIC-PROPERTIES; NEUTRON; RELAXATION; HO2TI2O7; FERROMAGNET; FRUSTRATION; MECHANISMS; Y2MO2O7; MODELS AB The magnetic correlations in "stuffed" spin ice Ho2+xTi2-xO7-delta have been characterized using quasielastic neutron scattering. At temperatures above 1 K, these correlations are short ranged in nature and dynamic on a picosecond to nanosecond time scale. As for the case of pure spin ice Ho2Ti2O7, one can identify, above the freezing temperature, a quantum relaxation regime which is enhanced as it persists to even higher temperatures, T similar to 30-40 K, than in the parent compound. C1 [Ehlers, G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gardner, J. S.] Indiana Univ, Bloomington, IN 47408 USA. [Gardner, J. S.; Qiu, Y.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Fouquet, P.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Wiebe, C. R.; Balicas, L.; Zhou, H. D.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Wiebe, C. R.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. RP Ehlers, G (reprint author), Oak Ridge Natl Lab, Bldg 8600, Oak Ridge, TN 37831 USA. RI Fouquet, Peter/B-5212-2008; Gardner, Jason/A-1532-2013; Ehlers, Georg/B-5412-2008; Zhou, Haidong/O-4373-2016 OI Fouquet, Peter/0000-0002-5542-0059; Ehlers, Georg/0000-0003-3513-508X; NR 44 TC 8 Z9 8 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 5 AR 052404 DI 10.1103/PhysRevB.77.052404 PG 4 WC Physics, Condensed Matter SC Physics GA 271BN UT WOS:000253764000012 ER PT J AU Ellis, DS Hill, JP Wakimoto, S Birgeneau, RJ Casa, D Gog, T Kim, YJ AF Ellis, D. S. Hill, J. P. Wakimoto, S. Birgeneau, R. J. Casa, D. Gog, T. Kim, Young-June TI Charge-transfer exciton in La(2)CuO(4) probed with resonant inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article ID MOTT-HUBBARD INSULATORS; ELECTRONIC-STRUCTURE; EXCITATIONS; SR2CUO2CL2; SPECTRA; SPECTROSCOPY; OXIDES; PLANE; MODEL AB We report a high-resolution resonant inelastic x-ray scattering study of La(2)CuO(4). A number of spectral features are identified that were not clearly visible in earlier lower-resolution data. The momentum dependence of the spectral weight and the dispersion of the lowest-energy excitation across the insulating gap have been measured in detail. The temperature dependence of the spectral features was also examined. The observed charge-transfer edge shift, along with the low dispersion of the first charge-transfer excitation, are attributed to the lattice motion being coupled to the electronic system. In addition, we observe a dispersionless feature at 1.8 eV, which is associated with a d-d crystal field excitation. C1 [Ellis, D. S.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Hill, J. P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Wakimoto, S.] Japan Atom Energy Res Inst, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Casa, D.; Gog, T.] Argonne Natl Lab, Adv Photon Source, CMC XOR, Argonne, IL 60439 USA. RP Ellis, DS (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM yjkim@physics.utoronto.ca RI Hill, John/F-6549-2011; Kim, Young-June /G-7196-2011; Casa, Diego/F-9060-2016 OI Kim, Young-June /0000-0002-1172-8895; NR 34 TC 26 Z9 26 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 060501 DI 10.1103/PhysRevB.77.060501 PG 4 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100008 ER PT J AU Farmer, JW Cowan, DL Kornecki, M AF Farmer, J. W. Cowan, D. L. Kornecki, M. TI Collective pinning model of the mixed state in YBa(2)Cu(3)O(7-delta): Critical currents and flux creep SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; MAGNETIC-RELAXATION; II SUPERCONDUCTORS; CRYSTALS; YBA2CU3O6.95; PHYSICS; DEPENDENCE; DEFECTS; DENSITY; LATTICE AB Magnetic hysteresis and flux creep measurements in single crystal samples of YBa(2)Cu(3)O(7-delta) (YBCO) are presented for a wide range of B,T phase space. Some of these samples can be described as weakly or collectively pinned. For these, over a large portion of this phase space, the flux creep can be described in terms of thermally activated single-fluxoid motion. A simple model based on maximizing the pinning energy of a fluxoid segment provides a good, semiquantitative picture of the low-temperature data, where the experimentally measured critical current density j is proportional to 1/T and the activation barrier height is proportional to j(-mu), where mu=1. In this model individual fluxoids are pinned by stochastic fluctuations in defect concentration, and are driven over the pinning barriers by critical currents and thermal activation. Incorporating flux lattice elasticity into this simple model leads to new predictions for the low-temperature data and allows the simple model to be extended to higher temperature. There are two distinct effects, both of which can be put in the form of effective current densities. One effective current density j(s) arises from direct fluxoid-fluxoid repulsion, and the second effective current density j(r) arises from fluxoid relaxation. In YBCO at 7 K and 2 T, where the measured critical current density is j=8.9x10(9) A/m(2), we find j(s)=0.57x10(9) A/m(2) (6%) and j(r)=-2.1x10(9) A/m(2) (-20%). We present a discussion of their origin that leads to plausible temperature and field dependences. The model accounts for the rapid drop of j(T) with increasing temperature, the peak effect in j(B) at high temperature, and the temperature and field dependence of the "critical exponent" mu. Thermal fluxoid vibrations play an important role in the pinning, and we find effects consistent with calculations in the literature. The model postulates that fluxoid motion takes place by hopping in segments on a characteristic length scale l(model). In the model we find l(model)=104 nm at 7 K and 2 T. A completely independent measurement from the creep-derived four-volume VX yields a length l(VX)=102 +/- 5 nm at the same temperature and field. Excellent agreement between the two independently determined lengths persists over a wide range of temperatures. A failure of these two lengths to agree marks the boundary for single-fluxoid hopping, and we present a diagram of the pinning regimes in B,T phase space. From the measured prefactor of thermally activated creep at 10 K and 2 K we infer a value for the attempt frequency f(a)=8.5x10(10) s(-1). This value is in reasonable agreement with a published theoretical calculation of the relaxation frequency for overdamped fluxoids in an Abrikosov lattice. Finally, based on these data we estimate the mass per unit length of a YBCO fluxoid segment, and compare our result with Suhl's theory to obtain a quasiparticle effective mass of 30 free electron masses. C1 [Farmer, J. W.; Cowan, D. L.] Univ Missouri, Res Reactor, Columbia, MO 65211 USA. [Farmer, J. W.; Cowan, D. L.] Univ Missouri, Dept Phys, Columbia, MO 65211 USA. [Kornecki, M.] USA, Res Lab, Weap & Mat Res, Aberdeen Proving Ground, MD 21006 USA. [Kornecki, M.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Farmer, JW (reprint author), Univ Missouri, Res Reactor, Columbia, MO 65211 USA. NR 40 TC 2 Z9 2 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 5 AR 054514 DI 10.1103/PhysRevB.77.054514 PG 11 WC Physics, Condensed Matter SC Physics GA 271BN UT WOS:000253764000098 ER PT J AU Fehske, H Wellein, G Loos, J Bishop, AR AF Fehske, H. Wellein, G. Loos, J. Bishop, A. R. TI Localized polarons and doorway vibrons in finite quantum structures SO PHYSICAL REVIEW B LA English DT Article ID OPTICAL-ABSORPTION; HUBBARD-MODEL; ELECTRON AB We consider transport through finite quantum systems such as quantum barriers, wells, dots, and junctions, coupled to local vibrational modes in the quantal regime. As a generic model, we study the Holstein-Hubbard Hamiltonian with site-dependent potentials and interactions. Depending on the barrier height to electron-phonon coupling strength ratio and the phonon frequency, we find distinctly opposed behaviors: vibration-mediated tunneling or intrinsic localization of (bi)polarons. These regimes are strongly manifested in the density correlations, mobility, and optical response calculated by exact numerical techniques. C1 [Fehske, H.] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany. [Wellein, G.] Univ Erlangen Nurnberg, Reg Rechenzentrum Erlangen, D-91058 Erlangen, Germany. [Loos, J.] Acad Sci Czech Republic, Inst Phys, CR-16200 Prague, Czech Republic. [Bishop, A. R.] Los Alamos Natl Lab, Theory Simulat & Computat Directorate, Los Alamos, NM 87545 USA. RP Fehske, H (reprint author), Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany. NR 35 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 8 AR 085117 DI 10.1103/PhysRevB.77.085117 PG 6 WC Physics, Condensed Matter SC Physics GA 271BQ UT WOS:000253764300034 ER PT J AU Francoeur, S Tixier, S Young, E Tiedje, T Mascarenhas, A AF Francoeur, S. Tixier, S. Young, E. Tiedje, T. Mascarenhas, A. TI Bi isoelectronic impurities in GaAs SO PHYSICAL REVIEW B LA English DT Article ID BAND-GAP; GALLIUM PHOSPHIDE; ANTISITE DEFECTS; V-SEMICONDUCTORS; CHEMICAL TRENDS; NITROGEN; LUMINESCENCE; PHOTOLUMINESCENCE; PRESSURE; ALLOYS AB GaAs(1-x)Bi(x) is a mixed-anion semiconductor alloy. In the As-rich regime (0.4% 4p transition features is proposed and the anisotropy in the intensities of the 1s -> 3d transition features is explained adequately by a one-electron theory calculation of the electric quadrupole transition terms in the absorption coefficient. C1 [Liang, Gan] Sam Houston State Univ, Dept Phys, Austin, TX 77341 USA. [Park, Keeseong; Markert, John T.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Li, Jiying; Vaknin, David] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Li, Jiying; Vaknin, David] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Benson, Ronald E.] Rigaku Amer Corp, The Woodlands, TX 77380 USA. [Croft, Mark C.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Croft, Mark C.] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. RP Liang, G (reprint author), Sam Houston State Univ, Dept Phys, Austin, TX 77341 USA. EM phy_gnl@shsu.edu RI Park, Keeseong/B-2435-2012; Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 NR 71 TC 50 Z9 50 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 064414 DI 10.1103/PhysRevB.77.064414 PG 12 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100051 ER PT J AU Manley, ME Lynn, JW Chen, Y Lander, GH AF Manley, Michael E. Lynn, Jeffrey W. Chen, Ying Lander, Gerard H. TI Intrinsically localized mode in alpha-U as a precursor to a solid-state phase transition SO PHYSICAL REVIEW B LA English DT Article ID URANIUM; TRANSFORMATIONS; CRYSTALS; ENERGY AB The high-temperature behavior of an intrinsically localized mode (ILM) in alpha-U was measured using inelastic neutron scattering. The mode, which forms above 450 K on the [010] boundary, becomes undetectable at 675 K. Thermodynamic and transport anomalies that develop with the ILM persist to temperatures above 675 K, but mechanical and electronic anomalies show changes at both 450 and 675 K. Anisotropic thermal expansion shows that ILMs drive the structure toward hexagonal symmetry. On the [1/2 1/2 0] zone boundary, which becomes equivalent to [010] under a hexagonal distortion, a normal mode shows a softening coincident with the disappearance of the ILMs. We argue that the symmetry local to the ILMs becomes hexagonal above 600 K, causing ILMs to hop between equivalent orientations and putting the structure on a path toward the high-temperature gamma phase (bcc). C1 [Manley, Michael E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Lynn, Jeffrey W.; Chen, Ying] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, Ying] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Lander, Gerard H.] Commiss European Communities, JRC, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. RP Manley, ME (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Manley, Michael/N-4334-2015 NR 21 TC 14 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 5 AR 052301 DI 10.1103/PhysRevB.77.052301 PG 4 WC Physics, Condensed Matter SC Physics GA 271BN UT WOS:000253764000008 ER PT J AU Metzler, RA Zhou, D Abrecht, M Chiou, JW Guo, JH Ariosa, D Coppersmith, SN Gilbert, PUPA AF Metzler, Rebecca A. Zhou, Dong Abrecht, Mike Chiou, Jau-Wern Guo, Jinghua Ariosa, Daniel Coppersmith, Susan N. Gilbert, P. U. P. A. TI Polarization-dependent imaging contrast in abalone shells SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC LINEAR DICHROISM; ARTIFICIAL NACRE; FLAT PEARLS; X-PEEM; MICROARCHITECTURE; ORIENTATION; INTERFACE; ARAGONITE; SURFACE; FILMS AB Many biominerals contain micro- or nanocrystalline mineral components, organized accurately into architectures that confer the material with improved mechanical performance at the macroscopic scale. We present here an effect which enables us to observe the relative orientation of individual crystals at the submicron scale. We call it polarization-dependent imaging contrast (PIC), as it is an imaging development of the well-known x-ray linear dichroism. Most importantly, PIC is obtained in situ, in biominerals. We present here PIC in the prismatic and nacreous layers of Haliotis rufescens (red abalone), confirm it in geologic calcite and aragonite, and corroborate the experimental data with theoretical simulated spectra. PIC reveals different and unexpected aspects of nacre architecture that have inspired theoretical models for nacre formation. C1 [Metzler, Rebecca A.; Zhou, Dong; Coppersmith, Susan N.; Gilbert, P. U. P. A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abrecht, Mike] Univ Wisconsin, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. [Chiou, Jau-Wern] Natl Univ Kaohsiung, Dept Appl Phys, Kaohsiung 81148, Taiwan. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ariosa, Daniel] Ecole Polytech Fed Lausanne, Inst Phys Complex Matter, CH-1015 Lausanne, Switzerland. RP Gilbert, PUPA (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM pupa@physics.wisc.edu RI Zhou, Dong/A-2675-2011; Gilbert, Pupa/A-6299-2010 OI Gilbert, Pupa/0000-0002-0139-2099 NR 35 TC 25 Z9 25 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 064110 DI 10.1103/PhysRevB.77.064110 PG 9 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100023 ER PT J AU Moussa, JE Cohen, ML AF Moussa, Jonathan E. Cohen, Marvin L. TI Constraints on T(c) for superconductivity in heavily boron-doped diamond SO PHYSICAL REVIEW B LA English DT Article ID STRONG-COUPLED SUPERCONDUCTORS; TRANSITION-TEMPERATURE; GRAPHITE STRUCTURE AB Calculations of electron-phonon coupling are performed for boron-doped diamond structures without electronically compensating defects over a wide range of boron concentration. The effects of boron substitutional disorder are incorporated through the use of randomly generated supercells, leading to a disorder-broadened distribution of results. After averaging over disorder, this study predicts a maximum bulk T(c) near 55 K for boron concentrations between 20% and 30%, assuming the validity of the simple structural model used and a Coulomb pseudopotential of mu*=0.12. Considering only the largest electron-phonon coupling values of the distribution, superconductivity may still percolate through the material at higher temperatures, up to 80 K, through the regions of large coupling. A synthesis path is proposed to experimentally access this class of materials. C1 [Moussa, Jonathan E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Moussa, JE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. EM jmoussa@civet.berkeley.edu NR 45 TC 33 Z9 33 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 064518 DI 10.1103/PhysRevB.77.064518 PG 8 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100088 ER PT J AU Orlov, AO Luo, XN Yadavalli, KK Beloborodov, IS Snider, GL AF Orlov, Alexei O. Luo, Xiangning Yadavalli, Kameshwar K. Beloborodov, I. S. Snider, Gregory L. TI Using granular film to suppress charge leakage in a single-electron latch SO PHYSICAL REVIEW B LA English DT Article ID DOT CELLULAR-AUTOMATA; SMALL TUNNEL-JUNCTIONS; ON-CHIP RESISTORS; COULOMB-BLOCKADE; COUNTING ERRORS; PUMP; ACCURACY; DEVICES; FLUCTUATIONS; MICROSTRIPS AB A single-electron latch is a device that can be used as a building block for quantum-dot cellular automata circuits. It consists of three nanoscale metal "dots" connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ("latch") information represented by the location of a single electron within the three dots. To obtain latching, the undesirable leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However, this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits. C1 [Orlov, Alexei O.; Luo, Xiangning; Yadavalli, Kameshwar K.; Snider, Gregory L.] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA. [Yadavalli, Kameshwar K.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Beloborodov, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Beloborodov, I. S.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Orlov, AO (reprint author), Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA. NR 46 TC 2 Z9 2 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 7 AR 075414 DI 10.1103/PhysRevB.77.075414 PG 7 WC Physics, Condensed Matter SC Physics GA 271BP UT WOS:000253764200133 ER PT J AU Pan, W Xia, JS Stormer, HL Tsui, DC Vicente, C Adams, ED Sullivan, NS Pfeiffer, LN Baldwin, KW West, KW AF Pan, W. Xia, J. S. Stormer, H. L. Tsui, D. C. Vicente, C. Adams, E. D. Sullivan, N. S. Pfeiffer, L. N. Baldwin, K. W. West, K. W. TI Experimental studies of the fractional quantum Hall effect in the first excited Landau level SO PHYSICAL REVIEW B LA English DT Article ID COMPOSITE-FERMION; MAGNETIC-FIELD; 2-DIMENSIONAL ELECTRONS; FILLING FACTOR; GROUND-STATE; NU=5/2; PHASE; EXCITATIONS; TRANSITION; TRANSPORT AB We present a spectrum of experimental data on the fractional quantum Hall effect (FQHE) states in the first excited Landau level, obtained in an ultrahigh mobility two-dimensional electron system and at very low temperatures, and report the following results. For the even-denominator FQHE states, the sample dependence of the nu=5/2 state clearly shows that disorder plays an important role in determining the energy gap at nu=5/2. For the developing nu=19/8 FQHE state, the temperature dependence of the R-xx minimum implies an energy gap of similar to 5 mK. The energy gaps of the odd-denominator FQHE states at nu=7/3 and 8/3 also increase with decreasing disorder, similar to the gap at 5/2 state. Unexpectedly and contrary to earlier data on lower mobility samples, in this ultrahigh quality specimen, the nu=13/5 state is missing, while its particle-hole conjugate state, the nu=12/5 state, is a fully developed FQHE state. We speculate that this disappearance might indicate a spin polarization of the nu=13/5 state. Finally, the temperature dependence is studied for the two-reentrant integer quantum Hall states around nu=5/2 and is found to show a very narrow temperature range for the transition from quantized to classical value. C1 [Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Xia, J. S.; Vicente, C.; Adams, E. D.; Sullivan, N. S.] Univ Florida, Gainesville, FL 32611 USA. [Xia, J. S.; Vicente, C.; Adams, E. D.; Sullivan, N. S.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Stormer, H. L.] Columbia Univ, New York, NY 10027 USA. [Stormer, H. L.; Pfeiffer, L. N.; Baldwin, K. W.; West, K. W.] Alcatel Lucent Inc, Bell Labs, Murray Hill, NJ 07974 USA. [Tsui, D. C.] Princeton Univ, Princeton, NJ 08544 USA. RP Pan, W (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 66 TC 85 Z9 85 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 7 AR 075307 DI 10.1103/PhysRevB.77.075307 PG 7 WC Physics, Condensed Matter SC Physics GA 271BP UT WOS:000253764200087 ER PT J AU Saha, KK Henk, J Ernst, A Bruno, P AF Saha, Kamal K. Henk, Juergen Ernst, Arthur Bruno, Patrick TI Multiple-scattering theoretical approach to scanning tunneling microscopy SO PHYSICAL REVIEW B LA English DT Article ID APPARENT BARRIER HEIGHT; KOHN-ROSTOKER METHOD; COHERENT-POTENTIAL APPROXIMATION; ANGLE-RESOLVED PHOTOEMISSION; GREENS-FUNCTION METHOD; ELECTRONIC-STRUCTURE; METAL-SURFACES; LATTICE-RELAXATION; LAYERED SYSTEMS; BAND-STRUCTURE AB An approach for computing scanning tunneling microscopy from first principles is proposed. Within the framework of Landauer-Buttiker theory, the conductance of a scanning tunneling microscope (STM) is obtained in terms of real-space Green functions, thereby taking into account incoherent tunneling processes and the tip-sample interaction but avoiding repeated STM tips as in a supercell approach. The approach is formulated within multiple-scattering theory, especially in the Korringa-Kohn-Rostoker method, but can be implemented in any Green-function method for electronic-structure calculations. Extensive tests are presented for planar and STM tunnel junctions involving Au(111) electrodes. C1 [Saha, Kamal K.; Henk, Juergen; Ernst, Arthur; Bruno, Patrick] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Saale, Germany. RP Saha, KK (reprint author), Oak Ridge Natl Lab, CSMD, Oak Ridge, TN 37831 USA. EM sahakk@ornl.gov RI Bruno, Patrick/C-9159-2009; Ernst, Arthur/K-1836-2012 OI Bruno, Patrick/0000-0002-2574-1943; NR 91 TC 7 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 8 AR 085427 DI 10.1103/PhysRevB.77.085427 PG 12 WC Physics, Condensed Matter SC Physics GA 271BQ UT WOS:000253764300110 ER PT J AU Singh, NK Pecharsky, VK Gschneidner, KA AF Singh, Niraj K. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Unusual magnetic properties of (Er(1-x)Gd(x))(5)Si(4) compounds SO PHYSICAL REVIEW B LA English DT Article ID RARE-EARTH; INTERMETALLIC COMPOUNDS; ELECTRICAL-RESISTANCE; NEEL TEMPERATURE; HEAT-CAPACITY; TRANSITION; ALLOYS; GD-5(SI2GE2); FIELD; REFRIGERATION AB Magnetic and magnetocaloric properties of polycrystalline (Er(1-x)Gd(x))(5)Si(4) with x=0.1 and 0.25 have been studied. The temperature dependencies of the dc magnetization and ac susceptibility indicate two magnetic transitions: the high temperature transitions are antiferromagnetic in character, whereas the low temperature ones are of ferromagnetic nature. The isothermal magnetization of these compounds shows metamagneticlike transitions at 5 K and no saturation in fields up to 70 kOe. Time dependencies of the magnetization data below the Neel temperature exhibit unusually strong relaxation effects with logarithmic time dependence. The ac susceptibility data reveal that magnetic state of these compounds is distinctly different from spin glasses and the relaxation behavior seen in the magnetization data is a consequence of complex magnetic interactions. The existence of complex magnetic interactions leads to an easy formation of field induced short range ferromagnetic correlations in the paramagnetic state and greatly affects both the magnetic and magnetocaloric properties of these compounds. C1 [Singh, Niraj K.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Mat & Engn Phys Program, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci, Ames, IA 50011 USA. RP Singh, NK (reprint author), Iowa State Univ, Mat & Engn Phys Program, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM vitkp@ameslab.gov NR 52 TC 18 Z9 18 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 5 AR 054414 DI 10.1103/PhysRevB.77.054414 PG 10 WC Physics, Condensed Matter SC Physics GA 271BN UT WOS:000253764000056 ER PT J AU Soderlind, P AF Soderlind, Per TI Quantifying the importance of orbital over spin correlations in delta-Pu within density-functional theory SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; MEAN-FIELD THEORY; ELECTRONIC-STRUCTURE; TRANSITION-METALS; ACTINIDE METALS; PLUTONIUM; CONFIGURATION; MAGNETISM; PRESSURE; SYSTEMS AB Spin and orbital electron correlations are known to be important when treating the high-temperature delta phase of plutonium within the framework of density-functional theory (DFT). One of the more successful attempts to model delta-Pu with this approach [P. Soderlind, Europhys. Lett. 55, 525 (2001); P. Soderlind , Phys. Rev. B 66, 205109 (2002); P. Soderlind and B. Sadigh, Phys. Rev. Lett. 92, 185702 (2004)] has included condensed-matter generalizations of Hund's three rules for atoms, i.e., spin polarization, orbital polarization, and spin-orbit coupling. Here, we perform a quantitative analysis of these interactions relative rank for the bonding and electronic structure in delta-Pu within the DFT model. The result is somewhat surprising in that spin-orbit coupling and orbital polarization are far more important than spin polarization for delta-Pu. We show that these orbital correlations on their own, without any formation of magnetic spin moments, can account for the low atomic density of the delta phase with a reasonable equation of state. In addition, this unambiguously nonmagnetic treatment produces a one-electron spectra with resonances close to the Fermi level consistent with experimental valence band photoemission spectra. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Soderlind, P (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. NR 45 TC 34 Z9 34 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 8 AR 085101 DI 10.1103/PhysRevB.77.085101 PG 5 WC Physics, Condensed Matter SC Physics GA 271BQ UT WOS:000253764300018 ER PT J AU Tan, L Kreyssig, A Nandi, S Jia, S Lee, YB Lang, JC Islam, Z Lograsso, TA Schlagel, DL Pecharsky, VK Gschneidner, KA Canfield, PC Harmon, BN McQueeney, RJ Goldman, AI AF Tan, L. Kreyssig, A. Nandi, S. Jia, S. Lee, Y. B. Lang, J. C. Islam, Z. Lograsso, T. A. Schlagel, D. L. Pecharsky, V. K. Gschneidner, K. A., Jr. Canfield, P. C. Harmon, B. N. McQueeney, R. J. Goldman, A. I. TI Spin-flop transition in Gd(5)Ge(4) observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy SO PHYSICAL REVIEW B LA English DT Article ID ELECTRICAL-RESISTANCE; GD-5(SI2GE2); GADOLINIUM; REPRESENTATION; FIELD AB X-ray resonant magnetic scattering was employed to study a fully reversible spin-flop transition in orthorhombic Gd(5)Ge(4) and to elucidate details of the magnetic structure in the spin-flop phase. The orientation of the moments at the three Gd sites flop 90 degrees from the c axis to the a axis when a magnetic field, H(sf)=9 kOe, is applied along the c axis at T=9 K. The magnetic space group changes from Pnm(')a to Pn(')m(')a(') for all three Gd sublattices. The magnetic anisotropy energy determined from experimental measurements is in good agreement with the calculations of the magnetic anisotropy based on the spin-orbit coupling of the conduction electrons and an estimation of the dipolar interactions anisotropy. No significant magnetostriction effects were observed at the spin-flop transition. C1 [Tan, L.; Kreyssig, A.; Nandi, S.; Jia, S.; Lee, Y. B.; Lograsso, T. A.; Schlagel, D. L.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Canfield, P. C.; Harmon, B. N.; McQueeney, R. J.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Tan, L.; Kreyssig, A.; Nandi, S.; Jia, S.; Lee, Y. B.; Canfield, P. C.; Harmon, B. N.; McQueeney, R. J.; Goldman, A. I.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Lang, J. C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Goldman, AI (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM goldman@ameslab.gov RI Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016 OI McQueeney, Robert/0000-0003-0718-5602 NR 30 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 064425 DI 10.1103/PhysRevB.77.064425 PG 8 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100062 ER PT J AU Taylor, OJ Carrington, A Schlueter, JA AF Taylor, O. J. Carrington, A. Schlueter, J. A. TI Superconductor-insulator phase separation induced by rapid cooling of kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br SO PHYSICAL REVIEW B LA English DT Article ID ORGANIC SUPERCONDUCTORS; TRANSITION-TEMPERATURE; PENETRATION DEPTH AB We present measurements of the low-temperature specific heat of single crystals of kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br as a function of the cooling rate through the glasslike structure transition at similar to 80 K. We find that rapid cooling produces a small (less than or similar to 4%) decrease in the superconducting transition temperature accompanied by a substantial (up to 50%) decrease in the normal-state electronic specific heat. A natural explanation of our data is that there is a macroscopic phase separation between superconducting and insulating regions in rapidly cooled samples. C1 [Taylor, O. J.; Carrington, A.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Taylor, OJ (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. NR 23 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 060503 DI 10.1103/PhysRevB.77.060503 PG 4 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100010 ER PT J AU Tsvelik, AM AF Tsvelik, A. M. TI Friedel oscillations of density of states in a one-dimensional Mott insulator and incommensurate charge-density wave or superconductor SO PHYSICAL REVIEW B LA English DT Article ID PARTICLE AB Oscillations of local density of states generated by a single scalar impurity potential are calculated for one-dimensional systems with dynamically generated charge or spin gap. At zero temperature, the oscillations develop at finite wave vector (pi for the Mott insulator and 2k(F) for incommensurate charge-density wave or superconductor) and at frequencies larger than the soliton spectral gap m. Their amplitude has a broad maximum at omega approximate to 3m, where m is the gap magnitude. C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. NR 15 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 7 AR 073402 DI 10.1103/PhysRevB.77.073402 PG 4 WC Physics, Condensed Matter SC Physics GA 271BP UT WOS:000253764200025 ER PT J AU van der Laan, G Arenholz, E Chopdekar, RV Suzuki, Y AF van der Laan, Gerrit Arenholz, Elke Chopdekar, Rajesh V. Suzuki, Yuri TI Influence of crystal field on anisotropic x-ray magnetic linear dichroism at the Co2+ L-2,L-3 edges SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL COMPOUNDS; 2P ABSORPTION-SPECTRA; FERRITE THIN-FILMS; SPIN VALVES; COFE2O4; COO; PHOTOEMISSION; FE3O4; PROOF; OXIDE AB We expand the previous theoretical treatment for the strong anisotropy of the x-ray magnetic linear dichroism (XMLD) in a crystal field of cubic point-group symmetry to the more general case of tetragonal point-group symmetry. For the cubic symmetry, there are only two fundamental spectra, which have the same shape for rotation of either linear light polarization E or magnetization direction H. For the tetragonal symmetry, the XMLD is a linear combination of four fundamental spectra, with a different shape for linear dichroism (rotation of E) and magnetic dichroism (rotation of H). However, only one extra spectrum is required to relate the linear and magnetic dichroism. The validity of the theory is demonstrated using a CoFe2O4(011) thin film on SrTiO3, which has both tetrahedrally distorted symmetry and large magnetic anisotropy. The XMLD at the Co L-2,L-3 edges was found to exhibit a strong dependence on the relative orientation of external magnetic field, x-ray polarization, and crystalline axes. The large variations in the peak structure as a function of angle are not caused by the spin-orbit-induced magnetocrystalline anisotropy but arise from the symmetry of the measurement geometry. The results are compared with calculated spectra using atomic multiplet theory for Co2+ d(7)-> 2p(5)d(8) in octahedral and tetragonal crystal field symmetry. Although the magnitude of the dichroism is strongly influenced by the temperature, its spectral shape remains largely unaffected. The measured fundamental spectra are also robust against incomplete magnetization. The influence of the tetragonal distortion is revealed by small differences between the linear and magnetic dichroism. It is shown that the magnetic dichroism spectra can be transferred from CoFe2O4 to CoO. Therefore, the rich structure in the Co2+ L-3 XMLD provides a sensitive probe to determine the orientation of the spin axis with respect to the crystalline axes, hence offering a valuable tool for experimentalists for the study of exchange bias in Co oxides. In contrast, the Co2+ L-2 edge, where the fundamental spectra have similar spectral shape but with opposite sign, does not allow an unambiguous determination. C1 [van der Laan, Gerrit] Diamond Light Source, Didcot OX11 0DE, Oxford, England. [van der Laan, Gerrit] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Chopdekar, Rajesh V.] Cornell Univ, Sch Appl Phys, Ithaca, NY 14853 USA. [van der Laan, Gerrit] SERC, Daresbury Lab, Magnet Spect Grp, Warrington WA4 4AD, Cheshire, England. [Arenholz, Elke] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chopdekar, Rajesh V.; Suzuki, Yuri] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP van der Laan, G (reprint author), Diamond Light Source, Didcot OX11 0DE, Oxford, England. RI Chopdekar, Rajesh/D-2067-2009; Dom, Rekha/B-7113-2012; van der Laan, Gerrit/Q-1662-2015 OI Chopdekar, Rajesh/0000-0001-6727-6501; van der Laan, Gerrit/0000-0001-6852-2495 NR 60 TC 56 Z9 56 U1 2 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 6 AR 064407 DI 10.1103/PhysRevB.77.064407 PG 11 WC Physics, Condensed Matter SC Physics GA 271BO UT WOS:000253764100044 ER PT J AU Zhang, P Saito, S Louie, SG Cohen, ML AF Zhang, Peihong Saito, Susumu Louie, Steven G. Cohen, Marvin L. TI Theory of the electronic structure of alternating MgB(2) and graphene layered structures SO PHYSICAL REVIEW B LA English DT Article ID CHARGE-TRANSFER; LI; SUPERCONDUCTIVITY; TRANSITION; BORON; NA; AL AB Structures for realizing hole-doped MgB(2) without appealing to chemical substitutions are proposed. These structures that consist of alternating MgB(2) and graphene layers have small excess energy compared to bulk graphite and MgB(2). Density functional theory based first-principles electronic structure calculations show significant charge transfer from the MgB(2) layer to graphene, resulting in effectively hole-doped MgB(2) and electron-doped graphene. Substantial enhancement in the density of states at the Fermi level and significant in-plane lattice expansion of the proposed structures are predicted. These structures combines three important factors, namely, hole doping, high density of states at the Fermi level, and in-plane lattice expansion, that are favorable for a strong electron-phonon coupling. C1 [Zhang, Peihong] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Saito, Susumu] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Louie, Steven G.; Cohen, Marvin L.] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, P (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. RI Zhang, Peihong/D-2787-2012 NR 42 TC 8 Z9 8 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2008 VL 77 IS 5 AR 052501 DI 10.1103/PhysRevB.77.052501 PG 4 WC Physics, Condensed Matter SC Physics GA 271BN UT WOS:000253764000017 ER PT J AU Adare, A Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bickley, AA Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Campbell, S Chand, P Chang, BS Chang, WC Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csoergo, T Cussonneau, JP Dahms, T Das, K David, G Deak, F Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Devismes, A Dietzsch, O Dion, A Donadelli, M Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Enokizono, A En'yo, H Espagnon, B Esumi, S Eyser, KO Fields, DE Finck, C Finger, M Finger, M Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fung, SY Fusayasu, T Gadrat, S Garishvili, I Germain, M Glenn, A Gong, H Gonin, M Gosset, J Goto, Y De Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hamagaki, H Han, R Hansen, AG Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Hester, T Heuser, JM He, X Hidas, P Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holzmann, W Homma, K Hong, B Hoover, A Horaguchi, T Hornback, D Ichihara, T Ikonnikov, VV Imai, K Inaba, M Inoue, Y Inuzuka, M Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Katou, K Kawabata, T Kawall, D Kazantsev, AV Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, E Kim, GB Kim, HJ Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Kohara, R Komkov, B Konno, M Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kroon, PJ Kubart, J Kuberg, CH Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Lim, H Liska, T Litvinenko, A Liu, MX Li, X Li, XH Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mao, Y Martinez, G Masek, L Masui, H Matathias, F Matsumoto, T McCain, MC McCumber, M McGaughey, PL Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, GC Mishra, M Mitchell, JT Mitrovski, M Mohanty, AK Morreale, A Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Muniruzzaman, M Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Norman, BE Nyanin, AS Nystrand, J O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oka, M Omiwade, OO Oskarsson, A Otterlund, I Ouchida, M Oyama, K Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Penev, V Peng, JC Pereira, H Peresedov, V Peressounko, DY Pierson, A Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qualls, JM Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakata, H Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Seele, J Seidl, R Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shoji, K Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, CP Singh, V Skutnik, S Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tydesjo, H Tyurin, N Uam, TJ Vale, C Valle, H van Hecke, HW Velkovska, J Velkovsky, M Vertesi, R Veszpremi, V Vinogradov, AA Virius, M Volkov, MA Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Wohn, FK Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L Zong, X AF Adare, A. Adler, S. S. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bickley, A. A. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bruner, N. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camard, X. Campbell, S. Chand, P. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Cussonneau, J. P. Dahms, T. Das, K. David, G. Deak, F. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Devismes, A. Dietzsch, O. Dion, A. Donadelli, M. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Eyser, K. O. Fields, D. E. Finck, C. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fox, B. D. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fung, S. -Y. Fusayasu, T. Gadrat, S. Garishvili, I. Germain, M. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. De Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hamagaki, H. Han, R. Hansen, A. G. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. Heuser, J. M. He, X. Hidas, P. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Hoover, A. Horaguchi, T. Hornback, D. Ichihara, T. Ikonnikov, V. V. Imai, K. Inaba, M. Inoue, Y. Inuzuka, M. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Johnson, S. C. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Katou, K. Kawabata, T. Kawall, D. Kazantsev, A. V. Kelly, S. Khachaturov, B. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, E. Kim, G. -B. Kim, H. J. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kobayashi, H. Kochenda, L. Kochetkov, V. Kohara, R. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kroon, P. J. Kubart, J. Kuberg, C. H. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Lim, H. Liska, T. Litvinenko, A. Liu, M. X. Li, X. Li, X. H. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mao, Y. Martinez, G. Masek, L. Masui, H. Matathias, F. Matsumoto, T. McCain, M. C. McCumber, M. McGaughey, P. L. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mishra, M. Mitchell, J. T. Mitrovski, M. Mohanty, A. K. Morreale, A. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Muniruzzaman, M. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. Nystrand, J. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ouchida, M. Oyama, K. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Penev, V. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pierson, A. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qualls, J. M. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakata, H. Samsonov, V. Sanfratello, L. Santo, R. Sato, H. D. Sato, S. Sawada, S. Schutz, Y. Seele, J. Seidl, R. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Tydesjoe, H. Tyurin, N. Uam, T. J. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Velkovsky, M. Vertesi, R. Veszpremi, V. Vinogradov, A. A. Virius, M. Volkov, M. A. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Wohn, F. K. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. Zong, X. CA PHENIX Collaboration TI Cold nuclear matter effects on J/psi production as constrained by deuteron-gold measurements at root S-NN=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID COLLISIONS AB We present a new analysis of J/psi production yields in deuteron-gold collisions at root s(NN) =200 GeV using data taken from the PHENIX experiment in 2003 and previously published in S. S. Adler [Phys. Rev. Lett 96, 012304 (2006)]. The high statistics proton-proton J/psi data taken in 2005 are used to improve the baseline measurement and thus construct updated cold nuclear matter modification factors (R-dAu). A suppression of J/psi in cold nuclear matter is observed as one goes forward in rapidity (in the deuteron-going direction), corresponding to a region more sensitive to initial-state low-x gluons in the gold nucleus. The measured nuclear modification factors are compared to theoretical calculations of nuclear shadowing to which a J/psi (or precursor) breakup cross section is added. Breakup cross sections of sigma(breakup)=2.8(-1.4)(+1.7) (2.2(-1.5)(+1.6)) mb are obtained by fitting these calculations to the data using two different models of nuclear shadowing. These breakup cross-section values are consistent within large uncertainties with the 4.2 +/- 0.5 mb determined at lower collision energies. Projecting this range of cold nuclear matter effects to copper-copper and gold-gold collisions reveals that the current constraints are not sufficient to firmly quantify the additional hot nuclear matter effect. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kelly, S.; Kinney, E.; Seele, J.; Wagner, M.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Chand, P.; Choudhury, R. K.; Dutta, D.; Mohanty, A. K.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Adler, S. S.; Aronson, S. H.; Azmoun, B.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kiss, A.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.; Mioduszewski, S.; Morrison, D. P.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Shea, T. K.; Sourikova, I. V.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, K. N.; Bauer, F.; Emam, W. S.; Eyser, K. O.; Fung, S. -Y.; Hester, T.; Kotchetkov, D.; Li, X. H.; Morreale, A.; Muniruzzaman, M.; Seto, R.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Mikes, P.] Charles Univ Prague, CZ-11636 Prague, Czech Republic. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Hamagaki, H.; Inuzuka, M.; Isobe, T.; Kurihara, N.; Oda, S. X.; Oyama, K.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Kelly, S.; Kravitz, A.; Lai, Y. -S.; Matathias, F.; Nagle, J. L.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Kelly, S.; Kravitz, A.; Lai, Y. -S.; Matathias, F.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, CZ-16636 Prague 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Cobigo, Y.; Gosset, J.; Pereira, H.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Tarjan, P.; Vertesi, R.; Veszpremi, V.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Deak, F.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, M.; Qu, H.] Georgia State Univ, Atlanta, GA 30303 USA. [Hachiya, T.; Haruna, K.; Kohara, R.; Nakamiya, Y.; Nakamura, T.; Shigaki, K.; Sugitate, T.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Hachiya, T.; Haruna, K.; Homma, K.; Kochetkov, V.; Kohara, R.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Semenov, V.; Shein, I.; Shigaki, K.; Soldatov, A.; Sugitate, T.; Tsuchimoto, Y.; Tyurin, N.; Yanovich, A.] State Res Ctr Russian Federat, Inst High Energy Phys, RU-142281 Protvino, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; Peng, J. -C.; Seidl, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.; Wohn, F. K.; Zong, X.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M., Jr.; Finger, M.; Isupov, A.; Malakhov, A.; Penev, V.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Akiba, Y.; Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Hidas, P.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA, RMKI, H-1525 Budapest 114, Hungary. [Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Ikonnikov, V. V.; Kazantsev, A. V.; Lebedev, A.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peresedov, V.; Vinogradov, A. A.; Volkov, M. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Torii, H.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; Drapier, O.; Fleuret, F.; Gonin, M.; De Cassagnac, R. Granier; Kim, G. -B.; Rakotozafindrabe, A.; Tram, V. -N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burward-Hoy, J. M.; Enokizono, A.; Hartouni, E. P.; Heffner, M.; Johnson, S. C.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Constantin, P.; Hansen, A. G.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Leite, M. A. L.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Silvermyr, D.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gadrat, S.; Roche, G.; Rosnet, P.] Univ Blaise Pascal, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Gustafsson, H. -A.; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjoe, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Bathe, S.; Buesching, H.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Santo, R.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Joo, K. S.; Kim, D. H.; Uam, T. J.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, K. H.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Bruner, N.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Pierson, A.; Rak, J.; Sanfratello, L.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Hoover, A.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, CNRS, IN2P3, IPN, F-91406 Orsay, France. [Han, R.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Khanzadeev, A.; Kochenda, L.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Leningrad Regio, Russia. [Aoki, K.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Imai, K.; Inoue, Y.; Ishihara, M.; Jinnouchi, O.; Kamihara, N.; Kanou, H.; Kurita, K.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Okada, H.; Okada, K.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Fox, B. D.; Fukao, Y.; Horaguchi, T.; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Kawall, D.; Kobayashi, H.; Nakagawa, I.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Torii, H.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, Y.] St Petersburg State Polytechn Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Hachiya, T.; Holzmann, W.; Issah, M.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Dahms, T.; Devismes, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Kamin, J.; McCumber, M.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.; Toia, A.; Velkovska, J.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Camard, X.; Cussonneau, J. P.; Delagrange, H.; Finck, C.; Germain, M.; Henni, A. Hadj; Martinez, G.; Schutz, Y.] Univ Nantes, Ecole Mines, CNRS, SUBATECH,IN2P3, F-44307 Nantes, France. [Dzhordzhadze, V.; Garishvili, I.; Glenn, A.; Hornback, D.; Kwon, Y.; Newby, J.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Kanou, H.; Nakano, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Esumi, S.; Inaba, M.; Konno, M.; Masui, H.; Miki, K.; Nagata, Y.; Oka, M.; Sakai, S.; Sato, S.; Shimomura, M.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Katou, K.; Kikuchi, J.; Matsumoto, T.; Sakaguchi, T.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Khachaturov, B.; Kozlov, A.; Mukhopadhyay, D.; Naglis, M.; Pal, D.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, H. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Deaton, M. B.; Drachenberg, J. L.; Isenhower, D.; Isenhower, L.; McCain, M. C.; Omiwade, O. O.; Qualls, J. M.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. RI Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017 OI Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315 NR 18 TC 94 Z9 94 U1 7 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 024912 DI 10.1103/PhysRevC.77.024912 PG 15 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600051 ER PT J AU Aguilar, A Campbell, DB Chandler, K Pipidis, A Riley, MA Teal, C Simpson, J Hartley, DJ Kondev, FG Clark, RM Cromaz, M Fallon, P Lee, IY Macchiavelli, AO Ragnarsson, I AF Aguilar, A. Campbell, D. B. Chandler, K. Pipidis, A. Riley, M. A. Teal, C. Simpson, J. Hartley, D. J. Kondev, F. G. Clark, R. M. Cromaz, M. Fallon, P. Lee, I. Y. Macchiavelli, A. O. Ragnarsson, I. TI New shape minimum in (160)Yb: Evidence for a triaxial, strongly deformed band SO PHYSICAL REVIEW C LA English DT Article ID PARTICLE-HOLE EXCITATIONS; ROTATIONAL BANDS; HIGH-SPIN; NUCLEI; COLLECTIVITY; EVOLUTION AB A high-spin rotational band was observed in the N=90 nucleus (160)Yb with moment of inertia and decay characteristics very similar to recently discovered sequences in (157,158)Er. These latter structures were discussed in terms of strongly deformed triaxial bands. Detailed cranked Nilsson-Strutinsky calculations were performed that predict that well-deformed triaxial structures are also expected at high spin in (160)Yb. Within this interpretation the observed discontinuity in the dynamic moment of inertia around h omega=0.40-0.45 MeV can be explained as a crossing between i(13/2) neutron levels. C1 [Aguilar, A.; Campbell, D. B.; Chandler, K.; Pipidis, A.; Riley, M. A.; Teal, C.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Simpson, J.] STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Kondev, F. G.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Clark, R. M.; Cromaz, M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O.] Lawrence Berkeley Natl Lab, Nucl Sci Div, Berkeley, CA 94720 USA. [Ragnarsson, I.] Lund Inst Technol, Dept Math Phys, S-22100 Lund, Sweden. RP Aguilar, A (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. NR 23 TC 21 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 021302 DI 10.1103/PhysRevC.77.021302 PG 5 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600003 ER PT J AU Bhagwat, MS Maris, P AF Bhagwat, M. S. Maris, P. TI Vector meson form factors and their quark-mass dependence SO PHYSICAL REVIEW C LA English DT Article ID DYSON-SCHWINGER EQUATIONS; HADRON PHYSICS; SYMMETRY-BREAKING; GLUON VERTEX; RHO-MESON; QCD; CONFINEMENT; PROPAGATOR AB The electromagnetic form factors of vector mesons are calculated in an explicitly Poincare covariant formulation, based on the Dyson-Schwinger equations of QCD, that respects electromagnetic current conservation and unambiguously incorporates effects from vector meson poles in the quark-photon vertex. This method incorporates a two-parameter effective interaction, where the parameters are constrained by the experimental values of chiral condensate and f(pi). This approach has successfully described a large amount of light-quark meson experimental data, including ground-state pseudoscalar masses and their electromagnetic form factors and ground-state vector meson masses and strong and electroweak decays. Here we apply it to predict the electromagnetic properties of vector mesons. The results for the static properties of the rho meson are as follows: charge radius < r(rho)(2)>=0.54 fm(2), magnetic moment mu=2.01, and quadrupole moment Q =-0.41. We investigate the quark-mass dependence of these static properties and find that our results at the charm quark mass are in agreement with recent lattice simulations. The charge radius decreases with increasing quark mass, but the magnetic moment is almost independent of the quark mass. C1 [Bhagwat, M. S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Maris, P.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Maris, P (reprint author), Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. NR 61 TC 71 Z9 71 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 025203 DI 10.1103/PhysRevC.77.025203 PG 12 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600054 ER PT J AU Casalderrey-Solana, J Wang, XN AF Casalderrey-Solana, Jorge Wang, Xin-Nian TI Energy dependence of jet transport parameter and parton saturation in quark-gluon plasma SO PHYSICAL REVIEW C LA English DT Article ID HIGH-DENSITY QCD; NUCLEUS COLLISIONS; FINITE-TEMPERATURE; HADRON SPECTRA; SMALL-X; SCATTERING; MOMENTUM AB We study the evolution and saturation of the gluon distribution function in the quark-gluon plasma as probed by a propagating parton and its effect on the computation of jet quenching or transport parameter (q) over cap. For thermal partons, the saturation scale Q(s)(2) is found to be proportional to the Debye screening mass mu(2)(D). For hard probes, evolution at small x = Q(s)(2)/6ET leads to jet energy dependence of (q) over cap. We study this dependence both for a conformal gauge theory in weak and strong coupling limit and for (pure gluon) QCD. The energy dependence can be used to extract the shear viscosity eta of the medium, since eta can be related to the transport parameter for thermal partons in a transport description. We also derive upper bounds on the transport parameter for both energetic and thermal partons. The latter leads to a lower bound on the shear viscosity to entropy density ratio which is consistent with the conjectured lower bound eta/s >= 1/4 pi. We also discuss the implications of these results on the study of jet quenching at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider and the bulk properties of the dense matter. C1 [Casalderrey-Solana, Jorge; Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Casalderrey-Solana, J (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 70R0319, Berkeley, CA 94720 USA. OI Wang, Xin-Nian/0000-0002-9734-9967; Casalderrey Solana, Jorge/0000-0002-5241-0154 NR 62 TC 45 Z9 45 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 024902 DI 10.1103/PhysRevC.77.024902 PG 14 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600041 ER PT J AU Forssen, C Vary, JP Caurier, E Navratil, P AF Forssen, C. Vary, J. P. Caurier, E. Navratil, P. TI Converging sequences in the ab initio no-core shell model SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI AB We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei. C1 Chalmers, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden. [Vary, J. P.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Caurier, E.] Univ Strasbourg, CNRS, Inst Rech Subatom, IN2P3, F-67037 Strasbourg, France. [Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Forssen, C (reprint author), Chalmers, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden. EM c.forssen@fy.chalmers.se RI Forssen, Christian/C-6093-2008 OI Forssen, Christian/0000-0003-3458-0480 NR 23 TC 34 Z9 34 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 024301 DI 10.1103/PhysRevC.77.024301 PG 6 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600009 ER PT J AU Fotiades, N Nelson, RO Devlin, M Becker, JA AF Fotiades, N. Nelson, R. O. Devlin, M. Becker, J. A. TI New levels and a lifetime measurement in (204)Tl SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; ISOTOPES; ISOMERS; STATES AB The (205)Tl(n,2n gamma) reaction was used to populate excited states in (204)Tl. The gamma-ray detection was accomplished with the GEANIE spectrometer, a Compton suppressed array of 26 Ge detectors. An energetic beam of neutrons was provided by the pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility. The time-of-flight technique was used to determine the incident neutron energies. gamma-ray excitation functions were determined from incident neutron energy of 1 MeV up to E(n)=25 MeV. The level scheme of (204)Tl was enriched and the partial level scheme and nuclear structure above the previously known 7(+) isomer at 1104-keV excitation energy were established for the first time up to E(x) similar to 2.3 MeV. The high-spin part of the level scheme exhibits striking similarities to that of the neighboring (202)Tl isotope, suggesting similarities in the underlying nuclear structure. The half-life of the 7(+) isomer was measured with a more precise result (T(1/2)=60.7 +/- 1.2 mu s), in agreement with literature values. A lower limit for the excitation energy of the pi h(11/2)nu i(13/2) structure with J(pi)=12(-) is proposed. C1 [Fotiades, N.; Nelson, R. O.; Devlin, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Becker, J. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Fotiades, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fotia@lanl.gov RI Devlin, Matthew/B-5089-2013; OI Devlin, Matthew/0000-0002-6948-2154; Fotiadis, Nikolaos/0000-0003-1410-3871 NR 26 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 024306 DI 10.1103/PhysRevC.77.024306 PG 5 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600014 ER PT J AU Gurdal, G Beausang, CW Brenner, DS Ai, H Casten, RF Crider, B Heinz, A Williams, E Hartley, DJ Carpenter, MP Hecht, AA Janssens, RVF Lauritsen, T Lister, CJ Raabe, R Seweryniak, D Zhu, S Saladin, JX AF Guerdal, G. Beausang, C. W. Brenner, D. S. Ai, H. Casten, R. F. Crider, B. Heinz, A. Williams, E. Hartley, D. J. Carpenter, M. P. Hecht, A. A. Janssens, R. V. F. Lauritsen, T. Lister, C. J. Raabe, R. Seweryniak, D. Zhu, S. Saladin, J. X. TI Measurement of conversion coefficients in normal and triaxial strongly deformed bands in (167)Lu SO PHYSICAL REVIEW C LA English DT Article ID WOBBLING EXCITATIONS; SUPERDEFORMATION; NUCLEI; MODE AB Internal conversion coefficients have been measured for transitions in both normal deformed and triaxial strongly deformed bands in (167)Lu using the Gammasphere and ICE Ball spectrometers. The results for all in-band transitions are consistent with E2 multipolarity. Upper limits are determined for the internal conversion coefficients for linking transitions between TSD Band 2 and TSD Band 1, the n(w)=1 and n(w)=0 wobbling bands, respectively. C1 [Guerdal, G.; Beausang, C. W.; Brenner, D. S.; Ai, H.; Casten, R. F.; Heinz, A.; Williams, E.] Yale Univ, WNSL, New Haven, CT 06520 USA. [Guerdal, G.; Brenner, D. S.] Clark Univ, Worcester, MA 01610 USA. [Beausang, C. W.; Crider, B.] Univ Richmond, Richmond, VA 23173 USA. [Hartley, D. J.] USN Acad, Annapolis, MD 21402 USA. [Carpenter, M. P.; Hecht, A. A.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hecht, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Saladin, J. X.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Gurdal, G (reprint author), Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. EM cbeausan@richmond.edu RI Heinz, Andreas/E-3191-2014; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 18 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 024314 DI 10.1103/PhysRevC.77.024314 PG 7 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600022 ER PT J AU Huang, HX Deng, CR Ping, JL Wang, F Goldman, T AF Huang, Hongxia Deng, Chengrong Ping, Jialun Wang, Fan Goldman, T. TI Systematic study of multi-quark states: A qq-qq-(q)over-bar configuration SO PHYSICAL REVIEW C LA English DT Article ID COLOR SCREENING MODEL; QUARK DELOCALIZATION; FRACTIONAL-PARENTAGE; HYPERFINE INTERACTIONS; PENTAQUARK STATES; DIBARYONS; BARYONS; SEARCH; HADRON; PARITY AB A group theoretic method for the systematic study of multiquark states is developed. The calculation of matrix elements of many-body Hamiltonians is simplified by transforming the physical bases (quark cluster bases) to symmetry bases (group chain classified bases), where the fractional parentage expansion method can be used. A five-quark system is taken as the example in this study. The Jaffe-Wilczek qq-qq-(q) over bar configuration is chosen as one of the examples to construct the physical bases and the transformation coefficients between physical bases and symmetry ones are shown to be related to the SU(mn)superscriptSU(m)xSU(n) isoscalar factors. A complete transformation coefficient table is obtained. The needed isoscalar factors and fractional parentage coefficients have been calculated with our new group representation theory and published before. Three quark models, the naive Glashow-Isgur model, the Salamanca chiral quark model, and quark delocalization color screening model, are used to show the general applicability of the new multiquark calculation method and general results of constituent quark models for five-quark states are given. C1 [Huang, Hongxia; Deng, Chengrong; Ping, Jialun] Nonjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China. [Wang, Fan] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Goldman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Huang, HX (reprint author), Nonjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China. NR 62 TC 3 Z9 3 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 025201 DI 10.1103/PhysRevC.77.025201 PG 11 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600052 ER PT J AU Pervin, M Roberts, W AF Pervin, Muslema Roberts, W. TI Strangeness-2 and-3 baryons in a constituent quark model SO PHYSICAL REVIEW C LA English DT Article ID HYPERFINE INTERACTIONS; EXCITED BARYONS; GEV-C; CHROMODYNAMICS; DECAYS; XI AB We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced. [JLAB-THY-07-728]. C1 [Pervin, Muslema] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Roberts, W.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RP Pervin, M (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. NR 33 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 025202 DI 10.1103/PhysRevC.77.025202 PG 7 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600053 ER PT J AU Tandel, SK Knox, AJ Parnell-Lampen, C Tandel, US Chowdhury, P Carpenter, MP Janssens, RVF Khoo, TL Lauritsen, T Lister, CJ Seweryniak, D Wang, X Zhu, S Hartley, DJ Zhang, JY AF Tandel, S. K. Knox, A. J. Parnell-Lampen, C. Tandel, U. S. Chowdhury, P. Carpenter, M. P. Janssens, R. V. F. Khoo, T. L. Lauritsen, T. Lister, C. J. Seweryniak, D. Wang, X. Zhu, S. Hartley, D. J. Zhang, Jing-ye TI Search for strongly deformed structures and observation of multiple nucleon alignments in (174)W SO PHYSICAL REVIEW C LA English DT Article ID TRIAXIAL SUPERDEFORMATION; WOBBLING EXCITATIONS; FREQUENCY; CROSSINGS; PHONON; BAND AB Highly excited states, up to spin 39h, have been established in (174)W, using the Gammasphere array. Ultimate cranker calculations predict the appearance of triaxial, strongly deformed structures above spin 30h in (174)W. A new approach was developed for a comprehensive search of the data for such structures, similar to those observed in the Lu and Hf isotopes. No evidence was found for strongly deformed bands in the W isotopes populated in this experiment. Existing rotational structures have been considerably extended, allowing for the observation of both neutron and proton alignments in a number of bands. There is evidence for the i(13/2) neutron and possibly both the h(9/2) and h(11/2) proton crossings. The observed neutron and proton crossing frequencies are in good agreement with predictions of Woods-Saxon cranking calculations using an empirical pair-gap energy, and they lead to an improved understanding of the underlying structure of the bands. C1 [Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Wang, X.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Zhang, Jing-ye] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Tandel, S. K.; Knox, A. J.; Parnell-Lampen, C.; Tandel, U. S.; Chowdhury, P.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. RP Wang, X (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 28 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 024313 DI 10.1103/PhysRevC.77.024313 PG 8 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600021 ER PT J AU Valiente-Dobon, JJ Svensson, CE Afanasjev, AV Ragnarsson, I Andreoiu, C Appelbe, DE Austin, RAE Ball, GC Cameron, JA Carpenter, MP Clark, RM Cromaz, M Dashdorj, D Fallon, P Freeman, SJ Garrett, PE Gorgen, A Grinyer, GF Hodgson, DF Hyland, B Jenkins, D Johnston-Theasby, F Joshi, P Kelsall, NS Macchiavelli, AO Mengoni, D Moore, F Mukherjee, G Phillips, AA Reviol, W Sarantites, D Schumaker, MA Seweryniak, D Smith, MB Waddington, JC Wadsworth, R Ward, D AF Valiente-Dobon, J. J. Svensson, C. E. Afanasjev, A. V. Ragnarsson, I. Andreoiu, C. Appelbe, D. E. Austin, R. A. E. Ball, G. C. Cameron, J. A. Carpenter, M. P. Clark, R. M. Cromaz, M. Dashdorj, D. Fallon, P. Freeman, S. J. Garrett, P. E. Goergen, A. Grinyer, G. F. Hodgson, D. F. Hyland, B. Jenkins, D. Johnston-Theasby, F. Joshi, P. Kelsall, N. S. Macchiavelli, A. O. Mengoni, D. Moore, F. Mukherjee, G. Phillips, A. A. Reviol, W. Sarantites, D. Schumaker, M. A. Seweryniak, D. Smith, M. B. Waddington, J. C. Wadsworth, R. Ward, D. TI Low-spin lifetime measurements in Kr-74 SO PHYSICAL REVIEW C LA English DT Article ID CHANNEL-SELECTION; ROTATIONAL BANDS; GAMMASPHERE; MICROBALL; REGION AB The nucleus Kr-74 has been populated in the Ca-40(Ca-40,2p alpha)Kr-74 fusion-evaporation reaction at a beam energy of 165 MeV and studied using the Gammasphere and Microball multidetector arrays. The lifetimes for low-spin states in the ground-state and two signature-split negative-parity bands were determined using the Doppler-shift attenuation method. These results are discussed together with the lifetimes measured for the high-spin states of these bands and compared with theoretical calculations. C1 [Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Valiente-Dobon, J. J.; Svensson, C. E.; Andreoiu, C.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Schumaker, M. A.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Afanasjev, A. V.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Ragnarsson, I.] Lund Inst Technol, S-22100 Lund, Sweden. [Andreoiu, C.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Appelbe, D. E.] CLRC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Austin, R. A. E.; Cameron, J. A.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada. [Ball, G. C.; Garrett, P. E.; Hodgson, D. F.; Smith, M. B.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Carpenter, M. P.; Freeman, S. J.; Moore, F.; Mukherjee, G.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Clark, R. M.; Cromaz, M.; Fallon, P.; Macchiavelli, A. O.; Ward, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dashdorj, D.] N Carolina State Univ, Raleigh, NC 27695 USA. [Freeman, S. J.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Goergen, A.] CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. [Jenkins, D.; Johnston-Theasby, F.; Joshi, P.; Kelsall, N. S.; Wadsworth, R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Mengoni, D.] Ist Nazl Fis Nucl, Sezione Padova, Padua, Italy. [Reviol, W.; Sarantites, D.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. RP Valiente-Dobon, JJ (reprint author), Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. EM valiente@lnl.infn.it RI Freeman, Sean/B-1280-2010; Carpenter, Michael/E-4287-2015 OI Freeman, Sean/0000-0001-9773-4921; Carpenter, Michael/0000-0002-3237-5734 NR 22 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2008 VL 77 IS 2 AR 024312 DI 10.1103/PhysRevC.77.024312 PG 6 WC Physics, Nuclear SC Physics GA 271BT UT WOS:000253764600020 ER PT J AU Armoni, A Shifman, M Unsal, M AF Armoni, Adi Shifman, Mikhail Unsal, Mithat TI Planar limit of orientifold field theories and emergent center symmetry SO PHYSICAL REVIEW D LA English DT Article ID LARGE-N; GAUGE-THEORIES; BREAKING AB We consider orientifold field theories [i.e., SU(N) Yang-Mills theories with fermions in the two-index symmetric or antisymmetric representations] on R(3)xS(1) where the compact dimension can be either temporal or spatial. These theories are planar equivalent to supersymmetric Yang-Mills theory. The latter has Z(N) center symmetry. The famous Polyakov criterion establishing confinement-deconfinement phase transition as that from Z(N) symmetric to Z(N) broken phase applies. At the Lagrangian level the orientifold theories have at most a Z(2) center. We discuss how the full Z(N) center symmetry dynamically emerges in the orientifold theories in the limit N ->infinity. In the confining phase the manifestation of this enhancement is the existence of stable k strings in the large-N limit of the orientifold theories. These strings are identical to those of supersymmetric Yang-Mills theories. We argue that critical temperatures (and other features) of the confinement-deconfinement phase transition are the same in the orientifold daughters and their supersymmetric parent up to 1/N corrections. We also discuss the Abelian and non-Abelian confining regimes of four-dimensional QCD-like theories. C1 [Armoni, Adi] Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales. [Shifman, Mikhail] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Unsal, Mithat] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Unsal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Armoni, A (reprint author), Univ Coll Swansea, Dept Phys, Singleton Pk, Swansea SA2 8PP, W Glam, Wales. OI Armoni, Adi/0000-0002-8105-0645 NR 41 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 4 AR 045012 DI 10.1103/PhysRevD.77.045012 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BV UT WOS:000253764800103 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Eigen, G Ofte, I Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Tackmann, K Wenzel, WA Sanchez, PDA Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F George, KA Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Fisher, PH Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Chauveau, J David, P Del Buono, L De la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Perez, A Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G D'Orazio, A Del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, H Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Eigen, G. Ofte, I. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. George, K. A. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Fisher, P. H. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Chauveau, J. David, P. Del Buono, L. De la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. D'Orazio, A. Del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. TI Determination of the form factors for the decay B-0 -> D*(-)l(+)nu(l) and of the CKM matrix element vertical bar Vcb vertical bar SO PHYSICAL REVIEW D LA English DT Article ID V-CB; RADIATIVE-CORRECTIONS; MESON DECAYS; HEAVY MESONS AB We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar and of the parameters rho(2), R-1(1), and R-2(1), which fully characterize the form factors for the B-0 -> D*(-)center dot(+)nu(center dot) decay in the framework of heavy-quark effective field theory. The results, based on a selected sample of about 52 800 B-0 -> D*(-)center dot(+)nu(center dot) decays, recorded by the BABAR detector, are rho(2)=1.157 +/- 0.094 +/- 0.027, R-1(1)=1.327 +/- 0.131 +/- 0.043, R-2(1)=0.859 +/- 0.077 +/- 0.021, and F(1)vertical bar V-cb vertical bar=(34.7 +/- 0.4 +/- 1.0)x10(-3). The first error is the statistical and the second is the systematic uncertainty. Combining these measurements with the previous BABAR measurement of the form factors, which employs a different fit technique on a partial sample of the data, we improve the statistical precision of the result, rho(2)=1.191 +/- 0.048 +/- 0.028, R-1(1)=1.429 +/- 0.061 +/- 0.044, R-2(1)=0.827 +/- 0.038 +/- 0.022, and F(1)vertical bar V-cb vertical bar=(34.4 +/- 0.3 +/- 1.1)x10(-3). Using lattice calculations for the axial form factor F(1), we extract vertical bar V-cb vertical bar=(37.4 +/- 0.3 +/- 1.2 +/-(1.2)(1.4))x10(-3), where the third error is due to the uncertainty in F(1). We also present a measurement of the exclusive branching fraction, B=(4.69 +/- 0.04 +/- 0.34)%. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] INP23, CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Ofte, I.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, P. Del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Lewandowski, B.; Pelizaeus, M.; Schroeder, T.; Steinke, M.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Cottingham, W. N.; Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Dvoretskii, A.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Brandt, T.; Klose, V.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS INP23, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, INP23, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; George, K. A.; Menges, W.; Sacco, R.] Univ London, London E1 4NS, England. [Flaecher, H. U.; Hopkins, D. A.; Jackson, P. S.; McMahon, T. R.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Fisher, P. H.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Ter-Antonyan, R.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Briand, H.; Chauveau, J.; David, P.; Del Buono, L.; De la Vaissiere, Ch.; Hamon, O.; Hartfiel, B. L.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.] Univ Paris 07, Univ Paris 06, CNRS INP23, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Haire, M.] Prairie View A&M Univ, Prairie View, TX 77446 USA. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; De Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Buzzo, A.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Hryn'ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Van Bakel, N.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Bugg, W.; Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Richardson, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Yu, Z.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Pappagallo, M.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England. RP Aubert, B (reprint author), INP23, CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; van Bakel, Niels/B-6233-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Patrignani, Claudia/C-5223-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012 OI Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; van Bakel, Niels/0000-0002-4053-7588; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Patrignani, Claudia/0000-0002-5882-1747; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195 NR 34 TC 39 Z9 39 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 3 AR 032002 DI 10.1103/PhysRevD.77.032002 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BU UT WOS:000253764700003 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA del Amo Sanchez, P Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. del Amo Sanchez, P. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. CA BaBar Collaboration TI Study of (B)over-bar ->Xi(c)(Lambda)over-bar(c)(-) and (B)over-bar ->Lambda(+)(c)(Lambda)over-bar(c)(-)(K)over-bar decays at BABAR SO PHYSICAL REVIEW D LA English DT Article ID EXCLUSIVE DECAYS; BARYONS; PHYSICS AB We report measurements of B-meson decays into two- and three-body final states containing two charmed baryons using a sample of 230x10(6) Upsilon(4S)-> B (B) over bar decays. We find significant signals in two modes, measuring branching fractions B(B-->Lambda(+)(c)(Lambda) over bar K--(c)-)=(1.14 +/- 0.15 +/- 0.17 +/- 0.60)x10(-3) and B(B-->Xi(0)(c)(Lambda) over bar (-)(c))xB(Xi(0)(c)->Xi(-)pi(+))=(2.08 +/- 0.65 +/- 0.29 +/- 0.54)x10(-5), where the uncertainties are statistical, systematic, and from the branching fraction B(Lambda(+)(c)-> pK(-)pi(+)), respectively. We also set upper limits at the 90% confidence level on two other modes: B((B) over bar (0)->Xi(+)(c)(Lambda) over bar (-)(c))xB(Xi(+)(c)->Xi(-)pi(+)pi(+))< 5.6x10(-5) and B((B) over bar (0)->Lambda(+)(c)(Lambda) over bar (-)(c)(K) over bar (0))< 1.5x10(-3). We observe structure centered at an invariant mass of 2.93 GeV/c(2) in the Lambda K-+(c)- mass distribution of the decay B-->Lambda(+)(c)(Lambda) over bar K--(c)-. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.; Martinez-Vidal, F.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [del Amo Sanchez, P.; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] IN2P3 CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Queen Mary Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Bailey, D.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. RP Aubert, B (reprint author), IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Patrignani, Claudia/C-5223-2009; Oyanguren, Arantza/K-6454-2014; Saeed, Mohammad Alam/J-7455-2012; de Sangro, Riccardo/J-2901-2012; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Della Ricca, Giuseppe/B-6826-2013; Forti, Francesco/H-3035-2011; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012 OI Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Patrignani, Claudia/0000-0002-5882-1747; Oyanguren, Arantza/0000-0002-8240-7300; Saeed, Mohammad Alam/0000-0002-3529-9255; de Sangro, Riccardo/0000-0002-3808-5455; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Della Ricca, Giuseppe/0000-0003-2831-6982; Forti, Francesco/0000-0001-6535-7965; Bellini, Fabio/0000-0002-2936-660X; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195 NR 18 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 3 AR 031101 DI 10.1103/PhysRevD.77.031101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BU UT WOS:000253764700001 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, M Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L De la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Luth, V Li, S Luitz, S Lynch, HL MacFarlane, DB MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. De la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Luth, V. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Search for decays of B-0 mesons into e(+)e(-), mu(+)mu(-) and e(+/-)mu(-/+) final states SO PHYSICAL REVIEW D LA English DT Article ID MINIMAL FLAVOR VIOLATION; LARGE TAN-BETA; PHYSICS; MODEL; JETS AB We present a search for the decays B-0 -> e(+)e(-), B-0 ->mu(+)mu(-), and B-0 -> e(+/-)mu(-/+) using data collected with the BABAR detector at the PEP-II e(+)e(-) collider at SLAC. Using a data set corresponding to 384x10(6) B (B) over bar pairs, we do not find evidence of any of the three decay modes. We obtain upper limit on the branching fractions, at 90% confidence level, of B(B-0 -> e(+)e(-))< 11.3x10(-8), B(B-0 ->mu(+)mu(-))< 5.2x10(-8), and B(B-0 -> e(+/-)mu(-/+))< 9.2x10(-8). C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sanchez, P. Del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Luitz, S.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris Sud 11, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Luitz, S.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Bailey, D.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Luitz, S.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Luitz, S.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; De la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 OQX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; De Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Martinez-Vidal, F.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Patrignani, Claudia/C-5223-2009; Saeed, Mohammad Alam/J-7455-2012; de Sangro, Riccardo/J-2901-2012; Rotondo, Marcello/I-6043-2012; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015 OI Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Bellini, Fabio/0000-0002-2936-660X; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Patrignani, Claudia/0000-0002-5882-1747; Saeed, Mohammad Alam/0000-0002-3529-9255; de Sangro, Riccardo/0000-0002-3808-5455; Rotondo, Marcello/0000-0001-5704-6163; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866 NR 31 TC 90 Z9 91 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 3 AR 032007 DI 10.1103/PhysRevD.77.032007 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BU UT WOS:000253764700008 ER PT J AU Borriello, E Cuoco, A Mangano, G Miele, G Pastor, S Pisanti, O Serpico, PD AF Borriello, E. Cuoco, A. Mangano, G. Miele, G. Pastor, S. Pisanti, O. Serpico, P. D. TI Disentangling neutrino-nucleon cross section and high energy neutrino flux with a km(3) neutrino telescope SO PHYSICAL REVIEW D LA English DT Article ID UHE-TAU NEUTRINOS; FLUORESCENCE DETECTOR AB The energy-zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high-energy neutrino flux. By using a simple parametrization for fluxes and cross sections, we present a sensitivity analysis for the case of a km(3) neutrino telescope. In particular, we consider the specific case of an underwater Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic-ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section. C1 [Borriello, E.; Mangano, G.; Miele, G.; Pisanti, O.] Univ Naples Federico 2, Dipartimento Sci Fis, Naples, Italy. [Borriello, E.; Mangano, G.; Miele, G.; Pisanti, O.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Borriello, E.; Miele, G.; Pastor, S.] CSIC Univ Valencia, Inst Fis Corpuscular, AHEP Grp, Valencia 46071, Spain. [Cuoco, A.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Serpico, P. D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Borriello, E (reprint author), Univ Naples Federico 2, Dipartimento Sci Fis, Naples, Italy. RI Miele, Gennaro/F-3628-2010; Pastor, Sergio/J-6902-2014; OI Miele, Gennaro/0000-0002-2028-0578; Mangano, Gianpiero/0000-0002-6901-4633 NR 34 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 4 AR 045019 DI 10.1103/PhysRevD.77.045019 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BV UT WOS:000253764800110 ER PT J AU Davoudiasl, H Rizzo, TG Soni, A AF Davoudiasl, Hooman Rizzo, Thomas G. Soni, Amarjit TI Direct verification of warped hierarchy-and-flavor models SO PHYSICAL REVIEW D LA English DT Article ID BULK FIELDS AB We consider direct experimental verification of warped models, based on the Randall-Sundrum (RS) scenario, that explain gauge and flavor hierarchies, assuming that the gauge fields and fermions of the standard model (SM) propagate in the 5D bulk. Most studies have focused on the bosonic Kaluza-Klein (KK) signatures and indicate that discovering gauge KK modes is likely possible, yet challenging, while graviton KK modes are unlikely to be accessible at the CERN LHC, even with a luminosity upgrade. We show that direct evidence for bulk SM fermions, i.e. their KK modes, is likely also beyond the reach of a luminosity-upgraded LHC. Thus, neither the spin-2 KK graviton, the most distinct RS signal, nor the KK SM fermions, direct evidence for bulk flavor, seem to be within the reach of the LHC. We then consider hadron colliders with root s=21, 28, and 60 TeV. We find that discovering the first KK modes of SM fermions and the graviton typically requires the Next Hadron Collider (NHC) with root s approximate to 60 TeV and O(1) ab(-1) of integrated luminosity. If the LHC yields hints of these warped models, establishing that nature is described by them, or their 4D conformal field theory duals, requires an NHC-class machine in the post-LHC experimental program. C1 [Davoudiasl, Hooman; Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Rizzo, Thomas G.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov; rizzo@slac.stanford.edu; soni@bnl.gov NR 24 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 3 AR 036001 DI 10.1103/PhysRevD.77.036001 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BU UT WOS:000253764700061 ER PT J AU Dudek, JJ Edwards, RG Mathur, N Richards, DG AF Dudek, Jozef J. Edwards, Robert G. Mathur, Nilmani Richards, David G. TI Charmonium excited state spectrum in lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID ANISOTROPIC LATTICE; FERMIONS; MESONS AB Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark-potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation. C1 [Dudek, Jozef J.; Edwards, Robert G.; Mathur, Nilmani; Richards, David G.] Jefferson Lab, Newport News, VA 23606 USA. [Dudek, Jozef J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Dudek, JJ (reprint author), Jefferson Lab, MS 12H2,12000 Jefferson Ave, Newport News, VA 23606 USA. EM dudek@jlab.org; edwards@jlab.org; dgr@jlab.org NR 28 TC 92 Z9 92 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 3 AR 034501 DI 10.1103/PhysRevD.77.034501 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BU UT WOS:000253764700041 ER PT J AU Gupta, S Huebner, K Kaczmarek, O AF Gupta, Sourendu Huebner, Kay Kaczmarek, Olaf TI Renormalized Polyakov loops in many representations SO PHYSICAL REVIEW D LA English DT Article ID TADPOLE IMPROVED ACTIONS; IMPROVED LATTICE ACTION; YANG-MILLS THEORY; GAUGE-THEORIES; STRING TENSION; WILSON LOOPS; MONTE-CARLO; FREE-ENERGY; TREE LEVEL; QCD AB We present a renormalization procedure for Polyakov loops which explicitly implements the fact that the renormalization constant depends only on the ultraviolet cutoff. Using this we study the renormalized Polyakov loops in all representations up to the 27 of the gauge group SU(3). We find good evidence for Casimir scaling of the Polyakov loops and for approximate large-N factorization. By studying many loops together, we are able to show that there is a matrix model with a single coupling which can describe the high temperature phase of QCD, although it is hard to construct explicitly. We present the first results for the nonvanishing renormalized octet loop in the thermodynamic limit below the SU(3) phase transition, and estimate the associated string breaking distance and the gluelump binding energy. By studying the connection of the direct renormalization procedure with a generalization of an earlier suggestion which goes by the name of the Q (Q) over bar renormalization procedure, we find that they are functionally equivalent. C1 [Gupta, Sourendu] Tata Inst Fundamental Res, Dept Theoret Phys, Bombay 400005, Maharashtra, India. [Huebner, Kay] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kaczmarek, Olaf] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. RP Gupta, S (reprint author), Tata Inst Fundamental Res, Dept Theoret Phys, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM sgupta@theory.tifr.res.in; huebner@bnl.gov; okacz@physik.uni-bielefeld.de RI Kaczmarek, Olaf/E-9932-2011 NR 55 TC 85 Z9 85 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 3 AR 034503 DI 10.1103/PhysRevD.77.034503 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BU UT WOS:000253764700043 ER PT J AU Hooper, D Zaharijas, G Finkbeiner, DP Dobler, G AF Hooper, Dan Zaharijas, Gabrijela Finkbeiner, Douglas P. Dobler, Gregory TI Prospects for detecting dark matter with GLAST in light of the WMAP haze SO PHYSICAL REVIEW D LA English DT Article ID ENERGY GAMMA-RAYS; MICROWAVE-ANISOTROPY-PROBE; GALACTIC-CENTER; BLACK-HOLE; ANNIHILATIONS; EMISSION; TELESCOPE; DIRECTION; EGRET AB Observations by the Wilkinson Microwave Anisotropy Probe (WMAP) experiment have identified an excess of microwave emission from the center of the Milky Way. It has previously been shown that this "WMAP haze" could be synchrotron emission from relativistic electrons and positrons produced in the annihilations of dark matter particles. In particular, the intensity, spectrum, and angular distribution of the WMAP haze is consistent with an electroweak scale dark matter particle (such as a supersymmetric neutralino or Kaluza-Klein dark matter in models with universal extra dimensions) annihilating with a cross section on the order of sigma v similar to 3 x 10(-26) cm(3)/s and distributed with a cusped halo profile. No further exotic astrophysical or annihilation boost factors are required. If dark matter annihilations are in fact responsible for the observed haze, then other annihilation products will also be produced, including gamma rays. In this article, we study the prospects for the GLAST satellite to detect gamma rays from dark matter annihilations in the Galactic Center region in this scenario. We find that by studying only the inner 0.1 degrees around the Galactic Center, GLAST will be able to detect dark matter annihilating to heavy quarks, gauge bosons, or tau leptons over astrophysical backgrounds with 5 sigma (3 sigma) significance if they are lighter than approximately 320-500 GeV (500-750 GeV). If the angular window is broadened to study the dark matter halo profile's angular extension (while simultaneously reducing the astrophysical backgrounds), weakly interacting, massive particles (WIMPs) as heavy as several TeV can be identified by GLAST with high significance. Only if the dark matter particles annihilate mostly to electrons or muons will GLAST be unable to identify the gamma ray spectrum associated with the WMAP haze. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Zaharijas, Gabrijela] Argonne Natl Lab, JEP Div, Argonne, IL 60439 USA. [Finkbeiner, Douglas P.; Dobler, Gregory] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. OI Zaharijas, Gabrijela/0000-0001-8484-7791 NR 56 TC 24 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 4 AR 043511 DI 10.1103/PhysRevD.77.043511 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BV UT WOS:000253764800026 ER PT J AU Ibe, M Shinbara, Y AF Ibe, M. Shinbara, Y. TI R-invariant new inflation model versus supersymmetric standard model SO PHYSICAL REVIEW D LA English DT Article ID GRAVITINO DARK-MATTER; MINIMAL SUPERGRAVITY; GRAND UNIFICATION; POLONYI PROBLEM; BREAKING; DECAY; LEPTOGENESIS; OVERPRODUCTION; BARYOGENESIS; CONSTRAINTS AB We revisit the implications of the R-invariant new inflation model to the supersymmetric standard model in light of recent discussion of gravitino production processes by the decay of the inflaton and the supersymmetry breaking field. We show that the models with supergravity mediation do not work well together with the R-invariant new inflation model, where the gravitino abundance produced by the decay of the inflaton and the supersymmetry breaking field significantly exceeds the bounds from cosmological observations without fine-tuning. We also show that the models with gauge mediation can go together with the R-invariant new inflation model, where the dark matter abundance and the baryon asymmetry of the universe are consistently explained without severe fine-tuning. C1 [Ibe, M.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Ibe, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Shinbara, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Ibe, M (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 75 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 3 AR 035009 DI 10.1103/PhysRevD.77.035009 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BU UT WOS:000253764700054 ER PT J AU Nayak, GC Qiu, JW Sterman, G AF Nayak, Gouranga C. Qiu, Jian-Wei Sterman, George TI Color-transfer enhancement for heavy quarkonium production SO PHYSICAL REVIEW D LA English DT Article ID HIGH-ENERGY COLLIDERS; P(P)OVER-BAR COLLISIONS; E(+)E(-) COLLIDERS; POTENTIAL NRQCD; J/PSI; POLARIZATION; FACTORIZATION; ANNIHILATION; PSI'; TEV AB We study the transfer of color between a heavy quark pair and an unpaired heavy quark or antiquark moving at a nonrelativistic velocity with respect to the pair. We find that the open heavy quark or antiquark can catalyze the transformation of the pair from octet representation at short distances to singlet at long distances. This process is infrared sensitive in general, and we exhibit double poles in dimensional regularization at next-to-next-to-leading order in the transition probability. Because of their dependence on kinematic variables, these poles cannot be matched to the nonperturbative matrix elements of effective field theories based on a single heavy quark pair. C1 [Nayak, Gouranga C.; Sterman, George] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Nayak, Gouranga C.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Qiu, Jian-Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Qiu, Jian-Wei] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Nayak, GC (reprint author), SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. NR 42 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB PY 2008 VL 77 IS 3 AR 034022 DI 10.1103/PhysRevD.77.034022 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271BU UT WOS:000253764700036 ER PT J AU Alexander, FJ Johnson, G Eyink, GL Kevrekidis, IG AF Alexander, Francis J. Johnson, Gregory Eyink, Gregory L. Kevrekidis, Ioannis G. TI Equation-free implementation of statistical moment closures SO PHYSICAL REVIEW E LA English DT Article ID DYNAMICS AB We present a general numerical scheme for the practical implementation of statistical moment closures suitable for modeling complex, large-scale, nonlinear systems. Building on recently developed equation-free methods, this approach numerically integrates the closure dynamics, the equations of which may not even be available in closed form. Although closure dynamics introduce statistical assumptions of unknown validity, they can have significant computational advantages as they typically have fewer degrees of freedom and may be much less stiff than the original detailed model. The numerical closure approach can in principle be applied to a wide class of nonlinear problems, including strongly coupled systems (either deterministic or stochastic) for which there may be no scale separation. We demonstrate the equation-free approach for implementing entropy-based Eyink-Levermore closures on a nonlinear stochastic partial differential equation. C1 [Alexander, Francis J.; Johnson, Gregory] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Eyink, Gregory L.] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA. [Kevrekidis, Ioannis G.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. [Kevrekidis, Ioannis G.] Princeton Univ, PACM, Princeton, NJ 08544 USA. RP Alexander, FJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Eyink, Gregory/A-3340-2010 NR 21 TC 4 Z9 4 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2008 VL 77 IS 2 AR 026701 DI 10.1103/PhysRevE.77.026701 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 271BL UT WOS:000253763800065 PM 18352142 ER PT J AU Bergh, M Timneanu, N Hau-Riege, SP Scott, HA AF Bergh, M. Timneanu, N. Hau-Riege, S. P. Scott, H. A. TI Interaction of ultrashort x-ray pulses with B(4)C, SiC, and Si SO PHYSICAL REVIEW E LA English DT Article ID FREE-ELECTRON LASER; HYDRODYNAMIC SIMULATION; EXTREME-ULTRAVIOLET; NM WAVELENGTH; RARE-GASES; PLASMAS; RADIATION; SEMICONDUCTORS; IONIZATION; HARMONICS AB The interaction of 32.5 and 6 nm ultrashort x-ray pulses with the solid materials B(4)C, SiC, and Si is simulated with a nonlocal thermodynamic equilibrium radiation transfer code. We study the ionization dynamics as a function of depth in the material and modifications of the opacity during irradiation, and estimate the crater depth. Furthermore, we compare the estimated crater depth with experimental data, for fluences up to 2.2 J/cm(2). Our results show that, at 32.5 nm irradiation, the opacity changes by less than a factor of 2 for B(4)C and Si and by a factor of 3 for SiC, for fluences up to 200 J/cm(2). At a laser wavelength of 6 nm, the model predicts a dramatic decrease in opacity due to the weak inverse bremsstrahlung, increasing the crater depth for high fluences. C1 [Bergh, M.; Timneanu, N.] Uppsala Univ, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Hau-Riege, S. P.; Scott, H. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Bergh, M (reprint author), Uppsala Univ, Lab Mol Biophys, Husargatan 3,Box 596, SE-75124 Uppsala, Sweden. EM magnus@xray.bmc.uu.se; nicusor@xray.bmc.uu.se RI Timneanu, Nicusor/C-7691-2012 OI Timneanu, Nicusor/0000-0001-7328-0400 NR 49 TC 14 Z9 14 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2008 VL 77 IS 2 AR 026404 DI 10.1103/PhysRevE.77.026404 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 271BL UT WOS:000253763800053 PM 18352130 ER PT J AU Dharma-wardana, MWC Murillo, MS AF Dharma-wardana, M. W. C. Murillo, Michael S. TI Pair-distribution functions of two-temperature two-mass systems: Comparison of molecular dynamics, classical-map hypernetted chain, quantum Monte Carlo, and Kohn-Sham calculations for dense hydrogen SO PHYSICAL REVIEW E LA English DT Article ID ELECTRON-GAS; PLASMA AB Two-temperature, two-mass quasiequilibrium plasmas may occur in electron-ion plasmas, nuclear-matter, as well as in electron-hole condensed-matter systems. Dense two-temperature hydrogen plasmas straddle the difficult partially degenerate regime of electron densities and temperatures which are important in astrophysics, in inertial-confinement fusion research, and other areas of warm dense-matter physics. Results from quantum Monte Carlo (QMC) are used to benchmark the procedures used in classical molecular-dynamics simulations and hypernetted chain (HNC) and classical-map HNC (CHNC) methods to derive electron-electron and electron-proton pair-distribution functions. Where QMC is not available, we used Kohn-Sham results as the reference calculation. Then, nonequilibrium molecular dynamics for two-temperature, two-mass plasmas are used to obtain pair distribution functions without specifying the interspecies cross temperature. Using these results, the correct HNC and CHNC procedures for the evaluation of pair-distribution functions in two-temperature two-mass two-component charged fluids are established and results for a mass ratio of 1:5, typical of electron-hole fluids, are presented. C1 [Dharma-wardana, M. W. C.] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada. [Murillo, Michael S.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Dharma-wardana, MWC (reprint author), Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada. EM chandre.dharma-wardana@nrc-cnrc.gc.ca; murillo@lanl.gov NR 28 TC 21 Z9 21 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2008 VL 77 IS 2 AR 026401 DI 10.1103/PhysRevE.77.026401 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 271BL UT WOS:000253763800050 PM 18352127 ER PT J AU Heath, CE Feng, SH Day, JP Graham, AL Ingber, MS AF Heath, Cynthia E. Feng, Shihai Day, Joseph P. Graham, Alan L. Ingber, Marc S. TI Near-contact interactions between a sphere and a plane SO PHYSICAL REVIEW E LA English DT Article ID FALLING-BALL RHEOMETRY; ELASTOHYDRODYNAMIC COLLISION; SURFACE-ROUGHNESS; VISCOUS FLUID; SLOW MOTION; SUSPENSIONS; PARTICLES; WALL AB The hydrodynamic behavior observed for a sphere released under gravity in a Newtonian liquid is not consistent with that predicted by classical continuum theory when the sphere is near a solid wall. An irreversibility arises in the velocity of the sphere as it approaches and recedes from the plane that cannot be accounted for using continuum hydrodynamic equations alone. Earlier experiments on spheres falling from a plane were conducted under conditions such that this irreversibility could be attributed to the surface roughness of the spheres. In this investigation, we extend these studies to situations where the pressure field between the receding sphere and the plane drops to the vapor pressure of the fluid and cavitation occurs. Experimental data supports the theoretical prediction for a sphere's motion based on the irreversible effect of cavitation. C1 [Heath, Cynthia E.; Feng, Shihai; Day, Joseph P.; Graham, Alan L.] Los Alamos Natl Lab, Inst Multiscale Mat Studies, Los Alamos, NM 87545 USA. [Ingber, Marc S.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RP Heath, CE (reprint author), Los Alamos Natl Lab, Inst Multiscale Mat Studies, POB 1663, Los Alamos, NM 87545 USA. EM heathc@lanl.gov NR 28 TC 3 Z9 3 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2008 VL 77 IS 2 AR 026307 DI 10.1103/PhysRevE.77.026307 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 271BL UT WOS:000253763800045 PM 18352122 ER PT J AU Ming, DM Anghel, M Wall, ME AF Ming, Dengming Anghel, Marian Wall, Michael E. TI Hidden structure in protein energy landscapes SO PHYSICAL REVIEW E LA English DT Article ID DOMAIN; KINETICS; LIQUIDS; STATES; MODEL AB Inherent structure theory is used to discover strong connections between simple characteristics of protein structure and the energy landscape of a Go (o) over bar model. The potential energies and vibrational free energies of inherent structures are highly correlated, and both reflect simple measures of networks of native contacts. These connections have important consequences for models of protein dynamics and thermodynamics. C1 [Ming, Dengming; Anghel, Marian; Wall, Michael E.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Ming, Dengming] Nanjing Univ, Sch Life Sci, Nanjing 210093, Jiangsu, Peoples R China. [Wall, Michael E.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Wall, Michael E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM mewall@lanl.gov OI Alexandrov, Ludmil/0000-0003-3596-4515 NR 24 TC 3 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2008 VL 77 IS 2 AR 021902 DI 10.1103/PhysRevE.77.021902 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 271BK UT WOS:000253763700080 PM 18352046 ER PT J AU Muralidharan, K Mishra, SK Frantziskonis, G Deymier, PA Nukala, P Simunovic, S Pannala, S AF Muralidharan, Krishna Mishra, Sudib K. Frantziskonis, G. Deymier, P. A. Nukala, Phani Simunovic, Srdjan Pannala, Sreekanth TI Dynamic compound wavelet matrix method for multiphysics and multiscale problems SO PHYSICAL REVIEW E LA English DT Article ID SIMULATION; CONTINUUM; SCALES; BASES AB The paper presents the dynamic compound wavelet method (dCWM) for modeling the time evolution of multiscale and/or multiphysics systems via an "active" coupling of different simulation methods applied at their characteristic spatial and temporal scales. Key to this "predictive" approach is the dynamic updating of information from the different methods in order to adaptively and accurately capture the temporal behavior of the modeled system with higher efficiency than the (nondynamic) "corrective" compound wavelet matrix method (CWM), upon which the proposed method is based. The system is simulated by a sequence of temporal increments where the CWM solution on each increment is used as the initial conditions for the next. The numerous advantages of the dCWM method such as increased accuracy and computational efficiency in addition to a less-constrained and a significantly better exploration of phase space are demonstrated through an application to a multiscale and multiphysics reaction-diffusion process in a one-dimensional system modeled using stochastic and deterministic methods addressing microscopic and macroscopic scales, respectively. C1 [Muralidharan, Krishna; Frantziskonis, G.] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Mishra, Sudib K.; Frantziskonis, G.] Univ Arizona, Dept Civil Engn & Mech, Tucson, AZ 85721 USA. [Nukala, Phani; Simunovic, Srdjan; Pannala, Sreekanth] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Muralidharan, K (reprint author), Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. RI Pannala, Sreekanth/F-9507-2010 NR 21 TC 12 Z9 12 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2008 VL 77 IS 2 AR 026714 DI 10.1103/PhysRevE.77.026714 PN 2 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 271BL UT WOS:000253763800078 PM 18352155 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Siegrist, J. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for Standard Model Higgs Bosons Produced in Association with W Bosons SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report on the results of a search for standard model Higgs bosons produced in association with W bosons from p ($p) over bar collisions at root s = 1.96 TeV. The search uses a data sample corresponding to approximately 1 fb(-1) of integrated luminosity. Events consistent with the W -> lvand H -> b (b) over bar signature are selected by triggering on a high-p(T) electron or muon candidate and tagging one or two of the jet candidates as having originated from b quarks. A neural network filter rejects a fraction of tagged charm and light-flavor jets, increasing the b-jet purity in the sample. We observe no excess lvb (b) over bar production beyond the background expectation, and we set 95% confidence level upper limits on the production cross section times branching fraction sigma(p ($) over bar -> WH)Br(H -> b (b) over bar) ranging from 3.9 to 1.3 pb, for specific Higgs boson mass hypotheses in the range 110 to 150 GeV/c(2), respectively. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Menzemer, S.; Mitra, A.; Teng, P. K.; Wang, S. M.; CDF Collaboration] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Cuenca Almenar, C.; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.; Wynne, S. M.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Siegrist, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3, CNRS, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Chiarelli, Giorgio/E-8953-2012; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Paulini, Manfred/N-7794-2014; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; OI Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Paulini, Manfred/0000-0002-6714-5787; Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Torre, Stefano/0000-0002-7565-0118 FU U.S. Department of Energy; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U.K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community; Slovak RD Agency; Academy of Finland; National Science Foundation FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 13 TC 12 Z9 12 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2008 VL 100 IS 4 AR 041801 DI 10.1103/PhysRevLett.100.041801 PG 7 WC Physics, Multidisciplinary SC Physics GA V21ON UT WOS:000208217000001 ER PT J AU Dalvit, DAR Neto, PAM Lambrecht, A Reynaud, S AF Dalvit, Diego A. R. Maia Neto, Paulo A. Lambrecht, Astrid Reynaud, Serge TI Probing quantum-vacuum geometrical effects with cold atoms SO PHYSICAL REVIEW LETTERS LA English DT Article ID CASIMIR FORCE; MU-M AB The lateral Casimir-Polder force between an atom and a corrugated surface should allow one to study experimentally nontrivial geometrical effects in the electromagnetic quantum vacuum. Here, we derive the theoretical expression of this force in the scattering approach. We show that large corrections to the "proximity force approximation" could be measured using present-day technology with a Bose-Einstein condensate used as a vacuum field sensor. C1 [Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Maia Neto, Paulo A.] UFRL, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. [Lambrecht, Astrid; Reynaud, Serge] UPMC, CNRS, ENS, Lab Kastler Brossel, F-75252 Paris 05, France. RP Dalvit, DAR (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Fluidos Complexos, INCT/H-9172-2013; Reynaud, Serge/J-8061-2014; Lambrecht, Astrid/K-1208-2014 OI Reynaud, Serge/0000-0002-1494-696X; Lambrecht, Astrid/0000-0002-5193-1222 NR 35 TC 30 Z9 30 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2008 VL 100 IS 4 AR 040405 DI 10.1103/PhysRevLett.100.040405 PG 4 WC Physics, Multidisciplinary SC Physics GA 258JE UT WOS:000252863400005 PM 18352246 ER PT J AU Ding, Y Haskel, D Ovchinnikov, SG Tseng, YC Orlov, YS Lang, JC Mao, HK AF Ding, Yang Haskel, Daniel Ovchinnikov, Sergei G. Tseng, Yuan-Chieh Orlov, Yuri S. Lang, Jonathan C. Mao, Ho-kwang TI Novel pressure-induced magnetic transition in magnetite (Fe(3)O(4)) SO PHYSICAL REVIEW LETTERS LA English DT Article ID MULTIPLE-SCATTERING THEORY; X-RAY DICHROISM; LOWER MANTLE; VERWEY TRANSITION; K-EDGE; CIRCULAR-DICHROISM; SPIN TRANSITION; BAND-STRUCTURE; IRON; FE AB Fe K-edge x-ray magnetic circular dichroism of magnetite (Fe(3)O(4)) powders was measured with synchrotron radiation under variable pressure and temperature conditions in diamond anvil cell. The magnetic dichroism was observed to decrease discontinuously by similar to 50% between 12 and 16 GPa, independent of temperature. The magnetic transition is attributed to a high-spin to intermediate-spin transition of Fe(2+) ions in the octahedral sites and could account for previously observed structural and electrical anomalies in magnetite at this pressure range. The interpretation of x-ray magnetic circular dichroism data is supported by x-ray emission spectroscopy and theoretical cluster calculations. C1 [Ding, Yang; Mao, Ho-kwang] Carnegie Inst Washington, HPSynC, Argonne, IL 60439 USA. [Haskel, Daniel; Tseng, Yuan-Chieh; Lang, Jonathan C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ovchinnikov, Sergei G.] Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia. [Ovchinnikov, Sergei G.; Orlov, Yuri S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. [Mao, Ho-kwang] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Mao, Ho-kwang] Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA. RP Ding, Y (reprint author), Carnegie Inst Washington, HPSynC, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yangding@aps.anl.gov RI Ding, Yang/K-1995-2014 OI Ding, Yang/0000-0002-8845-4618 NR 39 TC 49 Z9 50 U1 6 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2008 VL 100 IS 4 AR 045508 DI 10.1103/PhysRevLett.100.045508 PG 4 WC Physics, Multidisciplinary SC Physics GA 258JE UT WOS:000252863400060 PM 18352301 ER PT J AU Lu, XH Mochrie, SGJ Narayanan, S Sandy, AR Sprung, M AF Lu, Xinhui Mochrie, S. G. J. Narayanan, S. Sandy, A. R. Sprung, M. TI How a liquid becomes a glass both on cooling and on heating SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHOTON-CORRELATION SPECTROSCOPY; COLLOIDAL SUSPENSIONS; TRANSITION; DYNAMICS; SYSTEM; RELAXATION; SCATTERING AB The onset of structural arrest and glass formation in a concentrated suspension of silica nanoparticles in a water-lutidine binary mixture near its consolute point is studied by exploiting the near-critical fluid degrees of freedom to control the strength of an attraction between particles and multispeckle x-ray photon correlation spectroscopy to determine the particles' collective dynamics. This model system undergoes a glass transition both on cooling and on heating, and the intermediate liquid realizes unusual logarithmic relaxations. How vitrification occurs for the two different glass transitions is characterized in detail and comparisons are drawn to recent theoretical predictions for glass formation in systems with attractive interactions. C1 [Lu, Xinhui; Mochrie, S. G. J.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Mochrie, S. G. J.] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA. [Narayanan, S.; Sandy, A. R.; Sprung, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lu, XH (reprint author), Yale Univ, Dept Phys, New Haven, CT 06511 USA. NR 24 TC 38 Z9 38 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2008 VL 100 IS 4 AR 045701 DI 10.1103/PhysRevLett.100.045701 PG 4 WC Physics, Multidisciplinary SC Physics GA 258JE UT WOS:000252863400061 PM 18352302 ER PT J AU Niemann, C Berger, RL Divol, L Froula, DH Jones, O Kirkwood, RK Meezan, N Moody, JD Ross, J Sorce, C Suter, LJ Glenzer, SH AF Niemann, C. Berger, R. L. Divol, L. Froula, D. H. Jones, O. Kirkwood, R. K. Meezan, N. Moody, J. D. Ross, J. Sorce, C. Suter, L. J. Glenzer, S. H. TI Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL-IGNITION-FACILITY; INERTIAL CONFINEMENT FUSION; PHYSICS BASIS; OMEGA-LASER; LIGHT; ENERGETICS; TARGETS; DRIVE; SIMULATIONS; BACKSCATTER AB We demonstrate propagation and small backscatter losses of a frequency-doubled (2 omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2 omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2 omega light is possible. C1 [Niemann, C.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Niemann, C.; Berger, R. L.; Divol, L.; Froula, D. H.; Jones, O.; Kirkwood, R. K.; Meezan, N.; Moody, J. D.; Ross, J.; Sorce, C.; Suter, L. J.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Niemann, C (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Box 951594, Los Angeles, CA 90095 USA. NR 36 TC 14 Z9 15 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2008 VL 100 IS 4 AR 045002 DI 10.1103/PhysRevLett.100.045002 PG 4 WC Physics, Multidisciplinary SC Physics GA 258JE UT WOS:000252863400047 PM 18352288 ER PT J AU Yelland, EA Singleton, J Mielke, CH Harrison, N Balakirev, FF Dabrowski, B Cooper, JR AF Yelland, E. A. Singleton, J. Mielke, C. H. Harrison, N. Balakirev, F. F. Dabrowski, B. Cooper, J. R. TI Quantum oscillations in the underdoped cuprate YBa(2)Cu(4)O(8) SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERMI-SURFACE; SUPERCONDUCTOR; PSEUDOGAP; PHASE; YBA2CU3O7-DELTA; LIQUID AB We report the observation of quantum oscillations in the underdoped cuprate superconductor YBa(2)Cu(4)O(8) using a tunnel-diode oscillator technique in pulsed magnetic fields up to 85 T. There is a clear signal, periodic in inverse field, with frequency 660 +/- 15 T and possible evidence for the presence of two components of slightly different frequency. The quasiparticle mass is m*=3.0 +/- 0.3m(e). In conjunction with the results of Doiron-Leyraud et al. for YBa(2)Cu(3)O(6.5), the present measurements suggest that Fermi surface pockets are a general feature of underdoped copper oxide planes and provide information about the doping dependence of the Fermi surface. C1 [Yelland, E. A.] HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Singleton, J.; Mielke, C. H.; Harrison, N.; Balakirev, F. F.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Dabrowski, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Cooper, J. R.] Cavendish Lab, Cambridge CB3 0HE, England. RP Yelland, EA (reprint author), Univ St Andrews, Dept Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. OI Harrison, Neil/0000-0001-5456-7756 NR 24 TC 188 Z9 188 U1 4 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2008 VL 100 IS 4 AR 047003 DI 10.1103/PhysRevLett.100.047003 PG 4 WC Physics, Multidisciplinary SC Physics GA 258JE UT WOS:000252863400080 PM 18352321 ER PT J AU Zhou, JS Ren, Y Yan, JQ Mitchell, JF Goodenough, JB AF Zhou, J. -S. Ren, Y. Yan, J. -Q. Mitchell, J. F. Goodenough, J. B. TI Frustrated superexchange interaction versus orbital order in a LaVO(3) crystal SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITION-METAL COMPOUNDS; FLUCTUATIONS AB Measurements of magnetic, transport properties, thermal conductivity, and magnetization under pressure as well as neutron diffraction have been made on a single crystal and powder sample of LaVO(3). The Neel temperature was found to mark a transition from the phase with both frustrated superexchange interaction and spin-orbit lambda L.S coupling to the phase where the Jahn-Teller orbital-lattice coupling dominates. The dramatic reduction of absolute entropy in the paramagnetic phase is explained in terms of forming a long-range coherent state due to the interference between frustrated orbits and spins. C1 [Zhou, J. -S.; Goodenough, J. B.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yan, J. -Q.] Ames Lab, Ames, IA 50011 USA. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Zhou, JS (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. OI Goodenough, John Bannister/0000-0001-9350-3034 NR 18 TC 12 Z9 12 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2008 VL 100 IS 4 AR 046401 DI 10.1103/PhysRevLett.100.046401 PG 4 WC Physics, Multidisciplinary SC Physics GA 258JE UT WOS:000252863400068 PM 18352309 ER PT J AU Li, R AF Li, Rui TI Curvature-induced bunch self-interaction for an energy-chirped bunch in magnetic bends SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COHERENT SYNCHROTRON-RADIATION; ELECTRON; SIMULATION AB Within the realm of classical electrodynamics, the curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. As an application of this canonical formulation, in this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of the particles in the distribution is derived from the Hamiltonian of the particles in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase-space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions. Our study clearly demonstrates the time delay (or retardation) of the behavior of the effective longitudinal CSR force on a bunch in responding to the change of the bunch length in a magnetic bend. Our result also shows that the effective longitudinal CSR force for a bunch under full compression can have sensitive dependence on the transverse position of the test particle in the bunch for certain parameter regimes. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Li, R (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. NR 25 TC 10 Z9 10 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB PY 2008 VL 11 IS 2 AR 024401 DI 10.1103/PhysRevSTAB.11.024401 PG 30 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FL UT WOS:000254902200005 ER PT J AU Robin, DS Wan, WS Sannibale, F Suller, VP AF Robin, David S. Wan, Weishi Sannibale, Fernando Suller, Victor P. TI Global analysis of all linear stable settings of a storage ring lattice SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The traditional process of designing and tuning the magnetic lattice of a particle storage ring lattice to produce certain desired properties is not straightforward. Often solutions are found through trial and error and it is not clear that the solutions are close to optimal. This can be a very unsatisfying process. In this paper we take a step back and look at the general stability limits of the lattice. We employ a technique we call GLASS (GLobal scan of All Stable Settings) that allows us to rapidly scan and find all possible stable modes and then characterize their associated properties. In this paper we illustrate how the GLASS technique gives a global and comprehensive vision of the capabilities of the lattice. In a sense, GLASS functions as a lattice observatory clearly displaying all possibilities. The power of the GLASS technique is that it is fast and comprehensive. There is no fitting involved. It gives the lattice designer clear guidance as to where to look for interesting operational points. We demonstrate the technique by applying it to two existing storage ring lattices - the triple bend achromat of the Advanced Light Source and the double bend achromat of CAMD. We show that, using GLASS, we have uncovered many interesting and in some cases previously unknown stability regions. C1 [Robin, David S.; Wan, Weishi; Sannibale, Fernando] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Suller, Victor P.] CAMD LSU, Baton Rouge, LA 70806 USA. RP Robin, DS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd Mail Stop 80R0114, Berkeley, CA 94720 USA. NR 14 TC 11 Z9 12 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB PY 2008 VL 11 IS 2 AR 024002 DI 10.1103/PhysRevSTAB.11.024002 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FL UT WOS:000254902200003 ER PT J AU Sato, Y Holmes, J Lee, SY Macek, R AF Sato, Y. Holmes, J. Lee, S. Y. Macek, R. TI Electron cloud simulations of a proton storage ring using cold proton bunches SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Using the ORBIT code we study the sensitivity of electron cloud properties with respect to different proton beam profiles, the secondary electron yield (SEY) parameter, and the proton loss rate. Our model uses a cold proton bunch to generate primary electrons and electromagnetic field for electron cloud dynamics. We study the dependence of the prompt and swept electron signals vs the bunch charge and the recovery of electron clouds after sweeping on the beam loss rate and the SEY. The simulation results are compared with the experimental data measured at the proton storage ring at the Los Alamos National Laboratory. Our simulations indicate that the fractional proton loss rate in the field-free straight section may be an exponential function of proton beam charge and may also be lower than the averaged fractional proton loss rate over the whole ring. C1 [Sato, Y.; Holmes, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Sato, Y.; Lee, S. Y.] Indiana Univ, Bloomington, IN 47405 USA. [Macek, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sato, Y.] RIKEN, Nishiana Ctr, Wako, Saitama, Japan. RP Sato, Y (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. NR 12 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB PY 2008 VL 11 IS 2 AR 024201 DI 10.1103/PhysRevSTAB.11.024201 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FL UT WOS:000254902200004 ER PT J AU Livescu, D AF Livescu, D. TI Comment on "Compressibility effects on the Rayleigh-Taylor instability of three layers" [Phys. Fluids 19, 096103 (2007)] SO PHYSICS OF FLUIDS LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Livescu, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Livescu, Daniel/0000-0003-2367-1547 NR 1 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2008 VL 20 IS 2 AR 029103 DI 10.1063/1.2842376 PG 2 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 276KZ UT WOS:000254141600039 ER PT J AU Rouson, DWI Kassinos, SC Moulitsas, I Sarris, IE Xu, X AF Rouson, D. W. I. Kassinos, S. C. Moulitsas, I. Sarris, I. E. Xu, X. TI Dispersed-phase structural anisotropy in homogeneous magnetohydrodynamic turbulence at low magnetic Reynolds number SO PHYSICS OF FLUIDS LA English DT Article ID DEVELOPED CHANNEL FLOW; PREFERENTIAL CONCENTRATION; ISOTROPIC TURBULENCE; PARTICLES AB A new tensor statistic, the dispersed-phase structure dimensionality D-p, is defined to describe the preferred orientation of clusters of discrete bodies. The evolution of D-p is calculated via direct numerical simulations of passive, Stokesian particles driven by initially isotropic, decaying magnetohydrodynamic turbulence. Results are presented for five magnetic field strengths as characterized by magnetic interaction parameters, N, in the range 0-50. Four field strengths are studied at a grid resolution of 128(3). The strongest field strength is also studied at 256(3) resolution. In each case, the externally applied magnetic field was spatially uniform and followed a step function in time. Particles with initially uniform distributions were tracked through hydrodynamic turbulence for up to 2800 particle response times before the step change in the magnetic field. In the lower resolution simulation, the particle response time, tau(p), matched the Kolmogorov time scale at the magnetic field application time t(0). The higher-resolution simulation tracked ten sets of particles with tau(p) spanning four decades bracketing the Kolmogorov time scale and the Joule time. The results demonstrate that D-p distinguishes between uniformly distributed particles, those organized into randomly oriented clusters, and those organized into two-dimensional sheets everywhere tangent to the magnetic field lines. Lumley triangles are used to demonstrate that the degree of structural anisotropy depends on tau(p), N, and the time span over which the magnetic field is applied. (D American Institute of Physics. C1 [Rouson, D. W. I.] USN, Res Lab, Multiphy Modeling Sect, Washington, DC 20375 USA. [Kassinos, S. C.] NASA Ames, Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Kassinos, S. C.; Moulitsas, I.] Univ Cyprus, Dept Mech & Manufacturing Engn, CY-1678 Nicosia, Cyprus. [Sarris, I. E.] Univ Libre Brussels, B-1050 Brussels, Belgium. [Xu, X.] Gen Motors Corp, Pontiac, MI 48340 USA. RP Rouson, DWI (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM rouson@sandia.gov; kassinos@ucy.ac.cy; moulitsa@ucy.ac.cy; xiaofeng.xu@gm.com RI Moulitsas, Irene/B-1558-2009; Kassinos, Stavros/B-6404-2016 OI Kassinos, Stavros/0000-0002-3501-3851 NR 44 TC 7 Z9 7 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2008 VL 20 IS 2 AR 025101 DI 10.1063/1.2832776 PG 19 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 276KZ UT WOS:000254141600023 ER PT J AU Coverdale, CA Deeney, C LePell, PD Jones, B Davis, J Clark, RW Apruzese, JP Thornhill, JW Whitney, KG AF Coverdale, C. A. Deeney, C. LePell, P. D. Jones, B. Davis, J. Clark, R. W. Apruzese, J. P. Thornhill, J. W. Whitney, K. G. TI Large diameter (45-80 mm) nested stainless steel wire arrays at the Z accelerator SO PHYSICS OF PLASMAS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; Z-PINCH IMPLOSIONS; X-RAY-EMISSION; GAS-PUFF IMPLOSIONS; K-SHELL RADIATION; HIGH-VELOCITY; HEURISTIC MODEL; ALUMINUM; POWER; DYNAMICS AB Experiments have been performed at the Z accelerator to elucidate the effects of initial load diameter on the radiated output of a 7 keV wire array x-ray source. Nested wire arrays with initial outer diameters of 45-80 mm were fielded, with the masses chosen to maintain a nominally constant coupling to the Z generator. The total radiated output decreased from similar to 1.1 MJ to 0.5 MJ for the largest diameter arrays, while the > 1 keV and K-shell radiation decreased at both small and large diameters. The >1 keV output peaked at similar to 340 kJ, while the K-shell yield peaked at similar to 55 kJ. The observed trends in radiated output and stagnated plasma parameters are consistent with a phenomenological K-shell scaling theory, and are reproduced in one-dimensional modeling, although multidimensional effects, such as, growth of the Rayleigh-Taylor instability, are observed in the experiments and appear to impact the stagnated plasma for the larger diameter arrays. (C) 2008 American Institute of Physics. C1 [Coverdale, C. A.; Deeney, C.; LePell, P. D.; Jones, B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Davis, J.; Clark, R. W.; Apruzese, J. P.; Thornhill, J. W.; Whitney, K. G.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. RP Coverdale, CA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 59 TC 24 Z9 24 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2008 VL 15 IS 2 AR 023107 DI 10.1063/1.2840641 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 276KY UT WOS:000254141500040 ER PT J AU Gerhardt, SP Belova, EV Yamada, M Ji, H Inomoto, M Jacobson, CM Maqueda, R McGeehan, B Ren, Y AF Gerhardt, S. P. Belova, E. V. Yamada, M. Ji, H. Inomoto, M. Jacobson, C. M. Maqueda, R. McGeehan, B. Ren, Y. TI Inductive sustainment of oblate field-reversed configurations with the assistance of magnetic diffusion, shaping, and finite-Larmor radius stabilization SO PHYSICS OF PLASMAS LA English DT Article ID NEUTRAL BEAM INJECTION; CURRENT DRIVE; ROTATIONAL INSTABILITY; STABILITY PROPERTIES; GLOBAL STABILITY; COMPACT TOROIDS; THETA PINCHES; TILT MODE; PLASMA; CONFINEMENT AB Oblate field-reversed configurations (FRCs) have been sustained for > 300 mu s, or > 15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects. (c) 2008 American Institute of Physics. C1 [Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Jacobson, C. M.; McGeehan, B.; Ren, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Inomoto, M.] Osaka Univ, Suita, Osaka 5650871, Japan. [Maqueda, R.] Nova Photonics, Princeton, NJ 08540 USA. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Yamada, Masaaki/D-7824-2015 OI Yamada, Masaaki/0000-0003-4996-1649 NR 83 TC 3 Z9 3 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2008 VL 15 IS 2 AR 022503 DI 10.1063/1.28375.12 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 276KY UT WOS:000254141500021 ER PT J AU Key, MH Adam, JC Akli, KU Borghesi, M Chen, MH Evans, RG Freeman, RR Habara, H Hatchett, SP Hill, JM Heron, A King, JA Kodama, R Lancaster, KL MacKinnon, AJ Patel, P Phillips, T Romagnani, L Snavely, RA Stephens, R Stoeckl, C Town, R Toyama, Y Zhang, B Zepf, M Norreys, PA AF Key, M. H. Adam, J. C. Akli, K. U. Borghesi, M. Chen, M. H. Evans, R. G. Freeman, R. R. Habara, H. Hatchett, S. P. Hill, J. M. Heron, A. King, J. A. Kodama, R. Lancaster, K. L. MacKinnon, A. J. Patel, P. Phillips, T. Romagnani, L. Snavely, R. A. Stephens, R. Stoeckl, C. Town, R. Toyama, Y. Zhang, B. Zepf, M. Norreys, P. A. TI Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma SO PHYSICS OF PLASMAS LA English DT Article ID FUSION IGNITION; DENSITY; OPERATION; TARGETS; ENERGY AB An integrated experiment relevant to fast ignition. A Cu-doped deuterated polymer spherical shell target with an inserted hollow An cone is imploded by a six-beam 900-J, 1-ns laser. A 10-ps, 70-J laser pulse is focused into the cone at, the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K alpha fluorescence by comparison with a Monte Carlo model. The electrons are estimated to carry about 15% of the laser energy. Collisional and Ohmic heating are modeled, and Ohmic effects are shown to be relatively unimportant. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is calculated in the model. Enhanced scattering by instability-induced magnetic fields is suggested. An extension of this fluor-based technique to measurement of coupling efficiency. to the ignition hot spot in future larger-scale fast ignition experiments is outlined. (C) 2008 American Institute of Physics. C1 [Key, M. H.; Chen, M. H.; Hatchett, S. P.; Hill, J. M.; King, J. A.; MacKinnon, A. J.; Patel, P.; Phillips, T.; Snavely, R. A.; Town, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Adam, J. C.; Heron, A.] Ecole Polytech, Ctr Phys Theor, UPR14, CNRS, F-91128 Palaiseau, France. [Akli, K. U.; Stephens, R.] Gen Atom Co, San Diego, CA 92186 USA. [Borghesi, M.; Romagnani, L.; Zepf, M.] Queens Univ Belfast, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland. [Evans, R. G.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. [Freeman, R. R.] Ohio State Univ, Columbus, OH 43210 USA. [Habara, H.; Lancaster, K. L.; Norreys, P. A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Kodama, R.; Toyama, Y.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Zhang, B.] Univ Calif Davis, Dept Appl Sci, Livermore, CA 94550 USA. RP Key, MH (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Patel, Pravesh/E-1400-2011; Toyama, Yusuke/H-8023-2012; Borghesi, Marco/K-2974-2012; Zepf, Matt/M-1232-2014; MacKinnon, Andrew/P-7239-2014; Kodama, Ryosuke/G-2627-2016; OI Toyama, Yusuke/0000-0003-3230-1062; MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 NR 36 TC 31 Z9 31 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2008 VL 15 IS 2 AR 022701 DI 10.1063/1.2834727 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 276KY UT WOS:000254141500027 ER PT J AU Qin, H Phillips, CK Davidson, RC AF Qin, Hong Phillips, Cynthia K. Davidson, Ronald C. TI Response to "Comment on 'A new derivation of the plasma susceptibility tensor for a hot magnetized plasma without infinite sums of products of Bessel functions'" [Phys. Plasmas 15, 024701 (2008)] SO PHYSICS OF PLASMAS LA English DT Article C1 [Qin, Hong; Phillips, Cynthia K.; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 8 TC 1 Z9 1 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2008 VL 15 IS 2 AR 024702 DI 10.1063/1.2839770 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 276KY UT WOS:000254141500055 ER PT J AU Sasorov, PV Oliver, BV Yu, EP Mehlhorn, TA AF Sasorov, P. V. Oliver, B. V. Yu, E. P. Mehlhorn, T. A. TI One-dimensional ablation in multiwire arrays SO PHYSICS OF PLASMAS LA English DT Article ID Z-PINCH EXPERIMENTS; X-RAY POWER; WIRE-ARRAY; IMPLOSION DYNAMICS; PLASMA FORMATION; TUNGSTEN WIRE; DIFFERENT PHASES; ENHANCEMENT; EVOLUTION; HOHLRAUMS AB The main physical processes responsible for plasma ablation in multiwire Z pinches are considered via eigensolutions to one-dimensional steady state magnetohydrodynamics. A double scale-length structure of the plasma accelerating layer is demonstrated. The width of the resistive scale-length that defines the current layer structure is significantly larger than the thermal scale-length, where transport of energy toward the cores and plasma pressure play important roles. The transport of energy is provided mainly by radiation, though electron thermal conduction is also important very close to the plasma-core interface. Another type of solution of the steady state problem is revealed, when local Ohmic heating is important down to the interface. Selection between these two types of solutions is considered from multiple points of view. Although the one-dimensional problem is mainly considered in this paper, it is shown how the one-dimensional results may help to understand results of two-dimensional models. (C) 2008 American Institute of Physics. C1 [Sasorov, P. V.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Oliver, B. V.; Yu, E. P.; Mehlhorn, T. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sasorov, PV (reprint author), Inst Theoret & Expt Phys, Moscow 117218, Russia. NR 56 TC 19 Z9 21 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2008 VL 15 IS 2 AR 022702 DI 10.1063/1.2832715 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 276KY UT WOS:000254141500028 ER PT J AU Hernandez-Garcia, C O'Shea, PG Stutzman, ML AF Hernandez-Garcia, Carlos O'Shea, Patrick G. Stutzman, Marcy L. TI Electron sources for accelerators SO PHYSICS TODAY LA English DT Article ID HIGH-BRIGHTNESS; PHOTOCATHODES; PHOTOINJECTOR; EMISSION; INJECTOR; LINACS C1 [Hernandez-Garcia, Carlos; Stutzman, Marcy L.] Thomas Jefferson Natl Accelerator Facil, Jefferson Lab, Newport News, VA 23606 USA. [O'Shea, Patrick G.] Univ Maryland, College Pk, MD 20742 USA. RP Hernandez-Garcia, C (reprint author), Thomas Jefferson Natl Accelerator Facil, Jefferson Lab, Newport News, VA 23606 USA. NR 17 TC 34 Z9 34 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD FEB PY 2008 VL 61 IS 2 BP 44 EP 49 DI 10.1063/1.2883909 PG 6 WC Physics, Multidisciplinary SC Physics GA 262JR UT WOS:000253145300027 ER PT J AU Cvease, RP AF Cvease, Robert P. TI Critical point constant failure SO PHYSICS WORLD LA English DT Editorial Material C1 [Cvease, Robert P.] SUNY Stony Brook, Dept Physiol, Stony Brook, NY 11794 USA. [Cvease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Cvease, RP (reprint author), SUNY Stony Brook, Dept Physiol, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD FEB PY 2008 VL 21 IS 2 BP 18 EP 18 PG 1 WC Physics, Multidisciplinary SC Physics GA 263UV UT WOS:000253242900025 ER PT J AU Titus, TN Colaprete, A Prettyman, TH AF Titus, Timothy N. Colaprete, Anthony Prettyman, Thomas H. TI Introduction to planetary and space science special issue: Mars polar processes SO PLANETARY AND SPACE SCIENCE LA English DT Editorial Material ID SEASONAL CAP; WATER ICE; TES C1 [Titus, Timothy N.] US Geol Survey, Flagstaff, AZ 86001 USA. [Colaprete, Anthony] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Prettyman, Thomas H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Titus, TN (reprint author), US Geol Survey, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. EM ttitus@usgs.gov OI Prettyman, Thomas/0000-0003-0072-2831 NR 10 TC 2 Z9 2 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD FEB PY 2008 VL 56 IS 2 BP 147 EP 149 DI 10.1016/j.pss.2007.08.002 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 268GO UT WOS:000253567500001 ER PT J AU Crutsinger, GM Habenicht, MN Classen, AT Schweitzer, JA Sanders, NJ AF Crutsinger, Gregory M. Habenicht, Melissa N. Classen, Aimee T. Schweitzer, Jennifer A. Sanders, Nathan J. TI Galling by Rhopalomyia solidaginis alters Solidago altissima architecture and litter nutrient dynamics in an old-field ecosystem SO PLANT AND SOIL LA English DT Article DE decomposition; galling insects; goldenrod; leaf litter; nitrogen release; old field; plant-insect interactions ID PLANT-RESISTANCE; HERBIVORY; GOLDENROD; DECOMPOSITION; DIVERSITY; QUALITY; OAK; BIODIVERSITY; POPULATION; ARTHROPODS AB Plant-insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the rosette gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3-34%). Aboveground biomass of galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant-insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant-insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems. C1 [Crutsinger, Gregory M.; Habenicht, Melissa N.; Classen, Aimee T.; Schweitzer, Jennifer A.; Sanders, Nathan J.] Univ Tennessee, Dept Ecol & Evolut Biol, Knoxville, TN 37996 USA. [Classen, Aimee T.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Crutsinger, GM (reprint author), Univ Tennessee, Dept Ecol & Evolut Biol, 569 Dabney Hall, Knoxville, TN 37996 USA. EM gcrutsin@utk.edu RI Sanders, Nathan/A-6945-2009; Classen, Aimee/C-4035-2008 OI Sanders, Nathan/0000-0001-6220-6731; Classen, Aimee/0000-0002-6741-3470 NR 40 TC 8 Z9 8 U1 10 U2 67 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-079X J9 PLANT SOIL JI Plant Soil PD FEB PY 2008 VL 303 IS 1-2 BP 95 EP 103 DI 10.1007/s11104-007-9490-3 PG 9 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 257LG UT WOS:000252800000007 ER PT J AU Li, XY MacArthur, S Bourgon, R Nix, D Pollard, DA Iyer, VN Hechmer, A Simirenko, L Stapleton, M Hendriks, CLL Chu, HC Ogawa, N Inwood, W Sementchenko, V Beaton, A Weiszmann, R Celniker, SE Knowles, DW Gingeras, T Speed, TP Eisen, MB Biggin, MD AF Li, Xiao-Yong MacArthur, Stewart Bourgon, Richard Nix, David Pollard, Daniel A. Iyer, Venky N. Hechmer, Aaron Simirenko, Lisa Stapleton, Mark Hendriks, Cris L. Luengo Chu, Hou Cheng Ogawa, Nobuo Inwood, William Sementchenko, Victor Beaton, Amy Weiszmann, Richard Celniker, Susan E. Knowles, David W. Gingeras, Tom Speed, Terence P. Eisen, Michael B. Biggin, Mark D. TI Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm SO PLOS BIOLOGY LA English DT Article ID HOMEOPROTEIN-DNA-BINDING; CROSS-LINKING ASSAY; IN-VIVO; HUMAN GENOME; GENE-EXPRESSION; MULTIPLE ALIGNMENTS; CHROMATIN IMMUNOPRECIPITATION; BIOLOGICAL FUNCTION; PATTERN-FORMATION; SITES AB Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. We used whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over 40 well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs ( miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly bound regions are not involved in early-embryonic transcriptional regulation, and a significant proportion may be nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not unambiguously more constrained evolutionarily than the immediate flanking DNA, even in more highly bound and presumably functional regions, indicating that comparative DNA sequence analysis is limited in its ability to identify functional transcription factor targets. C1 [Li, Xiao-Yong; MacArthur, Stewart; Nix, David; Hechmer, Aaron; Simirenko, Lisa; Chu, Hou Cheng; Ogawa, Nobuo; Inwood, William; Eisen, Michael B.; Biggin, Mark D.] Univ Calif Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. [Speed, Terence P.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Pollard, Daniel A.; Hendriks, Cris L. Luengo; Beaton, Amy] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Iyer, Venky N.; Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Stapleton, Mark; Sementchenko, Victor; Weiszmann, Richard; Celniker, Susan E.; Knowles, David W.] Univ Calif Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Gingeras, Tom] Affymetrix Inc, Santa Clara, CA USA. [Eisen, Michael B.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Eisen, Michael B.] Calif Inst Quantiat Biosci, Berkeley, CA USA. RP Biggin, MD (reprint author), Univ Calif Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. EM mbeisen@lbl.gov; mdbiggin@lbl.gov RI Luengo Hendriks, Cris L./B-1097-2008; Speed, Terence /B-8085-2009; Rosa, Bruce/F-6393-2010; OI Luengo Hendriks, Cris L./0000-0002-8279-1760; Speed, Terence /0000-0002-5403-7998; Gingeras, Thomas/0000-0001-9106-3573; Bourgon, Richard/0000-0002-5890-4374; Eisen, Michael/0000-0002-7528-738X FU NHGRI NIH HHS [R01 HG002779-06, HG002779, R01 HG002779, R01 HG002779-05]; NIGMS NIH HHS [GM076655, GM704403, R01 GM070444, R01 GM076655] NR 102 TC 282 Z9 288 U1 0 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD FEB PY 2008 VL 6 IS 2 BP 365 EP 388 AR e27 DI 10.1371/journal.pbio.0060027 PG 24 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 287PG UT WOS:000254928400023 PM 18271625 ER PT J AU Patel, M Morrell, P Cunningham, J Khan, N Maxwell, RS Chinn, SC AF Patel, Mogon Morrell, Paul Cunningham, Jenny Khan, Niaz Maxwell, Robert S. Chinn, Sarah C. TI Complexities associated with moisture in foamed polysiloxane composites SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE polysiloxane; stress relaxation; moisture; silica; hydrolysis ID STRESS-RELAXATION; RUBBERS AB An understanding of mechanisms of moisture outgassing from silicones and the impact on material mechanical properties is important for compatibility and life prediction in seated systems containing these materials. A series of thermomechanical (TMA) stress relaxation experiments have been performed to provide information on the important load bearing properties of these materials as a function of time and temperature. Two different silica reinforced foamed polysiloxane materials were tested, a peroxide cured rubber (M97) and a condensation-cured elastomer (S5370). The M97 foam showed unexpectedly complex stress relaxation profiles at temperatures around 100 degrees C, whereas the S5370 samples showed the expected smooth stress decay behaviour. Dried M97 foam samples show different stress relaxation behaviour to the non-dried materials. Furthermore, stress relaxation studies performed in controlled humidity environments showed that moisture has a significant accelerating influence on the underlying relaxation process. In dry regimes, a reduced stress relaxation rate was observed, with an increase in the force required to maintain a given amount of compression on the sample. To further develop our understanding of the effects of moisture, we have exposed samples to water enriched to 40% in O-17 and used O-17 nuclear magnetic resonance (NMR) spectroscopy to assess labelled hydrolysis reaction products. Our studies show that Si-O-17-Si hydrolysis products are readily incorporated in the polymer and the degradation is enhanced by the influence of gamma radiation and/or heat. In addition, the polysiloxane foams showed different age related trends in sealed (where moisture is retained) and ventilated (open-to-air) regimes. Our observations have been explained by moisture influencing both physical and chemical degradation processes. Our findings on moisture induced changes in silicone stress relaxation rates are novel and demonstrate the importance of controlling humidity in service applications involving these materials. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved. C1 [Patel, Mogon; Morrell, Paul; Cunningham, Jenny; Khan, Niaz] Atom Weapons Establishment, Reading RG7 4PR, Berks, England. [Maxwell, Robert S.; Chinn, Sarah C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Patel, M (reprint author), Atom Weapons Establishment, Reading RG7 4PR, Berks, England. EM mogon.patel@awe.co.uk RI Chinn, Sarah/E-1195-2011 NR 15 TC 12 Z9 12 U1 2 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD FEB PY 2008 VL 93 IS 2 BP 513 EP 519 DI 10.1016/j.polymdegradstab.2007.10.026 PG 7 WC Polymer Science SC Polymer Science GA 276MK UT WOS:000254146200025 ER PT J AU Pandey, SK Bindu, R Kumar, A Khalid, S Pimpale, AV AF Pandey, S. K. Bindu, R. Kumar, Ashwani Khalid, S. Pimpale, A. V. TI Doping and bond length contributions to MnK-edge shift in La1-xSrxMnO3 (x=0-0.7) and their correlation with electrical transport properties SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT International Workshop on the Physics of Mesoscopic and Disordered Materials (MESODIS 2006) CY DEC 04-08, 2006 CL Indian Inst Technol, Kanpur, INDIA HO Indian Inst Technol DE manganites; X-ray absorption; density of states; resistivity ID K-EDGE; MANGANITES; HALL AB The room temperature experimental Mn K-edge X-ray absorption spectra of La1-xSrxMnO3 (x = 0-0.7) are compared with the band structure calculations using spin polarized density functional theory. It is explicitly shown that the observed shift in the energy of Mn K-edge on substitution of divalent Sr on trivalent La sites corresponds to the shift in the center of gravity of the unoccupied Mn 4p-band contributing to the Mn K-absorption edge region. This correspondence is then used to separate the doping and size contributions to the edge shift due to variation in the number of electrons in valence band and Mn-O bond lengths, respectively, when Sr is doped into LaMnO3. Such separation is helpful to find the localization behaviour of charge carriers and to understand the observed transport properties of these compounds. C1 [Khalid, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. [Kumar, Ashwani] Devi Ahilya Univ, Sch Phys, Indore 452017, India. [Pandey, S. K.; Bindu, R.; Pimpale, A. V.] UGC DAE Consortium Sci Res, Indore 452017, India. RP Kumar, A (reprint author), IPS Acad, Inst Sci & Lab Educ, Dept Phys, Indore 452012, India. EM ash_kmr2000@yahoo.com RI Pandey, Sudhir/C-6023-2011 OI Pandey, Sudhir/0000-0003-3673-4818 NR 24 TC 3 Z9 3 U1 0 U2 7 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD FEB PY 2008 VL 70 IS 2 BP 359 EP 366 DI 10.1007/s12043-008-0054-8 PG 8 WC Physics, Multidisciplinary SC Physics GA 268LM UT WOS:000253581300019 ER PT J AU Guo, ZF Cascio, D Hideg, K Hubbell, WL AF Guo, Zhefeng Cascio, Duilio Hideg, Kalman Hubbell, Wayne L. TI Structural determinants of nitroxide motion in spin-labeled proteins: Solvent-exposed sites in helix B of T4 lysozyme SO PROTEIN SCIENCE LA English DT Article DE site-directed spin labeling; EPR spectroscopy; side-chain conformation ID SIDE-CHAIN STRUCTURE; ALPHA-HELIX; EPR-SPECTRA; DYNAMICS; T4-LYSOZYME; MUTANTS; ERRORS; BOND AB Site-directed spin labeling provides a means for exploring structure and dynamics in proteins. To interpret the complex EPR spectra that often arise, it is necessary to characterize the rotamers of the spin-labeled side chain and the interactions they make with the local environment in proteins of known structure. For this purpose, crystal structures have been determined for T4 lysozyme bearing a nitroxide side chain (R1) at the solvent-exposed helical sites 41 and 44 in the B helix. These sites are of particular interest in that the corresponding EPR spectra reveal two dynamic states of R1, one of which is relatively immobilized suggesting interactions of the nitroxide with the environment. The crystal structures together with the effect of mutagenesis of nearest neighbors on the motion of R1 suggest intrahelical interactions of 41R1 with the i + 4 residue and of 44R1 with the i + 1 residue. Such interactions appear to be specific to particular rotamers of the R1 side chain. C1 [Guo, Zhefeng; Hubbell, Wayne L.] Univ Calif Los Angeles, Sch Med, Jules Stein Eye Inst, Los Angeles, CA 90095 USA. [Guo, Zhefeng; Hubbell, Wayne L.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Cascio, Duilio] Univ Calif Los Angeles, UCLA DOE Inst Genom & Proteom, Los Angeles, CA 90095 USA. [Hideg, Kalman] Univ Pecs, Inst Organ & Med Chem, H-7643 Pecs, Hungary. RP Hubbell, WL (reprint author), Univ Calif Los Angeles, Sch Med, Jules Stein Eye Inst, 3-118 Jules Stein Eye Inst Bldg,MC 700819, Los Angeles, CA 90095 USA. EM hubbellw@jsei.ucla.edu RI Guo, Zhefeng/A-2069-2013 FU NEI NIH HHS [EY 05216, R01 EY005216, R37 EY005216] NR 42 TC 81 Z9 81 U1 0 U2 10 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD FEB PY 2008 VL 17 IS 2 BP 228 EP 239 DI 10.1110/ps.073174008 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 256IB UT WOS:000252720700005 PM 18096642 ER PT J AU Rezacova, P Borek, D Moy, SF Joachimiak, A Otwinowski, Z AF Rezacova, Pavlina Borek, Dominika Moy, Shiu F. Joachimiak, Andrzej Otwinowski, Zbyszek TI Crystal structure and putative function of small Toprim domain-containing protein from Bacillus stearothermophilus SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE magnesium binding; isothermal titration calorimetry; RNase; structural genomics ID ESCHERICHIA-COLI PRIMASE; DNA TOPOISOMERASE-I; BACTERIOPHAGE T7; ACTIVE-SITE; BINDING-SITE; IDENTIFICATION; MECHANISM; MODEL; REFINEMENT; RESIDUES AB The crystal structure of the Midwest Center for Structural Genomics target APC35832, a 14.7-kDa cytosolic protein from Bacillus stearothermophilus, has been determined at 1.3 angstrom resolution by the single anomalous diffraction method from a mercury soaked crystal. The APC35832 protein is a representative of large group of bacterial and archeal proteins entirely consisting of the Toprim (topoisomerase-primase) domain. This domain is found in the catalytic centers of many enzymes catalyzing phosphodiester bond formation or cleavage, but the function of small Toprim domain proteins remains unknown. Consistent with the sequence analysis, the APC35832 structure shows a conserved Toprim fold, with a central 4-stranded parallel beta-sheet surrounded by four or-helixes. Comparison of the APC35832 structure with its closest structural homolog, the catalytic core of bacteriophage T7 primase, revealed structural conservation of a metal binding site and isothermal titration calorimetry indicates that APC35832 binds Mg2+ with a sub-millimolar dissociation constant (K-d). The APC35832-Mg2+ complex structure was determined at 1.65 angstrom and reveals the role of conserved acidic residues in Mg2+ ion coordination. The structural similarities to other Toprim domain containing proteins and potential function and substrates of APC35832 are discussed in this article. C1 [Rezacova, Pavlina; Borek, Dominika; Otwinowski, Zbyszek] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA. [Moy, Shiu F.; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Moy, Shiu F.; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Biosci Div, Argonne, IL 60439 USA. RP Otwinowski, Z (reprint author), Univ Texas SW Med Ctr Dallas, Dept Biochem, 5323 Harry Hines Blvd, Dallas, TX 75390 USA. EM zbyszek@work.swmed.edu RI Otwinowski, Zbyszek/F-3665-2011; Borek, Dominika/D-2943-2011; Maloy Rezacova, Pavlina/G-3600-2014 OI Borek, Dominika/0000-0002-4321-6253; FU NIGMS NIH HHS [U54 GM074942, U54 GM074942-04S2, GM074942] NR 29 TC 8 Z9 8 U1 0 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB 1 PY 2008 VL 70 IS 2 BP 311 EP 319 DI 10.1002/prot.21511 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 249EB UT WOS:000252208900001 PM 17705269 ER PT J AU Rao, KN Burley, SK Swaminathan, S AF Rao, Krishnamurthy N. Burley, Stephen K. Swaminathan, Subramanyam TI Crystal structure of a conserved protein of unknown function (MJ1651) from Methanococcus jannaschii SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE X-ray structure; MJ1651; archaea; DUF62; Pfam; hexamer ID PROGRAMS; DATABASE; SEQUENCE C1 [Rao, Krishnamurthy N.; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Burley, Stephen K.] SGX Pharmaceut Inc, San Diego, CA 92121 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU NIGMS NIH HHS [GM074945] NR 12 TC 2 Z9 3 U1 1 U2 1 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB 1 PY 2008 VL 70 IS 2 BP 572 EP 577 DI 10.1002/prot.21646 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 249EB UT WOS:000252208900027 PM 17910070 ER PT J AU Mathews, II McMullan, D Miller, MD Canaves, JM Elsliger, MA Floyd, R Grzechnik, SK Jaroszewski, L Klock, HE Koesema, E Kovarik, JS Kreusch, A Kuhn, P McPhillips, TM Morse, AT Quijano, K Rife, CL Schwarzenbacher, R Spraggon, G Stevens, RC van den Bedem, H Weekes, D Wolf, G Hodgson, KO Wooley, J Deacon, AM Godzik, A Lesley, SA Wilson, IA AF Mathews, Irimpan I. McMullan, Daniel Miller, Mitchell D. Canaves, Jaume M. Elsliger, Marc-Andre Floyd, Ross Grzechnik, Slawomir K. Jaroszewski, Lukasz Klock, Heath E. Koesema, Eric Kovarik, John S. Kreusch, Andreas Kuhn, Peter McPhillips, Timothy M. Morse, Andrew T. Quijano, Kevin Rife, Christopher L. Schwarzenbacher, Robert Spraggon, Glen Stevens, Raymond C. van den Bedem, Henry Weekes, Dana Wolf, Guenter Hodgson, Keith O. Wooley, John Deacon, Ashley M. Godzik, Adam Lesley, Scott A. Wilson, Ian A. TI Crystal structure of 2-keto-3-deoxygluconate kinase (TM0067) from Thermotoga maritima at 2.05 angstrom resolution SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID ESCHERICHIA-COLI; PROTEIN C1 [Elsliger, Marc-Andre; Kuhn, Peter; Stevens, Raymond C.; Lesley, Scott A.; Wilson, Ian A.] Scripps Res Inst, La Jolla, CA 92037 USA. [Mathews, Irimpan I.; Miller, Mitchell D.; Floyd, Ross; Kovarik, John S.; McPhillips, Timothy M.; Rife, Christopher L.; van den Bedem, Henry; Wolf, Guenter; Hodgson, Keith O.; Deacon, Ashley M.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. [McMullan, Daniel; Klock, Heath E.; Koesema, Eric; Kreusch, Andreas; Quijano, Kevin; Spraggon, Glen; Lesley, Scott A.] Novartis Res Fdn, Genom Inst, San Diego, CA USA. [Canaves, Jaume M.; Grzechnik, Slawomir K.; Jaroszewski, Lukasz; Morse, Andrew T.; Schwarzenbacher, Robert; Wooley, John; Godzik, Adam] Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA 92093 USA. [Jaroszewski, Lukasz; Weekes, Dana; Godzik, Adam] Burnham Inst Med Res, La Jolla, CA USA. RP Wilson, IA (reprint author), Scripps Res Inst, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI Godzik, Adam/A-7279-2009 OI Godzik, Adam/0000-0002-2425-852X FU NIGMS NIH HHS [P50 GM62411, P50 GM062411, U54 GM074898] NR 22 TC 3 Z9 3 U1 0 U2 5 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB 1 PY 2008 VL 70 IS 2 BP 603 EP 608 DI 10.1002/prot.21842 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 249EB UT WOS:000252208900033 PM 18004772 ER PT J AU Robinson, S Niles, RK Witkowska, HE Rittenbach, KJ Nichols, RJ Sargent, JA Dixon, SE Prakobphol, A Hall, SC Fisher, SJ Hardt, M AF Robinson, Sarah Niles, Richard K. Witkowska, H. Ewa Rittenbach, Kirsten J. Nichols, Robert J. Sargent, Jonathan A. Dixon, Scott E. Prakobphol, Akraporn Hall, Steven C. Fisher, Susan J. Hardt, Markus TI A mass spectrometry-based strategy for detecting and characterizing endogenous proteinase activities in complex biological samples SO PROTEOMICS LA English DT Article DE human saliva; peptidomics; protease inhibitors; stable isotope labeling ID HUMAN-PAROTID-SALIVA; PEPSIN-CATALYZED EXCHANGE; COMPARATIVE PROTEOMICS; CARBOXYLIC ACIDS; OXYGEN-EXCHANGE; O-18; PEPTIDES; IDENTIFICATION; PROTEASES; CANCER AB Endogenous proteinases in biological fluids such as human saliva produce a rich peptide repertoire that reflects a unique combination of enzymes, substrates, and inhibitors/activators. Accordingly, this subproteome is an interesting source of biomarkers for disease processes that either directly or indirectly involve proteolysis. However, the relevant proteinases, typically very low abundance molecules, are difficult to classify and identify. We hypothesized that a sensitive technique for monitoring accumulated peptide products in an unbiased, global manner would be very useful for detecting and profiling proteolytic activities in complex biological samples. Building on the longstanding use of O-18 isotope-based approaches for the classification of proteolytic and other enzymatic processes we devised a new method for evaluating endogenous proteinases. Specifically, we showed that upon ex vivo incubation endogenous proteinases in human parotid saliva introduced O-18 from isotopically enriched water into the C-terminal carboxylic groups of their peptide products. Subsequent peptide sequence determination and inhibitor profiling enabled the detection of discrete subsets of proteolytic products that were generated by different enzymes. As a proof-of-principle we used one of these fingerprints to identify the relevant activity as tissue kallikrein. We termed this technique PALeO. Our results suggest that PALeO is a rapid and highly sensitive method for globally assessing proteinase activities in complex biological samples. C1 [Robinson, Sarah; Niles, Richard K.; Witkowska, H. Ewa; Sargent, Jonathan A.; Prakobphol, Akraporn; Hall, Steven C.; Fisher, Susan J.; Hardt, Markus] Univ Calif San Francisco, Dept Cell Biol & Tissue Biol, San Francisco, CA 94143 USA. [Witkowska, H. Ewa; Dixon, Scott E.; Hall, Steven C.; Fisher, Susan J.] Univ Calif San Francisco, Biomol Resource Ctr Mass Spectrometry Facil, San Francisco, CA 94143 USA. [Rittenbach, Kirsten J.; Nichols, Robert J.] Univ Calif San Francisco, Sch Dent, San Francisco, CA 94143 USA. [Fisher, Susan J.] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. [Fisher, Susan J.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Fisher, Susan J.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Hardt, M (reprint author), Univ Calif San Francisco, Dept Cell Biol & Tissue Biol, 513 Parnassus Ave, San Francisco, CA 94143 USA. EM mhardt@cgl.ucsf.edu FU NCI NIH HHS [U24 CA126477]; NIDCR NIH HHS [U01 DE016274]; OID CDC HHS [DE-AC02-05CH11231] NR 48 TC 24 Z9 24 U1 2 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD FEB PY 2008 VL 8 IS 3 BP 435 EP 445 DI 10.1002/pmic.200700680 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 263VA UT WOS:000253243400003 PM 18186022 ER PT J AU Maniasetty, BA Turnbull, AP Panjikar, S Bussow, K Chance, MR AF Maniasetty, Babu A. Turnbull, Andrew P. Panjikar, Santosh Buessow, Konrad Chance, Mark R. TI Automated technologies and novel techniques to accelerate protein crystallography for structural genomics SO PROTEOMICS LA English DT Review DE protein structure analysis; structural genomics; structural proteornics; X-ray; crystallography ID X-RAY-DIFFRACTION; FREE EXPRESSION SYSTEMS; ELECTRON-DENSITY MAPS; MOLECULAR REPLACEMENT; CRYSTAL-STRUCTURE; DATA-COLLECTION; MACROMOLECULAR CRYSTALLOGRAPHY; CRYSTALLIZATION PROPERTIES; BIOLOGICAL MACROMOLECULES; ALDEHYDE DEHYDROGENASE AB The sequence infrastructure that has arisen through large-scale genomic projects dedicated to protein analysis, has provided a wealth of information and brought together scientists and institutions from all over the world. As a consequence, the development of novel technologies and methodologies in proteomics research is helping to unravel the biochemical and physiological mechanisms of complex multivariate diseases at both a functional and molecular level. In the late sixties, when X-ray crystallography had just been established, the idea of determining protein structure on an almost universal basis was akin to an impossible dream or a miracle. Yet only forty years after, automated protein structure determination platforms have been established. The widespread use of robotics in protein crystallography has had a huge impact at every stage of the pipeline from protein cloning, over-expression, purification, crystallization, data collection, structure solution, refinement, validation and data management- an of which have become more or less automated with minimal human intervention necessary. Here, recent advances in protein crystal structure analysis in the context of structural genomics will be discussed. In addition, this review aims to give an overview of recent developments in high throughput instrumentation, and technologies and strategies to accelerate protein structure/function analysis. C1 [Maniasetty, Babu A.; Chance, Mark R.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Case Ctr Synchrotron Biosci, Upton, NY 11973 USA. [Maniasetty, Babu A.; Chance, Mark R.] Case Western Reserve Univ, Case Ctr Proteom & Mass Spectrometry, Cleveland, OH 44106 USA. [Turnbull, Andrew P.] Univ London, Birkbeck Coll, London, England. [Panjikar, Santosh] DESY, European Mol Biol Lab, D-2000 Hamburg, Germany. [Buessow, Konrad] Helmholtz Ctr Infect Res, Div Struct Biol, Braunschweig, Germany. RP Maniasetty, BA (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Case Ctr Synchrotron Biosci, Upton, NY 11973 USA. EM babu@bnl.gov OI Panjikar, Santosh/0000-0001-7429-3879 NR 158 TC 1 Z9 1 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 EI 1615-9861 J9 PROTEOMICS JI Proteomics PD FEB PY 2008 VL 8 IS 4 BP 612 EP 625 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 271MD UT WOS:000253791600002 ER PT J AU Parker, PA Anderson-Cook, C Robinson, TJ Liang, L AF Parker, Peter A. Anderson-Cook, Christine Robinson, Timothy J. Liang, Li TI Robust split-plot designs SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE design evaluation; D-optimal; IV-optimal; restricted randomization; split-plot designs ID RESPONSE-SURFACE DESIGNS; EQUIVALENT ESTIMATION AB In many experimental situations, practitioners are confronted with costly, time consuming, or hard-to-change (HTC) factors. These practical or economic restrictions on randomization can be accommodated with a split-plot design structure that minimizes the manipulation of the HTC factors. Selecting a good design is a challenging task and requires knowledge of the opportunities and restrictions imposed by the experimental apparatus and an evaluation of statistical performance among competing designs. Building on the well-established evaluation criteria for the completely randomized context, we emphasize the unique qualitative and quantitative evaluation criteria for split-plot designs. An example from hypersonic propulsion research is used to demonstrate the consideration of multiple design evaluation criteria. Published in 2007 by John Wiley & Sons, Ltd. C1 [Parker, Peter A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Anderson-Cook, Christine] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Robinson, Timothy J.] Univ Wyoming, Laramie, WY 82071 USA. [Liang, Li] Duke Clin Res Inst, Durham, NC 27705 USA. RP Parker, PA (reprint author), NASA, Langley Res Ctr, Mail Stop 238, Hampton, VA 23681 USA. EM peter.a.parker@nasa.gov NR 25 TC 8 Z9 8 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD FEB PY 2008 VL 24 IS 1 BP 107 EP 121 DI 10.1002/qre.886 PG 15 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 277TC UT WOS:000254236600009 ER PT J AU Schiff, CJ Kaufman, DS Wallace, KL Werner, A Ku, TL Brown, TA AF Schiff, Caleb J. Kaufman, Darrell S. Wallace, Kristi L. Werner, Al Ku, Teh-Lung Brown, Thomas A. TI Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska SO QUATERNARY GEOCHRONOLOGY LA English DT Article DE tephrochronology; Redoubt Volcano; tephra; cook inlet; volcanic hazards; tephra-fall frequency; Alaska ID SOUTH-CENTRAL ALASKA; UPPER COOK INLET; RADIOCARBON AGE; C-14 DATA; DEPOSITS; CALIBRATION; REGRESSION; ERUPTION; RECORD; DEPTH AB A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS C-14 ages, along with the Cs-137 and Pb-210 activities of recent sediment, we evaluated different models to determine the age-depth relation of the core, and to determine the age of each tephra deposit. The selected age model is based on a mixed-effect regression that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages +/- 105 yr (95% confidence intervals). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7/500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500-3500, 4500-5000, and 7000-7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000-2000 yr) of increased tephra fall separated by shorter periods (500-1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of one every 130 yr. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Schiff, Caleb J.; Kaufman, Darrell S.] No Arizona Univ, Dept Geol, Flagstaff, AZ 86011 USA. [Wallace, Kristi L.] US Geol Survey, Alaska Sci Ctr, Alaska Volcano Observ, Anchorage, AK 99508 USA. [Werner, Al] Mt Holyoke Coll, Dept Earth & Environm, S Hadley, MA 01075 USA. [Ku, Teh-Lung] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Brown, Thomas A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Los Angeles, CA 90089 USA. RP Kaufman, DS (reprint author), No Arizona Univ, Dept Geol, Flagstaff, AZ 86011 USA. EM Darrell.Kaufman@nau.edu RI Kaufman, Darrell/A-2471-2008 OI Kaufman, Darrell/0000-0002-7572-1414 NR 29 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1871-1014 J9 QUAT GEOCHRONOL JI Quat. Geochronol. PD FEB-MAY PY 2008 VL 3 IS 1-2 BP 56 EP 67 DI 10.1016/j.quageo.2007.05.001 PG 12 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 254TR UT WOS:000252611400004 ER PT J AU Owens, M AF Owens, Mig TI New technologies in flow cytometry improve disease diagnosis SO R&D MAGAZINE LA English DT Article C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Owens, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0746-9179 J9 R&D MAG JI R D Mag. PD FEB PY 2008 VL 50 IS 1 BP 22 EP 23 PG 2 WC Engineering, Industrial; Multidisciplinary Sciences SC Engineering; Science & Technology - Other Topics GA 268LE UT WOS:000253580500006 ER PT J AU Teeguarden, J Gupta, A Escobar, P Jackson, M AF Teeguarden, Justin Gupta, Amit Escobar, Patricia Jackson, Mark TI Toxicology steps up to nanotechnology safety SO R&D MAGAZINE LA English DT Article C1 [Teeguarden, Justin] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Teeguarden, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 2 Z9 2 U1 0 U2 3 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0746-9179 J9 R&D MAG JI R D Mag. PD FEB PY 2008 VL 50 IS 1 BP 28 EP 29 PG 2 WC Engineering, Industrial; Multidisciplinary Sciences SC Engineering; Science & Technology - Other Topics GA 268LE UT WOS:000253580500008 ER PT J AU Barcellos-Hoff, MH AF Barcellos-Hoff, Mary Helen TI Cancer as an emergent phenomenon in systems radiation biology SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article; Proceedings Paper CT 1st International Workshop on Systems Radiation Biology CY FEB 14-16, 2007 CL Neuherberg, GERMANY ID GROWTH-FACTOR-BETA; CELL MATRIX INTERACTIONS; INDUCED LUNG INJURY; TRANSFORMING GROWTH-FACTOR-BETA-1; MAMMARY-GLAND; X-IRRADIATION; INTERCELLULAR INDUCTION; TUMOR SUPPRESSION; EPITHELIAL-CELLS; DNA-DAMAGE AB Radiation-induced DNA damage elicits dramatic cell signaling transitions, some of which are directed towards deciding the fate of that particular cell, while others lead to signaling to other cells. Each irradiated cell type and tissue has a characteristic pattern of radiation-induced gene expression, distinct from that of the unirradiated tissue and different from that of other irradiated tissues. It is the sum of such events, highly modulated by genotype that sometimes leads to cancer. The challenge is to determine as to which of these phenomena have persistent effect that should be incorporated into models of how radiation increases the risk of developing cancer. The application of systems biology to radiation effects may help to identify which biological responses are significant players in radiation carcinogenesis. In contrast to the radiation biology paradigm that focuses on genomic changes, systems biology seeks to integrate responses at multiple scales (e.g. molecular, cellular, organ, and organism). A key property of a system is that some phenomenon emerges as a property of the system rather than of the parts. Here, the idea that cancer in an organism can be considered as an emergent phenomenon of a perturbed system is discussed. Given the current research goal to determine the consequences of high and low radiation exposures, broadening the scope of radiation studies to include systems biology concepts should benefit risk modeling of radiation carcinogenesis. C1 [Barcellos-Hoff, Mary Helen] Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Barcellos-Hoff, MH (reprint author), Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Bldg 977, Berkeley, CA 94720 USA. EM mhbarcellos-hov@lbl.gov NR 48 TC 21 Z9 22 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD FEB PY 2008 VL 47 IS 1 BP 33 EP 38 DI 10.1007/s00411-007-0141-0 PG 6 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 258NX UT WOS:000252875700005 PM 18026977 ER PT J AU Trivillin, VA Heber, EM Rao, M Cantarelli, MA Itoiz, ME Nigg, DW Calzetta, O Blaumann, H Longhino, J Schwint, AE AF Trivillin, Veronica A. Heber, Elisa M. Rao, Monica Cantarelli, Maria A. Itoiz, Maria E. Nigg, David W. Calzetta, Osvaldo Blaumann, Herman Longhino, Juan Schwint, Amanda E. TI Boron neutron capture therapy (BNCT) for the treatment of spontaneous nasal planum squamous cell carcinoma in felines SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article; Proceedings Paper CT 1st International Workshop on Systems Radiation Biology CY FEB 14-16, 2007 CL Neuherberg, GERMANY ID HAMSTER-CHEEK POUCH; ORAL-CANCER MODEL; BORONOPHENYLALANINE; TUMORS; BIODISTRIBUTION; RADIOBIOLOGY; TISSUE; GB-10; HEAD AB Recently, Boron neutron capture therapy (BNCT) was successfully applied to treat experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa, with no damage to normal tissue. It was also shown that treating spontaneous nasal planum SCC in terminal feline patients with low dose BNCT is safe and feasible. In an extension of this work, the present study aimed at evaluation of the response of tumor and dose-limiting normal tissues to potentially therapeutic BNCT doses. Biodistribution studies with B-10-boronophenylalanine (BPA enriched in B-10) as a B-10 carrier were performed on three felines that showed advanced nasal planum SCC without any standard therapeutic option. Following the biodistribution studies, BNCT mediated by (10)BPA was done using the thermalized epithermal neutron beam at the RA-6 Nuclear Reactor. Follow-up included clinical evaluation, assessment of macroscopic tumor and normal tissue response and biopsies for histopathological analysis. The treated animals did not show any apparent radiation-induced toxicity. All three animals exhibited partial tumor control and an improvement in clinical condition. Enhanced therapeutic efficacy was associated with a high B-10 content of the tumor and a small tumor size. BNCT is therefore believed to be potentially effective in the treatment of spontaneous SCC. However, improvement in targeting B-10 into all tumor cells and delivering a sufficient dose at a greater depth are still required for the treatment of deep-seated, large tumors. Future studies are needed to evaluate the potential efficacy of the dual mode cellular (e.g. BPA-BNCT) and vascular (e.g. GB-10-BNCT) targeting protocol in a preclinical scenario, employing combinations of B-10 compounds with different properties and complementary uptake mechanisms. C1 [Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.] Natl Atom Energy Commiss, Dept Radiol, Buenos Aires, DF, Argentina. [Rao, Monica; Cantarelli, Maria A.] Vet Oncol Ctr, RA-1642 Acassuso, Argentina. [Itoiz, Maria E.] Univ Buenos Aires, Fac Dent, Dept Oral Pathol, RA-1122 Buenos Aires, DF, Argentina. [Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan] Natl Atom Energy Commiss, Dept Nucl Engn, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. RP Schwint, AE (reprint author), Natl Atom Energy Commiss, Dept Radiol, Av Gen Paz 1499,B1650KNA San Martin, Buenos Aires, DF, Argentina. EM schwint@cnea.gov.ar OI Schwint, Amanda Elena/0000-0001-6727-3669 NR 24 TC 9 Z9 9 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD FEB PY 2008 VL 47 IS 1 BP 147 EP 155 DI 10.1007/s00411-007-0138-8 PG 9 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 258NX UT WOS:000252875700016 PM 17955256 ER PT J AU Miller, SD Murphy, MK Simmons, KL Yahnke, C Yoder, C Markey, B Salasky, M Crabtree, AM AF Miller, S. D. Murphy, M. K. Simmons, K. L. Yahnke, C. Yoder, C. Markey, B. Salasky, M. Crabtree, A. M. TI A high-precision, tissue-equivalent dosimeter for nuclear accident and radiation oncology applications based on optically stimulated luminescence (OSL) in Al2O3 : C SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 15th International Conference on Solid State Dosimetry CY JUL 08-13, 2007 CL Delft Univ Technol, Delft, NETHERLANDS HO Delft Univ Technol DE optically stimulated luminescence; radiation oncology dosimetry; nuclear accident dosimetry AB Injection molding is an important industrial technique for producing large quantities of' identical polymer and polymer composite parts. Although alumina of any kind is abrasive and damaging to the steel molds, a technique was developed that reduces both the mold abrasion and the effective atomic number of the composite polymer dosimeter [Miller, S. 1996a. U.S. Patent No. 5,567,948, issued 22 October 1996; Miller, S. 1996h. U.S. Patent No. 5,569,927, issued 29 October 1996; Miller, S. 1998. U.S. Patent No. 5,731,590, issued 24 March 1998.]. Radiation oncology dose measurement applications would benefit frorn a large unilorm batch of high-precision dosirneters (< 2%, 1 sigma measurement precision). This new, high-precision dosimeter Would eliminate the need to calibrate each closimeter individually, as is currently the case with the thermolurninescence dosimeter measurements performed by the radiation oncology community. Published by Elsevier Ltd. C1 [Miller, S. D.; Murphy, M. K.; Simmons, K. L.] Battelle Pacific NW Div, Richland, WA 99352 USA. [Yahnke, C.; Yoder, C.; Markey, B.; Salasky, M.; Crabtree, A. M.] Landauer Inc, Glenview, IL 60425 USA. RP Miller, SD (reprint author), Battelle Pacific NW Div, Richland, WA 99352 USA. EM steven.miller@pnl.gov NR 6 TC 0 Z9 0 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD FEB-JUN PY 2008 VL 43 IS 2-6 BP 875 EP 878 DI 10.1016/j.radmeas.2007.12.054 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 328OP UT WOS:000257808000158 ER PT J AU Schwahn, SO Gesell, TF AF Schwahn, Scott O. Gesell, Thomas F. TI Variations in backscatter observed in PMMA whole-body dosimetry slab phantoms SO RADIATION PROTECTION DOSIMETRY LA English DT Article ID CALIBRATION PHANTOMS; PHOTON BACKSCATTER AB Polymethyl methacrylate (PMMA) is a useful material for dosimetry phantoms in many ways including approximate tissue equivalence, stability, accessibility and ease of use. However, recent studies indicate that PMMA may have some unanticipated variation in backscatter from one phantom to another. While the reasons behind the variations have not been identified, it has been demonstrated that the backscatter from one phantom to another may vary by as much as 15%, resulting in a dosemeter response variation of as much as 5%. This unexpected contribution to uncertainty in delivered dose to a dosemeter may be quite large compared to the normally estimated uncertainty, potentially causing problems with calibration and performance testing. This paper includes data supporting the differences in backscatter among phantoms, and results from tests on the phantoms performed in an effort to identify possible causes. C1 [Schwahn, Scott O.] US DOE, Idaho Falls, ID 83415 USA. [Gesell, Thomas F.] Idaho State Univ, Dept Phys, Pocatello, ID 83209 USA. RP Schwahn, SO (reprint author), US DOE, 1955 Fremont Ave,MS-4149, Idaho Falls, ID 83415 USA. EM schwahso@id.doe.gov RI Schwahn, Scott/C-2530-2016 OI Schwahn, Scott/0000-0001-7105-3095 NR 14 TC 3 Z9 3 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD FEB PY 2008 VL 128 IS 3 BP 375 EP 381 DI 10.1093/rpd/ncm391 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 310JL UT WOS:000256524700019 PM 17848386 ER PT J AU Cucinotta, FA Pluth, JM Anderson, JA Harper, JV O'Neill, P AF Cucinotta, Francis A. Pluth, Janice M. Anderson, Jennifer A. Harper, Jane V. O'Neill, Peter TI Biochemical kinetics model of DSB repair and induction of gamma-H2AX foci by non-homologous end joining SO RADIATION RESEARCH LA English DT Article ID DEPENDENT PROTEIN-KINASE; DOUBLE-STRAND BREAKS; HEAT-LABILE SITES; DNA-DAMAGE; HISTONE H2AX; CATALYTIC SUBUNIT; MAMMALIAN-CELLS; HIGH-LET; HUMAN FIBROBLASTS; LIGASE-IV AB We developed a biochemical kinetics approach to describe the repair of double-strand breaks (DSBs) produced by low-LET radiation by modeling molecular events associated with non-homologous end joining (NHEJ). A system of coupled nonlinear ordinary differential equations describes the induction of DSBs and activation pathways for major NHEJ components including Ku70/80, DNA-PKcs, and the ligase IV-XRCC4 heterodimer. The autophosphorylation of DNA-PKcs and subsequent induction of gamma-H2AX foci observed after ionizing radiation exposure were modeled. A two-step model of regulation of repair by DNA-PKcs was developed with an initial step allowing access of other NHEJ components to breaks and a second step limiting access to ligase IV-XRCC4. Our model assumes that the transition from the first to the second step depends on DSB complexity, with a much slower rate for complex DSBs. The model faithfully reproduced several experimental data sets, including DSB rejoining as measured by pulsed-field gel electrophoresis (PFGE) at 10 min postirradiation or longer and quantification of the induction of gamma-H2AX foci. A process that is independent of DNA-PKcs is required for the model to reproduce experimental data for rejoining before 10 min postirradiation. Predictions are made for the behaviors of NHEJ components at low doses and dose rates, and a steady state is found at dose rates of 0.1 Gy/h or lower. (C) 2008 by Radiation Rearch Society. C1 [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Pluth, Janice M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Anderson, Jennifer A.; Harper, Jane V.; O'Neill, Peter] MRC, Radiat & Genome Stabil Unit, DNA Damage Grp, Didcot OX11 0RD, Oxon, England. RP Cucinotta, FA (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Francis.A.Cucinotta@nasa.aov FU Medical Research Council [G0700730] NR 51 TC 69 Z9 72 U1 0 U2 4 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD FEB PY 2008 VL 169 IS 2 BP 214 EP 222 DI 10.1667/RR1035.1 PG 9 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 255BZ UT WOS:000252633000010 PM 18220463 ER PT J AU Mason, CE Kallen, RG Hua, SJ White, KP Yu, TW Wang, C Kallen, CB AF Mason, Christopher E. Kallen, Roland G. Hua, Sujun White, Kevin P. Yu, Tianwei Wang, Cheng Kallen, Caleb B. TI ChIPping at the human genome to characterize functional estrogen response elements SO REPRODUCTIVE SCIENCES LA English DT Meeting Abstract CT 55th Annual Meeting of the Society-for-Gynecologic-Investigation CY MAR 26-29, 2008 CL San Diego, CA SP Soc Gynecol Invest C1 [Mason, Christopher E.] Yale Univ, Sch Med, New Haven, CT USA. [Kallen, Roland G.] Univ Penn, Sch Med, Philadelphia, PA 19104 USA. [Hua, Sujun; White, Kevin P.] Univ Chicago, Argonne Natl Lab, Joint Inst Genom & Syst Biol, Chicago, IL 60637 USA. [Yu, Tianwei] Emory Univ, Sch Med, Dept Biostat, Atlanta, GA 30322 USA. [Wang, Cheng; Kallen, Caleb B.] Emory Univ, Sch Med, Atlanta, GA 30322 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1933-7191 J9 REPROD SCI JI Reprod. Sci. PD FEB PY 2008 VL 15 IS 2 SU S MA 48 BP 74A EP 74A PG 1 WC Obstetrics & Gynecology; Reproductive Biology SC Obstetrics & Gynecology; Reproductive Biology GA 268LP UT WOS:000253581600050 ER PT J AU Adams, BW Attenkofer, K AF Adams, Bernhard W. Attenkofer, Klaus TI An active-optic x-ray fluorescence analyzer with high energy resolution, large solid angle coverage, and a large tuning range SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID POISSONS RATIO; YOUNGS MODULUS; SHEAR MODULUS; CRYSTALS; SILICON; REFLECTIVITY AB A crystal-optic x-ray fluorescence energy analyzer has been designed and tested, which combines the features of electron-volt energy resolution, large solid angle coverage, and tunability over several kilo-electron-volts. The design is based upon the principle of active optics, with ten actuators available to optimally adjust the shape of a silicon crystal used in the Bragg geometry. In most applications the shape is that of a logarithmic spiral for high energy resolution with a spatially nonresolving detector, but a wide range of other shapes is also possible for applications such as imaging or single-shot spectroscopy in a spectral range of the operator's choosing. (C) 2008 American Institute of Physics. C1 [Adams, Bernhard W.; Attenkofer, Klaus] Argonne Natl Lab, Argonne, IL 60439 USA. RP Adams, BW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM adams@aps.anl.gov; klaus.attenkofer@anl.gov NR 22 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 023102 DI 10.1063/1.2823527 PN 1 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EB UT WOS:000254194400003 PM 18315278 ER PT J AU Beebe, EN Alessi, JG Kponou, A Meitzler, C Pikin, A Prelec, K Raparia, D Ritter, J Zajic, V AF Beebe, E. N. Alessi, J. G. Kponou, A. Meitzler, C. Pikin, A. Prelec, K. Raparia, D. Ritter, J. Zajic, V. TI Development of ion injection into the BNL test electron beam ion source using a prototype low energy beam transfer switchyard and a hollow cathode ion source (abstract) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc C1 [Beebe, E. N.; Alessi, J. G.; Kponou, A.; Pikin, A.; Prelec, K.; Raparia, D.; Ritter, J.; Zajic, V.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Meitzler, C.] Sam Houston State Univ, Huntsville, TX 77341 USA. RP Beebe, EN (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B318 DI 10.1063/1.2821595 PN 2 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800095 ER PT J AU Beebe, EN Alessi, JG Gould, O Kponou, A Lockey, R Lambiase, R Pikin, A Prelec, K Ritter, J Zajic, V AF Beebe, E. N. Alessi, J. G. Gould, O. Kponou, A. Lockey, R. Lambiase, R. Pikin, A. Prelec, K. Ritter, J. Zajic, V. TI BNL test electron beam ion source operation on a 100 kV platform SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc C1 [Beebe, E. N.; Alessi, J. G.; Gould, O.; Kponou, A.; Lockey, R.; Lambiase, R.; Pikin, A.; Prelec, K.; Ritter, J.; Zajic, V.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Beebe, EN (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Lambiase, Robert/E-1934-2013 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A707 DI 10.1063/1.2821594 PN 2 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800066 ER PT J AU Darrow, DS AF Darrow, D. S. TI Scintillator based energetic ion loss diagnostic for the National Spherical Torus Experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FUSION PRODUCTS; ASDEX UPGRADE; TFTR; JET; PARTICLES; PLASMA; PROBE; COLLECTOR; EMISSION; TOKAMAK AB A scintillator based energetic ion loss detector has been built and installed on the National Spherical Torus Experiment (NSTX) [Synakowski et al., Nucl. Fusion 43, 1653 (2000)] to measure the loss of neutral beam ions. The detector is able to resolve the pitch angle and gyroradius of the lost energetic ions. It has a wide acceptance range in pitch angle and energy, and is able to resolve the full, one-half, and one-third energy components of the 80 keV D neutral beams up to the maximum toroidal magnetic field of NSTX. Multiple Faraday cups have been embedded behind the scintillator to allow easy absolute calibration of the diagnostic and to measure the energetic ion loss in several ranges of pitch angle with good time resolution. Several small, vacuum compatible lamps allow simple calibration of the scintillator position within the field of view of the diagnostic's video camera. (C) 2008 American Institute of Physics. C1 [Darrow, D. S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Darrow, DS (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 30 TC 33 Z9 35 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 023502 DI 10.1063/1.2827514 PN 1 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EB UT WOS:000254194400019 PM 18315294 ER PT J AU Ghilea, MC Sangster, TC Meyerhofer, DD Lerche, RA Disdier, L AF Ghilea, M. C. Sangster, T. C. Meyerhofer, D. D. Lerche, R. A. Disdier, L. TI Aperture tolerances for neutron-imaging systems in inertial confinement fusion SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NATIONAL-IGNITION-FACILITY; TARGETS; DIAGNOSTICS; DETECTORS AB Neutron-imaging systems are being considered as an ignition diagnostic for the National Ignition Facility (NIF) [Hogan et al., Nucl. Fusion 41, 567 (2001)]. Given the importance of these systems, a neutron-imaging design tool is being used to quantify the effects of aperture fabrication and alignment tolerances on reconstructed neutron images for inertial confinement fusion. The simulations indicate that alignment tolerances of more than 1 mrad would introduce measurable features in a reconstructed image for both pinholes and penumbral aperture systems. These simulations further show that penumbral apertures are several times less sensitive to fabrication errors than pinhole apertures. (C) 2008 American Institute of Physics. C1 [Ghilea, M. C.; Sangster, T. C.; Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Lerche, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Disdier, L.] Commissariat Energ Atom, Bruyeres Le Chatel, France. RP Ghilea, MC (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. NR 15 TC 15 Z9 15 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 023501 DI 10.1063/1.2839023 PN 1 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EB UT WOS:000254194400018 PM 18315293 ER PT J AU Gushenets, VI Bugaev, AS Oks, EM Kulevoy, TV Hershcovitch, A Brown, IG AF Gushenets, V. I. Bugaev, A. S. Oks, E. M. Kulevoy, T. V. Hershcovitch, A. Brown, I. G. TI Experimental comparison of time-of-flight mass analysis with magnetic mass analysis SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB A series of experiments was carried out in which both a magnetic analyzer (mass separator) and a time-of-flight (TOF) spectrometer were used for ion charge/mass spectral analysis of the ion beam formed by a dc Bernas ion source made for semiconductor implantation. The TOF analyzer was a detachable device that provides rapid analysis of charge-to-mass composition of moderate energy ion beams. The magnetic analyzer was a massive device using a 90 degrees-sector bending magnet with radius of the central orbit of 35 cm. Comparison of these two methods for measuring ion beam composition shows good agreement. (C) 2008 American Institute of Physics. C1 [Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Kulevoy, T. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Hershcovitch, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Brown, I. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Oks, EM (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. EM oks@opee.hcei.tsc.ru RI Oks, Efim/A-9409-2014 OI Oks, Efim/0000-0002-9323-0686 NR 9 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B701 DI 10.1063/1.2802593 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800103 PM 18315192 ER PT J AU Gushenets, VI Oks, EM Hershcovitch, A Johnson, BM AF Gushenets, V. I. Oks, E. M. Hershcovitch, Ady Johnson, B. M. TI Side extraction duoPIGatron-type ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB We have designed and constructed a compact duoPIGatron-type ion source, for possible use in ion implanters, in which ions are extracted from a side aperture in contrast to conventional duoPIGatron sources with axial ion extraction. The size of the side extraction aperture is 1 x 40 mm(2). The ion source was developed to study physical and technological aspects relevant to an industrial ion source. The side extraction duoPIGatron has a stable arc, uniformly bright illumination, and dense plasma. The present work describes some operating parameters of the ion source using argon and BF(3). Total unanalyzed beam currents were 40 mA with Ar at an arc current of 7 A and 13 mA with BF(3) gas at an arc current of 9 A. (c) 2008 American Institute of Physics. C1 [Gushenets, V. I.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Oks, E. M.] Tomsk Univ Control Syst & Radioelect, Tomsk 634050, Russia. [Hershcovitch, Ady; Johnson, B. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gushenets, VI (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. RI Oks, Efim/A-9409-2014 OI Oks, Efim/0000-0002-9323-0686 NR 3 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B307 DI 10.1063/1.2802286 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800084 PM 18315173 ER PT J AU Han, BX Welton, RF Stockli, MP Luciano, NP Carmichael, JR AF Han, B. X. Welton, R. F. Stockli, M. P. Luciano, N. P. Carmichael, J. R. TI Evaluation and utilization of beam simulation codes for the SNS ion source and low energy beam transport development SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB Beam simulation codes PBGUNS, SIMION, and LORENTZ-3D were evaluated by modeling the well-diagnosed SNS base line ion source and low energy beam transport (LEBT) system. Then, an investigation was conducted using these codes to assist our ion source and LEBT development effort which is directed at meeting the SNS operational and also the power-upgrade project goals. A high-efficiency H(-) extraction system as well as magnetic and electrostatic LEBT configurations capable of transporting up to 100 mA is studied using these simulation tools. (C) 2008 American Institute of Physics. C1 [Han, B. X.; Welton, R. F.; Stockli, M. P.; Luciano, N. P.; Carmichael, J. R.] Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. RP Han, BX (reprint author), Oak Ridge Natl Lab, SNS, POB 2008,MS 6461, Oak Ridge, TN 37831 USA. NR 10 TC 2 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B904 DI 10.1063/1.2819321 PN 2 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800130 PM 18315219 ER PT J AU Hanada, M Kamada, M Akino, N Ebisawa, N Honda, A Kawai, M Kazawa, M Kikuchi, K Kornata, M Mogaki, K Noto, K Ohshima, K Takenouchi, T Tanai, Y Usui, K Yamazaki, H Ikeda, Y Grisham, LR AF Hanada, M. Kamada, M. Akino, N. Ebisawa, N. Honda, A. Kawai, M. Kazawa, M. Kikuchi, K. Kornata, M. Mogaki, K. Noto, K. Ohshima, K. Takenouchi, T. Tanai, Y. Usui, K. Yamazaki, H. Ikeda, Y. Grisham, L. R. TI Long pulse production of high current D(-) ion beams in the JT-60 negative ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID INJECTION SYSTEM AB The first long pulse production of high power D(-) ion beams has been demonstrated in the JT-60 U negative ion sources, each of which was designed to produce 22 A, 500 keV D(-) ion beams. Voltage holding capability and the grid power loading were examined for long pulse production of high power D(-) ion beams. From the correlation between voltage holding and the light intensity of cathodoluminescence from the Fiber Reinforced Plastic insulators, the acceleration voltage for stable voltage holding capability was found to be less than 320-340 kV where the light was sufficiently suppressed. By tuning the extraction voltage, the grid power loadings in the ion sources were decreased to the allowable levels for long pulse injection without a significant reduction of the beam power. After tuning the acceleration and extraction voltages, D(-) ion beams of 12.5 and 9.8 A were produced at 340 keV with cesium seeding at a rate of similar to 14 mu g/s into the ion sources. The pulse duration of these D(-) ion beams was extended step by step, and then was successfully extended up to 18 s without degradation of the negative ion production. The D(-) ion beams were neutralized to yield 3.6 MW D(0) beams by a gas cell, and then injected into the JT-60 U plasma. Further, a slight reduction of D(-) ion beam power allowed the longer injection duration of 21 s at a D(0) beam power of 3.2 MW. The success in the long pulse production of a high power D(-) ion beam shows that negative ion beams can be produced during a few tens of seconds without degradations of negative ion production and the voltage holding in a large Cs-seeded negative ion source. (C) 2008 American Institute of Physics. C1 [Hanada, M.; Kamada, M.; Akino, N.; Ebisawa, N.; Honda, A.; Kawai, M.; Kazawa, M.; Kikuchi, K.; Kornata, M.; Mogaki, K.; Noto, K.; Ohshima, K.; Takenouchi, T.; Tanai, Y.; Usui, K.; Yamazaki, H.; Ikeda, Y.] Japan Atom Energy Agcy, Ibaraki 3100193, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hanada, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukohyama Naka, Ibaraki 3100193, Japan. EM hanada.masaya@jaea.go.jp NR 5 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A519 DI 10.1063/1.2821508 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800051 PM 18315140 ER PT J AU Hershcovitch, A Johnson, BM Batalin, VA Kropachev, GN Kuibeda, RP Kulevoy, TV Kolomiets, AA Pershin, VI Petrenko, SV Rudskoy, I Seleznev, DN Bugaev, AS Gushenets, VI Litovko, IV Oks, EM Yushkov, GY Masunov, ES Polozov, SM Poole, HJ Storozhenko, PA Svarovski, AY AF Hershcovitch, A. Johnson, B. M. Batalin, V. A. Kropachev, G. N. Kuibeda, R. P. Kulevoy, T. V. Kolomiets, A. A. Pershin, V. I. Petrenko, S. V. Rudskoy, I. Seleznev, D. N. Bugaev, A. S. Gushenets, V. I. Litovko, I. V. Oks, E. M. Yushkov, G. Yu. Masunov, E. S. Polozov, S. M. Poole, H. J. Storozhenko, P. A. Svarovski, A. Ya. TI Ion sources for energy extremes of ion implantation (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID ELECTRON-BEAM ENHANCEMENT AB For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: p(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and p(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 of Sb(3+) Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources. (C) 2008 American Institute of Physics. C1 [Hershcovitch, A.; Johnson, B. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Batalin, V. A.; Kropachev, G. N.; Kuibeda, R. P.; Kulevoy, T. V.; Kolomiets, A. A.; Pershin, V. I.; Petrenko, S. V.; Rudskoy, I.; Seleznev, D. N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bugaev, A. S.; Gushenets, V. I.; Litovko, I. V.; Oks, E. M.; Yushkov, G. Yu.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Masunov, E. S.; Polozov, S. M.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Poole, H. J.] PVI, Oxnard, CA 93031 USA. [Storozhenko, P. A.] State Res Inst Chem & Technol Organoelement Cpds, Moscow 111123, Russia. [Svarovski, A. Ya.] AA Bochvar Sci Res Inst Inorgan Mat, Siberian Branch Russian Natl Res Ctr, Seversk 636070, Russia. RP Hershcovitch, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hershcovitch@bnl.gov RI Oks, Efim/A-9409-2014; Yushkov, Georgy/O-8024-2015 OI Oks, Efim/0000-0002-9323-0686; Yushkov, Georgy/0000-0002-7615-6058 NR 14 TC 2 Z9 2 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02C507 DI 10.1063/1.2801648 PN 2 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800161 PM 18315250 ER PT J AU Ji, Q Chen, Y Ji, L Hahto, S Leung, KN Lee, TG Moon, DW AF Ji, Qing Chen, Ye Ji, Lili Hahto, Sami Leung, Ka-Ngo Lee, Tae Geol Moon, Dae Won TI Development of C(60) plasma ion source for time-of-flight secondary ion mass spectrometry applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID BEAM AB Initial data from a multicusp ion source developed for buckminsterfullerene (C(60)) cluster ion production are reported in this article. A C(60)(+) beam current of 425 nA and a C(60)(-) beam current of 200 nA are obtainable in continuous mode. Compared to prior work using electron impact ionization, the multicusp ion source provides at least two orders of magnitude increase in the extractable C(60)(+) beam current. Mass spectra for both positive and negative bismuth cluster ions generated by the multicusp ion source are also included. (c) 2008 American Institute of Physics. C1 [Lee, Tae Geol; Moon, Dae Won] Korea Res Omst Standards & Sci, Nano Bio Fus Res Ctr, Taejon 305600, South Korea. [Ji, Qing; Chen, Ye; Ji, Lili; Hahto, Sami; Leung, Ka-Ngo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Moon, DW (reprint author), Korea Res Omst Standards & Sci, Nano Bio Fus Res Ctr, Taejon 305600, South Korea. EM dwmoon@kriss.re.kr NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B309 DI 10.1063/1.2804912 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800086 PM 18315175 ER PT J AU Kamada, M Hanada, M Ikeda, Y Grisham, LR Jiang, W AF Kamada, M. Hanada, M. Ikeda, Y. Grisham, L. R. Jiang, W. TI Beamlet deflection due to beamlet-beamlet interaction in a large-area multiaperture negative ion source for JT-60U SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID SYSTEM; OPERATION AB The JT-60U negative ion source has been designed to produce high current beams of 22 A through grids of 1080 apertures (five segments with nine rows of 24 apertures). One of the key issues is to steer such a high current beam through the multiaperture grids in order to focus the overall beam envelope because the beamlet-beamlet interaction may deflect the outer beamlets outward due to unbalanced space charge repulsion. To clarify the beam deflection in the JT-60U negative ion source, the beamlet trajectory in a multiaperture ion source was calculated by a three-dimensional simulation code. The measured angles of the outmost beamlets were in agreement with the calculated results where space charge of the beamlets was taken into account. It is noticed that the deflection of the outermost beamlet due to the beamlet-beamlet interaction is saturated at 5.2 mrad outward for beamlets more than ten. (C) 2008 American Institute of Physics. C1 [Kamada, M.; Hanada, M.; Ikeda, Y.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Grisham, L. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Jiang, W.] Nagaoka Univ Technol, Niigata 9402188, Japan. RP Kamada, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3110193, Japan. EM kamada.masaki@jaea.go.jp NR 4 TC 14 Z9 14 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02C114 DI 10.1063/1.2819333 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800151 PM 18315240 ER PT J AU Kanesue, T Tamura, J Okamura, M AF Kanesue, Takeshi Tamura, Jun Okamura, Masahiro TI Ag ion generation irradiated by Nd : YAG laser onto solid target for use of direct plasma injection scheme SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB Direct plasma injection scheme (DPIS) is an acceleration scheme which consists of laser ion source and a radio frequency quadrupole linac (RFQ) linac for high current heavy ion acceleration. With this scheme, over 60 mA of carbon and aluminum beam was achieved at the RFQ exit. We are planning to accelerate Ag ions as a heavier material than used previously. Ag plasma properties using Nd:YAG laser (2.3 J/6 ns) were measured toward the acceleration with DPIS. The results showed that the highest ion yield was obtained at Ag(15+). Based on these results, multicharged Ag ion transportation inside RFQ was simulated and the expected current at the exit of RFQ was over 14 mA for Ag(15+) using the RFQ dedicated for Ag acceleration. (c) 2008 American Institute of Physics. C1 [Kanesue, Takeshi] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Nishi Ku, Fukuoka 8190395, Japan. [Tamura, Jun] Tokyo Inst Technol, Dept Energy Sci, Midori Ku, Yokohama, Kanagawa 2268502, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Okamura, Masahiro] RIKEN, Wako, Saitama 3510198, Japan. RP Kanesue, T (reprint author), Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan. EM kanesue@kune2a.nucl.kyushu-u.ac.jp; jtamura@riken.jp; okamura@bnl.gov NR 2 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B311 DI 10.1063/1.2816235 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800088 PM 18315177 ER PT J AU Kanesue, T Tamura, J Okamura, M AF Kanesue, Takeshi Tamura, Jun Okamura, Masahiro TI Feasibility study of a laser ion source for primary ion injection into the Relativistic Heavy Ion Collider electron beam ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB Charge state 1 + ions are required as a primary ion source for Relativistic Heavy Ion Collider-electron beam ion source (RHIC-EBIS) at BNL and laser ion source (LIS) is a candidate as one of the external ion source since low energy and low charge state ions can be generated by lower power density laser irradiation onto solid target surface. Plasma properties of (27)Al, (56)Fe, and (181)Ta using the second harmonics of Nd:yttrium aluminum garnet laser (0.73 J/5.5 ns and 532 nm wavelength) for low charge state ion generation was measured. Charge state distribution of Ta was optimized for 1 + with estimated laser power density of 9.1 x 10(8) W/cm(2) on the target. It has been shown that the LIS can produce sufficient ion charge with the appropriate pulse structure to satisfy injection requirements of the RHIC EBIS. (c) 2008 American Institute of Physics. C1 [Kanesue, Takeshi] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Nishi Ku, Fukuoka 8190395, Japan. [Tamura, Jun] Tokyo Inst Technol, Dept Energy Sci, Midori Ku, Yokohama, Kanagawa 2268502, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Kanesue, T (reprint author), Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan. NR 4 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B102 DI 10.1063/1.2838223 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800077 PM 18315166 ER PT J AU Kashiwagi, H Okamura, M Tamura, J Takano, J AF Kashiwagi, Hirotsugu Okamura, Masahiro Tamura, Jun Takano, Junpei TI Direct plasma injection scheme with beam extraction in a radio frequency quadrupole linac cavity SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID LASER ION-SOURCE; RFQ LINAC AB Direct plasma injection scheme (DPIS) is a recently developed idea about beam injection into a radio frequency quadrupole (RFQ) linac to obtain high current pulsed heavy ion beam. Since a laser ion source is directly connected to an RFQ linac, a low energy beam transport is not needed. An ion beam is extracted at the edge of the cavity. We shifted the extraction position in the RFQ cavity to improve the beam loss problem due to beam diverging before arriving at the entrance of the RFQ electrode region. In this scheme, ion beam is extracted at the entrance of the RFQ electrode region and the extracted beam is immediately captured by a rf quadrupole electric field. A plasma electrode is inserted in the accelerator resonant cavity. It is required to avoid serious effect on the acceleration characteristics of the RFQ linac. The rf properties were measured using a network analyzer to verify the effect. The shifts of resonant frequency were negligibly small by inserting the electrode. The measurements of the electric field distribution along the beam axis in the RFQ linac showed that the plasma electrode had little effect on it. The result of beam acceleration experiment showed that the beam current was increased by about 20%. It was confirmed that the beam loss was reduced by this scheme. (C) 2008 American Institute of Physics. C1 [Kashiwagi, Hirotsugu] Japan Atom Energy Agcy, Takasaki Adv Radiat Res Inst, Takasaki, Gumma 3701292, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Tamura, Jun] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan. [Takano, Junpei] High Energy Accelerator Res Org, Accelerator Lab, Accelerator Div 1, Tsukuba, Ibaraki 3050801, Japan. RP Kashiwagi, H (reprint author), Japan Atom Energy Agcy, Takasaki Adv Radiat Res Inst, 1233 Watanuki, Takasaki, Gumma 3701292, Japan. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02C716 DI 10.1063/1.2823898 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800180 PM 18315269 ER PT J AU Kim, JS Zhao, L Cluggish, BP Bogatu, IN Pardo, R AF Kim, J. S. Zhao, L. Cluggish, B. P. Bogatu, I. N. Pardo, R. TI Electron cyclotron resonance charge breeder ion source simulation by MCBC and GEM SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB Numerical simulation results by the GEM and MCBC codes are presented, along with a comparison with experiments for beam capture dynamics and parameter studies of charge state distribution (CSD) of electron cyclotron resonance charge breeder ion sources. First, steady state plasma profiles are presented by GEM with respect to key experimental parameters such as rf power and gas pressure. As rf power increases, electron density increases by a small amount and electron energy by a large amount. The central electrostatic potential dip also increased. Next, MCBC is used to trace injected beam ions to obtain beam capture profiles. Using the captured ion profiles, GEM obtains a CSD of beam ions. As backscattering can be significant, capturing the ions near the center of the device enhances the CSD. The effect of rf power on the beam CSD is mainly due to different steady states plasmas. Example cases are presented assuming that the beam ions are small enough not to affect the plasma. (C) 2008 American Institute of Physics. C1 [Kim, J. S.; Zhao, L.; Cluggish, B. P.; Bogatu, I. N.] FAR TECH Inc, San Diego, CA 92121 USA. [Pardo, R.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, JS (reprint author), FAR TECH Inc, 3550 Gen Atom Court 15-155, San Diego, CA 92121 USA. NR 17 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B906 DI 10.1063/1.2816961 PN 2 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800132 PM 18315221 ER PT J AU Kim, TH Wang, ZH Wendelken, JF Weitering, HH Li, WZ Li, AP AF Kim, Tae-Hwan Wang, Zhouhang Wendelken, John F. Weitering, Hanno H. Li, Wenzhi Li, An-Ping TI A cryogenic Quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research (vol 78, art no 123701, 2007) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction C1 [Kim, Tae-Hwan; Wendelken, John F.; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Zhouhang] RHK Technol Inc, Troy, MI 48083 USA. [Weitering, Hanno H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Li, Wenzhi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. RP Li, AP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM apli@ornl.gov RI Li, An-Ping/B-3191-2012 OI Li, An-Ping/0000-0003-4400-7493 NR 1 TC 0 Z9 0 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 029902 DI 10.1063/1.2844721 PN 1 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EB UT WOS:000254194400069 ER PT J AU Koivisto, H Suominen, P Ropponen, T Ropponen, J Koponen, T Savonen, M Toivanen, V Wu, X Machicoane, G Stetson, J Zavodszky, P Doleans, M Spaedtke, P Vondrasek, R Tarvainen, O AF Koivisto, H. Suominen, P. Ropponen, T. Ropponen, J. Koponen, T. Savonen, M. Toivanen, V. Wu, X. Machicoane, G. Stetson, J. Zavodszky, P. Doleans, M. Spaedtke, P. Vondrasek, R. Tarvainen, O. TI Ion beam development for the needs of the JYFL nuclear physics programme SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I(total) <= 0.7 mA) and only about 2% for high beam intensities (I(total) > 1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not able to reach the temperature needed for the requested metal ion beams. In order to fulfill these requirements intensive development work has been performed. An inductively and a resistively heated oven has successfully been developed and both are capable of reaching temperatures of about 2000 degrees C. In addition, sputtering technique has been tested. GEANT4 simulations have been started in order to better understand the processes involved with the bremsstrahlung, which gives an extra heat load to cryostat in the case of superconducting ECR ion source. Parallel with this work, a new advanced ECR heating simulation program has been developed. In this article we present the latest results of the above-mentioned projects. (c) 2008 American Institute of Physics. C1 [Koivisto, H.; Suominen, P.; Ropponen, T.; Ropponen, J.; Koponen, T.; Savonen, M.; Toivanen, V.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Wu, X.; Machicoane, G.; Stetson, J.; Zavodszky, P.; Doleans, M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Spaedtke, P.] Gesell Schwerionenforschung GSI, D-64291 Darmstadt, Germany. [Vondrasek, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Tarvainen, O.] Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Koivisto, H (reprint author), Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. OI doleans, marc/0000-0003-4542-8724 NR 6 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A303 DI 10.1063/1.2804866 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800004 PM 18315093 ER PT J AU Kulevoy, TV Petrenko, SV Kuibeda, RP Seleznev, DN Koshelev, VA Kozlov, AV Stasevich, YB Sitnikov, AL Shamailov, IM Pershin, VI Hershcovitch, A Johnson, BM Gushenets, VI Oks, EM Poole, HP Masunov, ES Polozov, SM AF Kulevoy, T. V. Petrenko, S. V. Kuibeda, R. P. Seleznev, D. N. Koshelev, V. A. Kozlov, A. V. Stasevich, Yu. B. Sitnikov, A. L. Shamailov, I. M. Pershin, V. I. Hershcovitch, A. Johnson, B. M. Gushenets, V. I. Oks, E. M. Poole, H. P. Masunov, E. S. Polozov, S. M. TI Status of ITEP decaborane ion source program SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Both Freeman and Bernas ion sources for decaborane ion beam generation were investigated. Decaborane negative ion beam as well as positive ion beam were generated and delivered to the output of mass separator. Experimental results obtained in ITEP are presented. (C) 2008 American Institute of Physics. C1 [Kulevoy, T. V.; Petrenko, S. V.; Kuibeda, R. P.; Seleznev, D. N.; Koshelev, V. A.; Kozlov, A. V.; Stasevich, Yu. B.; Sitnikov, A. L.; Shamailov, I. M.; Pershin, V. I.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Hershcovitch, A.; Johnson, B. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gushenets, V. I.; Oks, E. M.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Poole, H. P.] PVI, Oxnard, CA 93031 USA. [Masunov, E. S.; Polozov, S. M.] Moscow Engn Phys Inst Univ, Moscow 115409, Russia. RP Kulevoy, TV (reprint author), Inst Theoret & Expt Phys, Moscow 117218, Russia. EM kulevoy@itep.ru RI Oks, Efim/A-9409-2014 OI Oks, Efim/0000-0002-9323-0686 NR 4 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02C501 DI 10.1063/1.2802608 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800155 PM 18315244 ER PT J AU Leitner, D Benitez, JY Lyneis, CM Todd, DS Ropponen, T Ropponen, J Koivisto, H Gammino, S AF Leitner, D. Benitez, J. Y. Lyneis, C. M. Todd, D. S. Ropponen, T. Ropponen, J. Koivisto, H. Gammino, S. TI Measurement of the high energy component of the X-ray spectra in the VENUS electron cyclotron resonance ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (versatile ECR for nuclear science), produce large amounts of x rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power, and heating frequency. (C) 2008 American Institute of Physics. C1 [Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ropponen, T.; Ropponen, J.; Koivisto, H.] Univ Jyvaskyla, Dept Phys, Accelerator Lab, FIN-40014 Jyvaskyla, Finland. [Gammino, S.] Insti INFN, Lab Nazl Sud, I-95125 Catania, Italy. RP Leitner, D (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dleitner@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A.325 DI 10.1063/1.2821593 PN 2 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800026 ER PT J AU Leitner, D Galloway, ML Loew, TJ Lyneis, CM Rodriguez, IC Todd, DS AF Leitner, D. Galloway, M. L. Loew, T. J. Lyneis, C. M. Rodriguez, I. Castro Todd, D. S. TI High intensity production of high and medium charge state uranium and other heavy ion beams with VENUS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID 28 GHZ; CYCLOTRON AB The next generation, superconducting electron cyclotron resonance (ECR) ion source VENUS (versatile ECR ion source for nuclear science) started operation with 28 GHz microwave heating in 2004. Since then it has produced world record ion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+ or U34+ and in respect to high charge state ions, 1 e mu A of Ar18+, 270 e mu A of Ar16+, 28 e mu A of Xe35+, and 4.9 e mu A of U47+ have been produced. A brief overview of the latest developments leading to these record intensities is given and the production of high intensity uranium beams is discussed in more detail. (C) 2008 American Institute of Physics. C1 [Leitner, D.; Galloway, M. L.; Loew, T. J.; Lyneis, C. M.; Rodriguez, I. Castro; Todd, D. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Leitner, D (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dleitner@lbl.gov NR 20 TC 21 Z9 21 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02C710 DI 10.1063/1.2816790 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800174 PM 18315263 ER PT J AU Leung, KN AF Leung, Ka-Ngo TI rf-driven ion sources for industrial applications (invited) (abstract) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc C1 [Leung, Ka-Ngo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Leung, Ka-Ngo] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Leung, KN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM knleung@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B319 DI 10.1063/1.2838065 PN 2 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800096 ER PT J AU Lyneis, CM Leitner, D Todd, DS Sabbi, G Prestemon, S Caspi, S Ferracin, P AF Lyneis, Claude M. Leitner, D. Todd, D. S. Sabbi, G. Prestemon, S. Caspi, S. Ferracin, P. TI Fourth generation electron cyclotron resonance ion sources (Invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B-ECR will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb3Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrablung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development. (c) 2008 American Institute of Physics. C1 [Lyneis, Claude M.; Leitner, D.; Todd, D. S.; Sabbi, G.; Prestemon, S.; Caspi, S.; Ferracin, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lyneis, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 18 TC 8 Z9 8 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A321 DI 10.1063/1.2816793 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800022 PM 18315111 ER PT J AU Macrander, AT AF Macrander, Albert T. TI Editorial: Announcement of new editors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Editorial Material C1 [Macrander, Albert T.] Argonne Natl Lab, Review Sci Instruments Editorial Off, Argonne, IL 60439 USA. RP Macrander, AT (reprint author), Argonne Natl Lab, Review Sci Instruments Editorial Off, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 020401 DI 10.1063/1.2829027 PN 1 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EB UT WOS:000254194400001 ER PT J AU Oka, Y Tsumori, K Ikeda, K Kaneko, O Nagaoka, K Osakabe, M Takeiri, Y Asano, E Komada, S Kondo, T Sato, M Shibuya, M Grisham, LR Ikeda, Y Hanada, M Umeda, N AF Oka, Y. Tsumori, K. Ikeda, K. Kaneko, O. Nagaoka, K. Osakabe, M. Takeiri, Y. Asano, E. Komada, S. Kondo, T. Sato, M. Shibuya, M. Grisham, L. R. Ikeda, Y. Hanada, M. Umeda, N. TI Spectroscopic observations of beam and source plasma light and testing Cs-deposition monitor in the large area negative ion source for LHD-NBI SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB In the large area negative ion source for the LHD negative-ion-(H(-))-based neutral beam system, (1) we used the spectrometer to measure caesium lines in the source plasma during beam shots. (11) With Doppler-shifted measurements, the H, line at three different locations along the beam as well as the spectrum profile for cases of different plasma grid areas. (111) Caesium deposition monitor with a high speed shutter was tested to measure the weight of the deposited Cs layer. In the observation, cleaner spectra of Doppler-shifted H, line with only a small level of background light were obtained at a new observation port which viewed the blueshifted light in the drift region after the accelerator of a LHD ion source. Both the amounts of Cs I (852 nm, neutral Cs(0)) and Cs II (522 nm, Cs(+)) in the source plasma light rose sharply when beam acceleration began, and continued rising during a 10 s pulse. It was thought that this was because the cesium was evaporated/sputtered from the source back plate by the back-streaming positive ions. Cs deposition rate to the crystal sensor measured by adjusting the shutter open time was evaluated to be 2.9 nanograms/s cm(2) for preliminary testing. More neutral Cs tended to be evolved in the source after arc discharge. Much Cs could be consumed in a high rate-pulsed operation (such as LHD source). (C) 2008 American Institute of Physics. C1 [Oka, Y.; Tsumori, K.; Ikeda, K.; Kaneko, O.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Asano, E.; Komada, S.; Kondo, T.; Sato, M.; Shibuya, M.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ikeda, Y.; Hanada, M.; Umeda, N.] Japan Atom Energy Agcy, Ibaraki 3190193, Japan. RP Oka, Y (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. EM oka@lhd.nifs.ac.jp NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02C105 DI 10.1063/1.2819322 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800142 PM 18315231 ER PT J AU Okamura, M Takeuchi, T Jameson, RA Kondrashev, S Kashiwagi, H Sakakibara, K Kanesue, T Tamura, J Hattori, T AF Okamura, M. Takeuchi, T. Jameson, R. A. Kondrashev, S. Kashiwagi, H. Sakakibara, K. Kanesue, T. Tamura, J. Hattori, T. TI Direct plasma injection scheme in accelerators (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID LASER ION SOURCES; RFQ LINAC AB The idea of direct plasma injection scheme (DPIS) was proposed in 2000. This new technique has been studied and proven to accelerate intense ion beams. To provide medium mass ions with highly charged states, small tabletop solid lasers were used for plasma production. Based on the measured plasma properties, aluminum and carbon ions were accelerated with more than 60 mA of current. The next experiments will use an radio frequency quadrupole designed for q/m = 1/6 and explore beam productions using targets up to silver, and future work will explore production up to uranium. The DPIS has been established and is ready to be used with various accelerators which require pulsed high current, high charge state ion beams. (c) 2008 American Institute of Physics. C1 [Okamura, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Okamura, M.; Jameson, R. A.; Kashiwagi, H.; Kanesue, T.; Tamura, J.; Hattori, T.] RIKEN, Wako, Saitama 3510198, Japan. [Takeuchi, T.] Accelerator Engn Corp, Chiba 2638555, Japan. [Jameson, R. A.] Univ Frankfurt, IAP, D-60438 Frankfurt, Germany. [Kondrashev, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kashiwagi, H.] Japan Atom Energy Agcy, Takasaki, Gumma 3701292, Japan. [Sakakibara, K.; Tamura, J.; Hattori, T.] Tokyo Inst Technol, RLNR, Tokyo 1528550, Japan. [Kanesue, T.] Kyushu Univ, Fukuoka 8128581, Japan. RP Okamura, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM okamura@bnl.gov NR 17 TC 14 Z9 14 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B314 DI 10.1063/1.2821590 PN 2 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800091 PM 18315180 ER PT J AU Oks, EM Yushkov, GY Anders, A AF Oks, E. M. Yushkov, G. Yu. Anders, A. TI Temporal development of ion beam mean charge state in pulsed vacuum arc ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB Vacuum arc ion sources, commonly also known as "Mevva" ion sources, are used to generate intense pulsed metal ion beams. It is known that the mean charge state of the ion beam lies between 1 and 4, depending on cathode material, arc current, arc pulse duration, presence or absence of magnetic field at the cathode, as well as background gas pressure. A characteristic of the vacuum arc ion beam is a significant decrease in ion charge state throughout the pulse. This decrease can be observed up to a few milliseconds, until a "noisy" steady-state value is established. Since the extraction voltage is constant, a decrease in the ion charge state has a proportional impact on the average ion beam energy. This paper presents results of detailed investigations of the influence of are parameters on the temporal development of the ion beam mean charge state for a wide range of cathode materials. It is shown that for fixed pulse duration, the charge state decrease can be reduced by lower arc current, higher pulse repetition rate, and reduction of the distance between cathode and extraction region. The latter effect may be associated with charge exchange processes in the discharge plasma. (c) 2008 American Institute of Physics. C1 [Oks, E. M.] State Univ Control Syst & Radioelect, Tomsk 634050, Russia. [Oks, E. M.; Yushkov, G. Yu.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Anders, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Oks, EM (reprint author), State Univ Control Syst & Radioelect, Tomsk 634050, Russia. EM oks@fet.tusur.ru; gyushkov@opee.hcei.tsc.ru; aanders@lbl.gov RI Oks, Efim/A-9409-2014; Anders, Andre/B-8580-2009; Yushkov, Georgy/O-8024-2015 OI Oks, Efim/0000-0002-9323-0686; Anders, Andre/0000-0002-5313-6505; Yushkov, Georgy/0000-0002-7615-6058 NR 9 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 0213301 DI 10.1063/1.2801094 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800078 ER PT J AU Oks, EM Vizir, AV Shandrikov, MV Yushkov, GY Grishin, DM Anders, A Baldwin, DA AF Oks, E. M. Vizir, A. V. Shandrikov, M. V. Yushkov, G. Yu. Grishin, D. M. Anders, A. Baldwin, D. A. TI Inverted end-Hall-type low-energy high-current gaseous ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a "cold" (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm(2) at 25 cm from the source edge, at a pressure >=-0.02 Pa and gas flow rate >= 14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies. (c) 2008 American Institute of Physics. C1 [Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Anders, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Baldwin, D. A.] 4Wave Inc, Sterling, VA 20166 USA. RP Oks, EM (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. RI Oks, Efim/A-9409-2014; Anders, Andre/B-8580-2009; Yushkov, Georgy/O-8024-2015; Shandrikov, Maxim/R-2148-2016; Vizir, Alexey/R-2139-2016 OI Oks, Efim/0000-0002-9323-0686; Anders, Andre/0000-0002-5313-6505; Yushkov, Georgy/0000-0002-7615-6058; Vizir, Alexey/0000-0002-9563-8650 NR 5 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 0213302 DI 10.1063/1.2801348 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800079 PM 18315168 ER PT J AU Paisley, DL Luo, SN Greenfield, SR Koskelo, AC AF Paisley, Dennis L. Luo, Sheng-Nian Greenfield, Scoft R. Koskelo, Aaron C. TI Laser-launched flyer plate and confined laser ablation for shock wave loading: Validation and applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID INTERFEROMETER; VELOCITIES; SURFACE; SYSTEM AB We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2 - 7 mrad (with an average of 4 +/- 1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples. C1 [Paisley, Dennis L.; Luo, Sheng-Nian; Greenfield, Scoft R.; Koskelo, Aaron C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Paisley, DL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM paisley@lanl.gov; sluo@lanl.gov; greenfield@lant.gov; koskelo@lanl.gov RI Luo, Sheng-Nian /D-2257-2010 OI Luo, Sheng-Nian /0000-0002-7538-0541 NR 33 TC 29 Z9 34 U1 5 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 023902 DI 10.1063/1.2839399 PN 1 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EB UT WOS:000254194400036 PM 18315311 ER PT J AU Pikin, A Kponou, A Alessi, JG Beebe, EN Prelec, K Raparia, D AF Pikin, A. Kponou, A. Alessi, J. G. Beebe, E. N. Prelec, K. Raparia, D. TI Model simulations of continuous ion injection into electron-beam ion source trap with slanted electrostatic mirror SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID EBIS AB The efficiency of trapping ions in an electron-beam ion source (EBIS) is of primary importance for many applications requiring operations with externally produced ions: RIA breeders, ion sources, and traps. At the present time, the most popular method of ion injection is pulsed injection, when short bunches of ions get trapped in a longitudinal trap while traversing the trap region. Continuous trapping is a challenge for EBIS devices because mechanisms which reduce the longitudinal ion energy per charge in a trap (cooling with residual gas, energy exchange with other ions, and ionization) are not very effective, and accumulation of ions is slow. A possible approach to increase trapping efficiency is to slant the mirror at the end of the trap which is opposite to the injection end. A slanted mirror will convert longitudinal motion of ions into transverse motion, and, by reducing their longitudinal velocity, prevent these ions from escaping the trap on their way out. The trade-off for the increased trapping efficiency this way is an increase in the initial transverse energy of the accumulated ions. The slanted mirror can be realized if the ends of two adjacent electrodes, drift tubes, which act as an electrostatic mirror, are machined to produce a slanted gap, rather than an upright one. Applying different voltages to these electrodes will produce a slanted mirror. The. results of two-dimensional (2D) and three-dimensional (3D) computer simulations of the ion injection into an EBIS are presented using simplified models of an EBIS with conical (2D simulations) and slanted (3D simulations) mirror electrodes. (C) 2008 American Institute Of Physics. C1 [Pikin, A.; Kponou, A.; Alessi, J. G.; Beebe, E. N.; Prelec, K.; Raparia, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Pikin, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 4 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B908 DI 10.1063/1.2828061 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800134 PM 18315223 ER PT J AU Roudskoy, I Kulevoy, TV Petrenko, SV Kuibeda, RP Seleznev, DN Pershin, VI Hershcovitch, A Johnson, BM Gushenets, VI Oks, EM Poole, HP AF Roudskoy, I. Kulevoy, T. V. Petrenko, S. V. Kuibeda, R. P. Seleznev, D. N. Pershin, V. I. Hershcovitch, A. Johnson, B. M. Gushenets, V. I. Oks, E. M. Poole, H. P. TI Bernas ion source discharge simulation SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB As the technology and applications continue to grow up, the development of plasma and ion sources with clearly specified characteristic is required. Therefore comprehensive numerical studies at the project stage are the key point for ion implantation source manufacturing (especially for low energy implantation). Recently the most commonly encountered numerical approach is the Monte Carlo particle-in-cell (MCPIC) method also known as particle-in-cell method with Monte Carlo collisions. In ITEP the 2D3V numerical code PICSIS-2D realizing MCPIC method was developed in the framework of the joint research program. We present first results of the simulation for several materials interested in semiconductors. These results are compared with experimental data obtained at the ITEP ion source test bench. (c) 2008 American Institute of Physics. C1 [Roudskoy, I.; Kulevoy, T. V.; Petrenko, S. V.; Kuibeda, R. P.; Seleznev, D. N.; Pershin, V. I.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Hershcovitch, A.; Johnson, B. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gushenets, V. I.; Oks, E. M.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Poole, H. P.] PVI, Oxnard, CA USA. RP Roudskoy, I (reprint author), Inst Theoret & Expt Phys, Moscow 117218, Russia. EM kulevoy@itep.ru RI Oks, Efim/A-9409-2014 OI Oks, Efim/0000-0002-9323-0686 NR 9 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B313 DI 10.1063/1.2823897 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800090 PM 18315179 ER PT J AU Rouleau, G Geros, E Stelzer, J Chacon-Golcher, E Keller, R Tarvainen, O Borden, M AF Rouleau, G. Geros, E. Stelzer, J. Chacon-Golcher, E. Keller, R. Tarvainen, O. Borden, M. TI Tungsten filament material and cesium dynamic equilibrium effects on a surface converter ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID VAPOR; BEAM AB We present results on two different aspects that affect surface converter H(-) ion source performance: tungsten filament material and converter/wall temperature control. On the tungsten material aspect, evidence that filament grain size affects the source performance as well as filament failure modes is shown. Materials with impurity contents that hinder grain growth during conditioning or operation are to be avoided in order to increase the filament lifetime. Regarding the temperature control of the converter and plasma chamber walls, we present results of increased current output of up to 2.5 mA (15%). This is explained by generating increased cesium vapor pressure leading to enhanced sputtering of H(-) ions. (C) 2008 American Institute of Physics. C1 [Rouleau, G.; Geros, E.; Stelzer, J.; Chacon-Golcher, E.; Keller, R.; Tarvainen, O.; Borden, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rouleau, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 7 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A514 DI 10.1063/1.2819327 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800046 PM 18315135 ER PT J AU Scandale, W Efthymiopoulos, I Still, DA Carnera, A Della Mea, G De Salvador, D Milan, R Vomiero, A Baricordi, S Chiozzi, S Dalpiaz, P Damiani, C Fiorini, M Guidi, V Martinelli, G Mazzolari, A Milan, E Ambrosi, G Azzarello, P Battiston, R Bertucci, B Burger, WJ Ionica, M Zuccon, P Cavoto, G Santacesaria, R Valente, P Vallazza, E Afonin, AG Baranov, VT Chesnokov, YA Kotov, VI Maisheev, VA Yazynin, IA Afanasiev, SV Kovalenko, AD Taratin, AM Bondar, NF Denisov, AS Gavrikov, YA Ivanov, YM Ivochkin, VG Kosyanenko, SV Lapina, LP Levtchenko, PM Petrunin, AA Skorobogatov, VV Suvoro, VM Bolognini, D Foggetta, L Hasan, S Prest, M AF Scandale, Walter Efthymiopoulos, Ilias Still, Dean A. Carnera, Alberto Della Mea, Gianantonio De Salvador, Davide Milan, Riccardo Vomiero, Alberto Baricordi, Stefano Chiozzi, Stefano Dalpiaz, Pietro Damiani, Chiara Fiorini, Massimiliano Guidi, Vincenzo Martinelli, Giuliano Mazzolari, Andrea Milan, Emiliano Ambrosi, Giovanni Azzarello, Philipp Battiston, Roberto Bertucci, Bruna Burger, William J. Ionica, Maria Zuccon, Paolo Cavoto, Gianluca Santacesaria, Roberta Valente, Paolo Vallazza, Erik Afonin, Alexander G. Baranov, Vladimir T. Chesnokov, Yury A. Kotov, Vladilen I. Maisheev, Vladimir A. Yazynin, Igor A. Afanasiev, Sergey V. Kovalenko, Alexander D. Taratin, Alexander M. Bondar, Nikolai F. Denisov, Alexander S. Gavrikov, Yury A. Ivanov, Yuri M. Ivochkin, Vladimir G. Kosyanenko, Sergey V. Lapina, Lyubov P. Levtchenko, Peter M. Petrunin, Anatoli A. Skorobogatov, Vyacheslav V. Suvoro, Vsevolod M. Bolognini, Davide Foggetta, Luca Hasan, Said Prest, Michela TI Apparatus to study crystal channeling and volume reflection phenomena at the SPSH8 beamline SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID U-70 ACCELERATOR; SILICON TRACKER; PROTON-BEAM; EXTRACTION; SPACE; AGILE; AMS AB A high performance apparatus has been designed and built by the H8-RD22 collaboration for the study of channeling and volume reflection phenomena in the interaction of 400 GeV/c protons with bent silicon crystals, during the 2006 data taking in the external beamline H8 of the CERN SPS. High-quality silicon short crystals were bent by either anticlastic or quasimosaic effects. Alignment with the highly parallel (8 mu rad divergence) proton beam was guaranteed through a submicroradian goniometric system equipped with both rotational and translational stages. Particle tracking was possible by a series of silicon microstrip detectors with high-resolution and a parallel plate gas chamber, triggered by various scintillating detectors located along the beamline. Experimental observation of volume reflection with 400 GeV/c protons proved true with a deflection angle of (10.4 +/- 0.5) mu rad with respect to the unperturbed beam, with a silicon crystal whose (I 11) planes were parallel to the beam. (C) 2008 American Institute of Physics. C1 [Scandale, Walter; Efthymiopoulos, Ilias] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Still, Dean A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carnera, Alberto; Della Mea, Gianantonio; De Salvador, Davide; Milan, Riccardo; Vomiero, Alberto] INFN Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Carnera, Alberto; De Salvador, Davide] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Della Mea, Gianantonio] Univ Trent, Dipartimento Ingn Mat & Tecnol Ind, I-38050 Trento, Italy. [Vomiero, Alberto] CNR, INFM, I-25133 Brescia, Italy. [Baricordi, Stefano; Chiozzi, Stefano; Dalpiaz, Pietro; Damiani, Chiara; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano] Univ Ferrara, Dipartmento Fis, INFN Sezione Ferrara, I-44100 Ferrara, Italy. [Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J.; Ionica, Maria; Zuccon, Paolo] INFN Sezione Perugia, I-06123 Perugia, Italy. [Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J.; Ionica, Maria; Zuccon, Paolo] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo] INFN Sezione Roma, I-00185 Rome, Italy. [Vallazza, Erik] INFN Sezione Trieste, I-34127 Trieste, Italy. [Afonin, Alexander G.; Baranov, Vladimir T.; Chesnokov, Yury A.; Kotov, Vladilen I.; Maisheev, Vladimir A.; Yazynin, Igor A.] Inst High Energy Phys, RU-142284 Protvino, Russia. [Afanasiev, Sergey V.; Kovalenko, Alexander D.; Taratin, Alexander M.] Joint Inst Nucl Res, Dubna 141980, Russia. [Bondar, Nikolai F.; Denisov, Alexander S.; Gavrikov, Yury A.; Ivanov, Yuri M.; Ivochkin, Vladimir G.; Kosyanenko, Sergey V.; Lapina, Lyubov P.; Levtchenko, Peter M.; Petrunin, Anatoli A.; Skorobogatov, Vyacheslav V.; Suvoro, Vsevolod M.] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia. [Bolognini, Davide; Foggetta, Luca; Hasan, Said; Prest, Michela] Univ Insubria, I-22100 Como, Italy. [Bolognini, Davide; Foggetta, Luca; Hasan, Said; Prest, Michela] INFN Sezione Milano, I-20133 Milan, Italy. RP Scandale, W (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. EM fiorini@fe.infn.it RI Fiorini, Massimiliano/A-5354-2015; Mazzolari, Andrea/A-1100-2017; valente, paolo/A-6640-2010; Vomiero, Alberto/F-7567-2010; Foggetta, Luca/A-4810-2010; Zuccon, Paolo/I-7736-2012; bertucci, bruna/J-5237-2012 OI Cavoto, Gianluca/0000-0003-2161-918X; Bertucci, Bruna/0000-0001-7584-293X; guidi, vincenzo/0000-0001-9726-8481; Fiorini, Massimiliano/0000-0001-6559-2084; Mazzolari, Andrea/0000-0003-0804-6778; Vallazza, Erik Silvio/0000-0002-7465-7430; MILAN, Riccardo/0000-0001-5863-8654; Ambrosi, Giovanni/0000-0001-6977-9559; De Salvador, Davide/0000-0002-1879-1010; PREST, MICHELA/0000-0003-3161-4454; valente, paolo/0000-0002-5413-0068; Vomiero, Alberto/0000-0003-2935-1165; Foggetta, Luca/0000-0002-6389-1280; Zuccon, Paolo/0000-0002-2728-0167; NR 26 TC 11 Z9 11 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 023303 DI 10.1063/1.2832638 PN 1 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EB UT WOS:000254194400014 PM 18315289 ER PT J AU Tamura, J Okamura, M Kanesue, T AF Tamura, Jun Okamura, Masahiro Kanesue, Takeshi TI Application of cryotarget to laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB We examined laser-produced argon plasma as part of a future laser ion source. Rare gases, which are in gas state at room temperature, need to be cooled to solid targets for laser irradiation. We generated solid Ar targets in a similar way used for neon. By irradiating the solid Ar with a neodymium doped yttrium aluminum garnet laser, we could generate Ar ions with a charge stage up to 8+ with a good stability. The feature of generated Ar plasma using this method is similar to the Ne case. The ion current density reached about 1.6 mA/cm(2) at 2.3 m from the target. This method would be applicable for a laser ion source. (c) 2008 American Institute of Physics. C1 [Tamura, Jun] Tokyo Inst Technol, Dept Energy Sci, Midori Ku, Yokohama, Kanagawa 2268502, Japan. [Tamura, Jun; Okamura, Masahiro] RIKEN, Radiat Lab, Wako, Saitama 3510198, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Collider Acceleerator Dept, Upton, NY 11973 USA. [Kanesue, Takeshi] Kyushu Univ, Dept Appl quantum Phys & Nucl Engn, Nishi Ku, Fukuoka 8190395, Japan. RP Tamura, J (reprint author), Tokyo Inst Technol, Dept Energy Sci, Midori Ku, 4259 Nagatsita Cho, Yokohama, Kanagawa 2268502, Japan. EM jtamura@riken.jp NR 5 TC 2 Z9 2 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02B101 DI 10.1063/1.2823896 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800076 PM 18315165 ER PT J AU Tarvainen, O Rouleau, G Keller, R Geros, E Stelzer, J Ferris, J AF Tarvainen, O. Rouleau, G. Keller, R. Geros, E. Stelzer, J. Ferris, J. TI Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams. (C) 2008 American Institute of Physics. C1 [Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tarvainen, O (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 10 TC 2 Z9 2 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A501 DI 10.1063/1.2801544 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800033 PM 18315122 ER PT J AU Todd, DS Leitner, D Lyneis, CM Grote, DP AF Todd, Damon S. Leitner, Daniela Lyneis, Claude M. Grote, David P. TI Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID PLASMA AB The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS. (c) 2008 American Institute of Physics. C1 [Todd, Damon S.; Leitner, Daniela; Lyneis, Claude M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Grote, David P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Todd, DS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 11 TC 6 Z9 7 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A316 DI 10.1063/1.2804914 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800017 PM 18315106 ER PT J AU Vainionpaa, JH Leung, KN Gough, RA Kwan, JW Levinton, F AF Vainionpaa, Jaakko Hannes Leung, Ka Ngo Gough, Richard A. Kwan, Joe W. Levinton, Fred TI Ion source for neutral beam injection meant for plasma and magnetic field diagnostics SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB At the Lawrence Berkeley National Laboratory a diagnostic neutral beam injection system for measuring plasma parameters, flow velocity, and local magnetic field is being developed. The system is designed to have a 90% proton fraction and small divergence with beam current at 5-6 A and a pulse length of similar to 1 s occurring once every 1-2 min. The ion source needs to generate uniform plasma over a large (8 X 5 cm(2)) extraction area. For this application, we have compared rf driven multicusp ion sources operating with either an external or an internal antenna in similar ion source geometry. The ion beam will be made of an array of six sheet-shaped beamlets. The design is optimized using computer simulation programs. (C) 2008 American Institute of Physics. C1 [Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Gough, Richard A.; Kwan, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Levinton, Fred] Nova Photon Inc, Princeton, NJ 08540 USA. RP Vainionpaa, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 11 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02C102 DI 10.1063/1.2802592 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800139 PM 18315228 ER PT J AU Vondrasek, RC Scott, R Carr, J Pardo, RC AF Vondrasek, R. C. Scott, R. Carr, J. Pardo, R. C. TI Status of the electron cyclotron resonance charge breeder for the (252)Cf fission source project at ATLAS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc AB The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne tandem linac accelerator system (ATLAS), is in progress. The facility will use fission fragments from a 1 Ci (252)Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, the existing ATLAS ECR1 ion source has been redesigned to function as a charge breeder source. The design features, initial results, and status of this charge breeder configuration are presented. (C) 2008 American Institute of Physics. C1 [Vondrasek, R. C.; Scott, R.; Carr, J.; Pardo, R. C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Vondrasek, RC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vondrasek@ani.gov NR 4 TC 11 Z9 11 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A901 DI 10.1063/1.2802580 PN 2 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800067 PM 18315156 ER PT J AU Welton, RF Stockli, MP Murray, SN Pennisi, TR Han, B Kang, Y Goulding, RH Crisp, DW Sparks, DO Luciano, NP Carmichael, JR Carr, J AF Welton, R. F. Stockli, M. P. Murray, S. N. Pennisi, T. R. Han, B. Kang, Y. Goulding, R. H. Crisp, D. W. Sparks, D. O. Luciano, N. P. Carmichael, J. R. Carr, J. TI H(-) ion source developments at the SNS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID SPALLATION NEUTRON SOURCE AB The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H(-) beam currents than can be produced from conventional ion sources such as the base line SNS source. H(-) currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with a rms emittance of 0.20-0.35 pi mm mrad and a similar to 7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al(2)O(3) plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H(-) ion source will also be presented. (C) 2008 American Institute of Physics. C1 [Welton, R. F.; Stockli, M. P.; Murray, S. N.; Pennisi, T. R.; Han, B.; Kang, Y.; Goulding, R. H.; Crisp, D. W.; Sparks, D. O.; Luciano, N. P.; Carmichael, J. R.; Carr, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Welton, RF (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. NR 20 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02C721 DI 10.1063/1.2816937 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800185 PM 18315274 ER PT J AU You, HJ Woo, HJ Chung, KS Liu, Y Meyer, FW Lho, T Lee, MJ AF You, H. -J. Woo, H-J Chung, K. -S. Liu, Y. Meyer, F. W. Lho, T. Lee, M-J. TI Deduction of edge electron density with multiply charged ions in ORNL volume-type electron cyclotron resonance ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID MAGNETIZED PLASMAS; COLLECTION; BOUNDARY; INCIDENT; OBJECTS; DESIGN AB The electron densities in the argon plasmas of the ORNL 6 GHz electron cyclotron resonance (ECR) ion source with a flat central magnetic field have been deduced from the ion branches of the electric probe current-voltage curves measured in the edge region of the plasmas. To overcome the difficulties due to unknown velocities of multiply charged ions at the sheath edge, a modified generalized Bohm criterion for the ion sheath velocity is introduced and the mean velocity of all ionic charge states at the sheath edge is assumed to be equal to the sound velocity of the system of particles. The calculated electron densities and temperatures for different plasmas optimized for four charge state distributions are discussed. (c) 2008 American Institute of Physics. C1 [You, H. -J.; Woo, H-J; Chung, K. -S.] Hanyang Univ, Elect Probe Appl Lab, Seoul 133791, South Korea. [Liu, Y.; Meyer, F. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. [Lho, T.] Natl Fus Res Inst, Div Plasma Applicat, Taejon 305333, South Korea. [Lee, M-J.] Hanyang Univ, Dept Phys, Seoul 133791, South Korea. RP Chung, KS (reprint author), Hanyang Univ, Elect Probe Appl Lab, Seoul 133791, South Korea. NR 18 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2008 VL 79 IS 2 AR 02A319 DI 10.1063/1.2816911 PN 2 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 277EF UT WOS:000254194800020 PM 18315109 ER PT J AU Espinosa, G Golzarri, JI Santiago, P Bogard, JS AF Espinosa, G. Golzarri, J. I. Santiago, P. Bogard, J. S. TI Optically stimulated luminescence response to ionizing radiation of red bricks (SiO2, Al2O3 and Fe2O3) used as building materials SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 3rd International Symposium on Radiation Physics CY FEB 26-MAR 02, 2007 CL Guanajuato, MEXICO SP CONACyT, SESIC SEP, DFRSMF, Univ Nacl Autonoma Mexico DE OSL; red brick; building material; retrospective dosimetry ID RETROSPECTIVE DOSIMETRY AB Quartz is the most common mineral in our environment. It is found in granite, hydrothermal veins and volcanic rocks, as well as in sedimentary deposits derived from such solid materials. These sediments are also made into building materials, such as bricks and pottery. Thus the potential use of a dose reconstruction technique based on quartz grains is enormous, whether as a dating tool in archaeology and quaternary geology, or in nuclear accident dosimetry. This work describes the Optically Stimulated Luminescence (OSL) response of red brick to ionizing radiation. The bricks, from the state of Puebla, Mexico, represent another class of materials that can be used in retrospective dosimetry following nuclear or radiological incidents. The chemical composition of fifteen bricks (three samples from five different brick factories) was determined, using energy dispersive spectroscopy (EDS), be primarily SiO2, Al2O3 and Fe2O3 and is believed to be representative for this common building material. Individual aliquots from these bricks were powdered in agate mortars and thermally annealed. Replicate samples of the aliquots were then irradiated with beta particles from a sealed source of Sr-90/Y-90. The OSL response was measured with a Daybreak Model 2200 High-Capacity OSL Reader System. We present here for this material the characteristic OSL response to beta particles; the reproducibility of the OSL response; the linearity of the response in the dose range 0.47 Gy to 47 Gy; and the fading characteristics. C1 [Espinosa, G.; Golzarri, J. I.; Santiago, P.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Bogard, J. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Espinosa, G (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20364, Mexico City 01000, DF, Mexico. EM espinosa@fisica.umam.mx NR 9 TC 0 Z9 0 U1 0 U2 3 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD FEB PY 2008 VL 54 IS 1 SU S BP 17 EP 21 PG 5 WC Physics, Multidisciplinary SC Physics GA 271XN UT WOS:000253822100006 ER PT J AU Montero-Cabrera, ME Garcia-Guaderrama, M Mehta, A Webb, S Fuentes-Montero, L Moller, JAD Fuentes-Cobas, L AF Montero-Cabrera, M. E. Garcia-Guaderrama, M. Mehta, A. Webb, S. Fuentes-Montero, L. Moller, J. A. Duarte Fuentes-Cobas, L. TI EXAFS determination of cation local order in layered perovskites SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 3rd International Symposium on Radiation Physics CY FEB 26-MAR 02, 2007 CL Guanajuato, MEXICO SP CONACyT, SESIC SEP, DFRSMF, Univ Nacl Autonoma Mexico DE synchrotron radiation; EXAFS; Aurivillius ceramic; local order ID ABSORPTION FINE-STRUCTURE; X-RAY AB EXAFS analysis of Bi6Ti3Fe2O18 Aurivillius ceramic was performed to elucidate the local environment of Fe cations. Experiments were performed at Stanford Synchrotron Radiation Laboratory, at T = 10, 30, 50, 75, 100 and 298 K, in fluorescence regime. EXAFS spectra were processed using the ab initio multiple scattering program FEFF6. Distances among representative atomic pairs were refined. As a basic result, the previous hypothesis suggested by X-ray diffraction experiments, regarding a preference of iron atoms for the centered perovskite layer of the unit cell, was confirmed. C1 [Montero-Cabrera, M. E.; Fuentes-Montero, L.; Moller, J. A. Duarte; Fuentes-Cobas, L.] Ctr Invest & Mat Avanzados, Chihuahua, Mexico. [Garcia-Guaderrama, M.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Mehta, A.; Webb, S.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Montero-Cabrera, ME (reprint author), Ctr Invest & Mat Avanzados, Chihuahua, Mexico. RI Webb, Samuel/D-4778-2009; DUARTE MOLLER, JOSE ALBERTO/G-1350-2012 OI Webb, Samuel/0000-0003-1188-0464; DUARTE MOLLER, JOSE ALBERTO/0000-0002-9763-8929 NR 12 TC 3 Z9 3 U1 1 U2 11 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD FEB PY 2008 VL 54 IS 1 SU S BP 42 EP 45 PG 4 WC Physics, Multidisciplinary SC Physics GA 271XN UT WOS:000253822100010 ER PT J AU Lobell, DB Burke, MB Tebaldi, C Mastrandrea, MD Falcon, WP Naylor, RL AF Lobell, David B. Burke, Marshall B. Tebaldi, Claudia Mastrandrea, Michael D. Falcon, Walter P. Naylor, Rosamond L. TI Prioritizing climate change adaptation needs for food security in 2030 SO SCIENCE LA English DT Article AB Investments aimed at improving agricultural adaptation to climate change inevitably favor some crops and regions over others. An analysis of climate risks for crops in 12 food- insecure regions was conducted to identify adaptation priorities, based on statistical crop models and climate projections for 2030 from 20 general circulation models. Results indicate South Asia and Southern Africa as two regions that, without sufficient adaptation measures, will likely suffer negative impacts on several crops that are important to large food- insecure human populations. We also find that uncertainties vary widely by crop, and therefore priorities will depend on the risk attitudes of investment institutions. C1 [Lobell, David B.; Burke, Marshall B.; Mastrandrea, Michael D.; Falcon, Walter P.; Naylor, Rosamond L.] Stanford Univ, Woods Inst Environm, Food Secur & Environm Program, Stanford, CA 94305 USA. [Lobell, David B.; Burke, Marshall B.; Falcon, Walter P.; Naylor, Rosamond L.] Stanford Univ, Freeman Spogli Inst Int Studies, Stanford, CA 94305 USA. [Lobell, David B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tebaldi, Claudia] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. RP Lobell, DB (reprint author), Stanford Univ, Woods Inst Environm, Food Secur & Environm Program, Stanford, CA 94305 USA. EM dlobell@stanford.edu RI zhong, honglin/C-2633-2012; OI Burke, Marshall/0000-0003-4288-5858 NR 7 TC 831 Z9 867 U1 64 U2 478 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 1 PY 2008 VL 319 IS 5863 BP 607 EP 610 DI 10.1126/science.1152339 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 257AQ UT WOS:000252772000037 PM 18239122 ER PT J AU Quigg, C AF Quigg, Chvis TI The coming revolutions in particle physics SO SCIENTIFIC AMERICAN LA English DT Article C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Quigg, C (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. NR 2 TC 6 Z9 6 U1 0 U2 0 PU SCI AMERICAN INC PI NEW YORK PA 415 MADISON AVE, NEW YORK, NY 10017 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD FEB PY 2008 VL 298 IS 2 BP 46 EP + PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 253VF UT WOS:000252545000029 ER PT J AU Montano, DE Phillips, WR Kasprzyk, D Greek, A AF Montano, Daniel E. Phillips, William R. Kasprzyk, Danuta Greek, April TI STD/HIV prevention practices among primary care clinicians: Risk assessment, prevention counseling, and testing SO SEXUALLY TRANSMITTED DISEASES LA English DT Article ID SEXUALLY-TRANSMITTED-DISEASES; HIV-PREVENTION; MISSED OPPORTUNITIES; AMERICAN YOUTH; UNITED-STATES; INFECTION; SETTINGS; BEHAVIOR; INTERVENTION; ASSUMPTIONS AB Objective: To describe current practices of primary care (PC) clinicians for STD/HIV control services: risk assessment, prevention counseling, and offering tests. Study Design: We identified clinical strategies through qualitative interviews. We then surveyed by mail a random sample of Washington State family physicians, general internists, obstetrician-gynecologists, nurse practitioners, and certified nurse midwives. We identified characteristics of clinicians and their practices associated with each strategy and universal provision of each service. Results: We report on 519 clinicians (80% adjusted response rate). Clinicians provided services to selected patients they considered high risk. Universal practices were less common: risk assessment (56%), prevention counseling (60%), STD tests (30%), and HIV tests (19%). Universal services were more common among nurses, those recently trained, and those seeing more STD patients. Conclusion: Different types of PC clinicians use widely differing clinical strategies and many use selective rather than universal approaches to STD/HIV control services. Further research is needed to develop tailored interventions to improve provision of these services. C1 [Montano, Daniel E.; Phillips, William R.; Kasprzyk, Danuta; Greek, April] Battelle Seattle Res Ctr, Ctr Publ Hlth Res & Evaluat, Seattle, WA 98109 USA. [Phillips, William R.] Univ Washington, Dept Family Med, Seattle, WA 98195 USA. RP Montano, DE (reprint author), Battelle Seattle Res Ctr, Ctr Publ Hlth Res & Evaluat, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM montano@battelle.org OI Phillips, William/0000-0003-2802-4349 FU NICHD NIH HHS [R24 HD042828, R24 HD042828-10]; NIMH NIH HHS [R01 MH052997, 5 R01 MH52997-04] NR 43 TC 20 Z9 20 U1 3 U2 11 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0148-5717 J9 SEX TRANSM DIS JI Sex. Transm. Dis. PD FEB PY 2008 VL 35 IS 2 BP 154 EP 166 DI 10.1097/OLQ.0b013e3181574d97 PG 13 WC Infectious Diseases SC Infectious Diseases GA 254GC UT WOS:000252573400009 PM 18007273 ER PT J AU Nikravesh, M AF Nikravesh, Masoud TI Concept-based search and questionnaire systems SO SOFT COMPUTING LA English DT Article DE semantic Web; fuzzy query; fuzzy search; PNL; NeuSearch; Z(n)-compact; BISC-DSS AB World Wide Web search engines including Google, Yahoo and MSN have become the most heavily-used online services (including the targeted advertising), with millions of searches performed each day on unstructured sites. In this presentation, we would like to go beyond the traditional web search engines that are based on keyword search and the Semantic Web which provides a common framework that allows data to be shared and reused across application. For this reason, our view is that "Before one can use the power of web search the relevant information has to be mined through the concept-based search mechanism and logical reasoning with capability to Q&A representation rather than simple keyword search". In this paper, we will first present the state of the search engines. Then we will focus on development of a framework for reasoning and deduction in the web. A new web search model will be presented. One of the main core ideas that we will use to extend our technique is to change terms-documents-concepts (TDC) matrix into a rule-based and graph-based representation. This will allow us to evolve the traditional search engine (keyword-based search) into a concept-based search and then into Q&A model. Given TDC, we will transform each document into a rule-based model including it's equivalent graph model. Once the TDC matrix has been transformed into maximally compact concept based on graph representation and rules based on possibilistic relational universal fuzzy-type II (pertaining to composition), one can use Z(n)-compact algorithm and transform the TDC into a decision-tree and hierarchical graph that will represents a Q&A model. Finally, the concept of semantic equivalence and semantic entailment based on possibilistic relational universal fuzzy will be used as a basis for question-answering (Q&A) and inference from fuzzy premises. This will provide a foundation for approximate reasoning, language for representation of imprecise knowledge, a meaning representation language for natural languages, precisiation of fuzzy propositions expressed in a natural language, and as a tool for Precisiated Natural Language (PNL) and precisation of meaning. The maximally compact documents based on Z(n)-compact algorithm and possibilistic relational universal fuzzy-type II will be used to cluster the documents based on concept-based query-based search criteria. C1 Univ Calif Berkeley, EECS Dept, BISC Program, Div Comp Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Imaging & Informat Grp, LBNL, Berkeley, CA 94720 USA. RP Nikravesh, M (reprint author), Univ Calif Berkeley, EECS Dept, BISC Program, Div Comp Sci, Berkeley, CA 94720 USA. EM nikravesh@cs.berkeley.edu NR 12 TC 0 Z9 0 U1 2 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1432-7643 J9 SOFT COMPUT JI Soft Comput. PD FEB PY 2008 VL 12 IS 3 BP 301 EP 314 DI 10.1007/s00500-007-0195-6 PG 14 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications SC Computer Science GA 217AT UT WOS:000249921500012 ER PT J AU Abe, Y Lee, SH Zayim, EO Tracy, CE Pitts, JR Deb, SK AF Abe, Yoshio Lee, Se-Hee Zayim, Esra Ozkan Tracy, C. Edwin Pitts, J. Roland Deb, Satyen K. TI Electrochromic properties of Ni oxide thin films in diluted acidic electrolytes and their stability SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article; Proceedings Paper CT 7th International Meeting on Electrochromism CY SEP 03-07, 2006 CL Istanbul, TURKEY DE Ni oxide thin film; electrochromic; acidic aqueous electrolyte; cycling stability ID NICKEL-OXIDE; TUNGSTEN-OXIDE; DEVICES; COATINGS AB Electrochromic (EC) properties of sputtered Ni oxide films have been examined in 1 M KCl + H2SO4. acidic aqueous solutions with H2SO4 concentrations of 0-50 mM. EC coloration efficiency comparable to that in alkaline electrolytes was obtained in all the solutions and no remarkable degradation in charge capacity was observed up to 100 cycles. These results offer support for the practical construction of efficient complementary EC devices using dilute acidic aqueous electrolytes. (c) 2007 Elsevier B.V. All rights reserved. C1 [Abe, Yoshio] Kitami Inst Technol, Dept Mat Sci, Kitami, Hokkaido 0908507, Japan. [Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Deb, Satyen K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zayim, Esra Ozkan] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. RP Abe, Y (reprint author), Kitami Inst Technol, Dept Mat Sci, 165 Koen-cho, Kitami, Hokkaido 0908507, Japan. EM abeys@mail.kitami-it.ac.jp RI Lee, Sehee/A-5989-2011 NR 25 TC 5 Z9 5 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2008 VL 92 IS 2 BP 160 EP 163 DI 10.1016/j.solmat.2007.01.027 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 243XE UT WOS:000251829800013 ER PT J AU Seo, C Cheong, H Lee, SH AF Seo, Chungwon Cheong, Hyeonsik Lee, Se-Hee TI Color change of V2O5 thin films upon exposure to organic vapors SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article; Proceedings Paper CT 7th International Meeting on Electrochromism CY SEP 03-07, 2006 CL Istanbul, TURKEY DE vanadium oxide; thin film; hydrogen sensor; Raman; optical transmission ID SUPPORTED VANADIUM-OXIDE; METHANOL OXIDATION; RAMAN; DEHYDROGENATION; SPECTROSCOPY; TEMPERATURE; CATALYSTS; MECHANISM AB The reaction of amorphous V2O5 thin films with various organic vapors is investigated using in-situ optical transmission and in-situ Raman spectroscopic measurements. When V2O5 thin films are exposed to vapors of methanol, ethanol, acetone, and isopropanol, changes in the Raman spectrum are observed. These changes are similar to those due to alkali ion intercalation and most pronounced for methanol and ethanol. The optical transmission also increases when the thin films are exposed to methanol and ethanol vapors. Depositing a thin catalyst layer of palladium does not promote the reaction. This result has implications for using this material in hydrogen sensor applications, as extended exposure to organic vapors may not be differentiated from the presence of hydrogen. (c) 2007 Elsevier B.V. All rights reserved. C1 [Seo, Chungwon; Cheong, Hyeonsik] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Lee, Se-Hee] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Cheong, H (reprint author), Sogang Univ, Dept Phys, Seoul 121742, South Korea. EM hcheong@sogang.ac.kr RI Lee, Sehee/A-5989-2011; Cheong, Hyeonsik/D-7424-2012 OI Cheong, Hyeonsik/0000-0002-2347-4044 NR 11 TC 9 Z9 10 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2008 VL 92 IS 2 BP 190 EP 193 DI 10.1016/j.solmat.2006.11.021 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 243XE UT WOS:000251829800018 ER PT J AU Deb, SK AF Deb, Satyen K. TI Opportunities and challenges in science and technology of WO3 for electrochromic and related applications SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article; Proceedings Paper CT 7th International Meeting on Electrochromism CY SEP 03-07, 2006 CL Istanbul, TURKEY DE WO3 electrochromics; fundamental properties; device applications; smart window; photoelectrochromic ID TUNGSTEN-OXIDE FILMS; OPTICAL-PROPERTIES; AMORPHOUS WO3; THIN-FILM; PHOTOELECTRIC PROPERTIES; MOLYBDENUM TRIOXIDE; SOLAR-CELLS; SUPERCONDUCTIVITY; TRANSITION; COLORATION AB Since the discovery of the electrochrornic (EC) effect in transition metal oxides in the mid-1960s, intense research and development work spanning four decades has led to many exciting developments in the science and technology of this class of materials. Tungsten oxide (WO3) has emerged as one of the key materials, not only for EC devices, but also for many other related applications. After many years of technology development efforts, WO3-based EC "smart windows" have finally emerged as a viable commercial product. In spite of enormous progress being made on the structural, electrical, and optical properties of amorphous and crystalline WO3, a detailed understanding of the EC effect in this material still remains somewhat qualitative. Although theoretical models based on intervalence charge transfer and polaron formation have been widely accepted, these models are still unable to explain some of the experimental results on the coloration phenomena. The coloration in WO3 is a structure-sensitive phenomenon, and excess electrons can be either localized or delocalized. The presence of structural defects such as oxygen vacancies, impurities, and degree of disorder plays a crucial role in determining the coloration efficiency. Although significant progress has been made in recent years on the calculation of electronic structure and defect properties of both amorphous and crystalline WO3, the structural complexity of the material presents many challenges and opportunities for theoretical computation. The unique ability to induce bistable optical and electrical properties in WO3 by a variety of excitation sources has led to many devices of significant technological interest. Some of the applications currently being pursued include the photoelectrochemical cell for solar energy conversion and storage; photoelectrochemical splitting of water to generate hydrogen; chemical and biological sensors based on the gasochromic effect; photo- and electrocatalysts for a variety of chemical reactions; demonstration of high-temperature (91 K) superconductivity in WO3 doped with H, Na, and K; synthesis of a new class of hybrid organic/inorganic (WO3) materials; and application in ultra-high-resolution electron beam lithography. The emergence of nanostructured WO3 in recent years will undoubtedly provide new opportunities and significant impact to many of these technologies. This paper presents a brief overview of some of the key research issues the author believes will impact the science and technology of this exciting material. (c) 2007 Published by Elsevier B.V. C1 [Deb, Satyen K.] Ctr Mat Sci, Natl Renewable Energy Lab, Golden, CO 80403 USA. RP Deb, SK (reprint author), Ctr Mat Sci, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80403 USA. EM satyen_deb@nrel.gov NR 62 TC 328 Z9 345 U1 54 U2 386 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2008 VL 92 IS 2 BP 245 EP 258 DI 10.1016/j.solmat.2007.01.026 PG 14 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 243XE UT WOS:000251829800027 ER PT J AU Guo, QX Zhao, YS Jiang, C Mao, WL Wang, ZW AF Guo, Qixun Zhao, Yusheng Jiang, Chao Mao, Wendy L. Wang, Zhongwu TI Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation SO SOLID STATE COMMUNICATIONS LA English DT Article DE crystal structure and symmetry; phase transitions; equation of state; high pressure ID RARE-EARTH SESQUIOXIDES; STRUCTURAL TRANSITION; B-TYPE; EU2O3 AB Sm2O3 was compressed at room temperature up to 44.0 GPa and then decompressed back to ambient pressure. In situ X-ray diffraction was used to monitor the structural changes in the sample. A cubic to hexagonal phase transformation was observed in Sm2O3 for the first time. After decompression back to ambient pressure, the hexagonal phase was not quenchable and transformed to a monoclinic phase. Ab initio Density-Functional-Theory (DFT) calculations were performed to obtain theoretical data for comparison with the experimental results and elucidation of the transformation mechanism. A possible phase transformation mechanism that is consistent with the experimental results and theoretical calculations is proposed. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Guo, Qixun; Zhao, Yusheng] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Jiang, Chao] Los Alamos Natl Lab, MST, Los Alamos, NM 87545 USA. [Mao, Wendy L.] Stanford Univ, GES, Stanford, CA 94305 USA. [Mao, Wendy L.] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Wang, Zhongwu] Cornell Univ, Wilson Lab, CHESS, Ithaca, NY 14853 USA. RP Guo, QX (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM qxguo@lanl.gov RI Mao, Wendy/D-1885-2009; Jiang, Chao/A-2546-2011; Lujan Center, LANL/G-4896-2012; Jiang, Chao/D-1957-2017 OI Jiang, Chao/0000-0003-0610-6327 NR 23 TC 30 Z9 31 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD FEB PY 2008 VL 145 IS 5-6 BP 250 EP 254 DI 10.1016/j.ssc.2007.11.019 PG 5 WC Physics, Condensed Matter SC Physics GA 262UD UT WOS:000253172600006 ER PT J AU Sarid, D Khulbe, P Grover, R AF Sarid, Dror Khulbe, Pramod Grover, Ranjan TI Effects of sample topography and thermal features in scanning thermal conductivity microscopy SO SOLID STATE COMMUNICATIONS LA English DT Article DE thermal microscopy; thermomechanical effect ID RESISTANCE AB This article analyses the operation of an atomic force microscope whose cantilever, which is heated at its free end, is used to map topography and thermal features across a sample surface. The analysis takes into account the thermal flow along the cantilever, between the cantilever and sample via air, and through the constriction formed at the tip-sample contact area. The thermal flow through the constriction is analysed in terms of Maxwell and Sharvin components as given by Wexler. Examples using silicon tips and samples with a rectangular grid consisting of (a) silicon and silicon oxide features and (b) silicon oxide steps of 100 nm height, show that long tips are more sensitive to the thermal features of the sample while short once are more sensitive to its topography. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Sarid, Dror; Khulbe, Pramod] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Grover, Ranjan] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Khulbe, P (reprint author), Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. EM sarid@optics.arizona.edu; pkkhulbe@u.arizona.edu NR 18 TC 7 Z9 7 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD FEB PY 2008 VL 145 IS 7-8 BP 389 EP 391 DI 10.1016/j.ssc.2007.11.028 PG 3 WC Physics, Condensed Matter SC Physics GA 266KM UT WOS:000253434100014 ER PT J AU Ullal, HS von Roedern, B AF Ullal, Harin S. von Roedern, Bolko TI Critical issues for commercialization of thin-film PV technologies SO SOLID STATE TECHNOLOGY LA English DT Article; Proceedings Paper CT 22nd European Photovoltaic Solar Energy Conference CY SEP 03-07, 2007 CL Milan, ITALY AB The market share for thin-film PV in the US continues to grow rapidly, from 10% in 2003 to similar to 44% in 2006. World wide estimated projections for 2010 thin-film PV production capacity are >3700MW. A 40MW thin-film CdTe solar field currently being installed in Saxony, Germany, costing (sic)130 million equates to an installed PV system price of (sic)3.25/W averaged over the entire project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe remain. C1 [Ullal, Harin S.; von Roedern, Bolko] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Ullal, HS (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, 1617 Cole Blvd, Golden, CO 80401 USA. EM harin_ullal@nrel.gov NR 2 TC 4 Z9 4 U1 1 U2 5 PU PENNWELL PUBL CO PI NORTHBROOK PA P O BOX 3284, NORTHBROOK, IL 60065-3284 USA SN 0038-111X J9 SOLID STATE TECHNOL JI Solid State Technol. PD FEB PY 2008 VL 51 IS 2 BP 52 EP 54 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied; Physics, Condensed Matter SC Engineering; Physics GA 266TJ UT WOS:000253459600013 ER PT J AU Gonzalez, JJ Fernandez, A Oropeza, D Mao, X Russo, RE AF Gonzalez, Jhanis J. Fernandez, Alberto Oropeza, Dayana Mao, Xianglei Russo, Richard E. TI Femtosecond laser ablation: Experimental study of the repetition rate influence on inductively coupled plasma mass spectrometry performance SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE LA-ICP-MS; femtosecond LA-ICP-MS; repetition rate effects ID MATRIX MATCHED CALIBRATION; BRASS AB This paper demonstrates the feasibility of performing bulk chemical analysis based on laser ablation for good lateral resolution with only nominal mass ablated per pulse. The influence of repetition rate (1-1000 Hz) and scan speed (1-200 mu m/s) using a low energy (30 mu J) and a small spot size (similar to 10 mu m) UV-femtosecond laser beam was evaluated for chemical analysis of silica glass samples, based on laser ablation sampling and inductively coupled plasma mass spectrometry (ICP-MS). Accuracy to approximately 14% and precision of 6% relative standard deviation (RSD) were measured. Published by Elsevier B.V. C1 [Gonzalez, Jhanis J.; Oropeza, Dayana; Mao, Xianglei; Russo, Richard E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fernandez, Alberto] Cent Univ Venezuela, Ctr Fisicoquim Escuela Quim, A-1020 Vienna, Austria. RP Russo, RE (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM RERusso@lbl.gov NR 16 TC 32 Z9 32 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD FEB PY 2008 VL 63 IS 2 BP 277 EP 286 DI 10.1016/j.sab.2007.11.035 PG 10 WC Spectroscopy SC Spectroscopy GA 274YO UT WOS:000254038900018 ER PT J AU Armstead, WM Ganguly, K Kiessling, JW Higazi, AA Zaitsev, S Cines, DB Bdeir, K Muzykantov, V AF Armstead, William M. Ganguly, Kumkum Kiessling, J. W. Higazi, Abd A. Zaitsev, Sergei Cines, Douglas B. Bdeir, Khalil Muzykantov, Vladimir TI RBC-tPA helps prevent hypercapnic and hypotensive cerebrovasodilator impairment by inhibiting ERK MAPK upregulation after cerebral hypoxia/ischemia. SO STROKE LA English DT Meeting Abstract CT 33rd International Stroke Conference CY FEB 19-21, 2008 CL New Orleans, LA SP Amer Stroke Assoc, Amer Heart Assoc C1 [Armstead, William M.; Kiessling, J. W.; Higazi, Abd A.; Zaitsev, Sergei; Cines, Douglas B.; Bdeir, Khalil; Muzykantov, Vladimir] Univ Penn, Philadelphia, PA 19104 USA. [Ganguly, Kumkum] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0039-2499 J9 STROKE JI Stroke PD FEB PY 2008 VL 39 IS 2 MA P394 BP 665 EP 665 PG 1 WC Clinical Neurology; Peripheral Vascular Disease SC Neurosciences & Neurology; Cardiovascular System & Cardiology GA 256JY UT WOS:000252726100607 ER PT J AU Thien, AB Chiamori, HC Ching, JT Wait, JR Park, G AF Thien, Andrew B. Chiamori, Heather C. Ching, Jeff T. Wait, Jeannette R. Park, Gyuhae TI The use of macro-fibre composites for pipeline structural health assessment SO STRUCTURAL CONTROL & HEALTH MONITORING LA English DT Article DE structural health monitoring; Lamb wave propagation; impedance method; piezoelectric; pipeline ID GUIDED-WAVES; ACTIVE-SENSORS; LAMB WAVES; PIPES; IDENTIFICATION; PERFORMANCE; REFLECTION; VALIDATION; INSPECTION; NOTCHES AB Pipeline structures are susceptible to cracks, corrosion, and other ageing defects. If left undetected, these forms of damage can lead to the failure of the pipeline system, which may have catastrophic consequences. Most current forms of health monitoring for pipeline systems involve non-destructive evaluation (NDE) techniques. These techniques require sophisticated instruments and direct access to the structure, which is not always possible for civil pipeline applications. This research proposes the use of macro-fibre composite (MFC) transducers for real-time structural health monitoring in pipeline systems. In particular, we propose the coupled implementation of impedance-based and Lamb wave-based methods that are simultaneously used to accurately determine the health of a pipeline network. The self-sensing impedance methods are used to detect structural damage occurring at pipeline connection joints, while the Lamb wave propagation measurements identify cracks and corrosion along the surface and through the wall thickness of the pipe structure. Both methods utilize the same MFC active sensors, which are flexible, durable, relatively inexpensive, and can be permanently bonded to the surface of a pipe during installation. Therefore, measurements for damage identification can be performed at any time, even while the system is in operation. Based on the success of this study, guidelines are outlined for the full-scale development of a low-cost, active-sensing-based SHM system suitable for pipeline applications. Published in 2007 by John Wiley & Sons, Ltd. C1 [Thien, Andrew B.; Chiamori, Heather C.; Ching, Jeff T.; Wait, Jeannette R.; Park, Gyuhae] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, Mailstop T001, Los Alamos, NM 87545 USA. EM gpark@lanl.gov NR 32 TC 16 Z9 16 U1 0 U2 11 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1545-2255 J9 STRUCT CONTROL HLTH JI Struct. Control. Health Monit. PD FEB PY 2008 VL 15 IS 1 BP 43 EP 63 DI 10.1002/stc.203 PG 21 WC Construction & Building Technology; Engineering, Civil; Instruments & Instrumentation SC Construction & Building Technology; Engineering; Instruments & Instrumentation GA 270RD UT WOS:000253737000003 ER PT J AU Weninger, K Bowen, ME Choi, UB Chu, S Brunger, AT AF Weninger, Keith Bowen, Mark E. Choi, Ucheor B. Chu, Steven Brunger, Axel T. TI Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1 : 1 syntaxin/SNAP-25 complex SO STRUCTURE LA English DT Article ID NEURONAL SNARE COMPLEX; SYNAPTIC VESICLE EXOCYTOSIS; MEMBRANE-FUSION; SINGLE-MOLECULE; T-SNARE; NEUROTRANSMITTER RELEASE; 3-DIMENSIONAL STRUCTURE; BIOPHYSICAL PROPERTIES; CRYSTAL-STRUCTURE; 4-HELIX BUNDLE AB Syntaxin/SNAP-25 interactions precede assembly of the ternary SNARE complex that is essential for neurotransmitter release. This binary complex has been difficult to characterize by bulk methods because of the prevalence of a 2:1 dead-end species. Here, using single-molecule fluorescence, we find the structure of the 1:1 syntaxin/SNAP-25 binary complex is variable, with states changing on the second timescale. One state corresponds to a parallel three-helix bundle, whereas other states show one of the SNAP-25 SNARE domains dissociated. Adding synaptobrevin suppresses the dissociated helix states. Remarkably, upon addition of complexin, Munc13, Munc18, or synaptotagmin, a similar effect is observed. Thus, the 1:1 binary complex is a dynamic acceptor for synaptobrevin binding, and accessory proteins stabilize this acceptor. In the cellular environment the binary complex is actively maintained in a configuration where it can rapidly interact with synaptobrevin, so formation is not likely a limiting step for neurotransmitter release. C1 [Weninger, Keith; Choi, Ucheor B.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Bowen, Mark E.] SUNY Stony Brook, Med Ctr, Dept Physiol & Biophys, Stony Brook, NY 11794 USA. [Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Dept Biol Struct, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Dept Photon Sci, Stanford, CA 94305 USA. RP Brunger, AT (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM brunger@stanford.edu OI Brunger, Axel/0000-0001-5121-2036 FU Howard Hughes Medical Institute; NIMH NIH HHS [MH63105, R01 MH063105, R01 MH063105-09, R01 MH081923, R01 MH081923-01, R37 MH063105] NR 68 TC 98 Z9 99 U1 3 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD FEB PY 2008 VL 16 IS 2 BP 308 EP 320 DI 10.1016/j.str.2007.12.010 PG 13 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 263LU UT WOS:000253219400015 PM 18275821 ER PT J AU Figueras, J Puig, T Obradors, X Olsson, RJ Kwok, WK Crabtree, GW AF Figueras, J. Puig, T. Obradors, X. Olsson, R. J. Kwok, W. K. Crabtree, G. W. TI Multidirectional in-plane linear correlated disorder pinning of vortices in YBa(2)Cu(3)O(7) SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID COLUMNAR DEFECTS; CRITICAL CURRENTS; SINGLE-CRYSTALS; LIQUID-STATE; UPPER LIMIT; VORTEX; SUPERCONDUCTORS; TRANSITION; COMPOSITES; PHASE AB We have measured the anisotropic magnetoresistance when the magnetic field and the Lorentz force rotate parallel to the CuO(2) planes in YBa(2)Cu(3)O(7) crystals having partial dislocations aligned along < 100 > directions, created by high oxygen pressure annealing treatments, and twin boundaries aligned parallel to < 110 > axes. These measurements demonstrate that aligned defects behave as linear correlated disorder vortex pinning centers by anisotropically shifting upwards the irreversibility line of YBa(2)Cu(3)O(7) when the vortices are confined in the CuO(2) planes. The anisotropic vortex activation energy in the liquid state has been found to follow the same in-plane periodicity as the irreversibility line. Our results demonstrate that a set of multidirectional linear vortex pinning centers leading to multiple in-plane Bose glass-like transitions can coexist. C1 [Figueras, J.; Puig, T.; Obradors, X.] CSIC, Inst Ciencia Mat Barcelona, E-08193 Barcelona, Spain. [Olsson, R. J.; Kwok, W. K.; Crabtree, G. W.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Figueras, J (reprint author), CSIC, Inst Ciencia Mat Barcelona, CSIC Campus UAB, E-08193 Barcelona, Spain. RI Obradors, Xavier/A-8146-2012; Puig, Teresa/O-1077-2013 OI Puig, Teresa/0000-0002-1873-0488 NR 26 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2008 VL 21 IS 2 AR 025002 DI 10.1088/0953-2048/21/02/025002 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 261NY UT WOS:000253087800003 ER PT J AU Zhou, H Maiorov, B Wang, H MacManus-Driscoll, JL Holesinger, TG Civale, L Jia, QX Foltyn, SR AF Zhou, H. Maiorov, B. Wang, H. MacManus-Driscoll, J. L. Holesinger, T. G. Civale, L. Jia, Q. X. Foltyn, S. R. TI Improved microstructure and enhanced low-field J(c) in (Y(0.67)Eu(0.33))Ba(2)Cu(3)O(7-delta) films SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT DENSITY; PULSED-LASER DEPOSITION; EUBA2CU3O7-X FILMS; COATED CONDUCTORS; THIN-FILMS; YBA2CU3O7-DELTA; THICKNESS; SRTIO3 AB This paper reports a study on mixed rare-earth barium-copper oxide superconducting films (Y(0.67)Eu(0.33))Ba(2)Cu(3)O(7-delta) of different thicknesses grown on single-crystal SrTiO(3) substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD), scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM) were employed to investigate film crystallinity, surface morphology and microstructure. Critical current density in self-field as a function of film thickness and in an applied magnetic field as a function of field strength and direction were also measured. The results show high quality (Y(0.67)Eu(0.33))Ba(2)Cu(3)O(7-delta) films with a smoother and denser surface morphology compared to that of pure YBa(2)Cu(3)O(7-delta). A thickness-dependent self-field critical current density quantitatively similar to that of pure YBa(2)Cu(3)O(7-delta). was observed, which suggests that the microstructural evolution in terms of increasing surface roughness and microporosity as well as crystallinity degradation is not likely to be playing a critical role in the form of the dependence. Y(0.67)Eu(0.33))Ba(2)Cu(3)O(7-delta) films also exhibit improved magnetic field performance at low fields over a wide range of orientations in the intermediate angle region, indicating that probable additional random pinning sites were introduced by the substitution of europium in one-third of yttrium sites. C1 [Zhou, H.; Maiorov, B.; Holesinger, T. G.; Civale, L.; Jia, Q. X.; Foltyn, S. R.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [MacManus-Driscoll, J. L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Zhou, H (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, MS K763, Los Alamos, NM 87545 USA. EM hzhou@lanl.gov; sfoltyn@lanl.gov RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014; OI Wang, Haiyan/0000-0002-7397-1209; Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 NR 21 TC 10 Z9 10 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2008 VL 21 IS 2 AR 025001 DI 10.1088/0953-2048/21/02/025001 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 261NY UT WOS:000253087800002 ER PT J AU Keenan, MR Smentkowski, VS Ohlhausen, JA Kotula, PG AF Keenan, Michael R. Smentkowski, Vincent S. Ohlhausen, James A. (Tony) Kotula, Paul G. TI Mitigating dead-time effects during multivariate analysis of ToF-SIMS spectral images SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE dead-time effects; ToF-SIMS; binomial model; weighted PCA ID PRINCIPAL COMPONENT ANALYSIS; STATISTICAL-ANALYSIS; MASS-SPECTROMETRY; RESOLUTION AB ToF-SIMS spectra are formed by bombarding a surface with a pulse of primary ions and detecting the resultant ionized surface species using a time-of-flight mass spectrometer. Typically, the detector is a time-to-digital converter. Once an ion is detected using such detectors, the detector becomes insensitive to the arrival of additional ions for a period termed as the (detector) dead-time. Under commonly used ToF-SIMS data acquisition conditions, the time interval over which ions arising from a single chemical species reach the detector is on the order of the detector dead-time. Thus, only the first ion reaching the detector at any given mass is counted. The event registered by the data acquisition system, then, is the arrival of one or more ions at the detector. This behavior causes ToF-SIMS data to violate, in the general case, the assumption of linear additivity that underlies many multivariate statistical analysis techniques. In this article, we show that high-mass-resolution ToF-SIMS spectral-image data follow a generalized linear model, and we propose a data transformation and scaling procedure that enables suchdata sets to be successfully analyzed using standard methods of multivariate image analysis. Copyright (c) 2008 John Wiley & Sons, Ltd. C1 [Keenan, Michael R.; Ohlhausen, James A. (Tony); Kotula, Paul G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Smentkowski, Vincent S.] General Electric, Global Res, Moscow 123098, Russia. RP Keenan, MR (reprint author), Sandia Natl Labs, MS0886, Albuquerque, NM 87185 USA. EM mrkeenao@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 22 TC 24 Z9 24 U1 0 U2 6 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD FEB PY 2008 VL 40 IS 2 BP 97 EP 106 DI 10.1002/sia.2763 PG 10 WC Chemistry, Physical SC Chemistry GA 280HS UT WOS:000254417300006 ER PT J AU Nadziejka, DE AF Nadziejka, David E. TI The ACS style guide: Effective communication of scientific information SO TECHNICAL COMMUNICATION LA English DT Book Review C1 [Nadziejka, David E.] Van Andel Res Inst, Grand Rapids, MI 49503 USA. [Nadziejka, David E.] IIT, Chicago, IL 60616 USA. [Nadziejka, David E.] Argonne Natl Lab, Inst Paper Chem, Argonne, IL 60439 USA. RP Nadziejka, DE (reprint author), Van Andel Res Inst, Grand Rapids, MI 49503 USA. NR 1 TC 0 Z9 0 U1 11 U2 93 PU SOC TECHNICAL COMMUNICATION PI ARLINGTON PA 901 NORTH STUART ST, STE 904, ARLINGTON, VA 22203 USA SN 0049-3155 J9 TECH COMMUN JI Tech. Commun. PD FEB PY 2008 VL 55 IS 1 BP 79 EP 81 PG 3 WC Communication SC Communication GA 265DO UT WOS:000253339500017 ER PT J AU Hengartner, NW Takala, BE Michalak, SE Wender, SA AF Hengartner, Nicolas W. Takala, Bruce E. Michalak, Sarah E. Wender, Stephen A. TI Evaluating experiments for estimating the bit failure cross-section of semiconductors using a colored spectrum neutron beam SO TECHNOMETRICS LA English DT Article DE inverse problem; neutron beam; nonparametric method; penalized maximum likelihood; soft error ID SINGLE EVENT UPSET; SOFT ERRORS AB Cosmic ray-induced neutrons can cause bit flips in silicon-based electronic devices, such as computer memory. To estimate the frequency of occurrence, a device may be tested by placing it in a neutron beam at a testing facility, such as the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center, Los Alamos National Laboratory. The bit failure cross-section of a silicon-based electronic device describes the probability of causing a bit flip as a function of neutron energy. This article discusses estimation of the bit failure cross-section based on neutron beam testing. We show that this is a severely ill-posed inverse problem. We present a general methodology for evaluating, before the experiment, the extent to which the experimental protocol permits estimation of the bit failure cross-section through nonparametric penalized maximum likelihood. C1 [Hengartner, Nicolas W.] Los Alamos Natl Lab, Informat Sci Grp, Los Alamos, NM 87545 USA. [Takala, Bruce E.] Los Alamos Natl Lab, Accelerator Operat & Technol Div, Los Alamos, NM 87545 USA. [Michalak, Sarah E.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Wender, Stephen A.] Los Alamos Natl Lab, Neutron & Nucl Sci Grp, Los Alamos, NM 87545 USA. RP Hengartner, NW (reprint author), Los Alamos Natl Lab, Informat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. OI Wender, Stephen/0000-0002-2446-5115; Hengartner, Nicolas/0000-0002-4157-134X NR 11 TC 2 Z9 2 U1 1 U2 1 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 1429 DUKE ST, ALEXANDRIA, VA 22314 USA SN 0040-1706 J9 TECHNOMETRICS JI Technometrics PD FEB PY 2008 VL 50 IS 1 BP 8 EP 14 DI 10.1198/004017007000000461 PG 7 WC Statistics & Probability SC Mathematics GA 264SE UT WOS:000253309300003 ER PT J AU Field, CB Campbell, JE Lobell, DB AF Field, Christopher B. Campbell, J. Elliott Lobell, David B. TI Biomass energy: the scale of the potential resource SO TRENDS IN ECOLOGY & EVOLUTION LA English DT Review ID CENTRAL UNITED-STATES; LAND-USE; HUMAN APPROPRIATION; CARBON MITIGATION; BIOFUELS; CLIMATE; TRENDS; FOOD; PHOTOSYNTHESIS; DEFORESTATION AB Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the preexisting vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing similar to 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change. C1 [Field, Christopher B.; Campbell, J. Elliott] Carnegie Inst, Dept Global Ecol, Stanford, CA 94305 USA. [Lobell, David B.] Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. RP Field, CB (reprint author), Carnegie Inst, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA. EM cfield@globalecology.stanford.edu RI Campbell, Elliott/B-8025-2008 NR 65 TC 265 Z9 276 U1 20 U2 162 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0169-5347 J9 TRENDS ECOL EVOL JI Trends Ecol. Evol. PD FEB PY 2008 VL 23 IS 2 BP 65 EP 72 DI 10.1016/j.tree.2007.12.001 PG 8 WC Ecology; Evolutionary Biology; Genetics & Heredity SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GA 268ZT UT WOS:000253620000004 PM 18215439 ER PT J AU O'Keefe, MA AF O'Keefe, Michael A. TI Seeing atoms with aberration-corrected sub-Angstrom electron microscopy SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 16th International Microscopy Congress CY SEP 03-08, 2006 CL Sapporo, JAPAN DE HRTEM; contrast transfer theory; sub-Angstrom resolution; aberration correction ID BEAM LATTICE IMAGES; SPHERICAL-ABERRATION; RESOLUTION HVEM; CRYSTAL-LATTICE; FOCUS-VARIATION; CHARGE-DENSITY; RECONSTRUCTION; ILLUMINATION; STAUROLITE; HRTEM AB High-resolution electron microscopy is able to provide atomic-level characterization of many materials in low-index orientations. To achieve the same level of characterization in more complex orientations requires that instrumental resolution be improved to values corresponding to the sub-(A) over circle ngstrom separations of atom positions projected into these orientations. Sub-(A) over circle ngstrom resolution in the high-resolution transmission electron microscope has been achieved in the last few years by software aberration correction, electron holography, and hardware aberration correction; the so-called "one-(A) over circle ngstrom barrier" has been left behind. Aberration correction of the objective lens currently allows atomic-resolution imaging at the sub-0.8 (A) over circle level and is advancing towards resolutions in the deep sub-(A) over circle ngstrom range (near 0.5 (A) over circle). At current resolution levels, images with sub-Rayleigh resolution require calibration in order to pinpoint atom positions correctly. As resolution levels approach the "sizes" of atoms, the atoms themselves will produce a limit to resolution, no matter how much the instrumental resolution is improved. By arranging imaging conditions suitably, each atom peak in the image can be narrower, so atoms are imaged smaller and may be resolved at finer separations. Published by Elsevier B.V. C1 Natl Ctr Electron Microscopy, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP O'Keefe, MA (reprint author), Natl Ctr Electron Microscopy, Lawrence Berkeley Natl Lab, Div Mat Sci, 2R0200,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sub-Angstrom@comcast.net NR 58 TC 29 Z9 30 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD FEB PY 2008 VL 108 IS 3 BP 196 EP 209 DI 10.1016/j.ultramic.2007.07.009 PG 14 WC Microscopy SC Microscopy GA 265VG UT WOS:000253389100005 PM 18054170 ER PT J AU Erni, R Lazar, S Browning, ND AF Erni, Rolf Lazar, Sorin Browning, Nigel D. TI Prospects for analyzing the electronic properties in nanoscale systems by VEELS SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 16th International Microscopy Congress CY SEP 03-08, 2006 CL Sapporo, JAPAN DE VEELS; nanoparticles; quantum dots ID ENERGY-LOSS SPECTROSCOPY; QUANTUM DOTS; COMPLEX NANOSTRUCTURES; MICROSCOPY; NANOCRYSTALS; EXCITATIONS; TRANSITIONS; RESOLUTION; EMISSION; PLASMON AB Valence electron energy-loss spectroscopy in the scanning transmission electron microscope can provide detailed information on the electronic structure of individual nanostructures. By employing the latest advances in electron optical devices, such as a probe aberration corrector and an electron monochromator, the probe size, spectroscopic resolution, probe current and primary electron energy can be varied over a large range. This flexibility is particularly important for nanostructures where each of these variables needs to be carefully counterbalanced in order to collect spectroscopic data without altering the integrity of the sample. Here the implementation of valence electron energy-loss spectroscopy to the study of nanostructures is discussed, with particular mention to the theoretical understanding of each of the contributions to the overall spectrum. (c) 2007 Published by Elsevier B.V. C1 [Erni, Rolf] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium. [Lazar, Sorin] FEI Electron Opt, NL-5600 KA Eindhoven, Netherlands. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Mat Sci & Technol Div, Livermore, CA 94550 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Erni, R (reprint author), Univ Antwerp, EMAT, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM rolf.erni@ua.ac.be RI Erni, Rolf/P-7435-2014; OI Erni, Rolf/0000-0003-2391-5943; Browning, Nigel/0000-0003-0491-251X NR 50 TC 13 Z9 13 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD FEB PY 2008 VL 108 IS 3 BP 270 EP 276 DI 10.1016/j.ultramic.2007.07.008 PG 7 WC Microscopy SC Microscopy GA 265VG UT WOS:000253389100012 PM 18035499 ER PT J AU Wellman, DM Gamerdinger, AP Kaplan, DI Serne, RJ AF Wellman, D. M. Gamerdinger, A. P. Kaplan, D. I. Serne, R. J. TI Effect of particle-scale heterogeneity on Uranium(VI) transport in unsaturated porous media SO VADOSE ZONE JOURNAL LA English DT Article ID SOLUTE TRANSPORT; 2-REGION FLOW; ADSORPTION; SORPTION; WATER; MODEL; EQUILIBRIUM; COLUMNS; MOBILE; URANYL AB Uranium( VI) sorption and transport was evaluated in mixtures of silt loam and coarse sand sediments using traditional static batch sorption, saturated column, and unsaturated centrifugation experiments to evaluate the association of mobile and immobile water domains with particles of different size and surface reactivity. Exclusion of conservative tracers and a decrease in U sorption compared with what was predicted by the mass-averaged equilibrium distribution coefficient (Kd-mass-avg) was observed in sediment mixtures where the mass fraction of silt loam was 10%. This is consistent with behavior that was previously reported for coarse and. ne sand separates. No exclusion of the conservative tracer, as predicted for the moderate water content range, was measured during unsaturated transport in sediment mixtures that contained 30% or more silt loam by mass. Sorption under unsaturated conditions was greater than predicted based on the batch sorption measurement of Kd-mass-avg value, however, which suggests that the fine-textured silt was in contact with the mobile water domain. This is the first evidence linking sorption to transport in a particular water domain. Results of this investigation demonstrate that the interaction between the geochemical and hydrodynamic processes has a profound effect on transport in unsaturated sediments. Definition of the fraction of mobile water was especially important for de. ning the front of the breakthrough curve, which is integral to predicting the arrival time of solutes at a particular depth and location in the sediment. C1 [Wellman, D. M.; Serne, R. J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Gamerdinger, A. P.] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [Kaplan, D. I.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Wellman, DM (reprint author), Pacific NW Natl Lab, 902 Bettelle Blvd,POB 999, Richland, WA 99354 USA. EM dawn.wellman@pnl.gov NR 45 TC 5 Z9 5 U1 3 U2 15 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2008 VL 7 IS 1 BP 67 EP 78 DI 10.2136/vzj2007.0076 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 288BJ UT WOS:000254960900007 ER PT J AU Lambot, S Binley, A Slob, E Hubbard, S AF Lambot, Sebastien Binley, Andrew Slob, Evert Hubbard, Susan TI Ground penetrating radar in hydrogeophysics SO VADOSE ZONE JOURNAL LA English DT Editorial Material C1 [Lambot, Sebastien] Univ Catholique Louvain, Dept Environm Sci & Land Use Planning, Louvain, Belgium. Forschungszentrum Julich GmbH, Inst Chem & Dynam Geosphere, Agrosphere ICG 4, Julich, Germany. [Binley, Andrew] Univ Lancaster, Div Environm Sci, Lancaster LA1 4YQ, England. [Slob, Evert] Delft Univ Technol, Dept Geotechnol, NL-2600 AA Delft, Netherlands. [Hubbard, Susan] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Lambot, S (reprint author), Univ Catholique Louvain, Dept Environm Sci & Land Use Planning, Louvain, Belgium. EM sebastien.lambot@uclouvain.be RI Binley, Andrew/C-2487-2013; Hubbard, Susan/E-9508-2010; slob, evert/A-1910-2015 OI Binley, Andrew/0000-0002-0938-9070; slob, evert/0000-0002-4529-1134 NR 12 TC 21 Z9 22 U1 2 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2008 VL 7 IS 1 BP 137 EP 139 DI 10.2136/vzj2007.0180 PG 3 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 288BJ UT WOS:000254960900015 ER PT J AU Liu, HH Illangasekare, TH AF Liu, Hui-Hai Illangasekare, Tissa H. TI Preface: Recent advances in modeling multiphase flow and transport with the TOUGH family of codes SO VADOSE ZONE JOURNAL LA English DT Editorial Material AB A symposium on research performed using the TOUGH family of numerical codes was held on 15-17 May 2006 at the Lawrence Berkeley National Laboratory in California. This special issue of the Vadose Zone Journal contains revised and expanded versions of a selected set of papers presented at this symposium ( TOUGH Symposium 2006; http://esd.lbl.gov/TOUGHsymposium), all of which focus on multiphase. flow, including. flow in the vadose zone. C1 [Liu, Hui-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Illangasekare, Tissa H.] Colorado Sch Mines, CESEP, Golden, CO 80401 USA. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov NR 11 TC 1 Z9 1 U1 0 U2 0 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2008 VL 7 IS 1 BP 284 EP 286 DI 10.2136/vzj2007.0113 PG 3 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 288BJ UT WOS:000254960900028 ER PT J AU Finsterle, S Kowalsky, MB AF Finsterle, Stefan Kowalsky, Michael B. TI Joint hydrological-geophysical inversion for soil structure identification SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT TOUGH Symposium 2006 CY MAY 15-17, 2006 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab ID VADOSE ZONE; TRANSMISSIVITY FIELDS; HYDRAULIC-PROPERTIES; BOREHOLE RADAR; FLOW; CALIBRATION; TRANSPORT; MEDIA AB Reliable prediction of subsurface flow and contaminant transport depends on the accuracy with which the values and spatial distribution of process-relevant model parameters can be identified. Successful characterization methods for complex soil systems are based on (i) an adequate parameterization of the subsurface, capable of capturing both random and structured aspects of the heterogeneous system, and (ii) site-specific data that are sufficiently sensitive to the processes of interest. We present a stochastic approach in which the high-resolution imaging capability of geophysical methods is combined with the process-specifi c information obtained from the inversion of hydrological data. Geostatistical concepts are employed as a flexible means to describe and characterize subsurface structures. The key features of the proposed approach are (i) the joint inversion of geophysical and hydrological raw data, avoiding the intermediate step of creating a (nonunique and potentially biased) tomogram of geophysical properties and (ii) the concurrent estimation of hydrological and petrophysical parameters, in addition to (iii) the determination of geostatistical parameters from the joint inversion of hydrological and geophysical data. This approach is fundamentally different from inference of geostatistical parameters from an analysis of spatially distributed property data. The approach has been implemented into the iTOUGH2 inversion code and is demonstrated for the joint use of synthetic time-lapse ground penetrating radar (GPR) travel times and hydrological data collected during a simulated ponded infiltration experiment at a highly heterogeneous site. C1 [Finsterle, Stefan] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Finsterle, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 90-1116, Berkeley, CA 94720 USA. EM SAFinsterle@lbl.gov RI Finsterle, Stefan/A-8360-2009 OI Finsterle, Stefan/0000-0002-4446-9906 NR 28 TC 32 Z9 32 U1 1 U2 7 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2008 VL 7 IS 1 BP 287 EP 293 DI 10.2136/vzj2006.0078 PG 7 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 288BJ UT WOS:000254960900029 ER PT J AU Xu, TF AF Xu, Tianfu TI Incorporating aqueous reaction kinetics and biodegradation into TOUGHREACT: Applying a multiregion model to hydrobiogeochemical transport of denitrification and sulfate reduction SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT TOUGH Symposium 2006 CY MAY 15-17, 2006 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab ID SATURATED POROUS-MEDIA; FLUID-FLOW; GEOCHEMICAL TRANSPORT; MICROBIAL-GROWTH; YUCCA MOUNTAIN; CHEMISTRY; SYSTEMS AB The need to consider aqueous and sorption reaction kinetics and microbiological processes arises in many subsurface problems. By adding these processes to the TOUGH family code, more complex problems can be addressed that involve multiphase fluid and heat flow, and geochemical interaction. This paper presents a formulation for incorporating kinetic rates among primary species into mass-balance equations. The space discretization used is based on a. exible integral finite difference approach that uses irregular gridding to model biogeologic structures. A general multiregion model for hydrological transport interacted with microbiological and geochemical processes is proposed. A one-dimensional reactive transport problem with kinetic biodegradation and sorption was used to test the enhanced simulator, which involves the processes that occur when a pulse of water containing nitrylotriacetate (NTA) and cobalt is injected into a column. The current simulation results agree very well with those obtained with other simulators. The applicability of this general multiregion model was validated by results from a published column experiment of denitrification and sulfate reduction. The matches with measured nitrate and sulfate concentrations were adjusted with the interfacial area between mobile and immobile regions. Results suggest that TOUGHREACT not only is useful interpretative tool for biogeochemical experiments but also can produce insight into processes and parameters of microscopic diffusion and their interplay with biogeochemical reactions. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Xu, TF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tianfu_xu@lbl.gov NR 27 TC 18 Z9 19 U1 0 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2008 VL 7 IS 1 BP 305 EP 315 DI 10.2136/vzj2006.0130 PG 11 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 288BJ UT WOS:000254960900031 ER PT J AU Pan, L Jin, JM Miller, N Wu, S Bodvarsson, G AF Pan, Lehua Jin, Jiming Miller, Norman Wu, Shu Bodvarsson, Gudmundur TI Modeling hydraulic responses to meteorological forcing: From canopy to aquifer SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT TOUGH Symposium 2006 CY MAY 15-17, 2006 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab ID GENERAL-CIRCULATION MODELS; LAND-SURFACE HYDROLOGY; SOIL; PARAMETERIZATION; INFILTRATION; RUNOFF; WATER AB An understanding of the hydrologic interactions among atmosphere, land surface, and subsurface is one of the keys to understanding the water cycling system that supports our life system on earth. Properly modeling such interactions is a difficult task because of the inherent coupled processes and complex feedback structures among subsystems. In this paper, we present a model that simulates the land-surface and subsurface hydrologic response to meteorological forcing. This model combines astate-of-the-art land-surface model, the National Center for Atmospheric Research (NCAR) Community Land Model version 3 (CLM3), with a variably saturated groundwater model, TOUGH2, through an internal interface that includes flux and state variables shared by the two submodels. Specifically, TOUGH2 in its simulation uses infiltration, evaporation, and root-uptake rates, calculated by CLM3, as source-sink terms; CLM3 in its simulation uses saturation and capillary pressure profiles, calculated by TOUGH2, as state variables. This new model, CLMT2, preserves the best aspects of both submodels: the state-of-the art modeling capability of surface energy and hydrologic processes from CLM3 and the more realistic physical process-based modeling capability of subsurface hydrologic processes from TOUGH2. The preliminary simulation results show that the coupled model greatly improves the predictions of the water table, evapotranspiration, surface temperature, and moisture in the top 20 cm of soil at a real watershed, as evaluated from 18 yr of observed data. The new model is also ready to be coupled with an atmospheric simulation model, representing one of the first models capable of simulating hydraulic processes from the top of the atmosphere to deep ground. C1 [Pan, Lehua] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Pan, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM lpan@lbl.gov RI Wu, Yu-Shu/A-5800-2011; Miller, Norman/E-6897-2010; Jin, Jiming/A-9678-2011; Pan, Lehua/G-2439-2015 NR 19 TC 5 Z9 5 U1 1 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2008 VL 7 IS 1 BP 325 EP 331 DI 10.2136/vzj2006.0106 PG 7 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 288BJ UT WOS:000254960900033 ER PT J AU Podgorney, RK Fairley, JP AF Podgorney, Robert K. Fairley, Jerry P. TI Investigation of episodic flow from unsaturated porous media into a macropore SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT TOUGH Symposium 2006 CY MAY 15-17, 2006 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab ID CONCEPTUAL-MODEL; WATER-FLOW; FRACTURE; EVOLUTION; PHYSICS; SOILS; PULSE; ZONE AB The recent literature contains numerous observations of episodic or intermittent flow in unsaturated flow systems under both constant flux and ponded boundary conditions. Flow systems composed of a heterogeneous porous media, as well as discrete fracture networks, have been cited as examples of systems that can exhibit episodic flow. Episodic out flow events are significant because relatively large volumes of water can move rapidly through an unsaturated system, carrying water and contaminants to depth greatly ahead of a wetting front predicted by a one-dimensional, gravity-driven difusive infiltration model. In this study, we model the behavior of water flow through a sand column underlain by an impermeable-walled macropore. Relative permeability and capillary pressure relationships were developed that capture the complex interrelationships between the macropore and the overlying porous media that control flow out of the system. The potential for episodic flow is assessed and compared to results of conventional modeling approaches and experimental data from the literature. Model results using coupled matrix macropore relative permeability and capillary pressure relationships capture the behavior observed in laboratory experiments remarkably well, while simulations using conventional relative permeability and capillary pressure functions fail to capture some of the observed flow dynamics. Capturing the rapid downward movement of water suggests that the matrix-macroporecapillary pressure and relative permeability functions developed have the potential to improve descriptions of flow and transport processes in heterogeneous, variably saturated media. C1 [Podgorney, Robert K.] Idaho Natl Lab, Modeling & Measurement Grp, Idaho Falls, ID 83404 USA. [Podgorney, Robert K.; Fairley, Jerry P.] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA. RP Podgorney, RK (reprint author), Idaho Natl Lab, Modeling & Measurement Grp, Idaho Falls, ID 83404 USA. EM robert.podgorney@inl.gov OI Fairley, Jerry/0000-0002-6486-3003 NR 29 TC 4 Z9 4 U1 0 U2 2 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2008 VL 7 IS 1 BP 332 EP 339 DI 10.2136/vzj2006.0107 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 288BJ UT WOS:000254960900034 ER PT J AU Wu, YS Forsyth, PA AF Wu, Yu-Shu Forsyth, P. A. TI Efficient schemes for reducing numerical dispersion in modeling multiphase transport through heterogeneous geological media SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT TOUGH Symposium 2006 CY MAY 15-17, 2006 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab ID FRACTURED POROUS-MEDIA; YUCCA MOUNTAIN; UNSATURATED ZONE; SIMULATION; FLOW; SUBSURFACE; NEVADA; CONTAMINATION; FORMULATION AB When modeling transport of chemicals or solute in realistic large-scale subsurface systems, numerical issues are a serious concern, even with the continual progress made over the past few decades in both simulation algorithms and computer hardware. The problem becomes even more difficult when dealing with chemical transport in a vadose zone or multiphase flow system using coarse, multidimensional regular or irregular grids because of the known effects of numerical dispersion associated with moving plume fronts. We have investigated several total variation diminishing (TVD) or flux-limiter schemes by implementing and testing them in the T2R3D code, one of the TOUGH2 family of codes. The objectives of this paper are (i) to investigate the possibility of applying these TVD schemes, using multidimensional irregular unstructured grids, and (ii) to help select more accurate spatial averaging methods for simulating chemical transport, given a numerical grid or spatial discretization. We present an application example to show that such TVD schemes can effectively reduce numerical dispersion. C1 [Forsyth, P. A.] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada. [Wu, Yu-Shu] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wu, YS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM YSWu@lbl.gov RI Wu, Yu-Shu/A-5800-2011 NR 28 TC 1 Z9 1 U1 1 U2 1 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2008 VL 7 IS 1 BP 340 EP 349 DI 10.2136/vzj2006.0076 PG 10 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 288BJ UT WOS:000254960900035 ER PT J AU Singh, AP Srivastava, PC Srivastava, P AF Singh, Ajay P. Srivastava, Prakash C. Srivastava, Prashant TI Relationships of heavy metals in natural lake waters with physico-chemical characteristics of waters and different chemical fractions of metals in sediments SO WATER AIR AND SOIL POLLUTION LA English DT Article DE chemical fractions; heavy metals; lakes; sediments; water ID SOIL; POLLUTION; CADMIUM AB The relationships between heavy metal concentrations and physico-chemical properties of natural lake waters and also with chemical fractions of these metals in lake sediments were investigated in seven natural lakes of Kumaun region of Uttarakhand Province of India during 2003-2004 and 2004-2005. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb in waters of different lakes ranged from 0.29-2.39, 10.3-38.3, 431-1407, 1.0-6.6, 5.3-12.1, 12.6-166.3, 0.7-2.7 and 3.9-27.1 mu g l(-1) and in sediments 14.3-21.5, 90.1-197.5, 5,265-6,428, 17.7-45.9, 13.4-32.0, 40.0-149.2, 11.1-14.6 and 88.9-167.4 mu g g(-1), respectively. The concentrations of all metals except Fe in waters were found well below the notified toxic limits. The concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were positively correlated with pH, electrical conductivity, biological oxygen demand, chemical oxygen demand and alkalinity of waters, but negatively correlated with dissolved oxygen. The concentrations of Cr, Ni, Zn, Cd and Pb in waters were positively correlated with water soluble + exchangeable fraction of these metals in lake sediments. The concentrations of Zn, Cd and Pb in waters were positively correlated with carbonate bound fraction of these metals in lake sediments. Except for Ni, Zn and Cd, the concentrations of rest of the heavy metals in waters were positively correlated with organically bound fraction of these metals in lake sediments. The concentrations of Cr, Mn, Ni, Cu and Zn in waters were positively correlated with reducible fraction of these metals in lake sediments. Except for Cd, the concentrations of rest of the metals in waters were positively correlated with residual fraction and total content of these heavy metals in lake sediments. C1 [Srivastava, Prashant] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Singh, Ajay P.; Srivastava, Prakash C.; Srivastava, Prashant] Govind Ballabh Pant Univ Agr & Technol, Dept Soil Sci, Pantnagar 263145, Uttar Pradesh, India. RP Srivastava, P (reprint author), Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM ps_soil@hotmail.com RI Srivastava, Prashant/E-6471-2011 OI Srivastava, Prashant/0000-0002-6234-3987 NR 35 TC 20 Z9 20 U1 1 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD FEB PY 2008 VL 188 IS 1-4 BP 181 EP 193 DI 10.1007/s11270-007-9534-6 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA 252WD UT WOS:000252476700014 ER PT J AU Malene, SH AF Malene, S. H. TI Reader questions accuracy of research paper SO WELDING JOURNAL LA English DT Letter C1 Washington Savannah River Co, Mat Compatibil & Welding Technol Grp, Savannah River Natl Lab, Aiken, SC USA. RP Malene, SH (reprint author), Washington Savannah River Co, Mat Compatibil & Welding Technol Grp, Savannah River Natl Lab, Aiken, SC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD FEB PY 2008 VL 87 IS 2 BP 15 EP 15 PG 1 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 255LZ UT WOS:000252660800006 ER PT J AU Pellmyr, O Balcazar-Lara, M Segraves, KA Althoff, DM Littlefield, RJ AF Pellmyr, Olle Balcazar-Lara, Manuel Segraves, Kari A. Althoff, David M. Littlefield, Rik J. TI Phylogeny of the pollinating yucca moths, with revision of Mexican species (Tegeticula and Parategeticula; Lepidoptera, Prodoxidae) SO ZOOLOGICAL JOURNAL OF THE LINNEAN SOCIETY LA English DT Article DE mitochondrial DNA; molecular phylogenetics; mutualism; pollination ID MUTUALISM; ASSOCIATION; COMPLEX; ORIGIN; HYPOTHESIS; SPECIATION; STABILITY; BOOTSTRAP; PARALLEL; MODELS AB The yucca moths (Tegeticula and Parategeticula; Lepidoptera, Prodoxidae) are well known for their obligate relationship as exclusive pollinators of yuccas. Revisionary work in recent years has revealed far higher species diversity than historically recognized, increasing the number of described species from four to 20. Based on field surveys in Mexico and examination of collections, we describe five additional species: T. californica Pellmyr sp. nov., T. tehuacana Pellmyr & Balcazar-Lara sp. nov., T. tambasi Pellmyr & Balcazar-Lara sp. nov., T. baja Pellmyr & Balcazar-Lara sp. nov. and P. ecdysiastica Pellmyr & Balcazar-Lara sp. nov. Tegeticula treculeanella Pellmyr is identified as a junior synonym of T. mexicana Bastida. A diagnostic key to the adults of all species of the T. yuccasella complex is provided. A phylogeny based on a 2104-bp segment of mitochondrial DNA (mtDNA) in the cytochrome oxidase I and II region supported monophyly of the two pollinator genera, and strongly supported monophyly of the 17 recognized species of the T. yuccasella complex. Most relationships are well supported, but some relationships within a recent and rapidly diversified group of 11 taxa are less robust, and in one case conflicts with a whole-genome data set (amplified fragment length polymorphism, AFLP). The current mtDNA-based analyses, together with previously published AFLP data, provide a robust phylogenetic foundation for future studies of life-history evolution and host interactions in one of the classical models of coevolution and obligate mutualism. (c) 2008 The Linnean Society of London. C1 [Pellmyr, Olle] Univ Idaho, Dept Biol, Moscow, ID 83844 USA. [Balcazar-Lara, Manuel] Univ Colima, Fac Ciencias Biol & Agropecuarias, Tecoman 28100, Colima, Mexico. [Segraves, Kari A.; Althoff, David M.] Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA. [Littlefield, Rik J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Pellmyr, O (reprint author), Univ Idaho, Dept Biol, Moscow, ID 83844 USA. EM pellmyr@uidaho.edu RI Segraves, Kari/D-2467-2009 NR 43 TC 16 Z9 17 U1 1 U2 22 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0024-4082 J9 ZOOL J LINN SOC-LOND JI Zool. J. Linn. Soc. PD FEB PY 2008 VL 152 IS 2 BP 297 EP 314 DI 10.1111/j.1096-3642.2007.00361.x PG 18 WC Zoology SC Zoology GA 257RE UT WOS:000252815400004 ER PT J AU Cachorro, VE Toledano, C Sorribas, M Berjon, A de Frutos, AM Laulainen, N AF Cachorro, V. E. Toledano, C. Sorribas, M. Berjon, A. de Frutos, A. M. Laulainen, N. TI An "in situ" calibration-correction procedure (KCICLO) based on AOD diurnal cycle: Comparative results between AERONET and reprocessed (KCICLO method) AOD-alpha data series at El Arenosillo, Spain SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL OPTICAL DEPTH; ANGSTROM TURBIDITY PARAMETERS; EXPONENT AB A comparative evaluation is carried out for nearly 5 years (February 2000 to May 2004) of data of aerosol optical depth (AOD) measured at the Aerosol Robotic Network (AERONET) site El Arenosillo (Huelva, southwestern Spain). The AERONET database and the reprocessed data set using a new correction procedure, which we call the KCICLO method, are compared with respect to the aerosol local climatology. The cause and necessity of AOD reprocessing were due to the existence of an observed fictitious diurnal cycle (including negative values) because of a deficient calibration as explained in detail in the companion paper (V. E. Cachorro et al., submitted manuscript, 2007). The derived alpha Angstrom coefficient is also compared, as it appears to be an excellent indicator of the AOD data quality, because of its sensitivity to AOD variations and errors. Some illustrative cases show the influence of this fictitious diurnal cycle on the shape and values of diurnal variations of the AOD (or alpha), reaching differences as high as 100%, and the improvement resulting from using the KCICLO method. Absolute and relative differences are evaluated from the overall average of AOD and alpha coefficient of AERONET and KCICLO data series, making an exhaustive analysis for each spectral channel and for every photometer separately. Although great variability is shown for each filter and each photometer, apart from photometer 114 data that did not reach level 2.0, the discrepancy in the AOD local climatology in the four filters varies as a whole from 2.3% to 8.5% (2.4% for alpha coefficient). These values show a considerable reduction because of the compensating effect between the different photometers (positive or negative bias), and several jumps that break the continuity of the data series are observed. When monthly and yearly averages are analyzed, the differences are considerably reduced in such a way that the local climatology is not substantially affected, but we must be cautious with this apparent good result. The comparative results between both data series give a representative pattern of the uncertainties that we have found in establishing a local aerosol climatology. C1 [Cachorro, V. E.; Toledano, C.; Berjon, A.; de Frutos, A. M.] Univ Valladolid, Grp Opt Atmosfer, E-47071 Valladolid, Spain. [Sorribas, M.] INTA Div Ciencias Espacio, Estac Sondeos Atmosfer El Arenosillo, E-21130 Huelva, Spain. [Laulainen, N.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cachorro, VE (reprint author), Univ Valladolid, Grp Opt Atmosfer, E-47071 Valladolid, Spain. RI Sorribas, Mar/B-8059-2012; Toledano, Carlos/J-3672-2012; Berjon, Alberto/M-4203-2015; OI Sorribas, Mar/0000-0003-2131-9021; Toledano, Carlos/0000-0002-6890-6648; Berjon, Alberto/0000-0002-4508-7037; Cachorro, Victoria/0000-0002-4627-9444 NR 15 TC 18 Z9 18 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 31 PY 2008 VL 113 IS D2 AR D02207 DI 10.1029/2007JD009001 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 257UW UT WOS:000252825200007 ER PT J AU Schichtel, BA Malm, WC Bench, G Fallon, S McDade, CE Chow, JC Watson, JG AF Schichtel, Bret A. Malm, William C. Bench, Graham Fallon, Stewart McDade, Charles E. Chow, Judith C. Watson, John G. TI Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SECONDARY ORGANIC AEROSOL; YOSEMITE-NATIONAL-PARK; PRIMARY OC/EC RATIOS; EC TRACER METHOD; ELEMENTAL CARBON; SOURCE APPORTIONMENT; AMBIENT AEROSOL; LOS-ANGELES; AIR-QUALITY; PARTICLE CONCENTRATION AB Fine particulate matter collected at two urban, four near-urban, and six remote sites throughout the United States were analyzed for total carbon (TC) and radiocarbon (C-14). Samples were collected at most sites for both a summer and winter season. The radiocarbon was used to partition the TC into fossil and contemporary fractions. On average, contemporary carbon composed about half of the carbon at the urban, similar to 70-97% at near-urban, and 82-100% at remote sites. At Phoenix, Arizona, and Seattle, Washington, one monitor was located within the urban center and one outside to assess the urban excess over background concentrations. During the summer the urban and rural sites had similar contemporary carbon concentrations. However, during the winter the urban sites had more than twice the contemporary carbon measured at the neighboring sites, indicating anthropogenic contributions to the contemporary carbon. The urban fossil carbon was 4-20 times larger than the neighboring rural sites for both seasons. Organic (OC) and elemental carbon (EC) from TOR analysis were available. These and the radiocarbon data were used to estimate characteristic fossil and contemporary EC/TC ratios for the winter and summer seasons. These ratios were applied to carbon data from the Interagency Monitoring of Protected Visual Environments network to estimate the fraction of contemporary carbon at mostly rural sites throughout the United States. In addition, the ratios were used to develop a semiquantitative, lower bound estimate of secondary organic carbon (SOC) contribution to fossil and contemporary carbon. SOC accounted for more than one-third of the fossil and contemporary carbon. C1 [Schichtel, Bret A.; Malm, William C.] Colorado State Univ, Cooperat Inst Res Atmosphere, Natl Pk Serv, Ft Collins, CO 80523 USA. [Bench, Graham; Fallon, Stewart] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [McDade, Charles E.] Univ Calif Davis, Crocker Nucl Lab, Davis, CA 95616 USA. [Chow, Judith C.; Watson, John G.] Univ Nevada, Desert Res Inst, Div Atmospher Sci, Reno, NV 89506 USA. RP Schichtel, BA (reprint author), Colorado State Univ, Cooperat Inst Res Atmosphere, Natl Pk Serv, Ft Collins, CO 80523 USA. EM schichtel@cira.colostate.edu RI Watson, John/E-6869-2010; Fallon, Stewart/G-6645-2011 OI Watson, John/0000-0002-1752-6899; Fallon, Stewart/0000-0002-8064-5903 NR 83 TC 88 Z9 89 U1 4 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 31 PY 2008 VL 113 IS D2 AR D02311 DI 10.1029/2007JD008605 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 257UW UT WOS:000252825200002 ER PT J AU Rempe, JL Knudson, DL AF Rempe, J. L. Knudson, D. L. TI High temperature thermal properties for metals used in LWR vessels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Because of the impact that melt relocation and vessel failure has on subsequent progression and associated consequences of a light water reactor (LWR) accident, it is important to accurately predict the heatup and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 700 degrees C. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, INL obtained data using laser-flash thermal diffusivity techniques for two metals used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 Stainless Steel SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, compares it to existing data in the literature, and provides recommended correlations for thermal properties based on this data. (C) 2007 Elsevier B.V. All rights reserved. C1 [Rempe, J. L.; Knudson, D. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rempe, JL (reprint author), Idaho Natl Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM Joy.Rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 NR 10 TC 11 Z9 11 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN 31 PY 2008 VL 372 IS 2-3 BP 350 EP 357 DI 10.1016/j.jnucmat.2007.03.268 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 262XB UT WOS:000253180400022 ER PT J AU Tan, L Allen, TR Hunn, JD Miller, JH AF Tan, L. Allen, T. R. Hunn, J. D. Miller, J. H. TI EBSD for microstructure and property characterization of the SiC-coating in TRISO fuel particles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SILICON-CARBIDE; FILMS AB Tristructural-isotropic (TRISO)-coated particle fuel is being developed for use in the Next Generation Nuclear Plant. The reliable and precise characterization of the microstructure and properties of the SiC layer in the TRISO particle is essential for optimizing processing parameters to ensure reproducibility and performance of the coatings. Electron backscatter diffraction (EBSD) is a time-efficient analytical tool for obtaining a wealth of information on the SiC layer. In this study, we report the application of EBSD to the analysis of the SiC layer in a TRISO particle. The SiC layer identified as 3C - SiC with an average elastic stiffness of similar to 402 GPa was mainly composed of random boundaries with a small fraction of low-Sigma CSLBs. A few large grains, which were generally associated with local strains and tended to be columnar with the long axis oriented approximately along the TRISO particle radial direction, were observed in the SiC layer with an increased population from the IPyC - SiC to the SiC - OPyC interfaces. (c) 2007 Elsevier B.V. All rights reserved. C1 [Tan, L.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. [Hunn, J. D.; Miller, J. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tan, L (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM lizhentan@wisc.edu RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259 NR 13 TC 33 Z9 35 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN 31 PY 2008 VL 372 IS 2-3 BP 400 EP 404 DI 10.1016/j.jnucmat.2007.04.048 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 262XB UT WOS:000253180400028 ER PT J AU Marchi, CS Somerday, BP Larson, RS Rice, SF AF Marchi, C. San Somerday, B. P. Larson, R. S. Rice, S. F. TI Solubility of hydrogen and its isotopes in metals from mixed gases SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PALLADIUM-SILVER; PERMEATION; DEUTERIUM; NICKEL; DIFFUSION; MIXTURES; PROTIUM; ALLOY AB This short communication reviews the classical thermodynamics governing dissolution of hydrogen in metals. Classical thermodynamics is then applied to equilibrium dissolution of hydrogen and its isotopes in metals from mixtures of their diatomic gases. For simplicity in presentation, we use the specific example of H-2 and D-2 gas mixtures to demonstrate the general principles of equilibrium solubility; however, other systems may be treated analogously. The formation of HD gas is shown to have a significant effect on equilibrium solubility since it affects the chemical potentials of the H-2 and D-2 gases. Finally, we compare this thermodynamic analysis with empirical solutions from the literature. (c) 2007 Elsevier B.V. All rights reserved. C1 [Marchi, C. San; Somerday, B. P.; Larson, R. S.; Rice, S. F.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Marchi, CS (reprint author), Sandia Natl Labs, 7011 E Ave, Livermore, CA 94550 USA. EM cwsanma@sandia.gov NR 17 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN 31 PY 2008 VL 372 IS 2-3 BP 421 EP 425 DI 10.1016/j.jnucmat.2007.02.016 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 262XB UT WOS:000253180400031 ER PT J AU Zelenyuk, A Yang, J Song, C Zaveri, RA Imre, D AF Zelenyuk, Alla Yang, Juan Song, Chen Zaveri, Rahul A. Imre, Dan TI "Depth-profiling" and quantitative characterization of the size, composition, shape, density, and morphology of fine particles with SPLAT, a single-particle mass spectrometer SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID AEROSOL-PARTICLES; MOBILITY AB A significant fraction of atmospheric particles are composed of inorganic substances that are mixed or coated with organic compounds. The properties and behavior of these particles depend on the internal composition and arrangement of the specific constituents in each particle. It is important to know which constituent is on the surface and whether it covers the particle surface partially or entirely. We demonstrate here an instrument consisting of an ultrasensitive single-particle mass spectrometer coupled with a differential mobility analyzer to quantitatively measure in real time individual particle composition, size, density, and shape and to determine which substance is on the surface and whether it entirely covers the particle. For this study, we use NaCl particles completely coated with liquid dioctyl phthalate to generate spherical particles, and NaCl particles partially coated with pyrene, a solid poly aromatic hydrocarbon, to produce aspherical particles with pyrene nodules and an exposed NaCl core. We show that the behavior of the mass spectral intensities as a function of laser fluence yields information that can be used to determine the morphological distribution of individual particle constituents. C1 [Zelenyuk, Alla; Yang, Juan; Song, Chen; Zaveri, Rahul A.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Imre, Dan] Imre Consulting, Richland, WA 99352 USA. RP Zelenyuk, A (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM alla.zelenyuk@pnl.gov RI Song, Chen/H-3374-2011; Yang, Juan/F-5220-2010; OI Yang, Juan/0000-0001-5502-9351; Zaveri, Rahul/0000-0001-9874-8807 NR 12 TC 26 Z9 26 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 31 PY 2008 VL 112 IS 4 BP 669 EP 677 DI 10.1021/jp077308y PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 254WM UT WOS:000252618700012 PM 18173252 ER PT J AU Wang, D Flanagan, TB Shanahan, K AF Wang, Da Flanagan, Ted B. Shanahan, Kirk TI Diffusion of H through Pd-Ag alloys (423-523 K) SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PALLADIUM-SILVER ALLOYS; THERMODYNAMIC PROPERTIES; HYDROGEN; NONIDEALITY; PERMEATION; DEUTERIUM; MEMBRANES AB H diffusion constants have been determined from steady-state fluxes through Pd-Ag alloy membranes. The upstream side is maintained at a nearly constant pup (and consequently at a nearly constant r(up) = H/(Pd(1-x)-Ag-x) atom ratio, whereas the downstream side is at P-H2 approximate to 0 (r(down) = 0) (423 -523 K). It is shown that the permeability is a maximum for atom fraction Ag, X-Ag = 0.23 (423 -523 K) at both p(up) = 20.3 and 50.6 kPa. D-H has been determined for some Pd-Ag alloys as a function of r in the dilute region, and it decreases with r even at small H contents for alloys with XAg < 0.35. The concentration dependence of DH(CH) has been determined for the Pd0.77Ag0.23 alloy over a large concentration range. The effect of nonideality on DH(r) and E-D(r) has been systematically determined as a function of XAg, where XAg is the atom fraction of Ag in the H-free alloy. (dD(H)/dr) increases with XAg up to XAg = 0.35 and then changes from negative to positive at approximate to 0.35. The activation energies for diffusion, ED(r), have been determined as a function of H content in the dilute range for several Pd-Ag alloy membranes, and the conversion to concentration-independent E-D* values has been carried out in several different ways. C1 [Wang, Da; Flanagan, Ted B.] Univ Vermont, Dept Chem, Burlington, VT 05405 USA. [Shanahan, Kirk] Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. RP Flanagan, TB (reprint author), Univ Vermont, Dept Chem, Burlington, VT 05405 USA. NR 17 TC 27 Z9 27 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 31 PY 2008 VL 112 IS 4 BP 1135 EP 1148 DI 10.1021/jp076690b PG 14 WC Chemistry, Physical SC Chemistry GA 254WP UT WOS:000252619000014 PM 18179195 ER PT J AU Qian, YD Wen, W Adcock, PA Jiang, Z Hakim, N Saha, MS Mukerjee, S AF Qian, Yangdong Wen, Wen Adcock, Peter A. Jiang, Zheng Hakim, Nazih Saha, Madhu S. Mukerjee, Sanjeev TI PtM/C catalyst prepared using reverse micelle method for oxygen reduction reaction in PEM fuel cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PLATINUM CRYSTALLITE SIZE; RING-DISK ELECTRODE; ELECTROCATALYTIC PROPERTIES; FEPT NANOPARTICLES; PHOSPHORIC-ACID; ALLOY ELECTROCATALYSTS; SURFACE-PROPERTIES; SULFURIC-ACID; CO; PARTICLES AB Synthesis of carbo n-supported PtM/C catalysts (M = Co, Cr, or Fe) using a new preparation technique, a reverse micelle method, is reported. The catalysts were characterized by different surface techniques: X-ray diffraction, scanning electron microscope,transmission electron microscope, and energy dispersive X-ray microanalysis. Surface characterization showed that Pt/M nanoparticles on catalysts were synthesized using the reverse micelle method. Pt/M nanoparticles were observed to be uniform spherical objects. The performance of the PtM/C catalysts was tested by the rotating disk electrode technique. A trend of catalytic activity for oxygen reduction reaction (ORR) was obtained: PtCo/C(T, 500) similar to PtCo/C(S) > PtCr/C(S) > PtFe/C(S) similar to Pt/C > PtFe/C(T, 500) similar to PtCr/C(T, 500), showing that PtCo/C-type catalysts had a higher catalytic activity for ORR. C1 [Qian, Yangdong; Wen, Wen; Adcock, Peter A.; Hakim, Nazih; Saha, Madhu S.; Mukerjee, Sanjeev] Northeastern Univ, Dept Chem, Boston, MA 02115 USA. [Qian, Yangdong; Jiang, Zheng] Univ Oxford, Wolfson Catalysis Ctr, Inorgan Chem Lab, Oxford OX1 3QR, England. [Wen, Wen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Qian, YD (reprint author), Northeastern Univ, Dept Chem, 360 Huntington Ave, Boston, MA 02115 USA. EM yangdong.qian@oxfordcatalysts.com RI JIANG, Zheng/B-3888-2011 OI JIANG, Zheng/0000-0002-7972-6175 NR 52 TC 78 Z9 78 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 31 PY 2008 VL 112 IS 4 BP 1146 EP 1157 DI 10.1021/jp074929i PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 254WQ UT WOS:000252619100039 ER PT J AU Sun, YG Wang, HH Xia, MG AF Sun, Yugang Wang, H. Hau Xia, Minggang TI Single-walled carbon nanotubes modified with Pd nanoparticles: Unique building blocks for high-performance, flexible hydrogen sensors SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GAAS SCHOTTKY CONTACT; THIN-FILM TRANSISTORS; METAL NANOPARTICLES; PALLADIUM NANOPARTICLES; NETWORKS; DIODES; NANOWIRES; ARRAYS; ELECTRODEPOSITION; ADSORPTION AB High-performance hydrogen sensors with excellent mechanical flexibility and durability have been fabricated on thin plastic sheets with the use of high-quality semiconducting single-walled carbon nanotubes decorated with discrete Pd nanoparticles. These sensors exhibit sensing performance much higher than that of the traditional ones built with precious pure palladium structures on rigid substrates. For example, the sensitivity of the typical flexible sensors is in the range of 100-150% (based on resistance change of the sensors) for 0.1 % hydrogen in dry air at room temperature. The response times are typically less than 15 s for 1% hydrogen, and the sensors can be completely recovered within 5 min in the air without hydrogen. The flexible sensors can detect hydrogen with concentrations as low as 100 ppm (0.01%). Experimental results indicate that the as-fabricated devices operate well even when they are bent to a curved geometry with bending radii down to 2 mm and after they are treated with 1000 times of bending/relaxing cycles. The sensing mechanism is also discussed semiquantitatively on the basis of the theory of solid-state physics and Langmuir adsorption isotherm theory. The conclusion is consistent with the characteristic results of the as-fabricated sensors. These flexible hydrogen sensors could find immediate applications for detecting hydrogen leakage in various systems with demanding light weight, mechanical flexibility, and high sensitivity. C1 [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wang, H. Hau] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Xia, Minggang] Xian Jiaotong Univ, Dept Appl Phys, Xian 710049, Peoples R China. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Schaff, William/B-5839-2009; Sun, Yugang /A-3683-2010; Xia, Minggang/C-7001-2014 OI Sun, Yugang /0000-0001-6351-6977; Xia, Minggang/0000-0002-4386-4736 NR 71 TC 53 Z9 54 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 31 PY 2008 VL 112 IS 4 BP 1250 EP 1259 DI 10.1021/jp076965n PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 254WQ UT WOS:000252619100050 ER PT J AU Mosegaard, L Moller, B Jorgensen, JE Filinchuk, Y Cerenius, Y Hanson, JC Dimasi, E Besenbacher, F Jensen, TR AF Mosegaard, Lene Moller, Bitten Jorgensen, Jens-Erik Filinchuk, Yaroslav Cerenius, Yngve Hanson, Jonathan C. Dimasi, Elaine Besenbacher, Flemming Jensen, Torben R. TI Reactivity of LiBH4: In situ synchrotron radiation powder X-ray diffraction study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN-STORAGE MATERIALS; INTERMEDIATE PHASES; SPECTROSCOPY; BOROHYDRIDES; HYDRIDES; RAMAN; GOLD AB Lithium tetrahydridoboranate (LiBH4) may be a potentially interesting material for hydrogen storage, but in order to absorb and desorb hydrogen routinely and reversibly, the kinetics and thermodynamics need to be improved significantly. A priori, this material has one of the highest theoretical gravimetric hydrogen contents, 18.5 wt%, but unfortunately for practical applications, hydrogen release occurs at too high temperature in a non-reversible way. By means of in situ synchrotron radiation powder X-ray diffraction (SR-PXD), the interaction between LiBH4 and different additives-SiO2, TiCl3, LiCl, and Au - is investigated. It is found that silicon dioxide reacts with molten LiBH4 and forms Li2SiO3 or Li4SiO4 at relatively low amounts of SiO2, e.g., with 5.0 and 9.9 mol % SiO2 in LiBH4, Whereas, for higher amounts of SiO2 (e.g., 25.5 mol %), only the Li2SiO3 phase is observed. Furthermore, we demonstrate that a solid-state reaction occurs between LiBH4 and TiCl3 to form LiCl at room temperature. At elevated temperatures, more LiCl is formed simultaneously with a decrease in the diffracted intensity from TiCl3. Lithium chloride shows some solubility in solid LiBH4 at T > 100 degrees C. This is the first report of substituents that accommodate the structure of LiBH4 by a solid/solid dissolution reaction. Gold is found to react with molten LiBH4 forming a Li-Au alloy with CuAu3-type structure. These studies demonstrate that molten LiBH4 has a high reactivity, and finding a catalyst for this H-rich system may be a challenge. C1 [Mosegaard, Lene; Moller, Bitten; Jorgensen, Jens-Erik; Besenbacher, Flemming; Jensen, Torben R.] Univ Aarhus, Dept Chem, Interdisciplinary Nanosci Ctr, DK-8000 Aarhus C, Denmark. [Filinchuk, Yaroslav] European Synchrotron Radiat Facil, SNBL, F-38043 Grenoble, France. [Cerenius, Yngve] Lund Univ, MAX Lab, S-22100 Lund, Sweden. [Hanson, Jonathan C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Dimasi, Elaine] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. [Besenbacher, Flemming] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RP Jensen, TR (reprint author), Univ Aarhus, Dept Chem, Interdisciplinary Nanosci Ctr, Langelandsgade 140, DK-8000 Aarhus C, Denmark. EM trj@chem.au.dk RI Besenbacher, Flemming/A-9623-2010; Hanson, jonathan/E-3517-2010; OI Jensen, Torben Rene/0000-0002-4278-3221 NR 37 TC 97 Z9 97 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 31 PY 2008 VL 112 IS 4 BP 1299 EP 1303 DI 10.1021/jp076999v PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 254WQ UT WOS:000252619100056 ER PT J AU Hedstrom, P Lienert, U Almer, J Oden, M AF Hedstroem, Peter Lienert, Ulrich Almer, Jon Oden, Magnus TI Elastic strain evolution and epsilon-martensite formation in individual austenite grains during in situ loading of a metastable stainless steel SO MATERIALS LETTERS LA English DT Article DE martensitic transformation; X-ray diffraction; strain; synchrotron radiation; stainless steels; 3DXRD ID SINGLE-CRYSTALS; TRANSFORMATION AB The (hcp) epsilon-martensite formation and the elastic strain evolution of individual (fcc) austenite grains in metastable austenitic stainless steel AISI 301 has been investigated during in situ tensile loading up to 5% applied strain. The experiment was conducted using high-energy X-rays and the 3DXRD technique, enabling studies of individual grains embedded in the bulk of the steel. Out of the 47 probed austenite grains, one could be coupled with the formation of epsilon-martensite, using the reported orientation relationship between the two phases. The formation of e-martensite occurred in the austenite grain with the highest Schmid factor for the active {111} <1<(2)over bar>1> slip system. (c) 2007 Elsevier B.V. All rights reserved. C1 [Hedstroem, Peter; Oden, Magnus] Lulea Univ Technol, Div Engn Mat, SE-97187 Lulea, Sweden. [Lienert, Ulrich; Almer, Jon] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Hedstrom, P (reprint author), Lulea Univ Technol, Div Engn Mat, SE-97187 Lulea, Sweden. EM peter.hedstrom@ltu.se RI Oden, Magnus/E-9662-2010; Hedstrom, Peter/F-8920-2010 OI Oden, Magnus/0000-0002-2286-5588; Hedstrom, Peter/0000-0003-1102-4342 NR 11 TC 15 Z9 15 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD JAN 31 PY 2008 VL 62 IS 2 BP 338 EP 340 DI 10.1016/j.matlet.2007.05.054 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 244MQ UT WOS:000251870400045 ER PT J AU Ahart, M Somayazulu, M Cohen, RE Ganesh, P Dera, P Mao, HK Hemley, RJ Ren, Y Liermann, P Wu, ZG AF Ahart, Muhtar Somayazulu, Maddury Cohen, R. E. Ganesh, P. Dera, Przemyslaw Mao, Ho-Kwang Hemley, Russell J. Ren, Yang Liermann, Peter Wu, Zhigang TI Origin of morphotropic phase boundaries in ferroelectrics SO NATURE LA English DT Article ID HIGH-PRESSURE; PBTIO3; RAMAN AB A piezoelectric material is one that generates a voltage in response to a mechanical strain ( and vice versa). The most useful piezoelectric materials display a transition region in their composition phase diagrams, known as a morphotropic phase boundary(1,2), where the crystal structure changes abruptly and the electromechanical properties are maximal. As a result, modern piezoelectric materials for technological applications are usually complex, engineered, solid solutions, which complicates their manufacture as well as introducing complexity in the study of the microscopic origins of their properties. Here we show that even a pure compound, in this case lead titanate, can display a morphotropic phase boundary under pressure. The results are consistent with first-principles theoretical predictions(3), but show a richer phase diagram than anticipated; moreover, the predicted electromechanical coupling at the transition is larger than any known. Our results show that the high electromechanical coupling in solid solutions with lead titanate is due to tuning of the high- pressure morphotropic phase boundary in pure lead titanate to ambient pressure. We also find that complex microstructures or compositions are not necessary to obtain strong piezoelectricity. This opens the door to the possible discovery of high- performance, pure-compound electromechanical materials, which could greatly decrease costs and expand the utility of piezoelectric materials. C1 [Ahart, Muhtar; Somayazulu, Maddury; Cohen, R. E.; Ganesh, P.; Dera, Przemyslaw; Mao, Ho-Kwang; Hemley, Russell J.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Liermann, Peter] Carnegie Inst Sci, Adv Photon Source, HPCAT, Argonne, IL 60439 USA. [Wu, Zhigang] Univ Calif Berkeley, BNNI, Berkeley, CA 94720 USA. RP Cohen, RE (reprint author), Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM rcohen@ciw.edu RI Cohen, Ronald/B-3784-2010; Ganesh, Panchapakesan/E-3435-2012; Dera, Przemyslaw/F-6483-2013; Ganesh, Panchapakesan/L-5571-2013; Wu, Zhigang/K-2554-2014 OI Cohen, Ronald/0000-0001-5871-2359; Ganesh, Panchapakesan/0000-0002-7170-2902; Wu, Zhigang/0000-0001-8959-2345 NR 28 TC 339 Z9 345 U1 21 U2 236 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JAN 31 PY 2008 VL 451 IS 7178 BP 545 EP U2 DI 10.1038/nature06459 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 256OQ UT WOS:000252739900035 PM 18235495 ER PT J AU Nykypanchuk, D Maye, MM van der Lelie, D Gang, O AF Nykypanchuk, Dmytro Maye, Mathew M. van der Lelie, Daniel Gang, Oleg TI DNA-guided crystallization of colloidal nanoparticles SO NATURE LA English DT Article ID SUPERLATTICES; ASSEMBLIES; HYBRIDIZATION; NANOCRYSTALS; PROTEIN; ARRAYS AB Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects(1,2), then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self- assembly to design systems comprised of different types of building blocks - to realize novel magnetic, plasmonic and photonic metamaterials(3-5), for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules(6-10). Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated(11-13). However, our theoretical understanding of how to extend this approach to three dimensions is limited(14,15), and most experiments have yielded amorphous aggregates(16-19) and only occasionally crystallites of close- packed micrometre- sized particles(9,10). Here, we report the formation of three- dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body- centred- cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only similar to 4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions. C1 [Nykypanchuk, Dmytro; Maye, Mathew M.; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov RI Han, Kyuhee/B-6201-2009 NR 28 TC 782 Z9 789 U1 44 U2 486 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JAN 31 PY 2008 VL 451 IS 7178 BP 549 EP 552 DI 10.1038/nature06560 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 256OQ UT WOS:000252739900036 PM 18235496 ER PT J AU Park, SY Lytton-Jean, AKR Lee, B Weigand, S Schatz, GC Mirkin, CA AF Park, Sung Yong Lytton-Jean, Abigail K. R. Lee, Byeongdu Weigand, Steven Schatz, George C. Mirkin, Chad A. TI DNA-programmable nanoparticle crystallization SO NATURE LA English DT Article ID DISSIPATIVE PARTICLE DYNAMICS; ASYMMETRIC FUNCTIONALIZATION; COLLOIDAL CRYSTALS; GOLD NANOPARTICLES; BUILDING-BLOCKS; OLIGONUCLEOTIDES; SUPERLATTICES AB It was first shown(1,2) more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools(3,4) for nucleic acids and proteins, and into intracellular probes(5) and gene regulators(6). In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base- pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers(7-16), although a few examples of colloidal crystal formation exist(8,16). Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle - oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non- bonding single- base flexor can be adjusted so that gold nanoparticles assemble into micrometresized face- centred- cubic or body- centred- cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures. C1 [Park, Sung Yong; Lytton-Jean, Abigail K. R.; Schatz, George C.; Mirkin, Chad A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Park, Sung Yong; Lytton-Jean, Abigail K. R.; Schatz, George C.; Mirkin, Chad A.] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Weigand, Steven] Northwestern Univ, DND CAT Synchrotron Res Ctr, Argonne, IL 60439 USA. RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM chadnano@northwestern.edu RI Mirkin, Chad/E-3911-2010; OI Lee, Byeongdu/0000-0003-2514-8805 NR 30 TC 844 Z9 852 U1 43 U2 432 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JAN 31 PY 2008 VL 451 IS 7178 BP 553 EP 556 DI 10.1038/nature06508 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 256OQ UT WOS:000252739900037 PM 18235497 ER PT J AU Missert, N Copeland, RG AF Missert, N. Copeland, R. G. TI Scanning probe studies of water nucleation on aluminum oxide and gold surfaces SO APPLIED SURFACE SCIENCE LA English DT Article DE interfacial water; AFM; aluminum; corrosion; surface hydrocarbon ID FORCE MICROSCOPY; ADSORPTION; MICA AB The nucleation of nanoscale water at surfaces in humid environments is sensitive to several factors, including the details of the surface morphology, ability of the surface to hydrate and the presence of contaminants. Tapping mode atomic force microscopy was used to investigate the nucleation process as a function of relative humidity (RH) on passive aluminum and gold thin films. Films exposed to the ambient environment prior to RH exposure showed discrete structures with lateral sizes ranging from 10 to 100 mn only at RH > 70%. These structures formed preferentially at grain boundaries, triple points and regions with significant topography such as protruding grains. The morphology of the passive aluminum surface is permanently altered at the sites where discrete structures were observed; nodules with heights ranging from 0.5 to 2 nm persist even after reducing the RH to <2%. The gold surface does not show such a permanent change in morphology after reducing the RH. Passive aluminum films exposed to high RH immediately after growth (e.g. no ambient exposure) do not show discrete structures even at the highest RH exposures of 90%, suggesting a hydrophilic surface and the importance of surface hydrocarbon contaminants in affecting the distribution of the water layer. (C) 2007 Elsevier B.V. All rights reserved. C1 [Missert, N.; Copeland, R. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Missert, N (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM namisse@sandia.gov NR 9 TC 3 Z9 3 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JAN 30 PY 2008 VL 254 IS 7 BP 1972 EP 1976 DI 10.1016/j.apsusc.2007.08.049 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 262VR UT WOS:000253176600016 ER PT J AU Ming, D Cohn, JD Wall, ME AF Ming, Dengming Cohn, Judith D. Wall, Michael E. TI Fast dynamics perturbation analysis for prediction of protein functional sites SO BMC STRUCTURAL BIOLOGY LA English DT Article ID LIGAND-BINDING-SITES; INTRINSIC DISORDER; CATALYTIC RESIDUES; SINGLE-PARAMETER; ACTIVE-SITES; HOT-SPOTS; ALGORITHM; NETWORK; IDENTIFICATION; INFORMATION AB Background: We present a fast version of the dynamics perturbation analysis (DPA) algorithm to predict functional sites in protein structures. The original DPA algorithm finds regions in proteins where interactions cause a large change in the protein conformational distribution, as measured using the relative entropy D-x. Such regions are associated with functional sites. Results: The Fast DPA algorithm, which accelerates DPA calculations, is motivated by an empirical observation that Dx in a normal-modes model is highly correlated with an entropic term that only depends on the eigenvalues of the normal modes. The eigenvalues are accurately estimated using first-order perturbation theory, resulting in a N-fold reduction in the overall computational requirements of the algorithm, where N is the number of residues in the protein. The performance of the original and Fast DPA algorithms was compared using protein structures from a standard small-molecule docking test set. For nominal implementations of each algorithm, top-ranked Fast DPA predictions overlapped the true binding site 94% of the time, compared to 87% of the time for original DPA. In addition, per-protein recall statistics (fraction of binding-site residues that are among predicted residues) were slightly better for Fast DPA. On the other hand, per-protein precision statistics (fraction of predicted residues that are among binding-site residues) were slightly better using original DPA. Overall, the performance of Fast DPA in predicting ligand-binding-site residues was comparable to that of the original DPA algorithm. Conclusion: Compared to the original DPA algorithm, the decreased run time with comparable performance makes Fast DPA well-suited for implementation on a web server and for high-throughput analysis. C1 [Ming, Dengming; Cohn, Judith D.; Wall, Michael E.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Ming, Dengming] Nanjing Univ, Sch Life Sci, Nanjing 210008, Jiangsu Prov, Peoples R China. [Cohn, Judith D.; Wall, Michael E.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Wall, Michael E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM dming@nju.edu.cn; jcohn@lanl.gov; mewall@lanl.gov OI Cohn, Judith/0000-0002-1333-3395; Alexandrov, Ludmil/0000-0003-3596-4515 NR 67 TC 22 Z9 23 U1 0 U2 9 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1472-6807 J9 BMC STRUCT BIOL JI BMC Struct. Biol. PD JAN 30 PY 2008 VL 8 AR 5 DI 10.1186/1472-6807-8-5 PG 11 WC Biophysics SC Biophysics GA 282EC UT WOS:000254549400001 PM 18234095 ER PT J AU Bavykin, SG Mikhailovich, VM Zakharyev, VM Lysov, YP Kelly, JJ Alferov, OS Gavin, IM Kukhtin, AV Jackman, J Stahl, DA Chandler, D Mirzabekov, AD AF Bavykin, Sergei G. Mikhailovich, Vladimir M. Zakharyev, Vladimir M. Lysov, Yuri P. Kelly, John J. Alferov, Oleg S. Gavin, Igor M. Kukhtin, Alexander V. Jackman, Joany Stahl, David A. Chandler, Darrell Mirzabekov, Andrei D. TI Discrimination of Bacillus anthracis and closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microarray SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article; Proceedings Paper CT International Conference on Frontiers of Pharmacology and Toxicology CY AUG 28-31, 2006 CL Chicago, IL SP Univ Illinois, Toxicol Res Lab, Dept Pharmacol & Canc Res Ctr, Appl Biosyst, Elsevier, Soc Toxicol, Labcat, Waters Corp, Hilltop Lab Anim, Bristol Myers Squibb, Marshall Farms, Thermo Electron N Amer LLC, AniLytics, EMKA Technologies, Perkin Elmer, Life & Analyt Sci DE Bacillus anthracis; 16S rRNA; 23S rRNA; microarray; SNP; environmental sample ID FRAGMENT LENGTH POLYMORPHISM; INTERGENIC TRANSCRIBED SPACERS; HORIZONTAL GENE-TRANSFER; SEQUENCE TYPING SCHEME; CEREUS GROUP; POPULATION-STRUCTURE; RAPID PCR; THURINGIENSIS STRAINS; TOXIGENIC STRAINS; VIRULENCE FACTORS AB Analysis of 16S rRNA sequences is a commonly used method for the identification and discrimination of microorganisms. However, the high similarity of 16S and 23S rRNA sequences of Bacillus cereus group organisms (up to 99-100%) and repeatedly failed attempts to develop molecular typing systems that would use DNA sequences to discriminate between species within this group have resulted in several suggestions to consider B. cereus and B. thuringiensis, or these two species together with B. anthracis, as one species. Recently, we divided the B. cereus group into seven subgroups, Anthracis, Cereus A and B, Thuringiensis A and B, and Mycoides A and B, based on 16S rRNA, 23S rRNA and gyrB gene sequences and identified subgroup-specific makers in each of these three genes. Here we for the first time demonstrated discrimination of these seven subgroups, including subgroup Anthracis, with a 3D gel element microarray of oligonucleotide probes targeting 16S and 23S rRNA markers. This is the first microarray enabled identification of B. anthracis and discrimination of these seven subgroups in pure cell cultures and in environmental samples using rRNA sequences. The microarray bearing perfect match/mismatch (p/mm) probe pairs was specific enough to discriminate single nucleotide polymorphisms (SNPs) and was able to identify targeted organisms in 5 min. We also demonstrated the ability of the microarray to determine subgroup affiliations for B. cereus group isolates without rRNA sequencing. Correlation of these seven subgroups with groupings based on multilocus sequence typing (MLST), fluorescent amplified fragment length polymorphism analysis (AFLP) and multilocus enzyme electrophoresis (NIME) analysis of a wide spectrum of different genes, and the demonstration of subgroup-specific differences in toxin profiles, psychrotolerance, and the ability to harbor some plasmids, suggest that these seven subgroups are not based solely on neutral genomic polymorphisms, but instead reflect differences in both the genotypes and phenotypes of the B. cereus group organisms. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 [Bavykin, Sergei G.; Alferov, Oleg S.; Gavin, Igor M.; Kukhtin, Alexander V.; Chandler, Darrell; Mirzabekov, Andrei D.] Argonne Natl Lab, Ctr Environm & Secur Sci & Technol, Argonne, IL 60439 USA. [Mikhailovich, Vladimir M.; Zakharyev, Vladimir M.; Lysov, Yuri P.; Mirzabekov, Andrei D.] Engelhardt Inst Mol Biol, Moscow 117984, Russia. [Kelly, John J.] Loyola Univ, Dept Biol, Chicago, IL 60626 USA. [Jackman, Joany] Georgetown Univ, Sch Med, Dept Biochem & Mol Biol, Washington, DC 20057 USA. [Stahl, David A.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. RP Bavykin, SG (reprint author), Argonne Natl Lab, Ctr Environm & Secur Sci & Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sbavykin@anl.gov OI Kelly, John/0000-0002-0894-137X FU NIAID NIH HHS [5R01AI 059517, 5R43AI 069627, R01 AI059517] NR 119 TC 5 Z9 5 U1 1 U2 6 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD JAN 30 PY 2008 VL 171 IS 2 BP 212 EP 235 DI 10.1016/j.cbi.2007.09.002 PG 24 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA 265MN UT WOS:000253363400012 PM 17950718 ER PT J AU Lapidus, A Goltsman, E Auger, S Galleron, N Segurens, B Dossat, C Land, ML Broussolle, V Brillard, J Guinebretiere, MH Sanchis, V Nguen-the, C Lereclus, D Richardson, P Wincker, P Weissenbach, J Ehrlich, SD Sorokin, A AF Lapidus, Alla Goltsman, Eugene Auger, Sandrine Galleron, Nathalie Segurens, Beatrice Dossat, Carole Land, Miriam L. Broussolle, Veronique Brillard, Julien Guinebretiere, Marie-Helene Sanchis, Vincent Nguen-the, Christophe Lereclus, Didier Richardson, Paul Wincker, Patrick Weissenbach, Jean Ehrlich, S. Dusko Sorokin, Alexei TI Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article; Proceedings Paper CT International Conference on Frontiers of Pharmacology and Toxicology CY AUG 28-31, 2006 CL Chicago, IL SP Univ Illinois, Toxicol Res Lab, Dept Pharmacol & Canc Res Ctr, Appl Biosyst, Elsevier, Soc Toxicol, Labcat, Waters Corp, Hilltop Lab Anim, Bristol Myers Squibb, Marshall Farms, Thermo Electron N Amer LLC, AniLytics, EMKA Technologies, PerkinElmer, Life & Analyt Sci DE cereus; genomics; cereus toxins; food poisoning; psychrophily; Bacillus cytotoxis; Bacillus cytotoxicus ID NONHEMOLYTIC ENTEROTOXIN COMPLEX; POPULATION-STRUCTURE; STRESS-RESPONSE; HEMOLYSIN BL; SEQUENCE; ANTHRACIS; STRAINS; THURINGIENSIS; BACTERIA; REVEALS AB The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530 kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic work and ecological compartments of different strains incite to consider a necessity of creating prophylactic vaccines against bacteria closely related to NVH391-98 and F837/76. Presumably developing of such vaccines can be based on the properties of non-pathogenic strains such as KBAB4 or ATCC 14579 reported here or earlier. By comparing the protein coding genes of strains being sequenced in this project to others we estimate the shared proteome, or core genome, in the B. cereus group to be 3000 200 genes and the total proleome, or pan-genome, to be 20-25,000 genes. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 [Auger, Sandrine; Galleron, Nathalie; Ehrlich, S. Dusko; Sorokin, Alexei] INRA, Genet Microbienne, F-78352 Jouy En Josas, France. [Lapidus, Alla; Goltsman, Eugene; Land, Miriam L.; Richardson, Paul] DOE Joint Genome Inst, Walnut Creek, CA USA. [Segurens, Beatrice; Dossat, Carole; Wincker, Patrick; Weissenbach, Jean] Ctr Natl Sequencage, Genoscope, F-91057 Evry, France. [Broussolle, Veronique; Brillard, Julien; Guinebretiere, Marie-Helene; Nguen-the, Christophe] Univ Avignon, UMR INRA, Secur & Qual Prod Origine Vegetale, Avignon, France. [Sanchis, Vincent; Lereclus, Didier] INRA, Genet Microbienne & Environm, F-78285 La Miniere, Guyancourt, France. RP Sorokin, A (reprint author), INRA, Genet Microbienne, F-78352 Jouy En Josas, France. EM sorokine@jouy.inra.fr RI Sanchis, Vincent/G-8326-2011; Schmutz, Jeremy/N-3173-2013; Land, Miriam/A-6200-2011; Lapidus, Alla/I-4348-2013 OI Schmutz, Jeremy/0000-0001-8062-9172; Land, Miriam/0000-0001-7102-0031; Lapidus, Alla/0000-0003-0427-8731 NR 52 TC 82 Z9 951 U1 6 U2 41 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD JAN 30 PY 2008 VL 171 IS 2 BP 236 EP 249 DI 10.1016/j.cbi.2007.03.003 PG 14 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA 265MN UT WOS:000253363400013 PM 17434157 ER PT J AU Martin, CD Parise, JB AF Martin, C. David Parise, John B. TI Structure constraints and instability leading to the post-perovskite phase transition of MgSiO3 SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE perovskite; post-perovskite; structure; phase transition; pressure; Clapeyron slope ID CORE-MANTLE BOUNDARY; X-RAY-DIFFRACTION; EARTHS D''-LAYER; HIGH-PRESSURE; CRYSTAL-STRUCTURE; THERMOELASTIC PROPERTIES; POWDER DIFFRACTION; NAMGF3 PEROVSKITE; THERMAL-EXPANSION; STRUCTURE MODEL AB Recent experience with Rietveld refinement of structural analogues and literature surveys, suggests anion-anion repulsion limits the stability of the perovskite phase, including in the MgSiO3 perovskite to post-perovskite transition. Assuming rigid octahedral coordination, still to be tested experimentally, the critical point where intra- and inter-octahedral anion-anion distances are equal provides a useful metric for predicting the pressure of the perovskite/post-perovskite transition and the Clapeyron slope of the phase boundary, once pressure and temperature derivatives of relevant structure parameters are known. The inter-octahedral anion-anion distances and the polyhedral volume ratio are rigorously formulated as a function of octahedral rotation in this work, assuming the orthorhombic (Pbnm) perovskite structure, where regular octahedra share each corner and conform to the in- and anti-phase rotation schemes designated by space group symmetry. These mathematical expressions are consistent with structure data from 70 perovskite-structured materials surveyed in the literature at ambient as well as extreme conditions and define structure constraints, such as the minimum polyhedral volume ratio, which must be reached before the phase transition to the post-perovskite structure-type can proceed. The formalism we present is general for perovskite (Pbnm) and dependent on the accuracy with which structures can be determined from, sometimes compromised, high pressure diffraction data. (C) 2007 Elsevier B.V. All fights reserved. C1 [Martin, C. David; Parise, John B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Parise, John B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Martin, CD (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM martin@anl.gov NR 57 TC 10 Z9 10 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JAN 30 PY 2008 VL 265 IS 3-4 BP 630 EP 640 DI 10.1016/j.epsl.2007.11.001 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 261MH UT WOS:000253082800024 ER PT J AU Cools, R Gibbs, SE Miyakawa, A Jagust, W D'Esposito, M AF Cools, Roshan Gibbs, Sasha E. Miyakawa, Asako Jagust, William D'Esposito, Mark TI Working memory capacity predicts dopamine synthesis capacity in the human striatum SO JOURNAL OF NEUROSCIENCE LA English DT Article DE dopamine; working memory; striatum; listening span; PET; cognition; prefrontal cortex ID POSITRON-EMISSION-TOMOGRAPHY; PREFRONTAL CORTEX; ATTENTIONAL PERFORMANCE; COMPONENT PROCESSES; COGNITIVE FUNCTION; RECEPTOR AGONIST; MODULATION; BRAIN; D1; AGE AB Evidence from psychopharmacological research has revealed that dopamine receptor agents have opposite effects on cognitive function depending on baseline levels of working memory capacity. These contrasting effects have been interpreted to reflect differential baseline levels of dopamine. Here we demonstrate for the first time that working memory capacity as measured by listening span predicts dopamine synthesis capacity in the striatum, indicating that subjects with low working memory capacity have low DA synthesis capacity in the striatum, whereas subjects with high working memory capacity have high DA synthesis capacity in the striatum. C1 [Cools, Roshan; Gibbs, Sasha E.; Miyakawa, Asako; Jagust, William; D'Esposito, Mark] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Cools, Roshan] Radboud Univ Nijmegen, FC Donders Ctr Cognit Neuroimaging, NL-6500 HB Nijmegen, Netherlands. [Jagust, William] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Cools, R (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. EM roshan.cools@fcdonders.ru.nl RI Cools, Roshan/D-1905-2010 FU NIA NIH HHS [AG027984]; NIDA NIH HHS [DA02060]; NIMH NIH HHS [MH63901]; NINDS NIH HHS [NS40813] NR 49 TC 121 Z9 124 U1 3 U2 35 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD JAN 30 PY 2008 VL 28 IS 5 BP 1208 EP 1212 DI 10.1523/JNEUROSCI.4475-07.2008 PG 5 WC Neurosciences SC Neurosciences & Neurology GA 257CY UT WOS:000252778000020 PM 18234898 ER PT J AU Fischer, HE Neuefeind, J Simonson, JM Loidl, R Rauch, H AF Fischer, H. E. Neuefeind, J. Simonson, J. M. Loidl, R. Rauch, H. TI New measurements of the coherent and incoherent neutron scattering lengths of (13)C SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DIFFRACTION; CARBON; TEMPERATURE; PARAMETERS; PRESSURES; LIQUIDS; NUCLEI; REGION; WATER AB The techniques of neutron interferometry and neutron diffraction were used to determine the coherent and incoherent neutron scattering lengths of (13)C. From a neutron interferometry measurement of the optical path difference in liquid samples, (13)CS(2) versus (nat)CS(2), we obtain a bound coherent scattering length of b(coh, 13C) = 6.542 +/- 0.003 fm, which differs appreciably from the standard tabulated value of 6.19 +/- 0.09 fm. The resulting contrast of only 0.106(3) fm with respect to b(coh, natC) = 6.6484 +/- 0.0013 fm has consequences for neutron diffraction experiments involving (13)C isotopic substitution. Combining our result for b(coh, 13C) with precise neutron diffraction measurements of the self-scattering intensities of liquid samples, (13)CS(2) versus (nat)CS(2), and (13)CO(2) versus (12)CO(2), we deduce a bound incoherent scattering length of b(incoh, 13C) = - 0.42 +/- 0.24 fm that is consistent with the standard tabulated value of -0.52 +/- 0.09 fm. The results presented here have required accurate measurements of small effects, for which particular attention has been given to the data analysis. C1 [Fischer, H. E.; Loidl, R.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Neuefeind, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Simonson, J. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Loidl, R.; Rauch, H.] E141 Atominst Osterreich Univ, A-1020 Vienna, Austria. RP Fischer, HE (reprint author), Inst Max Von Laue Paul Langevin, 6 Rue Jules Horowitz,BP 156, F-38042 Grenoble 9, France. EM fischer@ill.fr RI Neuefeind, Joerg/D-9990-2015; Fischer, Henry/D-5299-2012 OI Neuefeind, Joerg/0000-0002-0563-1544; Fischer, Henry/0000-0002-1204-0750 NR 32 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 30 PY 2008 VL 20 IS 4 AR 045221 DI 10.1088/0953-8984/20/04/045221 PG 14 WC Physics, Condensed Matter SC Physics GA 259EZ UT WOS:000252923200023 ER PT J AU Peng, HS Jain, M Li, QW Peterson, DE Zhu, YT Jia, QX AF Peng, Huisheng Jain, Menka Li, Qingwen Peterson, Dean E. Zhu, Yuntian Jia, Quanxi TI Vertically aligned pearl-like carbon nanotube arrays for fiber spinning SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NANOWIRES; GROWTH; GLASS AB This work reports the first synthesis of highly aligned, pearl-like carbon nanotube arrays through a chemical vapor deposition process. The unique morphology of these carbon nanotubes makes it possible to spin them into macroscopic fibers with excellent mechanical and electrical properties. In addition, the interesting hollow structure of these nanotubes opens new applications such as nanoreactors. C1 [Peng, Huisheng; Jain, Menka; Li, Qingwen; Peterson, Dean E.; Jia, Quanxi] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhu, Yuntian] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Peng, HS (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM hpeng@lanl.gov RI Zhu, Yuntian/B-3021-2008; Jia, Q. X./C-5194-2008; Peng, Huisheng/G-8867-2011; OI Zhu, Yuntian/0000-0002-5961-7422; Jain, Menka/0000-0002-2264-6895 NR 29 TC 55 Z9 56 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 30 PY 2008 VL 130 IS 4 BP 1130 EP + DI 10.1021/ja077767c PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 255CO UT WOS:000252634600009 PM 18171068 ER PT J AU Lussier, A Dvorak, J Stadler, S Holroyd, J Liberati, M Arenholz, E Ogale, SB Wu, T Venkatesan, T Idzerda, YU AF Lussier, A. Dvorak, J. Stadler, S. Holroyd, J. Liberati, M. Arenholz, E. Ogale, S. B. Wu, T. Venkatesan, T. Idzerda, Y. U. TI Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces SO THIN SOLID FILMS LA English DT Article DE SOFC; fuel cell; cathode; XAS; LSMO; LCMC; X-ray absorption ID TRANSMISSION ELECTRON-MICROSCOPY; THIN-FILMS; MICROSTRUCTURE; MANGANITES; DEPENDENCE; TRANSPORT; STRAIN AB Interfacial stress is thought to have significant effects on electrical and oxygen transport properties in thin films of importance in solid oxide fuel cell applications. We investigate how in-plane biaxial stress modifies the electronic structure of La2/3Ca1/3MnO3 and La1/2Sr1/2MnO3 thin films prepared by pulsed laser deposition on three different substrates to vary the in-plane stress from tensile to compressive. The electronic structure was probed by X-ray absorption spectroscopy of the Mn L-2,L-3-edge to characterize the interfacial disruption in this region in an element-specific, site-specific manner. The compressive or tensile interfacial strain modifies the relative concentrations of La and Sr in the interfacial region in order to achieve a better lattice match to the contact material. This atomic migration generates an interfacial region dominated by a compound with a single valency for the transition metal ion, resulting in a severe barrier to oxygen and electron transport through this region. (C) 2007 Elsevier B.V. All rights reserved. C1 [Lussier, A.; Dvorak, J.; Holroyd, J.; Liberati, M.; Idzerda, Y. U.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Stadler, S.] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Liberati, M.; Arenholz, E.] Lawrence Berkeley Labs, Adv Light Source, Berkeley, CA USA. [Ogale, S. B.; Wu, T.; Venkatesan, T.] Univ Maryland, Ctr Superconduct Res, College Pk, MD 20742 USA. RP Lussier, A (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. EM lussier@physics.montana.edu RI Wu, Tom/A-1158-2012; Venkatesan, Thirumalai/E-1667-2013 OI Wu, Tom/0000-0003-0845-4827; NR 19 TC 20 Z9 20 U1 0 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JAN 30 PY 2008 VL 516 IS 6 BP 880 EP 884 DI 10.1016/j.tsf.2007.04.049 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 259ZV UT WOS:000252980400002 ER PT J AU Ralph, SG Chun, HJE Cooper, D Kirkpatrick, R Kolosova, N Gunter, L Tuskan, GA Douglas, CJ Holt, RA Jones, SJM Marra, MA Bohlmann, J AF Ralph, Steven G. Chun, Hye Jung E. Cooper, Dawn Kirkpatrick, Robert Kolosova, Natalia Gunter, Lee Tuskan, Gerald A. Douglas, Carl J. Holt, Robert A. Jones, Steven J. M. Marra, Marco A. Bohlmann, Joerg TI Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding SO BMC GENOMICS LA English DT Article ID ASPEN POPULUS-TREMULOIDES; CATERPILLARS MALACOSOMA-DISSTRIA; ARABIDOPSIS GENOME ANNOTATION; BIOTINYLATED CAP TRAPPER; TRICHOCARPA X DELTOIDES; HYBRID POPLAR; FUNCTIONAL GENOMICS; POLYPHENOL OXIDASE; MOLECULAR ANALYSIS; CONDENSED TANNIN AB Background: The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions. Results: As part of the poplar genome sequencing project and the development of genomic resources for poplar, we have generated a full-length ( FL)-cDNA collection using the biotinylated CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as insect-attacked leaves of the P. trichocarpa x P. deltoides hybrid. Following careful selection of candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990 putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST comparisons to previously predicted protein coding sequences in the poplar genome identified 39 FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173 FLcDNAs mapped to the genome sequence but were not included among the previously predicted genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153 FLcDNA clones for genes that were differentially expressed in poplar leaves attacked by forest tent caterpillars. Conclusion: This study has generated a high-quality FLcDNA resource for poplar and the third largest FLcDNA collection published to date for any plant species. We successfully used the FLcDNA sequences to reassess gene prediction in the poplar genome sequence, perform comparative sequence annotation, and identify differentially expressed transcripts associated with defense against insects. The FLcDNA sequences will be essential to the ongoing curation and annotation of the poplar genome, in particular for targeting gaps in the current genome assembly and further improvement of gene predictions. The physical FLcDNA clones will serve as useful reagents for functional genomics research in areas such as analysis of gene functions in defense against insects and perennial growth. Sequences from this study have been deposited in NCBI GenBank under the accession numbers EF144175 to EF148838. C1 [Ralph, Steven G.; Cooper, Dawn; Kolosova, Natalia; Bohlmann, Joerg] Univ British Columbia, Michael Smith Labs, Vancouver, BC V6T 1Z4, Canada. [Chun, Hye Jung E.; Kirkpatrick, Robert; Holt, Robert A.; Jones, Steven J. M.; Marra, Marco A.] British Columbia Canc Agcy, Genome Sci Ctr, Vancouver, BC V5Z 4E6, Canada. [Kolosova, Natalia; Douglas, Carl J.; Bohlmann, Joerg] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Gunter, Lee; Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Bohlmann, Joerg] Univ British Columbia, Dept Forest Sci, Vancouver, BC V6T 1Z4, Canada. [Ralph, Steven G.] Univ N Dakota, Dept Biol, Grand Forks, ND 58202 USA. RP Bohlmann, J (reprint author), Univ British Columbia, Michael Smith Labs, Vancouver, BC V6T 1Z4, Canada. EM steven.ralph@und.nodak.edu; echun@bcgsc.ca; dmcooper@sfu.ca; robertk@bcgsc.bc.ca; kolosova@interchange.ubc.ca; gunterle@ornl.gov; tuskanga@ornl.gov; cdouglas@interchange.ubc.ca; rholt@bcgsc.ca; sjones@bcgsc.ca; mmarra@bcgsc.ca; bohlmann@interchange.ubc.ca RI Onestas, Ghislain/A-4081-2008; Tuskan, Gerald/A-6225-2011; Douglas, Carl/B-1384-2013; Tang, Macy/B-9798-2014; Holt, Robert/C-3303-2009; Jones, Steven/C-3621-2009; Marra, Marco/B-5987-2008; Gunter, Lee/L-3480-2016 OI Tuskan, Gerald/0000-0003-0106-1289; Gunter, Lee/0000-0003-1211-7532 NR 50 TC 52 Z9 56 U1 2 U2 16 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JAN 29 PY 2008 VL 9 AR 57 DI 10.1186/1471-2164-9-57 PG 18 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 278KR UT WOS:000254284900002 PM 18230180 ER PT J AU Carnes, B Carey, GF AF Carnes, B. Carey, G. F. TI Local boundary value problems for the error in FE approximation of non-linear diffusion systems SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE a posteriori error estimation; non-linear diffusion; adaptive mesh refinement; Stefan-Maxwell equations ID FINITE-ELEMENT METHODS; PARTIAL-DIFFERENTIAL EQUATIONS; ELLIPTIC PROBLEMS; A-PRIORI; ESTIMATORS AB In this work we investigate the a posteriori error estimation for a class of non-linear, multicomponent diffusion operators, which includes the Stefan-Maxwell equations. The local error indicators for the global error are based on local boundary value problems, which are chosen to approximate either the global residual of the finite element approximation or the global linearized error equation. Using representative numerical examples, it is shown that the error indicators based on the latter approach are more accurate for estimating the global error for this problem class as the problem becomes more non-linear, and can even produce better adaptive mesh refinement (AMR). In addition, we propose a new local error indicator for the error in output functionals that is accurate, inexpensive to compute, and is suitable for AMR, as demonstrated by numerical examples. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 [Carnes, B.; Carey, G. F.] Univ Texas Austin, ICES, Austin, TX 78712 USA. RP Carnes, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM bcarnes@sandia.gov NR 30 TC 2 Z9 2 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JAN 29 PY 2008 VL 73 IS 5 BP 665 EP 684 DI 10.1002/nme.2103 PG 20 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 270BD UT WOS:000253694000004 ER PT J AU Gatchel, JR Watase, K Thaller, C Carson, JP Jafar-Nejad, P Shaw, C Zu, T Orr, HT Zoghbi, HY AF Gatchel, Jennifer R. Watase, Kei Thaller, Christina Carson, James P. Jafar-Nejad, Paymaan Shaw, Chad Zu, Tao Orr, Harry T. Zoghbi, Huda Y. TI The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cerebellum; neurodegeneration; polyglutamine; Purkinje cell; granule neuron ID SCA1 TRANSGENIC MICE; BINDING PROTEIN-5 IGFBP-5; FACTOR-I RECEPTOR; HUNTINGTONS-DISEASE; GENE-EXPRESSION; TRINUCLEOTIDE REPEAT; POLYGLUTAMINE; NEURODEGENERATION; IGF; AKT AB Polyglutamine diseases are inherited neurodegenerative disorders caused by expansion of CAG repeats encoding a glutamine tract in the disease-causing proteins. There are nine disorders, each having distinct features but also clinical and pathological similarities. In particular, spinocerebellar ataxia type 1 and 7 (SCA1 and SCA7) patients manifest cerebellar ataxia with degeneration of Purkinje cells. To determine whether the disorders share molecular pathogenic events, we studied two mouse models of SCA1 and SCA7 that express the glutamine-expanded protein from the respective endogenous loci. We found common transcriptional changes, with down-regulation of insulin-like growth factor binding protein 5 (Igfbp5) representing one of the most robust changes. Igfbp5 down-regulation occurred in granule neurons through a non-cell-autonomous mechanism and was concomitant with activation of the insulin-like growth factor (IGF) pathway and the type I IGF receptor on Purkinje cells. These data define one common pathogenic response in SCA1 and SCA7 and reveal the importance of intercellular mechanisms in their pathogenesis. C1 [Gatchel, Jennifer R.; Zoghbi, Huda Y.] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA. [Carson, James P.] Baylor Coll Med, Dept Biochem & Mol Biol, Houston, TX 77030 USA. [Jafar-Nejad, Paymaan] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. [Zoghbi, Huda Y.] Baylor Coll Med, Howard Hughes Med Inst, Houston, TX 77030 USA. [Watase, Kei; Zoghbi, Huda Y.] Tokyo Med & Dent Univ, Tokyo 1138519, Japan. [Carson, James P.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Orr, Harry T.] Univ Minnesota, Inst Human Genet, Minneapolis, MN 55455 USA. RP Zoghbi, HY (reprint author), Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA. EM hzoghbi@bcm.tmc.edu OI Shaw, Chad/0000-0001-7267-5398; Gatchel, Jennifer/0000-0002-3892-9742 FU NICHD NIH HHS [HD024064, P30 HD024064]; NIMH NIH HHS [1 F30 MH072117, F30 MH072117]; NINDS NIH HHS [NS22920, NS27699, R01 NS022920, R01 NS027699, R37 NS022920, R37 NS027699] NR 38 TC 39 Z9 39 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 29 PY 2008 VL 105 IS 4 BP 1291 EP 1296 DI 10.1073/pnas.0711257105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 258NF UT WOS:000252873900038 PM 18216249 ER PT J AU Loloee, R Chorpening, B Beer, S Ghosh, RN AF Loloee, Reza Chorpening, Benjamin Beer, Steve Ghosh, Ruby N. TI Hydrogen monitoring for power plant applications using SiC sensors SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE sensors; hydrogen; SiC; combustion; high temperature; coal gasification ID FIELD-EFFECT DEVICES; HIGH-TEMPERATURE; SILICON-CARBIDE; CHEMICAL SENSORS; SCHOTTKY DIODE; GAS SENSORS; INTERFACE; PLATINUM; STATES AB We have developed a high-temperature gas sensing system for the detection of combustion products under harsh conditions, such as an energy plant. The sensor, based on the wide band gap semiconductor silicon carbide (SiC), is a catalytic gate field-effect device (Pt-SiO2-SiC) that can detect hydrogen-containing species in chemically reactive, high-temperature environments. The hydrogen response of the device in an industrially robust module was determined under both laboratory and industrial conditions (1000 sccm of 350 degrees C gas) from 52 ppm to 50% H-2, with the sensor held at 620 degrees C. From our data we find that the hydrogen adsorption kinetics at the catalyst-oxide interface are well fitted by the linearized Langmuir adsorption isotherm. For hydrogen monitoring in a coal gasification application, we investigated the effect of common interferants on the device response to a 20% H-2 gas stream. Within our signal to noise ratio, 40% CO and 5% CH4 had no measurable effect and a 2000 ppm pulse of H2S did not poison the Pt sensing film. We have demonstrated the long-term reliability of our SiC sensor and the robustness of the sensor packaging techniques, as all the data are from a single device, obtained during 5 days of industrial measurements in addition to similar to 480 continuous hours of operation under laboratory conditions. (c) 2007 Elsevier B.V. All rights reserved. C1 [Loloee, Reza; Ghosh, Ruby N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Chorpening, Benjamin; Beer, Steve] US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA. RP Loloee, R (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM loloee@pa.msu.edu; ghosh@pa.msu.edu NR 24 TC 20 Z9 20 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JAN 29 PY 2008 VL 129 IS 1 BP 200 EP 210 DI 10.1016/j.snb.2007.07.118 PG 11 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 262UC UT WOS:000253172500032 ER PT J AU Campbell, IH Crone, BK AF Campbell, I. H. Crone, B. K. TI Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots SO APPLIED PHYSICS LETTERS LA English DT Article ID CONJUGATED POLYMERS; CDSE NANOCRYSTALS; TRANSPORT; DEVICES AB We demonstrate organic light-emitting diodes (OLEDs) using a single active layer consisting of CdSe/ZnS quantum dots (QDs) dispersed in poly (9,9-dioctylfluorene) (PFO). The diodes have an external quantum efficiency of similar to 0.5% and reach 0.1 A/cm(2) at 6.5 V. These results are comparable to complex, multilayer QD OLEDs. Built-in potential measurements show that the QD valence levels are shifted to lower binding energy when compared to quantum confinement based estimates, and are close to PFO valence levels. Devices using red and green QDs emit predominantly from the QDs but the spectrum of blue QDs is perturbed by interactions with PFO. (C) 2008 American Institute of Physics. C1 [Campbell, I. H.; Crone, B. K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Campbell, IH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM campbell@lanl.gov NR 21 TC 23 Z9 23 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 28 PY 2008 VL 92 IS 4 AR 043303 DI 10.1063/1.2839407 PG 3 WC Physics, Applied SC Physics GA 258IA UT WOS:000252860400108 ER PT J AU Hamel, S Williamson, AJ Wilson, HF Gygi, F Galli, G Ratner, E Wack, D AF Hamel, S. Williamson, A. J. Wilson, H. F. Gygi, F. Galli, G. Ratner, E. Wack, D. TI First-principles calculations of the dielectric properties of silicon nanostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID SEMICONDUCTORS AB We have investigated the static dielectric properties of silicon rods and slabs below 10 nm, in the long wavelength limit, by using first-principles density functional theory calculations. Surface structure is found to be the most important factor affecting the changes of the dielectric response at the nanoscale, compared to that of bulk Si, with significant differences observed between slabs and finite rods of similar lateral dimensions. (C) 2008 American Institute of Physics. C1 [Hamel, S.; Williamson, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wilson, H. F.; Gygi, F.; Galli, G.] Univ Calif Davis, Davis, CA 95616 USA. [Ratner, E.; Wack, D.] Kla Tencor Corp, San Jose, CA 95134 USA. RP Hamel, S (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM hamel2@llnl.gov RI Wilson, Hugh/B-3447-2009 NR 15 TC 18 Z9 20 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 28 PY 2008 VL 92 IS 4 AR 043115 DI 10.1063/1.2839332 PG 3 WC Physics, Applied SC Physics GA 258IA UT WOS:000252860400090 ER PT J AU Jiang, C AF Jiang, Chao TI First-principles study of structural, elastic, and electronic properties of chromium carbides SO APPLIED PHYSICS LETTERS LA English DT Article ID CR3C2; CR7C3; COATINGS AB Using first-principles calculations, we systematically studied the structural, elastic, and electronic properties of the technologically important chromium carbides: Cr(3)C(2), Cr(7)C(3), Cr(23)C(6), Cr(3)C, and CrC. Our calculations show that the ground state structure for Cr(7)C(3) is hexagonal, not orthorhombic. We further predict WC to be the energetically most stable structure for CrC. Our results indicate that all chromium carbides considered in this study are metallic and mechanically stable under the ambient condition. Among all chromium carbides, WC-type CrC exhibits the highest bulk and shear moduli and the lowest Poisson's ratio, and is a potential low-compressibility and hard material. (c) 2008 American Institute of Physics. C1 Los Alamos Natl Lab, Struct Property Relat Grp MST 8, Los Alamos, NM 87545 USA. RP Jiang, C (reprint author), Los Alamos Natl Lab, Struct Property Relat Grp MST 8, POB 1663, Los Alamos, NM 87545 USA. EM chao@lanl.gov RI Jiang, Chao/A-2546-2011; Jiang, Chao/D-1957-2017 OI Jiang, Chao/0000-0003-0610-6327 NR 25 TC 49 Z9 50 U1 2 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 28 PY 2008 VL 92 IS 4 AR 041909 DI 10.1063/1.2838345 PG 3 WC Physics, Applied SC Physics GA 258IA UT WOS:000252860400035 ER PT J AU Lee, GD Wang, CZ Yoon, E Hwang, NM Ho, KM AF Lee, Gun-Do Wang, C. Z. Yoon, Euijoon Hwang, Nong-Moon Ho, K. M. TI The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube SO APPLIED PHYSICS LETTERS LA English DT Article ID INTRAMOLECULAR JUNCTIONS; ELECTRONIC-PROPERTIES; GRAPHITE AB The reconstruction process of vacancy hole in carbon nanotube is investigated by tight-binding molecular dynamics simulations and by ab initio total energy calculations. In the molecular dynamics simulation, a vacancy hole is found to reconstruct into two separated pentagon-heptagon pair defects. As the result of reconstruction, the radius of the carbon nanotube is reduced and the chirality of the tube is partly changed. During the vacancy hole healing process, the formation of pentagonal and heptagonal rings is proceeded by the subsequent Stone-Wales [Chem. Phys. Lett. 128, 501 (1986)] transformation. (C) 2008 American Institute of Physics. C1 [Lee, Gun-Do; Yoon, Euijoon; Hwang, Nong-Moon] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. [Lee, Gun-Do; Yoon, Euijoon] Seoul Natl Univ, Inter Univ Semicond Res Ctr, Seoul 151742, South Korea. [Hwang, Nong-Moon] Seoul Natl Univ, Natl Res Lab Charged Nanoparticles, Seoul 151742, South Korea. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RP Lee, GD (reprint author), Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. EM gdlee@snu.ac.kr RI Lee, Gun-Do/L-1259-2013 OI Lee, Gun-Do/0000-0001-8328-8625 NR 16 TC 25 Z9 25 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 28 PY 2008 VL 92 IS 4 AR 043104 DI 10.1063/1.2837632 PG 3 WC Physics, Applied SC Physics GA 258IA UT WOS:000252860400079 ER PT J AU Liu, YF Chen, W Wang, SP Joly, AG AF Liu, Yuanfang Chen, Wei Wang, Shaopeng Joly, Alan G. TI Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation SO APPLIED PHYSICS LETTERS LA English DT Article ID THERAPY; RADIATION; CANCER AB In this letter, we report the synthesis of LaF(3):Tb(3+)-meso-tetra(4-carboxyphenyl) porphine (MTCP) nanoparticle conjugates and investigate the energy transfer as well as singlet oxygen generation following x-ray irradiation. Our observations indicate that LaF(3):Tb(3+)-MTCP nanoparticle conjugates are efficient photodynamic agents that can be initiated by x-rays at a reasonably low dose. The addition of folic acid to facilitate targeting to folate receptors on tumor cells has no effect on the quantum yield of singlet oxygen production in the nanoparticle-MTCP conjugates. Our pilot studies indicate that water-soluble scintillation nanoparticles can potentially be used to activate photodynamic therapy as a promising deep cancer treatment modality. (C) 2008 American Institute of Physics. C1 [Chen, Wei] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Liu, Yuanfang; Wang, Shaopeng] ICx Nomad Inc, Stillwater, OK 74074 USA. [Joly, Alan G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, W (reprint author), Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. EM weichen@uta.edu NR 15 TC 35 Z9 36 U1 3 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 28 PY 2008 VL 92 IS 4 AR 043901 DI 10.1063/1.2835701 PG 3 WC Physics, Applied SC Physics GA 258IA UT WOS:000252860400121 ER PT J AU Schofield, EJ Ingham, B Turnbull, A Toney, MF Ryan, MP AF Schofield, Eleanor J. Ingham, Bridget Turnbull, Alan Toney, Michael F. Ryan, Mary P. TI Strain development in nanoporous metallic foils formed by dealloying SO APPLIED PHYSICS LETTERS LA English DT Article ID MORPHOLOGICAL CHARACTERIZATION; WAVE MODEL; DISSOLUTION; ALLOYS; CU AB Nanoporous Au foils were formed by dealloying a Ag-Au alloy in concentrated HNO(3). The resultant foils, which have a "spongelike" morphology with interconnecting ligaments, were studied using synchrotron-based diffraction. A three-dimensional visualization of the nanostructure is generated from small angle experiments and the lattice parameter is derived from diffraction. The data show the development of two interspersed nanoscale strained regions within the material: one in significant tension and one in compression. We interpret this by considering regions of high positive and negative curvatures in the material; this curvature decreases with increasing pore size resulting in a relaxation in lattice strain. (C) 2008 American Institute of Physics. C1 [Ryan, Mary P.] London Ctr Nanotechnol, Imperial Coll London, Dept Mat, London SW7 2AZ, England. [Schofield, Eleanor J.] Univ London Imperial Coll Sci & Technol, Dept Mat, London SW7 2AZ, England. [Ingham, Bridget] Ind Res Ltd, Lower Hutt 5040, New Zealand. [Turnbull, Alan] Natl Phys Lab, Teddington TW11 0LW, Middx, England. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Ryan, MP (reprint author), London Ctr Nanotechnol, Imperial Coll London, Dept Mat, London SW7 2AZ, England. EM m.p.ryan@imperial.ac.uk OI Ryan, Mary/0000-0001-8582-3003 NR 24 TC 12 Z9 12 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 28 PY 2008 VL 92 IS 4 AR 043118 DI 10.1063/1.2838351 PG 3 WC Physics, Applied SC Physics GA 258IA UT WOS:000252860400093 ER PT J AU Yushkov, GY Anders, A AF Yushkov, Georgy Yu. Anders, Andre TI Extractable, elevated ion charge states in the transition regime from vacuum sparks to high current vacuum arcs SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIC-FIELD; METAL-IONS; PLASMA AB Metal ions were extracted from pulsed discharge plasma operating in the transition region between vacuum spark and vacuum arc. At a peak current of about 4 kA, and with a pulse duration of 8 mu s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with charge states present as high as 10, and with gold we found traces of charge state 11. At higher currents, nonmetallic contaminants started to dominate the ion beam, preventing further enhancement of the metal charge states. C1 [Yushkov, Georgy Yu.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yushkov, GY (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. EM aanders@lbl.gov RI Anders, Andre/B-8580-2009; Yushkov, Georgy/O-8024-2015 OI Anders, Andre/0000-0002-5313-6505; Yushkov, Georgy/0000-0002-7615-6058 NR 21 TC 16 Z9 17 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 28 PY 2008 VL 92 IS 4 AR 041502 DI 10.1063/1.2839616 PG 3 WC Physics, Applied SC Physics GA 258IA UT WOS:000252860400024 ER PT J AU de Macedo, LGM de Jong, WA AF de Macedo, Luiz Guilherme M. de Jong, Wibe A. TI Fully relativistic calculations on the potential energy surfaces of the lowest 23 states of molecular chlorine SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CONFIGURATION-INTERACTION CALCULATIONS; DOUBLE-RESONANCE SPECTROSCOPY; NONADIABATIC TRANSITIONS; DIATOMIC-MOLECULES; ELECTRONIC-STRUCTURE; EMISSION-SPECTRUM; D'->A' TRANSITION; BRANCHING RATIOS; IONIZED STATES; CL-2 AB The electronic structure and spectroscopic properties (R(e), omega(e), omega(e)x(e), beta(e), and T(e)) of the ground state and the 22 lowest excited states of chlorine molecule were studied within a four-component relativistic framework using the MOLFDIR program package. The potential energy curves of all possible 23 covalent states were calculated using relativistic complete open shell configuration interaction approach. In addition, four component multireference configuration interaction with single and double excitation calculations were performed in order to infer the effects due to dynamical correlation in vertical excitations. The calculated properties are in good agreement with the available experimental data. C1 [de Macedo, Luiz Guilherme M.] Univ Estadual Paulista, Lab Simulacao Computac, Dept Quim, BR-17033360 Sao Paulo, Brazil. [de Jong, Wibe A.] Pacific NW Natl Lab, William R Wiley Environm Mol Lab, Richland, WA 99352 USA. RP de Macedo, LGM (reprint author), Univ Estadual Paulista, Lab Simulacao Computac, Dept Quim, BR-17033360 Sao Paulo, Brazil. EM lg@fc.unesp.br RI DE JONG, WIBE/A-5443-2008; Nanotecnologias, Inct/I-2407-2013 OI DE JONG, WIBE/0000-0002-7114-8315; NR 47 TC 8 Z9 8 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2008 VL 128 IS 4 AR 041101 DI 10.1063/1.2827457 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 257TK UT WOS:000252821200001 PM 18247920 ER PT J AU Desai, TG Keblinski, P Kumar, SK AF Desai, Tapan G. Keblinski, Pawel Kumar, Sanat K. TI Polymer chain dynamics at interfaces: Role of boundary conditions at solid interface SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ADSORBED CHAINS; 2 DIMENSIONS; DIFFUSION; SIMULATION; REPTATION; ROUSE AB Using classical molecular dynamics simulations, we study the dynamical properties of a single polymer chain dissolved in an explicit solvent and strongly adsorbed at solid-liquid interface. To circumvent a serious challenge posed by finite size effects due to long-range hydrodynamic effects, we developed a correction procedure that substantially limits the finite size effects. Concurrently, we provide an analysis of distinctly different size effects in the directions transverse and normal to the interface. We find that on analytically smooth interfaces, corresponding to the slip boundary condition, the motions of the polymer chain and the surrounding solvent are hydrodynamically coupled. This leads to the chain diffusion coefficient D scaling with the chain degree of polymerization N as D similar to N(-3/4), consistent with the Zimm dynamics for strongly adsorbed chains. Introduction of transverse forces at the interface results in loss of correlation between the motion of the polymer chain and the solvent. Consequently, D similar to N(-1), which is a characteristic of the Rouse dynamics. (C) 2008 American Institute of Physics. C1 [Desai, Tapan G.; Keblinski, Pawel] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. [Desai, Tapan G.] Idaho Natl Lab, Dept Mat Sci, Idaho Falls, ID 83415 USA. [Kumar, Sanat K.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. RP Desai, TG (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. EM tapan.desai@inl.gov NR 25 TC 9 Z9 10 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2008 VL 128 IS 4 AR 044903 DI 10.1063/1.2825293 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 257TK UT WOS:000252821200077 PM 18247996 ER PT J AU Hou, CH Taboada-Serrano, P Yiacoumi, S Tsouris, C AF Hou, Chia-Hung Taboada-Serrano, Patricia Yiacoumi, Sotira Tsouris, Costas TI Monte Carlo simulation of electrical double-layer formation from mixtures of electrolytes inside nanopores SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NANOSTRUCTURED CARBON AEROGEL; POISSON-BOLTZMANN THEORY; GOUY-CHAPMAN THEORY; CHARGE INVERSION; ELECTROSORPTION CAPACITANCE; ION SIZE; COUNTERIONS; MICROPORES; MONOVALENT; MODEL AB The formation of the electrical double layer (EDL) in the presence of trivalent and monovalent ions inside a slit-type nanopore was simulated via the canonical Monte Carlo method using a primitive model. In large pores, the distribution of ionic species is similar to that observed in an isolated planar double layer. Screening of surface charge is determined by the competitive effects between ion size and charge asymmetry of the counterions. On the other hand, as the pore size approaches the dimension of the ionic species, phenomena such as EDL overlapping become enhanced by ion-size effects. Simulation results demonstrate that EDL overlapping is not only a function of such parameters as ionic strength and surface charge density, but also a function of the properties of the ionic species involved in the EDL. Furthermore, charge inversion can be observed under certain conditions when dealing with mixtures of asymmetric electrolytes. This phenomenon results from strong ion-ion correlation effects and the asymmetries in size and charge of ionic species, and is most significant in the case of trivalent counterions with larger diameters. The simulation results provide insights into the fundamental mechanisms behind the formation of EDL within nanopores as determined by pore size and by the properties of ionic species present in solution. The findings of this work are relevant to ion sorption and transport within nanostructured materials. (C) 2008 American Institute of Physics. C1 [Hou, Chia-Hung; Taboada-Serrano, Patricia; Yiacoumi, Sotira; Tsouris, Costas] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Taboada-Serrano, Patricia; Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hou, CH (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM sotira.yiacoumi@ce.gatech.edu RI Taboada-Serrano, Patrica/F-4745-2012; Hou, Chia-Hung/J-4350-2013; Tsouris, Costas/C-2544-2016 OI Hou, Chia-Hung/0000-0001-5149-4096; Tsouris, Costas/0000-0002-0522-1027 NR 40 TC 17 Z9 17 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2008 VL 128 IS 4 AR 044705 DI 10.1063/1.2824957 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 257TK UT WOS:000252821200060 PM 18247979 ER PT J AU Meunier, V Krstic, PS AF Meunier, Vincent Krstic, Predrag S. TI Enhancement of the transverse conductance in DNA nucleotides SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CARBON NANOTUBES; ELECTRONIC TRANSPORT; FIELD-EMISSION; CHEMISTRY; SYSTEMS; TIP AB We theoretically study the electron transport properties of DNA nucleotides placed in the gap between two single-wall carbon nanotubes capped or terminated with H or N. We show that in the case of C-cap and H-termination the current at low electric bias is dominated by nonresonant tunneling, similarly to the cases of gold electrodes. In nitrogen-terminated nanotube electrodes, the nature of current is primarily quasiresonant tunneling and is increased by several orders of magnitude. We discuss the consequence of our result on the possibility of recognition at the level of single molecule. (C) 2008 American Institute of Physics. C1 [Meunier, Vincent; Krstic, Predrag S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Meunier, V (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM meunierv@ornl.gov RI Meunier, Vincent/F-9391-2010 OI Meunier, Vincent/0000-0002-7013-179X FU NHGRI NIH HHS [1 R21 HG003578-01] NR 33 TC 30 Z9 30 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2008 VL 128 IS 4 AR 041103 DI 10.1063/1.2835350 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 257TK UT WOS:000252821200003 PM 18247922 ER PT J AU Uchidaa, N Grest, GS Everaers, R AF Uchidaa, Nariya Grest, Gary S. Everaers, Ralf TI Viscoelasticity and primitive path analysis of entangled polymer liquids: From F-actin to polyethylene SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID THETA-SOLVENTS; TUBE DIAMETER; MELTS; DYNAMICS; SIMULATIONS; STATISTICS; ELASTICITY; MECHANICS; SYSTEMS AB We combine computer simulations and scaling arguments to develop a unified view of polymer entanglement based on the primitive path analysis of the microscopic topological state. Our results agree with experimentally measured plateau moduli for three different polymer classes over a wide range of reduced polymer densities: (i) semidilute theta solutions of synthetic polymers, (ii) the corresponding dense melts above the glass transition or crystallization temperature, and (iii) solutions of semiflexible (bio)polymers such as F-actin or suspensions of rodlike viruses. Together, these systems cover the entire range from loosely to tightly entangled polymers. In particular, we argue that the primitive path analysis renormalizes a loosely to a tightly entangled system and provide a new explanation of the successful Lin-Noolandi packing conjecture for polymer melts. (C) 2008 American Institute of Physics. C1 [Uchidaa, Nariya] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Everaers, Ralf] Univ Lyon, Ecole Normale Super Lyon, Phys Lab, CNRS,UMR 5672, F-69364 Lyon 7, France. [Everaers, Ralf] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. RP Uchidaa, N (reprint author), Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. EM uchida@cmpt.phys.tohoku.ac.jp RI M & C, Matter & Complexity/B-9044-2011; Everaers, Ralf/K-2228-2013 OI Everaers, Ralf/0000-0002-6843-2753 NR 32 TC 38 Z9 38 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2008 VL 128 IS 4 AR 044902 DI 10.1063/1.2825597 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 257TK UT WOS:000252821200076 PM 18247995 ER PT J AU Wu, YX Slater, L Versteeg, R LaBrecque, D AF Wu, Yuxin Slater, Lee Versteeg, Roelof LaBrecque, Douglas TI A comparison of the low frequency electrical signatures of iron oxide versus calcite precipitation in granular zero valent iron columns SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE zero valent iron; complex conductivity; polarization; conduction; iron oxides; calcite ID PERMEABLE REACTIVE BARRIERS; LONG-TERM PERFORMANCE; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; IN-SITU REMEDIATION; ZEROVALENT IRON; INDUCED-POLARIZATION; ARSENITE REMOVAL; MINERALOGICAL CHARACTERISTICS; PREFERENTIAL FLOW; TAFEL ANALYSIS AB Geophysical methods have been proposed as technologies for non-invasively monitoring geochemical alteration in permeable reactive barriers (PRBs). We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in Fe-0 columns using (a) Na2SO4, and (b) NaHCO3 plus CaCl2 mixture, solutions. At the influent interface where the reactions were most severe, a contrasting time-lapse electrical response was observed between the two columns. Solid phase analysis confirmed the formation of corrosion halos and increased mineralogical complexity in the corroded sections of the columns compared to the minimal/non-corroded sections. We attribute the contrasting time-lapse signatures to the differences in the electrical properties of the mineral phases formed within the two columns. While newly precipitated/transformed polarizable and semi-conductive iron oxides (mostly magnetite and green rust) increase the polarization and conductivity of the sulfate column, the decrease of both parameters in the bicarbonate column is attributed to the precipitation of non-polarizable and non-conductive calcite. Our results show that precipitate mineralogy is an important factor influencing the electrical properties of the corroded iron cores and must be considered if electrical geophysical methods are to be developed to monitor PRB barrier corrosion processes in situ. (c) 2007 Elsevier B.V. All rights reserved. C1 [Wu, Yuxin; Slater, Lee] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. [Versteeg, Roelof] Idaho Natl Lab, IRC, Idaho Falls, ID 83415 USA. [LaBrecque, Douglas] MPT Technol, Sparks, NV 89436 USA. RP Wu, YX (reprint author), Rutgers State Univ, Dept Earth & Environm Sci, 101 WarrenST, Newark, NJ 07102 USA. EM yuxinwu@pegasus.rutgers.edu RI Wu, Yuxin/G-1630-2012 OI Wu, Yuxin/0000-0002-6953-0179 NR 67 TC 12 Z9 12 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD JAN 28 PY 2008 VL 95 IS 3-4 BP 154 EP 167 DI 10.1016/j.jconhyd.2007.09.003 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 262YQ UT WOS:000253185200005 PM 17996979 ER PT J AU Deshmukh, PC Banerjee, T Varma, HR Hemmers, O Guillemin, R Rolles, D Wolska, A Yu, SW Lindle, DW Johnson, WR Manson, ST AF Deshmukh, P. C. Banerjee, T. Varma, H. R. Hemmers, O. Guillemin, R. Rolles, D. Wolska, A. Yu, S. W. Lindle, D. W. Johnson, W. R. Manson, S. T. TI Theoretical and experimental demonstrations of the existence of quadrupole Cooper minima SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID PHOTOELECTRON ANGULAR-DISTRIBUTIONS; DISTRIBUTION PARAMETERS; PHOTOIONIZATION; PHOTOEMISSION; APPROXIMATION; MULTIPOLE; SUBSHELLS AB Calculations and measurements of the Xe 5s and 5p nondipole photoelectron asymmetry parameters are obtained, which present clear evidence of the existence of quadrupole Cooper minima, i.e., minima in quadrupole matrix elements as a function of energy, in the photoionization process. This verifies earlier predictions of quadrupole Cooper minima. C1 [Deshmukh, P. C.; Banerjee, T.; Varma, H. R.] Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India. [Hemmers, O.; Guillemin, R.; Wolska, A.; Yu, S. W.; Lindle, D. W.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Rolles, D.; Yu, S. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Johnson, W. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Manson, S. T.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. RP Deshmukh, PC (reprint author), Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India. EM hemmers@unlv.nevada.edu RI Rolles, Daniel/C-2384-2008; Wolska, Anna/A-5818-2012 NR 34 TC 7 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JAN 28 PY 2008 VL 41 IS 2 AR 021002 DI 10.1088/0953-4075/41/2/021002 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 259BT UT WOS:000252914800002 ER PT J AU Feldmann, DM King, FW AF Feldmann, D. Matthew King, Frederick W. TI Upper bound to the critical binding nuclear charge for a three-electron atomic system SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID NEGATIVE HELIUM ION; ELECTRON-AFFINITY; EXCITED-STATES; FINE-STRUCTURE; METASTABLE HE; ENERGY; RESONANCE; LI; 2P; PHOTODETACHMENT AB The three-electron ground state atomic energy in the Z -> 2 limit, where Z is the nuclear charge, is studied using high precision Hylleraas-type calculations, with the objective to investigate the stability of the ground state of the helium negative ion. Finite nuclear mass effects and relativistic corrections are incorporated in the computations. The calculations reveal that the critical binding nuclear charge, Z(c), the value below which the three-electron system is no longer stable, is bounded above by Z(c) = 2.000 001. C1 [Feldmann, D. Matthew] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Feldmann, D. Matthew] Univ Wisconsin, Ctr Appl Superconduct, Madison, WI 53706 USA. [King, Frederick W.] Univ Wisconsin, Dept Chem, Eau Claire, WI 54702 USA. RP Feldmann, DM (reprint author), Los Alamos Natl Lab, Mail Stop K763, Los Alamos, NM 87545 USA. NR 39 TC 5 Z9 5 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JAN 28 PY 2008 VL 41 IS 2 AR 025002 DI 10.1088/0953-4075/41/2/025002 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 259BT UT WOS:000252914800005 ER PT J AU Morishita, Y Saito, N Suzuki, IH Fukuzawa, H Liu, XJ Sakai, K Prumper, G Ueda, K Iwayama, H Nagaya, K Yao, M Kreidi, K Schoffler, M Jahnke, T Schoessler, S Dorner, R Weber, T Harries, J Tamenori, Y AF Morishita, Y. Saito, N. Suzuki, I. H. Fukuzawa, H. Liu, X-J Sakai, K. Pruemper, G. Ueda, K. Iwayama, H. Nagaya, K. Yao, M. Kreidi, K. Schoeffler, M. Jahnke, T. Schoessler, S. Doerner, R. Weber, T. Harries, J. Tamenori, Y. TI Evidence of interatomic Coulombic decay in ArKr after Ar 2p Auger decay SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID PHOTOCHEMISTRY BEAMLINE BL27SU; MOMENTUM SPECTROSCOPY; MOLECULES; CLUSTERS; ION; SPRING-8 AB We have identified interatomic Coulombic decay (ICD) processes in the ArKr dimer following Ar 2p Auger decay, using momentum-resolved electron-ion-ion coincidence spectroscopy and simultaneously determining the kinetic energy of the ICD electron and the KER between Ar(2+) and Kr(+). We find that the spin-conserved ICD processes in which Ar(2+)(3p(-3)3d) (1)P and (3)P decay to Ar(2+)((3)p(-2)) (1)D and (3)P, respectively, ionizing the Kr atom, are significantly stronger than the spin-flip ICD processes in which Ar(2+)((3)p(-3)3d) (1)P and (3)P decay to Ar(2+)((3)p(-2)) (3)P and (1)D, respectively. C1 [Morishita, Y.; Saito, N.; Suzuki, I. H.] NMIJ, Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Suzuki, I. H.] Inst Mat Struct Sci, Photon Factory, Tsukuba, Ibaraki 3050801, Japan. [Fukuzawa, H.; Liu, X-J; Sakai, K.; Pruemper, G.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Iwayama, H.; Nagaya, K.; Yao, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Kreidi, K.] DESY, D-22607 Hamburg, Germany. [Schoeffler, M.; Jahnke, T.; Schoessler, S.; Doerner, R.] Univ Frankfurt, D-60438 Frankfurt, Germany. [Weber, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Harries, J.; Tamenori, Y.] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. RP Morishita, Y (reprint author), NMIJ, Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. EM norio.saito@aist.go.jp; ueda@tagen.tohoku.ac.jp RI Schoeffler, Markus/B-6261-2008; Harries, James/G-2336-2011; Doerner, Reinhard/A-5340-2008; Weber, Thorsten/K-2586-2013; Radiation, Ionizing/E-6978-2014; Tamenori, Yusuke/F-8867-2014; Saito, Norio/E-2890-2014 OI Schoeffler, Markus/0000-0001-9214-6848; Harries, James/0000-0003-2173-0697; Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Tamenori, Yusuke/0000-0001-8004-895X; NR 27 TC 21 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JAN 28 PY 2008 VL 41 IS 2 AR 025101 DI 10.1088/0953-4075/41/2/025101 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 259BT UT WOS:000252914800007 ER PT J AU Law, KJH Kevrekidis, PG Frantzeskakis, DJ Bishop, AR AF Law, K. J. H. Kevrekidis, P. G. Frantzeskakis, D. J. Bishop, A. R. TI Emergence of unstable modes in an expanding domain for energy-conserving wave equations SO PHYSICS LETTERS A LA English DT Article ID PATTERN-FORMATION; GROWING DOMAINS; DIFFUSION AB Motivated by recent work on instabilities in expanding domains in reaction-diffusion settings, we propose an analog of such mechanisms in energy-conserving wave equations. In particular, we consider a nonlinear Schrodinger equation in a finite domain and show how the expansion or contraction of the domain, under appropriate conditions, can destabilize its originally stable solutions through the modulational instability mechanism. Using both real and Fourier space diagnostics, we monitor and control the crossing of the instability threshold and, hence, the activation of the instability. We also consider how the manifestation of this mechanism is modified in a spatially inhomogeneous setting, namely in the presence of an external parabolic potential, which is relevant to trapped Bose-Einstein condensates. (c) 2007 Elsevier B.V. All rights reserved. C1 [Law, K. J. H.; Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Frantzeskakis, D. J.] Univ Athens, Dept Phys, Athens 15784, Greece. [Bishop, A. R.] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Bishop, A. R.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Kevrekidis, PG (reprint author), Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. EM kevrekid@math.umas.edu RI Law, Kody/A-6375-2010; OI Law, Kody/0000-0003-3133-2537 NR 21 TC 3 Z9 3 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JAN 28 PY 2008 VL 372 IS 5 BP 658 EP 664 DI 10.1016/j.physleta.2007.07.082 PG 7 WC Physics, Multidisciplinary SC Physics GA 257YJ UT WOS:000252835300022 ER PT J AU Hill, TW Thomsen, MF Henderson, MG Tokar, RL Coates, AJ McAndrews, HJ Lewis, GR Mitchell, DG Jackman, CM Russell, CT Dougherty, MK Crary, FJ Young, DT AF Hill, T. W. Thomsen, M. F. Henderson, M. G. Tokar, R. L. Coates, A. J. McAndrews, H. J. Lewis, G. R. Mitchell, D. G. Jackman, C. M. Russell, C. T. Dougherty, M. K. Crary, F. J. Young, D. T. TI Plasmoids in Saturn's magnetotail SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID JOVIAN MAGNETOTAIL; MAGNETOSPHERE; INSERTION; DYNAMICS AB Plasmoids in Saturn's magnetotail are identified by a reversal (northward turning) of the normally southward component of the magnetic field across the tail current sheet. Three large plasmoids have been identified by the Cassini magnetometer, one near 0300 local time at a planet- centered distance of 44 RS and two near midnight at 48-49 R(S). (RS approximate to 60,300 km is Saturn's equatorial radius.) Two of these events, including in particular the 0300 event, coincided with current- sheet crossings by the spacecraft and thus provided sufficient plasma fluxes to determine ion composition and velocity moments from Cassini Plasma Spectrometer data. The composition was largely dominated by watergroup ions, indicating an inner- magnetosphere source. The flow was subcorotational and strongly tailward, as expected for a plasmoid. Just before the in situ detection of the 0300 plasmoid, the Magnetospheric Imaging Instrument observed an outburst of energetic neutral atoms emanating from a location midway between Saturn and Cassini, probably a signature of the reconnection event that spawned the plasmoid. C1 Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Thomsen, M. F.; Henderson, M. G.; Tokar, R. L.; McAndrews, H. J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Coates, A. J.; Lewis, G. R.] UCL, Mullard Space Sci Lab, Surrey, England. [Mitchell, D. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Jackman, C. M.; Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys, Los Angeles, CA USA. [Crary, F. J.; Young, D. T.] SW Res Inst, San Antonio, TX USA. RP Hill, TW (reprint author), Rice Univ, Dept Phys & Astron, BOX 1892,MS 108 6100 S Main, Houston, TX 77251 USA. EM hill@rice.edu RI Coates, Andrew/C-2396-2008; Henderson, Michael/A-3948-2011; OI Coates, Andrew/0000-0002-6185-3125; Henderson, Michael/0000-0003-4975-9029; Jackman, Caitriona/0000-0003-0635-7361 FU Science and Technology Facilities Council [PP/D00084X/1] NR 18 TC 64 Z9 64 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN 26 PY 2008 VL 113 IS A1 AR A01214 DI 10.1029/2007JA012626 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 256UI UT WOS:000252755000002 ER PT J AU Salve, R Ghezzehei, TA Jones, R AF Salve, Rohit Ghezzehei, Teamrat A. Jones, Robert TI Infiltration into fractured bedrock SO WATER RESOURCES RESEARCH LA English DT Article ID POROUS-MEDIA; UNSATURATED CHALK; TRAPPED-AIR; 2 SOILS; FLOW; WATER; TRANSPORT; PHYSICS; TESTS AB One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long- term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m(2) infiltration plot (divided into 12 square subplots) with a head of similar to 0.04 m, over a period of similar to 800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period. C1 [Salve, Rohit; Ghezzehei, Teamrat A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Jones, Robert] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Salve, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM r_slave@lbl.gov; taghezzehei@lbl.gov; robert_jones@ymp.gov RI Ghezzehei, Teamrat/G-7483-2011 OI Ghezzehei, Teamrat/0000-0002-0287-6212 NR 32 TC 3 Z9 3 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JAN 26 PY 2008 VL 44 IS 1 AR W01434 DI 10.1029/2006WR005701 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 256UR UT WOS:000252755900001 ER PT J AU Podar, M Wall, MA Makarova, KS Koonin, EV AF Podar, Mircea Wall, Mark A. Makarova, Kira S. Koonin, Eugene V. TI The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system SO BIOLOGY DIRECT LA English DT Article ID TRAPP; MODEL; COMPLEXES; EVOLUTION; SUGGESTS; BET3; FORM AB Intracellular vesicle traffic that enables delivery of proteins between the endoplasmic reticulum, Golgi and various endosomal subcompartments is one of the hallmarks of the eukaryotic cell. Its evolutionary history is not well understood but the process itself and the core vesicle traffic machinery are believed to be ancient. We show here that the 4-vinyl reductase (V4R) protein domain present in bacteria and archaea is homologous to the Bet3 subunit of the TRAPP1 vesicle-tethering complex that is conserved in all eukaryotes. This suggests, for the first time, a prokaryotic origin for one of the key eukaryotic trafficking proteins. C1 [Podar, Mircea] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Podar, Mircea] Oak Ridge Natl Lab, Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. [Wall, Mark A.] Verenium Corp, Bioinformat Dept, San Diego, CA 92121 USA. [Makarova, Kira S.; Koonin, Eugene V.] Natl Lib Med, Natl Inst Hlth, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. RP Podar, M (reprint author), Oak Ridge Natl Lab, Biosci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM podarm@ornl.gov; mark.wall@verenium.com; makarova@ncbi.nlm.nih.gov; koonin@ncbi.nlm.nih.gov OI Podar, Mircea/0000-0003-2776-0205 FU Intramural NIH HHS NR 18 TC 14 Z9 14 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1745-6150 J9 BIOL DIRECT JI Biol. Direct PD JAN 25 PY 2008 VL 3 AR 2 DI 10.1186/1745-6150-3-2 PG 4 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 274QR UT WOS:000254016400001 PM 18221539 ER PT J AU Yu, CG Zavaljevski, N Desai, V Johnson, S Stevens, FJ Reifman, J AF Yu, Chenggang Zavaljevski, Nela Desai, Valmik Johnson, Seth Stevens, Fred J. Reifman, Jaques TI The development of PIPA: an integrated and automated pipeline for genome-wide protein function annotation SO BMC BIOINFORMATICS LA English DT Article ID FUNCTION PREDICTION; DATABASE; INFERENCE; PROGRAMS; SEQUENCE; SYSTEM AB Background: Automated protein function prediction methods are needed to keep pace with high-throughput sequencing. With the existence of many programs and databases for inferring different protein functions, a pipeline that properly integrates these resources will benefit from the advantages of each method. However, integrated systems usually do not provide mechanisms to generate customized databases to predict particular protein functions. Here, we describe a tool termed PIPA (Pipeline for Protein Annotation) that has these capabilities. Results: PIPA annotates protein functions by combining the results of multiple programs and databases, such as InterPro and the Conserved Domains Database, into common Gene Ontology (GO) terms. The major algorithms implemented in PIPA are: (1) a profile database generation algorithm, which generates customized profile databases to predict particular protein functions, (2) an automated ontology mapping generation algorithm, which maps various classification schemes into GO, and (3) a consensus algorithm to reconcile annotations from the integrated programs and databases. PIPA's profile generation algorithm is employed to construct the enzyme profile database CatFam, which predicts catalytic functions described by Enzyme Commission (EC) numbers. Validation tests show that CatFam yields average recall and precision larger than 95.0%. CatFam is integrated with PIPA. We use an association rule mining algorithm to automatically generate mappings between terms of two ontologies from annotated sample proteins. Incorporating the ontologies' hierarchical topology into the algorithm increases the number of generated mappings. In particular, it generates 40.0% additional mappings from the Clusters of Orthologous Groups (COG) to EC numbers and a six-fold increase in mappings from COG to GO terms. The mappings to EC numbers show a very high precision (99.8%) and recall (96.6%), while the mappings to GO terms show moderate precision (80.0%) and low recall (33.0%). Our consensus algorithm for GO annotation is based on the computation and propagation of likelihood scores associated with GO terms. The test results suggest that, for a given recall, the application of the consensus algorithm yields higher precision than when consensus is not used. Conclusion: The algorithms implemented in PIPA provide automated genome-wide protein function annotation based on reconciled predictions from multiple resources. C1 [Yu, Chenggang; Zavaljevski, Nela; Desai, Valmik; Reifman, Jaques] USA, Med Res & Mat Command, Telemed & Adv Technol Res Ctr, Biotechnol HPC Software Applicat Inst, Ft Detrick, MD USA. [Johnson, Seth] George Mason Univ, Manassas, VA USA. [Stevens, Fred J.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Reifman, J (reprint author), USA, Med Res & Mat Command, Telemed & Adv Technol Res Ctr, Biotechnol HPC Software Applicat Inst, Ft Detrick, MD USA. EM cyu@bioanalysis.org; nelaz@bioanalysis.org; valmik@bioanalysis.org; sjohnson@exonhit-usa.com; fstevens@anl.gov; jaques.reifman@us.army.mil NR 30 TC 18 Z9 18 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JAN 25 PY 2008 VL 9 AR 52 DI 10.1186/1471-2105-9-52 PG 11 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 269YM UT WOS:000253686700001 PM 18221520 ER PT J AU Gao, HC Wang, XH Yang, ZK Palzkill, T Zhou, JZ AF Gao, Haichun Wang, Xiaohu Yang, Zamin K. Palzkill, Timothy Zhou, Jizhong TI Probing regulon of ArcA in Shewanella oneidensis MR-I by integrated genomic analyses SO BMC GENOMICS LA English DT Article ID GLOBAL TRANSCRIPTOME ANALYSIS; TETRAHEME CYTOCHROME CYMA; ESCHERICHIA-COLI; PUTREFACIENS MR-1; ANAEROBIC RESPIRATION; GENE-EXPRESSION; OXYGEN AVAILABILITY; 2-COMPONENT SYSTEM; RESPONSE REGULATOR; ELECTRON-TRANSPORT AB Background: The Arc two- component system is a global regulator controlling many genes involved in aerobic/ anaerobic respiration and fermentative metabolism in Escherichia coli. Shewanella oneidensis MR-I contains a gene encoding a putative ArcA homolog with similar to 81% amino acid sequence identity to the E. coli ArcA protein but not a full- length arcB gene. Results: To understand the role of ArcA in S. oneidensis, an arcA deletion strain was constructed and subjected to both physiological characterization and microarray analysis. Compared to the wild- type MR-I, the mutant exhibited impaired aerobic growth and a defect in utilizing DMSO in the absence of O(2). Microarray analyses on cells grown aerobically and anaerobically on fumarate revealed that expression of 1009 genes was significantly affected ( p < 0.05) by the mutation. In contrast to E. coli ArcA, the protein appears to be dispensable in regulation of the TCA cycle in S. oneidensis. To further determine genes regulated by the Arc system, an ArcA recognition weight matrix from DNA- binding data and bioinformatics analysis was generated and used to produce an ArcA sequence affinity map. By combining both techniques, we identified an ArcA regulon of at least 50 operons, of which only 6 were found to be directly controlled by ArcA in E. coli. Conclusion: These results indicate that the Arc system in S. oneidensis differs from that in E. coli substantially in terms of its physiological function and regulon while their binding motif are strikingly similar. C1 [Gao, Haichun; Zhou, Jizhong] Univ Oklahoma, Inst Environm Gen, Norman, OK 73019 USA. [Gao, Haichun; Yang, Zamin K.; Zhou, Jizhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Gao, Haichun] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Wang, Xiaohu; Palzkill, Timothy] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Gen, Norman, OK 73019 USA. EM haichun@ou.edu; xw135771@bcm.tmc.edu; yangz@ornl.gov; timothyp@bcm.edu; jzhou@ou.edu RI Gao, Haichun/A-2160-2014 NR 70 TC 56 Z9 57 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JAN 25 PY 2008 VL 9 AR 42 DI 10.1186/1471-2164-9-42 PG 17 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 274FQ UT WOS:000253987600001 PM 18221523 ER PT J AU Luxmoore, RJ Tharp, ML Post, WM AF Luxmoore, R. J. Tharp, M. L. Post, W. M. TI Simulated biomass and soil carbon of loblolly pine and cottonwood plantations across a thermal gradient in southeastern United States SO FOREST ECOLOGY AND MANAGEMENT LA English DT Article DE carbon sequestration; growing-degree-days; nitrogen fertilization; soil organic matter ID ORGANIC-CARBON; FERTILIZATION; NITROGEN; SEQUESTRATION; NUTRIENTS; FORESTS; CLIMATE; WATER AB Changes in biomass and soil carbon with nitrogen fertilization were simulated for a 25-year loblolly pine (Pinus taeda) plantation and for three consecutive 7-year short-rotation cottonwood (Populas deltoides) stands. Simulations were conducted for 17 locations in the southeastern United States with mean annual temperatures ranging from 13.1 to 19.4 degrees C. The LINKAGES stand growth model, modified to include the "RothC" soil C and soil N model, simulated tree growth and soil C Status. Nitrogen fertilization significantly increased cumulative cottonwood aboveground biomass in the three rotations from a site average of 106 to 272 Mg/ha in 21 years. The equivalent site averages for loblolly pine showed a significant increase from 176 and 184 Mg/ha in 25 years with fertilization. Location results, compared on the annual sum of daily mean air 9 temperatures above 5.5 degrees C (growing-degree-days), showed contrasts. Loblolly pine biomass increased whereas cottonwood decreased with increasing growing-degree-days, particularly in cottonwood stands receiving N fertilization. The increment of biomass due to N addition per unit of control biomass (relative response) declined in both plantations with increase in growing-degree-days. Average soil C in loblolly pine stands increased from 24.3 to 40.4 Mg/ha in 25 years and in cottonwood soil C decreased from 14.7 to 13.7 Mg/ha after three 7-year rotations. Soil C did not decrease with increasing growing-degree-days in either plantation type suggesting that global warming may not initially affect soil C. Nitrogen fertilizer increased soil C slightly in cottonwood plantations and had no significant effect on the soil C of loblolly stands. Published by Elsevier B.V. C1 [Luxmoore, R. J.; Tharp, M. L.; Post, W. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Luxmoore, RJ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM luxmoorerj@ornl.gov RI Post, Wilfred/B-8959-2012 NR 26 TC 7 Z9 8 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD JAN 25 PY 2008 VL 254 IS 2 BP 291 EP 299 DI 10.1016/j.foreco.2007.08.008 PG 9 WC Forestry SC Forestry GA 256XL UT WOS:000252763100018 ER PT J AU Liemohn, MW Zhang, JC Thomsen, MF Borovsky, JE Kozyra, JU Ilie, R AF Liemohn, M. W. Zhang, J. -C. Thomsen, M. F. Borovsky, J. E. Kozyra, J. U. Ilie, R. TI Plasma properties of superstorms at geosynchronous orbit: How different are they? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RING CURRENT; ELECTRIC-FIELD; GEOMAGNETIC STORMS; ION COMPOSITION; MAGNETIC STORM; SOLAR-ACTIVITY; SHEET; MINIMUM; ACCESS; PHASE AB Plasma measurements at geosynchronous orbit are examined via superposed epoch analysis for various storm categories to assess whether superstorms have an unusually altered source population for the storm-time ring current. It is found that certain characteristics of this near-Earth plasma distribution during superstorms are similar to those of moderate or intense storms, or extensions of the trends seen in these lesser storms. These similarities include the dawn sector development of cold, dense plasma. However, other characteristics are unique to superstorms, such as the existence of cold, dense plasma at dusk and midnight. It is concluded that the ring current source during superstorms is a combination of the usual storm-time characteristics as well as an unusually altered component. C1 [Liemohn, M. W.; Kozyra, J. U.; Ilie, R.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Zhang, J. -C.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Thomsen, M. F.; Borovsky, J. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Liemohn, MW (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM liemohn@umich.edu RI Zhang, Jichun/A-6648-2009; Liemohn, Michael/H-8703-2012; Ilie, Raluca/A-9291-2013 OI Liemohn, Michael/0000-0002-7039-2631; NR 36 TC 13 Z9 13 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 25 PY 2008 VL 35 IS 6 AR L06S06 DI 10.1029/2007GL031717 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 256TF UT WOS:000252752100001 ER PT J AU Short, M Anguelova, II Aslam, TD Bdzil, JB Henrick, AK Sharpe, GJ AF Short, M. Anguelova, I. I. Aslam, T. D. Bdzil, J. B. Henrick, A. K. Sharpe, G. J. TI Stability of detonations for an idealized condensed-phase model SO JOURNAL OF FLUID MECHANICS LA English DT Article ID DIMENSIONAL OVERDRIVEN DETONATIONS; HEAT-RELEASE DETONATIONS; CHAIN-BRANCHING REACTION; GASEOUS DETONATIONS; LINEAR-STABILITY; MULTIDIMENSIONAL STABILITY; NUMERICAL SIMULATIONS; NONLINEAR DYNAMICS; INSTABILITY; WAVES AB The stability of travelling wave Chapman-Jouguet and moderately overdriven detonations of Zeldovich-von Neumann-Doring type is formulated for a general system that incorporates the idealized gas and condensed-phase (liquid or solid) detonation models. The general model consists of a two-component mixture with a one-step irreversible reaction between reactant and product. The reaction rate has both temperature and pressure sensitivities and has a variable reaction order. The idealized condensed-phase model assumes a pressure-sensitive reaction rate, a constant-gamma caloric equation of state for an ideal fluid, with the isentropic derivative gamma=3, and invokes the strong shock limit. A linear stability analysis of the steady, planar, ZND detonation wave for the general model is conducted using a normal-mode approach. An asymptotic analysis of the eigenmode structure at the end of the reaction zone is conducted, and spatial boundedness (closure) conditions formally derived, whose precise form depends on the magnitude of the detonation overdrive and reaction order. A scaling analysis of the transonic flow region for Chapman-Jouguet detonations is also studied to illustrate the validity of the linearization for Chapman-Jouguet detonations. Neutral stability boundaries are calculated for the idealized condensed-phase model for one- and two-dimensional perturbations. Comparisons of the growth rates and frequencies predicted by the normal-mode analysis for an unstable detonation are made with a numerical solution of the reactive Euler equations. The numerical calculations are conducted using a new, high-order algorithm that employs a shock-fitting strategy, an approach that has significant advantages over standard shock-capturing methods for calculating unstable detonations. For the idealized condensed-phase model, nonlinear numerical solutions are also obtained to study the long-time behaviour of one- and two-dimensional unstable Chapman-Jouguet ZND waves. C1 [Short, M.] Univ Illinois, Theoret & Appl Mech, Urbana, IL 61801 USA. [Anguelova, I. I.] Univ Illinois, Dept Math, Urbana, IL 61801 USA. [Aslam, T. D.; Bdzil, J. B.; Henrick, A. K.; Sharpe, G. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Henrick, A. K.] Univ Notre Dame, Dept Mech & Aerosp Engn, Notre Dame, IN 46556 USA. RP Short, M (reprint author), Univ Illinois, Theoret & Appl Mech, Urbana, IL 61801 USA. OI Aslam, Tariq/0000-0002-4263-0401 NR 45 TC 8 Z9 8 U1 1 U2 16 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JAN 25 PY 2008 VL 595 BP 45 EP 82 DI 10.1017/S0022112007008750 PG 38 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 262VX UT WOS:000253177200002 ER PT J AU Unger, N Shindell, DT Koch, DM Streets, DG AF Unger, Nadine Shindell, Drew T. Koch, Dorothy M. Streets, David G. TI Air pollution radiative forcing from specific emissions sectors at 2030 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERIC OZONE; CLIMATE AGREEMENTS; REGIONAL EMISSIONS; AEROSOL EMISSIONS; GISS MODELE; SIMULATIONS; METHANE; PREINDUSTRIAL; SENSITIVITY; PRECURSORS AB Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O-3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm(-2)) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm(-2)/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm(-2)/TgS. C1 [Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.] Columbia Univ, NASA, Goddard Inst Space Studies, Ctr Climate Syst Res, New York, NY 10025 USA. [Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Unger, N (reprint author), Columbia Univ, NASA, Goddard Inst Space Studies, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. EM nunger@giss.nasa.gov RI Shindell, Drew/D-4636-2012; Unger, Nadine/M-9360-2015; OI Streets, David/0000-0002-0223-1350 NR 46 TC 33 Z9 33 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 25 PY 2008 VL 113 IS D2 AR D02306 DI 10.1029/2007JD008683 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 256TM UT WOS:000252752800001 ER PT J AU Zhao, XD Copeland, DM Soares, AS West, AH AF Zhao, Xiaodong Copeland, Daniel M. Soares, Alexei S. West, Ann H. TI Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE histidine-containing phosphotransfer (HPt) domain; response regulator; two-component signal transduction; phosphoryl analog; beryllium fluoride (BeF3-) ID 2-COMPONENT SIGNAL-TRANSDUCTION; RAY DIFFRACTION ANALYSIS; MULTISTEP PHOSPHORELAY; RECEIVER DOMAIN; CELL-CYCLE; CHEY; ACTIVATION; PHOSPHOTRANSFER; MECHANISM; BERYLLOFLUORIDE AB The crystal structure of the yeast SLN1 response regulator (RR) domain 2, bound to both a phosphoryl analog [berllium fluoride (BeF3-)] and Mg2+, in complex with its downstream phosphorelay signaling partner YPD1, has been determined at a resolution of 1.70 angstrom. Comparisons between the BeF3- activated complex and the unliganded (or apo) complex determined previously reveal modest but important differences. The SLN1-R1 center dot Mg2+center dot BeF3- structure from the complex provides evidence for the first time that the mechanism of phosphorylation-induced activation is highly conserved between bacterial RR domains and this example from a eukaryotic organism. Residues in and around the active site undergo slight rearrangements in order to form bonds with the essential divalent cation and fluorine atoms of BeF3-. Two conserved switch-like residues (Thr1173 and Phe1192) occupy distinctly different positions in the apo versus BeF3--bound structures, consistent with the "Y-T" coupling mechanism proposed for the activation of CheY and other bacterial RRs. Several loop regions and the alpha 4-beta 5-alpha 5 surface of the SLN1-R1 domain undergo subtle conformational changes (similar to 1-3 angstrom displacements relative to the apo structure) that lead to significant changes in terms of contacts that are formed with YPD1. Detailed structural comparisons of protein-protein interactions in the apo and BeF3--bound complexes suggest at least a two-state equilibrium model for the formation of a transient encounter complex, in which phosphorylation of the RR promotes the formation of a phosphotransfer-competent complex. In the BeF3--activated complex, the position of His64 from YPD1 needs to be within ideal distance of and in near-linear geometry with Asp1144 from the SLN1-R1 domain for phosphotransfer to occur. The ground-state structure presented here suggests that phosphoryl transfer will likely proceed through an associative mechanism involving the formation of a pentacoordinate phosphorus intermediate. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Zhao, Xiaodong; Copeland, Daniel M.; West, Ann H.] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA. [Soares, Alexei S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP West, AH (reprint author), Univ Oklahoma, Dept Chem & Biochem, 620 Parrington Oval, Norman, OK 73019 USA. EM awest@ou.edu RI Soares, Alexei/F-4800-2014 OI Soares, Alexei/0000-0002-6565-8503 FU NIGMS NIH HHS [GM059311, R01 GM059311, R01 GM059311-08] NR 53 TC 36 Z9 36 U1 0 U2 2 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JAN 25 PY 2008 VL 375 IS 4 BP 1141 EP 1151 DI 10.1016/j.jmb.2007.11.045 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261RP UT WOS:000253098000021 PM 18076904 ER PT J AU Xu, HB Han, QY Meek, TT AF Xu, Hanbing Han, Qingyou Meek, Thomas T. TI Effects of ultrasonic vibration on degassing of aluminum alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE ultrasonic vibration; degassing; aluminum alloy; hydrogen content AB In order to investigate the effects of ultrasonic vibration on degassing of aluminum alloys, three experimental systems have been designed and built: one for ultrasonic degassing in open air, one for ultrasonic degassing under reduced pressure, and one for ultrasonic degassing with a purging gas. Experiments were first carried out in air to test degassing using ultrasonic vibration alone. The limitations with ultrasonic degassing were outlined. Further experiments were then performed under reduced pressures and in combination with purging argon gas. Experimental results suggest that ultrasonic vibration alone is efficient for degassing a small volume of melt. Ultrasonic vibration can be used for assisting vacuum degassing, making vacuum degassing much faster than that without using ultrasonic vibration. Ultrasonically assisted argon degassing is the fastest method for degassing among the three methods tested in this research. More importantly, dross formation during ultrasonically assisted argon degassing is much less than that during argon degassing. The mechanisms of ultrasonic degassing are discussed. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xu, Hanbing; Meek, Thomas T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Xu, Hanbing; Han, Qingyou] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Xu, HB (reprint author), Univ Tennessee, Dept Mat Sci & Engn, 434 Dougherty Hall, Knoxville, TN 37996 USA. EM xuh@ornl.gov NR 18 TC 34 Z9 44 U1 0 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 25 PY 2008 VL 473 IS 1-2 BP 96 EP 104 DI 10.1016/j.msea.2007.04.040 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 258XC UT WOS:000252902500013 ER PT J AU Cong, DY Wang, S Wang, YD Ren, Y Zuo, L Esling, C AF Cong, D. Y. Wang, S. Wang, Y. D. Ren, Y. Zuo, L. Esling, C. TI Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE ferromagnetic shape memory alloy; martensitic transformation; crystal structure; Curie temperature; compressive properties; Ni-Mn-Ga-Co alloy ID FIELD-INDUCED STRAIN; STRUCTURAL-PROPERTIES; PHASE-TRANSFORMATION; CRYSTAL-STRUCTURE; ATOMIC ORDER; NI2MNGA; TEMPERATURES; FE AB The effect of Co addition on crystal structure, martensitic transformation, Curie temperature and compressive properties of Ni53-xMn25Ga22COx alloys with the Co content up to 14 at.% was investigated. An abrupt decrease of martensitic transformation temperature was observed when the Co content exceeded 6 at.%, which can be attributed to the atomic disorder resulting from the Co addition. Substitution of Co for Ni proved efficient in increasing the Curie temperature. Compression experiments showed that the substitution of 4 at.% Co for Ni did not change the fracture strain, but lead to the increase in the compressive strength and the decrease in the yield stress. This study may offer experimental data for developing high performance ferromagnetic shape memory alloys. (C) 2007 Elsevier B.V. All rights reserved. C1 [Cong, D. Y.; Wang, S.; Wang, Y. D.; Zuo, L.] Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Cong, D. Y.; Esling, C.] Univ Metz, LETAM, CNRS UMR 7078, F-57045 Metz, France. RP Wang, YD (reprint author), Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. EM ydwang@mail.neu.edu.cn RI wang, yandong/G-9404-2013; Cong, Daoyong/D-8357-2011 NR 16 TC 40 Z9 41 U1 1 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 25 PY 2008 VL 473 IS 1-2 BP 213 EP 218 DI 10.1016/j.msea.2007.03.088 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 258XC UT WOS:000252902500030 ER PT J AU Guo, XF Remennik, S Xu, CJ Shechtman, D AF Guo, Xuefeng Remennik, Sergei Xu, Chunjie Shechtman, Dan TI Development of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr magnesium alloy and its microstructural evolution during processing SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE magnesium alloy; reciprocating extrusion; rapid solidification; extrusion ID STRENGTH AB A strong and ductile Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr alloy was developed. The alloy was first cast into billets which were rapidly solidified into ribbons, comminuted and extruded. Some of the extrusions were subjected to reciprocal extrusion processing. The microstructures of the alloy prepared by the different processes were analyzed by optical microscopy (OM) as well as high resolution scanning electron microscopy (HRSEM) and transmission electron microscopy (TEM). The microstructure of the cast consisted of coarse grains with average grain size of about 45 mu m with intermetallic networks at grain boundaries. The microstructure of the extrusions made of rapidly solidified chips was not uniform; it was fine at the circumference, but coarser in the central area. A low density of defects in the form of unwelded rapidly solidified (RS) ribbon particles in the center of the extrusion was also present. The microstructure of the alloy subjected to reciprocating extrusion was more uniform with average grain size of 1.3 mu m and homogeneously dispersed strengthening particles 80 nm in diameter. (C) 2007 Elsevier B.V. All rights reserved. C1 [Guo, Xuefeng; Shechtman, Dan] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Guo, Xuefeng; Shechtman, Dan] Iowa State Univ, Dept MSE, Ames, IA 50011 USA. [Guo, Xuefeng; Xu, Chunjie] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Shaanxi, Peoples R China. [Remennik, Sergei; Shechtman, Dan] Technion Israel Inst Technol, Dept Mat Sci & Engn, IL-32000 Haifa, Israel. RP Guo, XF (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM guoxuef@gmail.com NR 14 TC 24 Z9 35 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 25 PY 2008 VL 473 IS 1-2 BP 266 EP 273 DI 10.1016/j.msea.2007.03.083 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 258XC UT WOS:000252902500039 ER PT J AU Xue, Q Bingert, JF Henrie, BL Gray, GT AF Xue, Q. Bingert, J. F. Henrie, B. L. Gray, G. T., III TI EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 stainless steels SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE adiabatic shear bands; EBSD; misorientation; Taylor factor; stainless steel ID ORIENTATION IMAGING MICROSCOPY; TEXTURE; EVOLUTION; LOCALIZATION; PRESTRAIN; ALUMINUM; BEHAVIOR; ALLOYS; CREEP; BKD AB The microstructure and texture variations near adiabatic shear localization regions in as-received and pre-shocked 304 stainless steels were investigated using electron backscatter diffraction (EBSD). Shear bands were developed in both steels during a forced dynamic shear deformation produced on a split-Hopkinson pressure bar. EBSD examination revealed large intragranular misorientation gradients toward the shear bands. Taylor factor and misorientation analyses were applied to explain deformation characteristics. Shear-induced deformation structure was observed to be sensitive to both initial microstructure and local orientation. Comparison of as-received and pre-shocked steels indicated that the pre-shocked condition yielded sharper shear band boundaries but moderate misorientation gradients, while the as-received condition led to substantial rnisorientation adjacent to the band. Shear-induced texture evolution generally resulted in the reorientation of (1 1 0) toward the shear direction for both cases. Grains with slip systems favorably oriented with respect to the applied shear path displayed less intragranular misorientation development compared to unfavorably oriented grains. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xue, Q.] Intel Corp, Chandler, AZ 85226 USA. [Xue, Q.; Bingert, J. F.; Henrie, B. L.; Gray, G. T., III] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Henrie, B. L.] Stanley Associates, Huntsville, AL 35824 USA. RP Xue, Q (reprint author), Intel Corp, 5000 W Chandler Blvd, Chandler, AZ 85226 USA. EM qing.xue@intel.com NR 24 TC 33 Z9 34 U1 0 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 25 PY 2008 VL 473 IS 1-2 BP 279 EP 289 DI 10.1016/j.msea.2007.04.048 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 258XC UT WOS:000252902500041 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, S Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, S. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for W ' bosons decaying to an electron and a neutrino with the D0 detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID VIOLATION; SYMMETRY; PHYSICS AB This Letter describes the search for a new heavy charged gauge boson W-' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron p (p) over bar Collider at root s=1.96 TeV, and correspond to an integrated luminosity of about 1 fb(-1). Lacking any significant excess in the data in comparison with known processes, an upper limit is set on sigma(')(W)xB(W-'-> e nu), and a W-' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits and is the most stringent to date. C1 [Abazov, V. M.; Alexeev, G. D.; Alton, A.; Kalinin, A. M.; Kharzheev, Y. M.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Martins, C. De Oliveira; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, Phys Corpusculaire Lab, IN2P3, Clermont Ferrand, France. [Chevallier, F.; Crepe-Renaudin, S.; Sajot, G.] Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. [Duperrin, A.; Kajfasz, E.; Kermiche, S.; Mendes, A.; Nagy, E.] Univ Aix Marseille 2, CNRS, CPPM, IN2P3, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.] CNRS, Accelerateur Lineaire Lab, IN2P3, F-91405 Orsay, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.] Univ Paris 11, Orsay, France. [Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Shary, V.; Titov, M.; Tuchming, B.] CEA Saclay, Serv Phys & Particules, DAPNIA, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-696229 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Autermann, C.; Hebbeker, T.; Kaefer, D.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Fox, H.; Jakobs, K.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Schieferdecker, P.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. [Choi, S.; Kim, H.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. [Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, S.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Shchukin, A. A.; Stoyanova, D. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, J.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, J.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, J.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, J.] Uppsala Univ, Uppsala, Sweden. [Lehner, F.] Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.; Borissov, G.; Burdin, S.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Lewis, P.; Lobo, L.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Ford, M.; Fortner, M.; Mommsen, R. K.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchholz, D.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Gruenendahl, S.; Gutierrez, G.; Hanagaki, K.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; Nomerotski, A.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bagby, L.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Kirby, M. H.; Schellman, H.; Strom, D.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Van Kooten, R.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Cason, N. M.; Chan, K. M.; Galyaev, E.; Goussiou, A.; Hildreth, M. D.; Lam, D.; Mal, P. K.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.] Univ Kansas, Lawrence, KS 66045 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Begel, M.; Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Kopal, M.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Gadfort, T.; Garcia-Bellido, A.; Lubatti, H. J.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Ancu, Lucian Stefan/F-1812-2010; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; Mundim, Luiz/A-1291-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Nomerotski, Andrei/A-5169-2010; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012 OI KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Yip, Kin/0000-0002-8576-4311; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192 NR 24 TC 39 Z9 39 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 031804 DI 10.1103/PhysRevLett.100.031804 PG 7 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100021 PM 18232966 ER PT J AU Aguilar-Arevalo, AA Bazarko, AO Brice, SJ Brown, BC Bugel, L Cao, J Coney, L Conrad, JM Cox, DC Curioni, A Djurcic, Z Finley, DA Fleming, BT Ford, R Garcia, FG Garvey, GT Green, C Green, JA Hart, TL Hawker, E Imlay, R Johnson, RA Kasper, P Katori, T Kobilarcik, T Kourbanis, I Koutsoliotas, S Laird, EM Link, JM Liu, Y Liu, Y Louis, WC Mahn, KBM Marsh, W Martin, PS McGregor, G Metcalf, W Meyers, PD Mills, F Mills, GB Monroe, J Moore, CD Nelson, RH Nienaber, P Ouedraogo, S Patterson, RB Perevalov, D Polly, CC Prebys, E Raaf, JL Ray, H Roe, BP Russell, AD Sandberg, V Schirato, R Schmitz, D Shaevitz, MH Shoemaker, FC Smith, D Sorel, M Spentzouris, P Stancu, I Stefanski, RJ Sung, M Tanaka, HA Tayloe, R Tzanov, M de Water, RV Wascko, MO White, DH Wilking, MJ Yang, HJ Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Bazarko, A. O. Brice, S. J. Brown, B. C. Bugel, L. Cao, J. Coney, L. Conrad, J. M. Cox, D. C. Curioni, A. Djurcic, Z. Finley, D. A. Fleming, B. T. Ford, R. Garcia, F. G. Garvey, G. T. Green, C. Green, J. A. Hart, T. L. Hawker, E. Imlay, R. Johnson, R. A. Kasper, P. Katori, T. Kobilarcik, T. Kourbanis, I. Koutsoliotas, S. Laird, E. M. Link, J. M. Liu, Y. Liu, Y. Louis, W. C. Mahn, K. B. M. Marsh, W. Martin, P. S. McGregor, G. Metcalf, W. Meyers, P. D. Mills, F. Mills, G. B. Monroe, J. Moore, C. D. Nelson, R. H. Nienaber, P. Ouedraogo, S. Patterson, R. B. Perevalov, D. Polly, C. C. Prebys, E. Raaf, J. L. Ray, H. Roe, B. P. Russell, A. D. Sandberg, V. Schirato, R. Schmitz, D. Shaevitz, M. H. Shoemaker, F. C. Smith, D. Sorel, M. Spentzouris, P. Stancu, I. Stefanski, R. J. Sung, M. Tanaka, H. A. Tayloe, R. Tzanov, M. de Water, R. Van Wascko, M. O. White, D. H. Wilking, M. J. Yang, H. J. Zeller, G. P. Zimmerman, E. D. TI Measurement of muon neutrino quasielastic scattering on carbon SO PHYSICAL REVIEW LETTERS LA English DT Article ID FORM-FACTORS; NUCLEON; SIMULATION; PHYSICS; PIONS AB The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of nu(mu) CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M(A)(eff)=1.23 +/- 0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon, and a Pauli-suppression parameter, kappa=1.019 +/- 0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets. C1 [Aguilar-Arevalo, A. A.; Bugel, L.; Coney, L.; Conrad, J. M.; Djurcic, Z.; Mahn, K. B. M.; Monroe, J.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.] Columbia Univ, New York, NY 10027 USA. [Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA. [Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.] Univ Colorado, Boulder, CO 80309 USA. [Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marsh, W.; Martin, P. S.; Mills, F.; Moore, C. D.; Prebys, E.; Russell, A. D.; Spentzouris, P.; Stefanski, R. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Cox, D. C.; Green, J. A.; Katori, T.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Green, C.; Green, J. A.; Louis, W. C.; McGregor, G.; Mills, G. B.; Ray, H.; Sandberg, V.; Schirato, R.; de Water, R. Van; White, D. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Imlay, R.; Metcalf, W.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cao, J.; Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Link, J. M.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Hawker, E.] Western Illinois Univ, Macomb, IL 61455 USA. [Curioni, A.; Fleming, B. T.] Yale Univ, New Haven, CT 06520 USA. RP Aguilar-Arevalo, AA (reprint author), Columbia Univ, New York, NY 10027 USA. RI Link, Jonathan/L-2560-2013; Yang, Haijun/O-1055-2015; Cao, Jun/G-8701-2012 OI Schmitz, David/0000-0003-2165-7389; Link, Jonathan/0000-0002-1514-0650; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375; Louis, William/0000-0002-7579-3709; Wascko, Morgan/0000-0002-8348-4447; Raaf, Jennifer/0000-0002-4533-929X; Sorel, Michel/0000-0003-2141-9508; Van de Water, Richard/0000-0002-1573-327X; Katori, Teppei/0000-0002-9429-9482; Schirato, Richard/0000-0002-4216-0235; Cao, Jun/0000-0002-3586-2319 NR 27 TC 146 Z9 146 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 032301 DI 10.1103/PhysRevLett.100.032301 PG 5 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100029 PM 18232974 ER PT J AU Ampleford, DJ Lebedev, SV Ciardi, A Bland, SN Bott, SC Hall, GN Naz, N Jennings, CA Sherlock, M Chittenden, JP Palmer, JBA Frank, A Blackman, E AF Ampleford, D. J. Lebedev, S. V. Ciardi, A. Bland, S. N. Bott, S. C. Hall, G. N. Naz, N. Jennings, C. A. Sherlock, M. Chittenden, J. P. Palmer, J. B. A. Frank, A. Blackman, E. TI Supersonic radiatively cooled rotating flows and jets in the laboratory SO PHYSICAL REVIEW LETTERS LA English DT Article ID ARRAY Z-PINCH; ASTROPHYSICS; IMPLOSIONS; OUTFLOWS; PHYSICS; LASERS AB The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities reaching similar to 18% of the propagation velocity. C1 [Ampleford, D. J.; Jennings, C. A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Lebedev, S. V.; Bland, S. N.; Bott, S. C.; Hall, G. N.; Naz, N.; Chittenden, J. P.; Palmer, J. B. A.] Univ London Imperial Coll Sci & Technol, Blackett Lab, London SW7 2BW, England. [Ciardi, A.] Observ Paris, LERMA Meudon, F-92195 Meudon, France. [Sherlock, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Frank, A.; Blackman, E.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Frank, A.; Blackman, E.] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA. RP Ampleford, DJ (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM damplef@sandia.gov RI Hall, Gareth/C-4179-2015 NR 17 TC 25 Z9 25 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 035001 DI 10.1103/PhysRevLett.100.035001 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100043 PM 18232988 ER PT J AU Antonio, DJ Boyle, PA Blum, T Christ, NH Cohen, SD Dawson, C Izubuchi, T Kenway, RD Jung, C Li, S Lin, MF Mawhinney, RD Noaki, J Ohta, S Pendleton, BJ Scholz, EE Soni, A Tweedie, RJ Yamaguchi, A AF Antonio, D. J. Boyle, P. A. Blum, T. Christ, N. H. Cohen, S. D. Dawson, C. Izubuchi, T. Kenway, R. D. Jung, C. Li, S. Lin, M. F. Mawhinney, R. D. Noaki, J. Ohta, S. Pendleton, B. J. Scholz, E. E. Soni, A. Tweedie, R. J. Yamaguchi, A. CA RBC & UKQCD Collaborations TI Neutral-kaon mixing from (2+1)-flavor domain-wall QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID TO-LEADING ORDER; RENORMALIZATION AB We present the first results for neutral-kaon mixing using (2+1)-flavors of domain-wall fermions. A new approach is used to extrapolate to the physical up and down quark masses from our numerical studies with pion masses in the range 240-420 MeV; only SU(2)(L)xSU(2)(R) chiral symmetry is assumed and the kaon is not assumed to be light. Our main result is B ($$$) over bar MSK(2 GeV)=0.524(10)(28) where the first error is statistical and the second incorporates estimates for all systematic errors. C1 [Antonio, D. J.; Boyle, P. A.; Kenway, R. D.; Pendleton, B. J.; Tweedie, R. J.] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland. [Blum, T.; Dawson, C.; Izubuchi, T.; Ohta, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Christ, N. H.; Cohen, S. D.; Li, S.; Lin, M. F.; Mawhinney, R. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Jung, C.; Scholz, E. E.; Soni, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Yamaguchi, A.] Univ Glasgow, Dept Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Izubuchi, T.] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan. [Noaki, J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Blum, T.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Noaki, J.; Ohta, S.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Ohta, S.] SOKENDAI, Dept Phys, Tsukuba, Ibaraki 3050801, Japan. RP Antonio, DJ (reprint author), Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland. OI Cohen, Saul/0000-0001-6804-3320; Pendleton, Brian/0000-0003-4419-8621 NR 21 TC 50 Z9 50 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 032001 DI 10.1103/PhysRevLett.100.032001 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100022 PM 18232967 ER PT J AU Carlson, CE Vanderhaeghen, M AF Carlson, Carl E. Vanderhaeghen, Marc TI Empirical transverse charge densities in the nucleon and the nucleon-to-Delta transition SO PHYSICAL REVIEW LETTERS LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; ELECTROMAGNETIC FORM-FACTORS AB Using only the current empirical information on the nucleon electromagnetic form factors we map out the transverse charge density in proton and neutron as viewed from a light front moving towards a transversely polarized nucleon. These charge densities are characterized by a dipole pattern, in addition to the monopole field corresponding with the unpolarized density. Furthermore, we use the latest empirical information on the N ->Delta transition form factors to map out the transition charge density which induces the N ->Delta excitation. This transition charge density in a transversely polarized N and Delta contains both monopole, dipole and quadrupole patterns, the latter corresponding with a deformation of the N and Delta charge distribution. C1 [Carlson, Carl E.; Vanderhaeghen, Marc] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Vanderhaeghen, Marc] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. RP Carlson, CE (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. NR 21 TC 72 Z9 72 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 032004 DI 10.1103/PhysRevLett.100.032004 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100025 PM 18232970 ER PT J AU Foster, M Colgan, J Pindzola, MS AF Foster, M. Colgan, J. Pindzola, M. S. TI Fully correlated electronic dynamics for antiproton impact ionization of helium SO PHYSICAL REVIEW LETTERS LA English DT Article ID ION COLLISIONS; SINGLE; PROTONS AB We present total cross sections for single and double ionization of helium by antiproton impact over a wide range of impact energies from 10 keV/amu to 1 MeV/amu. A nonperturbative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the ionized electrons. Excellent agreement is obtained between our calculations and experimental measurements of total single and double ionization cross sections at high impact energies, whereas for lower impact energies, some discrepancies with experiment are found. At an impact energy of 1 MeV we also find that the double-to-single ionization ratio is twice as large for antiproton impact as for proton impact, confirming a long-standing unexpected experimental measurement. C1 [Foster, M.; Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Foster, M (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI Colgan, James/0000-0003-1045-3858 NR 21 TC 38 Z9 38 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 033201 DI 10.1103/PhysRevLett.100.033201 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100031 PM 18232976 ER PT J AU Friedland, A Giannotti, M AF Friedland, A. Giannotti, M. TI Astrophysical bounds on photons escaping into extra dimensions SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMOLOGICAL CONSTANT; NEUTRINO; HIERARCHY; MATTER; SPACE; STARS AB In a class of extra-dimensional models with a warped metric and a single brane the photon can be localized on the brane by gravity only. An intriguing feature of these models is the possibility of the photon escaping into the extra dimensions. The search for this effect has motivated the present round of precision ortho-positronium decay experiments. We point out that in this framework a photon in plasma should be metastable, and we consider what this implies for cooling of globular cluster stars and core-collapse supernovae. The resulting bounds on the model parameter exceed the possible reach of ortho-positronium experiments by many orders of magnitude. C1 [Friedland, A.; Giannotti, M.] Los Alamos Natl Lab, Elementary Particles & Field Theory Grp, Los Alamos, NM 87545 USA. RP Friedland, A (reprint author), Los Alamos Natl Lab, Elementary Particles & Field Theory Grp, MS B285, Los Alamos, NM 87545 USA. NR 28 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 031602 DI 10.1103/PhysRevLett.100.031602 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100017 PM 18232962 ER PT J AU Fukushima, K Warringa, HJ AF Fukushima, Kenji Warringa, Harmen J. TI Color superconducting matter in a magnetic field SO PHYSICAL REVIEW LETTERS LA English DT Article ID FLAVOR SYMMETRY-BREAKING; QUARK MATTER; EQUATION; STATE; PHASE; MODEL AB We investigate the effect of a magnetic field on cold dense quark matter using an effective model with four-Fermi interactions. We find that the gap parameters representing the predominant pairing between the different quark flavors show oscillatory behavior as a function of the magnetic field. We point out that due to electric and color neutrality constraints the magnetic fields as strong as presumably existing inside magnetars might induce significant deviations from the gap structure at a zero magnetic field. C1 [Fukushima, Kenji] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Warringa, Harmen J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Fukushima, K (reprint author), Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. OI Fukushima, Kenji/0000-0003-0899-740X NR 26 TC 77 Z9 77 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 032007 DI 10.1103/PhysRevLett.100.032007 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100028 PM 18232973 ER PT J AU Garlea, VO Zheludev, A Regnault, LP Chung, JH Qiu, Y Boehm, M Habicht, K Meissner, M AF Garlea, V. O. Zheludev, A. Regnault, L. -P. Chung, J. -H. Qiu, Y. Boehm, M. Habicht, K. Meissner, M. TI Excitations in a four-leg antiferromagnetic Heisenberg spin tube SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELD; SYSTEM CU2CL4-CENTER-DOT-H8C4SO2; LADDER; CRYSTAL; DIMERIZATION; SPECTRUM; CUGEO3; CHAINS; GAPS AB Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu(2)Cl(4)center dot D(8)C(4)SO(2). Contrary to previously conjectured models that relied on bond-alternating nearest-neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a S=1/2 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations. C1 [Garlea, V. O.; Zheludev, A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Regnault, L. -P.] CEA, DRFMC SPSMS MDN, F-38054 Grenoble 9, France. [Chung, J. -H.; Qiu, Y.] Natl Inst Stand & Technol, NCNR, Gaithersburg, MD 20899 USA. [Chung, J. -H.; Qiu, Y.] Univ Maryland, College Pk, MD 20742 USA. [Boehm, M.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Habicht, K.; Meissner, M.] BENSC, Hahn Meitner Inst Kernforsch Berlin GmbH, D-14109 Berlin, Germany. RP Garlea, VO (reprint author), Korea Univ, Dept Phys, Seoul 136701, South Korea. EM garleao@ornl.gov RI Garlea, Vasile/A-4994-2016; Habicht, Klaus/K-3636-2013 OI Garlea, Vasile/0000-0002-5322-7271; Habicht, Klaus/0000-0002-9915-7221 NR 28 TC 34 Z9 34 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 037206 DI 10.1103/PhysRevLett.100.037206 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100090 PM 18233035 ER PT J AU Huang, JY Ding, F Yakobson, BI AF Huang, J. Y. Ding, F. Yakobson, B. I. TI Dislocation dynamics in multiwalled carbon nanotubes at high temperatures SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIAMOND AB Dislocation dynamics dictate the mechanical behavior of materials. Dislocations in periodic crystalline materials have been well documented. On the contrary, dislocations in cylindrical carbon nanotubes, particularly in multiwalled carbon nanotubes (MWCNTs), remain almost unexplored. Here we report that a room temperature 1/2 < 0001 > sessile dislocation in a MWCNT becomes highly mobile, as characterized by its glide, climb, and the glide-climb interactions, at temperatures of about 2000 degrees C. The dislocation glide leads to the cross-linking of different shells; dislocation climb creates nanocracks; and the interaction of two 1/2 < 0001 > dislocations creates kinks. We found that dislocation loops act as channels for mass transport. These dislocation dynamics are drastically different from that in conventional periodic crystalline materials due to the cylindrical, highly anisotropic structures of MWCNTs. C1 [Huang, J. Y.] CINT, Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ding, F.; Yakobson, B. I.] Rice Univ, Dept Chem, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. RP Huang, JY (reprint author), CINT, Sandia Natl Labs, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov; biy@rice.edu RI Ding, Feng/D-5938-2011; Huang, Jianyu/C-5183-2008 OI Ding, Feng/0000-0001-9153-9279; NR 16 TC 35 Z9 35 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 035503 DI 10.1103/PhysRevLett.100.035503 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100053 PM 18232998 ER PT J AU Martin, I Blanter, YM Morpurgo, AF AF Martin, Ivar Blanter, Ya. M. Morpurgo, A. F. TI Topological confinement in bilayer graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID CONJUGATED DIATOMIC POLYMER; SOLITONS; PHASE AB We study a new type of one-dimensional chiral states that can be created in bilayer graphene (BLG) by electrostatic lateral confinement. These states appear on the domain walls separating insulating regions experiencing the opposite gating polarity. While the states are similar to conventional solitonic zero modes, their properties are defined by the unusual chiral BLG quasiparticles, from which they derive. The number of zero mode branches is fixed by the topological vacuum charge of the insulating BLG state. We discuss how these chiral states can manifest experimentally and emphasize their relevance for valleytronics. C1 [Martin, Ivar] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Blanter, Ya. M.; Morpurgo, A. F.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. RP Martin, I (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87544 USA. NR 23 TC 157 Z9 157 U1 5 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 036804 DI 10.1103/PhysRevLett.100.036804 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100076 PM 18233021 ER PT J AU Muller, H Chiow, SW Herrmann, S Chu, S Chung, KY AF Mueller, Holger Chiow, Sheng-wey Herrmann, Sven Chu, Steven Chung, Keng-Yeow TI Atom-interferometry tests of the isotropy of post-Newtonian gravity SO PHYSICAL REVIEW LETTERS LA English DT Article ID FINE-STRUCTURE CONSTANT; RELATIVISTIC GRAVITY AB We present a test of the local Lorentz invariance of post-Newtonian gravity by monitoring Earth's gravity with a Mach-Zehnder atom interferometer that features a resolution of up to 8x10(-9)g/root Hz, the highest reported thus far. Expressed within the standard model extension (SME) or Nordtvedt's anisotropic universe model, the analysis limits four coefficients describing anisotropic gravity at the ppb level and three others, for the first time, at the 10 ppm level. Using the SME we explicitly demonstrate how the experiment actually compares the isotropy of gravity and electromagnetism. C1 [Mueller, Holger; Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, Steven] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chung, Keng-Yeow] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. RP Muller, H (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM holgerm@stanford.edu RI Mueller, Holger/E-3194-2015 NR 30 TC 138 Z9 142 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 031101 DI 10.1103/PhysRevLett.100.031101 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100013 PM 18232958 ER PT J AU Osorio-Guillen, J Lany, S Zunger, A AF Osorio-Guillen, Jorge Lany, Stephan Zunger, Alex TI Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOPED TIO2; ROOM-TEMPERATURE; FILMS AB We identify two general types of electronic behaviors for transition-metal impurities that introduce excess electrons in oxides. (i) The dopants introduce resonant states inside the host conduction band and produce free electrons; (ii) the dopants introduce a deep gap state that carries a magnetic moment. By combining electronic structure calculations, thermodynamic simulations, and percolation theory, we quantify these behaviors for the case of column V-B dopants in anatase TiO(2). Showing behavior (i), Nb and Ta dopants can convert the insulator TiO(2) into a transparent conductor. Showing behavior (ii), V dopants could convert nonmagnetic TiO(2) into a ferromagnet. Whether a dopant shows behavior (i) or (ii) is encoded in its atomic d orbital energy. C1 [Osorio-Guillen, Jorge; Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Osorio-Guillen, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Osorio-Guillen, Jorge/B-7587-2008; Zunger, Alex/A-6733-2013; OI Osorio-Guillen, Jorge/0000-0002-7384-8999; Lany, Stephan/0000-0002-8127-8885 NR 27 TC 96 Z9 97 U1 1 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 036601 DI 10.1103/PhysRevLett.100.036601 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100069 PM 18233014 ER PT J AU Qin, H Guan, XY AF Qin, Hong Guan, Xiaoyin TI Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields SO PHYSICAL REVIEW LETTERS LA English DT Article AB A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods. C1 [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Guan, Xiaoyin] Beijing Univ, Dept Phys, Beijing 100871, Peoples R China. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 9 TC 43 Z9 43 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 035006 DI 10.1103/PhysRevLett.100.035006 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100048 PM 18232993 ER PT J AU Schmitz, L White, AE Carter, TA Peebles, WA Rhodes, TL Burrell, KH Solomon, W Staebler, GM AF Schmitz, L. White, A. E. Carter, T. A. Peebles, W. A. Rhodes, T. L. Burrell, K. H. Solomon, W. Staebler, G. M. TI Observation of reduced electron-temperature fluctuations in the core of H-mode plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC CONFINEMENT DEVICES; CYCLOTRON EMISSION; DIII-D; ANOMALOUS TRANSPORT; HEAT-TRANSPORT; TOKAMAK; TURBULENCE; FIELD; TRANSITION; PARTICLE AB Core electron-temperature fluctuations [0.5% <= (T) over tilde (e)/ T(e) <= 2%, k(theta)rho(s) <= 0.3 in neutral-beam-heated low confinement-mode (L-mode) plasmas] are observed to decrease by at least a factor of 4 in standard and quiescent high-confinement-mode (H-mode and QH-mode) regimes in the DIII-D tokamak (r/a=0.7). These fluctuations are attributed to ion temperature gradient (ITG) modes stabilized by rotational shear at the H-mode transition. The simultaneous reduction in electron heat diffusivity (chi(QH)(e)/chi(L)(e)< 0.25) suggests that T(e) fluctuations can contribute significantly to L-mode electron heat transport. C1 [Schmitz, L.; White, A. E.; Carter, T. A.; Peebles, W. A.; Rhodes, T. L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Burrell, K. H.; Staebler, G. M.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Schmitz, L (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. RI Carter, Troy/E-7090-2010; White, Anne/B-8990-2011 OI Carter, Troy/0000-0002-5741-0495; NR 29 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 035002 DI 10.1103/PhysRevLett.100.035002 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100044 PM 18232989 ER PT J AU Shiu, G Underwood, B Zurek, KM Walker, DGE AF Shiu, Gary Underwood, Bret Zurek, Kathryn M. Walker, Devin G. E. TI Probing the geometry of warped string compactifications at the Large Hadron Collider SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIMENSIONS; GRAVITY; FIELDS; MODEL AB Warped string compactifications, characterized by the nonsingular behavior of the metric in the infrared (IR), feature departures from the usual anti-de Sitter warped extra dimensions. We study the implications of the smooth IR cutoff for Randall-Sundrum- (RS-)type models. We find that the phenomenology of the Kaluza-Klein gravitons (including their masses and couplings) depends sensitively on the precise shape of the warp factor in the IR. In particular, we analyze the warped deformed conifold, find that the spectrum differs significantly from that of RS, and present a simple prescription (a mass-gap ansatz) that can be used to study the phenomenology of IR modifications to 5D warped extra dimensions. C1 [Shiu, Gary; Underwood, Bret; Zurek, Kathryn M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Walker, Devin G. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Walker, Devin G. E.] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Shiu, G (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. NR 28 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 031601 DI 10.1103/PhysRevLett.100.031601 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100016 PM 18232961 ER PT J AU Wan, WG Lapenta, G AF Wan, Weigang Lapenta, Giovanni TI Micro-macro coupling in plasma self-organization processes during island coalescence SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC RECONNECTION AB The collisionless island coalescence process is studied with particle-in-cell simulations, as an internal-driven magnetic self-organization scenario. The macroscopic relaxation time, corresponding to the total time required for the coalescence to complete, is found to depend crucially on the scale of the system. For small-scale systems, where the macroscopic scales and the dissipation scales are more tightly coupled, the relaxation time is independent of the strength of the internal driving force: the small-scale processes of magnetic reconnection adjust to the amount of the initial magnetic flux to be reconnected, indicating that at the microscopic scales reconnection is enslaved by the macroscopic drive. However, for large-scale systems, where the micro-macro scale separation is larger, the relaxation time becomes dependent on the driving force. C1 [Wan, Weigang; Lapenta, Giovanni] Los Alamos Natl Lab, Div Theoret, Ctr Plasma Selforganizat & Plasma Theory, Los Alamos, NM 87545 USA. [Lapenta, Giovanni] Catholic Univ Louvain, Dept Wiskunde, Ctr Plasma Astrofys, B-3001 Heverlee, Belgium. RP Wan, WG (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Plasma Selforganizat & Plasma Theory, Los Alamos, NM 87545 USA. OI Lapenta, Giovanni/0000-0002-3123-4024 NR 12 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 035004 DI 10.1103/PhysRevLett.100.035004 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100046 PM 18232991 ER PT J AU Yang, K Zhai, H AF Yang, Kun Zhai, Hui TI Quantum hall transition near a fermion Feshbach resonance in a rotating trap SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAS AB We consider two-species of fermions in a rotating trap that interact via an s-wave Feshbach resonance, at total Landau level filling factor two (or one for each species). We show that the system undergoes a quantum phase transition from a fermion integer quantum Hall state to a boson fractional quantum Hall state as the pairing interaction strength increases, with the transition occurring near the resonance. The effective field theory for the transition is shown to be that of a (emergent) massless relativistic bosonic field coupled to a Chern-Simons gauge field, with the coupling giving rise to semionic statistics to the emergent particles. C1 [Yang, Kun] Florida State Univ, NHMFL, Tallahassee, FL 32306 USA. [Yang, Kun] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Zhai, Hui] Tsing Hua Univ, Ctr Adv Study, Beijing 100084, Peoples R China. [Zhai, Hui] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhai, Hui] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, K (reprint author), Florida State Univ, NHMFL, Tallahassee, FL 32306 USA. RI Zhai, Hui/H-9496-2012; Yang, Kun/J-8956-2016 OI Zhai, Hui/0000-0001-8118-6027; NR 20 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 030404 DI 10.1103/PhysRevLett.100.030404 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100006 PM 18232951 ER PT J AU Yuan, F AF Yuan, Feng TI Asymmetric azimuthal distribution of hadrons inside a jet from hadron-hadron collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID DRELL-YAN PROCESSES; TRANSVERSE-SPIN ASYMMETRY; ODD PARTON DISTRIBUTIONS; FINAL-STATE INTERACTIONS; SINGLE-SPIN; PION-PRODUCTION; FRAGMENTATION; SCATTERING; MOMENTUM; PROTON AB We study the azimuthal asymmetric distribution of hadrons inside a high energy jet in the single-transverse polarized nucleon-nucleon scattering, coming from the Collins effect multiplied by the quark transversity distribution. We argue that the Collins function in this process is the same as that in the semi-inclusive deep inelastic scattering. The experimental study of this process will provide us with important information on the quark transversity distribution and test the universality of the fragmentation functions. C1 [Yuan, Feng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Yuan, F (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RI Yuan, Feng/N-4175-2013 NR 33 TC 43 Z9 43 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 25 PY 2008 VL 100 IS 3 AR 032003 DI 10.1103/PhysRevLett.100.032003 PG 4 WC Physics, Multidisciplinary SC Physics GA 255ZU UT WOS:000252698100024 PM 18232969 ER PT J AU Bouchard, LS Burt, SR Anwar, MS Kovtunov, KV Koptyug, IV Pines, A AF Bouchard, Louis-S. Burt, Scott R. Anwar, M. Sabieh Kovtunov, Kirill V. Koptyug, Igor V. Pines, Alexander TI NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen SO SCIENCE LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; PARAHYDROGEN-INDUCED POLARIZATION; FIXED-BED REACTOR; MRI; VISUALIZATION; MICROSCOPY; FUTURE; CHIP AB Catalysis is vital to industrial chemistry, and the optimization of catalytic reactors attracts considerable resources. It has proven challenging to correlate the active regions in heterogeneous catalyst beds with morphology and to monitor multistep reactions within the bed. We demonstrate techniques, using magnetic resonance imaging and para- hydrogen ( p-H(2)) polarization, that allow direct visualization of gas- phase flow and the density of active catalyst in a packed- bed microreactor, as well as control over the dynamics of the polarized state in space and time to facilitate the study of subsequent reactions. These procedures are suitable for characterizing reactors and reactions in microfluidic devices where low sensitivity of conventional magnetic resonance would otherwise be the limiting factor. C1 [Bouchard, Louis-S.; Burt, Scott R.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bouchard, Louis-S.; Burt, Scott R.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Anwar, M. Sabieh] Lahore Univ Management & Sci, Sch Sci & Engn, Lahore 54792, Pakistan. [Kovtunov, Kirill V.; Koptyug, Igor V.] Int Tomog Ctr, Novosibirsk 630090, Russia. RP Bouchard, LS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM louis.bouchard@gmail.com; pines@berkeley.edu RI Koptyug, Igor/F-6470-2014; OI Koptyug, Igor/0000-0003-3480-7649; Anwar, Muhammad Sabieh/0000-0001-5039-8828; Kovtunov, Kirill/0000-0001-7577-9619 NR 33 TC 115 Z9 116 U1 3 U2 89 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 25 PY 2008 VL 319 IS 5862 BP 442 EP 445 DI 10.1126/science.1151787 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 254HB UT WOS:000252576600031 PM 18218891 ER PT J AU Ishii, HA Bradley, JP Dai, ZR Chi, MF Kearsley, AT Burchell, MJ Browning, ND Molster, F AF Ishii, Hope A. Bradley, John P. Dai, Zu Rong Chi, Miaofang Kearsley, Anton T. Burchell, Mark J. Browning, Nigel D. Molster, Frank TI Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets SO SCIENCE LA English DT Article ID STARDUST; PARTICLES; SAMPLES; MINERALOGY; GRAINS AB The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials. C1 [Ishii, Hope A.; Bradley, John P.; Dai, Zu Rong; Chi, Miaofang; Browning, Nigel D.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Chi, Miaofang; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Kearsley, Anton T.] Nat Hist Museum, Dept Mineral, London SW7 5BD, England. [Burchell, Mark J.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. [Molster, Frank] NWO, NL-2593 HW The Hague, Netherlands. RP Ishii, HA (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. EM hope.ishii@llnl.gov RI Dai, Zurong/E-6732-2010; Chi, Miaofang/Q-2489-2015; OI Chi, Miaofang/0000-0003-0764-1567; Browning, Nigel/0000-0003-0491-251X; Burchell, Mark/0000-0002-2680-8943 NR 28 TC 143 Z9 143 U1 2 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 25 PY 2008 VL 319 IS 5862 BP 447 EP 450 DI 10.1126/science.1150683 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 254HB UT WOS:000252576600033 PM 18218892 ER PT J AU Crowhurst, JC Brown, JM Goncharov, AF Jacobsen, SD AF Crowhurst, J. C. Brown, J. M. Goncharov, A. F. Jacobsen, S. D. TI Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle SO SCIENCE LA English DT Article ID EARTHS LOWER MANTLE; SILICATE PEROVSKITE; POST-PEROVSKITE; MAGNESIOWUSTITE; SYSTEM AB Changes in the electronic configuration of iron at high pressures toward a spin- paired state within host minerals ferropericlase and silicate perovskite may directly influence the seismic velocity structure of Earth's lower mantle. We measured the complete elastic tensor of ferropericlase, (Mg1-x,Fe-x)O ( x = 0.06), through the spin transition of iron, whereupon the elastic moduli exhibited up to 25% softening over an extended pressure range from 40 to 60 gigapascals. These results are fully consistent with a simple thermodynamic description of the transition. Examination of previous compression data shows that the magnitude of softening increases with iron content up to at least x = 0.20. Although the spin transition in (Mg,Fe)O is too broad to produce an abrupt seismic discontinuity in the lower mantle, the transition will produce a correlated negative anomaly for both compressional and shear velocities that extends throughout most, if not all, of the lower mantle. C1 [Crowhurst, J. C.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. [Brown, J. M.] Univ Washington, Seattle, WA 98195 USA. [Goncharov, A. F.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Jacobsen, S. D.] Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. RP Crowhurst, JC (reprint author), Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. EM crowhurst1@llnl.gov RI Jacobsen, Steven/F-3443-2013 OI Jacobsen, Steven/0000-0002-9746-958X NR 19 TC 104 Z9 106 U1 5 U2 35 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 25 PY 2008 VL 319 IS 5862 BP 451 EP 453 DI 10.1126/science.1149606 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 254HB UT WOS:000252576600034 PM 18218893 ER PT J AU Leggett, RW AF Leggett, R. W. TI The biokinetics of inorganic cobalt in the human body SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE cobalt; inorganic; systemic; biokinetic; model; humans ID OXIDE PARTICLES; LUNG CLEARANCE; RADIATION-DOSIMETRY; TISSUE DISTRIBUTION; INHALED COBALT-60; IRON-DEFICIENCY; TERM RETENTION; URINARY COBALT; GUINEA-PIGS; HARD METAL AB This paper reviews information on the biological behavior of inorganic cobalt in humans and laboratory animals and proposes a model of the systemic biokinetics of inorganic cobalt in adult humans. The model was developed as part of an effort to update the models of the International Commission on Radiological Protection (ICRP) for addressing intakes of radionuclides by workers but is also applicable to environmental or medical exposures to inorganic forms of radiocobalt. The model can be used in conjunction with any respiratory, gastrointestinal, or wound model that provides predictions of the time-dependent feed of cobalt to blood. In contrast to the ICRP's current systemic model for cobalt, which is a simple open catenary system, the proposed model is constructed within a physiologically realistic framework that depicts recycling of cobalt between blood and tissues and transfer from blood to excretion pathways. Compared with the ICRP's current model, the proposed model yields similar predictions of whole-body retention but substantially different predictions of the systemic distribution of cobalt as a function of time after uptake to blood. Published by Elsevier B.V. C1 [Leggett, R. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Leggett, RW (reprint author), Oak Ridge Natl Lab, 1060 Commerce Pk, Oak Ridge, TN 37831 USA. EM rwl@ornl.gov NR 61 TC 39 Z9 41 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JAN 25 PY 2008 VL 389 IS 2-3 BP 259 EP 269 DI 10.1016/j.scitotenv.2007.08.054 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA 243WB UT WOS:000251826900006 PM 17920105 ER PT J AU Miyajima, K Knickelbein, MB Nakajima, A AF Miyajima, Ken Knickelbein, Mark B. Nakajima, Atsushi TI Stern-gerlach study of multidecker lanthanide-cyclooctatetraene sandwich clusters SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SOFT-LANDING ISOLATION; MAGNETIC-PROPERTIES; FERROMAGNETIC CLUSTERS; FREE COBALT; FREE-IRON; COMPLEXES; ANISOTROPY; BEHAVIOR; BEAMS; ATOM AB Multilayer lanthanide-cyclooctatetraene organometallic clusters, Ln(n)(C8H8) (Ln = Eu, Tb, Ho, Tm; n = 1-7; m = n - 1, n, n + 1) were produced by a laser vaporization synthesis method. The magnetic deflections of these organometallic sandwich clusters were measured by a molecular beam magnetic deflection technique. Most of the sandwich species displayed one-sided deflection, while some of smaller Ln-C8H8 clusters showed symmetric broadening without or with only very small (or absent) net high-field deflection. In general, the total magnetic moments, calculated from. the magnitude of the beams deflections, increase with the number of lanthanide atoms (i.e., with increasing sandwich layers); however for Tb-, Ho-, and Tm-C8H8 clusters with n > 3, the suppression of the magnetic moments was observed, possibly through antiferromagnetic interactions. For Eu-C8H8 clusters, we observe a linear increase of the magnetic moments with the number of Eu atoms up to n = 7, with average magnetic moment per Eu atom around 7 mu(B)-similar to that displayed by conventionally synthesized mononuclear (EuC8H8)-C-II complexes, indicating that Eu atoms exist as Eu2+ ions in the full sandwich Eu-n(C8H8)(n+1) clusters. These results suggest that Eu-n(C8H8)(n+1) is a promising candidate for a high-spin, one-dimensional building block in organometallic magnetic materials. C1 [Miyajima, Ken; Nakajima, Atsushi] Keio Univ, Fac Sci & Technol, Dept Chem, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Knickelbein, Mark B.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [Knickelbein, Mark B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Nakajima, Atsushi] Keio Univ, Japan Sci & Technol Agcy, Dept Chem, CREST, Yokohama, Kanagawa 2238522, Japan. RP Nakajima, A (reprint author), Keio Univ, Fac Sci & Technol, Dept Chem, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. EM nakajima@chem.keio.ac.jp RI Miyajima, Ken/C-8422-2013 OI Miyajima, Ken/0000-0002-5385-8911 NR 49 TC 40 Z9 41 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 24 PY 2008 VL 112 IS 3 BP 366 EP 375 DI 10.1021/jp0766196 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 252YH UT WOS:000252483300004 PM 18166028 ER PT J AU Groenewold, GS Gianotto, AK McIlwain, ME Van Stipdonk, MJ Kullman, M Moore, DT Polfer, N Oomens, J Infante, I Visscher, L Siboulet, B De Jong, WA AF Groenewold, Gary S. Gianotto, Anita K. McIlwain, Michael E. Van Stipdonk, Michael J. Kullman, Michael Moore, David T. Polfer, Nick Oomens, Jos Infante, Ivan Visscher, Lucas Siboulet, Bertrand De Jong, Wibe A. TI Infrared spectroscopy of discrete uranyl anion complexes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RESONANCE MASS-SPECTROMETRY; DENSITY-FUNCTIONAL CALCULATIONS; COLLISION-INDUCED DISSOCIATION; EFFECTIVE CORE POTENTIALS; SELF-CONSISTENT-FIELD; GAS-PHASE; ELECTRONIC-STRUCTURE; AQUEOUS-SOLUTION; RAMAN-SPECTRA; ELECTROSPRAY-IONIZATION AB The Free-Electron Laser for Infrared Experiments (FELIX) was used to study the wavelength-resolved multiple photon photodissociation of discrete, gas-phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO(2)A(S)(n)](+), where A was hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO(2)A](+)) were as low or lower than measurements for [UO2](2+) ligated with as many as five strong neutral donor ligands and are comparable to solution-phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm(-1) higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO(2)A](+) produced [UO(2)AS](+), which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO(2)AS](+) were in accord with trends in the data and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared. for [UO(2)AS](+) species having different solvent neutrals, values decreased with increasing neutral nucleophilicity. C1 [Groenewold, Gary S.; Gianotto, Anita K.; McIlwain, Michael E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Van Stipdonk, Michael J.; Kullman, Michael] Wichita State Univ, Wichita, KS USA. [Moore, David T.; Polfer, Nick; Oomens, Jos] FOM Inst Plasmagusica Rijnhuizen, Nieuwegein, Netherlands. [Infante, Ivan; Visscher, Lucas] Vrije Univ Amsterdam, Amsterdam, Netherlands. [Siboulet, Bertrand] CEA Marcoule, DEN DRCP SCPS, F-30207 Bagnols Sur Ceze, France. [De Jong, Wibe A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Groenewold, GS (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM gary.groenewold@inl.gov RI Moore, David/A-7393-2008; DE JONG, WIBE/A-5443-2008; Visscher, Lucas/A-3523-2010; Infante, Ivan/A-1912-2011; Oomens, Jos/F-9691-2015 OI DE JONG, WIBE/0000-0002-7114-8315; Visscher, Lucas/0000-0002-7748-6243; Infante, Ivan/0000-0003-3467-9376; NR 98 TC 38 Z9 38 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 24 PY 2008 VL 112 IS 3 BP 508 EP 521 DI 10.1021/jp077309q PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 252YH UT WOS:000252483300020 PM 18163602 ER PT J AU Harding, LB Klippenstein, SJ Miller, JA AF Harding, Lawrence B. Klippenstein, Stephen J. Miller, James A. TI Kinetics of CH+N-2 revisited with multireference methods SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TRANSITION-STATE THEORY; CORRELATED MOLECULAR CALCULATIONS; POTENTIAL-ENERGY SURFACE; NITROGEN-OXIDE FORMATION; REFERENCE WAVE-FUNCTIONS; GAUSSIAN-BASIS SETS; PROMPT-NO FORMATION; TEMPERATURE-DEPENDENCE; REACTION CH(X2-PI)+N2(X1-SIGMA-G+)->HCN(X1-SIGMA+)+N(4S); PERTURBATION-THEORY AB The potential energy surface for the CH + N-2 reaction was reexamined with multireference ab initio electronic structure methods employing basis sets up to aug-cc-pvqz. Comparisons with related CCSD(T) calculations were also made. The multireference ab initio, calculations indicate significant shortcomings in single reference based methods for two key rate-limiting transition states. Transition state theory calculations incorporating the revised best estimates for the transition state properties provide order of magnitude changes in the predicted rate coefficient in the temperature range of importance to the mechanism for prompt NO formation. At higher temperatures, two distinct pathways make a significant contribution to the kinetics. A key part of the transition state analysis involves a variable reaction coordinate transition state theory treatment for the formation of H + NCN from HNCN. The present predictions for the rate coefficients resolve the discrepancy between prior theory and very recent experimental measurements. C1 [Harding, Lawrence B.; Klippenstein, Stephen J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Miller, James A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Harding, LB (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM harding@anl.gov OI Klippenstein, Stephen/0000-0001-6297-9187 NR 53 TC 40 Z9 41 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 24 PY 2008 VL 112 IS 3 BP 522 EP 532 DI 10.1021/jp077526r PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 252YH UT WOS:000252483300021 PM 18171038 ER PT J AU Borodin, O Smith, GD Sewell, TD Bedrov, D AF Borodin, Oleg Smith, Grant D. Sewell, Thomas D. Bedrov, Dmitry TI Polarizable and nonpolarizable force fields for alkyl nitrates SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PENTAERYTHRITOL TETRANITRATE; MOLECULAR-DYNAMICS; ENERGETIC MATERIALS; PETN; PRESSURE; CRYSTALS; COMPRESSION; PARAMETERS; HMX AB Quantum-chemistry-based many-body polarizable and two-body nonpolarizable atomic force fields were developed for alkyl nitrate liquids and pentaerythritol tetranitrate (PETN) crystal. Bonding, bending, and torsional parameters, partial charges, and atomic polarizabilities for the polarizable force field were determined from gas-phase quantum chemistry calculations for alkyl nitrate oligomers and PETN performed at the MP2/aug-cc-pvDz level of theory. Partial charges for the nonpolarizable force field were determined by fitting the dipole moments and electrostatic potential to values for PETN molecules in the crystal phase obtained from molecular dynamics simulations using the polarizable force field. Molecular dynamics simulations of alkyl nitrate liquids and two polymorphs of PETN crystal demonstrate the ability of the quantum-chemistry-based force fields to accurately predict thermophysical and mechanical properties of these materials. C1 [Borodin, Oleg; Smith, Grant D.; Bedrov, Dmitry] Wasatch Mol Incorp, Salt Lake City, UT 84108 USA. [Borodin, Oleg; Smith, Grant D.; Bedrov, Dmitry] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Sewell, Thomas D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Borodin, O (reprint author), Wasatch Mol Incorp, 2141 E St Marys Dr, Salt Lake City, UT 84108 USA. EM Oleg.Borodin@utah.edu RI Borodin, Oleg/B-6855-2012 OI Borodin, Oleg/0000-0002-9428-5291 NR 37 TC 25 Z9 25 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 24 PY 2008 VL 112 IS 3 BP 734 EP 742 DI 10.1021/jp076149f PG 9 WC Chemistry, Physical SC Chemistry GA 252YP UT WOS:000252484200012 PM 18085767 ER PT J AU Treger, JS Ma, VY Gao, Y Wang, CC Wang, HL Johal, MS AF Treger, Jeremy S. Ma, Vincent Y. Gao, Yuan Wang, Chun-Chih Wang, Hsing-Lin Johal, Malkiat S. TI Tuning the optical properties of a water-soluble cationic poly(p-phenylenevinylene): Surfactant complexation with a conjugated polyelectrolyte SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIGHT-EMITTING-DIODES; SOLAR-CELLS; POLYMERS; PPV; PHOTOOXIDATION; FLUORESCENCE AB In this work, we investigate the emission and absorbance proper-ties of the novel water-soluble cationic conjugated polymer poly{2,5-bis[3-(N,N,N-triethylammonium bromide)-1-oxapropyl]-1,4-phenylenevinylene}, denoted here as P2, in the presence of varying amounts of the anionic surfactant sodium dodecylsulfate (SDS). We show that the absolute photoluminescence quantum efficiency (PLQE), the absorption wavelength, and the emission wavelength of an aqueous solution of P2 can be adjusted according to the surfactant/polymer ratio in aqueous solution. In particular, we show that the addition of SDS to P2 increases the polyelectrolyte's PLQE to similar to 40%. An observed red shift in the emission spectra upon addition of the surfactant is attributed to the reduction in electrostatic repulsive interactions between side chains that minimize the benzene ring twisting along the backbone structure. At the surfactant's critical micelle concentration, the P2 chains wrap around the outer surface of the SDS micelles. This work has implications on the development of new stable poly(p-phenylenevinylene)-based photovoltaic and electroluminescent materials with tunable optical properties. C1 [Treger, Jeremy S.; Ma, Vincent Y.; Johal, Malkiat S.] Pomona Coll, Dept Chem, Claremont, CA 91711 USA. [Gao, Yuan; Wang, Chun-Chih; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Johal, MS (reprint author), Pomona Coll, Dept Chem, 645 N Coll Ave, Claremont, CA 91711 USA. EM malkiat.johal@pomona.edu NR 19 TC 40 Z9 40 U1 4 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 24 PY 2008 VL 112 IS 3 BP 760 EP 763 DI 10.1021/jp0767765 PG 4 WC Chemistry, Physical SC Chemistry GA 252YP UT WOS:000252484200016 PM 18171048 ER PT J AU Sabo, D Varma, S Martin, MG Rempe, SB AF Sabo, Dubravko Varma, Sameer Martin, Marcus G. Rempe, Susan B. TI Studies of the thermodynamic properties of hydrogen gas in bulk water SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID QUASI-CHEMICAL THEORY; INITIO MOLECULAR-DYNAMICS; ROTATIONAL RAMAN-SPECTRUM; HYDRATION FREE-ENERGIES; MONTE-CARLO METHOD; HYDROPHOBIC SOLVATION; CLATHRATE HYDRATE; PHASE-EQUILIBRIA; LENGTH SCALES; LIQUID WATER AB The thermodynamic properties of hydrogen gas in liquid water are investigated using Monte Carlo molecular simulation and the quasichemical theory of liquids. The free energy of hydrogen hydration obtained by Monte Carlo simulations agrees well with the experimental result, indicating that the classical force fields used in this work provide an adequate description of intermolecular interactions in the aqueous hydrogen system. Two estimates of the hydration free energy for hydrogen made within the framework of the quasichemical theory also agree reasonably well with experiment provided local anharmonic motions and distant interactions with explicit solvent are treated. Both quasichemical estimates indicate that the hydration free energy results from a balance between chemical association and molecular packing. Additionally, the results suggest that the molecular packing term is almost equally driven by unfavorable enthalpic and entropic components. C1 [Sabo, Dubravko; Varma, Sameer; Martin, Marcus G.; Rempe, Susan B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rempe, SB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dsabo@sandia.gov; alrempe@sandia.gov RI Rempe, Susan/H-1979-2011 NR 72 TC 20 Z9 20 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 24 PY 2008 VL 112 IS 3 BP 867 EP 876 DI 10.1021/jp075459v PG 10 WC Chemistry, Physical SC Chemistry GA 252YP UT WOS:000252484200029 PM 18154326 ER PT J AU Wick, CD Dang, LX AF Wick, Collin D. Dang, Liem X. TI Molecular dynamics study of ion transfer and distribution at the interface of water and 1,2-dichlorethane SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Letter ID LIQUID-LIQUID INTERFACE; VAPOR INTERFACE; CONFORMATIONAL EQUILIBRIA; 1,2-DICHLOROETHANE; SIMULATIONS; MEMBRANES; MECHANISM; CLUSTERS; PROTEINS; BINDING AB Molecular dynamics simulations were carried out to study the transfer of cesium and chloride ions across the H2O-1,2-dichloroethane (DCE) interface. The free energy of transfer for the ions agreed very well with experiment. In addition, cesium had a free energy minimum near the H2O-DCE interface, showing a propensity for the aqueous region near the H2O-DCE interface. However, the density and free energy profile for the chloride ion showed it was somewhat repelled from the H2O-DCE interface. We found that DCE had an average interfacial orientation that resulted in unfavorable interactions with anions but favorable ones with cations, causing the observed ion interfacial behavior. This study shows that DCE has favorable interfacial properties for cation extraction, but less favorable ones for chloride ion extraction. C1 [Wick, Collin D.; Dang, Liem X.] Louisiana Tech Univ, Dept Chem, Richland, WA 99352 USA. [Wick, Collin D.; Dang, Liem X.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dang, LX (reprint author), Louisiana Tech Univ, Dept Chem, Richland, WA 99352 USA. EM liem.dang@pnl.gov NR 28 TC 27 Z9 27 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 24 PY 2008 VL 112 IS 3 BP 647 EP 649 DI 10.1021/jp076608c PG 3 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 252YN UT WOS:000252484000001 ER PT J AU Liu, YS Luo, WQ Li, RF Liu, GK Antonio, MR Chen, XY AF Liu, Yongsheng Luo, Wenqin Li, Renfu Liu, Guokui Antonio, Mark R. Chen, Xueyuan TI Optical spectroscopy of Eu3+ doped ZnO nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RARE-EARTH IONS; ABSORPTION FINE-STRUCTURE; PHOTOLUMINESCENCE PROPERTIES; LUMINESCENCE PROPERTIES; ENERGY-TRANSFER; SEMICONDUCTOR NANOCRYSTALS; ENHANCED LUMINESCENCE; SPONTANEOUS EMISSION; SURROUNDING MEDIA; ZINC-OXIDE AB The energy levels and local structures of Eu3+ incorporated in the lattice and surface sites of ZnO nanocrystals were investigated based on the high-resolution fluorescence spectra at 10 K. Radiative emissions from 5 D, were first observed for Eu3+ at the lattice site of ZnO. It is shown that the site symmetry of Eu3+ at the lattice site descends from C-3v to C-s or C-1, whereas Eu3+ ions at the surface occupy more disordered sites of the lowest symmetry C1. The luminescence decay of 5 Do at the lattice site, showing a rise time and longer lifetime, behaves distinctly from that of the surface sites. Because of a small filling factor (52%) of nanoparticles, the D-5(0) lifetime of Eu3+ is significantly affected by the surrounding medium, which can be well interpreted with the virtual-cavity model. The Judd-Ofelt intensity parameters of Eu3+ in ZnO nanocrystals were determined, with Omega(2.4,6) values of (9.59, 8.11, < 0.25) and (21.51, 2.30, < 0.25) in units of 10(-20) cm(2) for Eu3+ at the surface and lattice sites, respectively. A defect-mediated energy transfer from the ZnO band gap to Eu3+ was observed. The growth mechanism for the incorporation of EU3+ into the ZnO lattice was also revealed. C1 [Liu, Yongsheng; Luo, Wenqin; Li, Renfu; Chen, Xueyuan] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Peoples R China. [Liu, Guokui; Antonio, Mark R.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Chen, XY (reprint author), Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Peoples R China. EM xchen@fjirsm.ac.cn RI Chen, Xueyuan/C-5613-2012; Li, Renfu/O-1949-2015; Liu, Yongsheng/G-7003-2014; OI Chen, Xueyuan/0000-0003-0493-839X; Li, Renfu/0000-0003-1133-9109; Liu, Yongsheng/0000-0001-6222-5641; Antonio, Mark/0000-0002-1208-4534 NR 61 TC 143 Z9 145 U1 3 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 24 PY 2008 VL 112 IS 3 BP 686 EP 694 DI 10.1021/jp077001z PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 252YN UT WOS:000252484000008 ER PT J AU Nieto, MM AF Nieto, Michael Martin TI New Horizons and the onset of the Pioneer anomaly SO PHYSICS LETTERS B LA English DT Article ID EXPLANATION AB Analysis of the radio tracking data from the Pioneer 10/11 spacecraft at distances between about 20-70 AU from the Sun has indicated the presence of an unmodeled, small, constant, Doppler blue shift which can be interpreted as a constant acceleration of a(P) = (8.74 +/- 1.33) X 10(-8) cm/s(2) directed approximately towards the Sun. In addition, there is early (roughly modeled) data from as close in as 5 AU which indicates there may have been an onset of the anomaly near Saturn. We observe that the data now arriving from the New Horizons mission to Pluto and the Kuiper Belt could allow a relatively easy, direct experimental test of whether this onset is associated with distance from the Sun (being, for example, an effect of drag on dark matter). We strongly urge that this test be done. (c) 2007 Elsevier B.V. All rights reserved. C1 [Nieto, Michael Martin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Nieto, MM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM mmn@lanl.gov NR 10 TC 13 Z9 13 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2008 VL 659 IS 3 BP 483 EP 485 DI 10.1016/j.physletb.2007.11.067 PG 3 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 258NJ UT WOS:000252874300006 ER PT J AU Airapetian, A Akopov, N Akopov, Z Aschenauer, EC Augustyniak, W Avetissian, A Avetissian, E Barion, L Belostotski, S Bianchi, N Blok, HP Bottcher, H Bonomo, C Borissov, A Bryzgalov, V Burns, J Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R Demey, M De Nardo, L De Sanctis, E Diefenthaler, M Di Nezza, P Dreschler, J Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Fabbri, R Fantoni, A Frullani, S Gabbert, D Gapienko, G Gapienko, V Garibaldi, F Gavrilov, G Gharibyan, V Giordano, E Gliske, S Guler, H Hadjidakis, C Hasch, D Hill, G Hillenbrand, A Hoek, M Hristova, I Ilyichev, A Imazu, Y Ivanilov, A Jackson, HE Joosten, S Kaiser, R Keri, T Kinney, E Kisselev, A Kopytin, M Korotkov, V Kravchenko, P Krivokhijine, VG Lagamba, L Lamb, R Lapikas, L Lehmann, I Lenisa, P Linden-Levy, LA Ruiz, AL Lorenzon, W Lu, S Lu, X Mahon, D Makins, NCR Marianski, B Marukyan, H Miller, CA Miyachi, Y Muccifora, V Murray, M Mussgiller, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Pickert, N Raithel, M Reimer, PE Reolon, AR Riedl, C Rith, K Rock, SE Rosner, G Rostomyan, A Rubacek, L Rubin, J Ryckbosch, D Salomatin, Y Schafer, A Schnell, G Schuler, KP Seitz, B Shearer, C Shibata, TA Shutov, V Stancari, M Statera, M Steijger, JJM Stenzel, H Stewart, J Stinzing, E Streit, J Taroian, S Thomas, E Trzcinski, A Tytgat, M Vandenbroucke, A Van der Nat, PB Van Der Steenhoven, G Van Haarlem, Y Van Hulse, C Varanda, M Veretennikov, D Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenko, S Ye, H Ye, Z Yen, S Yu, W Zeiler, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Aschenauer, E. C. Augustyniak, W. Avetissian, A. Avetissian, E. Barion, L. Belostotski, S. Bianchi, N. Blok, H. P. Bottcher, H. Bonomo, C. Borissov, A. Bryzgalov, V. Burns, J. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. Demey, M. De Nardo, L. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dreschler, J. Duren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Fabbri, R. Fantoni, A. Frullani, S. Gabbert, D. Gapienko, G. Gapienko, V. Garibaldi, F. Gavrilov, G. Gharibyan, V. Giordano, E. Gliske, S. Guler, H. Hadjidakis, C. Hasch, D. Hill, G. Hillenbrand, A. Hoek, M. Hristova, I. Ilyichev, A. Imazu, Y. Ivanilov, A. Jackson, H. E. Joosten, S. Kaiser, R. Keri, T. Kinney, E. Kisselev, A. Kopytin, M. Korotkov, V. Kravchenko, P. Krivokhijine, V. G. Lagamba, L. Lamb, R. Lapikas, L. Lehmann, I. Lenisa, P. Linden-Levy, L. A. Ruiz, A. Lopez Lorenzon, W. Lu, S. Lu, X. Mahon, D. Makins, N. C. R. Marianski, B. Marukyan, H. Miller, C. A. Miyachi, Y. Muccifora, V. Murray, M. Mussgiller, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W. -D. Pappalardo, L. L. Perez-Benito, R. Pickert, N. Raithel, M. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rock, S. E. Rosner, G. Rostomyan, A. Rubacek, L. Rubin, J. Ryckbosch, D. Salomatin, Y. Schafer, A. Schnell, G. Schuler, K. P. Seitz, B. Shearer, C. Shibata, T. -A. Shutov, V. Stancari, M. Statera, M. Steijger, J. J. M. Stenzel, H. Stewart, J. Stinzing, E. Streit, J. Taroian, S. Thomas, E. Trzcinski, A. Tytgat, M. Vandenbroucke, A. Van der Nat, P. B. Van der Steenhoven, G. Van Haarlem, Y. Van Hulse, C. Varanda, M. Veretennikov, D. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenko, S. Ye, H. Ye, Z. Yen, S. Yu, W. Zeiler, D. Zihlmann, B. Zupranski, P. TI Cross sections for hard exclusive electroproduction of pi(+) mesons on a hydrogen target SO PHYSICS LETTERS B LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; PION FORM-FACTOR; PHYSICS EVENT GENERATION; IMPACT PARAMETER SPACE; TO-LEADING ORDER; RESONANCE REGION; HIGH-ENERGY; SCATTERING; GEV2; QCD AB The exclusive electroproduction of pi(+) mesons was studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off an internal hydrogen gas target. The virtual-photon cross sections were measured as a function of the Mandelstarn variable t and the squared four momentum -Q(2) of the exchanged virtual photon. A model calculation based on Generalized Parton Distributions is in fair agreement with the data at low values of It I if power corrections are included. A model calculation based on the Regge formalism gives a good description of the magnitude and the t and Q(2) dependences of the cross section. (c) 2007 Elsevier B.V. All rights reserved. C1 [Ellinghaus, F.; Kinney, E.] Univ Colorado, Phys Nucl Lab, Boulder, CO 80309 USA. [Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Lagamba, L.; Vilardi, I.] Ist Nazl Fis Nucl, Sezione Bari, I-70124 Bari, Italy. [Wang, S.; Ye, H.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [De Nardo, L.; Gavrilov, G.; Schuler, K. P.; Varanda, M.; Ye, Z.] DESY, D-22603 Hamburg, Germany. [Aschenauer, E. C.; Bottcher, H.; Fabbri, R.; Gabbert, D.; Guler, H.; Hristova, I.; Kopytin, M.; Negodaev, M.; Nowak, W. -D.] DESY, D-15738 Zeuthen, Germany. [Krivokhijine, V. G.; Shutov, V.] Joint Nucl Res Inst, R-141980 Dubna, Russia. [Diefenthaler, M.; Hillenbrand, A.; Mussgiller, A.; Nass, A.; Pickert, N.; Raithel, M.; Rith, K.; Stinzing, E.; Vogel, C.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Barion, L.; Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, E.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Ist Nazl Fis Nucl, Dipartimento Fis, Sezione Ferrara, I-44100 Ferrara, Italy. [Avetissian, E.; Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Riedl, C.; Thomas, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Joosten, S.; Ruiz, A. Lopez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Zihlmann, B.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Duren, M.; Ehrenfried, M.; Ilyichev, A.; Keri, T.; Lu, S.; Perez-Benito, R.; Rubacek, L.; Stenzel, H.; Streit, J.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany. [Borissov, A.; Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.; Shearer, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Kisselev, A.; Lamb, R.; Linden-Levy, L. A.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Deconinck, W.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Blok, H. P.; Demey, M.; Dreschler, J.; Lapikas, L.; Steijger, J. J. M.; Van der Nat, P. B.; Van der Steenhoven, G.] Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Gavrilov, G.; Kisselev, A.; Kravchenko, P.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, R-188350 Gatchina, Russia. [Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, R-142281 Moscow, Russia. [Schafer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, Ist Nazl Fis Nucl, Sezione Roma 1, Grp Sanita & Phys Lab, I-00161 Rome, Italy. [Gavrilov, G.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Imazu, Y.; Lu, X.; Miyachi, Y.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland. [Akopov, N.; Akopov, Z.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Marukyan, H.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Kinney, E (reprint author), Univ Colorado, Phys Nucl Lab, Boulder, CO 80309 USA. EM edward.kinney@colorado.edu RI Deconinck, Wouter/F-4054-2012; Gavrilov, Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014; Cisbani, Evaristo/C-9249-2011; Lyu, Xiao-Rui/H-4080-2014; OI Cisbani, Evaristo/0000-0002-6774-8473; Lyu, Xiao-Rui/0000-0001-5689-9578; Lagamba, Luigi/0000-0002-0233-9812; Deconinck, Wouter/0000-0003-4033-6716 NR 43 TC 34 Z9 34 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2008 VL 659 IS 3 BP 486 EP 492 DI 10.1016/j.physletb.2007.11.079 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 258NJ UT WOS:000252874300007 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clement, B Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M Da Motta, H Das, A Davies, G De, K De Jong, SJ De Jong, P De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkantaz, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, E Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Hossain, S Hodben, P Hu, Y Hubacek, Z Hynek, V Lashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lazoflores, J Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajiceki, M Lounis, A Love, P Lubattid, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Michaut, M Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pompos, A Pope, BG Popov, AV Potter, C Da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smimov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Telford, P Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B Van den Berg, PJ Van Eiik, B Van Kooten, R Van Leeuwen, WM Varelas, N Varnes, EW Vasilye, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, E Vint, P Vokac, P Von Toerne, E Voutilainen, M Vreeswijk, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, A White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, A Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clement, B. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. Da Motta, H. Das, A. Davies, G. De, K. De Jong, S. J. De Jong, P. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkantaz, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, E. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grunendahl, S. Grunewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Hossain, S. Hodben, P. Hu, Y. Hubacek, Z. Hynek, V. Lashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kafer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajiceki, M. Lounis, A. Love, P. Lubattid, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Mattig, P. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Michaut, M. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Garzon, G. J. Otero Y. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. Da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smimov, D. Snow, J. Snow, G. R. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Strohmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Telford, P. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. Van den Berg, P. J. Van Eiik, B. Van Kooten, R. Van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilye, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, E. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, A. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, A. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for the lightest scalar top quark in events with two leptons in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article AB Data collected by the DO detector at a p (p) over bar center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider have been used to search for pair production of the lightest supersymmetric partner of the top quark decaying into bl (nu) over tilde. The search is performed in the ll' = e mu and mu mu final states. No evidence for this process has been found in data samples of approximately 400 pb(-1). The domain in the [M((t) over tilde (1)), M((nu) over tilde)] plane excluded at the 95% C.L. is substantially extended by this search. (c) 2007 Elsevier B.V. All rights reserved. C1 [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.; Souza, M.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Molina, J.; Mundim, L.; Da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.; Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB T6G 2M7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ H3A 2T5, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ Prague, Prague, Czech Republic. [Kupco, A.; Lokajiceki, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Alton, A.; Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom Cosmol, Grenoble, France. [Barfuss, A. -F.; Berntzon, L.; Calvet, S.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Mendes, A.; Nagy, E.] Univ Aix Marseille 2, CNRS, CPPM, IN2P3, Marseille, France. [Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Makovec, N.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, Orsay, France. [Andrieu, B.; Bassler, U.; Bernardi, G.; Deliot, F.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Michaut, M.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA Saclay, Serv Phys Particles, DAPNIA, Saclay, France. [Bloch, D.; Charles, F.; Clement, B.; Geist, W.; Gele, D.; Lounis, A.; Ripp-Baudot, I.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, CNRS, IN2P3, IPNL, Lyon, France. [Autermann, C.; Hebbeker, T.; Kafer, D.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Inst Phys, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, Bonn, Germany. [Bernhard, R.; Fu, S.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, D-7800 Freiburg, Germany. [Ay, C.; Kuhl, T.; Trefzger, T.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Fiedler, F.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Schieferdecker, P.; Strohmer, R.; Tiller, B.] Univ Munich, D-80539 Munich, Germany. [Hoeth, H.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Gesamthsch Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Biscarat, C.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi, India. [Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay, Maharashtra, India. [Cwiok, M.; Grunewald, M. W.] Univ Coll Dublin, Dublin, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.; Kim, H.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City, DF, Mexico. [Bos, K.; Caron, S.; De Jong, P.; Hegeman, J. G.; Hodben, P.; Van den Berg, P. J.; Van Eiik, B.; Van Leeuwen, W. M.; Vreeswijk, M.] Univ Amsterdam, FOM, NIKHEF H, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; Filthaut, E.; Galea, C. F.; Kirby, M. H.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Nucl Res Inst, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow, Russia. [Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Khalatyan, N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilye, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.] Inst Phys Nucl, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; De Jong, S. J.; Gollub, N.; Hansson, P.; Strandberg, S.] Lund Univ, S-22100 Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; De Jong, S. J.; Gollub, N.; Hansson, P.; Strandberg, S.] Univ Stockholm, Royal Inst Technol, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; De Jong, S. J.; Gollub, N.; Hansson, P.; Strandberg, S.] Uppsala Univ, S-75105 Uppsala, Sweden. [Lehner, F.] Univ Zurich, Inst Phys, CH-8006 Zurich, Switzerland. [Bertram, I.; Borissov, G.; Burdin, S.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ London Imperial Coll Sci & Technol, London, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Lewis, P.; Lobo, L.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, E.; Vint, P.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Ford, M.; Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soldner-Rembold, S.; Telford, P.; Wyatt, T. R.] Univ Arizona, Tucson, AZ 85721 USA. [Anderson, S.; Burke, S.; Cheu, E.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Hall, R. E.] Univ Calif Riverside, Riverside, CA 92521 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, J.; Wimpenny, S. J.] Florida State Univ, Tallahassee, FL 32306 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Diesburg, M.; Duggan, D.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fuess, S.; Gallas, E.; Gershtein, Y.; Greenlee, H.; Grunendahl, S.; Gutierrez, G.; Hagopian, S.; Hanagaki, K.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P.; Kau, D.; Klima, B.; Lazoflores, J.; Prosper, H. B.; Sekaric, J.; Sengupta, S.; Sumowidagdo, S.; Wahl, H. D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Garzon, G. J. Otero Y.; Shabalina, E.; Stone, A.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bagby, L.; Blazey, G.; Chakraborty, D.; Dyshkantaz, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Van Kooten, R.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Galyaev, E.; Hildreth, M. D.; Mal, P. K.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smimov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Cason, N. M.; Chan, K. M.; Goussiou, A.; Lam, D.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, A.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, A.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Das, A.; Heintz, U.; Jabeen, S.; Kasper, J.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De la Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Lashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Begel, M.; Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Kahn, S.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Kopal, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Casey, B. C. K.; Christofek, L.; Cutts, D.; Enari, Y.; Hooper, R.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Brown, D.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Buehler, M.; Hirosky, R.; Kryemadhi, A.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Gadfort, T.; Garcia-Bellido, A.; Lubattid, H. J.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Bargassa, P (reprint author), Rice Univ, Houston, TX 77005 USA. EM bargassa@cem.ch RI Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311 NR 25 TC 12 Z9 12 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2008 VL 659 IS 3 BP 500 EP 508 DI 10.1016/j.physletb.2007.11.086 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 258NJ UT WOS:000252874300009 ER PT J AU Voloshin, SA Poskanzer, AM Tang, A Wang, G AF Voloshin, Sergei A. Poskanzer, Arthur M. Tang, Aihong Wang, Gang TI Elliptic flow in the Gaussian model of eccentricity fluctuations SO PHYSICS LETTERS B LA English DT Article ID COLLISIONS AB We discuss a specific model of elliptic flow fluctuations due to Gaussian fluctuations in the initial spatial x and y eccentricity components {<(sigma(2)(y) - sigma(2)(x))/(sigma(2)(x) + sigma(2)(y))>,< 2 sigma(y)(x)/(sigma(2)(x) + sigma(2)(y))>} We find that in this model nu(2){4}, elliptic flow determined from 4-particle cumulants, exactly equals the average flow value in the reaction plane coordinate system, < V-RP >, the relation which, in an approximate form, was found earlier by Bhalerao and Ollitrault in a more general analysis, but under the same assumption that nu(2) is proportional to the initial system eccentricity. We further show that in the Gaussian model all higher order cumulants are equal to nu(2){4}. Analysis of the distribution in the magnitude of the flow vector, the Q-distribution, reveals that it is totally defined by two parameters, nu(2){2}, the flow from 2-particle cumulants, and nu(2){4}, thus providing equivalent information compared to the method of cumulants. The flow obtained from the Q-distribution is again nu(2){4} = < V-RP >. (c) 2007 Elsevier B.V. All rights reserved. C1 [Voloshin, Sergei A.] Wayne State Univ, Detroit, MI 48201 USA. [Poskanzer, Arthur M.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tang, Aihong] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wang, Gang] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Voloshin, SA (reprint author), Wayne State Univ, Detroit, MI 48201 USA. EM voloshin@wayne.edu RI Voloshin, Sergei/I-4122-2013 NR 15 TC 96 Z9 96 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2008 VL 659 IS 3 BP 537 EP 541 DI 10.1016/j.physletb.2007.11.043 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 258NJ UT WOS:000252874300015 ER PT J AU Ping, J Deng, C Wang, F Goldman, T AF Ping, Jialun Deng, Chengrong Wang, Fan Goldman, T. TI Quantum chromodynamic quark benzene SO PHYSICS LETTERS B LA English DT Article DE QCD benzene; six-quark states; color structure; string models ID NUCLEON-NUCLEON-SCATTERING; MODEL AB A six-quark state with the benzene-like color structure based on a color string model is proposed and studied. Calculation with quadratic confinement with multi-string junctions shows that such a state has a ground state energy similar to that of other hidden color six-quark states proposed so far. Its possible effect on N N scattering is discussed. (c) 2007 Elsevier B.V. All rights reserved. C1 [Ping, Jialun; Deng, Chengrong] Nanjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China. [Ping, Jialun] Shandong Univ, Sch Phys & Mircoelect, Jinan 280000, Peoples R China. [Wang, Fan] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Goldman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ping, J (reprint author), Nanjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China. EM jlping@njnu.edu.cn NR 30 TC 11 Z9 12 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2008 VL 659 IS 3 BP 607 EP 611 DI 10.1016/j.physletb.2007.11.051 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 258NJ UT WOS:000252874300026 ER PT J AU Song, T Park, Y Lee, SH Wong, CY AF Song, Taesoo Park, Yongjae Lee, Su Houng Wong, Cheuk-Yin TI The thermal width of heavy quarkonia moving in quark-gluon plasma SO PHYSICS LETTERS B LA English DT Article DE quark-gluon plasma; J/psi suppression; heavy quarkonia; perturbative QCD; dissociation cross section; thermal width ID ANOMALOUS J/PSI SUPPRESSION; NUCLEUS-NUCLEUS COLLISIONS; SHORT-DISTANCE ANALYSIS; PB-PB INTERACTIONS; LATTICE QCD; 158 GEV/C; EQUILIBRATION; SPS; DECONFINEMENT; SYSTEMS AB The velocity dependence of the thermal width of heavy quarkonia traveling with respect to the quark-gluon plasma is calculated up to the NLO in perturbative QCD. At the LO, the width decreases with increasing speed, whereas at the NLO it increases with a magnitude approximately proportional to the expectation value of the relative velocity between the quarkonium and a parton in thermal equilibrium. Such an asymptotic behavior is due to the NLO dissociation cross section converging to a nonvanishing value in the high energy limit. (c) 2007 Elsevier B.V. All rights reserved. C1 [Song, Taesoo; Park, Yongjae; Lee, Su Houng] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. [Wong, Cheuk-Yin] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Song, T (reprint author), Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. EM songtsoo@yonsei.ac.kr; sfy@yonsei.ac.kr; suhoung@phya.yonsei.ac.kr; cyw@oml.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 NR 43 TC 22 Z9 22 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 24 PY 2008 VL 659 IS 3 BP 621 EP 627 DI 10.1016/j.physletb.2007.11.084 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 258NJ UT WOS:000252874300028 ER PT J AU Karki, AB Gautreaux, DP Chan, JY Harrison, N Browne, DA Goodrich, RG Young, DP AF Karki, A. B. Gautreaux, D. P. Chan, J. Y. Harrison, N. Browne, D. A. Goodrich, R. G. Young, D. P. TI Magnetotransport properties and the Fermi surface of single crystal VB2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DIBORIDES; ZRB2 AB We report the results of magnetotransport and de Haas-van Alphen (dHvA) measurements on high quality single crystals of VB2 grown from a molten aluminum flux. In addition, we compare these results to energy band calculations. At low temperature the magnetoresistance of VB2 is very large (similar to 1100%) and is found to be extremely sensitive to sample quality (RRR value). A large anisotropy in the magnetoresistance is observed. For the field applied along the a-axis, the magnetoresistance increases as the square of the field without saturation, consistent with the presence of open orbits. The field dependence of the magnetoresistance for the field applied along the c-axis is much weaker. C1 [Karki, A. B.; Browne, D. A.; Goodrich, R. G.; Young, D. P.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Gautreaux, D. P.; Chan, J. Y.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Harrison, N.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Young, DP (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM dyoung@rouge.phys.lsu.edu RI Chan, Julia/C-5392-2008; OI Chan, Julia/0000-0003-4434-2160; Harrison, Neil/0000-0001-5456-7756 NR 15 TC 3 Z9 3 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 23 PY 2008 VL 20 IS 3 AR 035209 DI 10.1088/0953-8984/20/03/035209 PG 5 WC Physics, Condensed Matter SC Physics GA 259EW UT WOS:000252922900019 ER PT J AU Wu, J Choi, J Krupin, O Rotenberg, E Wu, YZ Qiu, ZQ AF Wu, J. Choi, J. Krupin, O. Rotenberg, E. Wu, Y. Z. Qiu, Z. Q. TI Retrieving the energy band of Cu thin films using quantum well states SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID FERMI-SURFACE; PHOTOEMISSION; COPPER; SYSTEM; AG AB Angle-resolved photoemission electron spectroscopy (ARPES) measurement was performed on epitaxially grown Cu/Co/Cu(001) films to observe the quantum well (QW) states due to the electron confinement inside the Cu film by the Cu/Co and Cu/vacuum interfaces. By studying the in-plane dispersion of the QW states, we find a nearly isotropic electronic structure in the neck region of the Fermi surface. Based on the quantization condition, we achieve a model-free method for obtaining the copper energy band E(k(perpendicular to), k(parallel to)) and the energy contour near the Fermi energy. The result is in good agreement with theoretical calculations of the bulk copper energy band, showing that there is no significant difference in the energy bands between the bulk and thin film copper. This method can be generalized to measure energy bands of other metallic films using the QW states. C1 [Wu, J.; Choi, J.; Wu, Y. Z.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Krupin, O.; Rotenberg, E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Wu, Y. Z.] Fudan Univ, Surface Phys Lab Natl Key Lab, Shanghai 200433, Peoples R China. RP Wu, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI wu, YiZheng/O-1547-2013; Rotenberg, Eli/B-3700-2009; Wu, yizheng/P-2395-2014; Qiu, Zi Qiang/O-4421-2016; Wu, Junqiao/G-7840-2011 OI Rotenberg, Eli/0000-0002-3979-8844; Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714; Wu, Junqiao/0000-0002-1498-0148 NR 22 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 23 PY 2008 VL 20 IS 3 AR 035213 DI 10.1088/0953-8984/20/03/035213 PG 6 WC Physics, Condensed Matter SC Physics GA 259EW UT WOS:000252922900023 ER PT J AU Lee, SJ Mulfort, KL Zuo, X Goshe, AJ Wesson, PJ Nguyen, ST Hupp, JT Tiede, DM AF Lee, Suk Joong Mulfort, Karen L. Zuo, Xiaobing Goshe, Andrew J. Wesson, Paul J. Nguyen, SonlBinh T. Hupp, Joseph T. Tiede, David M. TI Coordinative self-assembly and solution-phase X-ray structural characterization of cavity-tailored porphyrin boxes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRIANGLE-SQUARE EQUILIBRIUM; MOLECULAR SQUARE; THIN-FILMS; COMPLEXES; UNITS; DIFFRACTION; RECEPTORS; CATALYSIS; MO-2(4+); ENZYMES AB Combining linear Zn porphyrin trimers with orthogonally derivatized porphyrin dimers leads rapidly and spontaneously to the formation of monodisperse, torsionally constrained boxes comprising six components and a total of 16 metalloporphyrins. In situ X-ray scattering measurements confirm the formation of monodisperse assemblies of precisely the size expected from model box structures. While simple subunits yield highly symmetrical boxes, we find that sterically demanding subunits produce unusual twisted boxes. Previous studies of porphyrin-based box-like assemblies (squares) for selective catalysis and molecular sieving revealed two function-inhibiting structural problems: torsional motion along the metal-porphyrin-metal axis and ambiguous outside versus inside functionalizalion (via axial ligation of available Zn(II) sites). The new 16-porphyrin box assemblies eliminate both problems. C1 [Lee, Suk Joong; Mulfort, Karen L.; Nguyen, SonlBinh T.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wesson, Paul J.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Mulfort, Karen L.; Zuo, Xiaobing; Goshe, Andrew J.; Tiede, David M.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Lee, SJ (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM j-hupp@northwestern.edu RI Wesson, Paul/A-5714-2009; Hupp, Joseph/K-8844-2012; Nguyen, SonBinh/C-1682-2014; OI Hupp, Joseph/0000-0003-3982-9812; Nguyen, SonBinh/0000-0002-6977-3445; Zuo, Xiaobing/0000-0002-0134-4804 NR 48 TC 51 Z9 52 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 23 PY 2008 VL 130 IS 3 BP 836 EP + DI 10.1021/ja077661h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 252DW UT WOS:000252426300025 PM 18163633 ER PT J AU Fister, TT Vila, FD Seidler, GT Svec, L Linehan, JC Cross, JO AF Fister, Timothy T. Vila, Fernando D. Seidler, Gerald T. Svec, Lukas Linehan, John C. Cross, Julie O. TI Local electronic structure of dicarba-closo-dodecarboranes C2B10H12 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID X-RAY-SCATTERING; INNER-SHELL EXCITATION; GENERALIZED OSCILLATOR-STRENGTHS; CRYSTALLINE BORON NANOWIRES; IMPACT CORE EXCITATION; RAMAN-SCATTERING; POLYHEDRAL BORANES; 3-DIMENSIONAL AROMATICITY; BONDING CHANGES; HIGH-PRESSURE AB We report nonresonant inelastic X-ray scattering (NRIXS) measurement of core-shell excitations from both B 1s and C 1s initial states in all three isomers of the dicarba-closo-dodecarboranes C2B10H12. First, these data yield an experimental determination of the angular-momentum-projected final local density of states (I-DOS). We find low-energy resonances with distinctive local s- or p-type character, providing a more complete experimental characterization of bond hybridization than is available from dipole-transition limited techniques, such as X-ray absorption spectroscopies. This analysis is supported by independent density functional theory and real-space full multiple scattering calculation of the I-DOS which yield a clear distinction between tangential and radial contributions. Second, we investigate the isomer sensitivity of the NRIXS signal and compare and contrast these results with prior electron energy loss spectroscopy measurements. This work establishes NRIXS as a valuable tool for borane chemistry, not only for the unique spectroscopic capabilities of the technique but also through its compatibility with future studies in solution or in high-pressure environments. In addition, this work also establishes the real-space full multiple scattering approach as a useful alternative to traditional approaches for excited states calculations of aromatic polyhedral boranes and related systems. C1 [Fister, Timothy T.; Vila, Fernando D.; Seidler, Gerald T.; Svec, Lukas] Univ Washington, Dept Phys, Seattle, WA 98105 USA. [Linehan, John C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cross, Julie O.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98105 USA. EM seidler@phys.washington.edu RI Seidler, Gerald/I-6974-2012 FU NCRR NIH HHS [RR-01209] NR 100 TC 31 Z9 31 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 23 PY 2008 VL 130 IS 3 BP 925 EP 932 DI 10.1021/ja074794u PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 252DW UT WOS:000252426300037 PM 18163617 ER PT J AU Brinas, RP Hu, MH Qian, LP Lymar, ES Hainfeld, JF AF Brinas, Raymond P. Hu, Minghui Qian, Luping Lymar, Elena S. Hainfeld, James F. TI Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRONIC ABSORPTION; AU-197 MOSSBAUER; MCD SPECTRA; COMPLEXES; PROTEINS; NANOCRYSTALS; DERIVATIVES; MOLECULES; REDUCTION; MECHANISM AB We developed a method in preparing size-controllable gold nanoparticles (Au NPs, 2-6 nm) capped with glutathione by varying the pH (between 5.5 and 8.0) of the solution before reduction. This method is based on the formation of polymeric nanoparticle precursors, Au(I)-glutathione polymers, which change size and density depending on the pH. Dynamic light scattering, size exclusion chromatography, and UV-vis spectroscopy results suggest that lower pH values favor larger and denser polymeric precursors and higher pH values favor smaller and less dense precursors. Consequently, the larger precursors led to the formation of larger Au NPs, whereas smaller precursors led to the formation of smaller Au NPs. Using this strategy, Au NPs functionalized with nickel(II) nitriloacetate (Ni-NTA) group were prepared by a mixed-ligand approach. These Ni-NTA functionalized Au NPs exhibited specific binding to 6x-histidine-tagged Adenovirus serotype 12 knob proteins, demonstrating their utility in biomolecular labeling applications. C1 [Brinas, Raymond P.; Hu, Minghui; Qian, Luping; Lymar, Elena S.; Hainfeld, James F.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Hainfeld, JF (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM Hainfeld@bnl.gov FU NCRR NIH HHS [P41 RR001777, P41 RR001777-190001, R01 RR017545, R01 RR017545-05, R01RR017545]; NIBIB NIH HHS [P41 EB002181, P41EB002181] NR 43 TC 107 Z9 108 U1 8 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 23 PY 2008 VL 130 IS 3 BP 975 EP 982 DI 10.1021/ja076333e PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 252DW UT WOS:000252426300042 PM 18154334 ER PT J AU Wilson, AD Fraze, K Twamley, B Miller, SM DuBois, DL DuBois, MR AF Wilson, Aaron D. Fraze, Kendra Twamley, Brendan Miller, Susie M. DuBois, Daniel L. DuBois, M. Rakowski TI The role of the second coordination sphere of [Ni((P2N2Bz)-N-Cy)(2)](BF4)(2) in reversible carbon monoxide binding SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PENDANT NITROGEN BASES; DIPHOSPHINE LIGANDS; MOLECULAR-STRUCTURE; HYDROGEN OXIDATION; CHROMATIUM-VINOSUM; CO DEHYDROGENASE; COMPLEXES; NICKEL(II); SITE; NI AB The complex [Ni((P2N2Bz)-N-Cy)(2)](BF4)(2), 1, reacts rapidly and reversibly with carbon monoxide (1 atm) at 25 degrees C to form [Ni(CO)((P2N2Bz)-N-Cy)(2)](BF4)(2), 2, which has been characterized by spectroscopic data and by an X-ray diffraction study. In contrast, analogous Ni(II) carbonyl adducts were not observed in studies of several other related nickel(II) diphosphine complexes. The unusual reactivity of 1 is attributed to a complex interplay of electronic and structural factors, with an important contribution being the ability of two positioned amines in the second coordination sphere to act in concert to stabilize the CO adduct. The proposed interaction is supported by X-ray diffraction data for 2 which shows that all of the chelate rings of the cyclic ligands are in boat conformations, placing two pendant amines close (3.30 and 3.38 angstrom) to the carbonyl carbon. Similar close C-N interactions are observed in the crystal structure of the more sterically demanding isocyanide adduct, [Ni(CNCy)((P2N2Bz)-N-Cy)(2)](2)(BF4)(2), 4. The data suggest a weak electrostatic interaction between the lone pairs of the nitrogen atoms and the positively charged carbon atom of the carbonyl or isocyanide ligand, and illustrate a novel (non-hydrogen bonding) second coordination sphere effect in controlling reactivity. C1 [DuBois, Daniel L.; DuBois, M. Rakowski] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Wilson, Aaron D.; Fraze, Kendra] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Miller, Susie M.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Twamley, Brendan] Univ Idaho, Dept Chem, Moscow, ID 83844 USA. RP DuBois, MR (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM mary.rakowskidubois@pnl.gov RI Wilson, Aaron/C-4364-2008 OI Wilson, Aaron/0000-0001-5865-6537 NR 40 TC 48 Z9 48 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 23 PY 2008 VL 130 IS 3 BP 1061 EP 1068 DI 10.1021/ja077328d PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 252DW UT WOS:000252426300051 PM 18163630 ER PT J AU Teng, XW Wang, Q Liu, P Han, W Frenkel, A Wen, W Marinkovic, N Hanson, JC Rodriguez, JA AF Teng, Xiaowei Wang, Qi Liu, Ping Han, Weiqiang Frenkel, Anatoly Wen, Wen Marinkovic, Nebojsa Hanson, Jonathan C. Rodriguez, Jose A. TI Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; FUEL-CELL APPLICATIONS; BIMETALLIC NANOPARTICLES; METAL NANOSTRUCTURES; STRUCTURAL-ANALYSIS; HOLLOW INTERIORS; PALLADIUM-GOLD; CLUSTERS; CATALYSTS; GROWTH AB Bimetallic nanostructures with non-random metal atoms distribution are very important for various applications. To synthesize such structures via benign wet chemistry approach remains challenging. This paper reports a synthesis of a Au/Pd alloy nanostructure through the galvanic replacement reaction between Pd ultrathin nanowires (2.4 +/- 0.2 nm in width, over 30 nm in length) and AuCl3 in toluene. Both morphological and structural changes were monitored during the reaction up to 10 h. Continuous changes of chemical composition and crystalline structure from Pd nanowires to Pd68Au32 and Pd45Au55 alloys, and to Au nanoparticles were observed. More interestingly, by using combined techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), UV-vis absorption, and extended X-ray absorption fine structure (EXAFS) spectroscopy, we found the formation of Pd68Au32 non-random alloy with Au-rich core and Pd-rich shell, and random Pd45Au55 alloy with uniformly mixed Pd and Au atom inside the nanoparticles, respectively. Density functional theory (DFT) calculations indicated that alkylamine will strongly stabilize Pd to the surface, resulting in diffusion of Au atoms into the core region to form a non-random alloy. We believe such benign synthetic techniques can also enable the large scale preparation of various types of non-random alloys for several technically important catalysis applications. C1 [Teng, Xiaowei; Liu, Ping; Han, Weiqiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wang, Qi; Frenkel, Anatoly] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. [Liu, Ping; Wen, Wen; Hanson, Jonathan C.; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Marinkovic, Nebojsa] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. RP Han, W (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov; anatoly.frenkel@yu.edu RI Hanson, jonathan/E-3517-2010; Frenkel, Anatoly/D-3311-2011; Wang, Qi/C-5478-2012; Han, WQ/E-2818-2013; Marinkovic, Nebojsa/A-1137-2016 OI Frenkel, Anatoly/0000-0002-5451-1207; Marinkovic, Nebojsa/0000-0003-3579-3453 NR 55 TC 86 Z9 86 U1 9 U2 128 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 23 PY 2008 VL 130 IS 3 BP 1093 EP 1101 DI 10.1021/ja077303e PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 252DW UT WOS:000252426300055 PM 18161978 ER PT J AU Rose, F Fujita, H Kawakatsu, H AF Rose, F. Fujita, H. Kawakatsu, H. TI Real-time observation of FIB-created dots and ripples on GaAs SO NANOTECHNOLOGY LA English DT Article ID FOCUSED ION-BEAM; SPUTTERED SURFACES; NANODOTS; GROWTH; INP AB We report a phenomenological study of Ga dots and ripples created by a focused ion beam (FIB) on the GaAs(001) surface. Real-time observation of dot diffusion and ripple formation was made possible by recording FIB movies. In the case of FIB irradiation with a 40 nA current of Ga(+) ions accelerated under 40 kV with an incidence angle of theta = 30 degrees, increasing ion dose gives rise to three different regimes. In Regime 1, dots with lateral sizes in the range 50-460 nm are formed. Dots diffuse under continuous sputtering. In Regime 2, dots self-assemble into Bradley and Harper (BH) type ripples with a pseudo-period of lambda = 1150 +/- 25 nm. In Regime 3, ripples are eroded and the surface topology evolves into microplanes. In the case of normal incidence, FIB sputtering leads only to the formation of dots, without surface rippling. C1 [Rose, F.; Fujita, H.; Kawakatsu, H.] Univ Tokyo, Inst Ind Sci, Ctr Natl Rech Sci, Lab Integrated Micro Mechatron Syst,UMI 2820,Megu, Tokyo 1538505, Japan. [Rose, F.; Fujita, H.; Kawakatsu, H.] Univ Tokyo, Inst Ind Sci, Ctr Int Res Micro Mechatron, Meguro Ku, Tokyo 1538505, Japan. [Kawakatsu, H.] Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Kawaguchi, Saitama 3320012, Japan. RP Rose, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,Mailstop 66RO200, Berkeley, CA 94720 USA. EM frose@lbl.gov NR 27 TC 12 Z9 12 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JAN 23 PY 2008 VL 19 IS 3 AR 035301 DI 10.1088/0957-4484/19/03/035301 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 259UZ UT WOS:000252967700004 PM 21817564 ER PT J AU Valles, Y Halanych, KM Boore, JL AF Valles, Yvonne Halanych, Kenneth M. Boore, Jeffrey L. TI Group II Introns Break New Boundaries: Presence in a Bilaterian's Genome SO PLOS ONE LA English DT Article AB Group II introns are ribozymes, removing themselves from their primary transcripts, as well as mobile genetic elements, transposing via an RNA intermediate, and are thought to be the ancestors of spliceosomal introns. Although common in bacteria and most eukaryotic organelles, they have never been reported in any bilaterian animal genome, organellar or nuclear. Here we report the first group II intron found in the mitochondrial genome of a bilaterian worm. This location is especially surprising, since animal mitochondrial genomes are generally distinct from those of plants, fungi, and protists by being small and compact, and so are viewed as being highly streamlined, perhaps as a result of strong selective pressures for fast replication while establishing germ plasm during early development. This intron is found in the mtDNA of an annelid worm, (an undescribed species of Nephtys), where the complete sequence revealed a 1819 bp group II intron inside the cox1 gene. We infer that this intron is the result of a recent horizontal gene transfer event from a viral or bacterial vector into the mitochondrial genome of Nephtys sp. Our findings hold implications for understanding mechanisms, constraints, and selective pressures that account for patterns of animal mitochondrial genome evolution C1 [Valles, Yvonne; Boore, Jeffrey L.] Joint Genome Inst, Dept Energy DOE, Walnut Creek, CA USA. [Valles, Yvonne; Boore, Jeffrey L.] Univ Calif Berkley, Dept Integrat Biol, Berkeley, CA USA. [Halanych, Kenneth M.] Auburn Univ, Life Sci Dept, Auburn, AL USA. [Boore, Jeffrey L.] Genome Proj Solution, Hercules, CA USA. RP Boore, JL (reprint author), Joint Genome Inst, Dept Energy DOE, Walnut Creek, CA USA. EM JLBoore@Genome-ProjectSolutions.com RI Halanych, Ken/A-9480-2009 OI Halanych, Ken/0000-0002-8658-9674 FU U.S. National Science Foundation [EAR-0120646]; U. S. Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This study was supported by a grant from the U.S. National Science Foundation EAR-0120646 (to KMH and JLB). Part of this work was performed under the auspices of the U. S. Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 41 TC 45 Z9 46 U1 2 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 23 PY 2008 VL 3 IS 1 AR e1488 DI 10.1371/journal.pone.0001488 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 366SO UT WOS:000260503900033 PM 18213396 ER PT J AU Das, R Baird, E Allen, S Baird, B Holowka, D Goldstein, B AF Das, Raibatak Baird, Emily Allen, Scott Baird, Barbara Holowka, David Goldstein, Byron TI Binding mechanisms of PEGylated ligands reveal multiple effects of the PEG scaffold SO BIOCHEMISTRY LA English DT Article ID FC-EPSILON-RI; CELL-SURFACE; TYROSINE PHOSPHORYLATION; RECEPTOR AGGREGATION; BIVALENT LIGANDS; CROSS-LINKING; IGE; COMPLEXES; HAPTENS; ACTIVATION AB A series of synthetic ligands consisting of poly(ethylene glycol) (PEG), capped on one or both ends with the hapten 2,4-dinitrophenyl (DNP), were previously shown to be potent inhibitors of cellular activation in RBL mast cells stimulated by a multivalent antigen [Baird, E. J., Holowka, D., Coates, G. W., and Baird, B. (2003) Biochemistry 42, 12739-12748]. In this study, we systematically investigated the effect of increasing length of the PEG scaffold on the binding of these monovalent and bivalent ligands to anti-DNP IgE in solution. Our analysis reveals evidence for an energetically favorable interaction between two monovalent ligands bound to the same receptor, when the PEG molecular mass exceeds similar to 5 kDa. Additionally, for ligands with much higher molecular masses (> 10 kDa PEG), the binding of a single ligand apparently leads to a steric exclusion of the second binding site by the bulky PEG scaffold. These results are further corroborated by data from an alternate fluorescence-based assay that we developed to quantify the capacity of these ligands to displace a small hapten bound to IgE. This new assay monitors the displacement of a small, receptor-bound hapten by a competitive monovalent ligand and thus quantifies the competitive inhibition offered by a monovalent ligand. We also show that, for bivalent ligands, inhibitory capacity is correlated with the capacity to form effective intramolecular cross-links with IgE. C1 [Goldstein, Byron] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Das, Raibatak; Baird, Emily; Allen, Scott; Baird, Barbara; Holowka, David] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. RP Goldstein, B (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, T-10 MS K710, Los Alamos, NM 87545 USA. EM bxg@lanl.gov FU NIAID NIH HHS [R01-AI22449]; NIGMS NIH HHS [R37-GM035556] NR 25 TC 9 Z9 9 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JAN 22 PY 2008 VL 47 IS 3 BP 1017 EP 1030 DI 10.1021/bi702094j PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 251ZV UT WOS:000252415500017 PM 18154361 ER PT J AU Press, JZ De Luca, A Boyd, N Young, S Troussard, A Ridge, Y Kaurah, P Kalloger, SE Blood, KA Smith, M Spellman, PT Wang, Y Miller, DM Horsman, D Faham, M Gilks, CB Gray, J Huntsman, DG AF Press, Joshua Z. De Luca, Alessandro Boyd, Niki Young, Sean Troussard, Armelle Ridge, Yolanda Kaurah, Pardeep Kalloger, Steve E. Blood, Katherine A. Smith, Margaret Spellman, Paul T. Wang, Yuker Miller, Dianne M. Horsman, Doug Faham, Malek Gilks, C. Blake Gray, Joe Huntsman, David G. TI Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities SO BMC CANCER LA English DT Article ID CANCER SUSCEPTIBILITY GENE; GYNECOLOGIC-ONCOLOGY-GROUP; FAMILIAL BREAST-CANCER; PHOSPHATIDYLINOSITOL 3-KINASE; SEROUS CARCINOMA; PROMOTER HYPERMETHYLATION; ENDOMETRIAL CARCINOMA; EXPRESSION PROFILES; SOMATIC MUTATIONS; GERMLINE BRCA1 AB Background: Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. Methods: A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Results: Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumours were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumours with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. Conclusion: High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways. C1 [De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Blood, Katherine A.; Horsman, Doug; Gilks, C. Blake; Huntsman, David G.] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC V5Z 1M9, Canada. [Press, Joshua Z.] Univ British Columbia, Dept Obstet & Gynecol, Vancouver, BC V5Z 1M9, Canada. [Young, Sean; Ridge, Yolanda; Kaurah, Pardeep; Huntsman, David G.] Univ British Columbia, Hereditary Canc Program, Vancouver, BC V5Z 1M9, Canada. [Kalloger, Steve E.; Gilks, C. Blake; Huntsman, David G.] Vancouver Gen Hosp, Genet Pathol Evaluat Ctr Prostate Ctr, Vancouver, BC, Canada. [Smith, Margaret; Horsman, Doug] Royal Melbourne Hosp, Parkville, Vic 3050, Australia. [Spellman, Paul T.; Gray, Joe] Univ Calif San Francisco, Lawrence Berkeley Natl Lab, Div Life Sci, San Francisco, CA 94143 USA. [Wang, Yuker; Faham, Malek] Affymetrix Inc, San Francisco, CA USA. [Miller, Dianne M.] Univ British Columbia, Dept Gynecol Oncol, Vancouver, BC V5Z 1M9, Canada. RP Gilks, CB (reprint author), Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC V5Z 1M9, Canada. EM drjpress@telus.net; alessandro.deluca@vch.ca; nboyd@bccancer.bc.ca; syoung@bccancer.bc.ca; atroussa@bccrc.ca; yridge@bccancer.bc.ca; pkaurah@bccancer.bc.ca; skalloger@mac.com; kblood@bccrc.ca; margie.smith@mh.org.au; ptspellman@lbl.gov; Yuker_Wang@affymetrix.com; Dianne.Miller@vch.ca; DHorsman@bccancer.bc.ca; Malek_Faham@affymetrix.com; Blake.Gilks@vch.ca; JWGray@lbl.gov; dhuntsma@bccancer.bc.ca RI Kalloger, Steve/B-3949-2010 FU NCI NIH HHS [P01 CA 64602, P01 CA064602, P50 CA 58207, P50 CA058207, P50 CA083639, P50 CA83639] NR 81 TC 164 Z9 166 U1 0 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2407 J9 BMC CANCER JI BMC Cancer PD JAN 22 PY 2008 VL 8 AR 17 DI 10.1186/1471-2407-8-17 PG 12 WC Oncology SC Oncology GA 268RJ UT WOS:000253596800001 PM 18208621 ER PT J AU Hu, JB Wu, YK Li, JZ Qian, XG Fu, ZQ Sha, BD AF Hu, Junbin Wu, Yunkun Li, Jingzhi Qian, Xinguo Fu, Zhengqing Sha, Bingdong TI The crystal structure of the putative peptide-binding fragment from the human Hsp40 protein Hdj1 SO BMC STRUCTURAL BIOLOGY LA English DT Article ID MOLECULAR CHAPERONES; SUBSTRATE-BINDING; SACCHAROMYCES-CEREVISIAE; DNAJ HOMOLOG; HSP70; SIS1; IDENTIFICATION; MODELS; REGION; CELL AB Background: The mechanism by which Hsp40 and other molecular chaperones recognize and interact with non-native polypeptides is a fundamental question. How Hsp40 co-operates with Hsp70 to facilitate protein folding is not well understood. To investigate the mechanisms, we determined the crystal structure of the putative peptide-binding fragment of Hdj1, a human member of the type II Hsp40 family. Results: The 2.7 angstrom structure reveals that Hdj1 forms a homodimer in the crystal by a crystallographic two-fold axis. The Hdj1 dimer has a U-shaped architecture and a large cleft is formed between the two elongated monomers. When compared with another Hsp40 Sis1 structure, the domain I of Hdj1 is rotated by 7.1 degree from the main body of the molecule, which makes the cleft between the two Hdj1 monomers smaller that that of Sis1. Conclusion: This structural observation indicates that the domain I of Hsp40 may possess significant flexibility. This flexibility may be important for Hsp40 to regulate the size of the cleft. We propose an "anchoring and docking" model for Hsp40 to utilize the flexibility of domain I to interact with non-native polypeptides and transfer them to Hsp70. C1 [Hu, Junbin; Wu, Yunkun; Li, Jingzhi; Qian, Xinguo; Sha, Bingdong] Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA. [Fu, Zhengqing] Argonne Natl Lab, SER CAT, APS, Argonne, IL 60439 USA. RP Sha, BD (reprint author), Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA. EM hujunbin@uab.edu; ykwu@uab.edu; jingzhiglow@yahoo.com; xgqian@yahoo.com; fuzq@anl.gov; bdsha@uab.edu FU NIDDK NIH HHS [R01 DK056203]; NIGMS NIH HHS [R01 GM65959, R01 GM065959]; PHS HHS [R01 DDK56203] NR 27 TC 16 Z9 16 U1 1 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2237 J9 BMC STRUCT BIOL JI BMC Struct. Biol. PD JAN 22 PY 2008 VL 8 AR 3 DI 10.1186/1472-6807-8-3 PG 9 WC Biophysics SC Biophysics GA 272NL UT WOS:000253866000001 PM 18211704 ER PT J AU Bogle, KA Ghosh, S Dhole, SD Bhoraskar, VN Fu, LF Chi, MF Browning, ND Kundaliya, D Das, GP Ogale, SB AF Bogle, Kashinath A. Ghosh, Saurabh Dhole, Sanjay D. Bhoraskar, Vasant N. Fu, Lian-feng Chi, Miao-Fang Browning, Nigel D. Kundaliya, Darshan Das, Gour P. Ogale, Satishchandra B. TI Co : CdS diluted magnetic semiconductor nanoparticles: Radiation synthesis, dopant-defect complex formation, and unexpected magnetism SO CHEMISTRY OF MATERIALS LA English DT Article ID OPTICAL-PROPERTIES; CADMIUM-SULFIDE; QUANTUM DOTS; NANOCRYSTALS; PARTICLES; CLUSTERS; OXIDES; SIZE; FERROMAGNETISM; EXCHANGE AB Incorporating a dopant into a nanoparticle is a nontrivial proposition in view of the size dependent surface versus bulk energy considerations and the intrinsic proximity of the surface to the interior, which facilitates migration to the surface. If realized and controlled, however, it can open up new avenues to novel nanomaterials. Some previous studies have shown the dopability of nanosystems but only with specific surface functionalization. Here, we demonstrate the successful dopant incorporation via a new route of pulsed high energy electron induced synthesis. We choose a system Co:CdS (dilutely cobalt doped cadmium sulfide) in view of the well-known application-worthy properties of CdS and the potential possibility of its conversion to a diluted magnetic semiconductor of interest to spintronics. By using various techniques, we show that matrix incorporation and uniform distribution of cobalt are realized in US nanocrystals without the need for additional chemical or physical manipulation. Optical and photoluminescence properties also support dopant incorporation. Interestingly, although magnetism is realized, it is weak, and it decreases at higher cobalt concentration. First principle density functional calculations are performed to understand this counterintuitive behavior. These calculations suggest that the introduction of parent cation or anion vacancies lead to magnetic moment reduction, albeit marginally. However, with some Co impurity fraction in the octahedral interstitial site inside the wurtzite cage, the magnetic moment drops down drastically. This study reveals that defect states may have an interesting role in dopant stabilization in nanosystems, with interesting system dependent consequences for the properties. C1 [Ogale, Satishchandra B.] Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India. [Bogle, Kashinath A.; Dhole, Sanjay D.; Bhoraskar, Vasant N.] Univ Poona, Dept Phys, Pune 411007, Maharashtra, India. [Ghosh, Saurabh; Das, Gour P.] Indian Assoc Cultivat Sci, Kolkata 700032, India. [Fu, Lian-feng; Chi, Miao-Fang; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Kundaliya, Darshan] Univ Maryland, Ctr Superconduct Res, College Pk, MD 20742 USA. RP Ogale, SB (reprint author), Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India. EM sb.ogale@ncl.res.in RI Ghosh, A./C-3207-2009; Chi, Miaofang/Q-2489-2015; OI Ghosh, A./0000-0003-4713-9854; Chi, Miaofang/0000-0003-0764-1567; Browning, Nigel/0000-0003-0491-251X NR 47 TC 35 Z9 36 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JAN 22 PY 2008 VL 20 IS 2 BP 440 EP 446 DI 10.1021/cm702118w PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 252AA UT WOS:000252416000015 ER PT J AU Hinklin, TR Laine, RM AF Hinklin, T. R. Laine, R. M. TI Synthesis of metastable phases in the magnesium spinel-alumina system SO CHEMISTRY OF MATERIALS LA English DT Article ID FLAME SPRAY-PYROLYSIS; METAL OXIDE NANOPOWDERS; MICROSTRUCTURE EVOLUTION; MECHANICAL-PROPERTIES; MGAL2O4 SPINEL; SOL-GEL; LF-FSP; PRECURSORS; ALKOXIDE; BEHAVIOR AB We report here the use of liquid-feed flame spray pyrolysis to produce 14 nanopowders along the Al2O3-MgAl2O4 tie-line by combusting varied ratios of aerosolized ethanol solutions of alumatrane [Al(OCH2CH2)(3)N] and magnesium acetylacetonate [Mg(C5H7O2)(2)]. The resulting nanopowders were characterized by X-ray fluorescence, N-2 adsorption (Brunauer-Emmett-Teller), scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The powders typically consist of single-crystal particles of < 30 nm diameter and specific surface areas of 30-80 m(2)/g. Complementary XRD and FTIR studies show a gradual change in the powder patterns and spectra from delta-Al2O3 to MgAl2O4, Intermediate compositions exhibit phases that fall well outside of the established phase diagram and provide insight into the structure of transition aluminas. These materials have been shown to exhibit novel photonic behavior and have potential value as a new catalyst or support. C1 [Hinklin, T. R.; Laine, R. M.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Hinklin, TR (reprint author), Sandia Natl Labs, 1001 Univ Blvd, Albuquerque, NM 87106 USA. EM thinkli@sandia.gov NR 37 TC 19 Z9 20 U1 5 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JAN 22 PY 2008 VL 20 IS 2 BP 553 EP 558 DI 10.1021/cm702388g PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 252AA UT WOS:000252416000029 ER EF