FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Chen, J AF Chen, Jiayun TI Directed flow of identified particles from Au plus Au collisions at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY JUN 24-29, 2007 CL Levoca, SLOVAKIA SP Inst Expt Phys Slovak Acad Sci, Fac Sci PJ Safarik Univ ID QUARK-GLUON PLASMA; ANISOTROPIC FLOW AB We present p, (p) over bar, Lambda, (Lambda) over bar and K-s(0) directed flow in Au+Au collisions at root s(NN) = 62 GeV and root s(NN) = 200 GeV, measured by the STAR experiment. To improve the event plane resolution, we determine the event plane from sideward deflection of spectator neutrons measured by STAR's shower maximum detector at zero degree calorimeters (ZDC-SMD), together with tracks reconstructed with the forward time projection chambers (FTPC). Our result will be presented as a function of pseudorapidity, transverse momentum and centrality. C1 [Chen, Jiayun] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Chen, Jiayun] Brookhaven Natl Lab, Dept Phys, New York, NY 11973 USA. RP Chen, J (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. EM chenjy@rcf.rhic.bnl.gov NR 20 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD APR PY 2008 VL 35 IS 4 AR 044072 DI 10.1088/0954-3899/35/4/044072 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 276WG UT WOS:000254173800074 ER PT J AU Fachini, P AF Fachini, P. TI Overview of resonance production SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY JUN 24-29, 2007 CL Levoca, SLOVAKIA SP Inst Expt Phys Slovak Acad Sci, Fac Sci PJ Safarik Univ AB Resonances are used as a sensitive tool to examine the collision dynamics in the hadronic medium through their decay and regeneration. Recent results on resonance production in A+A, d+Au, and p+p collisions at relativistic heavy ion collider energies are presented. C1 Brookhaven Natl Lab, Upton, NY 11793 USA. RP Fachini, P (reprint author), Brookhaven Natl Lab, Upton, NY 11793 USA. EM pfachini@bnl.gov NR 15 TC 13 Z9 13 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD APR PY 2008 VL 35 IS 4 AR 044032 DI 10.1088/0954-3899/35/4/044032 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 276WG UT WOS:000254173800034 ER PT J AU Mocsy, A Petreczky, P AF Mocsy, Agnes Petreczky, Peter TI Quarkonium - signal of deconfinement SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY JUN 24-29, 2007 CL Levoca, SLOVAKIA SP Inst Expt Phys Slovak Acad Sci, Fac Sci PJ Safarik Univ ID HEAVY QUARKONIA; GLUON PLASMA AB eWe discuss quarkonium correlators and spectral functions from a potential model that agrees with the lattice data, and show that screening melts all charmonium states, contrary to previous interpretations. C1 Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Mocsy, A (reprint author), Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. NR 25 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD APR PY 2008 VL 35 IS 4 AR 044038 DI 10.1088/0954-3899/35/4/044038 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 276WG UT WOS:000254173800040 ER PT J AU Petreczky, P AF Petreczky, Peter TI Progress in finite temperature lattice QCD SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY JUN 24-29, 2007 CL Levoca, SLOVAKIA SP Inst Expt Phys Slovak Acad Sci, Fac Sci PJ Safarik Univ ID CHIRAL CRITICAL-POINT; FREE-ENERGY; SPECTRAL FUNCTIONS; PHASE-TRANSITION; GLUON PLASMA; QUARK MASS; DEPENDENCE; ENTROPY; ORDER; LOOP AB I review recent progress in finite temperature lattice calculations, including the determination of the transition temperature, equation of state, screening of static quarks and meson spectral functions. The analysis of the meson correlators in the vector channel indicate a quite small value of the heavy quark thermal velocity. C1 [Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Petreczky, Peter] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Petreczky, P (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 65 TC 8 Z9 8 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD APR PY 2008 VL 35 IS 4 AR 044033 DI 10.1088/0954-3899/35/4/044033 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 276WG UT WOS:000254173800035 ER PT J AU Xu, N AF Xu, Nu CA STAR Collaboration TI System size dependence of phi-meson production at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY JUN 24-29, 2007 CL Levoca, SLOVAKIA SP Inst Expt Phys Slovak Acad Sci, Fac Sci PJ Safarik Univ ID QUARK-GLUON PLASMA; ENERGY NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; STRANGENESS; SEARCH; AU AB We report the preliminary results of momentum distributions of phi-meson, measured by the STAR Experiment at RHIC, from 200 GeV and 62.4 GeV Cu+Cu collisions. We find (i) the number of participant normalized ratios of the yields from heavy-ion collisions over that of p+p collisions, r(SE)(phi) > 1 in both Cu+Cu and Au+Au collisions at RHIC; (ii) the ratio is proportional to the colliding energy, i. e. r(SE)(200) (phi) > r(SE)(62.4)(phi). These results reveal that phi-meson production in nucleus-nucleus production is not a consequence of a simple lifting of canonical suppression from p+p to AA collisions. C1 [Xu, Nu; STAR Collaboration] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Xu, N (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 35 TC 9 Z9 9 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD APR PY 2008 VL 35 IS 4 AR 044031 DI 10.1088/0954-3899/35/4/044031 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 276WG UT WOS:000254173800033 ER PT J AU Park, BC Kim, HB Myung, ST Amine, K Belharouak, I Lee, SM Sun, YK AF Park, B. -C. Kim, H. -B. Myung, S. -T. Amine, K. Belharouak, I. Lee, S. -M. Sun, Y. -K. TI Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O-2 cathode materials on high voltage region SO JOURNAL OF POWER SOURCES LA English DT Article; Proceedings Paper CT 3rd International Conference on Polymer Batteries and Fuel Cells CY JUN 11-14, 2007 CL Rome, ITALY DE AlF3; coating; high voltage; cathode; lithium; battery ID LITHIUM-ION BATTERIES; CYCLING BEHAVIOR; SECONDARY BATTERIES; LICOO2; COPRECIPITATION; FLUORINE; SPINEL AB The particle surface of Li[Ni1/3Co1/3Mn1/3]O-2 was modified by AlF3 as a new coating material to improve the electrochemical properties in the high cutoff voltage of 4.5 V The AIF(3)-coated Li[Ni1/3Co1/3Mn1/3]O-2 showed no difference in the bulk structure compared with the pristine one and the uniform AIF(3) coating layers whose thickness is of about 10 nm covered Li[Ni1/3Co1/3Mn1/3]O-2 particles, as confirmed by a transmission electron microscopy. The AlF3 coating on Li[Ni1/3Co1/3Mn1/3]O-2 particles improved the overall electrochemical properties such as the cyclability, rate capability and thermal stability compared with those of the pristine Li[Ni1/3Co1/3Mn1/3]O-2. Such enhancements were attributed to the presence of the stable AIF3 layer which acts as the interfacial stabilizer on the surface of Li[Ni(1/)3Co(1/3)Mn(1/3)]O-2. (C) 2007 Elsevier B.V. All rights reserved. C1 [Park, B. -C.; Kim, H. -B.; Sun, Y. -K.] Hanyang Univ, Dept Chem Engn, Ctr Informat & Commun Mat, Seoul 133791, South Korea. [Myung, S. -T.] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan. [Amine, K.; Belharouak, I.] Argonne Natl Lab, Div Chem Engn, Electrochem Technol Program, Argonne, IL 60439 USA. [Lee, S. -M.] Kangwon Natl Univ, Dept Adv Mat Sci & Engn, Chunchon 200701, South Korea. RP Sun, YK (reprint author), Hanyang Univ, Dept Chem Engn, Ctr Informat & Commun Mat, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013; OI Sun, Yang-Kook/0000-0002-0117-0170; Belharouak, Ilias/0000-0002-3985-0278 NR 17 TC 85 Z9 91 U1 7 U2 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 1 PY 2008 VL 178 IS 2 BP 826 EP 831 DI 10.1016/j.jpowsour.2007.08.034 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 284BP UT WOS:000254680500049 ER PT J AU Zhang, HZ Tang, XT Munske, GR Zakharova, N Yang, L Zheng, CX Wolff, MA Tolic, N Anderson, GA Shi, L Marshall, MJ Fredrickson, JK Bruce, JE AF Zhang, Haizhen Tang, Xiaoting Munske, Gerhard R. Zakharova, Natalia Yang, Li Zheng, Chunxiang Wolff, Megan A. Tolic, Nikola Anderson, Gordon A. Shi, Liang Marshall, Matthew J. Fredrickson, James K. Bruce, James E. TI In vivo identification of the outer membrane protein omcA-mtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE protein interactions; Protein Interaction Reporter; PIR; electron transport; metal ion eduction; membrane proteins; FTICR-MS; outer membrane cytochrome C; OmcA; OmcB; MtrC; SO-0404 ID C-TYPE CYTOCHROMES; MASS-SPECTROMETRY; PUTREFACIENS MR-1; MICROBIAL REDUCTION; LINKING; IMMUNOPRECIPITATION; COMPLEX; CHROMATIN; SEQUENCE; CAPTURE AB Outer membrane (OM) cytochromes OmcA (SO1779) and MtrC (SO1778) are the integral components of electron transfer used by Shewanella oneidensis for anaerobic respiration of metal (hydr)oxides. Here the OmcA-MtrC interaction was identified in vivo using a novel hydrophobic chemical crosslinker (MRN) combined with immunoprecipitation techniques. In addition, identification of other OM proteins from the cross-linked complexes allows first visualization of the OmcA-MtrC interaction network. Further experiments on omcA and mtrC mutant cells showed OmcA plays a central role in the network interaction. For comparison, two commercial cross-linkers were also used in parallel, and both resulted in fewer OM protein identifications, indicating the superior properties of MRN for identification of membrane protein interactions. Finally, comparison experiments of in vivo cross-linking and cell lysate cross-linking resulted in significantly different protein interaction data, demonstrating the importance of in vivo cross-linking for study of protein-protein interactions in cells. C1 [Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Zakharova, Natalia; Yang, Li; Zheng, Chunxiang; Wolff, Megan A.; Bruce, James E.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Tolic, Nikola; Anderson, Gordon A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Shi, Liang; Marshall, Matthew J.; Fredrickson, James K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Bruce, JE (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. EM james_bruce@wsu.edu RI Zakharova, Natalia/E-3123-2010; OI Marshall, Matthew J/0000-0002-2402-8003 FU NCRR NIH HHS [R01 RR023334, 1 S10 RR017805-01, R01 RR023334-01A1, S10 RR022538, S10 RR022538-01] NR 46 TC 36 Z9 38 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD APR PY 2008 VL 7 IS 4 BP 1712 EP 1720 DI 10.1021/pr7007658 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 284MR UT WOS:000254711000035 PM 18303833 ER PT J AU Smith, MAH Rinsland, CP Blake, TA Sams, RL Benner, DC Devi, VM AF Smith, M. A. H. Rinsland, C. P. Blake, T. A. Sams, R. L. Benner, D. Chris Devi, V. Malathy TI Low-temperature measurements of HCN broadened by N-2 in the 14-mu m spectral region SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE HCN; Lorentz N-2-broadening; N-2 pressure-induced shifts; relaxation matrix elements; speed dependence; temperature dependence; line mixing ID DIODE-LASER MEASUREMENTS; MOLECULAR SPECTROSCOPIC DATABASE; MULTISPECTRUM ANALYSIS; SHIFT COEFFICIENTS; TITANS ATMOSPHERE; NU(2) BAND; V(1) BAND; NU-2 BAND; V(2) BAND; PART II AB Half-width and pressure-induced shift coefficients; the temperature-dependence exponents of the half-widths and the temperature-dependence coefficients of pressure-induced shifts have been measured for N-2-broadened transitions in the v(2) band of HCN. Line positions and intensities were also determined. A total of 34 laboratory absorption spectra, recorded at 0.002-0.005 cm(-1) resolution with two different Fourier transform spectrometers, were used in the determination of the spectral line parameters. The total pressures of the HCN-N-2 samples ranged from less than 1 torr up to nearly 1 atm, and temperatures were between 211 and 300 K. A multispectrum nonlinear least-squares fitting technique employing a modified Voigt line profile, including speed dependence and line mixing via the off-diagonal relaxation matrix formulation, was used in the analysis. Speed-dependence parameters were determined in the P and R branches of the v(2) band of (HCN)-C-12-N-14, and in the v(2) Q branches of (HCN)-C-12-N-14 and (HCN)-C-13-N-14 the off-diagonal relaxation matrix elements that characterize line mixing were included in the analysis to fit the data. Present results are compared with previous measurements reported in the literature. (C) 2007 Published by Elsevier Ltd. C1 [Smith, M. A. H.; Rinsland, C. P.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Blake, T. A.; Sams, R. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Benner, D. Chris; Devi, V. Malathy] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Smith, MAH (reprint author), NASA, Langley Res Ctr, Sci Directorate, MS 401A, Hampton, VA 23681 USA. EM Mary.Ann.H.Smith@nasa.gov NR 45 TC 2 Z9 2 U1 2 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD APR PY 2008 VL 109 IS 6 BP 922 EP 951 DI 10.1016/j.jqsrt.2007.12.017 PG 30 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 292WZ UT WOS:000255298100005 ER PT J AU Rinsland, CP Devi, VM Benner, DC Blake, TA Sams, RL Brown, LR Kleiner, I Dehayem-Kamadjeu, A Muller, HSP Gamache, RR Niles, DL Masiello, T AF Rinsland, C. P. Devi, V. Malathy Benner, D. Chris Blake, T. A. Sams, R. L. Brown, L. R. Kleiner, I. Dehayem-Kamadjeu, A. Mueller, H. S. P. Gamache, R. R. Niles, D. L. Masiello, T. TI Multispectrum analysis of the v(4) band of CH3CN: Positions, intensities, self- and N-2-broadening, and pressure-induced shifts SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE CH3CN; atmosphere of Titan; remote sounding; Fourier transform infrared (FTIR) spectroscopy; pressure broadening; pressure-induced shifts; spectral line shape; partition function; transmission and scattering of radiation ID METHYL CYANIDE; SPECTROSCOPIC DATABASE; MOLECULAR-SPECTROSCOPY; ROTATIONAL SPECTRUM; COLOGNE DATABASE; LIMB SOUNDER; LINE; METHYLCYANIDE; FREQUENCIES; STATES AB A multispectrum nonlinear least-squares fitting technique was applied to measure accurate zero-pressure line center positions, Lorentz self- and nitrogen (N-2)-broadened half-width coefficients, and self- and N-2-pressure-induced shift coefficients for over 700 transitions in the parallel v(4) band of CH3CN near 920 cm(-1). Fifteen high-resolution (0.0016 cm(-1)) laboratory absorption spectra of pure and N-2-broadened CH3CN recorded at room temperature using the Bruker IFS 125HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, USA, were analyzed simultaneously assuming standard Voigt line shapes. Short spectral intervals containing manifolds of transitions from the same value of J were fitted together. In all, high-precision line parameters were obtained for P(44)-P(3)(-) and R(0)-R(46) manifolds. As part of the analysis, quantum assignments were extended, and the total internal partition function sum was calculated for four isotopologs: (CH3CN)-C-12-C-12, (CH3CN)-C-13-C-12, (CH3CN)-C-12-C-13, and (CH3CN)-C-13-C-13. Measurements of N-2 broadening, self-broadening, N-2-shift, and self-shift coefficients for transitions with J up to 48 and K up to 12 were measured for the first time in the mid-infrared. Self-broadened half-width coefficients were found to be very large (up to similar to 2cm(-1) atm(-1) at 296K). Ratios of self-broadened half-width coefficients to N-2-broadened half-width coefficients show a compact distribution with rotational quantum number in both the P and R branches that range from similar to 4.5 to 14 with maxima near vertical bar m vertical bar = 24, where m = -J '', J '', and J '' + 1 for P, Q and R lines, respectively. Pressure-induced shifts for N-2 are small (few exceed + 0.006 cm(-1) atm(-1) at 294 K) and are both positive and negative. In contrast, self-shift coefficients are large (maxima of about +/- 0.08 cm(-1) atm(-1) at 294 K) and are both positive and negative as a function of rotational quantum numbers. The present measured half-widths and pressure shifts in v(4) were compared with corresponding measurements of rotational transitions. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Rinsland, C. P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Blake, T. A.; Sams, R. L.; Masiello, T.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kleiner, I.; Dehayem-Kamadjeu, A.] Univ Paris 07, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Kleiner, I.; Dehayem-Kamadjeu, A.] Univ Paris 12, F-94010 Creteil, France. [Kleiner, I.; Dehayem-Kamadjeu, A.] CNRS, F-94010 Creteil, France. [Mueller, H. S. P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Gamache, R. R.; Niles, D. L.] Univ Massachusetts, Dept Environm Earth & Atmospher Sci, Lowell, MA 01854 USA. RP Rinsland, CP (reprint author), NASA, Langley Res Ctr, Mail Stop 401A, Hampton, VA 23681 USA. EM curtis.p.rinsland@nasa.gov; Malathy.D.Venkataraman@nasa.gov; dcbenn@wm.edu; ta.blake@pnl.gov; robert.sams@pnl.gov; Linda.R.Brown@jpl.nasa.gov; kleiner@lisa.univ-paris12.fr; dehayem@lisa.univ-paris12.fr; hspm@ph1.uni-koeln.de; Robert_Gamache@uml.edu; dlniles@gmail.com; tony.masiello@nist.gov NR 49 TC 17 Z9 17 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD APR PY 2008 VL 109 IS 6 BP 974 EP 994 DI 10.1016/j.jqsrt.2007.11.013 PG 21 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 292WZ UT WOS:000255298100008 ER PT J AU Olson, C Landsberger, S Braisted, J AF Olson, C. Landsberger, S. Braisted, J. TI Neutron activation analysis of aerosolized sodium chloride to simulate size-fractionation of plutonium in a glovebox SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 7th International Conference on Methods and Applications of Radioanalytical Chemistry CY APR 03-07, 2006 CL Kailua, HI ID DISTRIBUTIONS; PERFORMANCE; PARTICLES AB Open front hoods are routinely used to mitigate a worker's inhalation hazard. However, it has been shown that these hoods leak contaminates, especially when a worker is performing work in the hood. Quantitative measurement performed in the past does not reflect actually working conditions, but instead tends to conservatively bias the measurement by placing the sampler inside the hood or forcing the air-stream out of the hood toward the sampler. In order to accurately measure the amount of material routinely leaking from an open front hood, an air sampler was positioned in front of the hood opening and samples were taken while a routine sample digestion process was done. The digestion process involved the heating of a surrogate mixture to dryness. Samples were taken with and without a worker present during the digestion process. The samples were then analyzed at the University of Texas using neutron activation analysis. The detection level using this method was low enough to measure the amount of aerosol escaping the hood. Based on these measurements, the capture efficiency of open front hoods for PuO2 is 84%. C1 [Olson, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Olson, C.; Landsberger, S.; Braisted, J.] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX USA. RP Olson, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM olson_cheryl_l@lanl.gov NR 17 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD APR PY 2008 VL 276 IS 1 BP 157 EP 160 DI 10.1007/s10967-008-0425-0 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 287MH UT WOS:000254920700025 ER PT J AU Wielopolski, L Mitra, S Doron, O AF Wielopolski, L. Mitra, S. Doron, O. TI Non-carbon-based compact shadow shielding for 14 MeV neutrons SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 7th International Conference on Methods and Applications of Radioanalytical Chemistry CY APR 03-07, 2006 CL Kailua, HI AB We are developing a scanning spectroscopy system to measure prompt gammas-rays induced by inelastic neutron scattering and thermal neutron capture to non-invasively analyze soil in situ. Using a radiation source, a 14 MeV (d,t) neutron generator (NG), in a close proximity to the detection system without any precautions will flood and saturate the detectors with direct radiation. Therefore, we devized and partially optimized a shadow shielding sited between the source and the detection system; we discuss our experimental results and basic Monte Carlo calculations. C1 [Wielopolski, L.; Mitra, S.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Doron, O.] Univ Texas Austin, Univ Stn 1, Austin, TX 78759 USA. RP Wielopolski, L (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Bldg 490D, Upton, NY 11973 USA. EM lwielo@bnl.gov NR 4 TC 2 Z9 2 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD APR PY 2008 VL 276 IS 1 BP 179 EP 182 DI 10.1007/s10967-008-0429-9 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 287MH UT WOS:000254920700029 ER PT J AU Doron, O Wielopolski, L Biegalski, S AF Doron, O. Wielopolski, L. Biegalski, S. TI Advantages of mesh tallying in MCNP5 for soil analysis calculations SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 7th International Conference on Methods and Applications of Radioanalytical Chemistry CY APR 03-07, 2006 CL Kailua, HI AB The Monte Carlo code, MCNP5, includes a mesh and lattice tally option useful for large matrix calculations. Recently, a fast lattice tally (FLT) was developed for MCNPX. We used these two codes to model an in-situ soil analysis system based on inelastic neutron scattering. The tallies were utilized to calculate the reaction rates of fast neutrons with carbon via inelastic reactions. The results of these three tallies and their respective computational times are compared, and the advantages of these methodologies discussed. C1 [Doron, O.; Biegalski, S.] Univ Texas Austin, Univ Stn 1, Austin, TX 78759 USA. [Wielopolski, L.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Doron, O (reprint author), Univ Texas Austin, Univ Stn 1, Austin, TX 78759 USA. EM lwielo@bnl.gov RI Biegalski, Steven/A-7765-2010 NR 7 TC 5 Z9 6 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD APR PY 2008 VL 276 IS 1 BP 183 EP 186 DI 10.1007/s10967-008-0430-3 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 287MH UT WOS:000254920700030 ER PT J AU Glasgow, DC AF Glasgow, D. C. TI Delayed neutron activation analysis for safeguards SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 7th International Conference on Methods and Applications of Radioanalytical Chemistry CY APR 03-07, 2006 CL Kailua, HI ID RAPID-DETERMINATION; URANIUM; INTENSITY; MIXTURES AB Delayed neutron activation analysis (DNAA) presents a fast, accurate, and reliable method for quantification of fissile material. The method has relatively few sources of error and may be accomplished nondestructively. The need for a fast, accurate screening of materials stems from the necessity to protect cleanroom facilities from widely varying fissile quantities in samples and from desired gains in efficiency of mass spectrometric analysis by assisting in spike level selection and by removing from the sample set those materials that are not of interest. During the last several years, many different materials have been screened or analyzed in support of international safeguards, internal process control for actinide separations, and in uranium contamination assessments. Swipes from a variety of sources have been analyzed, either before or after dissolution, and comparison of the DNAA results to mass spectrometry results is generally favorable. A facility characterization of the High Flux Isotope Reactor was performed using filter paper swipes to demonstrate the utility of the DNAA technique. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Glasgow, DC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM glasgowdc@ornl.gov NR 6 TC 7 Z9 9 U1 0 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD APR PY 2008 VL 276 IS 1 BP 207 EP 211 DI 10.1007/s10967-008-0434-z PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 287MH UT WOS:000254920700034 ER PT J AU Perry, DL English, GA Firestone, RB Leung, KN Garabedian, G Molnar, GL Revay, Z AF Perry, D. L. English, G. A. Firestone, R. B. Leung, K. -N. Garabedian, G. Molnar, G. L. Revay, Zs. TI Analyses of oxyanion materials by prompt gamma activation analysis SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 7th International Conference on Methods and Applications of Radioanalytical Chemistry CY APR 03-07, 2006 CL Kailua, HI ID BERYLLIUM; SULFATE; PGAA AB Prompt gamma activation analysis (PGAA) has been used to analyze metal ion oxyanion materials that have multiple applications, including medicine, materials, catalysts, and electronics. The significance for the need for accurate, highly sensitive analyses for the materials is discussed in the context of quality control of end products containing the parent element in each material. Applications of the analytical data for input to models and theoretical calculations related to the electronic and other properties of the materials are discussed. C1 [Perry, D. L.; English, G. A.; Firestone, R. B.; Leung, K. -N.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Garabedian, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Molnar, G. L.; Revay, Zs.] Inst Isotopes & Surface Chem HAS, H-1525 Budapest, Hungary. RP Perry, DL (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dlperry@lbl.gov OI Firestone, Richard/0000-0003-3833-5546 NR 21 TC 2 Z9 2 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD APR PY 2008 VL 276 IS 1 BP 273 EP 277 DI 10.1007/s10967-008-0445-9 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 287MH UT WOS:000254920700045 ER PT J AU Mahajan, SV Hart, J Hood, J Everheart, A Redigolo, ML Koktysh, DS Payzant, EA Dickerson, JH AF Mahajan, S. V. Hart, J. Hood, J. Everheart, A. Redigolo, M. L. Koktysh, D. S. Payzant, E. A. Dickerson, J. H. TI Synthesis of RE(OH)(2)Cl and REOCl (RE=Eu, Tb) nanostructures SO JOURNAL OF RARE EARTHS LA English DT Article DE rare-earth hydroxychloride; rare-earth oxychloride; rare earth sesquioxide; nanoneedle; nanospindle; lanthanide ID EUROPIUM OXIDE NANOPARTICLES; OPTICAL-PROPERTIES; LUMINESCENT PROPERTIES; GLASS-CERAMICS; NANOCRYSTALS; EU2O3; IMMUNOASSAY; NANOTUBES; DY(OH)(3); NANORODS AB Anisotropic structures, nanoneedles, and nanospindles of rare earth hydroxychloride (RE(OH)(2)Cl) and oxychloride (REOCl) (rare earth=Eu and Th) were synthesized. The rare earth hydroxychloride nanostructures were formed via a thermally assisted hydrolysis of the rare-earth sesquioxide nanocrystals. The morphological evolution of the nanostructures was studied using high-resolution transmission electron microscopy and scanning electron microscopy, while the structural evolution was investigated using X-ray diffraction techniques. The thermal stability of the rare earth hydroxychlorides was investigated using thermogravimetric analysis. The rare earth oxychloride nanospindles were synthesized via a simple heat-treatment of rare earth hydroxychloride nanospindles. C1 [Hart, J.; Hood, J.; Everheart, A.; Redigolo, M. L.; Dickerson, J. H.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Mahajan, S. V.] Vanderbilt Univ, Interdisciplinary Program Mat Sci, Nashville, TN 37235 USA. [Koktysh, D. S.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Payzant, E. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mahajan, S. V.; Redigolo, M. L.; Koktysh, D. S.; Dickerson, J. H.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. RP Dickerson, JH (reprint author), Vanderbilt Univ, Dept Phys & Astron, 221 Kirkland Hall, Nashville, TN 37235 USA. EM james.h.dickerson@vanderbilt.edu RI Payzant, Edward/B-5449-2009; Dickerson, James/F-7950-2013 OI Payzant, Edward/0000-0002-3447-2060; Dickerson, James/0000-0001-9636-6303 NR 31 TC 4 Z9 5 U1 0 U2 13 PU METALLURGICAL INDUSTRY PRESS PI BEIJING PA 2 XINJIEKOUWAI DAJIE, BEIJING 100088, PEOPLES R CHINA SN 1002-0721 J9 J RARE EARTH JI J. Rare Earths PD APR PY 2008 VL 26 IS 2 BP 131 EP 135 DI 10.1016/S1002-0721(08)60052-6 PG 5 WC Chemistry, Applied SC Chemistry GA 306UI UT WOS:000256272900001 ER PT J AU Lee, Y Lee, HH Lee, DR Kim, SJ Kao, CC AF Lee, Yongjae Lee, Hyun-Hwi Lee, Dong Ryeol Kim, Sun Jin Kao, Chi-chang TI Cation-dependent anomalous compression of gallosilicate zeolites with CGS topology: A high-pressure synchrotron powder diffraction study SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE gallosilicate zeolites; CGS; synchrotron x-ray diffraction; high-pressure; anomalous volume contraction ID TSG-1 AB The high-pressure compression behaviour of 3 different cation forms of gallosilicate zeolite with CGS topology has been investigated using in situ synchrotron X-ray powder diffraction and a diamond-anvil cell technique. Under hydrostatic conditions mediated by a nominally penetrating pressure-transmitting medium, unit-cell lengths and volume compression is modulated by different degrees of pressure-induced hydration and accompanying channel distortion. In a Na-exchanged CGS (Na10Ga10Si22O64 center dot 16H(2)O), the unit-cell volume expands by ca. 0.6% upon applying hydrostatic pressure to 0.2GPa, whereas, in an as-synthesized K-form (K10Ga10Si22O64 center dot 5H(2)O), this initial volume expansion is suppressed to ca. 0.1% at 0.16 GPa. In the early stage of hydrostatic compression below similar to 1 GPa, relative decrease in the ellipticity of the non-planar 10-rings is observed, which is then reverted to a gradual increase in the ellipticity at higher pressures above similar to 1 GPa, implying a change in the compression mechanism. In a Sr-exchanged sample (Sr5Ga10Si22O64 center dot 19H(2)O), on the other hand, no initial volume expansion is observed. Instead, a change in the slope of volume contraction is observed near 1.5 GPa, which leads to a 2-fold increase in the compressibility. This is interpreted as pressure-induced rearrangement of water molecules to facilitate further volume contraction at higher pressures. (C) 2008 Elsevier Inc. All rights reserved. C1 [Lee, Yongjae] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Lee, Hyun-Hwi; Lee, Dong Ryeol] POSTECH, Pohang Accelerator Lab, Pohang 790784, South Korea. [Kim, Sun Jin] Korea Inst Sci & Technol, Nanomat Res Ctr, Seoul 136791, South Korea. [Kao, Chi-chang] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Lee, Y (reprint author), Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. EM yongjaelee@yonsei.ac.kr RI Lee, Yongjae/K-6566-2016 NR 13 TC 2 Z9 2 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD APR PY 2008 VL 181 IS 4 BP 730 EP 734 DI 10.1016/j.jssc.2008.01.017 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 288CC UT WOS:000254962800007 ER PT J AU Lima, FHB Zhang, J Shao, MH Sasaki, K Vukmirovic, MB Ticianelli, EA Adzic, RR AF Lima, F. H. B. Zhang, J. Shao, M. H. Sasaki, K. Vukmirovic, M. B. Ticianelli, E. A. Adzic, R. R. TI Pt monolayer electrocatalysts for O-2 reduction: PdCo/C substrate-induced activity in alkaline media SO JOURNAL OF SOLID STATE ELECTROCHEMISTRY LA English DT Article DE electrocatalysis; oxygen reduction; core-shell electrocatalysts; platinum alloys ID OXYGEN REDUCTION; PLATINUM-MONOLAYER; THERMODYNAMIC GUIDELINES; BIMETALLIC CATALYSTS; TRANSITION-METALS; ALLOY CATALYSTS; DISK ELECTRODE; CO; ELECTROREDUCTION; CARBON AB We measured the activity of electrocatalysts, comprising Pt monolayers deposited on PdCo/C substrates with several Pd/Co atomic ratios, in the oxygen reduction reaction in alkaline solutions. The PdCo/C substrates have a core-shell structure wherein the Pd atoms are segregated at the particle's surface. The electrochemical measurements were carried out using an ultrathin film rotating disk-ring electrode. Electrocatalytic activity for the O-2 reduction evaluated from the Tafel plots or mass activities was higher for Pt monolayers on PdCo/C compared to Pt/C for all atomic Pd/Co ratios we used. We ascribed the enhanced activity of these Pt monolayers to a lowering of the bond strength of oxygenated intermediates on Pt atoms facilitated by changes in the 5d-band reactivity of Pt. Density functional theory calculations also revealed a decline in the strength of PtOH adsorption due to electronic interaction between the Pt and Pd atoms. We demonstrated that very active O-2 reduction electrocatalysts can be devised containing only a monolayer Pt and a very small amount of Pd alloyed with Co in the substrate. C1 [Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Adzic, R. R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Lima, F. H. B.; Ticianelli, E. A.] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Paulo, Brazil. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM adzic@bnl.gov RI Ticianelli, Edson/D-1560-2012; Lima, Fabio/E-7109-2012; OI Ticianelli, Edson/0000-0003-3432-2799; Shao, Minhua/0000-0003-4496-0057 NR 25 TC 24 Z9 24 U1 2 U2 32 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1432-8488 J9 J SOLID STATE ELECTR JI J. Solid State Electrochem. PD APR PY 2008 VL 12 IS 4 BP 399 EP 407 DI 10.1007/s10008-007-0418-x PG 9 WC Electrochemistry SC Electrochemistry GA 255AQ UT WOS:000252629500007 ER PT J AU Kierfeld, J Vinokur, V AF Kierfeld, Jan Vinokur, Valerii TI Crack propagation, arrest and statistics in heterogeneous materials SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE disordered systems (theory); fracture (theory); extreme value problems ID BRITTLE-DUCTILE TRANSITION; FRACTURE PRECURSORS; ELECTRICAL BREAKDOWN; CRITICAL-BEHAVIOR; FUSE NETWORK; MODEL; MEDIA; SYSTEMS; COMPOSITES; BREAKING AB We investigate theoretically statistics and thermally activated dynamics of crack nucleation and propagation in a two-dimensional heterogeneous material containing quenched randomly distributed defects. We consider a crack tip dynamics accounting for dissipation, thermal noise and the random forces arising from the elastic interactions of the crack opening with the defects. The equation of motion is based on the generalized Griffith criterion and the dynamic energy release rate and gives rise to Langevin-type stochastic dynamics in a quenched disordered potential. For different types of quenched random forces, which are characterized (a) by the range of elastic interactions with the crack tip and (b) the range of correlations between defects, we derive a number of static and dynamic quantities characterizing crack propagation in heterogeneous materials both at zero temperature and in the presence of thermal activation. In the absence of thermal fluctuations we obtain the nucleation and propagation probabilities, typical arrest lengths, the distribution of crack lengths and of critical forces. For thermally activated crack propagation we calculate the mean time to fracture. Depending on the range of elastic interactions between crack tip and frozen defects, heterogeneous material exhibits brittle or ductile fracture. We find that aggregations of defects generating long-range interaction forces (e.g. clouds of dislocations) lead to anomalously slow creep of the crack tip or even to its complete arrest. We demonstrate that heterogeneous materials with frozen defects contain a large number of arrested microcracks and that their fracture toughness is enhanced to the experimentally accessible timescales. C1 [Kierfeld, Jan] Dortmund Univ Technol, Dept Phys, D-44221 Dortmund, Germany. [Vinokur, Valerii] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kierfeld, J (reprint author), Dortmund Univ Technol, Dept Phys, D-44221 Dortmund, Germany. EM Jan.Kierfeld@tu-dortmund.de; vinokour@anl.gov RI Kierfeld, Jan/A-2659-2009 OI Kierfeld, Jan/0000-0003-4291-0638 NR 41 TC 4 Z9 4 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD APR PY 2008 AR P04011 DI 10.1088/1742-5468/2008/04/P04011 PG 20 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 298BS UT WOS:000255662000015 ER PT J AU Tan, KM Li, H Zhang, RG Gu, MY Clancy, ST Joachimiak, A AF Tan, Kemin Li, Hui Zhang, Rongguang Gu, Minyi Clancy, Shonda T. Joachimiak, Andrzej TI Structures of open (R) and close (T) states of prephenate dehydratase (PDT) - Implication of allosteric regulation by L-phenylalanine SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE prephenate dehydratase structure; PDT domain; ACT domain; allosteric regulation; L-Phe binding ID YEAST CHORISMATE MUTASE; ESCHERICHIA-COLI K-12; CRYSTAL-STRUCTURE; MYCOBACTERIUM-TUBERCULOSIS; FEEDBACK INHIBITION; SHIKIMATE PATHWAY; P-PROTEIN; ACID; BIOSYNTHESIS; MECHANISMS AB The enzyme prephenate dehydratase (PDT) converts prephenate to phenylpyruvate in L-phenylalanine biosynthesis. PDT is allosterically regulated by L-Phe and other amino acids. We report the first crystal structures of PDT from Staphylococcus aureus in a relaxed (R) state and PDT from Chlorobium tepidum in a tense (T) state. The two enzymes show low sequence identity (27.3%) but the same prototypic architecture and domain organization. Both enzymes are tetramers (dimer of dimers) in crystal and solution while a PDT dimer can be regarded as a basic catalytic unit. The N-terminal PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In one PDT dimer two clefts are aligned to form an extended active site across the dimer interface. Similarly at the interface two ACT regulatory domains create two highly conserved pockets. Upon binding of the L-Phe inside the pockets, PDT transits from an open to a closed conformation. Published by Elsevier Inc. C1 [Tan, Kemin; Li, Hui; Zhang, Rongguang; Gu, Minyi; Clancy, Shonda T.; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Gen & Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Midwest Ctr Struct Gen & Struct Biol Ctr, Biosci Div, Bldg 202,Room A125,9700 S Cass Ave, Argonne, IL 60439 USA. EM andrzejj@anl.gov FU NIGMS NIH HHS [U54 GM074942-04S2, U54 GM074942, GM074942] NR 56 TC 18 Z9 20 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD APR PY 2008 VL 162 IS 1 BP 94 EP 107 DI 10.1016/j.jsb.2007.11.009 PG 14 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 292WA UT WOS:000255295600009 PM 18171624 ER PT J AU Buchko, GW Robinson, H Pakrasi, HB Kennedy, MA AF Buchko, Garry W. Robinson, Howard Pakrasi, Himadri B. Kennedy, Michael A. TI Insights into the structural variation between pentapeptide repeat proteins - Crystal structure of Rfr23 from Cyanothece 51142 SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE cyanobacteria; disulfide bond; right-handed parallel beta-helix; edge-to-edge aggregation; beta-turns; repeated five-residues ID DISULFIDE BONDS; GLOBULAR-PROTEINS; NMR; DOMAIN; RESISTANCE; STABILITY; DENSITY; DESIGN; SPACE; FOLD AB Cyanothece sp. PCC 51142 contains 35 pentapeptide repeat proteins (PRPs), proteins that contain a minimum of eight tandem repeated five-residues (Rfr) of the general consensus sequence A[N/D]LXX. Published crystal structures of PRPs show that the tandem pentapeptide repeats adopt a type of right-handed quadrilateral beta-helix called an Rfr-fold. To characterize how structural features of Rfr-folds might vary with different amino acid sequences, the crystal structure of Cyanothece Rfr23 (174 residues) was determined at 2.4 angstrom resolution. The structure is dominated by an Rfr-fold capped at the N-terminus with a nine-residue alpha-helix (M26*-E34). The Rfr-fold of Rfr23 contains four structural features previously unobserved in Rfr-folds. First, Rfr23 is composed entirely of type II beta-turns. Second, the pentapeptide repeats are not consecutive in the primary amino acid sequence. Instead, Rfr23 contains 24-residues protruding outside one corner of the first complete N-terminal coil of the Rfr-fold (L56-P79) (24-residue insertion). Third, a disulfide bond between C39 and C42 bridges the beta-turn between the first and second pentapeptide repeats in the first coil (disulfide bracket). NMR spectroscopy indicates that the reduction of the disulfide bracket with the addition of DTT destroys the entire Rfr-fold. Fourth, a single-residue perturbs the Rfr-fold slightly in the last coil between the C-terminal two pentapeptide repeats (single-residue bulge). (C) 2007 Elsevier Inc. All rights reserved. C1 [Buchko, Garry W.; Kennedy, Michael A.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Pakrasi, Himadri B.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. RP Buchko, GW (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM garry.buchko@pnl.gov; michael.kennedy@muohio.edu RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 NR 33 TC 9 Z9 9 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD APR PY 2008 VL 162 IS 1 BP 184 EP 192 DI 10.1016/j.jsb.2007.11.008 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 292WA UT WOS:000255295600015 PM 18158251 ER PT J AU Cao, BP Neal, CM Starace, AK Ovchinnikov, YN Kresin, VZ Jarrold, MF AF Cao, Baopeng Neal, Colleen M. Starace, Anne K. Ovchinnikov, Yurii N. Kresin, Vladimir Z. Jarrold, Martin F. TI Evidence for high T-C superconducting transitions in isolated Al-45(-) and Al-47(-) nanoclusters SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article DE nanoclusters; peaks in the heat capacity; pairing transition ID ELECTRONIC SHELL STRUCTURE; METALLIC NANOCLUSTERS; ALUMINUM CLUSTERS; SILICON CLUSTERS; ATOMIC CLUSTERS; O SYSTEM; PARTICLES; SPECTROSCOPY; SPECTRA; MODEL AB Heat capacities measured for Al-45(-) and Al-47(-) nanoclusters have reproducible jumps at similar to 200 K. These jumps are consistent with theoretical predictions that some clusters with highly degenerate electronic states near the Fermi level will undergo a transition into a high T-C superconducting state. An analysis based on a theoretical treatment of pairing in Al-45(-) and Al-47(-) agrees well with the experimental data in both the value of the critical temperature and in the size and width of the jumps in the heat capacity. C1 [Kresin, Vladimir Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cao, Baopeng; Neal, Colleen M.; Starace, Anne K.; Jarrold, Martin F.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Ovchinnikov, Yurii N.] LD Landau Theoret Phys Inst, Moscow 117334, Russia. RP Kresin, VZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM vzkresin@lbl.gov NR 39 TC 26 Z9 26 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD APR PY 2008 VL 21 IS 3 BP 163 EP 166 DI 10.1007/s10948-008-0314-3 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 320IT UT WOS:000257227600001 ER PT J AU Fisher, KA Miles, R AF Fisher, Karl A. Miles, Robin TI Modeling the acoustic radiation force in microfluidic chambers (L) SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article AB A procedure is demonstrated to quantitatively evaluate the acoustic radiation forces in microfluidic particle manipulation chambers. Typical estimates of the acoustic pressure and the acoustic radiation force are based on an analytical solution for a simple one-dimensional standing wave pattern. The complexities of a typical microfluidic channel limit the usefulness of this approach. By leveraging finite elements, and a generalized equation for the acoustic radiation force, channel designs can be investigated in two and three dimensions. Calculations and experimental observations in this report and the literature, confirm these claims. (C) 2008 Acoustical Society of America. C1 [Fisher, Karl A.; Miles, Robin] Lawrence Livermore Natl Lab, Livermore, CA 94566 USA. RP Fisher, KA (reprint author), Lawrence Livermore Natl Lab, L-333,7000 E Ave, Livermore, CA 94566 USA. EM fisher34@llnl.gov; miles7@llnl.gov NR 12 TC 7 Z9 7 U1 0 U2 3 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD APR PY 2008 VL 123 IS 4 BP 1862 EP 1865 DI 10.1121/1.2839140 PG 4 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 289HD UT WOS:000255044700009 PM 18396995 ER PT J AU Zhao, GG Joshi, RP Hjalmarson, HP AF Zhao, Guogang Joshi, Ravi P. Hjalmarson, Harold P. TI Electrothermal model evaluation of grain size and disorder effects on pulsed voltage response of microstructured ZnO varistors SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ZINC-OXIDE VARISTORS; ENERGY-ABSORPTION; VORONOI NETWORKS; BOUNDARIES; JUNCTIONS; FAILURE AB Time-dependent, two-dimensional, electrothermal simulations based on random Voronoi networks have been developed to study the internal heating, current distributions and breakdown effects in ZnO varistors in response to high-voltage pulsing. The simulations allow for dynamic predictions of internal failures and to track the progression of hot-spots and thermal stresses. The focus is on internal grain-size variations and relative disorder including micropores. Our results predict that parameters such as the hold-off voltage, internal temperature, and average dissipated energy density would be higher with more uniform grains. This uniformity is also predicted to produce lower thermal stresses and to allow for the application of longer duration pulses. It is shown that the principal failure mechanism arises from internal localized melting, while thermal stresses are well below the thresholds for cracking. Finally, detrimental effects of micropores have been quantified and shown to be in agreement with experimental trends. C1 [Zhao, Guogang; Joshi, Ravi P.] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Hjalmarson, Harold P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Joshi, RP (reprint author), Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. EM rjoshi@odu.edu NR 16 TC 1 Z9 2 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD APR PY 2008 VL 91 IS 4 BP 1188 EP 1193 DI 10.1111/j.1551-2916.2008.02295.x PG 6 WC Materials Science, Ceramics SC Materials Science GA 283CE UT WOS:000254613400023 ER PT J AU Tolmachev, AV Robinson, EW Wu, S Kang, H Lourette, NM Pasa-Tolic, L Smith, RD AF Tolmachev, Aleksey V. Robinson, Errol W. Wu, Si Kang, Hyuk Lourette, Natacha. M. Pasa-Tolic, Ljiljana Smith, Richard D. TI Trapped-ion cell with improved DC potential harmonicity for FT-ICR MS SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID RESONANCE MASS-SPECTROMETRY; ORTHOGONALIZED ANHARMONICITY COMPENSATION; CYLINDRICAL PENNING TRAPS; CYCLOTRON RESONANCE; SPACE-CHARGE; PRECISION EXPERIMENTS; MEASUREMENT ACCURACY; TAG STRATEGY; FTICR; ELECTRODES AB The trapped-ion cell is a key component critical for optimal performance in Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). To extend the performance of FT-ICR MS, we have developed a new cell design that is capable of generating a DC trapping potential which closely approaches that of an ideal Penning trap, i.e., a 3D axial quadrupolar potential distribution. The new cell design was built upon an open cylindrical geometry, supplemented with two pairs of cylindrical compensation segments. Electric potential calculations for trial cell geometries were aimed at minimizing spatial variations of the radial electric field divided by radius. The resulting cell proportions and compensation voltages delivered practically constant effective ion cyclotron frequency that was independent of ion radial and axial positions. Our customized 12 tesla FT-ICR instrument was upgraded with the new cell, and the performance was characterized for a range of ion excitation power and ion populations. Operating the compensated cell at increased postexcitation radii, similar to 0.7 of the cell inner radius, resulted in improved mass measurement accuracy together with increased signal intensity. Under these same operating conditions the noncompensated open cell configuration exhibited peak splitting and reduced signal life time. Mass accuracy tests using 11 calibrants covering a wide m/z range reproducibly produced under 0.05 ppm RMS precision of the internal calibration for reduced ion populations and the optimal excitation radius. Conditions of increased ion population resulted in a twofold improvement in mass accuracy compared with the noncompensated cell, due to the larger achievable excitation radii and correspondingly lower space charge related perturbations of the calibration law. C1 [Tolmachev, Aleksey V.; Robinson, Errol W.; Lourette, Natacha. M.; Pasa-Tolic, Ljiljana; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Kang, Hyuk] Ajou Univ, Dept Chem, Suwon 443749, South Korea. RP Pasa-Tolic, L (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM ljiljana.pasatolic@pnl.gov RI Kang, Hyuk/A-4972-2010; Robinson, Errol/I-3148-2012; Smith, Richard/J-3664-2012 OI Robinson, Errol/0000-0003-0696-6239; Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-04, P41 RR018522-05, RR 018522]; NIAID NIH HHS [Y1 AI 489401]; NIGMS NIH HHS [R01 GM 063883, R01 GM063883, R01 GM063883-03] NR 45 TC 65 Z9 65 U1 1 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD APR PY 2008 VL 19 IS 4 BP 586 EP 597 DI 10.1016/j.jasms.2008.01.006 PG 12 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 289ZD UT WOS:000255091500013 PM 18296061 ER PT J AU Shin, C Jin, HH Kwon, JH Shim, JH Byun, TS AF Shin, Chansun Jin, Hyung-Ha Kwon, Jun Hyun Shim, Jae-Hyeok Byun, Thak Sang TI Mechanism for unfaulting of an extrinsic Frank loop with < 112 > edges by glide dislocations SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 4th Conference of the Asian-Consortium-on-Computational-Materials-Science CY SEP 13-16, 2007 CL Korea Inst Sci & Technol, Seoul, SOUTH KOREA HO Korea Inst Sci & Technol DE Frank loop; radiation defects; molecular dynamics; unfaulting mechanism; dislocation ID IRRADIATED COPPER; STEELS; DEFORMATION; CRYSTAL; NIOBIUM; METALS; SCALE; MODEL AB The interaction between dislocations and radiation defects plays a critical role in the formation of a clear channel, which results in a heterogeneous, localized plastic deformation of irradiated materials. We applied a molecular dynamics method to simulate the interaction between an extrinsic Frank loop, which is the dominant radiation defects of austenitic steels and glide dislocations to investigate the mechanism of defect elimination. We found that two dislocations in two different parallel slip planes played cooperatively to remove the defect. This finding implies that a group of dislocations is responsible for a cleared channel by moving in a group and eliminating the defects. C1 [Shin, Chansun; Jin, Hyung-Ha; Kwon, Jun Hyun] Korea Atom Energy Res Inst, Nucl Mat Res Div, Taejon 305353, South Korea. [Shim, Jae-Hyeok] Korea Adv Inst Sci & Technol, Mat Sci & Technol Res Div, Seoul 136791, South Korea. [Byun, Thak Sang] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Shin, C (reprint author), Korea Atom Energy Res Inst, Nucl Mat Res Div, Taejon 305353, South Korea. EM cshin@kaeri.re.kr NR 23 TC 4 Z9 4 U1 0 U2 4 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD APR PY 2008 VL 52 IS 4 SI SI BP 1250 EP 1254 PN 1 PG 5 WC Physics, Multidisciplinary SC Physics GA 288RY UT WOS:000255004700015 ER PT J AU Kulkarni, Y Knap, J Ortiz, M AF Kulkarni, Yashashree Knap, Jaroslaw Ortiz, Michael TI A variational approach to coarse graining of equilibrium and non-equilibrium atomistic description at finite temperature SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE quasicontinuum; maximum entropy principle; finite-elements; variational calculus; nanoindentation ID THERMAL-EXPANSION; METALS; SOLIDS; NUCLEATION; DEFECTS; ARGON AB The aim of this paper is the development of equilibrium and non-equilibrium extensions of the quasicontinuum (QC) method. We first use variational mean-field theory and the maximum-entropy (max-ent) formalism for deriving approximate probability distribution and partition functions for the system. The resulting probability distribution depends locally on atomic temperatures defined for every atom and the corresponding thermodynamic potentials are explicit and local in nature. The method requires an interatomic potential as the sole empirical input. Numerical validation is performed by simulating thermal equilibrium properties of selected materials using the Lennard-Jones (U) pair potential and the embedded-atom method (EAM) potential and comparing with molecular dynamics results as well as experimental data. The max-ent variational approach is then taken as a basis for developing a three-dimensional non-equilibrium finite-temperature extension of the QC method. This extension is accomplished by coupling the local temperature-dependent free energy furnished by the max-ent approximation scheme to the heat equation in a joint thermo-mechanical variational setting. Results for finite-temperature nanoindentation tests demonstrate the ability of the method to capture non-equilibrium transport properties and differentiate between slow and fast indentation. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Kulkarni, Yashashree; Ortiz, Michael] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA. [Knap, Jaroslaw] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ortiz, M (reprint author), CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA. EM ortiz@aero.caltech.edu NR 32 TC 53 Z9 53 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD APR PY 2008 VL 56 IS 4 BP 1417 EP 1449 DI 10.1016/j.jmps.2007.09.005 PG 33 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 295BG UT WOS:000255449400014 ER PT J AU Lehoucq, RB Silling, SA AF Lehoucq, R. B. Silling, S. A. TI Force flux and the peridynamic stress tensor SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE peridynamics; elastic material; stress; flux ID LONG-RANGE FORCES; CONTINUUM EQUATIONS; BALANCE AB The peridynamic model is a framework for continuum mechanics based on the idea that pairs of particles exert forces on each other across a finite distance. The equation of motion in the peridynamic model is an integro-differential equation. In this paper, a notion of a peridynamic stress tensor derived from nonlocal interactions is defined. At any point in the body, this stress tensor is obtained from the forces within peridynamic bonds that geometrically go through the point. The peridynamic equation of motion can be expressed in terms of this stress tensor, and the result is formally identical to the Cauchy equation of motion in the classical model, even though the classical model is a local theory. We also establish that this stress tensor field is unique in a certain function space compatible with finite element approximations. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Lehoucq, R. B.; Silling, S. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lehoucq, RB (reprint author), Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA. EM rblehou@sandia.gov NR 14 TC 49 Z9 50 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD APR PY 2008 VL 56 IS 4 BP 1566 EP 1577 DI 10.1016/j.jmps.2007.08.004 PG 12 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 295BG UT WOS:000255449400021 ER PT J AU Gerken, JM Dawson, PR AF Gerken, Jobie M. Dawson, Paul R. TI A crystal plasticity model that incorporates stresses and strains due to slip gradients SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE dislocations; crystal plasticity; inhomogeneous material; finite strain ID CONTINUOUSLY DISTRIBUTED DISLOCATIONS; SINGLE-CRYSTALS; MULTIPLICATIVE ELASTOPLASTICITY; GRAIN-SIZE; DEFORMATION; POLYCRYSTALS; WORK; INDENTATION; MECHANICS; HARDNESS AB This work is concerned with incorporating the kinematic and stress effects of excess dislocations in a constitutive model for the elastoplastic behavior of crystalline materials. The foundation of the model is a three term multiplicative decomposition of the deformation gradient in which the two classical terms of plastic and elastic deformation are included along with an additional term for long range strain due to the collective effects of excess dislocations. The long range strain is obtained from an assumed density of Volterra edge dislocations and is directly related to gradients in slip. A new material parameter emerges which is the size the region about a continuum point that contributes to long range strains. Using Hookean elasticity, the stress at a point is linearly related to the sum of the elastic plus the long range strain fields. However, the driving force for slip is postulated to be due only to the elastic stress so that the long range stress is a back stress in the constitutive relationship for plastic deformation. A consistent balance of the total deformation rate with the three proposed mechanisms of deformation leads to a set of differential equations that can be solved for the elastic stress, rotation and pressure which then implicitly defines the material state and equilibrium stress. Results from the simulation of a tapered tensile specimen demonstrate that the constitutive model exhibits isotropic and kinematic type hardening effects as well as changes in the pattern of plastic deformation and necking when compared to a material without slip gradient effects. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Dawson, Paul R.] Cornell Univ, Dept Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Gerken, Jobie M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gerken, JM (reprint author), Ansys Inc, Canonsburgh, PA 15317 USA. EM jobie.gerken@ansys.com; prd5@cornell.edu NR 84 TC 19 Z9 19 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD APR PY 2008 VL 56 IS 4 BP 1651 EP 1672 DI 10.1016/j.jmps.2007.07.012 PG 22 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 295BG UT WOS:000255449400026 ER PT J AU Chastain, RA Townsend, PA AF Chastain, Robert A. Townsend, Philip A. TI Role of evergreen understory shrub layer in the forests of the central Appalachian Highlands SO JOURNAL OF THE TORREY BOTANICAL SOCIETY LA English DT Article DE Appalachian forests; forest structure; Kalmia latifolia; ordination; Rhododendron maximum ID DECIDUOUS-ERICACEOUS SHRUBS; RHODODENDRON-MAXIMUM L; CANOPY TREE SEEDLINGS; KALMIA-LATIFOLIA L; SOUTHERN APPALACHIANS; MOUNTAIN LAUREL; NATURAL DISTRIBUTION; SITE PRODUCTIVITY; RIPARIAN FORESTS; WATER RELATIONS AB Previous work indicates that an evergreen shrub layer dominated by Rhododendron maximum L. and/or Kalmia latifolia L. is a critical component of Appalachian forests, potentially exerting control over forest structure and succession. Moreover, communities characterized by thickets of evergreen understory shrubs exhibit distinct patterning on the landscape associated with topographic gradients and disturbance. We compare distributions of R. maximum and K. latifolia in the warmer and drier Ridge and Valley physiographic province and on the cooler and wetter Allegheny Plateau of western Maryland and adjacent Pennsylvania and find that the relationships between community composition and the environment differ between these two physiographic provinces. Kalmia latifolia dominance is strongly associated with topographically dry locations and a history of gypsy moth defoliation, while R. maximum is associated with topographically wet positions in the Allegheny Plateau, but less so in the Ridge and Valley. ANOVA identified significant differences in midstory volume and basal area and leaf area index of canopy tree species where evergreen understory shrub species were prominent. Specifically, basal area and leaf area were lower above K. latifolia understory communities, and midstory volume was found to be lower in areas where K. latifolia and R. maximum were abundant. However, the results show that cover of K. latifolia must be sufficiently continuous (i.e., not patchy) for the midstory volume to be affected. In plots with a history of gypsy moth infestation, basal area was found to be significantly lower in plots where K. latifolia thickets were present than where it was absent, suggesting that K. latifolia impedes structural recovery from this disturbance. C1 [Chastain, Robert A.] Oak Ridge Inst Sci & Educ, Ft Lewis, WA 98433 USA. [Townsend, Philip A.] Univ Wisconsin, Dept Forest Ecol & Management, Madison, WI 53706 USA. RP Chastain, RA (reprint author), Oak Ridge Inst Sci & Educ, Ft Lewis, WA 98433 USA. EM robert.chastain2@us.army.mil RI Townsend, Philip/B-5741-2008 OI Townsend, Philip/0000-0001-7003-8774 NR 50 TC 7 Z9 7 U1 4 U2 13 PU TORREY BOTANICAL SOC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 1095-5674 J9 J TORREY BOT SOC JI J. Torrey Bot. Soc. PD APR-JUN PY 2008 VL 135 IS 2 BP 208 EP 223 DI 10.3159/07-RA-016.1 PG 16 WC Plant Sciences SC Plant Sciences GA 329WB UT WOS:000257900200006 ER PT J AU Allen, MS Massad, JE Field, RV Dyck, CW AF Allen, M. S. Massad, J. E. Field, R. V., Jr. Dyck, C. W. TI Input and design optimization under uncertainty to minimize the impact velocity of an electrostatically actuated MEMS switch SO JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition CY NOV 05-10, 2006 CL Chicago, IL SP ASME DE MEMS dynamics; input shaping; nonlinear dynamics; vibro-impact system; reduced-order modeling ID RF MEMS; WAVE-FORM; MODEL AB The dynamic response of a radio-frequency (RF) microelectromechanical system to a time-varying electrostatic force is optimized to enhance robustness to variations in material properties and geometry. The device functions as an electrical switch, where an applied voltage is used to close a circuit. The objective is to minimize the severity of the mechanical impact that occurs each time the switch closes because severe impacts have been found to significantly decrease the life of these switches. Previous works have demonstrated that a classical vibro-impact model, a single-degree-of-freedom oscillator subject to mechanical impact with a single rigid barrier captures the relevant physics adequately. Certain model parameters are described as random variables to represent the significant unit-to-unit variability observed during fabrication and testing of a collection of nominally identical switches; these models for unit-to-unit variability are calibrated to available experimental data. Our objective is to design the shape and duration of the voltage waveform so that impact kinetic energy at switch closure is minimized for the collection of nominally identical switches, subject to design constraints. A voltage waveform designed using a deterministic model for the RF switch is found to perform poorly on the ensemble. An alternative waveform is generated using the proposed optimization procedure with a probabilistic model and is found to decrease the maximum impact velocity by a factor of 2 relative to the waveform designed deterministically. The methodology is also applied to evaluate a design change that reduces the impact velocity further and to predict the effect of fabrication process improvements. C1 [Allen, M. S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Massad, J. E.; Field, R. V., Jr.] Sandia Natl Labs, Dept Appl Mech, Albuquerque, NM 87185 USA. [Dyck, C. W.] Sandia Natl Labs, RF Optoelect, Albuquerque, NM 87185 USA. RP Allen, MS (reprint author), Univ Wisconsin, Dept Engn Phys, 535 Engn Res Bldg,1500 Engn Dr, Madison, WI 53706 USA. EM msallen@engr.wisc.edu RI Allen, Matthew/H-4068-2011 NR 19 TC 11 Z9 11 U1 1 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1048-9002 EI 1528-8927 J9 J VIB ACOUST JI J. Vib. Acoust.-Trans. ASME PD APR PY 2008 VL 130 IS 2 AR 021009 DI 10.1115/1.2827981 PG 9 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 290GB UT WOS:000255110200009 ER PT J AU Pandrea, I Ribeiro, RM Gautam, R Gaufin, T Pattison, M Barnes, M Monjure, C Stoulig, C Dufour, J Cyprian, W Silvestri, G Miller, MD Perelson, AS Apetrei, C AF Pandrea, Ivona Ribeiro, Ruy M. Gautam, Rajeev Gaufin, Thaidra Pattison, Melissa Barnes, Mary Monjure, Christopher Stoulig, Crystal Dufour, Jason Cyprian, Wayne Silvestri, Guido Miller, Michael D. Perelson, Alan S. Apetrei, Cristian TI Simian immunodeficiency virus SIVagm dynamics in African green monkeys SO JOURNAL OF VIROLOGY LA English DT Article ID CD4(+) T-CELLS; INFECTED SOOTY MANGABEYS; TENOFOVIR DISOPROXIL FUMARATE; ACTIVE ANTIRETROVIRAL THERAPY; IN-VIVO REPLICATION; HIV-1 INFECTION; VIRAL-LOAD; RHESUS MACAQUES; AIDS PATHOGENESIS; IMMUNE ACTIVATION AB The mechanisms underlying the lack of disease progression in natural simian immunodeficiency virus (SIV) hosts are still poorly understood. To test the hypothesis that SIV-infected African green monkeys (AGMs) avoid AIDS due to virus replication occurring in long-lived infected cells, we infected six animals with SIVagm and treated them with potent antiretroviral therapy [ART; 9-R-(2-phosphonomethoxypropyl) adenine (tenofovir) and beta-2,3-dideoxy-3-thia-5-fluorocytidine (emtricitabine)]. All AGMs showed a rapid decay of plasma viremia that became undetectable 36 h after ART initiation. A significant decrease of viral load was observed in peripheral blood mononuclear cells and intestine. Mathematical modeling of viremia decay post-ART indicates a half-life of productively infected cells ranging from 4 to 9.5 h, i.e., faster than previously reported for human immunodeficiency virus and SIV. ART induced a slight but significant increase in peripheral CD4(+) T-cell counts but no significant changes in CD4(+) T-cell levels in lymph nodes and intestine. Similarly, ART did not significantly change the levels of cell proliferation, activation, and apoptosis, already low in AGMs chronically infected with SIVagm. Collectively, these results indicate that, in SIVagm-infected AGMs, the bulk of virus replication is sustained by short-lived cells; therefore, differences in disease outcome between SIVmac infection of macaques and SIVagm infection of AGMs are unlikely due to intrinsic differences in the in vivo cytopathicities between the two viruses. C1 [Pandrea, Ivona; Stoulig, Crystal] Tulane Natl Primate Res Ctr, Div Comparat Pathol, Covington, LA 70433 USA. [Gautam, Rajeev; Gaufin, Thaidra; Pattison, Melissa; Barnes, Mary; Monjure, Christopher; Apetrei, Cristian] Tulane Natl Primate Res Ctr, Div Microbiol, Covington, LA 70433 USA. [Dufour, Jason; Cyprian, Wayne] Tulane Natl Primate Res Ctr, Div Vet Med, Covington, LA 70433 USA. [Pandrea, Ivona] Tulane Univ, Sch Med, Dept Pathol, New Orleans, LA 70112 USA. [Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Silvestri, Guido] Univ Penn, Sch Med, Dept Pathol, Philadelphia, PA 19107 USA. [Miller, Michael D.] Gilead Sci Inc, Foster City, CA 94404 USA. [Apetrei, Cristian] Tulane Univ, Sch Publ Hlth, Dept Trop Med, New Orleans, LA 70112 USA. RP Pandrea, I (reprint author), Tulane Natl Primate Res Ctr, Div Comparat Pathol, 18703 Three Rivers Rd, Covington, LA 70433 USA. EM ipandrea@tulane.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU NCRR NIH HHS [K26 RR000168, P51 RR000168, R01 RR006555, RR-00168, RR06555, RR18745]; NIAID NIH HHS [AI28433, R01 AI028433, R01 AI064066, R01 AI065325, R21 AI069935, R21AI069935, R37 AI028433] NR 79 TC 59 Z9 59 U1 0 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD APR PY 2008 VL 82 IS 7 BP 3713 EP 3724 DI 10.1128/JVI.02402-07 PG 12 WC Virology SC Virology GA 276KL UT WOS:000254139800050 PM 18216122 ER PT J AU Gordon, SN Dunham, RM Engram, JC Estes, J Wang, Z Klatt, NR Paiardini, M Pandrea, IV Apetrei, C Sodora, DL Lee, HY Haase, AT Miller, MD Kaur, A Staprans, SI Perelson, AS Feinberg, MB Silvestri, G AF Gordon, Shari N. Dunham, Richard M. Engram, Jessica C. Estes, Jacob Wang, Zichun Klatt, Nichole R. Paiardini, Mirko Pandrea, Ivona V. Apetrei, Cristian Sodora, Donald L. Lee, Ha Youn Haase, Ashley T. Miller, Michael D. Kaur, Amitinder Staprans, Silvija I. Perelson, Alan S. Feinberg, Mark B. Silvestri, Guido TI Short-lived infected cells support virus replication in sooty mangabeys naturally infected with simian immunodeficiency virus: Implications for AIDS pathogenesis SO JOURNAL OF VIROLOGY LA English DT Article ID AFRICAN-GREEN MONKEYS; CD4(+) T-CELLS; ACTIVE ANTIRETROVIRAL THERAPY; PLASMA VIRAL LOAD; HIV-1 INFECTION; SIV INFECTION; IN-VIVO; DISEASE PROGRESSION; IMMUNE ACTIVATION; MANDRILLUS-SPHINX AB Sooty mangabeys (SMs) naturally infected with simian immunodeficiency virus (SIV) do not develop AIDS despite high levels of virus replication. At present, the mechanisms underlying this disease resistance are poorly understood. Here we tested the hypothesis that SIV-infected SMs avoid immunodeficiency as a result of virus replication occurring in infected cells that live significantly longer than human immunodeficiency virus (HIV)-infected human cells. To this end, we treated six SIV-infected SMs with potent antiretroviral therapy (ART) and longitudinally measured the decline in plasma viremia. We applied the same mathematical models used in HIV-infected individuals and observed that SMs naturally infected with SIV also present a two-phase decay of viremia following ART, with the bulk (92 to 99%) of virus replication sustained by short-lived cells (average life span, 1.06 days), and only 1 to 8% occurring in longer-lived cells. In addition, we observed that ART had a limited impact on CD4(+) T cells and the prevailing level of T-cell activation and proliferation in SIV-infected SMs. Collectively, these results suggest that in SIV-infected SMs, similar to HIV type 1-infected humans, short-lived activated CD4(+) T cells, rather than macrophages, are the main source of virus production. These findings indicate that a short in vivo life span of infected cells is a common feature of both pathogenic and nonpathogenic primate lentivirus infections and support a model for AIDS pathogenesis whereby the direct killing of infected cells by HIV is not the main determinant of disease progression. C1 [Gordon, Shari N.; Dunham, Richard M.; Engram, Jessica C.; Klatt, Nichole R.; Paiardini, Mirko; Silvestri, Guido] Univ Penn, Sch Med, Stellar Chance Labs 705, Dept Pathol, Philadelphia, PA 19143 USA. [Gordon, Shari N.; Dunham, Richard M.; Engram, Jessica C.; Klatt, Nichole R.; Staprans, Silvija I.; Feinberg, Mark B.; Silvestri, Guido] Emory Vaccine Ctr, Atlanta, GA USA. [Gordon, Shari N.; Dunham, Richard M.; Engram, Jessica C.; Klatt, Nichole R.; Staprans, Silvija I.; Feinberg, Mark B.; Silvestri, Guido] Yerkes Natl Primate Res Ctr, Atlanta, GA USA. [Estes, Jacob; Haase, Ashley T.] Univ Minnesota, Dept Microbiol, Minneapolis, MN 55455 USA. [Wang, Zichun; Kaur, Amitinder] Harvard Univ, New England Reg Primate Res Ctr, Sch Med, Southborough, MA 01772 USA. [Pandrea, Ivona V.; Apetrei, Cristian] Tulane Natl Primate Res Ctr, Covington, LA USA. [Sodora, Donald L.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Lee, Ha Youn; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Lee, Ha Youn; Perelson, Alan S.] Univ Rochester, Rochester, NY USA. [Miller, Michael D.] Gilead Sci Inc, Foster City, CA 94404 USA. [Staprans, Silvija I.; Feinberg, Mark B.] Merck & Co Inc, Merck Vaccine Div, West Point, PA USA. RP Silvestri, G (reprint author), Univ Penn, Sch Med, Stellar Chance Labs 705, Dept Pathol, 422 Curie Blvd, Philadelphia, PA 19143 USA. EM gsilvest@mail.med.upenn.edu RI Dunham, Richard/B-2012-2009 OI Dunham, Richard/0000-0003-4542-2330 FU NCI NIH HHS [N01CO12400, N01-CO-12400]; NCRR NIH HHS [P51 RR000165, R01 RR006555, RR-00165, RR06555]; NHLBI NIH HHS [HL75766, R01 HL075766]; NIAID NIH HHS [AI28433, AI52755, AI60451, AI64066, AI65325, AI66996, R01 AI028433, R01 AI049809, R01 AI052755, R01 AI064066, R01 AI065325, R01-AI49809, R21 AI060451, R37 AI028433]; PHS HHS [1F31A1066400-01A1] NR 56 TC 59 Z9 60 U1 0 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD APR PY 2008 VL 82 IS 7 BP 3725 EP 3735 DI 10.1128/JVI.02408-07 PG 11 WC Virology SC Virology GA 276KL UT WOS:000254139800051 PM 18216113 ER PT J AU Salazar-Gonzalez, JF Bailes, E Pham, KT Salazar, MG Guffey, MB Keele, BF Derdeyn, CA Farmer, P Hunter, E Allen, S Manigart, O Mulenga, J Anderson, JA Swanstrom, R Haynes, BF Athreya, GS Korber, BTM Sharp, PM Shaw, GM Hahn, BH AF Salazar-Gonzalez, Jesus F. Bailes, Elizabeth Pham, Kimmy T. Salazar, Maria G. Guffey, M. Brad Keele, Brandon F. Derdeyn, Cynthia A. Farmer, Paul Hunter, Eric Allen, Susan Manigart, Olivier Mulenga, Joseph Anderson, Jeffrey A. Swanstrom, Ronald Haynes, Barton F. Athreya, Gayathri S. Korber, Bette T. M. Sharp, Paul M. Shaw, George M. Hahn, Beatrice H. TI Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing SO JOURNAL OF VIROLOGY LA English DT Article ID PRIMARY HIV-INFECTION; SEXUAL TRANSMISSION; ANTIBODY NEUTRALIZATION; NUCLEOTIDE-SEQUENCES; DISCORDANT COUPLES; GENITAL SECRETIONS; DNA RECOMBINATION; VIRAL DYNAMICS; IN-VIVO; DIVERSITY AB Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 x 10(-5). Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 x 10(-5) substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified by SGA analysis of plasma virus sampled at intervals typical in large-scale vaccine trials and that pathways of viral diversification and immune escape can be determined accurately. C1 [Salazar-Gonzalez, Jesus F.; Pham, Kimmy T.; Salazar, Maria G.; Guffey, M. Brad; Keele, Brandon F.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [Shaw, George M.; Hahn, Beatrice H.] Univ Alabama, Dept Microbiol, Birmingham, AL 35294 USA. [Bailes, Elizabeth] Univ Nottingham, Inst Genet, Nottingham NG7 2UH, England. [Derdeyn, Cynthia A.; Farmer, Paul; Hunter, Eric] Emory Univ, Dept Pathol & Lab Med, Atlanta, GA 30329 USA. [Allen, Susan; Manigart, Olivier; Mulenga, Joseph] Zambia Emory HIV Res Grp ZEHRG, Lusaka, Zambia. [Allen, Susan; Manigart, Olivier; Mulenga, Joseph] Zambia Blood Transfus Serv, Lusaka, Zambia. [Anderson, Jeffrey A.] Univ N Carolina, Dept Internal Med, Chapel Hill, NC 27599 USA. [Swanstrom, Ronald] Univ N Carolina, UNC Ctr AIDS Res, Chapel Hill, NC 27599 USA. [Haynes, Barton F.] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC 27710 USA. [Athreya, Gayathri S.; Korber, Bette T. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sharp, Paul M.] Univ Edinburgh, Inst Evolut Biol, Edinburgh EH9 3JT, Midlothian, Scotland. RP Hahn, BH (reprint author), Univ Alabama, Dept Med, 720 20th St S,Kaul 816, Birmingham, AL 35294 USA. EM bhahn@uab.edu RI Sharp, Paul/F-5783-2010; OI Sharp, Paul/0000-0001-9771-543X; Korber, Bette/0000-0002-2026-5757 FU NIAID NIH HHS [P01 AI061734, P30 AI027767, P30 AI050410, P30 AI27767, P30 AI50410, R01 AI051231, R01 AI058706, R01 AI51231, R01 AI58706, U01 AI067854] NR 57 TC 334 Z9 345 U1 4 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD APR PY 2008 VL 82 IS 8 BP 3952 EP 3970 DI 10.1128/JVI.02660-07 PG 19 WC Virology SC Virology GA 284QQ UT WOS:000254721300015 PM 18256145 ER PT J AU Wu, G Li, DY Dai, CS Wang, DL Li, N AF Wu, Gang Li, Deyu Dai, Changsong Wang, Dianlong Li, Ning TI Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation SO LANGMUIR LA English DT Article ID NITROGEN-CONTAINING CARBONS; OXYGEN REDUCTION REACTION; PLATINUM NANOPARTICLES; CATALYTIC-ACTIVITY; MONOLAYER OXIDATION; PARTICLE-SIZE; ELECTROCHEMICAL OXIDATION; POLYOL SYNTHESIS; PLASMA TREATMENT; COMPOSITE FILMS AB Shell-core nanostructured carbon materials with a nitrogen-doped graphitic layer as a shell and pristine carbon black particle as a core were synthesized by carbonizing the hybrid materials containing in situ polymerized aniline onto carbon black. In an N-doped carbon layer, the nitrogen atoms substitute carbon atoms at the edge and interior of the graphene structure to form pyridinic N and quaternary N structures, respectively. As a result, the carbon structure becomes more compact, showing curvatures and disorder in the graphene stacking. In comparison with nondoped carbon, the N-doped one was proved to be a suitable supporting material to synthesize high-loading Pt catalysts (up to 60 wt%) with a more uniform size distribution and stronger metal-support interactions due to its high electrochemically accessible surface area, richness of disorder and defects, and high electron density. Moreover, the more rapid charge-transfer rates over the N-doped carbon material are evidenced by the high crystallinity of the graphitic shell layer with nitrogen doping as well as the low charge-transfer resistance at the electrolyte/electrode interface. Beneficial roles of nitrogen doping can be found to enhance the CO tolerance of Pt catalysts. Accordingly, an improved performance in methanol oxidation was achieved on a high-loading Pt catalyst supported by N-doped carbon. The enhanced catalytic properties were extensively discussed based on mass activity (Pt utilization) and intrinsic activity (charge-transfer rate). Therefore, N-doped carbon layers present many advantages over nondoped ones and would emerge as an interesting supporting carbon material for fuel cell electrocatalysts. C1 [Wu, Gang; Li, Deyu; Dai, Changsong; Wang, Dianlong; Li, Ning] Harbin Inst Technol, Dept Appl Chem, Harbin 150001, Peoples R China. RP Wu, G (reprint author), Los Alamos Natl Lab, MPA 11, Los Alamos, NM 87545 USA. EM wugang@lanl.gov RI Wu, Gang/E-8536-2010 OI Wu, Gang/0000-0003-4956-5208 NR 61 TC 145 Z9 146 U1 16 U2 145 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 1 PY 2008 VL 24 IS 7 BP 3566 EP 3575 DI 10.1021/la7029278 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 281EU UT WOS:000254480500086 PM 18294008 ER PT J AU Qian, CQ Thureau, P Martin, RW AF Qian, Chunqi Thureau, Pierre Martin, Rachel W. TI Variable angle spinning (VAS) experiments for strongly oriented systems: methods development and preliminary results SO MAGNETIC RESONANCE IN CHEMISTRY LA English DT Article DE variable angle spinning (VAS); liquid crystal NMR spectroscopy; oriented samples; residual dipolar couplings ID SOLID-STATE NMR; DIPOLAR COUPLINGS; ROTATING SOLIDS; SPECTROSCOPY; RESONANCE; PEPTIDES; PHASE; BIOMOLECULES; BICELLES; SAMPLES AB Variable angle spinning (VAS) experiments provide a useful method for measuring long-range dipolar couplings and obtaining isotropic-anisotropic correlation spectra. These experiments make it possible to obtain correlations between isotropic and anisotropic spectra without altering the chemical composition of the sample. They also allow working with very strongly oriented systems that are not accessible to solution-state techniques. In this communication, we discuss recent hardware developments in our laboratory and show representative data from small molecules in strongly oriented liquid-crystalline samples. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Thureau, Pierre; Martin, Rachel W.] Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA. [Qian, Chunqi] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Div Mat Sci, Berkeley, CA 94720 USA. RP Martin, RW (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA. EM rwmartin@uci.edu RI Qian, Chunqi/A-7481-2012; Thureau, Pierre/K-8438-2012 OI Thureau, Pierre/0000-0002-9157-256X FU NIGMS NIH HHS [I ROI GM07825801] NR 25 TC 4 Z9 4 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0749-1581 J9 MAGN RESON CHEM JI Magn. Reson. Chem. PD APR PY 2008 VL 46 IS 4 BP 351 EP 355 DI 10.1002/mrc.2170 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 285VI UT WOS:000254803900009 PM 18306174 ER PT J AU Morimoto, H Wada, J Font, B Mott, JD Hulmes, DJS Ookoshi, T Naiki, H Yasuhara, A Nakatsuka, A Fukuoka, K Takatori, Y Ichikawa, H Akagi, S Nakao, K Makino, H AF Morimoto, Hisanori Wada, Jun Font, Bernard Mott, Joni D. Hulmes, David J. S. Ookoshi, Tadakazu Naiki, Hironobu Yasuhara, Akihiro Nakatsuka, Atsuko Fukuoka, Kousuke Takatori, Yuji Ichikawa, Haruo Akagi, Shigeru Nakao, Kazushi Makino, Hirofumi TI Procollagen C-proteinase enhancer-1 (POPE-1) interacts with beta 2-microglobulin (beta 2-m) and may help initiate beta 2-m amyloid fibril formation in connective tissues SO MATRIX BIOLOGY LA English DT Article DE beta 2-m amyloid; dialysis related amyloidosis (DRA); procollagen C-proteinase enhancer protein-1 (PCPE-1); NTR (netrin-like) domain; CUB (C1r/C1s; Uegf and BMP-1) domain; bone morphogenetic protein-1 (BMP-1); procollagen C-proteinase (PCP) ID DIALYSIS-RELATED AMYLOIDOSIS; IN-VITRO; MORPHOGENETIC PROTEIN-1; KINETIC-ANALYSIS; BETA(2)-MICROGLOBULIN; GLYCOPROTEIN; HEMODIALYSIS; MECHANISM; BINDING; DEPOLYMERIZATION AB Dialysis related amyloidosis (DRA) is a progressive and serious complication in patients under long-term hemodialysis and mainly leads to osteo-articular diseases. Although beta 2-microglobulin (beta 2-m) is the major structural component of beta 2-m amyloid fibrils, the initiation of amyloid formation is not clearly understood. Here, we have identified procollagen C-proteinase enhance-1 (POPE-1) as a new interacting protein with beta 2-m by screening a human synovium cDNA library. The interaction of beta 2-m with full-length POPE-1 was confirmed by immunoprecipitation, solid-phase binding and pull-down assays. By yeast two-hybrid analysis and pull-down assay, beta 2-m appeared to interact with POPE-1 via the NTR (netrin-like) domain and not via the CUB (C1r/C1s, Uegf and BMP-1) domain region. In synovial tissues derived from hemodialysis patients with DRA, beta 2-m co-localized and formed a complex with POPE-1. beta 2-m did not alter the basal activity of bone morphogenetic protein-1/procollagen C-proteinase (BMP-1/PCP) nor BMP-1/PCP activity enhanced by PCPE-1. PCPE-1 did not stimulate beta 2-m amyloid fibril formation from monomeric beta 2-m in vitro under acidic and neutral conditions as revealed by thioflavin T fluorescence spectroscopy and electron microscopy. Since PCPE-1 is abundantly expressed in connective tissues rich in type I collagen, it may be involved in the initial accumulation of beta 2-m in selected tissues such as tendon, synovium and bone. Furthermore, since such preferential deposition of beta 2-m may be linked to subsequent beta 2-m amyloid fibril formation, the disruption of the interaction between beta 2-m and POPE-1 may prevent beta 2-m amyloid fibril formation and therefore POPE-1 could be a new target for the treatment of DRA. (C) 2007 Elsevier B.V./International Society of Matrix Biology. All rights reserved. C1 [Morimoto, Hisanori; Wada, Jun; Yasuhara, Akihiro; Nakatsuka, Atsuko; Fukuoka, Kousuke; Takatori, Yuji; Ichikawa, Haruo; Akagi, Shigeru; Nakao, Kazushi; Makino, Hirofumi] Okayama Univ, Grad Sch Med, Dept Med & Clin Sci, Okayama 7008558, Japan. [Font, Bernard; Hulmes, David J. S.] CNRS, Inst Biol Chim Proteines, UMR 5086, IFR Biosci 128, Lyon, France. [Mott, Joni D.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Ookoshi, Tadakazu; Naiki, Hironobu] Univ Fukui, Fac Med Sci, Dept Pathol Sci, Div Mol Pathol, Fukui 9101193, Japan. RP Wada, J (reprint author), Okayama Univ, Grad Sch Med, Dept Med & Clin Sci, 2-5-1,Shikata Cho, Okayama 7008558, Japan. EM junwada@md.okayama-u.ac.jp RI WADA, Jun/B-2023-2011; Naiki, Hironobu/G-5599-2014 OI WADA, Jun/0000-0003-1468-5170; FU NCI NIH HHS [CA88858] NR 32 TC 6 Z9 6 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0945-053X J9 MATRIX BIOL JI Matrix Biol. PD APR PY 2008 VL 27 IS 3 BP 211 EP 219 DI 10.1016/j.matbio.2007.11.005 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 288NL UT WOS:000254993000007 PM 18164932 ER PT J AU Daw, JE Rempe, JL Knudson, DL Wilkins, SC Crepeau, JC AF Daw, J. E. Rempe, J. L. Knudson, D. L. Wilkins, S. C. Crepeau, J. C. TI Extension wire for high temperature irradiation resistant thermocouples SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE in-pile instrumentation; high temperature sensors AB In an effort to reduce production costs for the doped molybdenum/niobium alloy high temperature irradiation resistant thermocouples (HTIR-TCs) recently developed by the Idaho National Laboratory, a series of evaluations were completed to identify an optimum compensating extension cable. Results indicate that of those combinations tested, two inexpensive, commercially-available copper-nickel alloy wires approximate the low temperature (0 degrees C to 500 degrees C) thermoelectric output of KW-Mo (molybdenum doped with tungsten and potassium silicate) versus Nb-1% Zr in HTIR-TCs. For lower temperatures (0 degrees C to 150 degrees C), which is the region where a soft extension cable is most often located, results indicate that the thermocouple emf is best replicated by the Cu-3.5% Ni versus Cu-5% Ni combination. At higher temperatures (300 degrees C to 500 degrees C), data suggest that the Cu-5% Ni versus Cu-10% Ni combination may yield data closer to those obtained with KW-Mo versus Nb-1% Zr wires. C1 [Daw, J. E.; Crepeau, J. C.] Univ Idaho, Idaho Falls, ID 83402 USA. [Rempe, J. L.; Knudson, D. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Daw, JE (reprint author), Univ Idaho, 1776 Sci Ctr Dr, Idaho Falls, ID 83402 USA. EM Joy.Rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 NR 6 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD APR PY 2008 VL 19 IS 4 AR 045206 DI 10.1088/0957-0233/19/4/045206 PG 7 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 280EA UT WOS:000254406700015 ER PT J AU Sabau, AS Porter, WD AF Sabau, Adrian S. Porter, Wallace D. TI Alloy shrinkage factors for the investment casting of 17-4PH stainless steel parts SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID HIGH-TEMPERATURE; ALUMINUM-ALLOYS; ELASTIC-MODULI AB In this study, alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. The dimensions of the die tooling, wax pattern, and casting were measured using a coordinate measurement machine (CMM). For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data and measured property data is made. It was found that most material properties were accurately predicted over most of the temperature range of the process. Several assumptions were made, in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed a different evolution on heating and cooling. Thus, one generic simulation was performed with thermal expansion obtained on heating, and another one was performed with thermal expansion obtained on cooling. The alloy dimensions were obtained from the numerical simulation results of the solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly overpredicted. C1 [Sabau, Adrian S.; Porter, Wallace D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sabau, AS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM sabaua@ornl.gov RI Sabau, Adrian/B-9571-2008 OI Sabau, Adrian/0000-0003-3088-6474 NR 39 TC 4 Z9 5 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD APR PY 2008 VL 39 IS 2 BP 317 EP 330 DI 10.1007/s11663-007-9125-3 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 301EO UT WOS:000255879400015 ER PT J AU Krauss, SW Spence, JR Bahmanyar, S Barth, AIM Go, MM Czerwinski, D Meyer, AJ AF Krauss, Sharon Wald Spence, Jeffrey R. Bahmanyar, Shirin Barth, Angela I. M. Go, Minjoung M. Czerwinski, Debra Meyer, Adam J. TI Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase SO MOLECULAR AND CELLULAR BIOLOGY LA English DT Article ID COILED-COIL PROTEIN; MOLECULAR CHARACTERIZATION; MICROTUBULE ORGANIZATION; MOTHER CENTRIOLES; APPARATUS PROTEIN; MAMMALIAN-CELLS; NUCLEAR-MATRIX; ANIMAL-CELLS; GENE FAMILY; DNA-DAMAGE AB Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G, accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events. C1 [Krauss, Sharon Wald; Spence, Jeffrey R.; Go, Minjoung M.; Meyer, Adam J.] Univ Calif Berkeley, Dept Cell Biol & Imaging, LBNL, Berkeley, CA 94720 USA. [Czerwinski, Debra] Stanford Univ, Sch Med, Dept Med, Stanford, CA 94305 USA. [Bahmanyar, Shirin; Barth, Angela I. M.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Bahmanyar, Shirin; Barth, Angela I. M.] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA. RP Krauss, SW (reprint author), Univ Calif Berkeley, Dept Cell Biol & Imaging, LBNL, 1 Cyclotron Rd,MS 74-157, Berkeley, CA 94720 USA. EM sakrauss@lbl.gov FU NIDDK NIH HHS [R01 DK059079, DK059079] NR 75 TC 19 Z9 20 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0270-7306 J9 MOL CELL BIOL JI Mol. Cell. Biol. PD APR PY 2008 VL 28 IS 7 BP 2283 EP 2294 DI 10.1128/MCB.02021-07 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 276ZE UT WOS:000254181400015 PM 18212055 ER PT J AU Hua, S Kallen, CB Dhar, R Baquero, MT Mason, CE Russell, BA Shah, PK Liu, J Khramtsov, A Tretiakova, MS Krausz, TN Olopade, OI Rimm, DL White, KP AF Hua, Sujun Kallen, Caleb B. Dhar, Ruby Baquero, Maria T. Mason, Christopher E. Russell, Beth A. Shah, Parantu K. Liu, Jiang Khramtsov, Andrey Tretiakova, Maria S. Krausz, Thomas N. Olopade, Olufunmilayo I. Rimm, David L. White, Kevin P. TI Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article ID MAMMARY EPITHELIAL-CELLS; MITOTIC CHECKPOINT GENES; C-MYC; INTERACTION NETWORKS; EXPRESSION PATTERNS; CYCLE PROGRESSION; BINDING-SITES; RECEPTOR; TRANSCRIPTION; PROTEIN AB We demonstrate an integrated approach to the study of a transcriptional regulatory cascade involved in the progression of breast cancer and we identify a protein associated with disease progression. Using chromatin immunoprecipitation and genome tiling arrays, whole genome mapping of transcription factor-binding sites was combined with gene expression profiling to identify genes involved in the proliferative response to estrogen (E2). Using RNA interference, selected ER alpha and c-MYC gene targets were knocked down to identify mediators of E2-stimulated cell proliferation. Tissue microarray screening revealed that high expression of an epigenetic factor, the E2-inducible histone variant H2A. Z, is significantly associated with lymph node metastasis and decreased breast cancer survival. Detection of H2A. Z levels independently increased the prognostic power of biomarkers currently in clinical use. This integrated approach has accelerated the identification of a molecule linked to breast cancer progression, has implications for diagnostic and therapeutic interventions, and can be applied to a wide range of cancers. C1 [Hua, Sujun; Dhar, Ruby; Russell, Beth A.; Shah, Parantu K.; Liu, Jiang; White, Kevin P.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Hua, Sujun; Dhar, Ruby; Russell, Beth A.; Shah, Parantu K.; Liu, Jiang; White, Kevin P.] Univ Chicago, Joint Inst Genom & Syst Biol, Chicago, IL 60637 USA. [Hua, Sujun; Dhar, Ruby; Russell, Beth A.; Shah, Parantu K.; Liu, Jiang; White, Kevin P.] Argonne Natl Lab, Chicago, IL USA. [Hua, Sujun] Yale Univ, Interdepartmental Program Computat Biol & Bioinfo, New Haven, CT USA. [Kallen, Caleb B.] Emory Univ, Dept Gynecol & Obstet, Atlanta, GA 30322 USA. [Baquero, Maria T.; Rimm, David L.] Yale Univ, Dept Pathol, New Haven, CT USA. [Mason, Christopher E.; Russell, Beth A.] Yale Univ, Dept Genet, New Haven, CT USA. [Khramtsov, Andrey; Olopade, Olufunmilayo I.] Univ Chicago, Med Ctr, Ctr Clin Canc Genet, Chicago, IL 60637 USA. [Tretiakova, Maria S.; Krausz, Thomas N.] Univ Chicago Hosp, Dept Pathol, Chicago, IL 60637 USA. RP White, KP (reprint author), Univ Chicago, Dept Human Genet, 1639 Pierce Dr,WMB 4211, Chicago, IL 60637 USA. EM kpwhite@uchicago.edu OI Kallen, Caleb/0000-0002-4156-6719 FU NICHD NIH HHS [5K12HD00849, K12 HD000849] NR 73 TC 102 Z9 102 U1 2 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD APR PY 2008 VL 4 AR 188 DI 10.1038/msb.2008.25 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 296MU UT WOS:000255551300008 PM 18414489 ER PT J AU Kraus, GA Jeon, I Nilsen-Hamilton, M Awad, AM Banerjee, J Parvin, B AF Kraus, George A. Jeon, Insik Nilsen-Hamilton, Marit Awad, Ahmed M. Banerjee, Jayeeta Parvin, Bahram TI Fluorinated analogs of malachite green: Synthesis and toxicity SO MOLECULES LA English DT Article DE malachite green; Malachite green analogs; Bathochromic shift; Toxicity; Saccharomyces cerevisiae; human ovarian epithelial cells AB A series of fluorinated analogs of malachite green (MG) have been synthesized and their toxicity to Saccharomyces cerevisiae and a human ovarian epithelial cell line examined. The toxicity profiles were found to be different for these two species. Two analogs, one with 2,4-difluoro substitution and the other with 2-fluoro substitution seem to be the most promising analogs because they showed the lowest toxicity to the human cells. C1 [Kraus, George A.; Jeon, Insik] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Nilsen-Hamilton, Marit; Awad, Ahmed M.; Banerjee, Jayeeta] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Parvin, Bahram] Lawrence Berkeley Lab, Dept Canc Biol, Berkeley, CA 94720 USA. RP Kraus, GA (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM gakraus@iastate.edu NR 10 TC 8 Z9 8 U1 2 U2 6 PU MOLECULAR DIVERSITY PRESERVATION INT PI BASEL PA MATTHAEUSSTRASSE 11, CH-4057 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD APR PY 2008 VL 13 IS 4 BP 986 EP 994 DI 10.3390/molecules13040986 PG 9 WC Chemistry, Organic SC Chemistry GA 296AM UT WOS:000255515900029 PM 18463600 ER PT J AU Kubo, JM Dell'Antonio, IP AF Kubo, Jeffrey M. Dell'Antonio, Ian P. TI A method to search for strong galaxy-galaxy lenses in optical imaging surveys SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing; galaxies : haloes ID HUBBLE DEEP FIELD; PHOTOMETRIC REDSHIFTS; AUTOMATIC DETECTION; CROSS-SECTIONS; CLUSTERS; SOUTH; ARCS AB We present a semi-automated method to search for strong galaxy-galaxy lenses in optical imaging surveys. Our search technique constrains the shape of strongly lensed galaxies (or arcs) in a multiparameter space, which includes the third-order (octopole) moments of objects. This method is applied to the Deep Lens Survey (DLS), a deep ground-based weak lensing survey imaging to R similar to 26. The parameter space of arcs in the DLS is simulated using real galaxies extracted from deep Hubble Space Telescope fields in order to more accurately reproduce the properties of arcs. Arcs are detected in the DLS using a pixel thresholding method and candidate arcs are selected within this multiparameter space. Examples of strong galaxy-galaxy lens candidates discovered in the DLS F2 field (4 deg(2)) are presented. C1 [Kubo, Jeffrey M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Kubo, Jeffrey M.; Dell'Antonio, Ian P.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Kubo, JM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, MS 127,POB 500, Batavia, IL 60510 USA. EM kubo@fnal.gov NR 42 TC 9 Z9 9 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 1 PY 2008 VL 385 IS 2 BP 918 EP 928 DI 10.1111/j.1365-2966.2008.12880.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 274CZ UT WOS:000253980700028 ER PT J AU Powell, CA Morreale, BD AF Powell, Cynthia A. Morreale, Bryan D. TI Materials challenges in advanced coal conversion technologies SO MRS BULLETIN LA English DT Article AB Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO2, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO2 capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy. C1 [Powell, Cynthia A.; Morreale, Bryan D.] Natl Energy Technol Lab, Res & Dev, Albany, OR 97321 USA. RP Powell, CA (reprint author), Natl Energy Technol Lab, Res & Dev, 1450 Queen Ave, Albany, OR 97321 USA. EM cynthia.powell@netl.doe.gov; bryan.morreale@netl.doe.gov NR 13 TC 21 Z9 24 U1 3 U2 9 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD APR PY 2008 VL 33 IS 4 BP 309 EP 315 DI 10.1557/mrs2008.64 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 279RT UT WOS:000254373000012 ER PT J AU Crabtree, GW Dresselhaus, MS AF Crabtree, G. W. Dresselhaus, M. S. TI The hydrogen fuel alternative SO MRS BULLETIN LA English DT Article ID POLYMER ELECTROLYTE MEMBRANES; STORAGE MATERIALS; 1ST PRINCIPLES; CELLS; HYDRIDE; ECONOMY; ANODE; COAL; CO2 AB The cleanliness of hydrogen and the efficiency of fuel cells taken together offer an appealing alternative to fossil fuels. Implementing hydrogen-powered fuel cells on a significant scale, however, requires major advances in hydrogen production, storage, and use. Splitting water renewably offers the most plentiful and climate-friendly source of hydrogen and can be achieved through electrolytic, photochemical, or biological means. Whereas presently available hydride compounds cannot easily satisfy the competing requirements for on-board storage of hydrogen for transportation, nanoscience offers promising new approaches to this challenge. Fuel cells offer potentially efficient production of electricity for transportation and grid distribution, if cost and performance challenges of components can be overcome. Hydrogen offers a variety of routes for achieving a transition to a mix of renewable fuels. C1 [Crabtree, G. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dresselhaus, M. S.] MIT, Cambridge, MA 02139 USA. RP Crabtree, GW (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. NR 46 TC 110 Z9 112 U1 2 U2 33 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD APR PY 2008 VL 33 IS 4 BP 421 EP 428 DI 10.1557/mrs2008.84 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 279RT UT WOS:000254373000032 ER PT J AU Gates, BC Huber, GW Marshall, CL Ross, PN Siirola, J Wang, Y AF Gates, Bruce C. Huber, George W. Marshall, Christopher L. Ross, Phillip N. Siirola, Jeffrey Wang, Yong TI Catalysts tor emerging energy applications SO MRS BULLETIN LA English DT Article ID FUELS; BIOMASS; HYDROGEN; ALKANES AB Catalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research, Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO2 and possibly water into liquid fuels. C1 [Gates, Bruce C.] Univ Calif Davis, Davis, CA 95616 USA. [Huber, George W.] Univ Massachusetts, Amherst, MA 01003 USA. [Marshall, Christopher L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ross, Phillip N.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Wang, Yong] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gates, BC (reprint author), Univ Calif Davis, Davis, CA 95616 USA. RI Wang, Yong/C-2344-2013; Marshall, Christopher/D-1493-2015 OI Marshall, Christopher/0000-0002-1285-7648 NR 16 TC 21 Z9 21 U1 0 U2 20 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD APR PY 2008 VL 33 IS 4 BP 429 EP 435 DI 10.1557/mrs2008.85 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 279RT UT WOS:000254373000033 ER PT J AU Carpenter, JA Gibbs, J Pesaran, AA Marlino, LD Kelly, K AF Carpenter, Joseph A. Gibbs, Jerry Pesaran, Ahmad A. Marlino, Laura D. Kelly, Kenneth TI Road transportation vehicles SO MRS BULLETIN LA English DT Article ID ION CELLS; TEMPERATURE AB In many industrial countries, road transportation accounts for a significant portion of the country's energy consumption. In developing countries, the use of energy for transportation is on the rise. The recent increase in petroleum prices, expanding world economic prosperity, the probable peaking of conventional petroleum production in the coming decades, and concerns about global climate changes require efforts to increase the efficiency of the use of, and develop alternatives for, petroleum-based fuels used in road transportation. The energy efficiency of a vehicle could be improved in several ways: lightweighting the vehicle structure and powertrain using advanced materials and designs, improving the efficiency of the internal combustion engine, reducing tire rolling resistance, and hybridization. Each of these efforts will require improvements in materials and processes. C1 [Kelly, Kenneth] Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 39 TC 13 Z9 13 U1 0 U2 7 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD APR PY 2008 VL 33 IS 4 BP 439 EP 444 DI 10.1557/mrs2008.86 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 279RT UT WOS:000254373000034 ER PT J AU Oh, SH van Benthem, K Molina, SI Borisevich, AY Luo, WD Werner, P Zakharov, ND Kurnar, D Pantelides, ST Pennycook, SJ AF Oh, Sang Ho van Benthem, Klaus Molina, Sergio I. Borisevich, Albina Y. Luo, Weidong Werner, Peter Zakharov, Nikolai D. Kurnar, Dhananjay Pantelides, Sokrates T. Pennycook, Stephen J. TI Point defect configurations of supersaturated Au atoms inside Si nanowires SO NANO LETTERS LA English DT Article ID SILICON NANOWIRES; GROWTH; DIFFUSION; GOLD AB Aberration-corrected scanning transmission electron microscopy (STEM) is used to reveal individual Au atom configurations inside Si nanowires grown by Au-catalyzed vapor-liquid-solid (VLS) molecular beam epitaxy (MBE). We identify a substitutional and three distinct interstitial configurations, one of which has not been previously identified. We confirm the stability of the observed point defect configurations by density functional theory (DFT) calculations. The observed number densities of the various configurations are in accord with their calculated formation energies. The concentration of Au atoms is larger than the solubility limit, but the effect may be caused by the STEM beam. C1 [Oh, Sang Ho; van Benthem, Klaus; Molina, Sergio I.; Borisevich, Albina Y.; Luo, Weidong; Kurnar, Dhananjay; Pantelides, Sokrates T.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Oh, Sang Ho; Kurnar, Dhananjay] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA. [van Benthem, Klaus] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Molina, Sergio I.] Univ Cadiz, Dept Mat Sci Metallurg Engn & Inorgan Chem, Cadiz 11510, Spain. [Werner, Peter; Zakharov, Nikolai D.] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. [Luo, Weidong; Pantelides, Sokrates T.; Pennycook, Stephen J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Oh, SH (reprint author), Korea Basic Sci Inst, Div Elect Microscop Res, Taejon 305333, South Korea. EM shoh@kbsi.re.kr RI Molina, Sergio/A-8241-2008; Borisevich, Albina/B-1624-2009; Luo, Weidong/A-8418-2009 OI Molina, Sergio/0000-0002-5221-2852; Borisevich, Albina/0000-0002-3953-8460; Luo, Weidong/0000-0003-3829-1547 NR 23 TC 80 Z9 81 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2008 VL 8 IS 4 BP 1016 EP 1019 DI 10.1021/nl072670 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 287IQ UT WOS:000254911200007 PM 18336008 ER PT J AU Blackburn, JL McDonald, TJ Metzger, WK Engtrakul, C Rumbles, G Heben, MJ AF Blackburn, Jeffrey L. McDonald, Timothy J. Metzger, Wyatt K. Engtrakul, Chalwat Rumbles, Garry Heben, Michael J. TI Protonation effects on the branching ratio in photoexcited single-walled carbon nanotube dispersions SO NANO LETTERS LA English DT Article ID FLUORESCENCE; SURFACTANT; PHOTOLUMINESCENCE; STATES AB The ensemble PL quantum yield for raw single-walled carbon nanotubes (SWNTs) dispersed in sodium cholate (SC) is similar to 5 times greater than that for the same raw SWNTs dispersed in sodium dodecyl sulfate (SDS) and similar to 10 times greater than the quantum yield of purified SWNTs dispersed in SC. Absorbance and Raman spectra indicate that purified SC-dispersed SWNTs and raw SDS-dispersed SWNTs are hole-doped by protonation. Experiments comparing PL emission efficiency using E-2 and E-1 excitation show that protonation significantly affects the E-2 -> E-1 relaxation process, which has typically been assumed to occur with unit efficiency. The E-2 -> E-1 relaxation is 5 times more efficient in producing El PL when SWNTs are unprotonated and protected by the SC surfactant. The results provide clear evidence that extrinsic factors, such as residual acids and the specific nature of SWNT-surfactant and SWNT-solvent interactions, can significantly affect measured SWNT luminescence quantum yields. C1 [Blackburn, Jeffrey L.; McDonald, Timothy J.; Metzger, Wyatt K.; Engtrakul, Chalwat; Rumbles, Garry; Heben, Michael J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jeffrey_blackburn@nrel.gov RI Engtrakul, Chaiwat/H-5634-2011; Blackburn, Jeffrey/D-7344-2012; OI Rumbles, Garry/0000-0003-0776-1462 NR 40 TC 31 Z9 31 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD APR PY 2008 VL 8 IS 4 BP 1047 EP 1054 DI 10.1021/nl072809g PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 287IQ UT WOS:000254911200012 PM 18318507 ER PT J AU Vo, TTM Williamson, AJ Lordi, V Galli, G AF Vo, Trinh T. M. Williamson, Andrew J. Lordi, Vincenzo Galli, Giulia TI Atomistic design of thermoelectric properties of silicon nanowires SO NANO LETTERS LA English DT Article ID QUANTUM-WELL STRUCTURES; THERMAL-CONDUCTIVITY; BUILDING-BLOCKS; FIGURE; MERIT; GROWTH; SI; NANOSENSORS; FABRICATION; DEVICES AB We present predictions of the thermoelectric figure of merit (ZT) of Si nanowires with diameter up to 3 nrn, based upon the Boltzman transport equation and ab initio electronic structure calculations. We find that ZT depends significantly on the wire growth direction and surface reconstruction, and we discuss how these properties can be tuned to select silicon based nanostruCtUres with combined n-type and p-type optimal ZT. Our calculations show that only by reducing the ionic thermal conductivity by about 2 or 3 orders of magnitudes with respect to bulk values, one may attain ZT larger than 1, for 1 or 3 nm wires, respectively. We also find that ZT of p-doped wires is considerably smaller than that of their n-doped counterparts with the same size and geometry. C1 [Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Vo, Trinh T. M.; Williamson, Andrew J.; Lordi, Vincenzo] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Galli, G (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM gagalli@ucdavis.edu OI Lordi, Vincenzo/0000-0003-2415-4656 NR 36 TC 100 Z9 100 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2008 VL 8 IS 4 BP 1111 EP 1114 DI 10.1021/nl073231d PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 287IQ UT WOS:000254911200023 PM 18302325 ER PT J AU Claridge, SA Liang, HYW Basu, SR Frechet, JMJ Alivisatos, AP AF Claridge, Shelley A. Liang, Huiyang W. Basu, S. Roger Frechet, Jean M. J. Alivisatos, A. Paul TI Isolation of discrete nanoparticle - DNA conjugates for plasmonic applications SO NANO LETTERS LA English DT Article ID SIZE-EXCLUSION CHROMATOGRAPHY; LIQUID-CHROMATOGRAPHY; OPTICAL-PROPERTIES; GOLD; NANOCRYSTALS; SEPARATION; GROUPINGS; CDSE AB Discrete DNA-gold nanoparticle conjugates with DNA lengths as short as 15 bases for both 5 and 20 nm gold particles have been purified by anion-exchange HPLC. Conjugates comprising short DNA (<40 bases) and large gold particles (>= 20 nm) are difficult to purify by other means and are potential substrates for plasmon coupling experiments. Conjugate purity is demonstrated by hybridizing complementary conjugates to form discrete structures, which are visualized by TEM. C1 [Claridge, Shelley A.; Liang, Huiyang W.; Basu, S. Roger; Frechet, Jean M. J.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Claridge, Shelley A.; Liang, Huiyang W.; Basu, S. Roger; Frechet, Jean M. J.; Alivisatos, A. Paul] EO Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu; alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015; OI Alivisatos , Paul /0000-0001-6895-9048; Frechet, Jean /0000-0001-6419-0163 NR 23 TC 118 Z9 120 U1 6 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD APR PY 2008 VL 8 IS 4 BP 1202 EP 1206 DI 10.1021/nl0802032 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 287IQ UT WOS:000254911200040 PM 18331002 ER PT J AU Nettles, KW Bruning, JB Gil, G Nowak, J Sharma, SK Hahm, JB Kulp, K Hochberg, RB Zhou, H Katzenellenbogen, JA Katzenellenbogen, BS Kim, Y Joachmiak, A Greene, GL AF Nettles, Kendall W. Bruning, John B. Gil, German Nowak, Jason Sharma, Sanjay K. Hahm, Johnnie B. Kulp, Kristen Hochberg, Richard B. Zhou, Haibing Katzenellenbogen, John A. Katzenellenbogen, Benita S. Kim, Younchang Joachmiak, Andrzej Greene, Geoffrey L. TI NF kappa B selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses SO NATURE CHEMICAL BIOLOGY LA English DT Article ID HORMONE-BINDING; BETA; IDENTIFICATION; ACTIVATION; AFFINITY; DOMAIN; SIDE; ANTIESTROGENS; TYROSINE-537; MUTATIONS AB Our understanding of how steroid hormones regulate physiological functions has been significantly advanced by structural biology approaches. However, progress has been hampered by misfolding of the ligand binding domains in heterologous expression systems and by conformational flexibility that interferes with crystallization. Here, we show that protein folding problems that are common to steroid hormone receptors are circumvented by mutations that stabilize well-characterized conformations of the receptor. We use this approach to present the structure of an apo steroid receptor that reveals a ligand-accessible channel allowing soaking of preformed crystals. Furthermore, crystallization of different pharmacological classes of compounds allowed us to define the structural basis of NF kappa B-selective signaling through the estrogen receptor, thus revealing a unique conformation of the receptor that allows selective suppression of inflammatory gene expression. The ability to crystallize many receptor-ligand complexes with distinct pharmacophores allows one to define structural features of signaling specificity that would not be apparent in a single structure. C1 [Nettles, Kendall W.; Bruning, John B.; Gil, German; Nowak, Jason] Scripps Res Inst, Dept Canc Biol, Jupiter, FL 33458 USA. Univ Chicago, Ben May Dept Canc Res, Chicago, IL 60637 USA. [Kulp, Kristen] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Chem Mat & Lifesci Directorate, Livermore, CA 94550 USA. [Hochberg, Richard B.] Yale Univ, Sch Med, Dept Obstet Gynecol & Reprod Sci, New Haven, CT 06520 USA. [Hochberg, Richard B.] Yale Univ, Sch Med, Ctr Comprehens Canc, New Haven, CT 06520 USA. [Zhou, Haibing; Katzenellenbogen, John A.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Katzenellenbogen, Benita S.] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA. [Katzenellenbogen, Benita S.] Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA. [Kim, Younchang; Joachmiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom & Struct Biol Ctr, Argonne, IL 60439 USA. RP Nettles, KW (reprint author), Scripps Res Inst, Dept Canc Biol, 5353 Pkside Dr, Jupiter, FL 33458 USA. EM knettles@scripps.edu; ggreene@uchicago.edu RI Zhou, Haibing/B-2915-2017 OI Zhou, Haibing/0000-0001-8498-063X FU NCI NIH HHS [5R01 CA18119, 5R01 CA89489, R01 CA018119, R01 CA018119-32, R01 CA037799, R01 CA037799-21, R01 CA089489, R01 CA089489-01A1, R01 CA089489-02, R01 CA089489-03, R01 CA089489-04, R01 CA089489-05, R01 CA089489-05S1, R01 CA089489-06A1, R01 CA089489-07, R01 CA37799, R33 CA132022]; NHLBI NIH HHS [R01 HL061432, R01 HL061432-04, R01 HL61432]; NIDDK NIH HHS [5R37 DK15556, R01 DK077085, R01 DK077085-01A1, R37 DK015556, R37 DK015556-38]; NINDS NIH HHS [1R21 NS056998-01, R21 NS056998, R21 NS056998-01] NR 33 TC 79 Z9 82 U1 3 U2 26 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1552-4450 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD APR PY 2008 VL 4 IS 4 BP 241 EP 247 DI 10.1038/nchembio.76 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 278EY UT WOS:000254268300011 PM 18344977 ER PT J AU Weinberger, LS Dar, RD Simpson, ML AF Weinberger, Leor S. Dar, Roy D. Simpson, Michael L. TI Transient-mediated fate determination in a transcriptional circuit of HIV SO NATURE GENETICS LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; ACTIVE ANTIRETROVIRAL THERAPY; ESCHERICHIA-COLI; TYPE-1 INFECTION; GENE-EXPRESSION; T-CELLS; RESERVOIR; LATENCY; NOISE; TAT AB Steady-state behavior and bistability have been proposed as mechanisms for decision making in gene circuits(1-3). However, transient gene expression has also been proposed to control cell fate(4,5), with the decision arbitrated by the duration of a transient gene expression pulse. Here, using an HIV-1 model system, we directly quantify transcriptional feedback strength and its effects on both the duration of HIV-1 Tat transcriptional pulses and the fate of HIV-infected cells. By measuring shifts in the autocorrelation of noise inherent to gene expression, we found that transcriptional positive feedback extends the single-cell Tat expression lifetime two-to sixfold for both minimal Tat circuits and full length, actively replicating HIV-1. Notably, artificial weakening of Tat positive feedback shortened the duration of Tat expression transients and biased the probability in favor of latency. Thus, transcriptional positive feedback can modulate transient expression lifetime to a greater extent than protein half-life modulation, and it has a critical role in the cell-fate decision in HIV. C1 [Weinberger, Leor S.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Dar, Roy D.; Simpson, Michael L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dar, Roy D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Simpson, Michael L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Weinberger, LS (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr 0314, La Jolla, CA 92093 USA. EM lsw@ucsd.edu; simpsonml1@ornl.gov RI Simpson, Michael/A-8410-2011 OI Simpson, Michael/0000-0002-3933-3457 NR 30 TC 102 Z9 102 U1 1 U2 10 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD APR PY 2008 VL 40 IS 4 BP 466 EP 470 DI 10.1038/ng.116 PG 5 WC Genetics & Heredity SC Genetics & Heredity GA 279XG UT WOS:000254388100019 PM 18344999 ER PT J AU Markstein, M Pitsouli, C Villalta, C Celniker, SE Perrimon, N AF Markstein, Michele Pitsouli, Chrysoula Villalta, Christians Celniker, Susan E. Perrimon, Norbert TI Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes SO NATURE GENETICS LA English DT Article ID DROSOPHILA-MELANOGASTER; GENE-EXPRESSION; WHITE GENE; CHROMOSOMAL POSITION; TRANSPOSABLE ELEMENT; REGULATORY ELEMENTS; PHI-C31 INTEGRASE; RNA INTERFERENCE; TRANSFORMATION; PROTEIN AB A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression. C1 [Markstein, Michele; Pitsouli, Chrysoula; Villalta, Christians; Perrimon, Norbert] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. [Markstein, Michele; Pitsouli, Chrysoula; Villalta, Christians; Perrimon, Norbert] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA. [Celniker, Susan E.] Lawrence Berkeley Natl Lab, Dept Genome & Computat Biol, Berkeley, CA 94720 USA. RP Markstein, M (reprint author), Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. EM mmarkstein@genetics.med.harvard.edu OI Markstein, Michele/0000-0003-2635-8118 FU Howard Hughes Medical Institute NR 49 TC 214 Z9 216 U1 0 U2 19 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD APR PY 2008 VL 40 IS 4 BP 476 EP 483 DI 10.1038/ng.101 PG 8 WC Genetics & Heredity SC Genetics & Heredity GA 279XG UT WOS:000254388100021 PM 18311141 ER PT J AU Fleming, C Long, DL Mcmillan, N Johnston, J Bovet, N Dhanak, V Gadegaard, N Kogerler, P Cronin, L Kadodwala, M AF Fleming, Christopher Long, De-Liang Mcmillan, Nicola Johnston, Jacqueline Bovet, Nicolas Dhanak, Vin Gadegaard, Nikolaj Kogerler, Paul Cronin, Leroy Kadodwala, Malcolm TI Reversible electron-transfer reactions within a nanoscale metal oxide cage mediated by metallic substrates SO NATURE NANOTECHNOLOGY LA English DT Article ID POLYOXOMETALATE; TRANSITIONS; MOLECULES; CLUSTERS; SURFACE; HYBRID AB Transition metal oxides exhibit a rich collection of electronic properties and have many practical applications in areas such as catalysis and ultra-high-density magnetic data storage. Therefore the development of switchable molecular transition metal oxides has potential for the engineering of single-molecule devices and nanoscale electronics. At present, the electronic properties of transition metal oxides can only be tailored through the irreversible introduction of dopant ions, modifying the electronic structure by either injecting electrons or core holes. Here we show that a molybdenum( VI) oxide 'polyoxometalate' molecular nanocluster containing two embedded redox agents is activated by a metallic surface and can reversibly interconvert between two electronic states. Upon thermal activation two electrons are ejected from the active sulphite anions and delocalized over the metal oxide cluster cage, switching it from a fully oxidized state to a two-electron reduced state along with the concomitant formation of an S-S bonding interaction between the two sulphur centres inside the cluster shell. C1 [Fleming, Christopher; Long, De-Liang; Mcmillan, Nicola; Johnston, Jacqueline; Bovet, Nicolas; Cronin, Leroy; Kadodwala, Malcolm] Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland. [Dhanak, Vin] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. [Dhanak, Vin] CLRC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Johnston, Jacqueline; Gadegaard, Nikolaj] Univ Glasgow, Dept Elect & Elect Engn, Glasgow G12 8LT, Lanark, Scotland. [Kogerler, Paul] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kogerler, Paul] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kadodwala, M (reprint author), Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland. EM L.Cronin@chem.gla.ac.uk; malcolmk@chem.gla.ac.uk RI Cronin, Leroy/B-7752-2008; Gadegaard, Nikolaj/E-9243-2010; Long, Deliang/C-3500-2011; kadodwala, malcolm/B-8366-2012; bovet, nicolas/B-4092-2014; Kogerler, Paul/H-5866-2013; OI Cronin, Leroy/0000-0001-8035-5757; Gadegaard, Nikolaj/0000-0002-3396-846X; bovet, nicolas/0000-0002-5081-0517; Kogerler, Paul/0000-0001-7831-3953; Kadodwala, Malcolm/0000-0003-4989-5688; Fleming, Christopher/0000-0002-6644-8065 NR 23 TC 49 Z9 49 U1 5 U2 44 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD APR PY 2008 VL 3 IS 4 BP 229 EP 233 DI 10.1038/nnano.2008.66 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 284YM UT WOS:000254744300015 ER PT J AU Moore, J AF Moore, Joel TI Topological order - How spin splits the electron SO NATURE PHYSICS LA English DT News Item ID HGTE QUANTUM-WELLS C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Div Mat Sci, Berkeley, CA 94720 USA. RP Moore, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Div Mat Sci, Berkeley, CA 94720 USA. EM jemoore@berkeley.edu RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 6 TC 1 Z9 1 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD APR PY 2008 VL 4 IS 4 BP 270 EP 271 DI 10.1038/nphys925 PG 2 WC Physics, Multidisciplinary SC Physics GA 292DT UT WOS:000255247400007 ER PT J AU Wang, YJ Liu, X Im, KS Lee, WK Wang, J Fezzaa, K Hung, DLS Winkelman, JR AF Wang, Yujie Liu, Xin Im, Kyoung-Su Lee, Wah-Keat Wang, Jin Fezzaa, Kamel Hung, David L. S. Winkelman, James R. TI Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry SO NATURE PHYSICS LA English DT Article ID MICROFLUIDICS; ATOMIZATION; INSTABILITY; MECHANISM; SPRAY AB High-speed liquid jets and sprays are complex multiphase flow phenomena with many important industrial applications(1,2). Great efforts have been devoted to understand their dynamics since the pioneering work of Rayleigh on low-speed jets(3,4). Attempts to use conventional laser optical techniques to provide information about the internal structure of high-speed jets have been unsuccessful owing to the multiple scattering by droplets and interfaces, and the high density of the jet near the nozzle exit(5). Focused-X-ray-beam absorption measurements could provide only average quantitative density distributions using repeated imaging(6). Here, we report a novel approach on the basis of ultrafast synchrotron-X-ray full-field phase-contrast imaging(7). As illustrated in our case study, this technique reveals, for the first time, instantaneous velocity and internal structure of optically dense sprays with a combined unprecedented spatial and time resolution. This technique has tremendous potential for the study of transient phenomenon dynamics. C1 [Wang, Yujie; Im, Kyoung-Su; Lee, Wah-Keat; Wang, Jin; Fezzaa, Kamel] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Liu, Xin] Mayo Clin, Rochester, MN 55905 USA. [Hung, David L. S.; Winkelman, James R.] Visteon Corp, Van Buren Township, MI 48111 USA. RP Fezzaa, K (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fezzaa@aps.anl.gov RI wang, yujie/C-2582-2015 NR 29 TC 84 Z9 86 U1 4 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD APR PY 2008 VL 4 IS 4 BP 305 EP 309 DI 10.1038/nphys840 PG 5 WC Physics, Multidisciplinary SC Physics GA 292DT UT WOS:000255247400017 ER PT J AU Alldredge, JW Lee, J McElroy, K Wang, M Fujita, K Kohsaka, Y Taylor, C Eisaki, H Uchida, S Hirschfeld, PJ Davis, JC AF Alldredge, J. W. Lee, Jinho McElroy, K. Wang, M. Fujita, K. Kohsaka, Y. Taylor, C. Eisaki, H. Uchida, S. Hirschfeld, P. J. Davis, J. C. TI Evolution of the electronic excitation spectrum with strongly diminishing hole density in superconducting Bi2Sr2CaCu2O8+delta SO NATURE PHYSICS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; T-C SUPERCONDUCTORS; ATOMIC-SCALE; STATES; SPECTROSCOPY; SCATTERING; ANISOTROPY; PSEUDOGAP; IMPURITY; PHYSICS AB Coulomb interactions between the carriers may provide the mechanism for enhanced unconventional superconductivity in the copper oxides. However, they simultaneously cause inelastic quasiparticle scattering that can destroy it. Understanding the evolution of this balance with doping is crucial because it is responsible for the rapidly diminishing critical temperature as the hole density p is reduced towards the Mott insulating state. Here, we use tunnelling spectroscopy to measure the T ! 0 spectrum of electronic excitations N(E) over a wide range of hole density p in superconducting Bi2Sr2CaCu2O8+delta. We introduce a parameterization for N(E) based on a particle-hole symmetric anisotropic energy gap Delta( k) = Delta(1)(cos(k(x))-cos(k(y)))/2 plus an inelastic scattering rate that varies linearly with energy Gamma(2)(E)= alpha E. We demonstrate that this form of N(E) enables successful fitting of differential tunnelling conductance spectra throughout much of the Bi2Sr2CaCu2O8+delta phase diagram. We find that Delta(1) values rise with falling p along the familiar trajectory of excitations to the 'pseudogap' energy, whereas the energy-dependent inelastic scattering rate Gamma(2)( E)= alpha E seems to be an intrinsic property of the electronic structure and rises steeply for p < 16%. Such diverging inelastic scattering may play a key role in suppression of superconductivity in the copper oxides as the Mott insulating state is approached. C1 [Alldredge, J. W.; Lee, Jinho; Wang, M.; Fujita, K.; Kohsaka, Y.; Taylor, C.; Davis, J. C.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14850 USA. [Lee, Jinho] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [McElroy, K.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Kohsaka, Y.] RIKEN, Magnet Mat Lab, Wako, Saitama 3510198, Japan. [Eisaki, H.] NIAIST, Tsukuba, Ibaraki 3058568, Japan. [Uchida, S.] Univ Tokyo, Dept Phys, Tokyo 1138656, Japan. [Hirschfeld, P. J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Davis, J. C.] Brookhaven Natl Lab, CMP&MS Dept, Upton, NY 11973 USA. RP Davis, JC (reprint author), Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14850 USA. EM jcdavis@ccmr.cornell.edu RI Hirschfeld, Peter /A-6402-2010; mcelroy, kyle/D-1816-2013 NR 45 TC 93 Z9 93 U1 1 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD APR PY 2008 VL 4 IS 4 BP 319 EP 326 DI 10.1038/nphys917 PG 8 WC Physics, Multidisciplinary SC Physics GA 292DT UT WOS:000255247400020 ER PT J AU Prozorov, R Fidler, AF Hoberg, JR Canfield, PC AF Prozorov, Ruslan Fidler, Andrew F. Hoberg, Jacob R. Canfield, Paul C. TI Suprafroth in type-I superconductors SO NATURE PHYSICS LA English DT Article ID FOAMS AB The structure and dynamics of froths have been subjects of intense interest owing to the desire to understand the behaviour of complex systems where topological intricacy prohibits exact evaluation of the ground state. The dynamics of a traditional froth involves drainage and drying at the cell boundaries; thus, it is irreversible. Here, we report a new member of the froth family: suprafroth, in which the cell boundaries are superconducting and the cell interior is normal, or non-superconducting. Despite having a very different microscopic origin, topological analysis of the structure of the suprafroth shows that the same statistical laws, such as those of von Neumann and of Lewis apply to a suprafroth. Furthermore, for the first time in the analysis of froths, there is a global measurable property, the magnetic moment, which can be directly related to the suprafroth structure. We propose that this suprafroth is a model system for the analysis of the complex physics of two-dimensional froths-with magnetic field and temperature as external (reversible) control parameters. C1 [Prozorov, Ruslan] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; NR 15 TC 50 Z9 50 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD APR PY 2008 VL 4 IS 4 BP 327 EP 332 DI 10.1038/nphys888 PG 6 WC Physics, Multidisciplinary SC Physics GA 292DT UT WOS:000255247400021 ER PT J AU Kim, ES No, HC Kim, BJ Oh, CH AF Kim, Eung Soo No, Hee Cheon Kim, Byung Joon Oh, Chang H. TI Estimation of graphite density and mechanical strength variation of VHTR during air-ingress accident SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID NUCLEAR GRAPHITE; OXIDATION; IG-110; HTGR AB This study focuses on predicting the changes in graphite density and mechanical strength in VHTR during the air-ingress accident via thermal hydraulic system analysis code. A simple graphite burn-off model was developed based on the similarities between a parallel electrical circuit and graphite oxidation. The developed model along with other comprehensive graphite oxidation models were integrated into the VHTR system analysis code, GAMMA. GT-MHR 600 MW t reactor was selected as a reference reactor. Based on the calculation, the main oxidation process was observed 5.5 days after the accident when followed by natural convection. The core maximum temperature reached 1430 degrees C, but never exceeded the maximum temperature criteria, 1600 degrees C. However, the oxidation process did significantly decrease the density of bottom reflector, making it vulnerable to mechanical stress. The stress on the bottom reflector is greatly increased because of the reduction of loaded surface area with graphite oxidation. The calculation proceeded until 11 days after the accident, resulting in an observed 4.5% decrease in density and a 25% reduction of mechanical strength. Published by Elsevier B.V. C1 [Kim, Eung Soo; Oh, Chang H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [No, Hee Cheon; Kim, Byung Joon] Korea Adv Inst Sci & Technol, Dept Quantum & Nucl Engn, Taejon 305701, South Korea. RP Oh, CH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Chang.Oh@inl.gov RI NO, Hee Cheon/C-1866-2011 NR 19 TC 18 Z9 19 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD APR PY 2008 VL 238 IS 4 BP 837 EP 847 DI 10.1016/j.nucengdes.2007.08.002 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 290GJ UT WOS:000255111000005 ER PT J AU Westphav, BR Marsden, KC Price, JC Laug, DV AF Westphav, Brian R. Marsden, Kenneth C. Price, John C. Laug, David V. TI On the development of a distillation process for the electrometallurgical treatment of irradiated spent nuclear fuel SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE vacuum distillation; actinide recovery; electrometallurgical treatment; pyroprocesssing ID URANIUM TRICHLORIDE; EXTRACTION; PLUTONIUM AB As part of the spent fuel treatment program at the Idaho National Laboratory, a vacuum distillation process is being employed for the recovery of actinide products following an electrorefining process. Separation of the actinide products from a molten salt electrolyte and cadmium is achieved by a batch operation called cathode processing. A cathode processor has been designed and developed to efficiently remove the process chemicals and consolidate the actinide products for further processing. This paper describes the fundamentals of cathode processing, the evolution of the equipment design, the operation and efficiency of the equipment, and recent developments at the cathode processor. In addition, challenges encountered during the processing of irradiated spent nuclear fuel in the cathode processor will be discussed. C1 [Westphav, Brian R.; Marsden, Kenneth C.; Price, John C.; Laug, David V.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Westphav, BR (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM biian.westphal@inl.gov NR 25 TC 19 Z9 20 U1 0 U2 6 PU KOREAN NUCLEAR SOC PI DAEJEON PA 150 DEOKJIN-DONG, YUSEONG-GU, DAEJEON, 305-353, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD APR PY 2008 VL 40 IS 3 BP 163 EP 174 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 298WN UT WOS:000255717900001 ER PT J AU Simpson, MF Sachdev, P AF Simpson, Michael F. Sachdev, Prateek TI Development of electrorefiner waste salt disposal process for the EBR-II spent fuel treatment project SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE pyroprocessing; ceramic waste; zeolite; molten salt; v-blender AB The results of process development for the blending of waste salt from the electrorefining of spent fuel with zeolite-A are presented. This blending is a key step in the ceramic waste process being used for treatment of EBR-II spent fuel and is accomplished using a high-temperature v-blender. A labscale system was used with non-radioactive surrogate salts to determine optimal particle size distributions and time at temperature. An engineering-scale system was then installed in the Hot Fuel Examination Facility hot cell and used to demonstrate blending of actual electrorefiner salt with zeolite. In those tests, it was shown that the results are still favorable with actinide-loaded salt and that batch size of this v-blender could be increased to a level consistent with efficient production operations for EBR-II spent fuel treatment. One technical challenge that remains for this technology is to mitigate the problem of material retention in the v-blender due to formation of caked patches of salt/zeolite on the inner v-blender walls. C1 [Simpson, Michael F.; Sachdev, Prateek] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Simpson, MF (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM michael.simpson@inl.gov NR 11 TC 10 Z9 11 U1 0 U2 2 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD APR PY 2008 VL 40 IS 3 BP 175 EP 182 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 298WN UT WOS:000255717900002 ER PT J AU Brooks, JN Allain, JP AF Brooks, J. N. Allain, J. P. TI Particle deposition and optical response of ITER motional Stark euect diagnostic first mirrors SO NUCLEAR FUSION LA English DT Article ID ION-BOMBARDMENT; TUNGSTEN; TOKAMAK; SYSTEMS; PLASMAS; METALS; IMPACT; TESTS AB Particle deposition and erosion can affect mirrors used in plasma diagnostics and this is a major concern for future fusion reactors. This subject is analysed for the first and second mirrors of the proposed motional Stark effect edge plasma current diagnostic for ITER. Particle fluxes to the diagnostic module aperture are given by edge plasma/impurity-transport solutions for convective plasma flow for full-power fusion conditions. The MC-Mirror code with input of TRIM-SP results is used to compute in-module direct, reflected and sputtered particle transport. Particles analysed are D-T and He atoms/ions from the plasma, and Fe, Be and W from first wall sputtering and/or in-module sputtering. Many of the results are encouraging for optical diagnostic use in ITER and possibly for post-ITER high duty-factor reactors. The LLNL-4B module design analysed works well in minimizing particle flux to the mirrors, with a factor of similar to 200-400 reduction in aperture-to-first-mirror flux. Sputtering erosion/degradation of Mo or Rh coated mirrors by incident D, T and He is negligible. IMD optical effects code analysis shows probably tolerable changes in light reflection and polarization due to mirror beryllium deposition. Tungsten flux to the mirrors is very low. Based on available but limited data, however, there is major concern about the effect of the predicted helium flux on mirror optical properties. C1 [Brooks, J. N.; Allain, J. P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Brooks, JN (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. OI Allain, Jean Paul/0000-0003-1348-262X NR 26 TC 15 Z9 15 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2008 VL 48 IS 4 AR 045003 DI 10.1088/0029-5515/48/4/045003 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 296WC UT WOS:000255575500003 ER PT J AU Joseph, I Evans, TE Runov, AM Fenstermacher, ME Groth, M Kasilov, SV Lasnier, CJ Moyer, RA Porter, GD Schaffer, MJ Schneider, R Watkins, JG AF Joseph, I. Evans, T. E. Runov, A. M. Fenstermacher, M. E. Groth, M. Kasilov, S. V. Lasnier, C. J. Moyer, R. A. Porter, G. D. Schaffer, M. J. Schneider, R. Watkins, J. G. TI Calculation of stochastic thermal transport due to resonant magnetic perturbations in DIII-D SO NUCLEAR FUSION LA English DT Article ID POLOIDAL DIVERTOR; ERGODIC DIVERTOR; EDGE COLLISIONALITY; PLASMA TRANSPORT; FIELD LINES; D TOKAMAK; RECONSTRUCTION; CONDUCTIVITY; DISCHARGES; FOOTPRINTS AB The effect of resonant magnetic perturbations on heat transport in DIII-D H-mode plasmas has been calculated by combining the TRIP3D field line tracing code with the E3D two-fluid transport code. Simulations show that the divertor heat flux distribution becomes non-axisymmetric because heat flux is efficiently guided to the divertor along the three-dimensional invariant manifolds of the magnetic field. Calculations demonstrate that heat flux is spread over a wider area of the divertor target, thereby reducing the peak heat flux delivered during steady-state operation. Filtered optical cameras have observed non-axisymmetric particle fluxes at the strike point and Langmuir probes have observed non-axisymmetric floating potentials. On the other hand, the predicted magnitude of stochastic thermal transport is too large to match the pedestal plasma profiles measured by Thomson scattering and charge exchange recombination spectroscopy. The Braginskii thermal conductivity overestimates the experimental heat transport in the pedestal because the mean free paths of both species are longer than estimates of the parallel thermal correlation lengths, and collisionless transport models are probably required for accurate description. However, even the collisionless estimates for electron thermal transport are too large by one to two orders of magnitude. Thus, it is likely that another mechanism such as rotational screening of resonant perturbations limits the stochastic region and reduces transport inside of the pedestal. C1 [Joseph, I.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Joseph, I.; Evans, T. E.; Schaffer, M. J.] Gen Atom Co, San Diego, CA 92186 USA. [Runov, A. M.; Schneider, R.] Max Planck Inst Plasma Phys, EURATOM Assoc, Teilinst Greifswald, Greifswald, Germany. [Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Porter, G. D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Kasilov, S. V.] Kharkov Phys & Technol Inst, Natl Sci Ctr, Inst Plasma Phys, UA-310108 Kharkov, Ukraine. [Kasilov, S. V.] Graz Univ Technol, Assoc EURATOM OEAW, Inst Theoret Phys Computat Phys, Graz, Austria. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Joseph, I (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ijoseph@ucsd.edu RI Groth, Mathias/G-2227-2013 NR 56 TC 48 Z9 48 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2008 VL 48 IS 4 AR 045009 DI 10.1088/0029-5515/48/4/045009 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 296WC UT WOS:000255575500009 ER PT J AU Park, JK Boozer, AH Menard, JE Schaffer, MJ AF Park, Jong-Kyu Boozer, Allen H. Menard, Jonathan E. Schaffer, Michael J. TI Error field correction in ITER SO NUCLEAR FUSION LA English DT Article ID RESISTIVE WALL MODES; DIII-D; TOKAMAK; GEOMETRY; PHYSICS; JET AB A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code. The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered. C1 [Park, Jong-Kyu; Menard, Jonathan E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Schaffer, Michael J.] Gen Atom Co, San Diego, CA 92186 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Menard, Jonathan/0000-0003-1292-3286 NR 21 TC 43 Z9 43 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2008 VL 48 IS 4 AR 045006 DI 10.1088/0029-5515/48/4/045006 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 296WC UT WOS:000255575500006 ER PT J AU Petrie, TW Brooks, NH Fenstermacher, ME Groth, M Hyatt, AW Isler, RC Lasnier, CJ Leonard, AW Porter, GD Schaffer, MJ Watkins, JG Wade, MR West, WP AF Petrie, T. W. Brooks, N. H. Fenstermacher, M. E. Groth, M. Hyatt, A. W. Isler, R. C. Lasnier, C. J. Leonard, A. W. Porter, G. D. Schaffer, M. J. Watkins, J. G. Wade, M. R. West, W. P. TI Comparison of radiating divertor behaviour in single-null and double-null plasmas in DIII-D SO NUCLEAR FUSION LA English DT Article ID IMPURITY ENRICHMENT; MAGNETIC BALANCE; NEON ENRICHMENT; PERFORMANCE; TOKAMAKS; GEOMETRY; EXHAUST; FLOW; JET; SOL AB 'Puff-and-pump' radiating divertor scenarios, applied to both upper single-null (SN) and double-null (DN) H-mode plasmas, result in a 30-60% increase in radiated power with little or no decrease in tau(E). Argon was injected into the private flux region of the upper divertor, and plasma flow into the upper divertor was enhanced by a combination of deuterium gas puffing upstream of the divertor targets and particle pumping at the targets. For the same constant deuterium injection rate, argon penetrated the main plasma of SNs more rapidly and reached a higher steady-state concentration when the B x del B-ion drift direction was towards the divertor (V(del B up arrow)) rather than away from the divertor (V(del B down arrow)). We also found that the initial rate at which argon accumulated inside DN plasmas was more than twice that of comparable SN plasmas having the same B x del B-ion drift direction. In DNs, the radiated power was not shared equally between divertors during argon injection. Only when the B x del B ion drift direction was away from the divertor were both significant increases in divertor radiated power and an accumulation of argon in the divertor observed, based on spectroscopic measurements of Ar II. Our data suggest that an unbalanced DN shape where the B x del B-ion drift is directed away from the dominant divertor may provide the best chance of successfully coupling a radiating divertor approach with a higher performance H-mode plasma. C1 [Petrie, T. W.; Brooks, N. H.; Hyatt, A. W.; Leonard, A. W.; Schaffer, M. J.; Wade, M. R.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Porter, G. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Isler, R. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Petrie, TW (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM petrie@fusion.gat.com RI Groth, Mathias/G-2227-2013; OI Isler, Ralph/0000-0002-5368-7200 NR 17 TC 20 Z9 20 U1 2 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2008 VL 48 IS 4 AR 045010 DI 10.1088/0029-5515/48/4/045010 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 296WC UT WOS:000255575500010 ER PT J AU Hanna, D Acciari, VA Amini, R Badran, HM Blaylock, G Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, KL Celik, O Cesarini, A Ciupik, L Chow, YCK Cogan, P Colin, P Cul, W Daniel, MK Dowdall, C Dowkontt, P Duke, C Ergin, T Falcone, AD Fegan, DJ Fegan, SJ Finley, JP Fortin, P Fortson, LF Gall, D Gibbs, K Gillanders, G Glidewell, OJ Grube, J Guenette, R Gyuk, G Hall, J Hays, E Holder, J Horan, D Hughes, SB Hui, CM Humensky, TB Imran, A Kaaret, P Kenny, GE Kertzman, M Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Lee, K Manseri, H McCann, A McCutcheon, M Millis, J Moriarty, P Mukherjee, R Nagai, T Niemiec, J Ogden, PA Ong, RA Pandel, D Perkins, JS Pizlo, F Pohlu, M Quinn, J Ragan, K Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Syson, A Toner, JA Valcarcel, L Vassiliev, VV Wagner, R Wakely, SP Ward, JE Weekes, TC Weinstein, A White, RJ Williams, DA Wissel, SA Wood, M Zitzer, B AF Hanna, D. Acciari, V. A. Amini, R. Badran, H. M. Blaylock, G. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. L. Celik, O. Cesarini, A. Ciupik, L. Chow, Y. C. K. Cogan, P. Colin, P. Cul, W. Daniel, M. K. Dowdall, C. Dowkontt, P. Duke, C. Ergin, T. Falcone, A. D. Fegan, D. J. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. F. Gall, D. Gibbs, K. Gillanders, G. Glidewell, O. J. Grube, J. Guenette, R. Gyuk, G. Hall, J. Hays, E. Holder, J. Horan, D. Hughes, S. B. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Kenny, G. E. Kertzman, M. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Lee, K. Manseri, H. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Mukherjee, R. Nagai, T. Niemiec, J. Ogden, P. A. Ong, R. A. Pandel, D. Perkins, J. S. Pizlo, F. Pohlu, M. Quinn, J. Ragan, K. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Syson, A. Toner, J. A. Valcarcel, L. Vassiliev, V. V. Wagner, R. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. White, R. J. Williams, D. A. Wissel, S. A. Wood, M. Zitzer, B. TI First results from VERITAS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 1st Roma International Conference on Astroparticle Physics CY JUN 20-22, 2007 CL Rome, ITALY DE gamma-ray astronomy; active galaxies; blazars; X-ray binaries ID ENERGY GAMMA-RAYS; TELESCOPE; DISCOVERY; HESS; M87 AB VERITAS is an array of four, 12-m-diameter, Cherenkov telescopes, designed to explore the very-high-energy gamma-ray sky in the energy band between 100 GeV and 50 TeV. Its construction and commissioning have occurred over the past two years and the array has been taking scientific data with three or more telescopes since November 2006. We present results from observations made with VERITAS during the 1 past observing season, including new results on the distant blazar 1ES1218 + 304, the active galaxy M87 and the high-mass X-ray binary system LS I +61 303. We also describe the plans in place for the coming observing seasons. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hanna, D.; Cogan, P.; Guenette, R.; McCann, A.; McCutcheon, M.; Valcarcel, L.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Phys & Life Sci, Galway, Ireland. [Amini, R.; Buckley, J. H.; Dowkontt, P.; Krawczynski, H.; Lee, K.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Badran, H. M.] Tanta Univ, Fac Sci, Dept Phys, Tanta 31527, Egypt. [Blaylock, G.; Ergin, T.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Bradbury, S. M.; Daniel, M. K.; Glidewell, O. J.; Grube, J.; Rose, H. J.; Smith, A. W.; Syson, A.; White, R. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K. L.; Hays, E.; Horan, D.; Wagner, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Celik, O.; Chow, Y. C. K.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Cesarini, A.; Gillanders, G.; Kenny, G. E.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Dept Phys, Galway, Ireland. [Ciupik, L.; Fortson, L. F.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Colin, P.; Hall, J.; Hui, C. M.; Kieda, D.; LeBohec, S.; Manseri, H.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Cul, W.; Finley, J. P.; Gall, D.; Konopelko, A.; Millis, J.; Pizlo, F.; Sembroski, G. H.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Dowdall, C.; Fegan, S. J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Falcone, A. D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Gibbs, K.; Perkins, J. S.; Roache, E.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Hays, E.; Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Wissel, S. A.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Holder, J.] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. [Imran, A.; Krennrich, F.; Nagai, T.; Niemiec, J.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Iowa State Univ, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. RP Hanna, D (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. EM hanna@physics.mcgill.ca RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010; OI Cui, Wei/0000-0002-6324-5772; Daniel, Michael/0000-0002-8053-7910; Cesarini, Andrea/0000-0002-8611-8610; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201; Ward, John E/0000-0003-1973-0794 NR 28 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 1 PY 2008 VL 588 IS 1-2 BP 26 EP 32 DI 10.1016/j.nima.2008.01.020 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 295RF UT WOS:000255490900007 ER PT J AU Blasi, P AF Blasi, Pasquale TI Origin of high energy cosmic rays: A short review SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 1st Roma International Conference on Astroparticle Physics CY JUN 20-22, 2007 CL Rome, ITALY DE cosmic rays; acceleration; propagation ID DIFFUSIVE SHOCK ACCELERATION; REMNANT RX J1713.7-3946; SUPERNOVA-REMNANT; PARTICLE-ACCELERATION; UHECR SPECTRUM; MAGNETIC-FIELD; AMPLIFICATION; TRANSITION; NUCLEI; WAVES AB I provide here a short review of some recent observational findings in the field of cosmic rays and of selected theoretical advancements in our understanding of acceleration and propagation of cosmic rays, from below the knee to the highest energies observed so far. (C) 2008 Elsevier B.V. All rights reserved. C1 [Blasi, Pasquale] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Blasi, Pasquale] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Blasi, Pasquale] Lab Bzl Gran Sasso, Ist Nazl Fis Nucl, Laquila, Italy. RP Blasi, P (reprint author), Osserv Astrofis Arcetri, INAF, Largo E Fermi 5, I-50125 Florence, Italy. EM blasi@arcetri.astro.it RI Blasi, Pasquale/O-9345-2015 OI Blasi, Pasquale/0000-0003-2480-599X NR 31 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 1 PY 2008 VL 588 IS 1-2 BP 166 EP 170 DI 10.1016/j.nima.2008.01.033 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 295RF UT WOS:000255490900031 ER PT J AU Rossi, P Doyle, BL Vizkelethy, G McDaniel, FD Knapp, J Jauregui, H Villone, J AF Rossi, P. Doyle, B. L. Vizkelethy, G. McDaniel, F. D. Knapp, J. Jauregui, H. Villone, J. TI Ion-luminescence properties of GaN films being developed for IPEM SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 18th International Conference on Ion Beam Analysis CY SEP 23-28, 2007 CL Univ Hyderabad, Sch Phys, Hyderabad, INDIA SP Inter Univ Accelerator Ctr, Inst Phys HO Univ Hyderabad, Sch Phys DE ion photon emission microscopy; ion beam analysis; ion-luminescence; phosphors ID NUCLEAR MICROSCOPY AB Radiation effects microscopy (REM) for the next generation integrated circuits (ICs) will require GeV ions both to provide high ionization and to penetrate the thick overlayers in present day ICs. These ion beams can be provided by only a few cyclotrons in the world. Since it is extremely hard to focus these higher-energy ions, we have proposed the ion photon emission microscope (IPEM) that allows the determination of the ion hits by focusing the emitted photons to a position sensitive detector. The IPEM needs a thin luminescent foil that has high brightness, good spatial resolution and does not change the incident ion's energy and direction significantly. Available organic-phosphor foils require a large thickness to produce enough photons, which results in poor spatial resolution. To solve this problem, we have developed thin, lightly doped n-type GaN films that are extremely bright. We have grown high quality GaN films on sapphire using metal organic chemical vapor deposition (MOCVD), detached the films from the substrate using laser ablation, and made them self-supporting. The smallest foils have 1 mm(2) area and 1 mu m thickness. The optical properties, such as light yield, spectrum and decay times were measured and compared to those of conventional phosphors, by using both alpha particles from a radioactive source and 250 keV ions from an implanter. We found that the GaN performance strongly depends on composition and doping levels. The conclusion is that 1-2 mu m GaN film of a 1 mm(2) area may become an ideal ion position detector. (C) 2007 Elsevier B.V. All rights reserved. C1 [Rossi, P.; Doyle, B. L.; Vizkelethy, G.; Knapp, J.; Jauregui, H.; Villone, J.] Sandia Natl Labs, Dept 1111, Albuquerque, NM 87185 USA. [Rossi, P.] Univ Padua, Dept Phys, I-35131 Padua, Italy. [Rossi, P.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [McDaniel, F. D.] Univ N Texas, Ion Beam Modificat & Anal Lab, Denton, TX 76203 USA. RP Rossi, P (reprint author), Sandia Natl Labs, Dept 1111, POB 5800,MS 1415, Albuquerque, NM 87185 USA. EM prossi@sandia.gov NR 10 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD APR PY 2008 VL 266 IS 8 BP 1294 EP 1299 DI 10.1016/j.nimb.2007.11.072 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 312NH UT WOS:000256677600033 ER PT J AU Bhatta, UM Ghatak, J Mukhopadhyay, M Conley, R Liu, C Satyam, PV AF Bhatta, Umananda M. Ghatak, J. Mukhopadhyay, Mrinmay Conley, Raymond Liu, Chian Satyam, P. V. TI Structural analysis of DC magnetron sputtered and spin coated thin films using RBS, TEM and X-ray reflectivity methods SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 18th International Conference on Ion Beam Analysis CY SEP 23-28, 2007 CL Univ Hyderabad, Sch Phys, Hyderabad, INDIA SP Inter Univ Accelerator Ctr, Inst Phys HO Univ Hyderabad, Sch Phys DE RBS; TEM; X-ray reflectivity; thin films; polymer films ID ION; NANOSTRUCTURES AB Metallic thin films such as Au, Cr, Ag, etc., on silicon substrate have many technologically important applications as contact layers in microelectronic industry, as reflecting mirrors in synchrotron radiation research, etc. The native oxide layer on crystalline silicon surface inhibits wetting of few nm thick Au or Ag on native oxide/silicon systems. To obtain continuous thin metallic films (a few nm thick), a Cr layer was first deposited as a adhesion layer on the Si substrate. In this paper, Rutherford backscattering analysis (RBS) of Si/Cr/SiO2/Si, Si/AuNO2/Si, Si/Au/Cr/SiO2/Si and Polystyrene (PS) polymer coated on some of these bi- or tri-layer structures has been reported. The X-ray reflectometry and transmission electron microscopy studies were carried out to complement the RBS measurements. The thickness, surface and interface roughness, and crystalline quality have been determined. (C) 2007 Elsevier B.V. All rights reserved. C1 [Bhatta, Umananda M.; Ghatak, J.; Satyam, P. V.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Mukhopadhyay, Mrinmay; Conley, Raymond; Liu, Chian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Mukhopadhyay, Mrinmay] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Satyam, PV (reprint author), Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India. EM satyam@iopb.res.in RI Mukhopadhyay, Mrinmay/E-6667-2012; Conley, Ray/C-2622-2013 NR 9 TC 4 Z9 4 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD APR PY 2008 VL 266 IS 8 BP 1548 EP 1552 DI 10.1016/j.nimb.2007.12.063 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 312NH UT WOS:000256677600084 ER PT J AU Reid, AE Ding, YS Eckelman, WC Logan, J Alexoff, D Shea, C Xu, Y Fowler, JS AF Reid, Alicia E. Ding, Yu-Shin Eckelman, William C. Logan, Jean Alexoff, David Shea, Colleen Xu, Youwen Fowler, Joanna S. TI Comparison of the pharmacokinetics of different analogs of C-11-labeled TZTP for imaging muscarinic M2 receptors with PET SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE PET; muscarinic M2; pharmacokinetics; TZTP; C-11 ID TANDEM MASS-SPECTROMETRY; IN-VIVO; ALZHEIMERS-DISEASE; HUMAN PLASMA; BINDING; XANOMELINE; AGONIST; BRAIN; SUBTYPES; M1 AB Introduction: The only radiotracer available for the selective imaging of muscarinic M2 receptors in vivo is 3-(3-{3-[F-18]fluoropropyl)thio}-1,2,5 -thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine) ([F-18]FP-TZTP). We have prepared and labeled 3-(3-(3-fluoropropylthio)-1,2,5thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridne (FP-TZTP, 3) and two other TZTP derivatives with C-11 at the methylpyridine moiety to explore the potential of using C-11-labeled FP-TZTP for positron emission tomography imaging of M2 receptors and to compare the effect of small structural changes on tracer pharmacokinetics (PK) in brain and peripheral organs. Methods: C-11-radio labeled FP-TZTP, 3-(3-propy]thio)-TZTP (6) and 3,3,3-(3-(3-trifluoropropyl)-TZTP (10) were prepared, and log D, plasma protein binding (PPB), affinity constants, time-activity curves (TACs), area under the curve (AUC) for arterial plasma, distribution volumes (DV) and pharmacological blockade in baboons were compared. Results: Values for log D, PPB and affinity constants were similar for 3, 6 and 10. The fraction of parent radiotracer in the plasma was higher and the AUC lower for 10 than for 3 and 6. TACs for brain regions were similar for 3 and 6, which showed PK similar to the 18F tracer, while 10 showed slower uptake and little clearance over 90 min. DVs for 3 and 6 were similar to the F-18 tracer but higher for 10. Uptake of the three tracers was significantly reduced by coinjection of unlabeled 3 and 6. Conclusion: Small structural variations on the TZTP structure greatly altered the PK in brain and behavior in blood with little change in the log D, PPB or affinity. The study suggests that C-11-radiolabeled 3 will be a suitable alternative to [F-18]FP-TZTP for translational studies in humans. (C) 2008 Elsevier Inc. All rights reserved. C1 [Reid, Alicia E.; Logan, Jean; Alexoff, David; Shea, Colleen; Xu, Youwen; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Ding, Yu-Shin] Yale Univ, Sch Med, Dept Radiol, New Haven, CT 06510 USA. [Eckelman, William C.] Mol Tracer LLC, Bethesda, MD 20892 USA. RP Reid, AE (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM areid@bnl.gov FU NIDA NIH HHS [K05 DA020001, K05 DA020001-01, K05-DA020001] NR 31 TC 3 Z9 3 U1 1 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD APR PY 2008 VL 35 IS 3 BP 287 EP 298 DI 10.1016/j.nuemedbio.2008.01.001 PG 12 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 282UG UT WOS:000254592100005 PM 18355684 ER PT J AU Yue, M Cheng, LY Bari, RA AF Yue, Meng Cheng, Lap-Yan Bari, Robert A. TI A Markov model approach to proliferation-resistance assessment of nuclear energy systems SO NUCLEAR TECHNOLOGY LA English DT Article DE Markov model; proliferation resistance; fuel cycles AB A Markov model approach is developed for the evaluation of proliferation resistance (PR) of nuclear energy systems. The focus of this study is to create a high-fidelity probabilistic assessment model that better represents nuclear energy systems. Both extrinsic and intrinsic barriers associated with the energy systems are considered. Modeling uncertainty and safe guards false alarms, composite safeguards approaches, concealment, and human performance are particularly discussed in detail and incorporated in the Markov model. These features are anticipated to have significant impacts on PR assessment. The Markov model approach is adapted to a hypothetical example sodium fast reactor (ESFR) system using physically meaningful parameters that can be obtained from physical processes. Development of metrics for six PR measures is discussed. Computation of the PR measures using the Markov model of the ESFR system is illustrated. The results obtained in this study demonstrate applicability and effectiveness of the Markov model approach in the PR assessment. C1 [Yue, Meng; Cheng, Lap-Yan; Bari, Robert A.] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. RP Yue, M (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. EM yuemeng@bnl.gov NR 17 TC 9 Z9 9 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD APR PY 2008 VL 162 IS 1 BP 26 EP 44 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 281LX UT WOS:000254500200002 ER PT J AU Krause, L Diaz, NN Goesmann, A Kelley, S Nattkemper, TW Rohwer, F Edwards, RA Stoye, J AF Krause, Lutz Diaz, Naryttza N. Goesmann, Alexander Kelley, Scott Nattkemper, Tim W. Rohwer, Forest Edwards, Robert A. Stoye, Jens TI Phylogenetic classification of short environmental DNA fragments SO NUCLEIC ACIDS RESEARCH LA English DT Article ID METAGENOMIC ANALYSIS; GUT MICROBIOME; COMMUNITIES; ASSIGNMENT; AUSTRALIA; EVOLUTION; SEA AB Metagenomics is providing striking insights into the ecology of microbial communities. The recently developed massively parallel 454 pyrosequencing technique gives the opportunity to rapidly obtain metagenomic sequences at a low cost and without cloning bias. However, the phylogenetic analysis of the short reads produced represents a significant computational challenge. The phylogenetic algorithm CARMA for predicting the source organisms of environmental 454 reads is described. The algorithm searches for conserved Pfam domain and protein families in the unassembled reads of a sample. These gene fragments (environmental gene tags, EGTs), are classified into a higher-order taxonomy based on the reconstruction of a phylogenetic tree of each matching Pfam family. The method exhibits high accuracy for a wide range of taxonomic groups, and EGTs as short as 27 amino acids can be phylogenetically classified up to the rank of genus. The algorithm was applied in a comparative study of three aquatic microbial samples obtained by 454 pyrosequencing. Profound differences in the taxonomic composition of these samples could be clearly revealed. C1 [Krause, Lutz; Diaz, Naryttza N.; Goesmann, Alexander; Nattkemper, Tim W.; Stoye, Jens] Univ Bielefeld, Ctr Biotechnol, D-33594 Bielefeld, Germany. [Goesmann, Alexander] Univ Bielefeld, BRF, D-33594 Bielefeld, Germany. [Kelley, Scott; Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Kelley, Scott; Rohwer, Forest; Edwards, Robert A.] Ctr Microbial Sci, San Diego, CA 92182 USA. [Nattkemper, Tim W.] Univ Bielefeld, Appl Neuroinformat Grp, D-33594 Bielefeld, Germany. [Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Stoye, Jens] Univ Bielefeld, Fac Technol, AG Genominformat, D-33594 Bielefeld, Germany. RP Krause, L (reprint author), Univ Bielefeld, Ctr Biotechnol, D-33594 Bielefeld, Germany. EM lutz.krause@cebitec.uni-bielefeld.de RI Stoye, Jens/A-2709-2012; Krause, Lutz/G-6283-2013; Krause, Lutz/M-7305-2015; Nattkemper, Tim/F-3332-2017 OI Stoye, Jens/0000-0002-4656-7155; Krause, Lutz/0000-0003-3806-0845; Krause, Lutz/0000-0003-3806-0845; Nattkemper, Tim/0000-0002-7986-1158 NR 33 TC 152 Z9 158 U1 1 U2 26 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD APR PY 2008 VL 36 IS 7 BP 2230 EP 2239 DI 10.1093/nar/gkn038 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 290VZ UT WOS:000255152200018 PM 18285365 ER PT J AU Holcomb, GR AF Holcomb, Gordon R. TI Calculation of reactive-evaporation rates of chromia SO OXIDATION OF METALS LA English DT Article DE oxidation; modeling; nickel alloys; stainless steels; chromia volatilization ID OXIDE FUEL-CELLS; DOPED LAMNO3 ELECTRODES; WATER-VAPOR; HYDROXIDE EVAPORATION; OXIDATION; VOLATILITY; DEPOSITION; STEELS; 304L AB A methodology is developed to calculate Cr-evaporation rates from Cr2O3 with a flat planar geometry. Variables include temperature, total pressure, gas velocity, and gas composition. The methodology was applied to solid-oxide, fuel-cell conditions for metallic interconnects and to advanced-steam turbines conditions. The high velocities and pressures of the advanced steam turbine led to evaporation predictions as high as 5.18 x 10(8) kg/m(2)/s of CrO2(OH)(2)(g) at 760 degrees C and 34.5 MPa. This is equivalent to 0.080 mm per year of solid Cr loss. Chromium evaporation is expected to be an important oxidation mechanism with the types of nickel-base alloys proposed for use above 650 degrees C in advanced-steam boilers and turbines. It is shown that laboratory experiments, with much lower steam velocities and usually much lower total pressure than found in advanced steam turbines, would best reproduce chromium-evaporation behavior with atmospheres that approach either O-2 + H2O or air + H2O with 57% H2O. C1 Natl Energy Technol Lab, Mat Performance Div, Albany, OR USA. RP Holcomb, GR (reprint author), Natl Energy Technol Lab, Mat Performance Div, Albany, OR USA. EM Gordon.Holcomb@netl.doe.gov RI Holcomb, Gordon/G-9070-2013 OI Holcomb, Gordon/0000-0003-3542-5319 NR 31 TC 17 Z9 17 U1 4 U2 22 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD APR PY 2008 VL 69 IS 3-4 BP 163 EP 180 DI 10.1007/s11085-008-9091-4 PG 18 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 268IF UT WOS:000253572800003 ER PT J AU Holcomb, GR AF Holcomb, Gordon R. TI Effects of temperature gradients and heat fluxes on high-temperature oxidation SO OXIDATION OF METALS LA English DT Article DE heat of transport; temperature gradient; soret; cobalt; oxidation ID SUPERHEAT REACTOR ENVIRONMENT; GENERAL CORROSION; DIFFUSION; CHROMIUM; STEEL; NIO AB The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick's first law of diffusion to include a heat-flux term-a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and of nickel doped with chromium. Research is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient at 900 degrees C, and comparing the kinetics to isothermal oxidation. No evidence of a heat flux effect was found. C1 Natl Energy Technol Lab, Mat Performance Div, Albany, OR USA. RP Holcomb, GR (reprint author), Natl Energy Technol Lab, Mat Performance Div, Albany, OR USA. EM Gordon.Holcomb@netl.doe.gov RI Holcomb, Gordon/G-9070-2013 OI Holcomb, Gordon/0000-0003-3542-5319 NR 18 TC 2 Z9 2 U1 0 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD APR PY 2008 VL 69 IS 3-4 BP 181 EP 192 DI 10.1007/s11085-008-9093-2 PG 12 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 268IF UT WOS:000253572800004 ER PT J AU Pint, BA Dwyer, MJ Deacon, RM AF Pint, B. A. Dwyer, M. J. Deacon, R. M. TI Internal oxidation-nitridation of ferritic Fe(Al) alloys in air SO OXIDATION OF METALS LA English DT Article DE ferritic Fe(Al); internal oxidation; nitridation; kinetics ID FE-AL ALLOYS; BASE ALLOYS; ALUMINIDE COATINGS; CORROSION BEHAVIOR; NITROGEN-OXYGEN; FORMING ALLOYS; WATER-VAPOR; ENVIRONMENTS; SCALES; SEGREGATION AB Exposure of undoped Fe(Al) and Fe(Al)+Cr ferritic alloys in laboratory air at 900-1,000 degrees C resulted in significant internal attack after 5,000 h, including oxides and underlying nitrides. In the most severely attacked alloys, kinetics based on mass gain and maximum penetration depth were linear; also, the deepest penetrations were a significant fraction of the specimen thickness, and were thickness-dependent. Little internal attack was observed at 700-800 degrees C where these compositions may be used as coatings. The extent of internal attack did not decrease with increasing Al or Cr content which may indicate that rather than classical internal oxidation this attack is related to the permeation of N through a defective external scale. No internal attack was observed in alloys doped with Y, Zr, Hf or Ti where the substrate-alumina scale interface was flatter. C1 [Pint, B. A.; Dwyer, M. J.; Deacon, R. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 32 TC 8 Z9 8 U1 0 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD APR PY 2008 VL 69 IS 3-4 BP 211 EP 231 DI 10.1007/s11085-008-9094-1 PG 21 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 268IF UT WOS:000253572800006 ER PT J AU Dogan, ON AF Dogan, O. N. TI Effect of Al on high-temperature oxidation of Cr-W alloys SO OXIDATION OF METALS LA English DT Article DE chromium-tungsten alloys; high-temperature oxidation; aluminizing ID TENSILE PROPERTIES; CHROMIUM; BEHAVIOR; NITRIDATION; DUCTILITY AB The effect of Al on the high temperature oxidation behavior of Cr-10 wt.%W alloy was investigated using a cyclical oxidation test at 1,000 degrees C in dry air. First, Al was added into the Cr-W alloy as an alloying element up to 8 weight percent. Although alloying with Al reduced the spalling, it did not eliminate it. Secondly, Al was applied to the surface using an aluminizing process. Forming an Al-Cr layer on the Cr-W alloy reduced oxidation rate significantly and eliminated spalling completely. C1 US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. RP Dogan, ON (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen SW, Albany, OR 97321 USA. EM omer.dogan@netl.doe.gov NR 18 TC 6 Z9 6 U1 2 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD APR PY 2008 VL 69 IS 3-4 BP 233 EP 247 DI 10.1007/s11085-008-9095-0 PG 15 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 268IF UT WOS:000253572800007 ER PT J AU Hildebrand, M Doktycz, MJ Allison, DP AF Hildebrand, Mark Doktycz, Mitchel J. Allison, David P. TI Application of AFM in understanding biomineral formation in diatoms SO PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY LA English DT Review DE atomic force microscopy; diatoms; mesoscale; nanofabrication; nanoscale; silica; biomineralization ID ATOMIC FORCE MICROSCOPE; VALVE MORPHOGENESIS; FINE-STRUCTURE; CELL-WALL; CYLINDROTHECA-FUSIFORMIS; NAVICULA-PELLICULOSA; ELECTRON-MICROSCOPY; SILICA MORPHOLOGY; SHELL FORMATION; GENE FAMILY AB We review previous work and present new data on the application of atomic force microscopy (AFM) to study biomineral formation in diatoms, unicellular algae that make cell walls of silica. Previous studies examined a small subset of mostly larger diatom species, identifying a prevalence of large particulate silica on the nanoscale. We survey different structures including valves, girdle bands, and elongated spines called setae, in a variety of species, and show a diversity of nano- and meso-scale silica morphologies, even on different portions of the same structure. A general trend of highly organized mesoscale silica structure on the proximal face of cell wall components was observed, with less organized structure occurring on the distal face. The highly organized structures have features suggestive of an underlying linear template, which defines the area of initial silica polymerization. Such features have not been imaged with such clarity previously, demonstrating the advantages of AFM to image small differences in surface morphology and providing new insights and confirming evidence for models of diatom silica structure formation. In addition to its imaging capability, more developed application of AFM to map locations of organic template components on the nanoscale will greatly aid in elucidating mechanisms of diatom biosilica synthesis. C1 [Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Hildebrand, Mark] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Doktycz, Mitchel J.; Allison, David P.] Oak Ridge Natl Lab, Biosci Div, Biol & Nanoscale Syst Grp, Oak Ridge, TN 37831 USA. RP Allison, DP (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM allisond@utk.edu RI Doktycz, Mitchel/A-7499-2011 OI Doktycz, Mitchel/0000-0003-4856-8343 NR 51 TC 30 Z9 33 U1 2 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0031-6768 J9 PFLUG ARCH EUR J PHY JI Pflugers Arch. PD APR PY 2008 VL 456 IS 1 BP 127 EP 137 DI 10.1007/s00424-007-0388-y PG 11 WC Physiology SC Physiology GA 277YW UT WOS:000254251600012 PM 18058126 ER PT J AU Lipscomb, JC Poet, TS AF Lipscomb, John C. Poet, Torka S. TI In vitro measurements of metabolism for application in pharmacokinetic modeling SO PHARMACOLOGY & THERAPEUTICS LA English DT Review DE drug metabolism; genetic polymorphisms; interspecies extrapolation; in vitro to in vivo extrapolation; physiologically based pharmacokinetic modeling; risk assessment ID HUMAN LIVER-MICROSOMES; DRUG-DRUG INTERACTIONS; CRYOPRESERVED HUMAN HEPATOCYTES; CHEMICAL RISK-ASSESSMENT; HUMAN HEPATIC MICROSOMES; INTRINSIC CLEARANCE; RAT HEPATOCYTES; INTERINDIVIDUAL VARIABILITY; CANCER-RISK; BIOTRANSFORMATION DATA AB Human risk and exposure assessments require dosimetry information. Species-specific tissue dose response will be driven by physiological and biochemical processes. While metabolism and pharmacokinetic data are often not available in humans, they are much more available in laboratory animals; metabolic rate constants can be readily derived in vitro. The physiological differences between laboratory animals and humans are known. Biochemical processes, especially metabolism, can be measured in vitro and extrapolated to account for in vivo metabolism through clearance models or when linked to a physiologically based pharmacological (PBPK) model to describe the physiological processes, such as drug delivery to the metabolic organ. This review focuses on the different organ, cellular, and subcellular systems that can be used to measure in vitro metabolic rate constants and how those data are extrapolated to be used in biologically based modeling. Notice: The views expressed in this paper are those of the authors and do not necessarily reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. (C) 2008 Elsevier Inc. All rights reserved. C1 [Lipscomb, John C.] US EPA, Off Res & Dev, Natl Ctr Environm Assessment, Cincinnati, OH 45268 USA. [Poet, Torka S.] Battelle Mem Inst, Pacific NW Div, Ctr Biol Monitoring & Modelling, Richland, WA 99352 USA. RP Lipscomb, JC (reprint author), US EPA, Off Res & Dev, Natl Ctr Environm Assessment, Cincinnati, OH 45268 USA. EM Lipscomb.john@epa.gov NR 117 TC 51 Z9 51 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0163-7258 J9 PHARMACOL THERAPEUT JI Pharmacol. Ther. PD APR PY 2008 VL 118 IS 1 BP 82 EP 103 DI 10.1016/j.pharmthera.2008.01.006 PG 22 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 306IG UT WOS:000256240900005 PM 18374419 ER PT J AU Xu, JH Kenik, EA Zhai, TG AF Xu, Jianhui Kenik, Edward A. Zhai, Tongguang TI Brittle fracture in 50Mo-50Re alloys during slow strain rate tensile testing SO PHILOSOPHICAL MAGAZINE LA English DT Article DE strain-rate dependence; brittle fracture; Mo-Re alloys; misorientation; dynamic embrittlement ID MOLYBDENUM-RHENIUM ALLOYS; EMBRITTLEMENT; SLIP AB Tensile tests were conducted oil 50wt% Mo-50wt%, Re alloys in both fully recrystallized and recovery heat-treated conditions at a low strain rate of 10(-6) s(-1) and room temperature in air. It was found that both material conditions exhibited predominantly cleavage fracture with significant intergranular secondary cracking, compared to the predominantly ductile fracture found in the alloys at a higher strain rate. Cracks were often initiated at grain boundary triple junctions at the low strain rate. Electron backscatter diffraction (EBSD) Measurements revealed significantly high misorientation gradients (i.e. highly localized change in orientation) at grain boundaries, especially in the vicinity of some grain boundary triple junctions ill the deformed alloys. Transmission electron microscopy (TEM) results verified the existence of significant misorientations near grain boundaries in these alloys. Stress-assisted dynamic embrittlement, possibly due 10 trace interstitials, was the possible Cause of brittle fracture in the 50Mo-50Re alloys at the low strain rate. C1 [Xu, Jianhui; Zhai, Tongguang] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. [Kenik, Edward A.] Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37831 USA. RP Zhai, TG (reprint author), Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. EM tzhai@engr.uky.edu FU NSF CAREER AWARD [DMR-0645246]; US Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program, Industrial Materials; U.T. Battelle, LLC; [DE-AC05-00OR22725] FX This research was supported through a NSF CAREER AWARD (DMR-0645246). The TEM work reported in this paper was conducted as part of the Oak Ridge National Laboratory's SHaRE User Facility, which is sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program, Industrial Materials for the Future and the Division of Materials Sciences and Engineering, under contract DE-AC05-00OR22725 with U.T. Battelle, LLC. The authors Would like to thank Michael Effgen from Semicon Associates for providing the 50Mo-50Re alloys used in this work. NR 22 TC 1 Z9 1 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD APR 1 PY 2008 VL 88 IS 10 BP 1543 EP 1553 DI 10.1080/14786430802-216366 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 344GT UT WOS:000258915600008 ER PT J AU Lartigue-Korinek, S Liagege, S Kisielowski, C Serra, A AF Lartigue-Korinek, Sylvie Liagege, Serge Kisielowski, Christian Serra, Anna TI Disconnection arrays in a rhombohedral twin in alpha-alumina SO PHILOSOPHICAL MAGAZINE LA English DT Article DE grain boundary structure; dislocations; alumina; transmission electron microscopy ID GRAIN-BOUNDARY DISLOCATIONS; SAPPHIRE ALPHA-AL2O3; ELECTRON-MICROSCOPY; DOPED ALUMINAS; BICRYSTALS; RESOLUTION; YTTRIUM; INTERFACE; CHEMISTRY; DEFECTS AB Interfacial defects, such as gram boundary dislocations, play all important role in the creep behavior of alumina. In the present work, interfacial defects are analyzed in detail using a Volterra approach without a reference to a near-coincidence description. We investigate disconnections (boundary steps with dislocation character) in a diffusion-bonded alumina bicrystal, with a misorientation close to the rhombohedral twin, by conventional and atomic resolution electron microscopy. The bicrystal contains two arrays of parallel disconnections with Burgers vectors that have alternating equal and opposite twist components, so there is no long-range stress field. This configuration is discussed in terms of the stability of different grain boundary disconnection arrangements. The complex core structure of the defects is revealed by high resolution electron microscopy using exit wave reconstruction. It is shown that the defects are dissociated into two partials that delimit grain boundary segments with alternating structure. C1 [Lartigue-Korinek, Sylvie; Liagege, Serge] Univ Paris 12, Inst Chim & Mat Paris Est, UMR 7182, F-94320 Thiais, France. [Lartigue-Korinek, Sylvie; Liagege, Serge] CNRS, F-94320 Thiais, France. [Kisielowski, Christian] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Serra, Anna] Univ Politecn Cataluna, Dept Matemat Aplicada 3, Barcelona, Spain. RP Lartigue-Korinek, S (reprint author), Univ Paris 12, Inst Chim & Mat Paris Est, UMR 7182, 2-8 Rue H Dunant, F-94320 Thiais, France. EM sylvie.lartigue@icmpe.cnrs.fr FU National Center for Electron Microscopy; US Department of Energy [DE-AC02-05CH1123]; MCyT [*FIS2006-12436-C02-02] FX E.A. Stepantsov and A.L. Vasiliev from the Institute of Crystallography of Moscow are gratefully acknowledged for preparation of the bicrystals. The authors also thank U. Dahmen, R.C. Pond and J. Thibault for fruitful discussions and L. Priester for her Critical reading of the manuscript. The National Center for Electron Microscopy is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02-05CH1123. A. Serra acknowledges funding from MCyT project *FIS2006-12436-C02-02. NR 26 TC 7 Z9 7 U1 1 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD APR 1 PY 2008 VL 88 IS 10 BP 1569 EP 1579 DI 10.1080/14786430802235804 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 344GT UT WOS:000258915600010 ER PT J AU Soukoulis, CM Smith, DR AF Soukoulis, Costas M. Smith, David R. TI The Seventh International Symposium on Photonic and Electromagnetic Crystal Structures (PECS-VII) - Preface SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Editorial Material C1 [Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. [Smith, David R.] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. RP Soukoulis, CM (reprint author), Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Smith, David/E-4710-2012 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD APR PY 2008 VL 6 IS 1 BP 1 EP 2 DI 10.1016/j.photonics.2008.01.003 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 298DX UT WOS:000255667700001 ER PT J AU Subramania, G Lee, Y Hemandez-Sanchez, BA Fischer, AJ Luk, TS Brener, I Clem, PG Boyle, TJ AF Subramania, G. Lee, Yj. Hemandez-Sanchez, B. A. Fischer, A. J. Luk, T. S. Brener, I. Clem, P. G. Boyle, T. J. TI CdSe infiltrated TiO2 based onmidirectional photonic crystals for visible light control SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article; Proceedings Paper CT 7th International Symposium on Photonic and Electromagnetic Crystal Structures (PECS-VII) CY APR 08-11, 2007 CL Monterey, CA DE visible; 3D gap photonic crystal; light emission; quantum dots; titanium dioxide (TiO2) ID SPONTANEOUS EMISSION; COLLOIDAL SYSTEMS; BAND-GAPS; SPHERES; LAYER AB Control of light emission by engineering the electromagnetic vacuum is important in photonics for fundamental understanding as well as in applications. Omnidirectional photonic crystals such as logpile photonic crystals provide a very interesting system to study such phenomena. Here, we describe the first steps towards achieving systematic and reproducible control of light using titanium dioxide (TiO2) logpile photonic crystals (PC) with incorporated cadmium chalcogenide (CdSe) quantum dots (QDs) (lambda similar to 600 nm) to potentially modify QD photoluminescence (PL). We present a technique for coating a monolayer of the QDs on the PC rods based on 3-mercaptopropyltrimethoxysilanol linkage and measured the resulting PL response. Comparison of the PL spectra to a finite difference time domain model shows the need for further localization of QDs and fabrication of additional PC unit cells to observe PL modification. (c) 2007 Elsevier B.V. All rights reserved. C1 [Subramania, G.; Lee, Yj.; Hemandez-Sanchez, B. A.; Fischer, A. J.; Luk, T. S.; Brener, I.; Clem, P. G.; Boyle, T. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Subramania, G (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gssubra@sandia.gov RI Brener, Igal/G-1070-2010 OI Brener, Igal/0000-0002-2139-5182 NR 20 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD APR PY 2008 VL 6 IS 1 BP 12 EP 18 DI 10.1016/j.photonics.2007.11.003 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 298DX UT WOS:000255667700003 ER PT J AU Su, MF El-Kady, I Taha, MMR Christodoulou, CG AF Su, M. F. El-Kady, I. Taha, M. M. Reda Christodoulou, C. G. TI A novel integrated method realizing iteratively optimized modeling for proximity field patterning nanolithography SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article; Proceedings Paper CT 7th International Symposium on Photonic and Electromagnetic Crystal Structures (PECS-VII) CY APR 08-11, 2007 CL Monterey, CA DE proximity field nanopatterning; PnP; finite difference time domain; FDTD; iterative optimization; fuzzy image pattern recognition; modeling ID FABRICATING 3-DIMENSIONAL NANOSTRUCTURES; LITHOGRAPHY AB Processing methods used in photonics and nanotechnology have many limitations hindering the ability to realize devices and restricting the actual number of applications. An ideal processing method should require low-cost equipment, be able to produce very fine details, and be scalable to process large area specimens in an acceptable amount of time. Proximity field nanopatterning (PnP) is a lithography method possessing these features. By using interference patterns produced by a two-dimensional phase mask, the technique is able to generate a submicron detailed exposure on a millimeter-size slab of light sensitive photopolymer, which is then developed like a photographic plate to reveal three-dimensional interference patterns from the phase mask. While it is possible to use computer aided simulations to obtain the interference patterns produced by a mask with a certain pattern, the inverse problem of producing a mask for a desired interference pattern cannot be solved in the same way due to the intricacies of light interactions involved in producing the final interference pattern. An alternative method is to iteratively optimize the phase mask so that the interference patterns obtained converge to the desired pattern. The method is elaborated in this article. (c) 2007 Elsevier B.V. All rights reserved. C1 [El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. [Su, M. F.; El-Kady, I.; Taha, M. M. Reda; Christodoulou, C. G.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Taha, M. M. Reda] Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. RP El-Kady, I (reprint author), Sandia Natl Labs, Dept Photon Microsyst Technol, POB 5800,MS 1082, Albuquerque, NM 87185 USA. EM ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 NR 22 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 EI 1569-4429 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD APR PY 2008 VL 6 IS 1 BP 69 EP 80 DI 10.1016/j.photonics.2007.11.002 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 298DX UT WOS:000255667700011 ER PT J AU Luk, TS Mclellan, T Subramania, G Verley, JC El-Kady, I AF Luk, T. S. Mclellan, T. Subramania, G. Verley, J. C. El-Kady, I. TI Emissivity measurements of 3D photonic crystals at high temperatures SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article DE photonic crystal; emissivity; measurements; high temperature ID PHOTOVOLTAIC POWER-GENERATION; KIRCHHOFFS LAW; EMITTER; SILICON; RECIPROCITY AB An accurate methodology is presented to measure photonic crystal emissivity using a direct method. This method addresses the issue of how to separate the emissions from the photonic crystal and the substrate. The method requires measuring two quantities: the total emissivity of the photonic crystal-substrate system, and the emissivity of the substrate alone. Our measurements have an uncertainty of 4% and represent the most accurate measure of a photonic crystal's emissivity. The measured results are compared to, and agree very well with, the independent emitter model. (c) 2007 Elsevier B.V. All rights reserved. C1 [Luk, T. S.; Subramania, G.; Verley, J. C.; El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. [Mclellan, T.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. RP Luk, TS (reprint author), Sandia Natl Labs, Dept Photon Microsyst Technol, POB 5800, Albuquerque, NM 87185 USA. EM tsluk@sandia.gov RI El-Kady, Ihab/D-2886-2013; OI El-Kady, Ihab/0000-0001-7417-9814; Verley, Jason/0000-0003-2184-677X NR 22 TC 5 Z9 5 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD APR PY 2008 VL 6 IS 1 BP 81 EP 86 DI 10.1016/j.photonics.2007.10.002 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 298DX UT WOS:000255667700012 ER PT J AU Zhou, JF Koschny, T Kafesaki, M Soukoulis, CM AF Zhou, Jiangfeng Koschny, Thomas Kafesaki, Maria Soukoulis, Costas M. TI Size dependence and convergence of the retrieval parameters of metamaterials SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article; Proceedings Paper CT 7th International Symposium on Photonic and Electromagnetic Crystal Structures (PECS-VII) CY APR 08-11, 2007 CL Monterey, CA DE negative index material; left handed material; retrieval parameter; fishnet structure ID NEGATIVE-INDEX METAMATERIAL; WAVELENGTHS; VELOCITY; PHASE AB We study the dependence of the retrieval parameters, such as the electric permittivity, epsilon, the magnetic permeability, mu, and the index of refraction, n, on the size of the unit cell of a periodic metamaterial. The convergence of the retrieved parameters on the number of the unit cells is also examined. We have concentrated our studies on the so-called fishnet structure, which is the most promising design to obtain negative n at optical wavelengths. We find that as the size of the unit cell decreases, the magnitude of the retrieved effective parameters increases. The convergence of the effective parameters of the fishnet as the number of the unit cells increases is demonstrated but found to be slower than for regular split ring resonators and wires structures. This is due to a much stronger coupling between the different unit cells in the fishnet structure. Published by Elsevier B.V. C1 [Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Zhou, Jiangfeng] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Zhou, Jiangfeng] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Hellas, Greece. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion, Greece. RP Zhou, JF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM jfengz@iastate.edu RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Kafesaki, Maria/0000-0002-9524-2576; Zhou, Jiangfeng/0000-0002-6958-3342 NR 18 TC 35 Z9 36 U1 3 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD APR PY 2008 VL 6 IS 1 BP 96 EP 101 DI 10.1016/j.photonics.2007.10.003 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 298DX UT WOS:000255667700014 ER PT J AU Barat, K MacGowan, B AF Barat, Ken MacGowan, Betsy TI Laser beams aren't the only hazards in the laboratory - It's important to pay close attention to nonlaser hazards in the laboratory SO PHOTONICS SPECTRA LA English DT Article C1 [Barat, Ken; MacGowan, Betsy] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Barat, K (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM kbarat@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU LAURIN PUBL CO INC PI PITTSFIELD PA BERKSHIRE COMMON PO BOX 1146, PITTSFIELD, MA 01202 USA SN 0731-1230 J9 PHOTONIC SPECTRA JI Photon. Spect. PD APR PY 2008 VL 42 IS 4 BP 76 EP 77 PG 2 WC Optics SC Optics GA 287JD UT WOS:000254912500019 ER PT J AU Kim, KH Oh, YS Sharma, PA Harrison, N Amitsuka, H Mydosh, JA AF Kim, Kee Hoon Oh, Yoon Seok Sharma, P. A. Harrison, N. Amitsuka, H. Mydosh, J. A. TI Hall effect signatures of electronic structure change near a field induced quantum critical point in U(Ru1-xRhx)(2)Si-2 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE URu2Si2; hall coefficient; field-induced quantum critical point; fermi surface reconstruction ID FERMION SYSTEM URU2SI2; EFFECT EVOLUTION; PHASE-FORMATION; HEAVY; STATES AB We investigate the Hall coefficient R-H, resistivity, and magnetization of URu2Si2, and U(Ru0.96Rh0.04)(2)Si-2 in the high field regime up to 45 T to trace the electronic structure changes in both high and low temperature regimes. We find that at high temperatures above similar to 7 K, temperature- and field-dependent positions of R-H maxima and magneto resistance maxima coincide with a coherent temperature T-coh at each field. These systematically decrease in temperatures with increasing fields and extrapolate to zero at the field-induced putative quantum critical point (QCP). This observation suggests a collapse of a new energy scale, i.e., a coherent temperature of a heavy quasiparticle band, at the putative field-induced QCP. At lower temperatures, we show there are discontinuous changes of the Hall number n(H) = 1/R(H)e at the phase boundaries. This behavior illustrates that the phase formation is caused by first order reconstructions of the Fermi surface, which we interpret to the polarization of Fermi surface pockets seen in de-Haas van-Alphen (dHvA) measurements. (C) 2007 Elsevier B.V. All rights reserved. C1 [Kim, Kee Hoon; Oh, Yoon Seok] Seoul Natl Univ, Sch Phys & Astron, CSCMR, Seoul 151747, South Korea. [Kim, Kee Hoon; Oh, Yoon Seok] Seoul Natl Univ, Sch Phys & Astron, FPRD, Seoul 151747, South Korea. [Sharma, P. A.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. [Harrison, N.; Amitsuka, H.] Hokkaido Univ, Grad Sch Sci, Sapporo, Hokkaido 0600810, Japan. [Mydosh, J. A.] Univ Cologne, Inst Phys 3, D-50937 Cologne, Germany. RP Kim, KH (reprint author), Seoul Natl Univ, Sch Phys & Astron, CSCMR, Seoul 151747, South Korea. EM khkim@phya.snu.ac.kr RI Oh, Yoon Seok/A-1071-2011; Sharma, Peter/G-1917-2011; Amitsuka, Hiroshi/K-8539-2012 OI Oh, Yoon Seok/0000-0001-8233-1898; Sharma, Peter/0000-0002-3071-7382; NR 30 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 721 EP 725 DI 10.1016/j.physb.2007.10.022 PG 5 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900003 ER PT J AU Park, WK Sarrao, JL Thompson, JD Pham, LD Fisk, Z Greene, LH AF Park, W. K. Sarrao, J. L. Thompson, J. D. Pham, L. D. Fisk, Z. Greene, L. H. TI Andreev reflection spectroscopy of the pure and Cd-doped heavy-fermion superconductor CeCoIn5: Detecting order parameter symmetry and competing phases SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE heavy-fermion superconductor; Andreev reflection; d-wave symmetry; competing phases ID FIELD AB Andreev reflection conductance spectra are obtained on nanoscale ballistic junctions between An tips and single crystals of the pure and Cd-doped heavy-fermion superconductor CeCoIn5. Background conductance asymmetry starting at the heavy-fermion coherence temperature T* (similar to 45 K) and increasing with decreasing temperature down to T-c (2.3 K) signifies the emerging heavy-fermion liquid in CeCoIn5. Below T,, enhancement of the sub-gap conductance arises from Andreev reflection, but the Blonder-Tinkham-Kiapwijk theory dictates that the Fermi velocity mismatch should yield no Andreev reflection. The signal we do observe is several times weaker than that observed in conventional superconductors, but consistent with other heavy-fermion superconductor data reported. Data taken in the (0 0 1), (1 10), and (10 0) orientations provide consistent and reliable spectroscopic evidence for d(x2-y2) symmetry of the superconducting order parameter. Conductance spectra on the (100) surface of 10% Cd-doped CeCoIn5 show intriguing behaviors following antiferromagnetic and subsequent superconducting transitions. Published by Elsevier B.V. C1 [Park, W. K.; Greene, L. H.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pham, L. D.] Univ Calif Davis, Davis, CA 95616 USA. [Fisk, Z.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Park, WK (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM wkpark@uiuc.edu NR 21 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 731 EP 734 DI 10.1016/j.physb.2007.10.228 PG 4 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900005 ER PT J AU Singleton, J Ho, PC Maple, MB Harima, H Goddard, PA Henkie, Z AF Singleton, J. Ho, Pei-Chun Maple, M. B. Harima, Hisatorno Goddard, P. A. Henkie, Z. TI Fermi-surface topology and field-dependent effective masses of the filled skutterudite compound PrOs4As12 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE skutterudites; de Haas-van Alphen effect; fermi surface; effective mass ID ORDERED PHASES AB We report magnetic-field-orientation dependent de Haas-van Alphen (dHvA) experiments on the filled skutterudites PrOs4As12 and LaOs4As12. The Fermi surfaces of the compounds are very similar and in reasonable agreement with bandstructure calculations for LaOs4As12 on a PrOs4As12 lattice. This suggests that the 4f electrons are essentially localized in the paramagnetic phase of PrOs4As12. Whilst the properties of LaOs4As12 suggest a conventional nonmagnetic Fermi liquid, the effects of direct exchange and electron correlations cause dHvA beat frequencies and field-dependent quasiparticle masses in PrOs4As12. (C) 2007 Elsevier B.V. All rights reserved. C1 [Singleton, J.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Ho, Pei-Chun; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Ho, Pei-Chun; Maple, M. B.] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA. [Harima, Hisatorno] Kobe Univ, Kobe, Hyogo 6578501, Japan. [Goddard, P. A.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Henkie, Z.] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland. RP Singleton, J (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS-E536, Los Alamos, NM 87545 USA. EM jsingle@lanl.gov RI Goddard, Paul/A-8638-2015 OI Goddard, Paul/0000-0002-0666-5236 NR 4 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 758 EP 760 DI 10.1016/j.physb.2007.10.222 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900014 ER PT J AU Hering, EN Borges, HA Ramos, SM Fontes, NB Baggio-Saitovich, E Bittar, EM Ferreira, LM Lora-Serrano, R Adriano, C Pagliuso, PG Sarrao, JL Thompson, JD AF Hering, E. N. Borges, H. A. Ramos, S. M. Fontes, Ni. B. Baggio-Saitovich, E. Bittar, E. M. Ferreira, L. Mendonca Lora-Serrano, R. Adriano, C. Pagliuso, P. G. Sarrao, J. L. Thompson, J. D. TI Two superconducting phases in the bi-layered alloys Ce2Rh1-xIrxIn8 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE heavy-fermion superconductors; Ce2Rh1-xIrxIn8; phase diagrams; pressure ID HEAVY-FERMION COMPOUNDS; CERHIN5 AB We report pressure and temperature dependent electrical resistivity measurements in the Ce2Rb1-xIrxIn8 alloys. Our results revealed two phases with zero resistance. One of these phases is induced by pressure, occurring for a range of compositions situated near the Rh-rich extreme, consistent with the behavior observed for the pure Ce2Rh1-xIrxIn5 compound. The second transition occurs for intermediate concentrations (x similar to 0.5-0.7), and in sharp contrast with the first transition, is progressively eliminated by the application of pressure. We compare the findings in the Ce2Rb1-xIrxIn8 alloys to its related Ce2Rh1-xIrxIn5, discussing how the occurrence of the superconducting phases may become unfavorable for the bi-layer alloys due to higher dimensionality and stronger disorder. (C) 2007 Elsevier B.V. All rights reserved. C1 [Bittar, E. M.; Ferreira, L. Mendonca; Lora-Serrano, R.; Adriano, C.; Pagliuso, P. G.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Hering, E. N.; Borges, H. A.] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22453900 Rio De Janeiro, Brazil. [Hering, E. N.; Ramos, S. M.; Fontes, Ni. B.; Baggio-Saitovich, E.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bittar, EM (reprint author), Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165, BR-13083970 Campinas, SP, Brazil. EM bittar@ifi.unicamp.br RI Ferreira, Leticie/C-4311-2012; Pagliuso, Pascoal/C-9169-2012; Bittar, Eduardo/B-6266-2008; Lora Serrano, Raimundo/L-6307-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Bittar, Eduardo/0000-0002-2762-1312; Lora Serrano, Raimundo/0000-0003-3777-2170; NR 14 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 780 EP 782 DI 10.1016/j.physb.2007.10.030 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900022 ER PT J AU Lawrence, JM Fanelli, VR Goremychkin, EA Osborn, R Bauer, ED McClellan, KJ Christianson, AD AF Lawrence, J. M. Fanelli, V. R. Goremychkin, E. A. Osborn, R. Bauer, E. D. McClellan, K. J. Christianson, A. D. TI Inelastic magnetic neutron scattering in CePd3 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE intermediate valence; neutron scattering ID SINGLE-CRYSTAL AB We have performed time-of-flight neutron scattering measurements on a single crystal of the intermediate valence compound CePd3. At 10 K, a Kondo-esque inelastic magnetic scattering peak occurs near Delta E = 60 meV with maximum intensity for momentum transfer Q near the (1/2, 1/2, 0) zone boundary. Spectral weight is transferred to lower energy as Q varies until at zone center the intensity at 60 meV is considerably weaker. These results are in qualitative accord with predictions of the Anderson lattice. The Q-dependence may resolve an older controversy concerning the low-temperature scattering. We discuss the relationship of these results to our recent results in YbAl3. (C) 2007 Elsevier B.V. All rights reserved. C1 [Lawrence, J. M.; Fanelli, V. R.] Univ Calif Irvine, Irvine, CA 92697 USA. [Goremychkin, E. A.; Osborn, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bauer, E. D.; McClellan, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Christianson, A. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lawrence, JM (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM jmlawren@uci.edu RI Bauer, Eric/D-7212-2011; Osborn, Raymond/E-8676-2011; Fanelli, Victor/A-4375-2015; christianson, andrew/A-3277-2016; OI Osborn, Raymond/0000-0001-9565-3140; christianson, andrew/0000-0003-3369-5884; Bauer, Eric/0000-0003-0017-1937 NR 6 TC 8 Z9 8 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 783 EP 785 DI 10.1016/j.physb.2007.10.243 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900023 ER PT J AU Capan, C Goodrich, RG DiTusa, JF Balicas, L Jo, YJ Murphy, TP Palm, EC Movshovich, R Bauer, ED Hundley, MF Thompson, JD Sarrao, JL Hall, D Tozer, SW AF Capan, C. Goodrich, R. G. DiTusa, J. F. Balicas, L. Jo, Y. J. Murphy, T. P. Palm, E. C. Movshovich, R. Bauer, E. D. Hundley, M. F. Thompson, J. D. Sarrao, J. L. Hall, D. Tozer, S. W. TI Metainagnetism in CeIrIn5: Magnetoresistance and dHvA investigation SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE metamagnetism; heavy fermion; de Haas van Alphen; magnetoresistance ID METAMAGNETIC TRANSITION; HEAVY; SUSCEPTIBILITY; ITINERANT AB We investigated the magnetoresistance and de-Haas-van-Alphen effect (dHvA) in CeIrIn5 for magnetic fields up to 45 T and in the temperature range 0.03-1 K. A concomitant drop in the resistivity and in the amplitude of the dHvA oscillations mark the onset of the metamagnetic transition at 28 T for field parallel to [0 0 1]. Both features are gradually suppressed when the field is rotated away from [0 0 1]. There is no significant change in the dHvA frequencies and the cyclotron effective masses, at odds with other known metamagnetic systems. (C) 2007 Published by Elsevier B.V. C1 [Capan, C.; Goodrich, R. G.; DiTusa, J. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Balicas, L.; Jo, Y. J.; Murphy, T. P.; Palm, E. C.; Hall, D.; Tozer, S. W.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Movshovich, R.; Bauer, E. D.; Hundley, M. F.; Thompson, J. D.; Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Capan, C (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM cigdem@lsu.edu RI Bauer, Eric/D-7212-2011; OI Bauer, Eric/0000-0003-0017-1937 NR 19 TC 2 Z9 2 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 797 EP 799 DI 10.1016/j.physb.2007.10.265 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900028 ER PT J AU Park, WK Stalzer, H Sarrao, JL Thompson, JD Pham, LD Fisk, Z Frederick, J Canfield, PC Greene, LH AF Park, W. K. Stalzer, H. Sarrao, J. L. Thompson, J. D. Pham, L. D. Fisk, Z. Frederick, J. Canfield, P. C. Greene, L. H. TI Point-contact Andreev reflection spectroscopy of heavy-fermion-metal/superconductor junctions SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE heavy fermions; Andreev reflection; effective mass; Blonder-Tinkham-Klapwijk theory ID SUPERCONDUCTOR UPT3; THERMAL-CONDUCTIVITY; CECOIN5; TRANSITION; YBAL3 AB Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn5 using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn5, CeRhIn5, and YbAl3, each with different electron mass. in contrast with Au/CeCoIn5 junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. Published by Elsevier B.V. C1 [Park, W. K.; Stalzer, H.; Greene, L. H.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pham, L. D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Frederick, J.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Frederick, J.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Park, WK (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM wkpark@uiuc.edu RI Canfield, Paul/H-2698-2014 NR 24 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 818 EP 819 DI 10.1016/j.physb.2007.10.229 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900036 ER PT J AU Nair, S Wirth, S Nicklas, M Gladun, A Steglich, F Sarrao, JL Thompson, JD AF Nair, Sunil Wirth, S. Nicklas, M. Gladun, A. Steglich, F. Sarrao, J. L. Thompson, J. D. TI Hall effect measurements in the heavy fermion system CeIrIn5 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE superconductivity; heavy fermion compound AB Sensitive Hall effect measurements are reported on single crystal specimens of the heavy fermion superconductor CeIrIn5 down to 0.05 K and magnetic fields up to 9 T. The measured Hall resistivities rho(xy)(H) are nonlinear down to lowest temperatures. The differential Hall coefficient is compared with both the Co counterpart as well as their non-magnetic analogues. (c) 2007 Elsevier B.V. All rights reserved. C1 [Nair, Sunil; Wirth, S.; Nicklas, M.; Gladun, A.; Steglich, F.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wirth, S (reprint author), Max Planck Inst Chem Phys Solids, Noethnitzer St 40, D-01187 Dresden, Germany. EM wirth@cpfs.mpg.de RI Nair, Sunil/E-5279-2011; Nicklas, Michael/B-6344-2008 OI Nicklas, Michael/0000-0001-6272-2162 NR 10 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 837 EP 838 DI 10.1016/j.physb.2007.10.043 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900044 ER PT J AU Canfield, PC Jia, S Mun, ED Bud'ko, SL Samolyuk, GD Torikachvili, MS AF Canfield, P. C. Jia, S. Mun, E. D. Bud'ko, S. L. Samolyuk, G. D. Torikachvili, M. S. TI Myriad of correlated electron effects found in the RT2Zn20 family SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE fermi-liquid; Stoner limit; heavy fermions; Kadowaki-Woods plot ID DEGENERACY; RH; CO; NI; RU AB The dilute, rare earth bearing family of RT2Zn20 (R = rare earth, T = transition metal) intermetallic compounds can be tuned to a nearly ferromagnetic Fermi liquid that is closer to the Stoner limit than Pd (for R = Y, Lu and T = Fe). The submersion of moment bearing rare earths (Gd-Tm) into this highly polarizable matrix gives rise to exceptionally high temperature ferromagnetism (e.g. T-C = 86 K for GdFe2Zn20) for a compound with only one moment bearing ion out of 23 in the formula unit. In addition to this d-shell correlated electron behavior, 4f hybridization gives rise to six, new, Yb-based heavy fermion compounds: YbT2Zn20 (T = Fe, Ru, Os, Co, Rh, Ir). These half dozen compounds manifest a range of Yb ion degeneracy values (N) for T similar to TK, ranging from N = 4-8. Not only do these compounds offer a clear testing ground for the effects of low temperature degeneracy on the correlated electron state, they also present an exceptionally clear experimental confirmation of the generalized Kadowaki-Woods formalism. (c) 2007 Elsevier B.V. All rights reserved. C1 [Canfield, P. C.; Jia, S.; Mun, E. D.; Bud'ko, S. L.] Iowa State Univ, Ames Lab, US DOE, Dept Phys & Astron, Ames, IA 50011 USA. [Samolyuk, G. D.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, US DOE, Ames Lab, San Diego, CA 92182 USA. RP Canfield, PC (reprint author), Iowa State Univ, Ames Lab, US DOE, Dept Phys & Astron, Ames, IA 50011 USA. EM canfield@ameslab.gov RI Canfield, Paul/H-2698-2014 NR 5 TC 14 Z9 14 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 844 EP 846 DI 10.1016/j.physb.2007.10.234 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900047 ER PT J AU Baek, SH Curro, NJ Bauer, ED Cooley, JC Smith, JL AF Baek, S. -H. Curro, N. J. Bauer, E. D. Cooley, J. C. Smith, J. L. TI U-235 and Sb-121 NMR investigation of an itinerant antiferromagnet, USb2 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE itinerant antiferromagnet; actinide NMR ID UBI2 AB We report U-235 and Sb-121 NMR in the antiferromagnetic state of USb2. Our spectra agree with previous reports by Kato et al., however, we find evidence to suggest three distinct magnetic environments. The temperature dependence of the Sb spin lattice relaxation rate reveals a crossover to Korringa-like metallic behavior below 7K. We interpret this behavior as arising from conduction electrons scattering below the magnon excitation gap. Published by Elsevier B.V. C1 [Baek, S. -H.; Curro, N. J.; Bauer, E. D.; Cooley, J. C.; Smith, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Baek, SH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sbaek@lanl.gov RI Bauer, Eric/D-7212-2011; Cooley, Jason/E-4163-2013; Curro, Nicholas/D-3413-2009; OI Curro, Nicholas/0000-0001-7829-0237; Baek, Seung-Ho/0000-0002-0059-8255 NR 8 TC 2 Z9 2 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 850 EP 851 DI 10.1016/j.physb.2007.10.248 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900049 ER PT J AU Dong, CL Asokan, K Chen, YY Chen, CL Chen, JL Liu, YS Lee, JF Guo, JH Chang, CL AF Dong, C. L. Asokan, K. Chen, Y. Y. Chen, C. L. Chen, J. L. Liu, Y. S. Lee, J. F. Guo, J. -H. Chang, C. L. TI Electronic structure of CeCo2 thin films studied by X-ray absorption spectroscopy SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE XANES; mixed valence; surface; thin film ID NANOPARTICLES; ALLOYS AB We present an X-ray absorption near-edge structure (XANES) study at Ce L-3-, and Co K-edges of CeCo2 thin films with the thickness varying from 30 to 140 nm. Cc L-3-edge spectra exhibit the mixed valence nature and the tetravalent contribution increases with the thickness of CeCo2. The variation in the spectral intensity observed at Co K-edge threshold indicates that there is a change in 3d occupancy and also in 3d-4f-5d hybridization. This study shows the effect of surface to bulk ratio and how it influences the charge transfer between Cc and Co ions and hence the electronic structure of CeCo2 thin films. (c) 2007 Elsevier B.V. All rights reserved. C1 [Dong, C. L.; Chen, J. L.; Liu, Y. S.; Chang, C. L.] Tamkang Univ, Dept Phys, Tamsui, Taiwan. [Dong, C. L.; Chen, Y. Y.; Chen, C. L.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Asokan, K.] Inter Univ Accelerator Ctr, New Delhi 110067, India. [Lee, J. F.] Natl Synchrotron Radiat Res Ctr, Hsinchu, Taiwan. [Dong, C. L.; Guo, J. -H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chang, CL (reprint author), Tamkang Univ, Dept Phys, Tamsui 251, Tamsui, Taiwan. EM clchang@mail.tku.edu.tw RI Chen, Chi Liang/F-4649-2012; Kandasami, Asokan/A-6035-2009; OI Kandasami, Asokan/0000-0002-0613-219X; Chang, Ching-Lin/0000-0001-8547-371X; Kandasami, Asokan/0000-0002-1602-765X NR 7 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 854 EP 855 DI 10.1016/j.physb.2007.10.057 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900051 ER PT J AU Tokiwa, Y Ronning, F Thompson, JD Movshovich, R Pham, LD Fisk, Z AF Tokiwa, Y. Ronning, F. Thompson, J. D. Movshovich, R. Pham, L. D. Fisk, Z. TI Effects of Cd-doping on high-field low-temperature superconducting state in CeCoIn5 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE phase transition; FFLO state; superconductivity AB We report specific heat of CeCo(In0.975Cd0.025)(5) in magnetic field along basal plane. The superconducting transition is not sharp first order-like in high fields and the specific heat at field 12 T displays a sharp peak anomaly at 0.14 K inside the superconducting state. The anomaly is larger and sharper than that for the proposed Fulde-Ferell-Larkin-Ovchinnikov state in pure CeCoIn5. (c) 2007 Published by Elsevier B.V. C1 [Tokiwa, Y.; Ronning, F.; Thompson, J. D.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pham, L. D.] Univ Calif Davis, Davis, CA 95616 USA. [Fisk, Z.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Tokiwa, Y (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ytokiwa@lanl.gov RI Tokiwa, Yoshifumi/P-6593-2015 OI Tokiwa, Yoshifumi/0000-0002-6294-7879 NR 14 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 879 EP 880 DI 10.1016/j.physb.2007.10.054 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900061 ER PT J AU Christianson, AD Goremychkin, EA Gardher, JS Kang, HJ Chung, JH Manuel, R Thompson, JD Sarrao, JL Lawrence, JM AF Christianson, A. D. Goremychkin, E. A. Gardher, J. S. Kang, H. J. Chung, J. -H. Manuel, R. Thompson, J. D. Sarrao, J. L. Lawrence, J. M. TI Neutron diffraction study of magnetic field induced behavior in the heavy Fermion Ce3CO4Sn13 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies AB The specific heat Of Ce3CO4Sn13 exhibits a crossover from heavy Fermion behavior with antiferromagnetic correlations at low field to single impurity Kondo behavior above 2 T. We have performed neutron diffraction measurements in magnetic fields up to 6 T on single crystal samples. The (0 0 1) position shows a dramatic increase in intensity in field which appears to arise from static polarization of the 4f level and which at 0.14 K also exhibits an anomaly near 2T reflecting the crossover to single impurity behavior. (c) 2007 Elsevier B.V. All rights reserved. C1 [Christianson, A. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Christianson, A. D.; Lawrence, J. M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Christianson, A. D.; Thompson, J. D.; Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goremychkin, E. A.; Manuel, R.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Goremychkin, E. A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gardher, J. S.; Kang, H. J.; Chung, J. -H.] Ctr Neutron Res, NIST, Gaithersburg, MD 20899 USA. [Gardher, J. S.] Indiana Univ, IUCF, Bloomington, IN 47405 USA. [Kang, H. J.; Chung, J. -H.] Univ Maryland, College Pk, MD 20742 USA. RP Christianson, AD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM postfab@googlemail.com RI christianson, andrew/A-3277-2016 OI christianson, andrew/0000-0003-3369-5884 NR 6 TC 7 Z9 7 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 909 EP 910 DI 10.1016/j.physb.2007.10.073 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900072 ER PT J AU Cornelius, AL Kumar, RS Jacobsen, MK Bauer, ED Sarrao, S Fisk, Z AF Cornelius, A. L. Kumar, R. S. Jacobsen, M. K. Bauer, E. D. Sarrao, S. Fisk, Z. TI Magnetic ordering in UCu2Si2 at high pressure SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE pressure; magnetic order; quantum critical point; Kondo effect AB We have performed resistivity measurements as a function of applied pressure to 2.0 GPa on a single crystal of UCu2Si2. We find that the ambient pressure magnetic ordering temperature of 100 K, and the low-temperature ordering at 50 K, both decrease gradually in a manner consistent with itinerant magnetism. The results will be compared to previous measurements on UCu2Ge2. (c) 2007 Elsevier B.V. All rights reserved. C1 [Cornelius, A. L.; Kumar, R. S.; Jacobsen, M. K.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Bauer, E. D.; Sarrao, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisk, Z.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. RP Cornelius, AL (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. EM cornel@physics.univ.edu RI Cornelius, Andrew/A-9837-2008; Jacobsen, Matthew/C-8124-2009; Bauer, Eric/D-7212-2011; OI Jacobsen, Matthew/0000-0002-0326-2562; Kumar, Ravhi/0000-0002-1967-1619; Bauer, Eric/0000-0003-0017-1937 NR 11 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 940 EP 942 DI 10.1016/j.physb.2007.10.279 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900084 ER PT J AU Park, T Tokiwa, Y Bauer, ED Ronning, F Movshovich, R Sarrao, JL Thompson, JD AF Park, Tuson Tokiwa, Y. Bauer, E. D. Ronning, F. Movshovich, R. Sarrao, J. L. Thompson, J. D. TI Normal state properties at a field-tuned quantum-critical point in the heavy-fermion superconductor CeRhIn5 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE CeRhIn5; quantum-critical point; non-fermi liquid; electrical resistivity; pressure ID PRESSURE AB CeRhIn5 is a prototypical heavy-fermion antiferromagnet where the localized 4f electron of Ce hybridizes weakly with ligand electrons. Applying pressure suppresses the antiferromagnetism and induces unconventional superconductivity when the same Ce 4f electrons become delocalized and participate in the formation of Cooper pairs. The emergent superconducting phase unavoidably hides the existence of quantum-critical point, preventing direct access to it. Measurements of the heat capacity and electrical resistivity under magnetic field and pressure reveal unusual normal state properties at a projected quantum-critical point (P2): divergence in C/T and sublinear temperature dependence in the resistivity. Published by Elsevier B.V. C1 [Park, Tuson; Tokiwa, Y.; Bauer, E. D.; Ronning, F.; Movshovich, R.; Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Park, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tuson@lanl.gov RI Bauer, Eric/D-7212-2011; Park, Tuson/A-1520-2012; Tokiwa, Yoshifumi/P-6593-2015 OI Tokiwa, Yoshifumi/0000-0002-6294-7879 NR 10 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 943 EP 945 DI 10.1016/j.physb.2007.10.272 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900085 ER PT J AU Steglich, F Gelbela, C Grosche, FM Loewenhaupt, M Stockert, O Wirth, S Yuan, HQ AF Steglich, F. Gelbela, C. Grosche, F. M. Loewenhaupt, M. Stockert, O. Wirth, S. Yuan, H. Q. TI Experimental evidence for unconventional BCS states in heavy-fermion metals SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE Kondo effect; heavy fermions; superconductivity; quantum criticality ID QUANTUM CRITICALITY; SPIN FLUCTUATIONS; CRITICAL-POINTS; MAGNETIC ORDER; SUPERCONDUCTIVITY; CECU2SI2; SYSTEMS; PRESSURE; UPD2AL3; URU2SI2 AB A variety of unconventional pairing mechanisms seem to be operating in heavy-fermion superconductors. We address briefly Cooper pairing mediated by magnetic excitons in UPd2Al3 and by valence fluctuations in pressurized CeCu2Si2, Moreover, evidence from inelastic neutron scattering for HF superconductivity being mediated by quantum critical spin-density-wave fluctuations in CeCu2Si2 is discussed. (c) 2007 Elsevier B.V. All rights reserved. C1 [Steglich, F.; Gelbela, C.; Stockert, O.; Wirth, S.; Yuan, H. Q.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Grosche, F. M.] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England. [Loewenhaupt, M.] Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany. [Yuan, H. Q.] LANL, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Steglich, F (reprint author), Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany. EM steglich@cpfs.mpg.de RI Grosche, Malte/A-7117-2012 OI Grosche, Malte/0000-0002-3912-9819 NR 53 TC 3 Z9 3 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 968 EP 972 DI 10.1016/j.physb.2007.10.273 PG 5 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900093 ER PT J AU Harrison, N Sebastian, SE Batista, CD Trugman, SA AF Harrison, N. Sebastian, S. E. Batista, C. D. Trugman, S. A. TI How do holes get heavy and superconduct? SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE heavy fermions; superconductivity; antiferromagnetism; quantum criticality; F-electrons; holes; Kondo; Lifshitz transitions ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; UNCONVENTIONAL SUPERCONDUCTIVITY; SPIN FLUCTUATIONS; FERMION COMPOUNDS; QUANTUM CRITICALITY; PRESSURE; CERHIN5; CEIN3; TRANSITION; CECU2SI2 AB We discuss the implications of recent de Haas-van Alphen effect (magnetic quantum oscillation) measurements on cubic CeIn3, which reveal pockets of f-electron holes centered at Q/2 in the Brillouin zone (where Q = [pi, pi, pi] is the antiferromagnetic modulation vector). This system had previously been identified as a local-moment magnet in which the f-electrons are completely localized. We discuss the Lifshitz Fermi surface topological changes in these pockets that takes place in strong magnetic fields and that is likely to take place as a function of pressure. We further discuss the implications for pressure-tuned superconductivity and the relevance of the experimental findings to CeRhIn5 and cuprate superconductors. (c) 2007 Elsevier B.V. All rights reserved. C1 [Harrison, N.; Batista, C. D.; Trugman, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sebastian, S. E.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RP Harrison, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM nharrison@lanl.gov RI Batista, Cristian/J-8008-2016; OI Trugman, Stuart/0000-0002-6688-7228; Harrison, Neil/0000-0001-5456-7756 NR 43 TC 0 Z9 0 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 977 EP 981 DI 10.1016/j.physb.2007.10.274 PG 5 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900095 ER PT J AU Curro, NJ Urbano, RR Young, BL AF Curro, N. J. Urbano, R. R. Young, B. -L. TI Probing the magnetism in the CeMIn5 heavy fermion systems by NMR SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE heavy fermions; superconductivity; NMR; magnetism AB The CeMIn5 heavy fermion system exhibits antiferromagnetism for both M = Rh and M = Co. CeRhIn5 is antiferromagnetic at ambient pressure and superconducting under hydrostatic pressure, whereas CeCoIn5 is superconducting at ambient pressure, but becomes antiferromagnetic with substitution of In by a few percent of Cd. Pure CeCoIn5 exhibits a field-induced magnetic phase that coexists with the superconductivity. Nuclear magnetic resonance (NMR) and nuclear quadrupolar resonance (NQR) studies of the In(1), In(2) and Co sites reveal similar features in the magnetic states of these systems. (c) 2007 Published by Elsevier B.V. C1 [Curro, N. J.; Urbano, R. R.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys, Los Alamos, NM 87545 USA. [Young, B. -L.] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan. RP Curro, NJ (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys, POB 1663, Los Alamos, NM 87545 USA. EM curro@lanl.gov RI Urbano, Ricardo/F-5017-2012; Curro, Nicholas/D-3413-2009 OI Curro, Nicholas/0000-0001-7829-0237 NR 13 TC 1 Z9 1 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1010 EP 1012 DI 10.1016/j.physb.2007.10.242 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900105 ER PT J AU Ohishi, K Heffner, RH Ito, TU Higemoto, W Morris, GD Bauer, ED Graf, MJ Zhu, JX Morales, LA Sarrao, JL Fluss, MJ MacLaughlin, DE Shu, L AF Ohishi, K. Heffner, R. H. Ito, T. U. Higemoto, W. Morris, G. D. Bauer, E. D. Graf, M. J. Zhu, J. -X. Morales, L. A. Sarrao, J. L. Fluss, M. J. MacLaughlin, D. E. Shu, L. TI Influence of self-irradiation on the magnitude of the superfluid density in PuCoGa5 probed by muon spin rotation SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE plutonium; superconductivity; f-electron; muon spin rotation ID MAGNETIC PENETRATION DEPTH; TRANSITION-TEMPERATURE; ORDER-PARAMETER; SUPERCONDUCTORS; YBA2CU3O6.95; SUPPRESSION; IMPURITIES; SCATTERING; STATE; SR AB We have performed muon spin rotation (mu SR) measurements in the radioactive Pu-based superconductor PuCoGa5 to study the effects of radiation damage on the superconducting properties. The same single crystals were studied 25 days (fresh) and 400 days (aged) after initial preparation. We find that the mu SR rate sigma(v), which is proportional to superfluid density rho(s), is steeply reduced in the aged sample compared with its reduction of T-c. This result is inconsistent with conventional Abrikosov-Gor'kov pair-breaking theory, but can be explained by the local suppression of the order parameter in a strong-scattering, short-coherence-length superconductor. (c) 2007 Elsevier B.V. All rights reserved. C1 [Ohishi, K.; Heffner, R. H.; Ito, T. U.; Higemoto, W.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Heffner, R. H.; Morris, G. D.; Bauer, E. D.; Graf, M. J.; Zhu, J. -X.; Morales, L. A.; Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ito, T. U.; Fluss, M. J.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Morris, G. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Fluss, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [MacLaughlin, D. E.; Shu, L.] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. RP Ohishi, K (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. EM ohishi.kazuki@jaea.go.jp RI Ohishi, Kazuki/E-9592-2010; Bauer, Eric/D-7212-2011; Shu, Lei/E-7524-2012; OI Ohishi, Kazuki/0000-0003-1494-6502; Ito, Takashi/0000-0003-1971-4313; Bauer, Eric/0000-0003-0017-1937; Zhu, Jianxin/0000-0001-7991-3918 NR 18 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1013 EP 1014 DI 10.1016/j.physb.2007.10.079 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900106 ER PT J AU Harada, A Mukuda, H Kitaoka, Y Thamizhavel, A Okuda, Y Settai, R Onuki, Y Itoh, KM Haller, EE Harima, H AF Harada, A. Mukuda, H. Kitaoka, Y. Thamizhavel, A. Okuda, Y. Settai, R. Onuki, Y. Itoh, K. M. Haller, E. E. Harima, H. TI Intimate interplay between superconductivity and antiferromagnetism in CeNiGe3 : A(73) Ge-NQR study under pressure SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE CeNiGe3; superconductivity; antiferromagnetism; longitudinal fluctuation; NQR under pressure AB We report the Ge-73-NQR studies on the antiferromagnetic (AFM) heavy-fermion compound CeNiGe3 which shows two domes like pressure-induced superconducting phases in the pressure (P) ranges of 1.7-3.7GPa and 5.9-7.3GPa denoted as SC1 and SC2, respectively [M. Nakashima, et al., J. Phys. Condens. Matter. 16 (2004) L255, H. Kotegawa, et al., J. Phys. Soc. Jpn. 75 (2006) 044713]. The NQR spectra have revealed a change from an incommensurate AFM structure at P = 0 and 2.0 GPa into a commensurate one at P = 2.8 GPa. The onset of the SCI may be relevant to an intimate evolution from the incommensurate into commensurate AFM-spin structure as P increases. (c) 2007 Elsevier B.V. All rights reserved. C1 [Harada, A.; Mukuda, H.; Kitaoka, Y.] Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Toyonaka, Osaka 5608531, Japan. [Thamizhavel, A.; Okuda, Y.; Settai, R.; Onuki, Y.] Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Itoh, K. M.] Keio Univ, Dept Appl Phys & Phys Informat, Yokohama, Kanagawa 2238522, Japan. [Harima, H.] Keio Univ, Fac Sci, Dept Phys, Kobe, Hyogo 6578501, Japan. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Harada, A (reprint author), Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Toyonaka, Osaka 5608531, Japan. EM aharada@nmr.mp.es.osaka-u.ac.jp RI Thamizhavel, Arumugam/A-1801-2011; Itoh, Kohei/C-5738-2014 OI Thamizhavel, Arumugam/0000-0003-1679-4370; NR 7 TC 4 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1020 EP 1022 DI 10.1016/j.physb.2007.10.080 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900109 ER PT J AU Rathnayaka, KDD Belevtsev, BI Naugle, DG Canfield, PC Lee, SI Kim, JD AF Rathnayaka, K. D. D. Belevtsev, B. I. Naugle, D. G. Canfield, P. C. Lee, S. -I. Kim, J. -D. TI Torque magnetometry: An effective tool for study of metamagnetic transitions in quaternary borocarbides RNi2B2C SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE rare-earth nickel borocarbides; metamagnetic transitions; magnetic anisotropy AB The metamagnetic transitions in single-crystal rare-earth nickel borocarbide ErNi2B2C and TbNi2B2C have been studied at 1.9 K with a Quantum Design torque magnetometer. The critical fields of the transitions depend crucially on the angle between applied field and the easy axis [100]. Torque measurements have been made while changing angular direction of the magnetic field (parallel to basal tetragonal ab-planes) in a wide angular range (more than two quadrants). The results obtained permit discovery of new features of the metamagnetic states in these compounds, which were not revealed in previous studies. For both borocarbides the sequences of metamagnetic transitions with increasing field were different for the magnetic field along (or close enough to) the easy [100] axis from that near the hard [110] axis. (c) 2007 Elsevier B.V. All rights reserved. C1 [Rathnayaka, K. D. D.; Belevtsev, B. I.; Naugle, D. G.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Canfield, P. C.] Iowa State Univ, Ames, IA 50011 USA. [Canfield, P. C.] Ames Lab, Ames, IA 50011 USA. [Lee, S. -I.; Kim, J. -D.] Pohang Univ Sci & Technol, Natl Creat Res Ctr Superconduct, Pohang 790784, South Korea. [Lee, S. -I.; Kim, J. -D.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Belevtsev, B. I.] Natl Acad Sci, B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine. RP Rathnayaka, KDD (reprint author), Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. EM daya@tamu.edu; belevtsev@ilt.kharkov.ua RI Canfield, Paul/H-2698-2014 NR 3 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1050 EP 1052 DI 10.1016/j.physb.2007.10.088 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900119 ER PT J AU Ellis, DS Hill, JP Gu, GD Gog, T Casa, D Birgeneau, RJ Wakimoto, S Kim, YJ AF Ellis, D. S. Hill, J. P. Gu, G. D. Gog, T. Casa, D. Birgeneau, R. J. Wakimoto, S. Kim, Young-June TI Comparison of electronic excitations in single-layer and bi-layer cuprates SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE cuprate; RIXS; La2126; exciton ID X-RAY-SCATTERING AB We compare resonant inelastic X-ray scattering spectra of the double-layer cuprate La1.9Ca1.1Cu2O6 to those of the single-layer La2CuO4. While there are notable differences in the positions of the main 4eV and 6eV peaks at the zone boundaries, overall similarities are observed in the momentum and incident energy dependencies of the excitations. (c) 2007 Published by Elsevier B.V. C1 [Ellis, D. S.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Hill, J. P.; Gu, G. D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Gog, T.; Casa, D.] Argonne Natl Lab, Adv Photon Source, CMC CAT, Argonne, IL 60439 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wakimoto, S.] Japan Atom Energy Res Inst, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. RP Kim, YJ (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM yjkim@physics.utoronto.ca RI Hill, John/F-6549-2011; Kim, Young-June /G-7196-2011; Gu, Genda/D-5410-2013; Casa, Diego/F-9060-2016 OI Kim, Young-June /0000-0002-1172-8895; Gu, Genda/0000-0002-9886-3255; NR 12 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1053 EP 1055 DI 10.1016/j.physb.2007.10.255 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900120 ER PT J AU Urbano, RR Young, BL Curro, NJ Thompson, JD Pham, LD Fisk, Z AF Urbano, R. R. Young, B. -L. Curro, N. J. Thompson, J. D. Pham, L. D. Fisk, Z. TI Coexistence of antiferromagnetism and superconductivity in CeCo(In0.9Cd0.1)(5): A spin lattice relaxation study SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE heavy fermions; magnetism; superconductivity; NMR ID UNCONVENTIONAL SUPERCONDUCTIVITY; FERMION AB We present an In(1) NQR study on the heavy-fermion (HF) compound CeCo(In1-xCdx)(5) (x = 0.10). Bulk measurements indicate that Cd doping acts as an electronic tuning agent in CeCoIn5, and that superconductivity (SC) and antiferromagnetism (AFM) may coexist at ambient pressure for 0.05 < x < 0.15. For x = 0.10, the nuclear spin lattice relaxation rate shows a broad peak at the Neel temperature T-N = 2.8 K, with a subsequent onset of SC at T-c similar or equal to 1.2 K. Our results provide strong evidence for microscopic coexistence of these two ground states. The nuclear magnetization recovery curves in both the ordered and mixed states reveal a single T-i-component, which suggests a homogeneous nature of the Ce-4f(1) electronic state. (c) 2007 Elsevier B.V. All rights reserved. C1 [Urbano, R. R.; Curro, N. J.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisk, Z.] Univ Calif Irvine, Irvine, CA 92697 USA. [Pham, L. D.] Univ Calif Davis, Davis, CA 95616 USA. [Young, B. -L.] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan. RP Urbano, RR (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rurbano@lanl.gov RI Urbano, Ricardo/F-5017-2012; Curro, Nicholas/D-3413-2009 OI Curro, Nicholas/0000-0001-7829-0237 NR 16 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1056 EP 1058 DI 10.1016/j.physb.2007.10.280 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900121 ER PT J AU MacLaughlin, DE Shu, L Heffner, RH Sonier, JE Callaghan, FD Morris, GD Bernal, OO Yuhasz, WM Frederick, NA Maple, MB AF MacLaughlin, D. E. Shu, Lei Heffner, R. H. Sonier, J. E. Callaghan, F. D. Morris, G. D. Bernal, O. O. Yuhasz, W. M. Frederick, N. A. Maple, M. B. TI Multiband superconductivity and penetration depth in PrOs4Sb12 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE penetration depth; multiband superconductivity; muon spin rotation; PrOs4Sb12 AB The effective superconducting penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-mu SR) exhibits an activated temperature dependence at low temperatures, consistent with a nonzero gap for quasiparticle excitations. In contrast, Meissner-state radiofrequency (to inductive measurements of the penetration depth yield a T-2 temperature dependence, suggestive of point nodes in the gap. A scenario based on the recent discovery of extreme two-band superconductivity in PrOs4Sb12 is proposed to resolve this difference. In this picture a large difference between large- and small-gap coherence lengths renders the field distribution in the vortex state controlled mainly by supercurrents from a fully gapped large-gap band. In zero field all bands contribute, yielding a stronger temperature dependence to the rf inductive measurements. (C) 2007 Elsevier B.V. All rights reserved. C1 [MacLaughlin, D. E.; Shu, Lei] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Heffner, R. H.; Morris, G. D.] Los Alamos Natl Lab, MST 10, Los Alamos, NM USA. [Heffner, R. H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki, Japan. [Sonier, J. E.; Callaghan, F. D.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Sonier, J. E.] Canadian Inst Adv Res, Toronto, ON, Canada. [Morris, G. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bernal, O. O.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Yuhasz, W. M.; Frederick, N. A.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Yuhasz, W. M.; Frederick, N. A.; Maple, M. B.] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA. RP MacLaughlin, DE (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. EM macl@aphysics.ucr.edu RI Yuhasz, William/C-9418-2009; Shu, Lei/E-7524-2012 NR 10 TC 8 Z9 8 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1132 EP 1134 DI 10.1016/j.physb.2007.10.329 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900149 ER PT J AU Bauer, ED Ronning, F Maquilon, S Pham, LD Thompson, JD Fisk, Z AF Bauer, E. D. Ronning, F. Maquilon, S. Pham, L. D. Thompson, J. D. Fisk, Z. TI Occurrence of magnetism in CeMIn5-xHgx (M = Rh, Ir) SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE heavy fermion; magnetic order; superconductivity; quantum critical point AB The physical properties of CeM(In1-xHgx)(5) (M = Rh, Ir) including specific heat and magnetic susceptibility are reported. Two magnetic phases exist in CeRhIn(In1-xHgx)(5) with some evidence of a change from incommensurate magnetic order to a commensurate structure near 10% nominal Hg substitution. In CeIr(In1-xHgx)(5), an antiferromagnetic quantum critical point near x = 3% (followed by robust long-range antiferromagnetism for x > 5%) appears to be separated from superconductivity in CeIrIn5. The multitude of magnetic ground states observed in the CeM(In1-xHgx)(5) Materials is quite sensitive to doping and magnetic fields. (C) 2007 Published by Elsevier B.V. C1 [Bauer, E. D.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Maquilon, S.; Pham, L. D.] Univ Calif Davis, Davis, CA 95616 USA. [Fisk, Z.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Bauer, ED (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM edbauer@lanl.gov RI Bauer, Eric/D-7212-2011; OI Bauer, Eric/0000-0003-0017-1937 NR 13 TC 14 Z9 14 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1135 EP 1137 DI 10.1016/j.physb.2007.10.101 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900150 ER PT J AU Yuan, HQ Salamon, MB Badica, P Togano, K AF Yuan, H. Q. Salamon, M. B. Badica, P. Togano, K. TI A penetration depth study on the non-centrosymmetric superconductors Li-2(Pd1-xPtx)(3)B SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE non-centrosymmetric superconductor; Li-2(Pd1-xPtx)(3)B; spin-orbit coupling; line nodes; magnetic penetration depth AB We study the superconducting order parameter in the non-centrosymmetric compounds Li-2(Pd1-xPtx)(3)B (x = 0, 0.3, 0.7 and 1) by measuring magnetic penetration depth lambda(T). The low temperature lambda(T) shows a linear temperature dependence for x >= 0.3, but follows exponential-like behavior for lower Pt contents. These findings suggest that a spin-triplet state might gradually develop with increasing x due to the broken inversion symmetry. Published by Elsevier B.V. C1 [Yuan, H. Q.; Salamon, M. B.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Badica, P.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany. [Badica, P.] Natl Inst Mat Phys, Bucharest 077125, Romania. [Togano, K.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. RP Yuan, HQ (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS E536, Los Alamos, NM 87545 USA. EM yuan@lanl.gov NR 7 TC 8 Z9 8 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1138 EP 1139 DI 10.1016/j.physb.2007.10.343 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900151 ER PT J AU Logvenov, G Butko, VV DevilleCavellin, C Seo, J Gozar, A Bozovic, I AF Logvenov, Gennady Butko, Vladimir V. DevilleCavellin, Catherine Seo, Jiwon Gozar, Adrian Bozovic, Ivan TI Engineering interfaces in cuprate superconductors SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE high-temperature superconductivity; molecular beam epitaxy; artificial superlattices AB Using an advanced molecular beam epitaxy system for atomic-layer engineering of complex oxides, we have fabricated a variety of superlattices with stacked layers of La2-xSrxCuO4 doped to different levels. In superlattices formed by stacking highly overdoped, metallic La1.5Sr0.5CuO4 and insulating La2CuO4 layers we have observed superconductivity at temperature as high as 30 K, even though neither of the building blocks was superconducting. Different possible mechanisms of this superconductivity are discussed. (C) 2007 Elsevier B.V. All rights reserved. C1 [Logvenov, Gennady; Butko, Vladimir V.; Gozar, Adrian; Bozovic, Ivan] Brookhaven Natl Lab, Upton, NY 11973 USA. [DevilleCavellin, Catherine] Univ Paris 12, Fac Sci & Technol, F-94010 Creteil, France. [Seo, Jiwon] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England. RP Bozovic, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM bozovic@bnl.gov NR 5 TC 8 Z9 8 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1149 EP 1150 DI 10.1016/j.physb.2007.10.351 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900156 ER PT J AU Richard, P Neupane, M Xu, YM Fournier, P Li, S Dai, P Wang, Z Ding, H AF Richard, P. Neupane, M. Xu, Y. M. Fournier, P. Li, S. Dai, Pengcheng Wang, Z. Ding, H. TI Emergence of the nodal portion of the Fermi surface due to the reduction process in the electron-doped cuprates SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE cuprates; electron doped; ARPES; superconductivity; reduction process ID OXYGEN AB We have performed a systematic angle-resolved photoemission study of as-grown (AG) and oxygen-reduced Pr2-xCexCuO4 and Pr1-xLaxCexCuO4 electron-doped cuprates. Our results indicate that the nodal region of the Fermi surface, which is suppressed in the AG samples, emerges in the reduced samples due to the suppression of the long-range antiferromagnetic order. (C) 2007 Elsevier B.V. All rights reserved. C1 [Richard, P.; Neupane, M.; Xu, Y. M.; Wang, Z.; Ding, H.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Fournier, P.] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Li, S.; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Lab, Oak Ridge, TN 37831 USA. RP Richard, P (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. EM richarpi@bc.edu RI Li, Shiliang/B-9379-2009; Richard, Pierre/F-7652-2010; Dai, Pengcheng /C-9171-2012; OI Richard, Pierre/0000-0003-0544-4551; Dai, Pengcheng /0000-0002-6088-3170; Ding, Hong/0000-0003-4422-9248 NR 9 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1170 EP 1172 DI 10.1016/j.physb.2007.10.283 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900164 ER PT J AU Gegenwart, P Westerkamp, T Krellner, C Brando, M Tokiwa, Y Geibel, C Steglich, F AF Gegenwart, P. Westerkamp, T. Krellner, C. Brando, M. Tokiwa, Y. Geibel, C. Steglich, F. TI Unconventional quantum criticality in YbRh2Si2 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE YbRh2Si2; quantum critical point; non-fermi liquid behavior ID CRITICAL-POINT; PHASE-TRANSITIONS; FERMI-LIQUID; HEAVY; METALS; MAGNETOSTRICTION; TEMPERATURE; PRESSURE; SYSTEMS; STATE AB YbRh2Si2 is a clean heavy fermion system which displays a magnetic field tuned quantum critical point. We present low-temperature electrical resistivity, magnetostriction and magnetization measurements on high-quality single crystals with a residual resistivity ratio of 150. The data provide evidence for a low-energy scale T* (H) which vanishes in addition to the boundaries of the magnetic ordering and Landau Fermi liquid regime at the quantum critical point, indicating unconventional quantum criticality. (C) 2007 Elsevier B.V. All rights reserved. C1 [Gegenwart, P.] Univ Gottingen, Inst Phys 1, D-37077 Gottingen, Germany. [Westerkamp, T.; Krellner, C.; Brando, M.; Geibel, C.; Steglich, F.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Tokiwa, Y.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gegenwart, P (reprint author), Univ Gottingen, Inst Phys 1, Freidrich Hund Pl 1, D-37077 Gottingen, Germany. EM pgegenw@gwdg.de RI Krellner, Cornelius/A-5389-2009; Brando, Manuel/B-4234-2009; Tokiwa, Yoshifumi/P-6593-2015; Gegenwart, Philipp/A-7291-2017 OI Krellner, Cornelius/0000-0002-0671-7729; Tokiwa, Yoshifumi/0000-0002-6294-7879; NR 27 TC 13 Z9 14 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1184 EP 1188 DI 10.1016/j.physb.2007.10.277 PG 5 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900169 ER PT J AU Yamamoto, A Yokoyama, T Wada, S Tabira, K Kotegawa, H Kobayashi, TC Sarrao, JL AF Yamamoto, A. Yokoyama, T. Wada, S. Tabira, K. Kotegawa, H. Kobayashi, T. C. Sarrao, J. L. TI Evolution of transport and low-energy spin fluctuations in YbXCu4(X = Au and Pd) with the application of magnetic field SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE heavy fermion; spin fluctuations; NMR/NQR; YbAuCu4; YbPdCu4 AB We have investigated evolution of transport and low-energy spin fluctuation properties of heavy Fermi liquid compounds YbAuCu4 and YbPdCu4 with the application of magnetic field. YbAuCu4 is found to be driven from the originally antiferromagnetically (AFM) ordered ground state (T-N similar to 0.8K) to a nonmagnetic Fermi liquid (FL) one through the field-tuned quantum critical point (QCP) at H-cr similar or equal to 13 kOe (T-N -> 0). In the vicinity of H-cr, the electrical resistivity measurement provides evidence for the increase in the inelastic scattering of heavy electrons, and the Cu-63 Spin-lattice relaxation rate measurement exhibits the occurrence of AFM spin order instability. Whilst, YbPdCu4 transforms from the originally ferromagnetically (FM) ordered ground state (T-C similar to 0.6K) into the nonmagnetic FL state, without any intermediate NFL phenomena. This result indicates that the competition of the field-stabilized FM correlation and field-destabilized AFM correlation plays an important role on the field-driven quantum critical phenomena. (C) 2007 Elsevier B.V. All rights reserved. C1 [Yamamoto, A.; Yokoyama, T.; Wada, S.] Kobe Univ, Dept Phys, Grad Sch Sci, Kobe, Hyogo 6578501, Japan. [Tabira, K.; Kotegawa, H.; Kobayashi, T. C.] Okayama Univ, Fac Sci, Dept Phys, Okayama 7008530, Japan. [Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yamamoto, A (reprint author), Kobe Univ, Dept Phys, Grad Sch Sci, Kobe, Hyogo 6578501, Japan. EM ayay@scphys.kyoto-u.ac.jp RI KOBAYASHI, Tatsuo/B-1527-2011 NR 5 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1205 EP 1207 DI 10.1016/j.physb.2007.10.325 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900174 ER PT J AU McCall, SK Sykora, RE Fluss, MJ Chung, BW Chapline, GF Haire, RG AF McCall, S. K. Sykora, R. E. Fluss, M. J. Chung, B. W. Chapline, G. F. Haire, R. G. TI Influence of self damage on Pu(Am) observed through magnetization measurements SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies ID 5F ELECTRONS; PLUTONIUM AB In the Pu1-xAmx system, stable fcc phases are obtained for 0.05 < x < 0.75, and the lattice parameters increase with the Am content. Both elements decay by alpha-emission creating cascades of. vacancies, interstitials, and their aggregates. As damage accumulates, it is accompanied by an increase in the magnetic susceptibility. Preliminary results of radiation damage studies on the magnetic properties of Pu(Am) alloys are reported here. (C) 2007 Elsevier B.V. All rights reserved. C1 [McCall, S. K.; Fluss, M. J.; Chung, B. W.; Chapline, G. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sykora, R. E.; Haire, R. G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McCall, SK (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM mccall10@llnl.gov RI McCall, Scott/G-1733-2014; Chung, Brandon/G-2929-2012 OI McCall, Scott/0000-0002-7979-4944; NR 5 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1225 EP 1226 DI 10.1016/j.physb.2007.10.296 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900181 ER PT J AU Bud'ko, SL Canfield, PC AF Bud'ko, S. L. Canfield, P. C. TI Field-induced quantum criticality in YbAgGe SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE YbAgGe; quantum critical point; magnetic field ID HEAVY-FERMION YBAGGE; PHASE-DIAGRAM AB YbAgGe is one of the very few stoichiometric, Yb-based, heavy fermion materials that exhibit field-induced quantum criticality. We will present an overview of thermodynamic and transport measurements in YbAgGe single crystals. Moderate magnetic field (45-90 kOe, depending on orientation) suppresses long range magnetic order, giving rise to non-Fermi-liquid behavior followed at higher field by a crossover to a heavy Fermi-liquid. Given the more accessible temperature and field scales, a non-Fermi liquid region rather than point for T -> 0K may be detected. (C) 2007 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Bud'ko, SL (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM budko@ameslab.gov RI Canfield, Paul/H-2698-2014 NR 13 TC 2 Z9 2 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1230 EP 1232 DI 10.1016/j.physb.2007.10.112 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900183 ER PT J AU Sokolov, DA Aronson, MC Strycker, GL Lumsden, MD Nagler, SE Erwin, R AF Sokolov, D. A. Aronson, M. C. Strycker, G. L. Lumsden, M. D. Nagler, S. E. Erwin, R. TI Elastic neutron scattering in quantum critical antiferromagnet Cr0.963V0.037 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE chromium; neutron scattering; QCP AB We have performed elastic neutron scattering studies of the quantum critical antiferromagnet Cr0.963V0.037. We have found that unlike pure Cr, which orders at two incommensurate wavevectors, Cr0.963V0.037 orders at four incommensurate and one commensurate wavevectors. We have found strong temperature dependent scattering at the commensurate and incommensurate wavevectors below 250 K. Results indicate that the primary effect of V doping on Cr is the modification of the nesting conditions of the Fermi surface and not the decreasing of the Neel temperature. (C) 2007 Elsevier B.V. All rights reserved. C1 [Sokolov, D. A.; Aronson, M. C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Strycker, G. L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Lumsden, M. D.; Nagler, S. E.] Oak Ridge Natl Lab, Neutron Scattering Lab, Oak Ridge, TN 37831 USA. [Erwin, R.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Sokolov, DA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM sokolov@bnl.gov RI Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Sokolov, D/G-7755-2011; Lumsden, Mark/F-5366-2012 OI Nagler, Stephen/0000-0002-7234-2339; Lumsden, Mark/0000-0002-5472-9660 NR 6 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1276 EP 1278 DI 10.1016/j.physb.2007.10.125 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900199 ER PT J AU Capan, C Singh, S Wirth, S Nicklas, M Lee, H Fisk, Z DiTusa, J Steglich, F AF Capan, C. Singh, S. Wirth, S. Nicklas, M. Lee, H. Fisk, Z. DiTusa, J. Steglich, F. TI New hints on the origin of quantum criticality in CeCoIn5: A Hall effect study SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE hall effect; heavy fermion; quantum critical ID CRITICAL-POINT; HEAVY; SUPERCONDUCTIVITY AB We report Hall Effect measurements under pressure in the normal state of CeCoIn5, from 60 to 3 55 mK and for fields exceeding the superconducting upper critical field H-c2, with the field oriented parallel to [0 0 1]. At low pressures, the field dependence of the Hall coefficient exhibits a scaling consistent with the one reported in the normal state at higher temperatures, but at odds with the Delta H/T scaling expected near a field tuned quantum critical point. The breakdown of this scaling at higher pressures, concomitant with the suppression of spin fluctuations, suggests that it is a hallmark of the spin fluctuations. Published by Elsevier B.V. C1 [Capan, C.; DiTusa, J.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Capan, C.; Singh, S.; Wirth, S.; Nicklas, M.; Steglich, F.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Lee, H.; Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Singh, S.] Univ Paris 11, Chim Phys Solide Lab, F-91405 Orsay, France. [Lee, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Capan, C (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM cigdem@lsu.edu RI Nicklas, Michael/B-6344-2008 OI Nicklas, Michael/0000-0001-6272-2162 NR 22 TC 0 Z9 0 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1290 EP 1292 DI 10.1016/j.physb.2007.10.356 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900204 ER PT J AU Dela Cruz, CR Lorenz, B Chu, CW AF Dela Cruz, C. R. Lorenz, B. Chu, C. W. TI Tuning ferroelectricity in DyMn(2)O(5) by pressure and magnetic fields SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE multiferroic manganites; spin frustration; ferroelectricity; magnetic field effects; pressure effects AB The effects of magnetic fields and external pressure on the multiferroic properties and the ferroelectricity in DyMn(2)O(5) are studied. With fields applied along the hard magnetic axis the new high-field phase previously detected is shown to be paraelectric. Application of pressure enhances the ferroelectric polarization at low temperatures by stabilizing the commensurate Mn-spin order. The pressure-temperature phase diagram is resolved. (C) 2007 Elsevier B.V. All rights reserved. C1 [Dela Cruz, C. R.; Lorenz, B.; Chu, C. W.] Univ Houston, TSCUH, Houston, TX 77204 USA. [Dela Cruz, C. R.; Lorenz, B.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Chu, C. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Lorenz, B (reprint author), Univ Houston, TSCUH, Houston, TX 77204 USA. EM blorenz@uh.edu RI dela Cruz, Clarina/C-2747-2013 OI dela Cruz, Clarina/0000-0003-4233-2145 NR 19 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1331 EP 1335 DI 10.1016/j.physb.2007.10.318 PG 5 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900219 ER PT J AU Binz, B Vishwanath, A AF Binz, B. Vishwanath, A. TI Chirality induced anomalous-Hall effect in helical spin crystals SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE helimagnets; magnetotransport; skyrmions; anomalous hall effect ID PHASE; MNSI; MAGNETORESISTANCE; STATE AB Under pressure, the itinerant helimagnet MnSi displays unusual magnetic properties. We have previously discussed a bcc helical spin crystal as a promising starting point for describing the high pressure phenomenology. This state has topologically non-trivial configurations of the magnetization field. Here we note the consequences for magneto-transport that arise generally from such spin textures. In particular, a skyrmion density induced 'topological' Hall effect., with unusual field dependence, is described. (C) 2007 Elsevier B.V. All rights reserved. C1 [Binz, B.; Vishwanath, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binz, B.] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany. [Vishwanath, A.] Lawrence Berkeley Labs, Div Sci Mat, Berkeley, CA USA. RP Vishwanath, A (reprint author), Univ Calif Berkeley, Dept Phys, 366 Le Conte 7300, Berkeley, CA 94720 USA. EM ashvinv@socrates.berkeley.edu NR 18 TC 41 Z9 41 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1336 EP 1340 DI 10.1016/j.physb.2007.10.136 PG 5 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900220 ER PT J AU Stishov, SM Petrova, AE Khasanov, S Panova, GK Shikov, AA Lashley, JC Wu, D Lograsso, TA AF Stishov, S. M. Petrova, A. E. Khasanov, S. Panova, G. Kh. Shikov, A. A. Lashley, J. C. Wu, D. Lograsso, T. A. TI Systematic study of the itinerant ferromagnet MnSi at ambient and high hydrostatic pressures SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE MnSi; itinerant ferromagnet; phase transition; tricritical point ID QUANTUM PHASE-TRANSITION AB The intermetallic compound MnSi experiences a phase transition at a temperature slightly below 30K, acquiring helical magnetic structure and becoming a weak itinerant ferromagnet. We have carried out precise resistivity and ac susceptibility measurements of MnSi single crystals across the phase transition line at ambient and high pressures, using a compressed helium technique. In addition, heat capacity, thermal expansion and dc magnetic susceptibility were measured at ambient pressure. Conclusions drawn from these experiments propose that the phase transition in MnSi is of first order at ambient pressure and may become continuous at high pressure and low temperature. (C) 2007 Elsevier B.V. All rights reserved. C1 [Stishov, S. M.; Petrova, A. E.] Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Khasanov, S.] Inst Solid State Phys, Chernogolovka 142432, Moscow Region, Russia. [Panova, G. Kh.; Shikov, A. A.] IV Kurchatov Atom Energy Inst, Moscow 123182, Russia. [Lashley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wu, D.; Lograsso, T. A.] Ames Lab, Ames, IA 50011 USA. RP Stishov, SM (reprint author), Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. EM sergei@hppi.troitsk.ru RI Khasanov, Salavat/R-8690-2016 NR 6 TC 2 Z9 2 U1 3 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1347 EP 1349 DI 10.1016/j.physb.2007.10.293 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900223 ER PT J AU Lora-Serrano, R Correa, VF Adriano, C Giles, C Duque, JGS Granado, E Pagliuso, PG Murphy, TP Palm, EC Tozer, SW Lacerda, AH Sarrao, JL AF Lora-Serrano, R. Correa, V. F. Adriano, C. Giles, C. Duque, J. G. S. Granado, E. Pagliuso, P. G. Murphy, T. P. Palm, E. C. Tozer, S. W. Lacerda, A. H. Sarrao, J. L. TI First order magnetic transition and magnetoelastic effects in Sm2IrIn8 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE first order magnetic phase transition; magnetotrictive effects; CEF effects AB We report measurements of temperature dependent heat capacity, thermal expansion and high resolution X-ray diffraction (XRD) taken on single crystals Of Sm2IrIn8 intermetallic compound. This compound belongs to the RmMnIn3m+2n family (R = rare earth, m = 1, 2, n = 0, 1 and M = Rh, Ir and Co) which includes a number of heavy fermion superconductors for R = Ce. Particularly, Sm2IrIn8 is the only member of this family to present a first order magnetic phase transition (FOMT). Both thermal expansion and heat capacity data show very pronounced sharps peaks at T-N = 14.2K consistent with an FOMT. The linear thermal-expansion coefficient is anisotropic and both c-axis and basal ab plane coefficients change discontinuously at 14.2 K. This change is negative for both direction in contrast to what was found for other members of family such as Ce2RhIn8 and CeRhIn5. The zero-field high resolution XRD data at 14.2 K shows no evidence for a tetragonal-to-orthorhombic structural phase transition. We discuss our results considering tetragonal crystalline field effects (CEF), quadupolar interactions, antiferromagnetic domains and magnetoelastic effects. (C) 2007 Elsevier B.V. All rights reserved. C1 [Lora-Serrano, R.; Adriano, C.; Giles, C.; Duque, J. G. S.; Granado, E.; Pagliuso, P. G.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Correa, V. F.; Murphy, T. P.; Palm, E. C.; Tozer, S. W.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Lacerda, A. H.; Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lora-Serrano, R (reprint author), Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. EM rlora@ifi.unicamp.br RI Pagliuso, Pascoal/C-9169-2012; Granado, Eduardo/F-5389-2012; Giles, Carlos/E-2878-2012; Lora Serrano, Raimundo/L-6307-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Giles, Carlos/0000-0001-8373-7398; Lora Serrano, Raimundo/0000-0003-3777-2170; NR 15 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1365 EP 1367 DI 10.1016/j.physb.2007.10.151 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900229 ER PT J AU Fanelli, VR Christianson, AD Jaime, M Thompson, JD Suzuki, HS Lawrence, JM AF Fanelli, V. R. Christianson, A. D. Jaime, M. Thompson, J. D. Suzuki, H. S. Lawrence, J. M. TI Magnetic order in the induced magnetic moment system Pr3In SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE induced moment behavior; specific heat ID SINGLET-GROUND-STATE; FIELD AB Pr3In is a single ground state compound which exhibits antiferromagnetic order below 11.4 K due to the exchange induced admixture of crystalline electric field levels. Additional information regarding the complex magnetic behavior of this compound can be gained through application of magnetic fields. We report specific heat and magnetocaloric effect measurements to 15 T and magnetization measurements to 44 T on single crystal samples of Pr3In. A new magnetic phase is revealed above 1.9 T and below 11.4 K. (C) 2007 Elsevier B.V. All rights reserved. C1 [Fanelli, V. R.; Lawrence, J. M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Fanelli, V. R.; Jaime, M.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Christianson, A. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Suzuki, H. S.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. RP Fanelli, VR (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM vfanelli@uci.edu RI Fanelli, Victor/A-4375-2015; Jaime, Marcelo/F-3791-2015; christianson, andrew/A-3277-2016 OI Jaime, Marcelo/0000-0001-5360-5220; christianson, andrew/0000-0003-3369-5884 NR 6 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1368 EP 1370 DI 10.1016/j.physb.2007.10.152 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900230 ER PT J AU Wolff-Fabris, F Pureur, P Schaf, J Vieira, V Campbell, IA AF Wolff-Fabris, F. Pureur, P. Schaf, J. Vieira, V. Campbell, I. A. TI The chiral anomalous Hall effect in PdFe and AuFe alloys SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE anomalous Hall effect; chirality; canting ID BERRY PHASE AB We have made systematic measurements of the anomalous Hall effect in a PdFe and AuFe alloys. The Hall coefficient Rh has been measured as a function of applied magnetic field and temperature. The experimental results demonstrate that it is necessary to consider a negative contribution in addition to the canonical Karplus-Luttinger term. This difference term can be identified to the theoretically predicted chiral or real space Berry phase term and can be understood in terms of the Aharonov-Bohm-like intrinsic microscopic current loops arising from successive scatterings by canted local spins. (C) 2007 Elsevier B.V. All rights reserved. C1 [Wolff-Fabris, F.] NHMFK, Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Pureur, P.; Schaf, J.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Vieira, V.] Inst Fis & Matemat UFPel, BR-96010900 Pelotas, Brazil. [Campbell, I. A.] Univ Montpellier 2, Lab Colloides Verres & Nanomat, F-34095 Montpellier, France. RP Wolff-Fabris, F (reprint author), NHMFK, Los Alamos Natl Lab, MS E536, Los Alamos, NM 87544 USA. EM frederikwf@lanl.gov OI Pureur, Paulo/0000-0003-1727-3323 NR 10 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1373 EP 1374 DI 10.1016/j.physb.2007.10.307 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900232 ER PT J AU Prasankumar, RP Lee, HJ Okamura, H Imai, H Shimakawa, Y Kubo, Y Zvyagin, S Kamenev, K Balakrishnan, G Paulf, DM Trugman, SA Taylor, AJ Averitt, RD AF Prasankumar, R. P. Lee, H. J. Okamura, H. Imai, H. Shimakawa, Y. Kubo, Y. Zvyagin, S. Kamenev, K. Balakrishnan, G. Paulf, D. Mck. Trugman, S. A. Taylor, A. J. Averitt, R. D. TI Probing nanoscale inhomogeneities in transition metal oxides with ultrafast mid-infrared spectroscopy SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE ultrafast; mid-infrared; colossal magnetoresistance; phase inhomogeneities AB Transition metal oxides are a rich area of investigation for experimentalists and theorists alike due to their coupling of multiple degrees of freedom with similar interaction strengths. This complexity leads to intrinsic phase inhomogeneities that are believed to play a significant role in the fascinating phenomena observed in these systems. We use ultrafast mid-infrared spectroscopy to probe quasiparticle dynamics in the colossal magnetoresistive oxides, Nd0.5Sr0.5MnO3 and Tl2Mn2O7. Our results demonstrate for the first time that ultrafast spectroscopy is sensitive to the presence of nanoscale phase inhomogeneities, strongly indicating the universality of phase coexistence in complex transition metal oxides. (C) 2007 Elsevier B.V. All rights reserved. C1 [Prasankumar, R. P.; Lee, H. J.; Trugman, S. A.; Taylor, A. J.; Averitt, R. D.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Okamura, H.] Kobe Univ, Grad Sch Sci & Technol, Kobe, Hyogo 6578501, Japan. [Okamura, H.; Imai, H.; Shimakawa, Y.] NEC Corp Ltd, Fundamental Res Labs, Tsukuba, Ibaraki 3058501, Japan. [Zvyagin, S.] Rossendorf Inc, Forschungszentrum, Dresden High Magnet Field Lab HLD, D-01314 Dresden, Germany. [Kamenev, K.] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3JZ, Midlothian, Scotland. [Kamenev, K.] Univ Edinburgh, Sch Engn & Elect, Edinburgh EH9 3JZ, Midlothian, Scotland. [Balakrishnan, G.; Paulf, D. Mck.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Averitt, R. D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Prasankumar, RP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM rpprasan@lanl.gov RI Zvyagin, Sergei/H-8389-2014; KUBO, Yoshimi/H-2851-2011; Balakrishnan, Geetha/P-5977-2016; OI Balakrishnan, Geetha/0000-0002-5890-1149; Trugman, Stuart/0000-0002-6688-7228 NR 9 TC 0 Z9 0 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1401 EP 1403 DI 10.1016/j.physb.2007.10.186 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900242 ER PT J AU Kim, MS Bennett, MC Aronson, MC AF Kim, M. S. Bennett, M. C. Aronson, M. C. TI Yb2Pt2Pb: A new quasi-two-dimensional antiferromagnet SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE tetragonal; anisotropy; CEF; frustration ID TRIANGULAR LATTICE AB We have synthesized single-crystals of Yb2Pt2Pb, which crystallize in the tetragonal U2Pt2Sn-type structure. The magnetic susceptibility chi is highly anisotropic. The chi(< 100 >) for B parallel to < 100 > is 30 times larger than chi(< 100 >) for B parallel to < 100 > at the lowest temperatures. Both 1/chi (T) and M(B) of Yb2Pt2Pb are dominated by the CEF effect. The 1/chi < 100 > above 150K is well described by the Curie-Weiss law with 0 = 34K and mu(eff) = 4.19 mu(B), indicating well-localized Yb3+ ions at high temperatures. A broad maximum in chi is found around 3 K, just above antiferromagnetic transition temperature of 2 K. This suggests an important role for fluctuations in this system, due to reduced dimensionality or perhaps geometric frustration. (C) 2007 Elsevier B.V. All rights reserved. C1 [Kim, M. S.; Aronson, M. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Kim, M. S.; Bennett, M. C.; Aronson, M. C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Kim, MS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM mskim@bnl.gov NR 3 TC 2 Z9 3 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1411 EP 1413 DI 10.1016/j.physb.2007.10.160 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900246 ER PT J AU Chaudhury, RP Yen, F dela Cruz, CR Lorenz, B Wang, YQ Sun, YY Chu, CW AF Chaudhury, R. P. Yen, F. dela Cruz, C. R. Lorenz, B. Wang, Y. Q. Sun, Y. Y. Chu, C. W. TI Thermal expansion and pressure effect in MnWO4 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE MnWO4; thermal expansion; pressure effect; multiferroics ID FERROELECTRIC POLARIZATION AB MnWO4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order. We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T-1 = 7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low-temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure. (c) 2007 Elsevier B.V. All rights reserved. C1 [Chaudhury, R. P.; Yen, F.; dela Cruz, C. R.; Lorenz, B.; Wang, Y. Q.; Sun, Y. Y.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Chaudhury, R. P.; Yen, F.; dela Cruz, C. R.; Lorenz, B.; Wang, Y. Q.; Sun, Y. Y.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Chu, C. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Chaudhury, RP (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. EM rajit.chaudhury@uh.edu RI dela Cruz, Clarina/C-2747-2013; Yen, Fei/C-8713-2015 OI dela Cruz, Clarina/0000-0003-4233-2145; Yen, Fei/0000-0003-2295-3040 NR 8 TC 32 Z9 32 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1428 EP 1430 DI 10.1016/j.physb.2007.10.327 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900252 ER PT J AU Wray, L Qian, D Hsieh, D Xia, Y Gog, T Casa, D Eisaki, H Hasan, MZ AF Wray, L. Qian, D. Hsieh, D. Xia, Y. Gog, T. Casa, D. Eisaki, H. Hasan, M. Z. TI Dispersive collective charge modes in a spin 1/2 cuprate ladder SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE Sr14Cu24O41; resonant inelastic X-ray scattering; low dimensional cuprate; ladder ID X-RAY-SCATTERING; SR14CU24O41 AB We present the momentum evolution of collective charge modes in Sr14Cu24O41 over the complete Brillouin zone using inelastic resonant X-ray scattering. The observed spectrum is found to be dispersive with periodicity corresponding to the ladder sublattice for momentum transfers along the ladder "leg" direction, and nondispersive along the "rung". Details of the spectrum, including dispersion and linewidth, fall between characteristic charge spectra of single chain quasi-1D Mott insulators and quasi-2D cuprates. (c) 2007 Elsevier B.V. All rights reserved. C1 [Wray, L.; Qian, D.; Hsieh, D.; Xia, Y.; Hasan, M. Z.] Princeton Univ, Dept Phys, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Gog, T.; Casa, D.] Argonne Natl Lab, CMC XOR, Argonne, IL 60439 USA. [Eisaki, H.] AIST, NeRI, Tsukuba, Ibaraki 3058568, Japan. RP Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. EM mzhasan@princeton.edu RI HASAN, M. Zahid/D-8237-2012; Qian, Dong/O-1028-2015; Casa, Diego/F-9060-2016 NR 12 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1456 EP 1458 DI 10.1016/j.physb.2007.10.302 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900262 ER PT J AU Lee, HO Sidorov, VA Schlottmann, P Condron, C Klavins, P Kauzlarich, SM Thompson, JD Fisk, Z AF Lee, Han-Oh Sidorov, V. A. Schlottmann, P. Condron, Cathie Klavins, Peter Kauzlarich, Susan M. Thompson, J. D. Fisk, Z. TI Localized states within the gap of Ce3Au3Sb4 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE Kondo insulator; heavy fermion; specific heat; resistivity; pressure ID ENERGY-GAP; CE3BI4PT3; TRANSPORT; SYSTEM AB The temperature dependence of the specific heat and of the resistivity tinder pressure has been measured for single crystals of the semiconductor Ce3Au3Sb4. The transport data follow an exponential activation and variable range hopping at low T, consistent with weak disorder and localization, while C/T has a - In T dependence with large entropy. Thus the properties of Ce3Au3Sb4 are very different from those of ordinary Kondo insulators. (c) 2007 Published by Elsevier B.V. C1 [Lee, Han-Oh; Klavins, Peter] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, Han-Oh; Sidorov, V. A.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schlottmann, P.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Condron, Cathie; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Lee, HO (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM hanoh@lanl.gov RI Schlottmann, Pedro/G-1579-2013; Kauzlarich, Susan/H-1439-2011 NR 17 TC 3 Z9 3 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1476 EP 1478 DI 10.1016/j.physb.2007.10.309 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900270 ER PT J AU Kurita, N Yamamoto, H Hedo, M Fujiwara, T Shigeoka, T Tozer, SW Uwatoko, Y AF Kurita, N. Yamamoto, H. Hedo, M. Fujiwara, T. Shigeoka, T. Tozer, S. W. Uwatoko, Y. TI Investigation of Ce2Pd3Si5 at pressures to 9.5 GPa SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE Ce2Pd3Si5; high pressure; QCP; magnetic ordering ID LOW-TEMPERATURE; SYSTEMS AB We have performed pressure-dependent electrical resistivity measurements of a single crystal Ce2Pd3Si5, which is an antiferromagnetic Kondo lattice compound, at pressures up to 9.5 GPa and at temperatures down to similar to 0.4 K. As the pressure is increased, the Neel temperature T-N deduced from the temperature dependence of resistivity decreases steeply above 4.8 GPa and disappears at P >= 8.6 GPa. Both A and rho(0) values in Fermi liquid law rho = rho(0) + AT(2) at low temperature region increase abruptly above 4.8 GPa and exhibit a plateau at similar to 9 GPa. These results suggest that non-magnetic state could be formed at P >= 8.6 GPa and that possible quantum critical point might exist at pressures around 9 GPa in this compound. However, there is no sign of superconductivity in resistivity data at the lowest temperature we studied around the possible QCP. (c) 2007 Elsevier B.V. All rights reserved. C1 [Kurita, N.; Yamamoto, H.; Uwatoko, Y.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Kurita, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hedo, M.] Univ Ryukyus, Fac Sci, Okinawa 9030213, Japan. [Fujiwara, T.; Shigeoka, T.] Yamaguchi Univ, Grad Sch Sci & Engn, Yamaguchi 7538512, Japan. [Tozer, S. W.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Kurita, N (reprint author), Univ Tokyo, Inst Solid State Phys, Kashiwanoha 5-1-5, Chiba 2778581, Japan. EM nkurita@lanl.gov NR 8 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1479 EP 1481 DI 10.1016/j.physb.2007.10.171 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900271 ER PT J AU Liang, G Croft, M AF Liang, Gan Croft, Mark TI Thermal variation of Ce valence in mixed, valence-Kondo lattice systems CeT2(Si1-xGex)(2) with T = Mn and Ni SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE Ce mixed valence; Kondo lattice; heavy fermion; Anderson model AB The results on the thermal variation of Ce L-3-valence in CeT2(Si1-xGex)(2) series with 0 <= x <= 1 and T = Mn and Ni are reported. It is observed that for both series, the Cc valence increases with decreasing temperature and has little thermal variation for samples in the nearly trivalent regime. The magnitude of this thermal variation in the T = Mn series is much greater than in the T = Ni series. The results are explained by the degenerate Anderson model and correlated with the specific heat data. (c) 2007 Elsevier B.V. All rights reserved. C1 [Liang, Gan] Sam Houston State Univ, Dept Phys, Huntsville, TX 77341 USA. [Croft, Mark] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA. [Croft, Mark] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Liang, G (reprint author), Sam Houston State Univ, Dept Phys, Huntsville, TX 77341 USA. EM phy_gnl@shsu.edu NR 5 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1482 EP 1483 DI 10.1016/j.physb.2007.10.173 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900272 ER PT J AU Yen, F Chaudhury, RP Galstyan, E Lorenz, B Wang, YQ Sun, YY Chu, CW AF Yen, F. Chaudhury, R. P. Galstyan, E. Lorenz, B. Wang, Y. Q. Sun, Y. Y. Chu, C. W. TI Magnetic phase diagrams of the Kagome staircase compound Co3V2O8 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE Kagome lattice; commensurate-incommensurate phase transitions; geometric frustration; magnetic anisotropy AB At zero magnetic field, a series of five phase transitions occur in CO3V2O8. The Neel temperature, T-N = 11.4 K, is followed by four additional phase changes at T-1 = 8.9 K, T-2 = 7.0 K, T-3 = 6.9 K, and T-4 = 6.2 K. The different phases are distinguished by the commensurability of the b-component of its spin density wave vector. We investigate the stability of these various phases under magnetic fields through dielectric constant and magnetic susceptibility anomalies. The field-temperature phase diagram of Co3V2O8 is completely resolved. The complexity of the phase diagram results from the competition of different magnetic states with almost equal ground state energies due to competing exchange interactions and frustration. (c) 2007 Elsevier B.V. All rights reserved. C1 [Yen, F.; Chaudhury, R. P.; Galstyan, E.; Lorenz, B.; Wang, Y. Q.; Sun, Y. Y.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Yen, F.; Chaudhury, R. P.; Galstyan, E.; Lorenz, B.; Wang, Y. Q.; Sun, Y. Y.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Chu, C. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Yen, F (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. EM fyen18@uh.edu RI Yen, Fei/C-8713-2015 OI Yen, Fei/0000-0003-2295-3040 NR 6 TC 14 Z9 14 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1487 EP 1489 DI 10.1016/j.physb.2007.10.334 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900274 ER PT J AU Wang, F Alvarez, JV Mo, SK Allen, JW Gweon, GH He, J Jin, R Mandrus, D Hochst, H AF Wang, Feng Alvarez, J. V. Mo, S. -K. Allen, J. W. Gweon, G. -H. He, J. Jin, R. Mandrus, D. Hoechst, H. TI New Luttinger-liquid physics from angle-resolved photoemission on a paradigm material SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE Luttinger liquid; quantum critical; photoemission; Li(0.9)Mo(6)O17 ID PURPLE BRONZE LI0.9MO6O17; METAL LI0.9MO6O17; MODEL AB Li0.9Mo6O17 is a paradigm material for studying Luttinger-liquid physics in the solid state. This paper summarizes recent and new photoemission studies directed at the quantum critical behavior that is expected for such a system. A theoretical description of the results requires a two-band Tomonaga-Luttinger model augmented by marginal interactions. (c) 2007 Elsevier B.V. All rights reserved. C1 [Wang, Feng; Mo, S. -K.; Allen, J. W.] Univ Michigan, Randall Lab, Ann Arbor, MI 48109 USA. [Alvarez, J. V.] Univ Autonoma Madrid, Dept Fis Mat Condensada, Madrid 28049, Spain. [Gweon, G. -H.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [He, J.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Jin, R.; Mandrus, D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Hoechst, H.] Univ Wisconsin, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. RP Allen, JW (reprint author), Univ Michigan, Randall Lab, Ann Arbor, MI 48109 USA. EM jwallen@umich.edu RI Mo, Sung-Kwan/F-3489-2013; Mandrus, David/H-3090-2014; Alvarez, Jose/H-4696-2015 OI Mo, Sung-Kwan/0000-0003-0711-8514; Alvarez, Jose/0000-0001-5178-4309 NR 19 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1490 EP 1493 DI 10.1016/j.physb.2007.10.214 PG 4 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900275 ER PT J AU Zvyagin, SA Batista, CD Krzystek, J Zapf, VS Jaime, M Paduan, A Wosnitza, J AF Zvyagin, S. A. Batista, C. D. Krzystek, J. Zapf, V. S. Jaime, M. Paduan-Filho, A. Wosnitza, J. TI Observation of two-magnon bound states in the spin-1 anisotropic Heisenberg antiferromagnetic chain system NiCl2-4SC(NH2)(2) SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE two-magnon bound states; electron spin resonance; field-induced phase transition; Bose-Einstein condensation ID FERROMAGNET AB Results of systematic tunable-frequency ESR studies of the spin dynamics in NiCl2-4SC(NH2)(2) (known as DTN), a gapped S = 1 chain system with easy-plane anisotropy dominating over the exchange coupling (large-D chain), are presented. We have obtained direct evidence for two-magnon bound states, predicted for S = 1 large-D spin chains in the fully spin-polarized (FSP) phase. The frequency-field dependence of the corresponding excitations was calculated using the set of parameters obtained earlier [S.A. Zvyagin, et al., Phys. Rev. Lett. 98 (2007) 047205]. Very good agreement between the calculations and the experiment was obtained. It is argued that the observation of transitions from the ground to two-magnon bound states might indicate a more complex picture of magnetic interactions in DTN, involving a finite in-plane anisotropy. (C) 2007 Elsevier B.V. All rights reserved. C1 [Zvyagin, S. A.; Wosnitza, J.] Rossendorf Inc, Forschungszentrum Dresden, Dresden High Magnet Field Lab, HLD, D-01314 Dresden, Germany. [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Krzystek, J.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Zapf, V. S.; Jaime, M.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Paduan-Filho, A.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. RP Zvyagin, SA (reprint author), Rossendorf Inc, Forschungszentrum Dresden, Dresden High Magnet Field Lab, HLD, D-01314 Dresden, Germany. EM s.zvyagin@fzd.de RI PaduanFilho, Armando/H-2443-2011; Zapf, Vivien/K-5645-2013; Zvyagin, Sergei/H-8389-2014; Jaime, Marcelo/F-3791-2015; Batista, Cristian/J-8008-2016 OI Zapf, Vivien/0000-0002-8375-4515; Jaime, Marcelo/0000-0001-5360-5220; NR 15 TC 5 Z9 5 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1497 EP 1499 DI 10.1016/j.physb.2007.10.174 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900277 ER PT J AU Heidrich-Meisner, F Martins, GB Ab Al-Hassanieh, KA Feiguin, AE Dagotto, E AF Heidrich-Meisner, F. Martins, G. B. Ab Al-Hassanieh, K. A. Feiguin, A. E. Dagotto, E. TI Finite-size scaling analysis of spin correlations and fluctuations of two quantum dots in a T-shape geometry SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE quantum dots; transport; DMRG AB The study of interacting nanostructures such as quantum dots is a playground for several novel numerical approaches. Recently developed methods such as the time-dependent density matrix renormalization approach or the embedded-cluster approximation rely on the numerical solution of clusters of finite-size. For the interpretation of numerical results, it is important to understand finite-size and boundary effects. Here, we study spin fluctuations and spin-spin correlations of two dots coupled in a T-shape geometry. Depending on odd-even effects, quite different results emerge from clusters that do not differ much in size. (C) 2007 Elsevier B.V. All rights reserved. C1 [Heidrich-Meisner, F.; Ab Al-Hassanieh, K. A.; Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Heidrich-Meisner, F.; Ab Al-Hassanieh, K. A.; Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Martins, G. B.] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Feiguin, A. E.] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA. RP Heidrich-Meisner, F (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM f.heidrich-meisner@utk.edu RI Heidrich-Meisner, Fabian/B-6228-2009; Martins, George/C-9756-2012 OI Martins, George/0000-0001-7846-708X NR 22 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1544 EP 1546 DI 10.1016/j.physb.2007.10.339 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900294 ER PT J AU Zhou, CG Bhatt, RN AF Zhou, Chenggang Bhatt, Ravin N. TI Zero temperature magnetic phase diagram of Wigner crystal in anisotropic two-dimensional electron systems SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE Wigner crystal; two-dimensional electron system; mass anisotropy; ring exchange ID EXCHANGE FREQUENCIES; GROUND-STATE; HE-3 AB We study the effect of mass anisotropy on the magnetic ordering of the Wigner crystal phase of low density electron systems in two dimensions at T = 0. We apply the instanton approximation to various ring exchange processes, which includes the lowest order Gaussian fluctuations beyond the WKB approximation. The multi-particle exchange frequencies are calculated with effective mass anisotropy, both with and without ensuing lattice distortions. We find that when sufficient mass anisotropy is present, the two-spin exchange process between the nearest neighbors becomes more frequent than the three particle processes. Therefore, its corresponding antiferromagnetic exchange exceeds the ferromagnetic exchange from the three-spin process and becomes dominant. Numerical diagonalization of small clusters with two, three, and four-spin exchange terms shows a transition from a ferromagnetic to an anti ferromagnetic ground state with increasing mass anisotropy.(C) 2007 Elsevier B.V. All rights reserved. C1 [Bhatt, Ravin N.] Princeton Univ, Dept Elect Engn, Princeton Ctr Theoret Phys, Princeton, NJ 08544 USA. [Bhatt, Ravin N.] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA. [Zhou, Chenggang] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Zhou, CG (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008,MS 6493, Oak Ridge, TN 37831 USA. EM zcf@ortil.gov NR 9 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1547 EP 1549 DI 10.1016/j.physb.2007.10.319 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900295 ER PT J AU Nelson, CS Mo, H Bohnenbuck, B Strempfer, J Kikugawa, N Ikeda, SI Yoshida, Y AF Nelson, C. S. Mo, H. Bohnenbuck, B. Strempfer, J. Kikugawa, N. Ikeda, S. I. Yoshida, Y. TI Field-induced structural changes in Ca3Ru2O7 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE ruthenates; metamagnetism; metal-insulator transition AB We report X-ray scattering studies of the c-axis lattice parameter in Ca3Ru2O7 as a function of temperature and magnetic field, for B 11 the ground state easy (b) axis. The step-like, similar to 0.1% change coincides in zero field with a spin reorientation and a metal-insulator transition, at Tm-i approximate to 48 K, and shifts to a lower temperature upon application of magnetic field. At temperatures well below Tm-i, negligible change in the c-axis lattice parameter is observed at the metamagnetic transition to the spin-polarized phase, at Bc approximate to 6T, which indicates that this transition does not couple to the lattice degree of freedom. (C) 2007 Elsevier B.V. All rights reserved. C1 [Nelson, C. S.; Mo, H.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Bohnenbuck, B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Strempfer, J.] Deutsch Elekt Synchrotron DESY, Hamburger Synchrotronstrahlungslabor HASYLAB, D-22603 Hamburg, Germany. [Kikugawa, N.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. [Ikeda, S. I.; Yoshida, Y.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Nelson, CS (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM csnelsoii@bnl.gov RI Ikeda, Shinichi/I-5829-2012 OI Ikeda, Shinichi/0000-0003-2134-7786 NR 5 TC 0 Z9 0 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1577 EP 1578 DI 10.1016/j.physb.2007.10.198 PG 2 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900304 ER PT J AU McDonald, RD Harrison, N Singleton, J AF McDonald, R. D. Harrison, N. Singleton, J. TI Thermoelectric studies of the non-thermal equilibrium dynamics in chiral metals SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES 2007) CY MAY 13-18, 2007 CL Houston, TX SP Inst Complex Adapt Matter, Natl Sci Fdn, Brookhaven Natl Lab, Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge Natl Lab, Spallat Neutron Source, Florida State Univ, Natl High Magnet Field Lab, Univ Houston, Texas Ctr Superconduct, Univ Houston, Div Res & Dept Phys, Rice Univ, Wiess Sch Nat Sci, Off Dean, Rice Univ, Dept Phys & Astron, Rice Univ, Vice Provost Res & Grad Studies DE thermoelectric effect; charge density wave; chiral metal; inductive energy storage ID MAGNETIC-FIELDS AB The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For example, orbitally quantized field-induced spin- or charge density wave systems, in which the competition between the elastic forces of the density wave and pinning leads to a critical state analogous to the vortex phase of type II superconductors. This metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. This results in the establishment of a three-dimensional chiral metal that can extend deep into the bulk of the crystal. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a. large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system toward thermal equilibrium, which can only be achieved by current flow orthogonal to the surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B > 30 T) of the organic charge transfer salt alpha-(BEDT-TTF)(2)KHg(SCN)(4) is conclusive proof of the existence of a three-dimensional chiral metal. Published by Elsevier B.V. C1 [McDonald, R. D.; Harrison, N.; Singleton, J.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP McDonald, RD (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS-E536, Los Alamos, NM 87545 USA. EM rmcd@lanl.gov RI McDonald, Ross/H-3783-2013; OI McDonald, Ross/0000-0002-0188-1087; Harrison, Neil/0000-0001-5456-7756; Mcdonald, Ross/0000-0002-5819-4739 NR 3 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 1 PY 2008 VL 403 IS 5-9 BP 1652 EP 1654 DI 10.1016/j.physb.2007.10.369 PG 3 WC Physics, Condensed Matter SC Physics GA 284ES UT WOS:000254689900333 ER PT J AU De Long, LE Kryukov, SA Joshi, AG Xu, W Bosomtwi, A Kirby, BJ Fitzsimmons, MR AF De Long, L. E. Kryukov, S. A. Joshi, Amish G. Xu, Wentao Bosomtwi, A. Kirby, B. J. Fitzsimmons, M. R. TI Extreme magnetic anisotropy and multiple superconducting transition signatures in a [Nb(23 nm)/Ni(5 nm)](5) multilayer SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT Vortex V Conference on Nanoscience and Engineering in Superconductivity CY SEP 08-14, 2007 CL Rhodes, GREECE DE superconducting multilayers; magnetic multilayers; neutron reflectometry; mesoscopic superconductors; superconducting critical field; superconducting phase diagrams ID PICK-UP SYSTEMS; NB/NI MULTILAYERS; SQUID MAGNETOMETERS; PHASE-TRANSITION; SINGLE-CRYSTALS; HETEROSTRUCTURES; SUPERLATTICES; TEMPERATURE; STATE; PROBE AB We have applied polarized neutron reflectometry, and novel SQUID and vibrating reed magnetometry to probe a [Nb(23 nm)/Ni(5 nm)](5) multilayer (ML) whose superconducting state magnetic anisotropy is dominated by confined (in-plane) supercurrents in DC magnetic fields, H, applied nearly parallel to the ML plane. The upper critical field exhibits abrupt shifts (0.1-0.6 K) in near-parallel fields, but is field-independent for mu H-0 < 0.8 T when the ML is exactly aligned with the DC field, indicating suppression of orbital pairbreaking and the possible presence of unconventional superconducting pairing states. (c) 2008 Elsevier B.V. All rights reserved. C1 [De Long, L. E.; Kryukov, S. A.; Joshi, Amish G.; Xu, Wentao; Bosomtwi, A.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Joshi, Amish G.] Natl Phys Lab, New Delhi 110012, India. [Kirby, B. J.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Kirby, B. J.] NIST, Centerfor Neutron Res, Gaithersburg, MD 20899 USA. RP De Long, LE (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM delong@pa.uky.edu RI Lujan Center, LANL/G-4896-2012; Joshi, Amish/E-3674-2010 OI Joshi, Amish/0000-0002-7981-6648 NR 36 TC 3 Z9 3 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD APR 1 PY 2008 VL 468 IS 7-10 BP 523 EP 530 DI 10.1016/j.physc.2007.11.073 PG 8 WC Physics, Applied SC Physics GA 322DL UT WOS:000257355300007 ER PT J AU Kadowaki, K Yamaguchi, H Kawamata, K Yamamoto, T Minami, H Kakeya, I Welp, U Ozyuzer, L Koshelev, A Kurter, C Gray, KE Kwok, WK AF Kadowaki, K. Yamaguchi, H. Kawamata, K. Yamamoto, T. Minami, H. Kakeya, I. Welp, U. Ozyuzer, L. Koshelev, A. Kurter, C. Gray, K. E. Kwok, W. -K. TI Direct observation of tetrahertz electromagnetic waves emitted from intrinsic Josephson junctions in single crystalline Bi2Sr2CaCu2O8+delta SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT Vortex V Conference on Nanoscience and Engineering in Superconductivity CY SEP 08-14, 2007 CL Rhodes, GREECE DE THz emission; intrinsic Josephson junction; ac-Josephson effect; harmonics AB We have observed intense, coherent, continuous and monochromatic electromagnetic (EM) emission at terahertz frequencies generated from a single crystalline mesa structure of the high-T-c superconductor Bi2Sr2CaCu2O8+delta intrinsic Josephson junction system. The mesa is fabricated by the Argon-ion-milling and photolithography techniques on the cleaved surface of Bi2Sr2CaCu2O8+delta,5 single crystal. The frequency, v, of the EM radiation observed from the sample obeys simple relations: v = c/n lambda = c/l2nw and v = c2e V/hN, where c is the light velocity in vacuum, n the refractive index of a superconductor,lambda the wave length of the EM emission in vacuum, w the shorter width of the mesa, V the voltage applied to the mesa, N the number of layers of intrinsic Josephson junctions, e and h are the elementary charge and the Planck constant, respectively. These two relations strongly imply that the mechanism of the emission is, firstly, due to the geometrical resonance of EM waves to the mesa like a cavity resonance occuring in the mesa structure, and forming standing waves as cavity resonance modes, and secondly, due to the ac-Josephson effect, which works coherently in all intrinsic Josephson junctions. The peculiar temperature dependence of the power intensity emitted form samples shows a broad maximum in a temperature region between 20 and 40 K, suggesting that the nonequilibrium effect plays an essential role for the emission of EM waves in this system. The estimated total power is significantly improved in comparison with the previous report [L. Ozyuzer et al., Science 318 (2007) 1291, K. Kadowaki, et al., Physica C 437-438 (2006) 111, 1, E. Batov, et al., Appl. Phys. Lett. 88 (2006) 262504], and reached as high as 5 mu W from single mesa with w = 60 pm at 648 GHz, which enables us to use it for some of applications. So far, we succeeded in fabricating the mesa emitting EM waves up to 960 GHz in the fundamental mode in the w = 40 pm mesa, whereas the higher harmonics up to the 4-th order were observed, resulting in a frequency exceeding 2.5 THz. In sharp contrast to the previous reports [K. Kadowaki, et al., Physica C 437-438 (2006) 111, M.-H. Bae, et al., Phys. Rev. Lett. 98, (2007) 027002], all the present measurements were done in zero magnetic field. Lastly, a plausible theoretical model for the mechanism of emission is discussed. (c) 2008 Elsevier B.V. All rights reserved. C1 [Kadowaki, K.; Yamaguchi, H.; Kawamata, K.; Yamamoto, T.; Minami, H.; Kakeya, I.] Univ Tsukuba, Inst Mat Sci, Tsukuba, Ibaraki 3058573, Japan. [Kadowaki, K.; Yamaguchi, H.; Kawamata, K.; Yamamoto, T.; Minami, H.; Kakeya, I.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058573, Japan. [Kadowaki, K.; Yamaguchi, H.; Kawamata, K.; Yamamoto, T.; Minami, H.; Kakeya, I.] JST, CREST, Tokyo, Japan. [Welp, U.; Ozyuzer, L.; Koshelev, A.; Kurter, C.; Gray, K. E.; Kwok, W. -K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ozyuzer, L.] Izmir Inst Technol, Dept Phys, TR-35430 Izmir, Turkey. [Kurter, C.] IIT, Chicago, IL 60616 USA. RP Kadowaki, K (reprint author), Univ Tsukuba, Inst Mat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan. EM kadowaki@ims.tsukuba.ac.jp RI Ozyuzer, Lutfi/H-3142-2011; Kakeya, Itsuhiro/E-7000-2014 NR 13 TC 120 Z9 122 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD APR 1 PY 2008 VL 468 IS 7-10 BP 634 EP 639 DI 10.1016/j.physc.2007.11.090 PG 6 WC Physics, Applied SC Physics GA 322DL UT WOS:000257355300030 ER PT J AU Choi, SG Aspnes, DE Stoute, NA Kim, YD Kim, HJ Chang, YC Palmstrom, CJ AF Choi, S. G. Aspnes, D. E. Stoute, N. A. Kim, Y. D. Kim, H. J. Chang, Y. -C. Palmstrom, C. J. TI Dielectric properties of InAsP alloy thin films and evaluation of direct- and reciprocal-space methods of determining critical-point parameters SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article ID DIFFERENTIATION; SI; GE AB Spectroscopic ellipsometry is used to determine pseudodielectric function spectra = d excitations. It is sensitive to both the local vanadium environment and the enhanced low-temperature hydrogen bonding between layers. In contrast, (VO)(2)P2O7 displays a diffuse and gradually rising near infrared absorption in all directions. The O p -> V d charge transfer gaps in both materials are similar. We predict that the on-site excitations of the transition metal centers may be sensitive to a magnetic state via a magnetic field control of p-d hybridization. C1 [Cao, J.; Musfeldt, J. L.; Swader, O.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Singh, D. J.; Sales, B. C.; Christen, H. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rahaman, B.; Saha-Dasgupta, T.] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India. [Torardi, C. C.] DuPont Co Inc, Cent Res & Dev, Wilmington, DE 19880 USA. RP Cao, J (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RI Cao, Jinbo/C-7537-2009; Singh, David/I-2416-2012; Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 NR 60 TC 1 Z9 1 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 16 AR 165111 DI 10.1103/PhysRevB.77.165111 PG 10 WC Physics, Condensed Matter SC Physics GA 295EJ UT WOS:000255457500025 ER PT J AU Choudhury, N Walter, EJ Kolesnikov, AI Loong, CK AF Choudhury, Narayani Walter, Eric J. Kolesnikov, Alexander I. Loong, Chun-Keung TI Large phonon band gap in SrTiO3 and the vibrational signatures of ferroelectricity in ATiO(3) perovskites: First-principles lattice dynamics and inelastic neutron scattering SO PHYSICAL REVIEW B LA English DT Article ID FUNCTIONAL PERTURBATION-THEORY; STRUCTURAL PHASE-TRANSITIONS; BORN EFFECTIVE CHARGES; BARIUM-TITANATE; STRONTIUM-TITANATE; TETRAGONAL PBTIO3; BATIO3; POLARIZATION; DENSITY; MODES AB We report on first-principles density functional perturbation theory calculations and inelastic neutron scattering measurements of the phonon density of states, dispersion relations, and electromechanical response of PbTiO3, BaTiO3, and SrTiO3. The phonon density of states of the quantum paraelectric SrTiO3 is found to be fundamentally distinct from that of ferroelectric PbTiO3 and BaTiO3 with a large, 70-90 meV, phonon band gap. The phonon dispersion and electromechanical response of PbTiO3 reveal giant anisotropies. The interplay of covalent bonding and ferroelectricity strongly modulates the electromechanical response and gives rise to spectacular signatures in the phonon spectra. The computed charge densities have been used to study the bonding in these perovskites. Distinct bonding characteristics in the ferroelectric and paraelectric phases give rise to spectacular vibrational signatures. While a large phonon band gap in ATiO(3) perovskites seems to be a characteristic of quantum paraelectrics, anisotropy of the phonon spectra correlates well with ferroelectric strength. These correlations between the phonon spectra and ferroelectricity can guide future efforts at custom designing still more effective piezoelectrics for applications. These results suggest that vibrational spectroscopy can help design novel materials. C1 [Choudhury, Narayani] Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. [Walter, Eric J.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Kolesnikov, Alexander I.; Loong, Chun-Keung] Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Choudhury, N (reprint author), Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. RI Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 NR 70 TC 52 Z9 52 U1 5 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134111 DI 10.1103/PhysRevB.77.134111 PG 10 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200034 ER PT J AU Chuang, FC Hsu, CH Wang, CZ Ho, KM AF Chuang, Feng-Chuan Hsu, Chia-Hsiu Wang, Cai-Zhuang Ho, Kai-Ming TI Honeycomb chain structure of the Au/Si(111)-(5 x 2) surface reconstruction: A first-principles study SO PHYSICAL REVIEW B LA English DT Article ID VICINAL SI(111); GOLD; AU; DIFFRACTION; MICROSCOPY; SILICON; SYSTEM AB Models with a honeycomb chain feature for the Au/Si(111)-(5x2) surface reconstruction are systematically examined using first-principles calculations. The atomic and electronic structures of these models are analyzed in detail. Our calculation shows that one of these models has a lower surface energy than the previously proposed models by Erwin [Phys. Rev. Lett. 91, 206101 (2003)] and by Riikonen and Sanchez-Portal [Phys. Rev. B 71, 235423 (2005)]. This newly identified model also reproduces certain key features in the angle-resolved photoemission measurement and experimental scanning tunneling microscopy images. C1 [Chuang, Feng-Chuan; Hsu, Chia-Hsiu] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 804, Taiwan. [Chuang, Feng-Chuan; Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Chuang, Feng-Chuan; Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Chuang, FC (reprint author), Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 804, Taiwan. EM fchuang@mail.nsysu.edu.tw RI Chuang, FengChuan/H-7166-2013 OI Chuang, FengChuan/0000-0003-0351-4253 NR 31 TC 19 Z9 19 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 153409 DI 10.1103/PhysRevB.77.153409 PG 4 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400021 ER PT J AU Clem, JR AF Clem, John R. TI Field and current distributions and ac losses in a bifilar stack of superconducting strips SO PHYSICAL REVIEW B LA English DT Article ID PERPENDICULAR MAGNETIC-FIELD; FAULT CURRENT LIMITERS; YBCO-COATED CONDUCTOR; TRANSPORT CURRENTS; II-SUPERCONDUCTOR; CRITICAL-STATE; ARRAYS AB In this paper, I first analytically calculate the magnetic-field and sheet-current distributions generated in an infinite stack of thin superconducting strips of thickness d, width 2a >> d, and arbitrary separation D when adjacent strips carry net current of magnitude I in opposite directions. Each strip is assumed to have uniform critical current density J(c), critical sheet-current density K(c)=J(c)d, and critical current I(c)=2aK(c), and the distribution of the current density within each strip is assumed to obey critical-state theory. I then derive expressions for the ac losses due to magnetic-flux penetration both from the strip edges and from the top and bottom of each strip and I express the results in terms of integrals involving the perpendicular and parallel components of the magnetic field. After numerically evaluating the ac losses for typical dimensions, I present analytic expressions from which the losses can be estimated. C1 [Clem, John R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Clem, John R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. NR 28 TC 37 Z9 37 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134506 DI 10.1103/PhysRevB.77.134506 PG 7 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200110 ER PT J AU Cuenya, BR Keune, W Peters, R Schuster, E Sahoo, B von Horsten, U Sturhahn, W Zhao, J Toellner, TS Alp, EE Bader, SD AF Cuenya, B. Roldan Keune, W. Peters, R. Schuster, E. Sahoo, B. von Hoersten, U. Sturhahn, W. Zhao, J. Toellner, T. S. Alp, E. E. Bader, S. D. TI High-energy phonon confinement in nanoscale metallic multilayers SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR RESONANT SCATTERING; DENSITY-OF-STATES; SYNCHROTRON-RADIATION; FILM STRUCTURES; SUPERLATTICES; INTERFACE; FE; MODES; ROUGHNESS; LATTICE AB The Fe-projected vibrational density of states g(E) in nanoscale (57)Fe/M multilayers, where M=Cr, Co, Cu, Pd, or Ag was measured by nuclear resonant inelastic x-ray scattering. With decreasing Fe thickness, the high-energy phonon peak of Fe near 36 meV is suppressed for the "soft" metals Ag, Pd, and Cu, but much less so for the "hard" metals Co and Cr. This effect is attributed to Fe phonon confinement and interface localization due to an energy mismatch between g(E) of M and of Fe. C1 [Cuenya, B. Roldan; Keune, W.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Keune, W.; Peters, R.; Schuster, E.; Sahoo, B.; von Hoersten, U.] Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany. [Sturhahn, W.; Zhao, J.; Toellner, T. S.; Alp, E. E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Cuenya, BR (reprint author), Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. EM roldan@physics.ucf.edu RI Sahoo, Balaram/E-4828-2011; Bader, Samuel/A-2995-2013; Roldan Cuenya, Beatriz/L-1874-2016 OI Sahoo, Balaram/0000-0002-2050-4746; Roldan Cuenya, Beatriz/0000-0002-8025-307X NR 38 TC 13 Z9 13 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 16 AR 165410 DI 10.1103/PhysRevB.77.165410 PG 6 WC Physics, Condensed Matter SC Physics GA 295EJ UT WOS:000255457500108 ER PT J AU Eimuller, T Ulbrich, TC Amaladass, E Guhr, IL Tyliszczak, T Albrecht, M AF Eimueller, T. Ulbrich, T. C. Amaladass, E. Guhr, I. L. Tyliszczak, T. Albrecht, M. TI Spin-reorientation transition in Co/Pt multilayers on nanospheres SO PHYSICAL REVIEW B LA English DT Article ID DOMAIN-STRUCTURES; RECORDING MEDIA; FILMS; MAGNETIZATION; ANISOTROPY; THIN; CO/AU(111) AB Co/Pt multilayers have been deposited onto self-assembled arrays of spherical particles. The radial film thickness variation changes both the magnitude and direction of the magnetic anisotropy within a single cap. By adjusting the thickness of the Co layers, we produced caps that exhibit a reorientation of the magnetization from in plane at the center toward out of plane at the rim within a distance of less than 100 nm. The domain configuration and its reversal behavior in applied magnetic fields were studied with high spatial resolution scanning transmission x-ray microscopy, providing quantitative insight into nanoscale magnetism. C1 [Eimueller, T.] Ruhr Univ Bochum, Jr Res Grp Magnet Microscopy, D-44780 Bochum, Germany. [Ulbrich, T. C.; Guhr, I. L.] Univ Konstanz, Dept Phys, D-78457 Constance, Germany. [Amaladass, E.] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Tyliszczak, T.] LBNL, ALS, Berkeley, CA 94720 USA. [Albrecht, M.] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany. RP Eimuller, T (reprint author), Ruhr Univ Bochum, Jr Res Grp Magnet Microscopy, D-44780 Bochum, Germany. NR 27 TC 16 Z9 16 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134415 DI 10.1103/PhysRevB.77.134415 PG 5 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200068 ER PT J AU Erhart, P Caro, A de Caro, MS Sadigh, B AF Erhart, Paul Caro, Alfredo de Caro, Magdalena Serrano Sadigh, Babak TI Short-range order and precipitation in Fe-rich Fe-Cr alloys: Atomistic off-lattice Monte Carlo simulations SO PHYSICAL REVIEW B LA English DT Article ID IRRADIATION; IRON AB Short-range order (SRO) in Fe-rich Fe-Cr alloys is investigated by means of atomistic off-lattice Monte Carlo simulations in the semi-grand-canonical ensemble using classical interatomic potentials. The SRO parameter defined by Cowley [Phys. Rev. 77, 669 (1950)] is used to quantify the degree of ordering. In agreement with experiments a strong ordering tendency in the Cr distribution at low Cr concentrations (less than or similar to 5%) is observed, as manifested in negative values of the SRO parameters. For intermediate Cr concentrations (5%less than or similar to c(Cr)less than or similar to 15%), the SRO parameter for the alpha phase goes through a minimum, but at the solubility limit, the alpha-phase still displays a rather strong SRO. In thermodynamic equilibrium for concentrations within the two-phase region the SRO parameter measured over the entire sample therefore comprises the contributions from both the alpha and alpha(') phases. If both of these contributions are taken into account, it is possible to quantitatively reproduce the experimental results and interpret their physical implications. It is thereby shown that the inversion of the SRO observed experimentally is due to the formation of stable (supercritical) alpha(') precipitates. It is not related to the loss of SRO in the alpha phase or to the presence of unstable (subcritical) Cr precipitates in the alpha phase. C1 [Erhart, Paul; Caro, Alfredo; de Caro, Magdalena Serrano; Sadigh, Babak] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. RP Erhart, P (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. EM erhart1@llnl.gov RI Erhart, Paul/G-6260-2011 OI Erhart, Paul/0000-0002-2516-6061 NR 28 TC 50 Z9 50 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134206 DI 10.1103/PhysRevB.77.134206 PG 9 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200046 ER PT J AU Feibelman, PJ AF Feibelman, Peter J. TI Pinning of graphene to Ir(111) by flat Ir dots SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; ELECTRON-GAS; BASIS-SET; METALS; PLANE; NANOSTRUCTURES; TRANSITION; SURFACES AB Compact flat Ir islands form and are stable at 400 K when < 0.1 monolayer of Ir is evaporated onto a graphene flake preadsorbed on Ir(111). Local density approximation calculations account for the Ir islands' two dimensionality and their preferred sites on the substrate. They show that local sp(3) bonding at once chemisorbs the dots above the graphene and firmly pins the graphene layer to the underlying metal. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 30 TC 89 Z9 91 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 16 AR 165419 DI 10.1103/PhysRevB.77.165419 PG 7 WC Physics, Condensed Matter SC Physics GA 295EJ UT WOS:000255457500117 ER PT J AU Feng, YJ Soininen, JA Ankudinov, AL Cross, JO Seidler, GT Macrander, AT Rehr, JJ Shirley, EL AF Feng, Yejun Soininen, J. A. Ankudinov, A. L. Cross, J. O. Seidler, G. T. Macrander, A. T. Rehr, J. J. Shirley, E. L. TI Exciton spectroscopy of hexagonal boron nitride using nonresonant x-ray Raman scattering SO PHYSICAL REVIEW B LA English DT Article ID ABSORPTION FINE-STRUCTURE; K EDGE; ORIENTATION DEPENDENCE; ANISOTROPIC MATERIALS; OPTICAL-SPECTRA; CORE EXCITONS; ENERGY; METALS; BN; DENSITY AB We report nonresonant x-ray Raman scattering (XRS) measurements on the boron K edge of hexagonal boron nitride for transferred momentum (q) from 2 to 9 A(-1) along directions both in and out of the basal plane. A symmetry-based argument, together with real-space full multiple scattering calculations of the projected density of states in the spherical harmonics basis, reveals that a strong pre-edge feature is a dominantly Y-10-type exciton with no other s, p, or d components. This conclusion is supported by a second, independent calculation of the q-dependent XRS cross section based on the Bethe-Salpeter equation. This study demonstrates methods which should be applicable to the determination of final-state symmetries for localized resonances in other q-dependent XRS studies of anisotropic single-crystal systems. C1 [Feng, Yejun; Cross, J. O.; Macrander, A. T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Soininen, J. A.] Univ Helsinki, Dept Phys Sci, FIN-00014 Helsinki, Finland. [Ankudinov, A. L.; Seidler, G. T.; Rehr, J. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Shirley, E. L.] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. RP Feng, YJ (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM yejun@aps.anl.gov; seidler@phys.washington.edu RI Seidler, Gerald/I-6974-2012; Feng, Yejun/A-5417-2009 OI Feng, Yejun/0000-0003-3667-056X NR 64 TC 17 Z9 17 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 16 AR 165202 DI 10.1103/PhysRevB.77.165202 PG 6 WC Physics, Condensed Matter SC Physics GA 295EJ UT WOS:000255457500052 ER PT J AU Fishman, RS Reboredo, FA AF Fishman, Randy S. Reboredo, Fernando A. TI Magnetic anisotropy in the Fe(II)Fe(III) bimetallic oxalates SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-BASED MAGNET; MIXED-VALENCY; COMPENSATION TEMPERATURES; FERRIMAGNETIC SYSTEM; HONEYCOMB LATTICE; M-III; SPIN-2; COMPLEXES; NETWORKS; CATIONS AB Bimetallic oxalates are layered molecule-based magnets with transition metals M(II) and M'(III) coupled by oxalate molecules ox=C(2)O(4) in an open honeycomb structure. Among the most interesting molecule-based magnets, Fe(II)Fe(III) bimetallic compounds with spins S=2 and S'=5/2 ferrimagnetically order at a transition temperature T(c) that ranges from 30 to 48 K, depending on the organic cation between the layers. In small magnetic fields, several of these compounds exhibit "giant negative magnetization" below a compensation temperature of about 0.62T(c). By studying the behavior of the low-energy orbital doublet produced by a C(3)-symmetric crystal field, we construct a reduced Hamiltonian that contains both the exchange and spin-orbit interactions. This Hamiltonian is used to explain almost all of the important behaviors of the Fe(II)Fe(III) bimetallic oxalates, including the stability of magnetic order in weakly coupled layers and the magnetic compensation in compounds with high transition temperatures. In a magnetic field perpendicular to the bimetallic layers, a spin-flop transition is predicted at a field of about 3J(c)/mu(B)approximate to 24 T, where J(c)approximate to 0.45 meV is the nearest-neighbor antiferromagnetic exchange coupling. Holstein-Primakoff 1/S and 1/S' expansions are used to evaluate the spin-wave spectrum and to estimate the spin-wave gap Delta(sw)approximate to 1.65 meV in compounds that exhibit magnetic compensation. We predict that the negative magnetization can be optically reversed by near-infrared light. Breaking the C(3) symmetry about each of the Fe(II) ions through either a cation-induced distortion or uniaxial strain in the plane of the bimetallic layer is predicted to increase the magnetic compensation temperature. C1 [Fishman, Randy S.; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Reboredo, Fernando/B-8391-2009; Fishman, Randy/C-8639-2013 NR 34 TC 17 Z9 17 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144421 DI 10.1103/PhysRevB.77.144421 PG 10 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300056 ER PT J AU Gavriliuk, AG Struzhkin, VV Lyubutin, IS Ovchinnikov, SG Hu, MY Chow, P AF Gavriliuk, Alexander G. Struzhkin, Viktor V. Lyubutin, Igor S. Ovchinnikov, Sergey G. Hu, Michael Y. Chow, Paul TI Another mechanism for the insulator-metal transition observed in Mott insulators SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; SPIN TRANSITION; HIGH-PRESSURES; GDFE3(BO3)(4) AB The two widely accepted mechanisms of the insulator-metal Mott-Hubbard transitions which have been considered up until now are driven by the band-filling or bandwidth effects. We found a different mechanism of the Mott-Hubbard insulator-metal transition, which is controlled instead by the changes in the Mott-Hubbard energy U. In contrast to the changes in the bandwidth W in the "bandwidth control" scenario or to the variations of the band-filling n parameter in the "band-filling" scenario, a dramatic decrease in the Mott-Hubbard energy U plays the key role in this mechanism. We have experimentally observed this type of the insulator metal transition in the transition metal oxide BiFeO(3). The decrease in the Mott-Hubbard energy is caused by the high-spin-low-spin crossover in the electronic d shell of 3d transition metal ion Fe(3+) with d(5) configuration under high pressure. The pressure-induced spin crossover in BiFeO(3) was investigated and confirmed by synchrotron x-ray diffraction, nuclear forward scattering, and x-ray emission methods. The insulator-metal transition at the same pressures was found by the optical absorption and dc resistivity measurements. C1 [Gavriliuk, Alexander G.; Struzhkin, Viktor V.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Gavriliuk, Alexander G.; Lyubutin, Igor S.] Russian Acad Sci, Inst Crystallog, Moscow 119333, Russia. [Gavriliuk, Alexander G.] RAS, Inst High Pressure Phys, Moscow 142190, Russia. [Ovchinnikov, Sergey G.] Russian Acad Sci, Siberian Div, Inst Phys, Krasnoyarsk 660036, Russia. [Ovchinnikov, Sergey G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. [Hu, Michael Y.; Chow, Paul] HPCAT, Argonne, IL 60439 USA. [Hu, Michael Y.; Chow, Paul] ANL, APS, Carnegie Inst Washington, Argonne, IL 60439 USA. RP Gavriliuk, AG (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. RI Struzhkin, Viktor/J-9847-2013; Gavriliuk, Alexander/G-1317-2011 OI Struzhkin, Viktor/0000-0002-3468-0548; Gavriliuk, Alexander/0000-0003-0604-586X NR 26 TC 107 Z9 107 U1 2 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 155112 DI 10.1103/PhysRevB.77.155112 PG 6 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400036 ER PT J AU Hastings, MB AF Hastings, M. B. TI Observations outside the light cone: Algorithms for nonequilibrium and thermal states SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-MATRIX RENORMALIZATION; HEISENBERG-CHAINS; SYSTEMS AB We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent and thermal quantities in quantum systems. For time-dependent systems, we modify a previous mapping to quantum circuits to significantly reduce the computer resources required. This modification is based on a principle of "observing" the system outside the light cone. We apply this method to study spin relaxation in systems started out of equilibrium with initial conditions that give rise to a very rapid entanglement growth. We also show that it is possible to approximate time evolution under a local Hamiltonian by a quantum circuit whose light cone naturally matches the Lieb-Robinson velocity. Asymptotically, these modified methods allow a doubling of the system size that one can obtain as compared to a direct simulation. We then consider a different problem of thermal properties of disordered spin chains and use quantum belief propagation to average over different configurations. We test this algorithm on one-dimensional systems with mixed ferromagnetic and antiferromagnetic bonds, where we can compare to quantum Monte Carlo, and then we apply it to the study of disordered, frustrated spin systems. C1 [Hastings, M. B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hastings, M. B.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. RP Hastings, MB (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. NR 41 TC 17 Z9 17 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144302 DI 10.1103/PhysRevB.77.144302 PG 13 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300035 ER PT J AU Hu, JP Payne, DJ Egdell, RG Glans, PA Learmonth, T Smith, KE Guo, J Harrison, NM AF Hu, J. P. Payne, D. J. Egdell, R. G. Glans, P. -A. Learmonth, T. Smith, K. E. Guo, J. Harrison, N. M. TI On-site interband excitations in resonant inelastic x-ray scattering from Cu2O SO PHYSICAL REVIEW B LA English DT Article ID PULSED-LASER DEPOSITION; ELECTRONIC-STRUCTURE; THIN-FILMS; EMISSION-SPECTROSCOPY; CUPRATE SUPERCONDUCTOR; SYNCHROTRON-RADIATION; ELECTRICAL-CONDUCTION; 1ST PRINCIPLES; CUPROUS-OXIDE; ENERGY-BANDS AB The electronic structure of cuprite (Cu2O) has been studied by high-resolution x-ray photoemission (XPS), x-ray absorption (XAS), and resonant x-ray emission spectroscopies (XES) supported by band structure calculations using a hybrid exchange approximation to density functional theory. A pronounced loss feature at about 4.5 eV due to on-site interband excitation has been identified in resonant inelastic x-ray scattering from Cu2O close to the L-3 (Cu 2p(3/2)) core threshold. Although Cu2O nominally has a filled upper valence band of Cu 3d states and an empty conduction band of Cu 4s states, the band structure calculations show that there is substantial 3d character in the conduction band and that the inelastic loss is dominated by on-site 3d to 3d excitation conforming to the selection rule Delta l=0 rather than 3d to 4s transitions with Delta l=-2. However, unlike in previous work, these transitions do not arise from ligand field splitting of the Cu 3d states but rather from on-site 3d-4s hybridization which introduces 3d character into the conduction band. Comparison between XPS, XES, and XAS data shows that Cu L-3 XAS is dominated by a core exciton lying 0.65 eV below the bottom of the conduction band and that inelastic scattering is only observed for photon energies below that required to excite the core electron into the conduction band. C1 [Hu, J. P.; Payne, D. J.; Egdell, R. G.] Univ Oxford, Inorgan Chem Lab, Dept Chem, Oxford OX1 3QR, England. [Glans, P. -A.; Learmonth, T.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Guo, J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Harrison, N. M.] STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Harrison, N. M.] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England. RP Egdell, RG (reprint author), Univ Oxford, Inorgan Chem Lab, Dept Chem, S Parks Rd, Oxford OX1 3QR, England. EM russell.egdell@chem.ox.ac.uk RI Payne, David/C-2117-2011; Harrison, Nicholas/H-3198-2013; Payne, David/C-2148-2014; Glans, Per-Anders/G-8674-2016 OI Harrison, Nicholas/0000-0001-7498-8144; Payne, David/0000-0002-2120-6679; NR 69 TC 49 Z9 49 U1 2 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 155115 DI 10.1103/PhysRevB.77.155115 PG 10 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400039 ER PT J AU Hu, RW Lee, Y Hudis, J Mitrovic, VF Petrovic, C AF Hu, Rongwei Lee, Y. Hudis, J. Mitrovic, V. F. Petrovic, C. TI Composition and field-tuned magnetism and superconductivity in Nd1-xCexCoIn5 SO PHYSICAL REVIEW B LA English DT Article ID FERMION; STATES; TEMPERATURE; CERHIN5; CECOIN5; METALS; ORDER; SPIN AB The Nd1-xCexCoIn5 alloys evolve from local moment magnetism (x=0) to heavy fermion superconductivity (x=1). Magnetic order is observed over a broad range of x. For a substantial range of x (0.83 <= x <= 0.95) in the temperature-composition phase diagram we find that superconductivity may coexist with spin-density wave magnetic order at the Fermi surface. We show that a delicate balance betwen superconducting and magnetic instabilities can be reversibly tuned by both the Ce/Nd ratio and magnetic field, offering a unique model electronic system. C1 [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys, Upton, NY 11973 USA. [Hu, Rongwei; Mitrovic, V. F.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Lee, Y.] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Hudis, J.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Hu, RW (reprint author), Brookhaven Natl Lab, Condensed Matter Phys, Upton, NY 11973 USA. RI Petrovic, Cedomir/A-8789-2009; Hu, Rongwei/E-7128-2012; Lee, Yongjae/K-6566-2016 OI Petrovic, Cedomir/0000-0001-6063-1881; NR 36 TC 10 Z9 10 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 16 AR 165129 DI 10.1103/PhysRevB.77.165129 PG 6 WC Physics, Condensed Matter SC Physics GA 295EJ UT WOS:000255457500043 ER PT J AU Jooss, C Hoffmann, J Fladerer, J Ehrhardt, M Beetz, T Wu, L Zhu, Y AF Jooss, Ch. Hoffmann, J. Fladerer, J. Ehrhardt, M. Beetz, T. Wu, L. Zhu, Y. TI Electric pulse induced resistance change effect in manganites due to polaron localization at the metal-oxide interfacial region SO PHYSICAL REVIEW B LA English DT Article ID MANGANESE PEROVSKITES; PR1-XCAXMNO3 FILMS; PHASE-SEPARATION; THIN-FILMS; GIANT AB Combining pulse-probe measurements as well as local transport measurements in an electron microscope system by a simultaneous monitoring of the structural changes, we show that the nonvolatile electric pulse induced resistance change in Ca-doped praseodymium manganite is related to a polaron order-disorder transition, modified by electronic band bending in the vicinity of an interface to a metallic electrode. A pronounced resistance change requires a critical distance between the two electrode and/or oxide interfaces to form an insulating incommensurate polaron-ordered phase during the initialization of the device. Based on these observations, a qualitative model for the electronic structure of the metal-oxide interface is developed. C1 [Jooss, Ch.; Hoffmann, J.; Fladerer, J.; Ehrhardt, M.] Univ Gottingen, Inst Mat Phys, D-37077 Gottingen, Germany. [Beetz, T.; Wu, L.; Zhu, Y.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Jooss, C (reprint author), Univ Gottingen, Inst Mat Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. NR 23 TC 38 Z9 38 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 132409 DI 10.1103/PhysRevB.77.132409 PG 4 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200017 ER PT J AU Kim, MS Bennett, MC Aronson, MC AF Kim, M. S. Bennett, M. C. Aronson, M. C. TI Yb(2)Pt(2)Pb: Magnetic frustration in the Shastry-Sutherland lattice SO PHYSICAL REVIEW B LA English DT Article ID SPIN SYSTEM SRCU2(BO3)(2); RARE-EARTH TETRABORIDES; METAL GOLD STANNIDES; DIMER GROUND-STATE; ZR3AL2-TYPE STRUCTURE; PHYSICAL-PROPERTIES; CRYSTAL-STRUCTURE; ORDERED U3SI2; PD; BEHAVIOR AB We have synthesized single crystals of Yb(2)Pt(2)Pb, which crystallize in the layered U(2)Pt(2)Sn-type structure, where planes of Yb ions lie on a triangular network. Here, we report the results of magnetization, specific heat, and electrical resistivity experiments. The lattice constants and high temperature magnetic susceptibility indicate that the Yb ions are trivalent, while the Schottky peaks in the specific heat show that the ground state is a well isolated doublet. A significant magnetic anisotropy is observed, with the ratio of susceptibilities perpendicular and parallel to the magnetic planes differing by as much as a factor of 30 at the lowest temperatures. Antiferromagnetic order occurs at a Neel temperature T(N)=2.07 K. Evidence of short range magnetic fluctuations is found in the magnetic susceptibility and electrical resistivity, which have broad peaks above T(N), and in the slow development of the magnetic entropy at T(N). Our experiments indicate that Yb(2)Pt(2)Pb is a quasi-two-dimensional and localized moment system, where strong magnetic frustration may arise from the geometry of the underlying Shastry-Sutherland lattice. C1 [Kim, M. S.; Aronson, M. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Kim, M. S.; Bennett, M. C.; Aronson, M. C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Bennett, M. C.; Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Kim, MS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. NR 37 TC 39 Z9 39 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144425 DI 10.1103/PhysRevB.77.144425 PG 7 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300060 ER PT J AU Kioupakis, E Zhang, PH Cohen, ML Louie, SG AF Kioupakis, Emmanouil Zhang, Peihong Cohen, Marvin L. Louie, Steven G. TI GW quasiparticle corrections to the LDA+U/GGA+U electronic structure of bcc hydrogen SO PHYSICAL REVIEW B LA English DT Article ID BAND THEORY; APPROXIMATION; NIO; INSULATORS; FORMALISM; ENERGY AB In this paper, we study the quasiparticle electronic structure of atomic hydrogen in the body-centered cubic structure for various densities. We employ the GW approach to compute the electron self energy. For this model system, we use the local density approximation (LDA)+U/generalized gradient approximation (GGA)+U method as the mean-field solution starting point, which is known to work better than LDA/GGA for systems with strongly correlated electrons. In the low-density insulating phase, we find that the calculated GW quasiparticle gap is quite insensitive to the value of the on-site repulsive U employed over a wide range of physically reasonable values. Moreover, our result for the electronic gap agrees with the measured difference between ionization energy and electron affinity in the atomic limit. C1 [Kioupakis, Emmanouil; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kioupakis, Emmanouil; Cohen, Marvin L.; Louie, Steven G.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Peihong] SUNY Buffalo, Univ Buffalo, Buffalo, NY 14260 USA. RP Kioupakis, E (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM kioup@civet.berkeley.edu RI Zhang, Peihong/D-2787-2012; Kioupakis, Emmanouil/L-4504-2013; OI Kioupakis, Emmanouil/0000-0003-1880-6443 NR 26 TC 23 Z9 23 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 155114 DI 10.1103/PhysRevB.77.155114 PG 4 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400038 ER PT J AU Kogan, VG Dobrovitski, VV AF Kogan, V. G. Dobrovitski, V. V. TI Magnetic field of Josephson vortices outside superconductors SO PHYSICAL REVIEW B LA English DT Article ID JUNCTIONS; YBA2CU3O7-DELTA; SYMMETRY; VORTEX; FLUX AB We consider the structure of Josephson vortices approaching the junction boundary with vacuum in large-area Josephson junctions with the Josephson length lambda(J) large relative to the London penetration depth lambda(L). Using the stability argument for one-dimensional solitons with respect to two-dimensional perturbations, it is shown that on the scale lambda(J), the Josephson vortices do not spread near the boundary in the direction of the junction. The field distribution in vacuum due to the Josephson vortex is evaluated, the information needed for the scanning superconducting quantum interference device microscopy. C1 [Kogan, V. G.; Dobrovitski, V. V.] ISU, Ames Lab, Ames, IA 50011 USA. [Kogan, V. G.; Dobrovitski, V. V.] ISU, Dept Phys & Astron, Ames, IA 50011 USA. RP Kogan, VG (reprint author), ISU, Ames Lab, Ames, IA 50011 USA. NR 20 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 132504 DI 10.1103/PhysRevB.77.132504 PG 3 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200023 ER PT J AU Koitzsch, A Borisenko, SV Inosov, D Geck, J Zabolotnyy, VB Shiozawa, H Knupfer, M Fink, J Buchner, B Bauer, ED Sarrao, JL Follath, R AF Koitzsch, A. Borisenko, S. V. Inosov, D. Geck, J. Zabolotnyy, V. B. Shiozawa, H. Knupfer, M. Fink, J. Buechner, B. Bauer, E. D. Sarrao, J. L. Follath, R. TI Hybridization effects in CeCoIn5 observed by angle-resolved photoemission SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; BAND-STRUCTURE; STATES; SUPERCONDUCTIVITY; LATTICE AB We have investigated the low-energy electronic structure of the heavy fermion superconductor CeCoIn5 by angle-resolved photoemission. We focus on the dispersion and the peak width of the prominent quasi-two-dimensional Fermi surface sheet at the corner of the Brillouin zone as a function of temperature along certain k directions with a photon energy of h nu=100 eV. We find slight changes of the Fermi vector and an anomalous broadening of the peak width when the Fermi energy is approached. Additionally, we performed resonant angle-resolved photoemission spectroscopy experiments with h nu=121 eV. A flat f-derived band is observed with a distinct temperature dependence and a k-dependent spectral weight. These results, including both off- and on-resonant measurements, fit qualitatively to a two-level mixing model derived from the periodic Anderson model. C1 [Koitzsch, A.; Borisenko, S. V.; Inosov, D.; Geck, J.; Zabolotnyy, V. B.; Shiozawa, H.; Knupfer, M.; Fink, J.; Buechner, B.] IFW Dresden, D-01171 Dresden, Germany. [Koitzsch, A.] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. [Fink, J.; Follath, R.] BESSY, D-12489 Berlin, Germany. [Bauer, E. D.; Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Koitzsch, A (reprint author), IFW Dresden, POB 270116, D-01171 Dresden, Germany. RI Inosov, Dmytro/B-6781-2008; Bauer, Eric/D-7212-2011; Borisenko, Sergey/G-6743-2012; Fink, Joerg/A-6003-2012; Buchner, Bernd/E-2437-2016; Shiozawa, Hidetsugu/A-5206-2017; OI Borisenko, Sergey/0000-0002-5046-4829; Buchner, Bernd/0000-0002-3886-2680; Shiozawa, Hidetsugu/0000-0003-0603-2508; Bauer, Eric/0000-0003-0017-1937 NR 22 TC 21 Z9 21 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 155128 DI 10.1103/PhysRevB.77.155128 PG 7 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400052 ER PT J AU Kuit, KH Kirtley, JR van der Veur, W Molenaar, CG Roesthuis, FJG Troeman, AGP Clem, JR Hilgenkamp, H Rogalla, H Flokstra, J AF Kuit, K. H. Kirtley, J. R. van der Veur, W. Molenaar, C. G. Roesthuis, F. J. G. Troeman, A. G. P. Clem, J. R. Hilgenkamp, H. Rogalla, H. Flokstra, J. TI Vortex trapping and expulsion in thin-film YBa(2)Cu(3)O(7-delta) strips SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM INTERFERENCE DEVICES; II SUPERCONDUCTING STRIPS; MAGNETIC-FIELDS; 1/F NOISE AB A scanning superconducting quantum interference device microscope was used to image vortex trapping as a function of the magnetic induction during cooling in thin-film YBa(2)Cu(3)O(7-delta) (YBCO) strips for strip widths W from 2 to 50 mu m. We found that vortices were excluded from the strips when the induction B(a) was below a critical induction B(c). We present a simple model for the vortex exclusion process which takes into account the vortex-antivortex pair production energy as well as the vortex Meissner and self-energies. This model predicts that the real density n of trapped vortices is given by n=(B(a)-B(K))/Phi(0) with B(K)=1.65 Phi(0)/W(2) and Phi(0)=h/2e the superconducting flux quantum. This prediction is in good agreement with our experiments on YBCO, as well as with previous experiments on thin-film strips of niobium. We also report on the positions of the trapped vortices. We found that at low densities the vortices were trapped in a single row near the centers of the strips, with the relative intervortex spacing distribution width decreasing as the vortex density increased, a sign of longitudinal ordering. The critical induction for two rows forming in the 35 mu m wide strip was (2.89+1.91-0.93)B(c), consistent with a numerical prediction. C1 [Kuit, K. H.; Kirtley, J. R.; van der Veur, W.; Molenaar, C. G.; Roesthuis, F. J. G.; Troeman, A. G. P.; Hilgenkamp, H.; Rogalla, H.; Flokstra, J.] Univ Twente, Mesa Inst Nanotechnol, Low Temp Div, NL-7500 AE Enschede, Netherlands. [Kirtley, J. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Kirtley, J. R.] Chalmers, Dept Microbiol & Nanosci, S-41296 Gothenburg, Sweden. [Clem, J. R.] Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. [Clem, J. R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kuit, KH (reprint author), Univ Twente, Mesa Inst Nanotechnol, Low Temp Div, POB 217, NL-7500 AE Enschede, Netherlands. NR 21 TC 34 Z9 34 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134504 DI 10.1103/PhysRevB.77.134504 PG 8 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200108 ER PT J AU Lee, B Rudd, RE Klepeis, JE Becker, R AF Lee, Byeongchan Rudd, Robert E. Klepeis, John E. Becker, Richard TI Elastic constants and volume changes associated with two high-pressure rhombohedral phase transformations in vanadium SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; LATTICE-DYNAMICS; STRAIN-RATE; MODULI; NB AB We present results from ab initio calculations of the mechanical properties of the rhombohedral phase (beta) of vanadium metal reported in recent experiments, and other predicted high-pressure phases (gamma and bcc), focusing on properties relevant to dynamic experiments. We find that the volume change associated with these transitions is small: no more than 0.15% (for beta-gamma). Calculations of the single crystal and polycrystal elastic moduli (stress-strain coefficients) reveal a remarkably small discontinuity in the shear modulus and other elastic properties across the phase transitions even at zero temperature where the transitions are first order. C1 [Lee, Byeongchan] Kyung Hee Univ, Dept Mech Engn, Yongin, South Korea. [Lee, Byeongchan; Rudd, Robert E.; Klepeis, John E.; Becker, Richard] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rudd, RE (reprint author), Kyung Hee Univ, Dept Mech Engn, Yongin, South Korea. EM robert.rudd@llnl.gov RI Becker, Richard/I-1196-2013; OI Rudd, Robert/0000-0002-6632-2681 NR 30 TC 19 Z9 19 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134105 DI 10.1103/PhysRevB.77.134105 PG 6 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200028 ER PT J AU Lee, HJ Workman, J Wark, JS Averitt, RD Taylor, AJ Roberts, J McCulloch, Q Hof, DE Hur, N Cheong, SW Funk, DJ AF Lee, H. J. Workman, J. Wark, J. S. Averitt, R. D. Taylor, A. J. Roberts, J. McCulloch, Q. Hof, D. E. Hur, N. Cheong, S. -W. Funk, D. J. TI Optically induced lattice dynamics probed with ultrafast x-ray diffraction SO PHYSICAL REVIEW B LA English DT Article ID PHONONS; LUMNO3 AB We have studied the picosecond lattice dynamics of optically pumped hexagonal LuMnO(3) by using ultrafast x-ray diffraction. The results show a shift and broadening of the diffraction curve due to the stimulated lattice expansion. To understand the transient response of the lattice, the measured time- and angle-resolved diffraction curves are compared to a theoretical calculation based on the dynamical diffraction theory of coherent phonon propagation modified for the hexagonal crystal structure of LuMnO(3). Our simulations reveal that a large coupling coefficient (c(13)) between the a-b plane and the c axis is required to fit the data. Though we interpret the transient response within the framework of thermal coherent phonons, we do not exclude the possibility of strong nonthermal coupling of the electronic excitation to the atomic framework. We compare this result to our previous coherent phonon studies of LuMnO(3) in which we used optical pump-probe spectroscopy. C1 [Lee, H. J.; Workman, J.; Averitt, R. D.; Taylor, A. J.; Roberts, J.; McCulloch, Q.; Hof, D. E.; Funk, D. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Hur, N.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Lee, HJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Hur, Namjung/G-3752-2013 NR 14 TC 8 Z9 8 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 132301 DI 10.1103/PhysRevB.77.132301 PG 4 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200008 ER PT J AU Lee, WS Meevasana, W Johnston, S Lu, DH Vishik, IM Moore, RG Eisaki, H Kaneko, N Devereaux, TP Shen, ZX AF Lee, W. S. Meevasana, W. Johnston, S. Lu, D. H. Vishik, I. M. Moore, R. G. Eisaki, H. Kaneko, N. Devereaux, T. P. Shen, Z. X. TI Superconductivity-induced self-energy evolution of the nodal electron of optimally doped Bi(2)Sr(2)Ca(0.92)Y(0.08)Cu(2)O(8+delta) SO PHYSICAL REVIEW B LA English DT Article ID DISPERSION AB The temperature dependent evolution of the renormalization effect in optimally doped Bi(2)Sr(2)Ca(0.92)Y(0.08)Cu(2)O(8+delta) along the nodal direction has been studied via angle-resolved photoemission spectroscopy. Fine structure is observed in the real part of the self-energy (Re Sigma), including a subkink and maximum, suggesting that electrons couple to a spectrum of bosonic modes, instead of just one mode. Upon cooling through the superconducting phase transition, the fine structures of the extracted Re Sigma exhibit a two-processes evolution demonstrating an interplay between kink renormalization and superconductivity. We show that this two-process evolution can be qualitatively explained by a simple Holstein model in which a spectrum of bosonic modes is considered. C1 [Lee, W. S.; Meevasana, W.; Johnston, S.; Lu, D. H.; Vishik, I. M.; Moore, R. G.; Kaneko, N.; Devereaux, T. P.; Shen, Z. X.] Stanford Univ, Dept Phys, Dept Appl Phys, Stanford, CA 94305 USA. [Lee, W. S.; Meevasana, W.; Johnston, S.; Lu, D. H.; Vishik, I. M.; Moore, R. G.; Kaneko, N.; Devereaux, T. P.; Shen, Z. X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Johnston, S.] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada. [Eisaki, H.] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba 3058568, Japan. RP Lee, WS (reprint author), Stanford Univ, Dept Phys, Dept Appl Phys, Stanford, CA 94305 USA. RI Johnston, Steven/J-7777-2016 NR 22 TC 20 Z9 20 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 140504 DI 10.1103/PhysRevB.77.140504 PG 4 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300008 ER PT J AU Lei, Y Shevlin, SA Zhu, W Guo, ZX AF Lei, Yang Shevlin, Stephen A. Zhu, Wenguang Guo, Zheng Xiao TI Hydrogen-induced magnetization and tunable hydrogen storage in graphitic structures SO PHYSICAL REVIEW B LA English DT Article ID WALLED CARBON NANOTUBES; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRONIC-PROPERTIES; MOLECULAR-HYDROGEN; GRAPHENE LAYERS; DEFECTS; ADSORPTION; DIFFUSION; POINTS AB Hydrogen interactions with undefective and defective graphitic structures were investigated by first-principles simulations. Structural vacancies were identified to promote the dissociation of molecular hydrogen with a reduced activation barrier of 0.63 eV, compared to 2.38 eV for a perfect graphene. However, the vacancies bind the hydrogen too strongly for spill-over mechanisms to be effective. An isolated vacancy in a graphene can bind four hydrogen atoms, but a metastable and magnetic structure binds six hydrogen atoms at the vacancy site at room temperature. The thermodynamics, magnetic properties, and hydrogen binding energies vary with graphene layer spacing. A metastable structure becomes energetically favorable for a layer spacing of 3.19 angstrom, while the binding of hydrogen becomes exothermic at a layer spacing of 2.72 angstrom. This phenomenon suggests the possibility of using hydrogen-rich carbon structures for reversible magnetic and hydrogen storage applications. C1 [Lei, Yang; Shevlin, Stephen A.; Zhu, Wenguang; Guo, Zheng Xiao] UCL, Dept Chem, London WC1H 0AJ, England. [Zhu, Wenguang] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Zhu, Wenguang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Guo, ZX (reprint author), UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England. EM z.x.guo@ucl.ac.uk RI Zhu, Wenguang/F-4224-2011; Shevlin, Stephen/G-9269-2011; Guo, Zheng Xiao/C-1706-2009 OI Zhu, Wenguang/0000-0003-0819-595X; Shevlin, Stephen/0000-0001-5896-0301; Guo, Zheng Xiao/0000-0001-5404-3215 NR 51 TC 20 Z9 20 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134114 DI 10.1103/PhysRevB.77.134114 PG 8 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200037 ER PT J AU Lott, D Klose, F Ambaye, H Mankey, GJ Mani, P Wolff, M Schreyer, A Christen, HM Sales, BC AF Lott, D. Klose, F. Ambaye, H. Mankey, G. J. Mani, P. Wolff, M. Schreyer, A. Christen, H. M. Sales, B. C. TI Chemical-order-induced magnetic exchange bias in epitaxial FePt3 films SO PHYSICAL REVIEW B LA English DT Article ID CO-PT; PT3FE; ALLOY AB We show that magnetic exchange bias can be induced by means of chemical ordering. The effect was observed on epitaxial thin film layers of FePt3, a material which has the remarkable property that, depending on the degree of chemical order, a ferromagnetic and an antiferromagnetic magnetic state can coexist at the same temperature. We demonstrate that the observed exchange bias originates at the interfaces between these two different magnetic phases of FePt3. C1 [Lott, D.; Schreyer, A.] GKSS Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany. [Klose, F.] Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia. [Klose, F.; Ambaye, H.; Christen, H. M.; Sales, B. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mankey, G. J.; Mani, P.] Univ Alabama, MINT Ctr, Tuscaloosa, AL 35487 USA. [Wolff, M.] Ruhr Univ Bochum, Dept Phys, D-44780 Bochum, Germany. RP Lott, D (reprint author), GKSS Forschungszentrum Geesthacht GmbH, Max Planck Str 1, D-21502 Geesthacht, Germany. RI Christen, Hans/H-6551-2013; Ambaye, Haile/D-1503-2016; Mankey, Gary/G-9110-2011 OI Christen, Hans/0000-0001-8187-7469; Ambaye, Haile/0000-0002-8122-9952; Mankey, Gary/0000-0003-3163-5159 NR 14 TC 10 Z9 11 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 132404 DI 10.1103/PhysRevB.77.132404 PG 4 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200012 ER PT J AU Mattsson, AE Wixom, RR Armiento, R AF Mattsson, Ann E. Wixom, Ryan R. Armiento, Rickard TI Electronic surface error in the Si interstitial formation energy SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; SELF-DIFFUSION; DENSITY; SILICON; EXCHANGE; DEFECTS; GAS AB The results for Si interstitial formation energies differ substantially if calculated with quantum Monte Carlo (QMC) or density functional theory (DFT) techniques. In fact, not even DFT results using different exchange-correlation functionals agree well for these energies. We carefully quantify the differences between the DFT results by accurate calculations with large supercells. A similar discrepancy for vacancy formation energies in metals has previously been resolved by introducing the concept of an "electronic surface error," and this view is adopted and shown relevant also for the present DFT results for interstitials in semiconductors. The origin of the surface error for the Si interstitial is explained by careful examination of the electron density. A postcorrection for the surface error brings all the results obtained with the tested functionals close to the results of the AM05 functional. However, it remains an important puzzle that while the surface error correction aligns the DFT results, they are still in large disagreement with QMC results. C1 [Mattsson, Ann E.] Sandia Natl Labs, Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. [Wixom, Ryan R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Armiento, Rickard] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. RP Mattsson, AE (reprint author), Sandia Natl Labs, Multiscale Dynam Mat Modeling, MS 1322, Albuquerque, NM 87185 USA. EM aematts@sandia.gov; rrwixom@sandia.gov; rickard.armiento@uni-bayreuth.de RI Armiento, Rickard/E-1413-2011 OI Armiento, Rickard/0000-0002-5571-0814 NR 32 TC 20 Z9 20 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 155211 DI 10.1103/PhysRevB.77.155211 PG 7 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400067 ER PT J AU Measson, MA Braithwaite, D Lapertot, G Brison, JP Flouquet, J Bordet, P Sugawara, H Canfield, PC AF Measson, M. -A. Braithwaite, D. Lapertot, G. Brison, J. -P. Flouquet, J. Bordet, P. Sugawara, H. Canfield, P. C. TI Double superconducting transition in the filled skutterudite PrOs(4)Sb(12) and sample characterizations SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE SPECIFIC-HEAT; SUSCEPTIBILITY AB Through the characterization of many samples of the filled skutterudite compound PrOs(4)Sb(12), we found that even though the double superconducting transition in the specific heat (T(c1)similar to 1.89 K and T(c2)similar to 1.72 K) appears in samples of good quality, there are various pieces of evidence that cast doubt on its intrinsic nature. First, three samples exhibit a single sharp transition of similar to 15 mK width at T(c)similar to 1.7 K. The quality of the samples exhibiting a single transition is clearly better; the width of the transition is smallest and the normalized specific heat jump (C-C(normal))/C(normal))(Tc) is larger than the sum of the two specific heat jumps when a double transition exists. Second, the ratio of the two specific heat jumps Delta C(T(c1))/Delta C(T(c2))exhibits a wide variation with samples not only among different batches but also even within a batch. Finally, this ratio was strongly reduced by polishing a sample down to similar to 100 mu m, which points to bulk inhomogeneities as an origin of the spurious transition. Our x-ray diffraction analysis points to Pr-vacancy problem in the samples, but it does not show that they are the origin of the double transition. We provide the superconducting phase diagram under magnetic field of a sample exhibiting a single transition and fit the curve H(c2)(T) with a two-band model taking into account the appropriate values for the gap as deduced from thermal conductivity measurements. C1 [Measson, M. -A.] CEA, SPSMS, Dept Rech Fondamentale Mat Condensee, F-38054 Grenoble, France. [Measson, M. -A.; Braithwaite, D.; Lapertot, G.; Brison, J. -P.; Flouquet, J.] Osaka Univ, Grad Sch Sci, Osaka 560043, Japan. [Bordet, P.] UJF, CNRS, Inst Neel, F-38042 Grenoble, France. [Sugawara, H.] Univ Tokushima, Fac Integrated Arts & Sci, Tokushima 7708502, Japan. [Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Measson, MA (reprint author), CEA, SPSMS, Dept Rech Fondamentale Mat Condensee, F-38054 Grenoble, France. EM marie_audemeasson@yahoo.fr RI LAPERTOT, Gerard/B-3354-2008; Canfield, Paul/H-2698-2014; Measson, Marie-aude/E-6388-2015 OI Measson, Marie-aude/0000-0002-6495-7376 NR 33 TC 17 Z9 17 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134517 DI 10.1103/PhysRevB.77.134517 PG 10 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200121 ER PT J AU Pomeau, Y Roberts, DC AF Pomeau, Yves Roberts, David C. TI Hydrodynamic boundary condition for superfluid flow SO PHYSICAL REVIEW B LA English DT Article ID BOSE-EINSTEIN CONDENSATE; HELIUM II; EXCITATIONS; GASES; FIELD AB We discuss the hydrodynamic boundary condition for a superfluid moving tangentially to a rough surface. Specifically, we argue that the scattering of quantum fluctuations off surface roughness affects the nature of the boundary condition, and that this has important consequences including a theorized critical speed and the presence of normal fluid at any nonzero speed, even if the boundary is held at zero temperature (i.e., a moving superfluid flow creates a sustained temperature difference between the superfluid and the boundary). This hydrodynamic boundary condition is relevant not only for superfluid helium experiments but also for experiments with trapped dilute Bose-Einstein condensates, in particular, those involving atomic waveguides near surfaces. C1 [Pomeau, Yves] Ecole Normale Super, Lab Phys Stat, F-75005 Paris, France. [Pomeau, Yves] Univ Arizona, Dept Math, Tucson, AZ 85721 USA. [Pomeau, Yves; Roberts, David C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pomeau, Yves; Roberts, David C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Pomeau, Y (reprint author), Ecole Normale Super, Lab Phys Stat, F-75005 Paris, France. NR 37 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144508 DI 10.1103/PhysRevB.77.144508 PG 6 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300076 ER PT J AU Rosengren, A Lundow, PH Balatsky, AV AF Rosengren, A. Lundow, P. H. Balatsky, A. V. TI Isotope effect on superconductivity in Josephson coupled stripes in underdoped cuprates SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; TRANSITION-TEMPERATURE; POLARON FORMATION; T-C; LA2CUO4; STATE; SPECTROSCOPY; DEPENDENCE; PSEUDOGAP AB Inelastic neutron scattering data for YBaCuO as well as for LaSrCuO indicate incommensurate neutron scattering peaks with an incommensuration delta(x) away from the (pi,pi) point. T(c)(x) can be replotted as a linear function of the incommensuration for these materials. This linear relation implies that the constant that relates these two quantities, where one is the incommensuration (momentum) and the other is T(c)(x) (energy), has the dimension of velocity, which we denote by v(*): k(B)T(c)(x)=hv(*)delta(x). We argue that this experimentally determined relation can be obtained in a simple model of Josephson coupled stripes. Within this framework, we address the role of the O(16)-> O(18) isotope effect on T(c)(x). We assume that the incommensuration is set by the doping of the sample and is not sensitive to the oxygen isotope given the fixed doping. We find therefore that the only parameter that can change with the O isotope substitution in the relation T(c)(x)similar to delta(x) is the velocity v(*). We predict an oxygen isotope effect on v(*) and expect it to be similar or equal to 5%. C1 [Rosengren, A.; Lundow, P. H.] KTH, AlbaNova Univ Ctr, Dept Theoret Phys, SE-10691 Stockholm, Sweden. [Rosengren, A.] KTH, AlbaNova Univ Ctr, NORDITA, SE-10691 Stockholm, Sweden. [Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Rosengren, A (reprint author), KTH, AlbaNova Univ Ctr, Dept Theoret Phys, SE-10691 Stockholm, Sweden. EM roseng@kth.se; phl@kth.se; avb@lanl.gov NR 36 TC 0 Z9 0 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134508 DI 10.1103/PhysRevB.77.134508 PG 4 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200112 ER PT J AU Sai, N Tiago, ML Chelikowsky, JR Reboredo, FA AF Sai, Na Tiago, Murilo L. Chelikowsky, James R. Reboredo, Fernando A. TI Optical spectra and exchange-correlation effects in molecular crystals SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT; EXCITATIONS; ENERGIES; SOLIDS AB We report the first-principles GW-Bethe-Salpeter equation and quantum Monte Carlo calculations of the optical and electronic properties of molecular and crystalline rubrene (C(42)H(28)). Many-body effects dominate the optical spectrum and quasiparticle gap of molecular crystals. We interpret the observed yellow-green photoluminescence in rubrene microcrystals as a result of the formation of intermolecular, charge-transfer, spin-singlet excitons. In contrast, spin-triplet excitons are localized and intramolecular with a predicted phosphorescence at the red end of the optical spectrum. We find that the exchange energy plays a fundamental role in raising the energy of intramolecular spin-singlet excitons above the intermolecular ones. Exciton binding energies are predicted to be around 0.5 eV (spin singlet) to 1 eV (spin triplet). The calculated electronic gap is 2.8 eV. The theoretical absorption spectrum agrees very well with recent ellipsometry data. C1 [Sai, Na; Chelikowsky, James R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Sai, Na; Chelikowsky, James R.] Univ Texas Austin, Ctr Computat Mat, Inst Computat Engn & Sci, Austin, TX 78712 USA. [Tiago, Murilo L.; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Chelikowsky, James R.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. RP Sai, N (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. RI Reboredo, Fernando/B-8391-2009 NR 25 TC 51 Z9 51 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 16 AR 161306 DI 10.1103/PhysRevB.77.161306 PG 4 WC Physics, Condensed Matter SC Physics GA 295EJ UT WOS:000255457500008 ER PT J AU Schiller, F Corso, M Urdanpilleta, M Ohta, T Bostwick, A McChesney, JL Rotenberg, E Ortega, JE AF Schiller, F. Corso, M. Urdanpilleta, M. Ohta, T. Bostwick, A. McChesney, J. L. Rotenberg, E. Ortega, J. E. TI Quantum well and resonance-band split off in a K monolayer on Cu(111) SO PHYSICAL REVIEW B LA English DT Article ID STATES; NA; PHOTOEMISSION; ADSORPTION; SURFACES; FILMS AB The potassium monolayer on Cu(111) defines the simplest metallic quantum well that confines a single s-like discrete level. The analysis of the metallization onset in such a K adlayer reveals, however, a subtle electronic structure. The metallic monolayer condensate is actually characterized by a pair of two-dimensional states that lie below the Fermi energy, namely, a quantum well state and a resonant band reminiscent of the Cu(111) surface state. All quantum well states, resonances, and Cu substrate bulk bands exhibit smooth K coverage dependence, suggesting that changes in the crystal potential upon K adsorption extend from the surface and/or interface inside the Cu substrate. C1 [Schiller, F.; Urdanpilleta, M.; Ortega, J. E.] Univ Basque Country, Dept Fis Aplicada 1, E-20018 San Sebastian, Spain. [Corso, M.; Ortega, J. E.] UPV, CSIC, Ctr Mixto Mat, E-20018 San Sebastian, Spain. [Corso, M.; Ortega, J. E.] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain. [Ohta, T.; Bostwick, A.; McChesney, J. L.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Schiller, F (reprint author), Univ Basque Country, Dept Fis Aplicada 1, Plaza Onate 2, E-20018 San Sebastian, Spain. RI Rotenberg, Eli/B-3700-2009; CSIC-UPV/EHU, CFM/F-4867-2012; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; ortega, enrique/I-4445-2012; Schiller, Frederik/F-5990-2012; Urdanpilleta, Marta/K-7515-2012; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013; Corso, Martina/B-7768-2014 OI Rotenberg, Eli/0000-0002-3979-8844; Schiller, Frederik/0000-0003-1727-3542; Urdanpilleta, Marta/0000-0002-4078-8184; McChesney, Jessica/0000-0003-0470-2088; NR 20 TC 10 Z9 10 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 153410 DI 10.1103/PhysRevB.77.153410 PG 4 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400022 ER PT J AU Schonfeld, B Roelofs, H Kostorz, G Robertson, JL Zschack, P Ice, GE AF Schoenfeld, B. Roelofs, H. Kostorz, G. Robertson, J. L. Zschack, P. Ice, G. E. TI Static atomic displacements in (Cu)under-bar-Mn measured with diffuse x-ray scattering SO PHYSICAL REVIEW B LA English DT Article ID SHORT-RANGE ORDER; INDIVIDUAL PAIR DISPLACEMENTS; NEUTRON-DIFFRACTION; LATTICE DISTORTION; BINARY-ALLOYS; MN; FE22.5NI77.5; ARRANGEMENTS; TEMPERATURE; MANGANESE AB Diffuse x-ray scattering of a Cu-17.2 at. % Mn single crystal, which was aged at 483 K for 2 weeks, was taken at three energies, namely, 6526, 8969, and 8909 eV, which were suited for an evaluation by the 3 lambda technique. The values of the species-dependent static atomic displacements closely agree with those of a Georgopoulos-Cohen evaluation, which also uses the three data sets. Nearest-neighbor displacements are dominant and with similar to 0.038 A largest among Cu-Mn pairs. A tendency is noted for lattice expansion between those elements (equal or unequal pairs) that are preferred in site occupancy over a random arrangement because of local atomic order. C1 [Schoenfeld, B.; Roelofs, H.; Kostorz, G.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Schoenfeld, B.] ETH, Dept Mat, Lab Met Phys & Technol, CH-8093 Zurich, Switzerland. [Robertson, J. L.; Ice, G. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zschack, P.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Schonfeld, B (reprint author), ETH, Dept Phys, CH-8093 Zurich, Switzerland. RI kostorz, gernot/B-6489-2009 NR 34 TC 3 Z9 3 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144202 DI 10.1103/PhysRevB.77.144202 PG 8 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300026 ER PT J AU Seifter, A Swift, DC AF Seifter, A. Swift, D. C. TI Pyrometric measurement of the temperature of shocked molybdenum SO PHYSICAL REVIEW B LA English DT Article ID KBAR AB Measurements of the temperature of Mo shocked to similar to 60 GPa and then released to similar to 28 GPa were previously attempted by using high explosive driven flyer plates and pyrometry. The analysis of the radiance traces at different wavelengths indicates that the temporal evolution of the radiance can be explained by a contribution from the LiF window to the measured thermal radiation. By fitting the radiance traces with a simple model, which is supported by continuum dynamics studies, which were able to relate structures in the radiance history to hydrodynamic events in the experiment, the contribution of the window, and hence the temperature of the Mo sample, was obtained. The shock and release temperature obtained in the Mo was 762 +/- 40 K, which is consistent with calculations taking the contribution of plastic work to the heating into account. The radiance obtained for the LiF window shows a nonthermal distribution that can be described by a bulk temperature of 624 +/- 112 K and hot spots (less than 0.5% in total volume) within the window at a temperature of about 2000 K. C1 [Seifter, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Swift, D. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Seifter, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM seif@lanl.gov NR 27 TC 6 Z9 6 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134104 DI 10.1103/PhysRevB.77.134104 PG 8 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200027 ER PT J AU Shan, ZW Li, J Cheng, YQ Minor, AM Asif, SAS Warren, OL Ma, E AF Shan, Z. W. Li, J. Cheng, Y. Q. Minor, A. M. Asif, S. A. Syed Warren, O. L. Ma, E. TI Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars SO PHYSICAL REVIEW B LA English DT Article ID BULK AMORPHOUS METAL; ROOM-TEMPERATURE; VISCOPLASTIC DEFORMATION; MECHANICAL-PROPERTIES; CRYSTAL PLASTICITY; SHEAR BANDS; BEHAVIOR; FRACTURE; DYNAMICS; NANOINDENTATION AB We report in situ nanocompression tests of Cu-Zr-Al metallic glass (MG) pillars in a transmission electron microscope. This technique is capable of spatially and temporally resolving the plastic flow in MGs. The observations reveal the intrinsic ability of fully glassy MGs to sustain large plastic strains, which would otherwise be preempted by catastrophic instability in macroscopic samples and conventional tests. The high ductility in volume-limited MGs and the sample size effects in suppressing the rapid failure common to MGs are analyzed by modeling the evolution of the collectivity of flow defects toward localization. C1 [Shan, Z. W.; Asif, S. A. Syed; Warren, O. L.] Hysitron Inc, Minneapolis, MN 55344 USA. [Li, J.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Cheng, Y. Q.; Ma, E.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Shan, Z. W.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Shan, ZW (reprint author), Hysitron Inc, Minneapolis, MN 55344 USA. EM zhiweishan@gmail.com; ema@jhu.edu RI Li, Ju/A-2993-2008; Cheng, Yongqiang/F-6567-2010; Ma, En/A-3232-2010; Shan, Zhiwei/B-8799-2014 OI Li, Ju/0000-0002-7841-8058; NR 42 TC 95 Z9 95 U1 7 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 155419 DI 10.1103/PhysRevB.77.155419 PG 6 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400117 ER PT J AU Shin, KY Laverock, J Wu, YQ Condron, CL Toney, MF Dugdale, SB Kramer, MJ Fisher, IR AF Shin, K. Y. Laverock, J. Wu, Y. Q. Condron, C. L. Toney, M. F. Dugdale, S. B. Kramer, M. J. Fisher, I. R. TI Charge density wave formation in R(2)Te(5) (R=Nd, Sm, and Gd) SO PHYSICAL REVIEW B LA English DT Article ID RARE-EARTH-ELEMENT; RETE3 RE; TEMPERATURE; SM2TE5; SMTE3 AB The rare earth (R) tellurides R(2)Te(5) have a crystal structure intermediate between that of RTe(2) and RTe(3), consisting of alternating single and double Te planes sandwiched between RTe block layers. We have successfully grown single crystals of Nd(2)Te(5), Sm(2)Te(5), and Gd(2)Te(5) from a self-flux and we describe here evidence for charge density wave formation in these materials. The superlattice patterns for all three compounds are relatively complex, consisting at room temperature of at least two independent wave vectors. Consideration of the electronic structure indicates that, to a large extent, these wave vectors are separately associated with sheets of the Fermi surface which are principally derived from the single and double Te layers. C1 [Shin, K. Y.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Shin, K. Y.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Laverock, J.; Dugdale, S. B.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Wu, Y. Q.; Kramer, M. J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wu, Y. Q.; Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Condron, C. L.; Toney, M. F.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Fisher, IR (reprint author), Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. EM irfisher@stanford.edu RI Dugdale, Stephen/F-4066-2011; Laverock, Jude/G-4537-2010 OI Dugdale, Stephen/0000-0002-2738-2235; Laverock, Jude/0000-0003-3653-8171 NR 20 TC 6 Z9 6 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 16 AR 165101 DI 10.1103/PhysRevB.77.165101 PG 9 WC Physics, Condensed Matter SC Physics GA 295EJ UT WOS:000255457500015 ER PT J AU Siu, MS Weinstein, M AF Siu, M. Stewart Weinstein, Marvin TI Bootstrap approximations in contractor renormalization SO PHYSICAL REVIEW B LA English DT Article ID HEISENBERG-MODEL; ORDER AB We propose a bootstrap method for approximating the long-range terms in the contractor renormalization method. The idea is tested on the two-dimensional Heisenberg antiferromagnet and the frustrated J(2)-J(1) model. We obtain renormalization group flows that directly reveal the Neel phase of the unfrustrated Heisenberg antiferromagnet and the existence of a phase transition in the J(2)-J(1) model for weak frustration. However, we find that this bootstrap method is dependent on blocking and truncation schemes. For this reason, we discuss these dependencies and unresolved issues that researchers who use this approach must consider. C1 [Siu, M. Stewart; Weinstein, Marvin] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Siu, MS (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM msiu@stanford.edu; niv@slac.stanford.edu NR 21 TC 3 Z9 3 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 155116 DI 10.1103/PhysRevB.77.155116 PG 8 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400040 ER PT J AU Skubic, B Holmstrom, E Bergman, A Eriksson, O AF Skubic, B. Holmstrom, E. Bergman, A. Eriksson, O. TI Role of magnetic impurities in Fe/V multilayers SO PHYSICAL REVIEW B LA English DT Article ID POTENTIAL MODEL; GREEN-FUNCTION; ALLOYS; APPROXIMATION; ELECTRONICS; INTERFACES; SPACERS; FILMS AB We have studied the Fe/V bcc (100) multilayers and the effect of alloying the V spacer layers with various amounts of magnetic impurities (Fe, Co, Ni, and Cr). The study was performed by means of total energy electronic structure calculations. We compare the effect of the different types of impurities and discuss the interlayer exchange coupling in terms of Fermi surface topology and bulk magnetic order. The effect of interface roughness and interface intermixing on the phase diagrams was also studied. C1 [Skubic, B.; Bergman, A.; Eriksson, O.] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. [Holmstrom, E.] Univ Austral Chile, Inst Fis, Valdivia, Chile. [Holmstrom, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Skubic, B (reprint author), Uppsala Univ, Dept Phys, Box 530, SE-75121 Uppsala, Sweden. RI Holmstrom, Erik/A-5308-2009; Skubic, Bjorn/D-5465-2009; Bergman, Anders/H-7996-2012; Eriksson, Olle/E-3265-2014 OI Holmstrom, Erik/0000-0002-1198-3861; Bergman, Anders/0000-0002-5134-1978; Eriksson, Olle/0000-0001-5111-1374 NR 25 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144408 DI 10.1103/PhysRevB.77.144408 PG 6 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300043 ER PT J AU Soignard, E Amin, SA Mei, Q Benmore, CJ Yarger, JL AF Soignard, E. Amin, S. A. Mei, Q. Benmore, C. J. Yarger, J. L. TI High-pressure behavior of As(2)O(3): Amorphous-amorphous and crystalline-amorphous transitions SO PHYSICAL REVIEW B LA English DT Article ID VIBRATIONAL-SPECTRA; VITREOUS AS2O3; RAMAN-SPECTRA; GLASSES; DIFFRACTION; CLAUDETITE; REFINEMENT; SCATTERING; MODES; AS4O6 AB The room temperature compression of As(2)O(3) has been studied by in situ diamond anvil cell Raman and x-ray diffraction up to a pressure of 35 GPa. Upon compression, we discovered a crystal-to-amorphous transition in arsenolite, while claudetite, which is another crystalline polymorph of As(2)O(3), remains crystalline up to at least 40 GPa. We have also observed an amorphous-amorphous transition in As(2)O(3) glass at 25 GPa. This transition is characterized by a dramatic change in the Raman spectrum, which is reversible upon decompression. In situ diamond anvil cell x-ray diffraction of As(2)O(3) glass reveals that the amorphous-amorphous transition is associated with an increase in the arsenic coordination. The amorphous-amorphous transition is reversible with little hysteresis. C1 [Soignard, E.; Amin, S. A.; Mei, Q.; Yarger, J. L.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Soignard, E.] Arizona State Univ, LE CSSS, Tempe, AZ 85287 USA. [Mei, Q.; Benmore, C. J.] Argonne Natl Lab, Intense Pulsed Neutron Source & Xray Sci Div, Argonne, IL 60439 USA. RP Soignard, E (reprint author), Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. EM jyarger@gmail.com RI Yarger, Jeff/L-8748-2014; OI Yarger, Jeff/0000-0002-7385-5400; Benmore, Chris/0000-0001-7007-7749 NR 29 TC 22 Z9 22 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144113 DI 10.1103/PhysRevB.77.144113 PG 8 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300023 ER PT J AU Starowicz, P Liu, C Khasanov, R Kondo, T Samolyuk, G Gardenghi, D Lee, Y Ohta, T Harmon, B Canfield, P Bud'ko, S Rotenberg, E Kaminski, A AF Starowicz, P. Liu, C. Khasanov, R. Kondo, T. Samolyuk, G. Gardenghi, D. Lee, Y. Ohta, T. Harmon, B. Canfield, P. Bud'ko, S. Rotenberg, E. Kaminski, A. TI Direct observation of a Fermi surface and superconducting gap in LuNi(2)B(2)C SO PHYSICAL REVIEW B LA English DT Article ID INTERMETALLIC COMPOUNDS; ELECTRONIC-STRUCTURE; SINGLE-CRYSTALS; BOROCARBIDES; ANISOTROPY; LUNIBC AB We measured the Fermi surface (FS), band dispersion, and superconducting gap in LuNi(2)B(2)C using angle resolved photoemission spectroscopy. Experimental data were compared to the tight-binding version of the linear muffin-tin orbital (LMTO) method and linearized augmented plane-wave (LAPW) calculations. We found reasonable agreement between the two calculations and experimental data. The measured FS exhibits large parallel regions with a nesting vector that agrees with a previous positron annihilation study and calculations of the generalized susceptibility. The measured dispersion curves also agree reasonably well with the TB-LMTO calculations, although with some differences in the strength of the hybridization. In addition, the spectrum in the superconducting state revealed a 2 meV superconducting gap. The data also clearly show the presence of a coherent peak above the chemical potential mu, which originates from thermally excited electrons above the energy of 2 Delta. This feature was not previously observed in the Lu-based material. C1 [Starowicz, P.; Liu, C.; Khasanov, R.; Kondo, T.; Samolyuk, G.; Gardenghi, D.; Lee, Y.; Harmon, B.; Canfield, P.; Bud'ko, S.; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Starowicz, P.; Liu, C.; Khasanov, R.; Kondo, T.; Samolyuk, G.; Gardenghi, D.; Lee, Y.; Harmon, B.; Canfield, P.; Bud'ko, S.; Kaminski, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Starowicz, P.] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Khasanov, R.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Gardenghi, D.] Bob Jones Univ, Greenville, SC 29614 USA. [Ohta, T.] Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Starowicz, P (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Kondo, Takeshi/H-2680-2016; Starowicz, Pawel/A-8954-2008; Rotenberg, Eli/B-3700-2009 OI Khasanov, Rustem/0000-0002-4768-5524; Rotenberg, Eli/0000-0002-3979-8844 NR 31 TC 10 Z9 10 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134520 DI 10.1103/PhysRevB.77.134520 PG 6 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200124 ER PT J AU Stone, MB Lumsden, MD Qiu, Y Samulon, EC Batista, CD Fisher, IR AF Stone, M. B. Lumsden, M. D. Qiu, Y. Samulon, E. C. Batista, C. D. Fisher, I. R. TI Dispersive magnetic excitations in the S=1 antiferromagnet Ba(3)Mn(2)O(8) SO PHYSICAL REVIEW B LA English DT Article ID SINGLET-GROUND-STATE; BOSE-EINSTEIN CONDENSATION; NEUTRON-SCATTERING; SYSTEM KCUCL3; SPIN GAP; TLCUCL3; FIELD AB We present powder inelastic neutron scattering measurements of the S=1 dimerized antiferromagnet Ba(3)Mn(2)O(8). The T=1.4 K magnetic spectrum exhibits a spin gap of Delta approximate to 1.0 meV and a dispersive spectrum with a bandwidth of approximately 1.5 meV. A comparison to coupled dimer models accurately describes the dispersion and scattering intensity and determines the exchange constants in Ba(3)Mn(2)O(8). The wave vector dependent scattering intensity confirms the proposed S=1 dimer bond. Temperature dependent measurements of the magnetic excitations indicate the presence of both singlet-triplet and thermally activated triplet-quintet excitations. C1 [Stone, M. B.; Lumsden, M. D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Qiu, Y.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Samulon, E. C.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Samulon, E. C.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Stone, MB (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, POB 2008, Oak Ridge, TN 37831 USA. RI Stone, Matthew/G-3275-2011; Batista, Cristian/J-8008-2016; Lumsden, Mark/F-5366-2012 OI Stone, Matthew/0000-0001-7884-9715; Lumsden, Mark/0000-0002-5472-9660 NR 34 TC 24 Z9 24 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134406 DI 10.1103/PhysRevB.77.134406 PG 8 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200059 ER PT J AU Sun, T Allen, PB Stahnke, DG Jacobsen, SD Homes, CC AF Sun, Tao Allen, Philip B. Stahnke, David G. Jacobsen, Steven D. Homes, Christopher C. TI Infrared properties of ferropericlase Mg(1-x)Fe(x)O: Experiment and theory SO PHYSICAL REVIEW B LA English DT Article ID OPTICAL-PROPERTIES; LATTICE-DYNAMICS; CRYSTALS; SPECTRA; ABSORPTION; MGO; POTENTIALS; (MG,FE)O; MODELS; OXIDE AB The temperature dependence of the reflectance spectra of magnesium oxide (MgO) and ferropericlase (Mg(1-x)Fe(x)O, for x=0.06 and x=0.27) have been measured over a wide frequency range (approximate to 50-32 000 cm(-1)) at 295 and 6 K. The complex dielectric function has been determined from a Kramers-Kronig analysis of the reflectance. The spectra of the doped materials resemble pure MgO in the infrared region, but with much broader resonances. We use a shell model to calculate the dielectric function of ferropericlase, including both anharmonic phonon-phonon interactions and disorder scattering. These data are useful in understanding the vibrational properties of ferropericlase. C1 [Sun, Tao; Allen, Philip B.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Stahnke, David G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Jacobsen, Steven D.] Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. [Homes, Christopher C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Sun, T (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM tsun@grad.physics.sunysb.edu RI Sun, Tao/K-8155-2012; Jacobsen, Steven/F-3443-2013 OI Sun, Tao/0000-0001-9087-4702; Jacobsen, Steven/0000-0002-9746-958X NR 25 TC 12 Z9 12 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134303 DI 10.1103/PhysRevB.77.134303 PG 7 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200050 ER PT J AU Takenaka, H Singh, DJ AF Takenaka, H. Singh, D. J. TI Full-potential all-electron positron lifetime calculations: Assessment of local enhancement factors SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTORS; ANNIHILATION; SOLIDS; STATES; SURFACES; METALS AB We report the implementation of positron wave function and lifetime calculations in the all-electron full-potential linearized augmented plane wave method. Calculations of lifetimes for more than 30 materials with two different forms of the enhancement factor were done and compared to prior calculations and experiment. We find that reasonable agreement with experiment can be obtained within the local density approximation when all-electron full-potential calculations are done. C1 [Takenaka, H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Takenaka, H (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 NR 26 TC 11 Z9 12 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 15 AR 155132 DI 10.1103/PhysRevB.77.155132 PG 5 WC Physics, Condensed Matter SC Physics GA 295EI UT WOS:000255457400056 ER PT J AU Vansteenkiste, A De Baerdemaeker, J Chou, KW Stoll, H Curcic, M Tyliszczak, T Woltersdorf, G Back, CH Schutz, G Van Waeyenberge, B AF Vansteenkiste, A. De Baerdemaeker, J. Chou, K. W. Stoll, H. Curcic, M. Tyliszczak, T. Woltersdorf, G. Back, C. H. Schuetz, G. Van Waeyenberge, B. TI Influence of domain wall pinning on the dynamic behavior of magnetic vortex structures: Time-resolved scanning x-ray transmission microscopy in NiFe thin film structures SO PHYSICAL REVIEW B LA English DT Article AB Artificial domain wall pinning sites were created in micron-sized thin-film Ni(80)Fe(20) structures, and their influence on the vortex dynamics was investigated by using time-resolved scanning transmission x-ray microscopy. The domain wall pinning sites were introduced by means of focused ion beam etching in the form of antidots. The vortex gyration frequency increased in square-shaped structures but not in similarly modified disk-shaped structures, where no domain walls are present. This demonstrates that the domain wall pinning is causing the increased frequency. The effect is explained by the confinement of the domain wall motion to the portion of the structure that is circumscribed by the antidots and is in agreement with micromagnetic simulations. C1 [Vansteenkiste, A.; De Baerdemaeker, J.; Van Waeyenberge, B.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Chou, K. W.; Stoll, H.; Curcic, M.; Schuetz, G.] Max Planck Inst Met Res, D-70596 Stuttgart, Germany. [Tyliszczak, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Back, C. H.] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany. RP Vansteenkiste, A (reprint author), Univ Ghent, Dept Subatom & Radiat Phys, Proeftuinstr 86, B-9000 Ghent, Belgium. RI Back, Christian/A-8969-2012; Woltersdorf, Georg/C-7431-2014 OI Back, Christian/0000-0003-3840-0993; Woltersdorf, Georg/0000-0001-9299-8880 NR 13 TC 14 Z9 14 U1 8 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144420 DI 10.1103/PhysRevB.77.144420 PG 5 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300055 ER PT J AU Villegas, JE Smith, KD Huang, L Zhu, YM Morales, R Schuller, IK AF Villegas, J. E. Smith, K. D. Huang, Lei Zhu, Yimei Morales, R. Schuller, Ivan K. TI Switchable collective pinning of flux quanta using magnetic vortex arrays: Experiments on square arrays of Co dots on thin superconducting films SO PHYSICAL REVIEW B LA English DT Article ID REGULAR ARRAY; FIELD; NANOSTRUCTURES; PERMALLOY; LATTICES; DIPOLES; HYBRIDS AB We constructed a superconducting/ferromagnetic hybrid system in which the ordering of the pinning potential landscape for flux quanta can be manipulated. Flux pinning is induced by an array of magnetic nanodots in the "magnetic vortex" state and is controlled by the magnetic history. This allows switching on and off the collective pinning of the flux lattice. In addition, we observed field-induced superconductivity that originates from the annihilation of flux quanta induced by the stray fields from the magnetic vortices. C1 [Villegas, J. E.] CNRS Thales, Unite Mixte, F-91767 Palaiseau, France. [Villegas, J. E.] Univ Paris 11, F-91405 Orsay, France. [Villegas, J. E.; Smith, K. D.; Morales, R.; Schuller, Ivan K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92037 USA. [Huang, Lei; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Villegas, JE (reprint author), CNRS Thales, Unite Mixte, Route Dept 128, F-91767 Palaiseau, France. EM javier.villegas@thalesgroup.com RI Villegas, Javier E./C-7200-2011; OI Villegas, Javier E./0000-0002-2096-3360; Morales, Rafael/0000-0003-1733-2039 NR 45 TC 19 Z9 19 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134510 DI 10.1103/PhysRevB.77.134510 PG 5 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200114 ER PT J AU Vlasko-Vlasov, V Welp, U Karapetrov, G Novosad, V Rosenmann, D Iavarone, M Belkin, A Kwok, WK AF Vlasko-Vlasov, V. Welp, U. Karapetrov, G. Novosad, V. Rosenmann, D. Iavarone, M. Belkin, A. Kwok, W. -K. TI Guiding superconducting vortices with magnetic domain walls SO PHYSICAL REVIEW B LA English DT Article ID T-C; FERROMAGNET HETEROSTRUCTURES; PERPENDICULAR ANISOTROPY; SINGLE-CRYSTALS; FILMS; BILAYER; MULTILAYERS; HYBRIDS; NBSE2 AB We demonstrate a unique prospect for inducing anisotropic vortex pinning and manipulating the directional motion of vortices by using the stripe domain patterns of a uniaxial magnetic film in the superconducting/ferromagnetic hybrid. Our observations can be described by a model, which considers interactions between magnetic charges of vortices and surface magnetic charges of domains resulting in the enhanced pinning of vortices on domain walls. C1 [Vlasko-Vlasov, V.; Welp, U.; Karapetrov, G.; Novosad, V.; Rosenmann, D.; Iavarone, M.; Kwok, W. -K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Belkin, A.] IIT, MSD ANL, Chicago, IL 60616 USA. [Belkin, A.] IIT, Div Phys, Chicago, IL 60616 USA. RP Vlasko-Vlasov, V (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015; Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 NR 45 TC 66 Z9 67 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134518 DI 10.1103/PhysRevB.77.134518 PG 7 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200122 ER PT J AU Vo, NQ Averback, RS Bellon, P Odunuga, S Caro, A AF Vo, N. Q. Averback, R. S. Bellon, P. Odunuga, S. Caro, A. TI Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide versus grain boundary sliding SO PHYSICAL REVIEW B LA English DT Article ID INERT-GAS CONDENSATION; MECHANICAL-BEHAVIOR; MOLECULAR-DYNAMICS; COPPER; NUCLEATION; PALLADIUM; STRENGTH; METALS; NI AB Uniaxial plastic deformation of polycrystalline Cu with grain sizes in the range of 5-20 nm was studied by using molecular dynamics computer simulations. We developed a quantitative analysis of plasticity by using localized slip vectors to separate the contributions of dislocation activity from grain boundary sliding. We conclude that the competition between these two mechanisms depends on strain rate and grain size, with the dislocation activity increasing with grain size but decreasing with increasing strain rate. For samples with a 5 nm grain size, dislocations contribute approximate to 50% of the total plastic strain during steady state deformation at a rate of 1x10(8) s(-1), but this fraction decreases to 35% at a rate of 1x10(10) s(-1). When the grain size is increased to 20 nm, dislocations account for 90% of the strain, even at 1x10(10) s(-1). During the initial stages of plastic deformation, grain boundary sliding initially decreases with strain owing to strain-induced relaxation processes within the grain boundaries. The grains also rotate a few degrees during straining to 20%; the rate of rotation (per unit strain) slightly decreases with strain rate. Lastly, we computed the amount of forced atomic mixing during plastic deformation. The mean square separation distance between atom pairs within grain interiors increases with strain at a rate proportional to their distance apart (i.e., the mixing is superdiffusive), but for pair separations greater than the grain size, this rate becomes independent of the separation distance. C1 [Vo, N. Q.; Averback, R. S.; Bellon, P.; Odunuga, S.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Caro, A.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP Vo, NQ (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. RI Vo, Nhon/E-4599-2010 NR 19 TC 62 Z9 63 U1 3 U2 46 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 13 AR 134108 DI 10.1103/PhysRevB.77.134108 PG 9 WC Physics, Condensed Matter SC Physics GA 295EG UT WOS:000255457200031 ER PT J AU Wang, LW Zhao, ZJ Meza, J AF Wang, Lin-Wang Zhao, Zhengji Meza, Juan TI Linear-scaling three-dimensional fragment method for large-scale electronic structure calculations SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHOD; PERMANENT DIPOLE-MOMENT; QUANTUM DOTS AB We present a linear scaling ab initio total energy electronic structure calculation method, which is simple to implement, easily to parallelize, and produces essentially the same results as the direct ab initio method, while it could be thousands of times faster. Using this method, we have studied the dipole moments of CdSe quantum dots, and found both significant bulk and surface contributions. C1 [Wang, Lin-Wang; Zhao, Zhengji; Meza, Juan] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Wang, LW (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. OI Meza, Juan/0000-0003-4543-0349 NR 17 TC 31 Z9 31 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 16 AR 165113 DI 10.1103/PhysRevB.77.165113 PG 5 WC Physics, Condensed Matter SC Physics GA 295EJ UT WOS:000255457500027 ER PT J AU Zhang, M Boatner, LA Salje, EKH Ewing, RC Daniel, P Weber, WJ Zhang, Y Farnan, I AF Zhang, Ming Boatner, Lynn A. Salje, Ekhard K. H. Ewing, Rodney C. Daniel, Philippe Weber, William J. Zhang, Yanwen Farnan, Ian TI Micro-Raman and micro-infrared spectroscopic studies of Pb- and Au-irradiated ZrSiO4: Optical properties, structural damage, and amorphization SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; ALPHA-DECAY DAMAGE; PARTIALLY METAMICT ZIRCON; RADIATION-DAMAGE; ION-IMPLANTATION; NATURAL ZIRCON; ATOMISTIC SIMULATION; NEUTRON-DIFFRACTION; MOLECULAR-DYNAMICS; COLLISION CASCADES AB The optical properties of damaged periodic and aperiodic domains created by Pb+ (280 keV) and Au4+ (10 MeV) implantation of zircon were studied using micro-infrared (IR) and micro-Raman spectroscopy. The Pb+ and Au4+ irradiations caused a dramatic decrease in the IR reflectivity similar to that observed for metamict natural zircon. The irradiation with 10 MeV Au4+ ions (to fluences of 1x10(15) Au4+ ions/cm(2)) also results in the formation of an amorphized phase similar to that observed in metamict zircon. These results show that high-energy, heavy-ion irradiations provide a good simulation of the ballistic effects of the recoil nucleus of an alpha-decay event and, in both cases, the result is the creation of aperiodic domains. Additional IR and Raman features were recorded in samples irradiated with 280 keV Pb+ ions (to fluences of 1x10(14) and 1x10(15) Pb+ ions/cm(2)), indicating the formation of an irradiation-induced additional phase(s). The frequencies of the features are consistent with lead silicates, ZrO2, and SiO2. The results show that spectral features of the Au4+- and Pb+-irradiated zircon are different from those of quenched ZrSiO4 melts, and the finding further confirms that the amorphous state produced by high-energy ion irradiations is structurally different from the glassy state that results from quenching a high temperature melt. In contrast to significant changes in the frequency and width of the Raman nu(3) band observed in metamict zircon, the Pb+ and Au4+ irradiations do not cause similar variations, indicating that the remaining zircon crystalline domains in irradiated samples have a crystalline structure with fewer defects than those of metamict zircon. C1 [Zhang, Ming; Salje, Ekhard K. H.; Farnan, Ian] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Boatner, Lynn A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Daniel, Philippe] Univ Maine, Fac Sci, UMR CNRS 6087, LPEC, F-72085 Le Mans, France. [Weber, William J.; Zhang, Yanwen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, M (reprint author), Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England. EM mz10001@esc.cam.ac.uk RI Weber, William/A-4177-2008; Zhang, Ming/A-4773-2013; Salje, Ekhard/M-2931-2013; Boatner, Lynn/I-6428-2013; Farnan, Ian/M-3881-2014 OI Weber, William/0000-0002-9017-7365; Salje, Ekhard/0000-0002-8781-6154; Boatner, Lynn/0000-0002-0235-7594; Farnan, Ian/0000-0001-7844-5112 NR 117 TC 16 Z9 16 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144110 DI 10.1103/PhysRevB.77.144110 PG 13 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300020 ER PT J AU Zhang, XG Wang, Y Han, XF AF Zhang, X. -G. Wang, Yan Han, X. F. TI Theory of nonspecular tunneling through magnetic tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; MAGNETORESISTANCE; FILMS AB We derive a simple formalism of vertex corrections for the tunneling probability of an electron due to nonspecular scattering. Predictions of the model in terms of the barrier thickness dependence of the resistance and oscillatory tunneling magnetoresistance (TMR) are in excellent agreement with experiment. We show that the TMR is directly linked to the vertex corrections. Thus, reducing the nonspecular scattering within the barrier layer is crucial for increasing the TMR. Applying this model to the analysis of the temperature dependence of TMR yields a temperature dependent interface scattering rate. C1 [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. [Wang, Yan; Han, X. F.] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. RP Zhang, XG (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. EM xgz@ornl.gov RI Wang, Yan/G-8061-2011 OI Wang, Yan/0000-0002-8648-2172 NR 19 TC 17 Z9 17 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144431 DI 10.1103/PhysRevB.77.144431 PG 8 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300066 ER PT J AU Zong, X Das, S Borsa, F Vannette, MD Prozorov, R Schmalian, J Johnston, DC AF Zong, X. Das, S. Borsa, F. Vannette, M. D. Prozorov, R. Schmalian, J. Johnston, D. C. TI (7)Li NMR study of heavy-fermion LiV(2)O(4) containing magnetic defects SO PHYSICAL REVIEW B LA English DT Article ID SPIN-LATTICE RELAXATION; TRANSITION-METAL OXIDE; BEHAVIOR; TRANSPORT; SYSTEMS; SUSCEPTIBILITY; EQUILIBRIUM; RESISTIVITY; FRUSTRATION; IMPURITIES AB We present a systematic study of the variations of the (7)Li NMR properties versus magnetic defect concentration n(defect) within the spinel structure of polycrystalline powder samples (n(defect)=0.21, 0.49, and 0.83 mol %) and a collection of small single crystals (n(defect)=0.38 mol %) of LiV(2)O(4) in the temperature range from 0.5 to 4.2 K. We also report static magnetization measurements and ac magnetic susceptibility measurements at 14 MHz on the samples at low temperatures. Both the (7)Li NMR spectrum and nuclear spin-lattice relaxation rate are inhomogeneous in the presence of the magnetic defects. The (7)Li NMR data for the powders are well explained by assuming that (i) there is a random distribution of magnetic point defects, (ii) the same heavy Fermi liquid is present in the samples containing the magnetic defects as in magnetically pure LiV(2)O(4), and (iii) the influences of the magnetic defects and of the Fermi liquid on the magnetization and NMR properties are separable. In the single crystals, somewhat different behaviors are observed, which are possibly due to a modification of the heavy Fermi liquid, to a lack of separability of the relaxation effects due to the Fermi liquid and the magnetic defects, to non-Fermi liquid behavior of the conduction electrons, and/or to quantum fluctuations of finite-size magnetic defects (magnetic droplets). Remarkably, the magnetic defects in the powder samples show evidence of spin freezing below T approximate to 1.0 K, whereas in the single crystals with similar magnetic defect concentration, no spin freezing was found down to T=0.5 K. Thus, different types of magnetic defects and/or interactions between them appear to arise in the powders versus the crystals, which are possibly due to the substantially different synthesis conditions of the powders and crystals. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Zong, X (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Zong, Xiaopeng/F-1529-2011; Schmalian, Joerg/H-2313-2011; Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 NR 38 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR PY 2008 VL 77 IS 14 AR 144419 DI 10.1103/PhysRevB.77.144419 PG 17 WC Physics, Condensed Matter SC Physics GA 295EH UT WOS:000255457300054 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCDLB Callner, J Catu, O Cebra, D Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Chernev, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YG Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Horner, MJ Huang, HZ Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kumar, A Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Pal, SK Panebratsev, Y Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Qattan, IA Raniwala, R Raniwala, S Ray, RL Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Vernet, R Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Wu, Y Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S. -L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Chernev, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. G. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Horner, M. J. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kumar, A. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Qattan, I. A. Raniwala, R. Raniwala, S. Ray, R. L. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, Y. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Enhanced strange baryon production in Au+Au collisions compared to p+p at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID LARGE TRANSVERSE-MOMENTUM; PB-PB COLLISIONS; HADRONIC COLLISIONS; REACTION VOLUME; RAPIDITY; SPECTRA AB We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at s(NN)=200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy s(NN)=17.3 GeV. The previous observations are for the bulk production, while at intermediate p(T),1 < p(T)< 4 GeV/c, the strange baryons even exceed binary scaling from p+p yields. C1 [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Laue, F.; Lauret, J.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Potekhin, M.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hughes, E. W.; Relyea, D.] CALTECH, Pasadena, CA 91125 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Haag, B.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Ma, J. G.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Videbaek, F.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Abelev, B. I.; Balewski, J.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Chernev, M.; Gorbunov, Y. G.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Pachr, M.; Sumbera, M.] Nucl Phys Inst AS CR, CZ-25068 Rez, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. [Dietel, T.; Kollegger, T.; Lange, S.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Balewski, J.; Jacobs, W. W.; Qattan, I. A.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Coffin, J. P.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.; Speltz, J.; Vernet, R.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Subba, N. L.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Blyth, S. -L.; Dong, X.; Edwards, W. R.; Hjort, E.; Horner, M. J.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Kowalik, K. L.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; van Leeuwen, M.; Wieman, H.; Xu, N.; Xu, Q. H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.; Surrow, B.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.] NIKHEF, Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Kumar, A.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Porile, N.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Wang, F.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; de Moura, M. M.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Liu, H.; Lu, Y.; Shao, M.; Tang, Z.; Wang, X. L.; Wu, Y.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, J. G.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Bouchet, J.; Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Gagliardi, C. A.; Hamed, A.; Henry, T. W.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; LaPointe, S.; Li, Q.; Pavlinov, A. I.; Pruneau, C.; Selyuzhenkov, I.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Fu, J.; Lin, X.; Liu, L.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Salur, S.; Sandweiss, J.; Smirnov, N.; Witt, R.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Barnby, Lee/G-2135-2010; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014 OI Qattan, Issam/0000-0001-5079-9840; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Mohanty, Bedangadas/0000-0001-9610-2914; Bhasin, Anju/0000-0002-3687-8179; van Leeuwen, Marco/0000-0002-5222-4888; Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323 NR 43 TC 56 Z9 58 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 044908 DI 10.1103/PhysRevC.77.044908 PG 7 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700049 ER PT J AU De Masi, R Garcon, M Zhao, B Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, J Ball, JP Baltzell, NA Batourine, V Battaglieri, M Bedlinskiy, I Bellis, M Benmouna, N Berman, BL Bertin, P Biselli, AS Blaszczyk, L Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Casey, L Chen, S Cheng, L Cole, PL Collins, P Coltharp, P Crabb, D Crede, V Dashyan, N De Sanctis, E De Vita, R Degtyarenko, PV Deur, A Dharmawardane, KV Dickson, R Djalali, C Dodge, GE Donnelly, J Doughty, D Dugger, M Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Feldman, G Fradi, A Funsten, H Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gonenc, A Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hafidi, K Hakobyan, H Hanretty, C Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kalantarians, N Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Klimenko, AV Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Livingston, K Lu, HY MacCormick, M Markov, N Mattione, P Mazouz, M McKinnon, B Mecking, BA Mestayer, MD Meyer, CA Mibe, T Michel, B Mikhailov, K Mirazita, M Miskimen, R Mokeev, V Moreno, B Moriya, K Morrow, SA Moteabbed, M Munevar, E Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pereira, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Pozdniakov, S Price, JW Procureur, S Prok, Y Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Sabatie, F Salamanca, J Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shvedunov, NV Smith, ES Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, S Stepanyan, SS Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Tkabladze, A Tkachenko, S Tur, C Ungaro, M Vineyard, MF Vlassov, AV Voutier, E Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L Zhang, J Zhao, ZW AF De Masi, R. Garcon, M. Zhao, B. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. Ball, J. P. Baltzell, N. A. Batourine, V. Battaglieri, M. Bedlinskiy, I. Bellis, M. Benmouna, N. Berman, B. L. Bertin, P. Biselli, A. S. Blaszczyk, L. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bultmann, S. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Casey, L. Chen, S. Cheng, L. Cole, P. L. Collins, P. Coltharp, P. Crabb, D. Crede, V. Dashyan, N. De Sanctis, E. De Vita, R. Degtyarenko, P. V. Deur, A. Dharmawardane, K. V. Dickson, R. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Dugger, M. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Feldman, G. Fradi, A. Funsten, H. Gavalian, G. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gonenc, A. Gothe, R. W. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Gyurjyan, V. Hafidi, K. Hakobyan, H. Hanretty, C. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kalantarians, N. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Lee, T. Livingston, K. Lu, H. Y. MacCormick, M. Markov, N. Mattione, P. Mazouz, M. McKinnon, B. Mecking, B. A. Mestayer, M. D. Meyer, C. A. Mibe, T. Michel, B. Mikhailov, K. Mirazita, M. Miskimen, R. Mokeev, V. Moreno, B. Moriya, K. Morrow, S. A. Moteabbed, M. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Ronchetti, F. Rosner, G. Rossi, P. Sabatie, F. Salamanca, J. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shvedunov, N. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. Stepanyan, S. S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkabladze, A. Tkachenko, S. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Voutier, E. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. Zhang, J. Zhao, Z. W. CA CLAS Collaboration TI Measurement of ep -> ep pi(0) beam spin asymmetries above the resonance region SO PHYSICAL REVIEW C LA English DT Article ID EXCLUSIVE ELECTROPRODUCTION; CLAS; ENERGIES; MESONS; PHOTOPRODUCTION; HYDROGEN; PION AB The beam spin asymmetry (BSA) in the exclusive reaction ep -> ep pi(0) was measured with the CEBAF 5.77 GeV polarized electron beam and Large Acceptance Spectrometer (CLAS). The x(B),Q(2),t, and phi dependences of the pi(0) BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sin phi function and their amplitudes are extracted. Overall, they are of the order of 0.04-0.11 and roughly independent of t. This is the signature of a nonzero longitudinal-transverse interference. The implications concerning the applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge formalism at high photon virtualities, are discussed. C1 [De Masi, R.; Garcon, M.; Ball, J.; Girod, F. X.; Procureur, S.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Zhao, B.; Joo, K.; Markov, N.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [El Fassi, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Bradford, R.; Dickson, R.; Krahn, Z.; Kuhn, J.; Kuhn, S. E.; Lachniet, J.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Cheng, L.; Klein, F. J.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. Christopher Newport Univ, Newport News, VA 23606 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Ambrozewicz, P.; Gonenc, A.; Moteabbed, M.] Florida Int Univ, Miami, FL 33199 USA. [Blaszczyk, L.; Chen, S.; Coltharp, P.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Feldman, G.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Strakovsky, I. I.] George Washington Univ, Washington, DC 20052 USA. [Donnelly, J.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Paterson, C.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Ronchetti, F.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bedlinskiy, I.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Michel, B.] Univ Clermont Ferrand, LPC Clermont Ferrand, CNRS, IN2P3, F-63177 Aubiere, France. [Mazouz, M.; Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, F-38026 Grenoble, France. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Batourine, V.; Kim, W.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Lawrence, D.; Miskimen, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Fedotov, G.; Ishkhanov, B. S.; Isupov, E. L.; Sharov, D.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, RU-119899 Moscow, Russia. [Calarco, J. R.; Hersman, F. W.; Holtrop, M.; Lee, T.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hicks, K.; Hleiqawi, I.; Mibe, T.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Bultmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Kalantarians, N.; Klein, A.; Klimenko, A. V.; Kuhn, S. E.; Niroula, M. R.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Bouchigny, S.; Fradi, A.; Guidal, M.; Jo, H. S.; MacCormick, M.; Moreno, B.; Niccolai, S.] Inst Phys Nucl, F-91406 Orsay, France. [Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Mattione, P.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [Baltzell, N. A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Langheinrich, J.; Lu, H. Y.; Tedeschi, D. J.; Tur, C.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Avakian, H.; Boiarinov, S.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Degtyarenko, P. V.; Deur, A.; Egiyan, H.; Elouadrhiri, L.; Guo, L.; Gyurjyan, V.; Ito, M. M.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Jenkins, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Crabb, D.; Pierce, J.; Pocanic, D.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Baillie, N.; Butuceanu, C.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Asryan, G.; Dashyan, N.; Egiyan, K. S.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP De Masi, R (reprint author), CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. RI Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012 OI Osipenko, Mikhail/0000-0001-9618-3013; Sapunenko, Vladimir/0000-0003-1877-9043; Hyde, Charles/0000-0001-7282-8120; Bellis, Matthew/0000-0002-6353-6043; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Ireland, David/0000-0001-7713-7011; NR 19 TC 29 Z9 29 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 042201 DI 10.1103/PhysRevC.77.042201 PG 5 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700007 ER PT J AU Eichmann, G Alkofer, R Cloet, IC Krassnigg, A Roberts, CD AF Eichmann, G. Alkofer, R. Cloet, I. C. Krassnigg, A. Roberts, C. D. TI Perspective on rainbow-ladder truncation SO PHYSICAL REVIEW C LA English DT Article ID DYSON-SCHWINGER EQUATIONS; CHIRAL-SYMMETRY BREAKING; HADRON PHYSICS; PION; TEMPERATURE; MASS; CONFINEMENT; THEOREM; MODEL; QCD AB Prima facie the systematic implementation of corrections to the rainbow-ladder truncation of QCD's Dyson-Schwinger equations will uniformly reduce in magnitude those calculated mass-dimensioned results for pseudoscalar and vector meson properties that are not tightly constrained by symmetries. The aim and interpretation of studies employing rainbow-ladder truncation are reconsidered in this light. C1 [Eichmann, G.; Cloet, I. C.; Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Eichmann, G.; Alkofer, R.; Krassnigg, A.] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria. RP Eichmann, G (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. OI Eichmann, Gernot/0000-0002-0546-2533 NR 49 TC 65 Z9 65 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 042202 DI 10.1103/PhysRevC.77.042202 PG 5 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700008 ER PT J AU Gao, JH Chen, SW Deng, WT Liang, ZT Wang, Q Wang, XN AF Gao, Jian-Hua Chen, Shou-Wan Deng, Wei-tian Liang, Zuo-Tang Wang, Qun Wang, Xin-Nian TI Global quark polarization in noncentral A+A collisions SO PHYSICAL REVIEW C LA English DT Article ID PLUS AU COLLISIONS; SPIN ALIGNMENT; ROOT-S(NN)=200 GEV; P+P COLLISIONS; VECTOR-MESONS; PARTON PLASMA; K-ASTERISK(0)(892); EQUILIBRATION; PHI(1020); AU+AU AB Partons produced in the early stage of noncentral heavy-ion collisions can develop a longitudinal fluid shear because of the unequal local number densities of participant target and projectile nucleons. Under such fluid shear, local parton pairs with nonvanishing impact parameters have finite local relative orbital angular momentum along the direction opposite to the reaction plane. Such a finite relative orbital angular momentum among locally interacting quark pairs can lead to global quark polarization along the same direction because of spin-orbital coupling. Local longitudinal fluid shear is estimated within both the Landau fireball and the Bjorken scaling model of initial parton production. Quark polarization through quark-quark scatterings with the exchange of a thermal gluon is calculated beyond the small-angle scattering approximation in a quark-gluon plasma. The polarization is shown to have a nonmonotonic dependence on the local relative orbital angular momentum dictated by the interplay between electric and magnetic interactions. It peaks at a value of relative orbital angular momentum which scales with the magnetic mass of the exchanged gluons. With the estimated small longitudinal fluid shear in semiperipheral Au+Au collisions at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), the final quark polarization is found to be small |P-q|< 0.04 in the weak coupling limit. Possible behavior of the quark polarization in the strong coupling limit and implications on the experimental detection of such global quark polarization at RHIC and CERN Large Hadron Collider (LHC) are also discussed. C1 [Gao, Jian-Hua; Deng, Wei-tian; Liang, Zuo-Tang; Wang, Xin-Nian] Shandong Univ, Dept Phys, Jinan 250100, Shandong, Peoples R China. [Chen, Shou-Wan; Wang, Qun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Deng, Wei-tian; Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Gao, JH (reprint author), Shandong Univ, Dept Phys, Jinan 250100, Shandong, Peoples R China. RI Gao, Jianhua/O-9550-2014; OI Wang, Xin-Nian/0000-0002-9734-9967 NR 31 TC 24 Z9 24 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 044902 DI 10.1103/PhysRevC.77.044902 PG 13 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700043 ER PT J AU Hirano, T Heinz, U Kharzeev, D Lacey, R Nara, Y AF Hirano, Tetsufumi Heinz, Ulrich Kharzeev, Dmitri Lacey, Roy Nara, Yasushi TI Mass ordering of differential elliptic flow and its violation for phi mesons SO PHYSICAL REVIEW C LA English DT Review ID QUARK-GLUON-PLASMA; HEAVY-ION COLLISIONS; NUCLEUS-NUCLEUS COLLISIONS; COLOR GLASS CONDENSATE; HIGH-DENSITY QCD; RELATIVISTIC HYDRODYNAMICS; HADRON-PRODUCTION; AU COLLISIONS; CASCADE MODEL; ENERGY AB We simulate the dynamics of Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) with a hybrid model that treats the dense early quark-gluon plasma (QGP) stage macroscopically as an ideal fluid but models the dilute late hadron resonance gas (HG) microscopically using a hadronic cascade. By comparing with a pure hydrodynamic approach we identify effects of hadronic viscosity on the transverse momentum spectra and differential elliptic flow v(2)(p(T)). We investigate the dynamical origins of the observed mass ordering of v(2)(p(T)) for identified hadrons, focusing on dissipative effects during the late hadronic stage. Within our approach, we find that, at RHIC energies, much of the finally observed mass splitting is generated during the hadronic stage, due to buildup of additional radial flow. The phi meson, having a small interaction cross section, does not fully participate in this additional flow. As a result, it violates the mass-ordering pattern for v(2)(p(T)) that is observed for other hadron species. We also show that the early decoupling of the phi meson from the hadronic rescattering dynamics leads to interesting and unambiguous features in the p(T) dependence of the nuclear suppression factor R(AA) and of the phi/p ratio. C1 [Hirano, Tetsufumi] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Heinz, Ulrich] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Heinz, Ulrich] CERN, Dept Phys, Div Theory, CH-1211 Geneva, Switzerland. [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Nucl Theory Grp, Upton, NY 11973 USA. [Lacey, Roy] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Nara, Yasushi] Akita Int Univ, Akita 0101211, Japan. RP Hirano, T (reprint author), Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. EM hirano@phys.s.u-tokyo.ac.jp NR 114 TC 84 Z9 84 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 044909 DI 10.1103/PhysRevC.77.044909 PG 13 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700050 ER PT J AU Hofmann, HM Hale, GM AF Hofmann, H. M. Hale, G. M. TI (4)He experiments can serve as a database for determining the three-nucleon force SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON-NUCLEON-INTERACTION; ELASTIC-SCATTERING; LOW-ENERGY; POLARIZED NEUTRONS; ANALYZING POWERS; PREDICTIONS; PROTON; SYSTEM; STATES AB We report on microscopic calculations for the (4)He compound system in the framework of the resonating group model employing realistic nucleon-nucleon and three-nucleon forces. The resulting scattering phase shifts are compared with those of a comprehensive R-matrix analysis of all data in this system, which are available in numerical form. The agreement between calculation and analysis is very good in most cases. Adding three-nucleon forces yields large effects in many cases. For a few cases, the new agreement is striking. We relate some differences between calculation and analysis to specific data and discuss experiments necessary to clarify the situation. From the results, we conclude that the data of the (4)He system might be well suited to determining the structure of the three-nucleon force. C1 [Hofmann, H. M.] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany. [Hale, G. M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hofmann, HM (reprint author), Univ Erlangen Nurnberg, Inst Theoret Phys 3, Staudtstr 7, D-91058 Erlangen, Germany. NR 67 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 044002 DI 10.1103/PhysRevC.77.044002 PG 21 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700013 ER PT J AU Hoteling, N Walters, WB Janssens, RVF Broda, R Carpenter, MP Fornal, B Hecht, AA Hjorth-Jensen, M Krolas, W Lauritsen, T Pawlat, T Seweryniak, D Stone, JR Wang, X Wohr, A Wrzesinski, J Zhu, S AF Hoteling, N. Walters, W. B. Janssens, R. V. F. Broda, R. Carpenter, M. P. Fornal, B. Hecht, A. A. Hjorth-Jensen, M. Krolas, W. Lauritsen, T. Pawlat, T. Seweryniak, D. Stone, J. R. Wang, X. Wohr, A. Wrzesinski, J. Zhu, S. TI Rotation-aligned coupling in Fe-61 SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL; ISOTOPES; NUCLEI; DECAY; DEFORMATION; PARTICLE AB New levels have been established above the 861-keV, 9/2(+) isomeric state in Fe-61. The observations can be reproduced satisfactorily by shell model calculations, but only after a significant lowering of the nu g(9/2) single-particle energy with respect to the value determined empirically from levels outside a Ca-48 core. The results are also described well within the scope of the particle-triaxial-rotor model assuming a deformation beta(2)similar to 0.24. The present findings, together with the recently measured magnetic and quadrupole moments of this state, point toward a structure possibly associated with a prolate shape. C1 [Hoteling, N.; Walters, W. B.; Hecht, A. A.; Stone, J. R.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Hoteling, N.; Janssens, R. V. F.; Carpenter, M. P.; Hecht, A. A.; Lauritsen, T.; Seweryniak, D.; Wang, X.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Broda, R.; Fornal, B.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Stone, J. R.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Wang, X.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Hoteling, N (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RI Hjorth-Jensen, Morten/B-1417-2008; Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 26 TC 22 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 044314 DI 10.1103/PhysRevC.77.044314 PG 7 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700032 ER PT J AU Julia-Diaz, B Lee, TSH Matsuyama, A Sato, T Smith, LC AF Julia-Diaz, B. Lee, T. -S. H. Matsuyama, A. Sato, T. Smith, L. C. TI Dynamical coupled-channels effects on pion photoproduction SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON RESONANCE REGION; MESON PRODUCTION; N SCATTERING; MODEL; UNITARY; DECAYS AB The electromagnetic pion production reactions are investigated within the dynamical coupled-channels model developed by Matsuyama, Sato, and Lee [Phys. Rep. 439, 193 (2007)]. The meson-baryon channels included in this study are gamma N, pi N, eta N, and the pi Delta, rho N, and sigma N resonant components of the pi pi N channel. With the hadronic parameters of the model determined in a recent study of pi N scattering, we show that the pion photoproduction data up to the second resonance region can be described to a very large extent by only adjusting the bare gamma N -> N* helicity amplitudes, while the nonresonant electromagnetic couplings are taken from previous works. It is found that the coupled-channels effects can contribute about 30-40 % of the production cross sections in the Delta (1232) resonance region, and can drastically change the magnitude and shape of the cross sections in the second resonance region. The importance of the loop-integrations in a dynamical approach is also demonstrated. The meson cloud effects as well as the coupled-channels contributions to the gamma N -> N* form factors are found to be mainly in the low Q(2) region. Necessary improvements to the model and future developments are discussed. C1 [Julia-Diaz, B.; Lee, T. -S. H.; Matsuyama, A.; Sato, T.; Smith, L. C.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 22901 USA. [Julia-Diaz, B.] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Matsuyama, A.] Shizuoka Univ, Dept Phys, Shizuoka 4228529, Japan. [Sato, T.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Smith, L. C.] Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. RP Julia-Diaz, B (reprint author), Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 22901 USA. RI Julia-Diaz, Bruno/E-5825-2010 OI Julia-Diaz, Bruno/0000-0002-0145-6734 NR 38 TC 66 Z9 66 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 045205 DI 10.1103/PhysRevC.77.045205 PG 9 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700055 ER PT J AU Li, Y Liou, MK Schreiber, WM Gibson, BF Timmermans, RGE AF Li, Yi Liou, M. K. Schreiber, W. M. Gibson, B. F. Timmermans, R. G. E. TI Meson exchange currents in neutron-proton bremsstrahlung SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON-NUCLEON BREMSSTRAHLUNG; PI-N COUPLINGS; PSEUDOSCALAR; PHOTONS AB Background: The meson exchange current (MEC) contribution is important in the neutron-proton bremsstrahlung process (np gamma) when the two nucleon-scattering angles are small. However, our understanding of such effects is limited, and the reason why meson exchange current effects dominate the np gamma cross section has not been thoroughly investigated. Purpose: The primary focus of this investigation is to understand the origin of the MEC contribution, to identify the leading MEC amplitudes, and to comprehend why these MEC amplitudes dominate the np gamma cross sections. Method: We used a new method that combines the one-boson-exchange (OBE) approach with the soft-photon approach to define 10 different np gamma amplitudes. These amplitudes are used to calculate np gamma cross sections at 225 MeV for nucleon laboratory scattering angles lying between 12(degrees) and 43(degrees). The results of these calculations are then compared to investigate the meson exchange current effect in np gamma. Results: (i) The OBE amplitude M-np gamma,mu(PS) and the two-u-two-t special (TuTts) soft-photon amplitude M-np gamma,mu(TuTts) predict quantitatively similar np gamma cross sections. (ii) The MEC effect is found to be significant when the two nucleon-scattering angles are far from the elastic limit (45(degrees)), but the effect is insignificant when the nucleon angles approach the elastic limit. (iii) The origin of the MEC effect and the leading MEC amplitudes have been identified in this investigation. Furthermore, the reason is now clear why the leading MEC amplitudes dominate the np gamma cross section when the nucleon-scattering angles are small. (iv) The contribution from the anomalous magnetic moments of the proton and the neutron is confirmed to be negligibly small. (v) In general, the theoretical cross sections using the amplitude M-np gamma,mu(PS), or the amplitude M-np gamma,mu(TuTts), are consistent with the triple differential cross sections recently measured at the Los Alamos National Laboratory. However, there exists an unexplained discrepancy between theory and experiment in some cases. Conclusions: The findings of this investigation have enhanced our understanding of the meson exchange current effect in np gamma. The comparative amplitude method introduced can be used for other bremsstrahlung investigations. C1 [Li, Yi] Guangxi Univ, Coll Phys & Technol, Nanning 530004, Guangxi, Peoples R China. [Liou, M. K.] CUNY Brooklyn Coll, Dept Phys, Brooklyn, NY 11210 USA. [Liou, M. K.] CUNY Brooklyn Coll, Inst Nucl Theory, Brooklyn, NY 11210 USA. [Schreiber, W. M.] CUNY Coll Staten Isl, Dept Phys, Staten Isl, NY 10314 USA. [Gibson, B. F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Timmermans, R. G. E.] Univ Groningen, Theory Grp, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. RP Li, Y (reprint author), Guangxi Univ, Coll Phys & Technol, Nanning 530004, Guangxi, Peoples R China. NR 15 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 044001 DI 10.1103/PhysRevC.77.044001 PG 9 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700012 ER PT J AU Lotay, G Woods, PJ Seweryniak, D Carpenter, MP Hoteling, N Janssens, RVF Jenkins, DG Lauritsen, T Lister, CJ Robinson, A Zhu, S AF Lotay, G. Woods, P. J. Seweryniak, D. Carpenter, M. P. Hoteling, N. Janssens, R. V. F. Jenkins, D. G. Lauritsen, T. Lister, C. J. Robinson, A. Zhu, S. TI First in-beam gamma-ray spectroscopy study of (24)Al and its implications for the astrophysical (23)Mg(p,gamma)(24)Al reaction rate in ONe novae SO PHYSICAL REVIEW C LA English DT Article ID THERMONUCLEAR REACTION-RATE; NUCLEOSYNTHESIS AB The first in-beam gamma-ray spectroscopy study of (24)Al is presented. A complete level structure of (24)Al incorporating all states below the proton-emission threshold, has been constructed. The first excited state above the proton threshold has also been identified as a 3(+) state at 2345.1 +/- 1.4 keV. This state, corresponding to a resonance energy of 473 +/- 3 keV, has been suggested to be the dominant resonance contributing to the (23)Mg(p,gamma)(24)Al stellar reaction rate. The improved precision of the level energy and unambiguous assignment of the state has reduced the uncertainty of the (23)Mg(p,gamma)(24)Al stellar reaction rate, which constrains the production of A>20 nuclei in ONe novae. C1 [Lotay, G.; Woods, P. J.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Seweryniak, D.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Robinson, A.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hoteling, N.] Univ Maryland, College Pk, MD 20742 USA. [Jenkins, D. G.] Univ York, Heslington YO10 5DD, England. RP Lotay, G (reprint author), Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 20 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR PY 2008 VL 77 IS 4 AR 042802 DI 10.1103/PhysRevC.77.042802 PG 5 WC Physics, Nuclear SC Physics GA 295EL UT WOS:000255457700011 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of ratios of fragmentation fractions for bottom hadrons in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID SILICON VERTEX TRACKER; Z-DECAYS; BRANCHING FRACTIONS; CDF EXPERIMENT; MIXING PARAMETER; DETECTOR; LIFETIME; CALORIMETER; PERFORMANCE; LEPTONS AB This paper describes the first measurement of b-quark fragmentation fractions into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result is based on a 360 pb(-1) sample of data collected with the CDF II detector in p (p) over bar collisions at root s = 1.96 TeV. Semileptonic decays of (B) over bar (0), B-, and (B) over bar (0)(s) mesons, as well as Lambda(0)(b) baryons, are reconstructed. For an effective bottom hadron p(T) threshold of 7 GeV/c, the fragmentation fractions are measured to be f(u)/f(d)=1.054 +/- 0.018(stat)(-0.045)(+0.025)(sys)+/- 0.058(B), f(s)/(f(u)+f(d))=0.160 +/- 0.005(stat)(-0.010)(+0.011)(sys)(-0.034)(+0.057)(B), and f(Lambda b)/(f(u)+f(d))=0.281 +/- 0.012(stat)(-0.056)(+0.058)(sys)(-0.087)(+0.128)(B), where the uncertainty B is due to uncertainties on measured branching ratios. The value of f(s)/(f(u)+f(d)) agrees within one standard deviation with previous CDF measurements and the world average of this quantity, which is dominated by LEP measurements. However, the ratio f(Lambda b)/(f(u)+f(d)) is approximately twice the value previously measured at LEP. The approximately 2 sigma discrepancy is examined in terms of kinematic differences between the two production environments. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander 39005, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tkaczyk, S.; Tonelli, D.; Torre, S.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Gold, M.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, W.] Univ Karlsruhe, D-76128 Karlsruhe, Germany. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martinez, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beretvas, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Hou, S.; Manca, G.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malde, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carrillo, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3 CNRS, UMR7585, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Plager, C.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Volpi, G.] Univ Pisa Siena & Scuola Normale Super, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hare, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Merkel, P.] Purdue Univ, W Lafayette, IN 47907 USA. [Bocci, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Convery, M. E.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Saarikko, H.; Salamanna, G.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.] Texas A&M Univ, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Aoki, M.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takashima, R.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, D.; Napier, A.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Beauchemin, P. -H.; Buzatu, A.; Carrillo, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Wagner, W.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015 OI Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133 NR 59 TC 21 Z9 21 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 072003 DI 10.1103/PhysRevD.77.072003 PG 31 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800006 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carrillo, S Carlsmith, D Carosi, R Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Paoli, FD Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Dorr, C Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carrillo, S. Carlsmith, D. Carosi, R. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Paoli, F. Delli Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Dorr, C. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, E. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaborat TI Measurement of correlated b(b)over-bar production in p(p)over-bar collisions at root s=1960 GeV SO PHYSICAL REVIEW D LA English DT Article ID QUARK FRAGMENTATION FUNCTIONS; LUND MONTE-CARLO; LUMINOSITY MONITOR; E+E ANNIHILATION; CROSS-SECTIONS; Z-DECAYS; CDF; DETECTOR; TEV; QCD AB We present a measurement of the correlated b (b) over bar production cross section. The data used in this analysis were taken with the upgraded CDF detector (CDF II) at the Fermilab Tevatron collider, and correspond to an integrated luminosity of 742 pb(-1). We utilize muon pairs with invariant mass 5 <= m(mu mu)<= 80 GeV/c(2) produced by b (b) over bar double semileptonic decays. For muons with p(T)>= 3 GeV/c and /eta/<= 0.7, that are produced by b and (b) over bar quarks with p(T)>= 2 GeV/c and /y/<= 1.3, we measure sigma(b ->mu,)(b) over bar (->mu)=1549 +/- 133 pb. We compare this result with theoretical predictions and previous measurements. We also report the measurement of sigma(c ->mu,c over bar ->mu), a by-product of the study of the background to b(b) over bar production. C1 [Chen, Y. C.; Hou, S.; Lu, R. -S.; Teng, P. K.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Attal, A.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Norniella, O.; Portell, X.; Salto, O.] Autonomous Univ Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Margaroli, F.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Mohr, B.; Plager, C.; Stelzer, B.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Affolder, T.; Hsu, S. -C.; Lipeles, E.; Neubauer, M. S.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Affolder, T.; Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Krutelyov, V.; Mills, C.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Casal, B.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Brubaker, E.; Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Furic, I.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Rusu, V.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Albrow, M. G.; Benjamin, D.; Bocci, A.; Cabrera, S.; Coca, M.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Anikeev, K.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Chlebana, F.; Culbertson, R.; Datta, M.; Dagenhart, D.; Derwent, P. F.; Eusebi, R.; Ginsburg, C.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lindgren, M.; Lukens, P.; Maeshima, K.; Marginean, R.; Miao, T.; Moore, R.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Roser, R.; Sato, K.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tkaczyk, S.; Torretta, D.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolfe, C.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Goldschmidt, N.; Goldstein, J.; Jindariani, S.; Klimenko, S.; Konigsberg, J.; Lungu, G.; Mitselmakher, G.; Okusawa, T.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Campanelli, M.; Campbell, M.; Clark, A.; Clark, D.; Hamilton, A.; Lefevre, R.; Moed, S.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Busetto, G.; Bussey, P.; D'Auria, S.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Aaltonen, T.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Holloway, A.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Jung, J. E.; Rogers, E.; Veramendi, G.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Martin, M.; Mumford, R.; Pursley, J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Dorr, C.; Feindt, M.; Heck, M.; Herndon, M.; Hirschbuehl, D.; Kemp, Y.; Kerzel, U.; Kreps, M.; Kuhr, T.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Miyamoto, A.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 305, Japan. [Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Junk, T. R.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. [Barbaro-Galtieri, A.; Barnes, V. E.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muller, Th.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Fernandez, J. P.; Gonzalez, O.; Lancaster, M.; Malik, S.; Martinez-Ballarin, R.; Nurse, E.; Redondo, I.; Vidal, M.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Bauer, G.; Belloni, A.; Bolshov, A.; Chou, J. P.; Field, R.; Gomez, G.; Gonzalez, O.; Hahn, K.; Henderson, C.; Iyutin, B.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Martinez-Ballarin, R.; Miles, J.; Paus, C.; Redondo, I.; Vidal, M.; Wicklund, E.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Amidei, D.; Bauer, G.; Belloni, A.; Campbell, M.; Choudalakis, G.; Copic, K.; Cully, J. C.; Gerdes, D.; Gomez-Ceballos, G.; Hahn, S. R.; Henderson, C.; Iyutin, B.; Klute, M.; Paus, C.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] MIT, Cambridge, MA 02139 USA. [Amidei, D.; Bromberg, C.; Campbell, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Michigan State Univ, E Lansing, MI 48824 USA. [Schmitt, M.; Stentz, D.] Univ New Mexico, Albuquerque, NM 87131 USA. [Efron, J.; Hughes, R. E.; Klimenko, S.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Northwestern Univ, Evanston, IL 60208 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Tsuno, S.; Yamashita, T.] Ohio State Univ, Columbus, OH 43210 USA. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.] Okayama Univ, Okayama 7008530, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; DaRonco, S.; Paoli, F. Delli; Dorr, C.; Donini, J.; Gresele, A.; Lazzizzera, I.; Loreti, M.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Lucchesi, D.] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS UMR 7585, IN2P3, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kraan, A. C.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Cilijak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Introzzi, G.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Staveris-Polykalas, A.; Tonelli, D.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Cilijak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donini, J.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Introzzi, G.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Staveris-Polykalas, A.; Tonelli, D.; Turini, N.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Manousakis, A.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Budd, S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Convery, M. E.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Jang, D.; Lath, A.; Somalwar, S.; Yamaoka, J.; Zhou, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Aoki, M.; Hara, K.; Kim, S. H.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Nagano, A.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Bellinger, J.; Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Nagano, A.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Gay, C.; Husemann, U.; Lin, C.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Oh, S. H.; Suh, J. S.; Yang, Y. C.] Sungkyunkwan Univ, Suwon 440746, South Korea. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; NR 67 TC 19 Z9 19 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 072004 DI 10.1103/PhysRevD.77.072004 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800007 ER PT J AU Adamson, P Andreopoulos, C Arms, KE Armstrong, R Auty, DJ Avvakumov, S Ayres, DS Baller, B Barish, B Barnes, PD Barr, G Barrett, WL Beall, E Becker, BR Belias, A Bernstein, RH Bhattacharya, D Bishai, M Blake, A Bock, B Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Border, PM Bower, C Buckley-Geer, E Cabrera, A Cavanaugh, S Chapman, JD Cherdack, D Childress, S Choudhary, BC Cobb, JH Coleman, SJ Culling, AJ De Jong, JK Dierckxsens, M Diwan, MV Dorman, M Drakoulakos, D Durkin, T Dytman, SA Erwin, AR Escobar, CO Evans, JJ Harris, EF Feldman, GJ Fields, TH Ford, R Frohne, MV Gallagher, HR Godley, A Gogos, J Goodman, MC Gouffon, P Gran, R Grashorn, EW Grossman, N Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hartouni, EP Hatcher, R Heller, K Himmel, A Holin, A Howcroft, C Hylen, J Indurthy, D Irwin, GM Ishitsuka, M Jaffe, DE James, C Jenner, L Jensen, D Kafka, T Kang, HJ Kasahara, SMS Kim, MS Koizumi, G Kopp, S Kordosky, M Koskinen, DJ Kotelnikov, SK Kreymer, A Kumaratunga, S Lang, K Lebedev, A Lee, R Ling, J Liu, J Litchfield, PJ Litchfield, RP Loiacono, L Lucas, P Mann, WA Marchionni, A Marino, AD Marshak, ML Marshall, JS Mayer, N McGowan, AM Meier, JR Merzon, GI Messier, MD Metelko, CJ Michael, DG Milburn, RH Miller, JL Miller, WH Mishra, SR Mislivec, A Moore, CD Morfin, J Mualem, L Mufson, S Murgia, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, WP Osiecki, T Ospanov, R Paley, J Paolone, V Para, A Patzak, T Pavlovic, Z Pearce, GF Peck, CW Peterson, EA Petyt, DA Ping, H Pittam, R Plunkett, RK Rahman, D Rameika, RA Raufer, TM Rebel, B Reichenbacher, J Reyna, DE Rodrigues, PA Rosenfeld, C Rubin, HA Ruddick, K Ryabov, VA Saakyan, R Sanchez, MC Saoulidou, N Schneps, J Schreiner, P Semenov, VK Seun, SM Shanahan, P Smart, W Smirnitsky, V Smith, C Sousa, A Speakman, B Stamoulis, P Strait, M Symes, PA Tagg, N Talaga, RL Tetteh-Lartey, E Thomas, J Thompson, J Thomson, MA Thron, JL Tinti, G Trostin, I Tsarev, VA Tzanakos, G Urheim, J Vahle, P Verebryusov, V Viren, B Ward, CP Ward, DR Watabe, M Weber, A Webb, RC Wehmann, A West, N White, C Wojcicki, SG Wright, DM Yang, T Zheng, H Zois, M Zwaska, R AF Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. Auty, D. J. Avvakumov, S. Ayres, D. S. Baller, B. Barish, B. Barnes, P. D., Jr. Barr, G. Barrett, W. L. Beall, E. Becker, B. R. Belias, A. Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. Bock, B. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Border, P. M. Bower, C. Buckley-Geer, E. Cabrera, A. Cavanaugh, S. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Coleman, S. J. Culling, A. J. De Jong, J. K. Dierckxsens, M. Diwan, M. V. Dorman, M. Drakoulakos, D. Durkin, T. Dytman, S. A. Erwin, A. R. Escobar, C. O. Evans, J. J. Harris, E. Falk Feldman, G. J. Fields, T. H. Ford, R. Frohne, M. V. Gallagher, H. R. Godley, A. Gogos, J. Goodman, M. C. Gouffon, P. Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hartouni, E. P. Hatcher, R. Heller, K. Himmel, A. Holin, A. Howcroft, C. Hylen, J. Indurthy, D. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. James, C. Jenner, L. Jensen, D. Kafka, T. Kang, H. J. Kasahara, S. M. S. Kim, M. S. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. Kotelnikov, S. K. Kreymer, A. Kumaratunga, S. Lang, K. Lebedev, A. Lee, R. Ling, J. Liu, J. Litchfield, P. J. Litchfield, R. P. Loiacono, L. Lucas, P. Mann, W. A. Marchionni, A. Marino, A. D. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Meier, J. R. Merzon, G. I. Messier, M. D. Metelko, C. J. Michael, D. G. Milburn, R. H. Miller, J. L. Miller, W. H. Mishra, S. R. Mislivec, A. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Murgia, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. Pavlovic, Z. Pearce, G. F. Peck, C. W. Peterson, E. A. Petyt, D. A. Ping, H. Pittam, R. Plunkett, R. K. Rahman, D. Rameika, R. A. Raufer, T. M. Rebel, B. Reichenbacher, J. Reyna, D. E. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. Saakyan, R. Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. Semenov, V. K. Seun, S. -M. Shanahan, P. Smart, W. Smirnitsky, V. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Strait, M. Symes, P. A. Tagg, N. Talaga, R. L. Tetteh-Lartey, E. Thomas, J. Thompson, J. Thomson, M. A. Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Verebryusov, V. Viren, B. Ward, C. P. Ward, D. R. Watabe, M. Weber, A. Webb, R. C. Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Yang, T. Zheng, H. Zois, M. Zwaska, R. CA Minos Collaboration TI Study of muon neutrino disappearance using the Fermilab Main Injector neutrino beam SO PHYSICAL REVIEW D LA English DT Article ID UNIFIED APPROACH; PION-PRODUCTION; RE-SCATTERING; MINOS; DETECTOR; SYSTEM; OSCILLATIONS; COLLISIONS; STATION; FLUXES AB We report the results of a search for nu(mu) disappearance by the Main Injector Neutrino Oscillation Search [D. G. Michael (MINOS), Phys. Rev. Lett. 97, 191801 (2006).]. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27x10(20) protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 nu(mu) charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to |Delta m(2)|=2.74(-0.26)(+0.44) x 10(-3) eV(2)/c(4) and sin(2)2 theta > 0.87 at 68% confidence level. C1 [Ayres, D. S.; Beall, E.; Fields, T. H.; Goodman, M. C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Drakoulakos, D.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Frohne, M. V.] Bebedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Bishai, M.; Dierckxsens, M.; Diwan, M. V.; Jaffe, D. E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, B.; Himmel, A.; Howcroft, C.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Chapman, J. D.; Culling, A. J.; Marshall, J. S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Escobar, C. O.] Univ Estadual Campinas, IF UNICAMP, BR-13083970 Campinas, SP, Brazil. Univ Paris 07, APC, Paris 13, France. [Adamson, P.; Baller, B.; Bernstein, R. H.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Buckley-Geer, E.; Childress, S.; Choudhary, B. C.; Ford, R.; Grossman, N.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Marchionni, A.; Marino, A. D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [De Jong, J. K.; James, C.] IIT, Div Phys, Chicago, IL 60616 USA. [Armstrong, R.; Bower, C.; Ishitsuka, M.] Indiana Univ, Bloomington, IN 47405 USA. Inst High Energy Phys, RU-140284 Moscow, Russia. Inst Theoret & Expt Phys, High Energy Expt Phys Dept, Moscow 117218, Russia. James Madison Univ, Dept Phys, Harrisonburg, VA 22807 USA. [Kotelnikov, S. K.] PN Lebedev Phys Inst, Dept Nucl Phys, Moscow 117924, Russia. [Barnes, P. D., Jr.; Hartouni, E. P.; Kotelnikov, S. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Adamson, P.; Dorman, M.; Holin, A.; Kordosky, M.; Koskinen, D. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Armstrong, R.; Beall, E.; Becker, B. R.; Border, P. M.; Gogos, J.; Grashorn, E. W.; Heller, K.; Jenner, L.; Kasahara, S. M. S.; Kordosky, M.; Koskinen, D. J.; Kumaratunga, S.; Litchfield, P. J.; Marshak, M. L.] Univ Minnesota, Minneapolis, MN 55455 USA. [Bock, B.; Gran, R.; Grashorn, E. W.; Habig, A.; Kasahara, S. M. S.; Kumaratunga, S.; Litchfield, P. J.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Barr, G.; Cabrera, A.; Cobb, J. H.; Evans, J. J.; Grzelak, K.; Litchfield, R. P.] Univ Oxford, Subdept Part Phys, Oxford OX1 3RH, England. Coll William & Mary, Dept Phys, Williamsburg, VA 23185 USA. [Andreopoulos, C.; Belias, A.; Durkin, T.; Hartnell, J.; Kim, M. S.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Godley, A.; Ling, J.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Avvakumov, S.; Irwin, G. M.; Kang, H. J.; Ling, J.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Harris, E. Falk; Harris, P. G.; Kang, H. J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Indurthy, D.; Kafka, T.; Kopp, S.; Lang, K.; Liu, J.; Loiacono, L.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kopp, S.; Lang, K.; Liu, J.; Mann, W. A.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Barrett, W. L.; Kafka, T.] Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. [Coleman, S. J.; Kordosky, M.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Erwin, A. R.; Kordosky, M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Kordosky, M (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23185 USA. RI Nichol, Ryan/C-1645-2008; Gouffon, Philippe/I-4549-2012; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Semenov, Vitaliy/E-9584-2017; Harris, Philip/I-7419-2012; Tinti, Gemma/I-5886-2013; Ryabov, Vladimir/E-1281-2014; Koskinen, David/G-3236-2014; Merzon, Gabriel/N-2630-2015; Evans, Justin/P-4981-2014; Kotelnikov, Sergey/A-9711-2014 OI Hartnell, Jeffrey/0000-0002-1744-7955; Bernstein, Robert/0000-0002-7610-950X; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Hartouni, Edward/0000-0001-9869-4351; Gouffon, Philippe/0000-0001-7511-4115; Ling, Jiajie/0000-0003-2982-0670; Harris, Philip/0000-0003-4369-3874; Koskinen, David/0000-0002-0514-5917; Evans, Justin/0000-0003-4697-3337; Kotelnikov, Sergey/0000-0002-8027-4612 NR 62 TC 112 Z9 112 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 072002 DI 10.1103/PhysRevD.77.072002 PG 34 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800005 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Vaissie Re, CD Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. la Vaissie Re, Ch. De Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. CA Babar Collaboration TI Time-dependent Dalitz plot analysis of B-0 ->(DK0)-K--/+pi(+/-) decays SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; MODES; GAMMA AB We present for the first time a measurement of the weak phase 2 beta+gamma obtained from a time-dependent Dalitz plot analysis of B-0 ->(DK0)-K--/+pi(+/-) decays. Using a sample of approximately 347x10(6) B (B) over bar pairs collected by the BABAR detector at the PEP-II asymmetric-energy storage rings and assuming the ratio r of the b -> u and b -> c decay amplitudes to be 0.3, we obtain 2 beta+gamma=(83 +/- 53 +/- 20)degrees and the equivalent solution at +180 degrees. The magnitudes and phases for the resonances associated with the b -> c transitions are also extracted from the fit. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sanchez, P. Del Amo; Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-44100 Ferrara, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Lab Accelerateur Lineaire, IN2P3, CNRS, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; la Vaissie Re, Ch. De; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Denis Diderot Paris 7, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis Scuola Normale Super, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Bellini, Fabio/D-1055-2009; Saeed, Mohammad Alam/J-7455-2012; Neri, Nicola/G-3991-2012; de Sangro, Riccardo/J-2901-2012; Lista, Luca/C-5719-2008; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; Forti, Francesco/H-3035-2011; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015 OI Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Bellini, Fabio/0000-0002-2936-660X; Saeed, Mohammad Alam/0000-0002-3529-9255; Neri, Nicola/0000-0002-6106-3756; de Sangro, Riccardo/0000-0002-3808-5455; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; Forti, Francesco/0000-0001-6535-7965; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633 NR 39 TC 8 Z9 8 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 071102 DI 10.1103/PhysRevD.77.071102 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800002 ER PT J AU Carena, M Medina, AD Panes, B Shah, NR Wagner, CEM AF Carena, Marcela Medina, Anibal D. Panes, Boris Shah, Nausheen R. Wagner, Carlos E. M. TI Collider phenomenology of Gauge-Higgs unification scenarios in warped extra dimensions SO PHYSICAL REVIEW D LA English DT Article ID RANDALL-SUNDRUM MODEL; FERMION MASSES; HIERARCHY; SYMMETRY; FIELDS; SPACETIME; S-1/Z(2); GRAVITY; BOSON; LHC AB We compute the couplings of the zero modes and first excited states of gluons, W's, Z gauge bosons, as well as the Higgs, to the zero modes and first excited states of the third generation quarks, in a Randall-Sundrum Gauge-Higgs unification scenario based on a bulk SO(5)xU(1)(X) gauge symmetry, with gauge and fermion fields propagating in the bulk. Using the parameter space consistent with electroweak precision tests and radiative electroweak symmetry breaking, we study numerically the dependence of these couplings on the parameters of our model. Furthermore, after emphasizing the presence of light excited states of the top quark, which couple strongly to the Kaluza-Klein gauge bosons, the associated collider phenomenology is analyzed. In particular, we concentrate on the possible detection of the first excited state of the top, t(1), which tends to have a higher mass than the ones accessible via regular QCD production processes. We stress that the detection of these particles is still possible due to an increase in the pair production of t(1) induced by the first excited state of the gluon, G(1). C1 [Carena, Marcela; Panes, Boris] Fermi Natl Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Medina, Anibal D.; Shah, Nausheen R.; Wagner, Carlos E. M.] Univ Chicago, Dept Astron & Astrophys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Medina, Anibal D.; Shah, Nausheen R.; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Panes, Boris] Catholic Univ Chile, Dept Fis, Santiago 4860, Chile. RP Carena, M (reprint author), Fermi Natl Lab, Dept Theoret Phys, Batavia, IL 60510 USA. OI Medina, Anibal/0000-0003-3662-4352 NR 52 TC 51 Z9 51 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 076003 DI 10.1103/PhysRevD.77.076003 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800065 ER PT J AU Cossu, G D'Elia, M Di Giacomo, A Lacagnina, G Pica, C AF Cossu, Guido D'Elia, Massimo Di Giacomo, Adriano Lacagnina, Giuseppe Pica, Claudio TI Monopole condensation in two-flavor adjoint QCD SO PHYSICAL REVIEW D LA English DT Article ID HYBRID MONTE-CARLO; GAUGE-THEORY; 2 FLAVORS; ALGORITHM; FERMIONS AB In QCD with adjoint fermions, the deconfining transition takes place at a lower temperature than the chiral transition. We study the two transitions by use of the Polyakov loop, the monopole order parameter, and the chiral condensate. The deconfining transition is first order, the chiral is a crossover. The order parameters for confinement are not affected by the chiral transition. We conclude that the degrees of freedom relevant to confinement are different from those describing chiral symmetry. C1 [Cossu, Guido] Scuola Normale Super Pisa, Pisa, Italy. [Cossu, Guido; Di Giacomo, Adriano] Ist Nazl Fis Nucl, Pisa, Italy. [D'Elia, Massimo] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [D'Elia, Massimo] Dipartimento Fis, I-16146 Genoa, Italy. [Di Giacomo, Adriano] Univ Pisa, Dipartimento Fis, Pisa, Italy. [Lacagnina, Giuseppe] INFN Sez, Milan, Italy. [Pica, Claudio] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Cossu, G (reprint author), Scuola Normale Super Pisa, Pisa, Italy. OI Pica, Claudio/0000-0002-0569-0376; Di Giacomo, Adriano/0000-0002-2464-9133 NR 20 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 074506 DI 10.1103/PhysRevD.77.074506 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800047 ER PT J AU Deppisch, F Freitas, A Porod, W Zerwas, PM AF Deppisch, F. Freitas, A. Porod, W. Zerwas, P. M. TI Determining heavy mass parameters in supersymmetric SO(10) models SO PHYSICAL REVIEW D LA English DT Article ID GRAND UNIFIED THEORIES; HIGGS-BOSON MASSES; LINEAR COLLIDERS; MSSM PARAMETERS; NEUTRINO MASSES; STANDARD MODEL; E(+)E(-); DECAYS; OBSERVABLES; UNIFICATION AB Extrapolations of soft scalar mass parameters in supersymmetric theories can be used to explore elements of the physics scenario near the grand unification scale. We investigate the potential of this method in the lepton sector of SO(10) which incorporates right-handed neutrino superfields. The method is exemplified in two models by exploring limits on the precision that can be expected from coherent LHC and e(+)e(-) collider analyses in the reconstruction of the fundamental scalar mass parameters at the unification scale and of the D-terms related to the breaking of grand unification symmetries. In addition, the mass of the third-generation right-handed neutrino can be estimated in seesaw scenarios. Even though the models are simplified and not intended to account for all aspects of a final comprehensive SO(10) theory, they provide nevertheless a valid base for identifying essential elements that can be inferred on the fundamental high-scale theory from high-energy experiments. C1 [Deppisch, F.; Zerwas, P. M.] Deutsch Elekt Synchrotron DESY, D-22603 Hamburg, Germany. [Deppisch, F.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Freitas, A.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Freitas, A.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Freitas, A.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Porod, W.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Zerwas, P. M.] Rhein Westfal TH Aachen, Inst Theor Phys E, D-52056 Aachen, Germany. [Zerwas, P. M.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. RP Deppisch, F (reprint author), Deutsch Elekt Synchrotron DESY, D-22603 Hamburg, Germany. EM frank.deppisch@manchester.ac.uk; afreitas@hep.anl.gov; porod@physik.uni-wuerzburg.de; zerwas@desy.de NR 65 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 075009 DI 10.1103/PhysRevD.77.075009 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800057 ER PT J AU Fukaya, H Aoki, S Hashimoto, S Kaneko, T Matsufuru, H Noaki, J Ogawa, K Onogi, T Yamada, N AF Fukaya, H. Aoki, S. Hashimoto, S. Kaneko, T. Matsufuru, H. Noaki, J. Ogawa, K. Onogi, T. Yamada, N. CA JLQCD Collaboration TI Lattice study of meson correlators in the epsilon-regime of two-flavor QCD SO PHYSICAL REVIEW D LA English DT Article ID EXACTLY MASSLESS QUARKS; CHIRAL-SYMMETRY; SIGMA-MODEL; RENORMALIZATION; FERMIONS AB We calculate mesonic two-point functions in the epsilon-regime of two-flavor QCD on the lattice with exact chiral symmetry. We use gauge configurations of size 16(3)x32 at a similar to 0.11 fm generated with dynamical overlap fermions. The sea quark mass is fixed at around 3 MeV and the valence quark mass is varied in the range 1-4 MeV, both of which are in the epsilon-regime. We find a good consistency with the expectations from the next-to-leading order calculation in the epsilon-expansion of (partially quenched) chiral perturbation theory. From a fit we obtain the pion decay constant F=87.3(5.6) MeV and the chiral condensate Sigma((MS) over bar)=[239.8(4.0) MeV](3) up to next-to-next-to-leading order contributions. C1 [Fukaya, H.] Niels Bohr Int Acad, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Hashimoto, S.; Kaneko, T.; Matsufuru, H.; Noaki, J.; Yamada, N.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Ogawa, K.] Natl Taiwan Univ, Dept Phys, Ctr Theoret Sci, Taipei 10617, Taiwan. [Ogawa, K.] Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 10617, Taiwan. [Onogi, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Fukaya, H (reprint author), Niels Bohr Int Acad, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. NR 58 TC 26 Z9 26 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 074503 DI 10.1103/PhysRevD.77.074503 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800044 ER PT J AU Harvey, JA Hill, CT Hill, RJ AF Harvey, Jeffrey A. Hill, Christopher T. Hill, Richard J. TI Standard model gauging of the Wess-Zumino-Witten term: Anomalies, global currents, and pseudo-Chern-Simons interactions SO PHYSICAL REVIEW D LA English DT Article ID PHENOMENOLOGICAL LAGRANGIANS; WARD IDENTITIES; SYMMETRY; FERMION; DECAYS AB The standard model SU(2)(L)xU(1)(Y) gauging of the Wess-Zumino-Witten term requires a modified counterterm when background fields, needed to generate the full set of currents, are introduced. The modified counterterm plays an essential role in properly defining covariant global currents and their anomalies. For example, it is required in order to correctly derive the gauge-invariant baryon number current and its anomalous divergence. The background fields can also be promoted to a description of the physical spin-1 vector and axial-vector mesons in QCD and the counterterm leads to novel interactions. These are (pseudo)Chern-Simons terms, such as epsilon(mu nu rho sigma)omega(mu)Z(nu)partial derivative(rho)A(sigma) and epsilon(mu nu rho sigma)rho(+/-)(mu)W(nu)(-/+)partial derivative(rho)A(sigma) that mediate new interactions between neutrinos and photons at finite baryon density. C1 [Harvey, Jeffrey A.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Harvey, Jeffrey A.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hill, Christopher T.; Hill, Richard J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Harvey, JA (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Hill, Richard/C-8820-2017 OI Hill, Richard/0000-0003-1982-589X NR 32 TC 41 Z9 41 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 8 AR 085017 DI 10.1103/PhysRevD.77.085017 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EN UT WOS:000255457900069 ER PT J AU Hooper, D Zurek, KM AF Hooper, Dan Zurek, Kathryn M. TI Natural supersymmetric model with MeV dark matter SO PHYSICAL REVIEW D LA English DT Article ID GALACTIC POSITRONS; RAY BURSTS; BREAKING; EMISSION AB It has previously been proposed that annihilating dark matter particles with MeV-scale masses could be responsible for the flux of 511 keV photons observed from the region of the Galactic Bulge. The conventional wisdom, however, is that it is very challenging to construct a viable particle physics model containing MeV dark matter. In this paper, we challenge this conclusion by describing a simple and natural supersymmetric model in which the lightest supersymmetric particle naturally has a MeV-scale mass and the other phenomenological properties required to generate the 511 keV emission. In particular, the small (similar to 10(-5)) effective couplings between dark matter and the standard model fermions required in this scenario naturally lead to radiative corrections that generate MeV-scale masses for both the dark matter candidate and the mediator particle. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Zurek, Kathryn M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 25 TC 75 Z9 75 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 8 AR 087302 DI 10.1103/PhysRevD.77.087302 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EN UT WOS:000255457900090 ER PT J AU Hubner, K Karsch, F Kaczmarek, O Vogt, O AF Huebner, Kay Karsch, Frithjof Kaczmarek, Olaf Vogt, Oliver TI Heavy quark free energies for three quark systems at finite temperature SO PHYSICAL REVIEW D LA English DT Article ID IMPROVED LATTICE ACTION; YANG-MILLS THEORY; 2-FLAVOR QCD; TRANSITION; BARYONS AB We study the free energy of static three quark systems in singlet, octet, decuplet, and average color channels in the quenched approximation and in 2-flavor QCD at finite temperature. We show that in the high temperature phase singlet and decuplet free energies of three quark systems are well described by the sum of the free energies of three diquark systems plus self-energy contributions of the three quarks. In the confining low temperature phase we find evidence for a Y-shaped flux tube in SU(3) pure gauge theory, which is less evident in 2-flavor QCD due to the onset of string breaking. We also compare the short distance behavior of octet and decuplet free energies to the free energies of single static quarks in the corresponding color representations. C1 [Huebner, Kay; Karsch, Frithjof] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kaczmarek, Olaf; Vogt, Oliver] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. RP Hubner, K (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RI Kaczmarek, Olaf/E-9932-2011 NR 31 TC 16 Z9 16 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 074504 DI 10.1103/PhysRevD.77.074504 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800045 ER PT J AU Ibe, M Kitano, R AF Ibe, Masahiro Kitano, Ryuichiro TI Minimal direct gauge mediation SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; SUSY BREAKING; MODEL; GRAVITINO; MASS AB We propose a simple model of gauge mediation where supersymmetry is broken by a strong dynamics at O(100) TeV. C1 [Ibe, Masahiro] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Ibe, Masahiro] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kitano, Ryuichiro] Los Alamos Natl Lab, Div Theoret T8, Los Alamos, NM 87545 USA. RP Ibe, M (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 36 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 075003 DI 10.1103/PhysRevD.77.075003 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800051 ER PT J AU Martin, SP AF Martin, Stephen P. TI Diphoton decays of stoponium at the CERN large Hadron Collider SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC ELECTROWEAK BARYOGENESIS; PHOTON PAIR PRODUCTION; BOUND-STATE PRODUCTION; RELIC DENSITY; HIGGS-BOSON; DARK-MATTER; PHASE-TRANSITION; HADRON COLLIDERS; MSSM; CONSTRAINTS AB If the lighter top squark has no kinematically allowed two-body decays that conserve flavor, then it will form hadronic bound states. This is required in models that are motivated by the supersymmetric little hierarchy problem and obtain the correct thermal relic abundance of dark matter by top-squark-mediated neutralino annihilations, or by top-squark-neutralino coannihilations. It is also found in models that can accommodate electroweak-scale baryogenesis within minimal supersymmetry. I study the prospects for detecting scalar stoponium from its diphoton decay mode at the Large Hadron Collider, updating and correcting previous work. Under favorable circumstances, this signal will be observable over background, enabling a uniquely precise measurement of the superpartner masses through a narrow peak in the diphoton invariant mass spectrum, limited by statistics and electromagnetic calorimeter resolutions. C1 [Martin, Stephen P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, De Kalb, IL 60115 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. NR 91 TC 35 Z9 35 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 075002 DI 10.1103/PhysRevD.77.075002 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800050 ER PT J AU Nomura, Y Papucci, M Stolarski, D AF Nomura, Yasunori Papucci, Michele Stolarski, Daniel TI Flavorful supersymmetry SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; SUPERGRAVITY; BREAKING; COLLIDERS; VIOLATION; SYMMETRY; MASSES; SUSY AB Weak scale supersymmetry provides elegant solutions to many of the problems of the standard model, but it also generically gives rise to excessive flavor and CP violation. We show that, if the mechanism that suppresses the Yukawa couplings also suppresses flavor changing interactions in the supersymmetry breaking parameters, essentially all the low energy flavor and CP constraints can be satisfied. The standard assumption of flavor universality in the supersymmetry breaking sector is not necessary. We study signatures of this framework at the LHC. The mass splitting among different generations of squarks and sleptons can be much larger than in conventional scenarios, and even the mass ordering can be changed. We find that there is a plausible scenario in which the next-to-lightest superparticle is a long-lived right-handed selectron or smuon which decays into the lightest superparticle, a gravitino. This leads to the spectacular signature of monochromatic electrons or muons in a stopper detector, providing strong evidence for the framework. C1 [Nomura, Yasunori; Stolarski, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Nomura, Yasunori; Stolarski, Daniel] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Papucci, Michele] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Nomura, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. OI Stolarski, Daniel/0000-0002-1783-8163; Nomura, Yasunori/0000-0002-1497-1479 NR 34 TC 48 Z9 48 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 075006 DI 10.1103/PhysRevD.77.075006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800054 ER PT J AU Velytsky, A AF Velytsky, Alexander TI Entanglement entropy in d+1 SU(N) gauge theory SO PHYSICAL REVIEW D LA English DT Article ID RENORMALIZATION-GROUP APPROACH; PHASE-TRANSITION; LATTICE AB We consider the entanglement entropy for a subsystem in d+1 dimensional SU(N) lattice gauge theory. The 1+1 gauge theory is treated exactly and shows trivial behavior. Gauge theories in higher dimensions are treated within Migdal-Kadanoff approximation. We consider the gauge theory in the confinement phase. We demonstrate the existence of a nonanalytical change from the short distance to long distance form in the entanglement entropy in such systems (d > 2) reminiscent of phase transition. The transition is manifested in nontrivial change in the renormalization group flow of character expansion coefficients defining the partition function. C1 [Velytsky, Alexander] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Velytsky, Alexander] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Velytsky, Alexander] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Velytsky, A (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM vel@theory.uchicago.edu NR 21 TC 22 Z9 22 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 8 AR 085021 DI 10.1103/PhysRevD.77.085021 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EN UT WOS:000255457900073 ER PT J AU Yuan, F AF Yuan, Feng TI Collins asymmetry at hadron colliders SO PHYSICAL REVIEW D LA English DT Article ID SINGLE-SPIN ASYMMETRIES; DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; ODD PARTON DISTRIBUTIONS; POLARIZED PROTON-BEAM; DRELL-YAN PROCESSES; TO-BACK JETS; HARD-SCATTERING; PION-PRODUCTION; ANALYZING POWER AB We study the Collins effect in the azimuthal asymmetric distribution of hadrons inside a high energy jet in the single-transverse polarized proton-proton scattering. From the detailed analysis of one-gluon and two-gluon exchange diagrams contributions in a particular model, the Collins function is found the same as that in the semi-inclusive deep inelastic scattering and e(+)e(-) annihilations. The eikonal propagators in these diagrams do not contribute to the phase needed for the Collins-type single-spin asymmetry, and the universality is derived as a result of the Ward identity. We argue that this conclusion depends on the momentum flow of the exchanged gluon and the kinematic constraints in the fragmentation process. C1 [Yuan, Feng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Yuan, F (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM fyuan@lbl.gov RI Yuan, Feng/N-4175-2013 NR 74 TC 32 Z9 32 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD APR PY 2008 VL 77 IS 7 AR 074019 DI 10.1103/PhysRevD.77.074019 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 295EM UT WOS:000255457800036 ER PT J AU Dietz, B Mossner, B Papenbrock, T Reif, U Richter, A AF Dietz, B. Moessner, B. Papenbrock, T. Reif, U. Richter, A. TI Bouncing ball orbits and symmetry breaking effects in a three-dimensional chaotic billiard SO PHYSICAL REVIEW E LA English DT Article ID RANDOM-MATRIX THEORY; STADIUM BILLIARD; SINAI BILLIARD; SPECTRAL STATISTICS; MICROWAVE CAVITIES; SMOOTH BOUNDARY; ENERGY-LEVELS; 3D BILLIARD; QUANTIZATION; SYSTEMS AB We study the classical and quantum mechanics of a three-dimensional stadium billiard. It consists of two quarter cylinders that are rotated with respect to each other by 90 degrees and it is classically chaotic. The billiard exhibits only a few families of nongeneric periodic orbits. We introduce an analytic method for their treatment. The length spectrum can be understood in terms of the nongeneric and unstable periodic orbits. For unequal radii of the quarter cylinders the level statistics agree well with predictions from random matrix theory. For equal radii the billiard exhibits an additional symmetry. We investigated the effects of symmetry breaking on spectral properties. Moreover, for equal radii, we observe a small deviation of the level statistics from random matrix theory. This led to the discovery of stable and marginally stable orbits, which are absent for unequal radii. C1 [Dietz, B.; Richter, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Moessner, B.] Univ Freiburg, Abt Angew Math, D-79104 Freiburg, Germany. [Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Papenbrock, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Reif, U.] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany. RP Dietz, B (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. RI Dietz, Barbara/B-4804-2014; OI Dietz, Barbara/0000-0002-8251-6531; Papenbrock, Thomas/0000-0001-8733-2849 NR 51 TC 3 Z9 3 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD APR PY 2008 VL 77 IS 4 AR 046221 DI 10.1103/PhysRevE.77.046221 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 295EE UT WOS:000255457000048 PM 18517724 ER PT J AU Hau-Riege, SP Chapman, HN AF Hau-Riege, Stefan P. Chapman, Henry N. TI Modeling of the damage dynamics of nanospheres exposed to x-ray free-electron-laser radiation SO PHYSICAL REVIEW E LA English DT Article ID PULSES AB Atomic-resolution diffraction imaging of biological particles using x-ray free-electron lasers (XFELs) at 1 angstrom wavelength requires a detailed understanding of the photon-induced damage processes. We discuss how several aspects of existing continuum damage models can be tested during early operation of XFELs at lower x-ray energies in the range of 0.8-5 keV and low fluences, focusing particularly on macroscopic collective effects such as particle charging, expansion, and average ionization of nanospheres. C1 [Hau-Riege, Stefan P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Chapman, Henry N.] Univ Hamburg, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Chapman, Henry N.] DESY, D-22607 Hamburg, Germany. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hauriege1@llnl.gov RI Chapman, Henry/G-2153-2010 OI Chapman, Henry/0000-0002-4655-1743 NR 11 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD APR PY 2008 VL 77 IS 4 AR 041902 DI 10.1103/PhysRevE.77.041902 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 295ED UT WOS:000255456900083 PM 18517651 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Disordering transitions and peak effect in polydisperse particle systems SO PHYSICAL REVIEW E LA English DT Article ID FLUX-LINE-LATTICE; MOLECULAR-DYNAMICS; VORTEX MATTER; SUPERCONDUCTORS; CRYSTAL AB We show numerically that in a binary system of Yukawa particles, a dispersity-driven disordering transition occurs. In the presence of quenched disorder this disordering transition coincides with a marked increase in the depinning threshold, known as a peak effect. We find that the addition of poorly pinned particles can increase the overall pinning in the sample by increasing the amount of topological disorder present. If the quenched disorder is strong enough to create a significant amount of topological disorder in the monodisperse system, addition of a poorly pinned species generates further disorder but does not produce a peak in the depinning force. Our results indicate that for binary mixtures, optimal pinning occurs for topological defect fraction densities from 0.2 to 0.25. For defect densities below this range, the system retains orientational order. We determine the effect of the pinning density, strength, and radius on the depinning peak and find that the peak effect is more pronounced in weakly pinning systems. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 NR 32 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD APR PY 2008 VL 77 IS 4 AR 041401 DI 10.1103/PhysRevE.77.041401 PN 1 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 295ED UT WOS:000255456900043 PM 18517611 ER PT J AU Bruner, N Genoni, T Madrid, E Rose, D Welch, D Hahn, K Leckbee, J Portillo, S Oliver, B Bailey, V Johnson, D AF Bruner, Nichelle Genoni, Thomas Madrid, Elizabeth Rose, David Welch, Dale Hahn, Kelly Leckbee, Joshua Portillo, Salvador Oliver, Bryan Bailey, Vernon Johnson, David TI Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ELECTRON-EMISSION; DIODES; YIELDS; RITS AB Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories' upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000)]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution. C1 [Bruner, Nichelle; Genoni, Thomas; Madrid, Elizabeth; Rose, David; Welch, Dale] Voss Sci LLC, Albuquerque, NM 87108 USA. [Hahn, Kelly; Leckbee, Joshua; Portillo, Salvador; Oliver, Bryan] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bailey, Vernon; Johnson, David] L 3 Commun Pulse Sci Div, San Leandro, CA 94577 USA. RP Bruner, N (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. NR 32 TC 16 Z9 18 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR PY 2008 VL 11 IS 4 AR 040401 DI 10.1103/PhysRevSTAB.11.040401 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 311GB UT WOS:000256587600001 ER PT J AU Fischer, W Blaskiewicz, M Brennan, JM Huang, H Hseuh, HC Ptitsyn, V Roser, T Thieberger, P Trbojevic, D Wei, J Zhang, SY Iriso, U AF Fischer, W. Blaskiewicz, M. Brennan, J. M. Huang, H. Hseuh, H. -C. Ptitsyn, V. Roser, T. Thieberger, P. Trbojevic, D. Wei, J. Zhang, S. Y. Iriso, U. TI Electron cloud observations and cures in the Relativistic Heavy Ion Collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID NONEVAPORABLE GETTER FILMS; MOLECULES; ATOMS AB Since 2001, the Relativistic Heavy Ion Collider has experienced electron cloud effects, some of which have limited the beam intensity. These include dynamic pressure rises (including pressure instabilities), tune shifts, a reduction of the instability threshold for bunches crossing the transition energy, and possibly incoherent emittance growth. We summarize the main observations in operation and dedicated experiments as well as countermeasures including baking, nonevaporable getter coated warm beam pipes, solenoids, bunch patterns, antigrazing rings, prepumped cold beam pipes, scrubbing, and operation with long bunches. C1 [Fischer, W.; Blaskiewicz, M.; Brennan, J. M.; Huang, H.; Hseuh, H. -C.; Ptitsyn, V.; Roser, T.; Thieberger, P.; Trbojevic, D.; Wei, J.; Zhang, S. Y.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Iriso, U.] CELLS, Bellaterra 08193, Spain. RP Fischer, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM Wolfram.Fischer@bnl.gov NR 79 TC 19 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR PY 2008 VL 11 IS 4 AR 041002 DI 10.1103/PhysRevSTAB.11.041002 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 311GB UT WOS:000256587600006 ER PT J AU Gao, F Conde, ME Gai, W Jing, C Konecny, R Liu, W Power, JG Wong, T Yusof, Z AF Gao, F. Conde, M. E. Gai, W. Jing, C. Konecny, R. Liu, W. Power, J. G. Wong, T. Yusof, Z. TI Design and testing of a 7.8 GHz power extractor using a cylindrical dielectric-loaded waveguide SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ACCELERATOR AB Dielectric-loaded power extraction is a method for the generation of high-power radio frequency (rf) waves under development for future particle accelerators. In this method, a high-charge electron beam drives a wakefield in a dielectric-loaded waveguide (the decelerator) and an rf output coupler extracts the rf power into an external waveguide. We report on the experimental demonstration of a 7.8 GHz dielectric-loaded power extractor at the Argonne Wakefield Accelerator facility. We have generated more than 30 MW of rf power with a pulse length of approximately 1.7 ns by passing a single 66 nC electron bunch through the power extractor. We have also used a train of 4 electron bunches to show a clear signature of field superposition. Test results are in good agreement with predictions. C1 [Gao, F.; Conde, M. E.; Gai, W.; Konecny, R.; Liu, W.; Power, J. G.; Yusof, Z.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gao, F.; Wong, T.] IIT, Chicago, IL 60616 USA. [Jing, C.] Euclide TechLabs LLC, Solon, OH 44139 USA. RP Gao, F (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 22 TC 22 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR PY 2008 VL 11 IS 4 AR 041301 DI 10.1103/PhysRevSTAB.11.041301 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 311GB UT WOS:000256587600007 ER PT J AU Wu, JH Huang, ZR Emma, P AF Wu, Juhao Huang, Zhirong Emma, Paul TI Analytical analysis of longitudinal space charge effects for a bunched beam with radial dependence SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ELECTRON-BEAM AB The longitudinal space-charge (LSC) force can be a major cause of the microbunching instability in the linac for an x-ray free-electron laser. In this paper, the LSC-induced beam modulation is studied using an integral equation approach that takes into account the transverse (radial) variation of the LSC field for both the coasting-beam limit and a bunched beam. Variation of the beam energy and the transverse beam size is also incorporated. We discuss the validity of this approach and compare it with other analytical analyses as well as numerical simulations. C1 [Wu, Juhao; Huang, Zhirong; Emma, Paul] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Wu, JH (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM jhwu@SLAC.Stanford.EDU NR 9 TC 7 Z9 7 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR PY 2008 VL 11 IS 4 AR 040701 DI 10.1103/PhysRevSTAB.11.040701 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 311GB UT WOS:000256587600002 ER PT J AU Dai, B Leal, LG AF Dai, Bing Leal, L. Gary TI The mechanism of surfactant effects on drop coalescence SO PHYSICS OF FLUIDS LA English DT Article ID IMMISCIBLE POLYMER BLENDS; BLOCK-COPOLYMERS; VISCOUS INTERACTION; DEFORMABLE DROPS; FLUID INTERFACE; SHEAR-FLOW; BREAKUP; COMPATIBILIZERS; MOTION; FILM AB We utilize numerical solutions, based on a boundary-integral scheme, to investigate the mechanisms by which surfactant influences the coalescence of a pair of equal size drops that undergo a head-on collision in a biaxial linear flow. It is known that the addition of surfactant inhibits coalescence in the sense that the time required for film drainage to the point of film rupture is significantly increased. Although there is a direct effect on the rate of film drainage due to Marangoni effects within the thin film, we find that an equally important effect is due to the fact that the hydrodynamic force pushing the drops together is increased, hence causing the film to be more strongly deformed into a dimpled configuration that slows the film drainage process. (c) 2008 American Institute of Physics. C1 [Leal, L. Gary] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. RP Dai, B (reprint author), Los Alamos Natl Lab, Inst Multiscale Mat Studies, POB 1663, Los Alamos, NM 87545 USA. NR 37 TC 33 Z9 34 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD APR PY 2008 VL 20 IS 4 AR 040802 DI 10.1063/1.2911700 PG 13 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 295EA UT WOS:000255456600012 ER PT J AU Weirs, VG Dupont, T Plewa, T AF Weirs, V. Gregory Dupont, Todd Plewa, Tomasz TI Three-dimensional effects in shock-cylinder interactions SO PHYSICS OF FLUIDS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; UNSTABLE GAS-CYLINDERS; VORTEX-DOMINATED FLOWS; FLASH CODE; SIMULATION AB The shock-cylinder interaction is important for understanding the mixing of fluids by impulsively accelerated material interfaces. The flowfield development is highly sensitive to the initial conditions, which can be difficult to fully characterize in experimental facilities. In this work, simulations based on experimental measurements are used to model the initial flowfield at the Los Alamos shocktube facility. While nominally two-dimensional, our simulations show the initial column has significant axial variation. These numerical solutions are then used as the initial conditions for three-dimensional simulations of the shock-cylinder interaction. A genuinely three-dimensional flowfield develops as a consequence of the initial, axial variation of the cylinder. (C) 2008 American Institute of Physics. C1 [Weirs, V. Gregory; Dupont, Todd; Plewa, Tomasz] Univ Chicago, Adv Simulat & Comp Alliances Ctr Astrophys Thermo, Chicago, IL 60637 USA. RP Weirs, VG (reprint author), Sandia Natl Labs, Albuquerque, NM 87158 USA. EM vgweirs@sandia.gov; dupont@cs.uchicago.edu; tomek@scs.fsu.edu RI Plewa, Tomasz/C-1470-2010 OI Plewa, Tomasz/0000-0002-1762-2565 NR 21 TC 8 Z9 11 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD APR PY 2008 VL 20 IS 4 AR 044102 DI 10.1063/1.2884787 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 295EA UT WOS:000255456600040 ER PT J AU Calvo, I Garcia, L Carreras, BA Sanchez, R van Milligen, BP AF Calvo, I. Garcia, L. Carreras, B. A. Sanchez, R. van Milligen, B. Ph. TI Pseudochaotic poloidal transport in the laminar regime of the resistive ballooning instabilities SO PHYSICS OF PLASMAS LA English DT Article ID RANDOM-WALKS; EQUATIONS; PLASMA AB In toroidal geometry, and prior to the establishment of a fully developed turbulent state, the so-called topological instability of the pressure-gradient-driven turbulence is observed. In this intermediate state, a narrow spectral band of modes dominates the dynamics, giving rise to the formation of isosurfaces of electric potential with a complicated topology. Since ExB advection of tracer particles takes place along these isosurfaces, their topological complexity affects the characteristic features of radial and poloidal transport dramatically. In particular, they both become strongly nondiffusive and non-Gaussian. Since radial transport determines the system confinement properties and poloidal transport controls the equilibration dynamics (on any magnetic surface), the development of nondiffusive models in both directions is thus of physical interest. In previous work, a fractional model to describe radial transport was constructed by the authors. In this contribution, recent results on periodic fractional models are exploited for the construction of an effective model of poloidal transport. Numerical computations using a three-dimensional reduced magnetohydrodynamic set of equations are compared with analytical solutions of the fractional periodic model. It is shown that the aforementioned analytical solutions accurately describe poloidal transport, which turns out to be superdiffusive with index alpha=1. (C) 2008 American Institute of Physics. C1 [Calvo, I.; van Milligen, B. Ph.] Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid 28040, Spain. [Garcia, L.] Univ Carlos III Madrid, Madrid 28911, Spain. [Carreras, B. A.] BACV Solut Inc, Oak Ridge, TN 37830 USA. [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Calvo, I (reprint author), Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid 28040, Spain. RI Sanchez, Raul/C-2328-2008; Calvo, Ivan/B-3444-2009; Garcia, Luis/A-5344-2015; van Milligen, Boudewijn/H-5121-2015 OI Calvo, Ivan/0000-0003-3118-3463; Garcia, Luis/0000-0002-0492-7466; van Milligen, Boudewijn/0000-0001-5344-6274 NR 12 TC 6 Z9 6 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2008 VL 15 IS 4 AR 042302 DI 10.1063/1.2901195 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 295EB UT WOS:000255456700013 ER PT J AU Intrator, TP Siemon, RE Sieck, PE AF Intrator, T. P. Siemon, R. E. Sieck, P. E. TI Adiabatic model and design of a translating field reversed configuration SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIZED TARGET FUSION; PLASMA VORTEX STRUCTURES; CONICAL-THETA-PINCH; COMPACT TOROIDS; COMPRESSION; EQUILIBRIUM; GENERATION; LINER AB We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it must be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell. (c) 2008 American Institute of Physics. C1 [Intrator, T. P.; Sieck, P. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Siemon, R. E.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Intrator, TP (reprint author), Los Alamos Natl Lab, MS E526, Los Alamos, NM 87545 USA. EM intrator@lanl.gov NR 38 TC 12 Z9 14 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2008 VL 15 IS 4 AR 042505 DI 10.1063/1.2907165 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 295EB UT WOS:000255456700032 ER PT J AU Romero-Talamas, CA Hooper, EB Jayakumar, R McLean, HS Wood, RD Moller, JM AF Romero-Talamas, C. A. Hooper, E. B. Jayakumar, R. McLean, H. S. Wood, R. D. Moller, J. M. TI Measurements and phenomenological modeling of magnetic flux buildup in spheromak plasmas SO PHYSICS OF PLASMAS LA English DT Article ID CURRENT DRIVE; HELICITY; SIMULATIONS; INSTABILITY; SUSTAINMENT; JETS AB Internal magnetic field measurements and high-speed imaging at the Sustained Spheromak Physics Experiment [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)] are used to study spheromak formation and field buildup. The measurements are analyzed in the context of a phenomenological model of magnetic helicity based on the topological constraint of minimum helicity in the open flux before reconnecting and linking closed flux. Two stages are analyzed: (i) the initial spheromak formation, i.e., when all flux surfaces are initially open and reconnect to form closed flux in the toroidal average sense, and (ii) the stepwise increase of closed flux when operating the gun on a new mode that can apply a train of high-current pulses to the plasma. In the first stage, large kinks in the open flux surfaces are observed in the high-speed images taken shortly after plasma breakdown, and coincide with large magnetic asymmetries recorded in a fixed insertable magnetic probe that spans the flux conserver radius. Closed flux appears shortly after this. This stage is also investigated using resistive magnetohydrodynamic simulations. In the second stage, a time lag in response between open and closed flux surfaces after each current pulse is interpreted as the time for the open flux to build helicity, before transferring it through reconnection to the closed flux. Large asymmetries are seen during these events, which then relax to a slowly decaying spheromak before the next pulse. (c) 2008 American Institute of Physics. C1 [Romero-Talamas, C. A.; Hooper, E. B.; Jayakumar, R.; McLean, H. S.; Wood, R. D.; Moller, J. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Romero-Talamas, CA (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM romerotalamas1@llnl.gov NR 33 TC 4 Z9 4 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2008 VL 15 IS 4 AR 042503 DI 10.1063/1.2904917 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 295EB UT WOS:000255456700030 ER PT J AU Rose, HA Yin, L AF Rose, Harvey A. Yin, L. TI Langmuir wave filamentation instability SO PHYSICS OF PLASMAS LA English DT Article ID NONLINEAR PLASMA-OSCILLATIONS; FREQUENCY-SHIFT AB A Langmuir wave (LW) model is constructed whose equilibria are consistent with stimulated Raman scatter optimization, with Hamiltonian dynamics, and with rotational invariance. Linear instability analysis includes terms to all orders in wave amplitude and fluctuation wavenumber expansions, delta k. Resultant LW modulational instability is nonstandard: As the LW amplitude increases, the unstable delta k range first expands and then shrinks to zero. Large amplitude wave model dynamics requires hyperdiffraction terms if k lambda(D)<0.45, lest artificially small length scales become unstable. (C) 2008 American Institute of Physics. C1 [Rose, Harvey A.; Yin, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rose, HA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Yin, Lin/0000-0002-8978-5320 NR 23 TC 29 Z9 29 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2008 VL 15 IS 4 AR 042311 DI 10.1063/1.2901197 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 295EB UT WOS:000255456700022 ER PT J AU Startsev, EA Lund, SM AF Startsev, Edward A. Lund, Steven M. TI Approximate analytical solutions for continuously focused beams and single-species plasmas in thermal equilibrium SO PHYSICS OF PLASMAS LA English DT Article ID PURE ELECTRON-PLASMA; SPACE-CHARGE; ION-BEAMS; TRANSPORT AB Simple, two-dimensional Vlasov-Poisson descriptions of thermal equilibrium have been applied to both an unbunched ion beam propagating in a continuous linear focusing channel and an unneutralized, single-species plasma confined in a Penning-Malmberg trap geometry. In scaled variables, these two thermal equilibrium systems result in an identical nonlinear equation that must be solved to describe the radial density and/or potential of the equilibrium. Numerous publications have been based on numerical solutions of the highly nonlinear equilibrium equation. Following a brief review of the thermal equilibrium model, we construct approximate, closed-form analytical solutions to the equilibrium equation that are accurate over a wide range of system parameters. (c) 2008 American Institute of Physics. C1 [Startsev, Edward A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lund, Steven M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Startsev, EA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM estarts@pppl.gov; smlund@llnl.gov NR 20 TC 9 Z9 9 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2008 VL 15 IS 4 AR 043101 DI 10.1063/1.2896229 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 295EB UT WOS:000255456700045 ER PT J AU Vesey, RA Slutz, SA Herrmann, MC Mehlhorn, TA Campbell, RB AF Vesey, R. A. Slutz, S. A. Herrmann, M. C. Mehlhorn, T. A. Campbell, R. B. TI Mode-selective symmetry control for indirect-drive inertial confinement fusion hohlraums SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL IGNITION FACILITY; HEAVY-ION FUSION; CAPSULE IMPLOSIONS; TARGET DESIGN; DISTRIBUTED RADIATOR; PHYSICS; ICF; ILLUMINATION; PROGRESS; BEAMS AB Achieving a high degree of radiation symmetry is a critical feature of target designs for indirect-drive inertial confinement fusion. Typically, the radiation flux incident on the capsule is required to be uniform to 1% or better. It is generally possible to design a hohlraum that provides low values of higher-order asymmetry (Legendre mode P(10) and above) due to geometric averaging effects. Because low-order intrinsic asymmetry (e.g., Legendre modes P(2) and P(4)) are less strongly reduced by geometric averaging alone, the development of innovative control techniques has been an active area of research in the inertial fusion community over the years. Shields placed inside the hohlraum are one example of a technique that has often been proposed and incorporated into hohlraum target designs. Simple mathematical considerations are presented indicating that radiation shields may be designed to specifically tune lower-order modes (e.g., P(4)) without deleterious effects on the higher order modes. Two-dimensional view factor and radiation-hydrodynamics simulations confirm these results and support such a path to achieving a highly symmetric x-ray flux. The term "mode-selective" is used because these shields, essentially ring structures offset from the capsule, are designed to affect only a specific Legendre mode (or multiple modes) of interest. (c) 2008 American Institute of Physics. C1 [Vesey, R. A.; Slutz, S. A.; Herrmann, M. C.; Mehlhorn, T. A.; Campbell, R. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Vesey, RA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ravesey@sandia.gov NR 51 TC 2 Z9 2 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2008 VL 15 IS 4 AR 042704 DI 10.1063/1.2901184 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 295EB UT WOS:000255456700039 ER PT J AU Waisman, EM Cuneo, ME Lemke, RW Sinars, DB Stygar, WA AF Waisman, Eduardo M. Cuneo, M. E. Lemke, R. W. Sinars, D. B. Stygar, W. A. TI Lower bounds for the kinetic energy and resistance of wire array Z pinches on the Z pulsed-power accelerator SO PHYSICS OF PLASMAS LA English DT Article ID IMPLOSION; PLASMA; SIMULATIONS; GENERATION; DEPOSITION; DYNAMICS; FLOW AB Approximate lower bounds for the kinetic energy and magnetic flux dissipation for tungsten wire arrays on the Z pulsed-power accelerator at Sandia National Laboratories [R. B. Spielman , Phys. Plasmas 5, 2105 (1998)] are obtained. A procedure, extending previous work determining pinch inductance as a function of time [E. M. Waisman , Phys. Plasmas 11, 2009 (2004)], is introduced and applied to electrical and x-ray energy measurements. It employs the pinch energy balance to determine lower bounds for the plasma kinetic energy just before the main pinch reaches the axis and for the magnetic flux dissipation during stagnation. From the lower bound for the dissipated flux, a lower bound for pinch resistance after x-ray peak power is estimated. The results of applying the introduced energy balance procedure to selected tungsten wire array implosions on Z are given. It is believed that this is the first time that a measure of wire array Z-pinch resistance at stagnation is obtained purely from data analysis without recourse to specific assumptions on the plasma motion. (c) 2008 American Institute of Physics. C1 [Waisman, Eduardo M.; Cuneo, M. E.; Lemke, R. W.; Sinars, D. B.; Stygar, W. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Waisman, EM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 38 TC 10 Z9 10 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2008 VL 15 IS 4 AR 042702 DI 10.1063/1.2898724 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 295EB UT WOS:000255456700037 ER PT J AU Zhmoginov, AI Fisch, NJ AF Zhmoginov, A. I. Fisch, N. J. TI Simulation of alpha-channeling in mirror machines SO PHYSICS OF PLASMAS LA English DT Article ID ION-CYCLOTRON WAVES; STOCHASTIC ACCELERATION; BERNSTEIN WAVES; MAGNETIC-FIELD; ALFVEN WAVES; PLASMA; PARTICLES; RESONANCE; EXCITATION; CONVERSION AB Applying alpha-channeling techniques to mirror machines can significantly increase their effective reactivity, thus making open configurations more advantageous for practical fusion. A large fraction of alpha-particle energy can be extracted using rf waves. Effects employed to cool alpha particles can also in principle be used to heat the fusion ions; the possibility to design a configuration of rf waves that could be used to perform both tasks is demonstrated. (c) 2008 American Institute of Physics. C1 [Zhmoginov, A. I.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zhmoginov, AI (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 50 TC 14 Z9 14 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2008 VL 15 IS 4 AR 042506 DI 10.1063/1.2903900 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 295EB UT WOS:000255456700033 ER PT J AU Head-Gordon, M Artacho, E AF Head-Gordon, Martin Artacho, Emilio TI Chemistry on the computer SO PHYSICS TODAY LA English DT Article AB Although exact descriptions of the quantum mechanics of molecules are computationally intractable, chemists and physicists have devised approximations that are efficient enough to be practical and accurate enough to be useful. C1 [Head-Gordon, Martin] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Artacho, Emilio] Univ Cambridge, Cambridge CB2 1TN, England. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. RI Artacho, Emilio/G-2616-2015 OI Artacho, Emilio/0000-0001-9357-1547 NR 3 TC 16 Z9 16 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD APR PY 2008 VL 61 IS 4 BP 58 EP 63 DI 10.1063/1.2911179 PG 6 WC Physics, Multidisciplinary SC Physics GA 286LC UT WOS:000254846400027 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical point lab architecture SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD APR PY 2008 VL 21 IS 4 BP 19 EP 21 PG 3 WC Physics, Multidisciplinary SC Physics GA 288HO UT WOS:000254977200031 ER PT J AU Pino, MT Skinner, JS Jeknic, Z Hayes, PM Soeldner, AH Thomashow, MF Chen, THH AF Pino, Maria-Teresa Skinner, Jeffrey S. Jeknic, Zoran Hayes, Patrick M. Soeldner, Alfred H. Thomashow, Michael F. Chen, Tony H. H. TI Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato SO PLANT CELL AND ENVIRONMENT LA English DT Article DE Solanum commersonii; Solanum tuberosum; CBF ID BRASSICA-NAPUS L.; LOW-TEMPERATURE; TRANSCRIPTION FACTORS; ARABIDOPSIS-THALIANA; STRESS TOLERANCE; SOLANUM-COMMERSONII; RESPONSE PATHWAY; FROST TOLERANCE; LEAVES; LEAF AB We studied the effect of ectopic AtCBF over-expression on physiological alterations that occur during cold exposure in frost-sensitive Solanum tuberosum and frost-tolerant Solanum commersonii. Relative to wild-type plants, ectopic AtCBF1 over-expression induced expression of COR genes without a cold stimulus in both species, and imparted a significant freezing tolerance gain in both species: 2 degrees C in S. tuberosum and up to 4 degrees C in S. commersonii. Transgenic S. commersonii displayed improved cold acclimation potential, whereas transgenic S. tuberosum was still incapable of cold acclimation. During cold treatment, leaves of wild-type S. commersonii showed significant thickening resulting from palisade cell lengthening and intercellular space enlargement, whereas those of S. tuberosum did not. Ectopic AtCBF1 activity induced these same leaf alterations in the absence of cold in both species. In transgenic S. commersonii, AtCBF1 activity also mimicked cold treatment by increasing proline and total sugar contents in the absence of cold. Relative to wild type, transgenic S. commersonii leaves were darker green, had higher chlorophyll and lower anthocyanin levels, greater stomatal numbers, and displayed greater photosynthetic capacity, suggesting higher productivity potential. These results suggest an endogenous CBFpathway is involved in many of the structural, biochemical and physiological alterations associated with cold acclimation in these Solanum species. C1 [Skinner, Jeffrey S.; Jeknic, Zoran; Hayes, Patrick M.] Oregon State Univ, Dept Bot & Plant Pathol, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. [Soeldner, Alfred H.] Oregon State Univ, Dept Bot & Plant Pathol, Electron Microscope Facil, Corvallis, OR 97331 USA. [Pino, Maria-Teresa] INIA, Inst Agr Res, Santiago, Chile. [Thomashow, Michael F.] Michigan State Univ, US DOE, Plant Res Lab, E Lansing, MI 48824 USA. EM chent@hort.oregonstate.edu OI Jeknic, Zoran/0000-0002-3965-0401 NR 50 TC 43 Z9 47 U1 2 U2 22 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0140-7791 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD APR PY 2008 VL 31 IS 4 BP 393 EP 406 DI 10.1111/j.1365-3040.2008.01776.x PG 14 WC Plant Sciences SC Plant Sciences GA 274DC UT WOS:000253981000001 PM 18182016 ER PT J AU Xu, CC Moellering, ER Fan, JL Benning, C AF Xu, Changcheng Moellering, Eric R. Fan, Jilian Benning, Christoph TI Mutation of a mitochondrial outer membrane protein affects chloroplast lipid biosynthesis SO PLANT JOURNAL LA English DT Article DE galactolipids; mitochondria; phosphate stress; chloroplast; genetic suppressor ID ARABIDOPSIS-THALIANA; PHOSPHATE-STARVATION; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTION FACTOR; ATP SYNTHASE; DIGALACTOSYLDIACYLGLYCEROL SYNTHASE; ENVELOPE MEMBRANE; SIGNALING PATHWAY; ROOT DEVELOPMENT; PLASMA-MEMBRANE AB Lipid biosynthesis in plant cells is associated with various organelles, and maintenance of cell lipid homeostasis requires nimble regulation and coordination. In plants, environmental cues such as phosphate limitation require readjustment of the lipid biosynthetic machinery to substitute phospholipids by non-phosphorous glycolipids. Biosynthesis of the galactoglycerolipids predominant in plants proceeds by a constitutive and an alternative pathway that is known to be induced in response to phosphate deprivation. Plant lipid galactosyltransferases involved in both pathways are associated with the plastid envelope membranes and are encoded by nuclear genes. To identify mechanisms governing the activity of the alternative galactoglycerolipid pathway, a genetic suppressor screen was conducted in the background of the digalactolipid-deficient dgd1 mutant of Arabidopsis. A suppressor line that partially restored digalactoglycerolipid content in the dgd1 background carries a point mutation in a mitochondrial protein, which was tentatively designated DGD1 SUPPRESSOR 1 (DGS1). Presumed orthologs of this protein are present in plants, algae and fungi, but its molecular function is not yet known. In the dgd1 dgs1 double mutant, expression of nuclear genes encoding enzymes of the alternative galactoglycerolipid pathway is increased and hydrogen peroxide levels are elevated. This increase in hydrogen peroxide is proposed to be the reason for activation of the alternative pathway in the dgd1 dgs1 double mutant. Accordingly, hydrogen peroxide and treatments producing reactive oxygen also activate the alternative pathway in the wild-type. These results likely implicate the production of reactive oxygen in the regulation of the alternative galactoglycerolipid pathway in plants. C1 [Xu, Changcheng; Moellering, Eric R.; Fan, Jilian; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Moellering, Eric R.] Michigan State Univ, US DOE, Plant Res Lab, E Lansing, MI 48824 USA. RP Benning, C (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM benning@msu.edu NR 69 TC 18 Z9 21 U1 3 U2 5 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0960-7412 J9 PLANT J JI Plant J. PD APR PY 2008 VL 54 IS 1 BP 163 EP 175 DI 10.1111/j.1365-313X.2008.03417.x PG 13 WC Plant Sciences SC Plant Sciences GA 274TI UT WOS:000254023600014 PM 18208519 ER PT J AU Park, J Heberlein, J Pfender, E Candler, G Chang, CH AF Park, J. Heberlein, J. Pfender, E. Candler, G. Chang, C. H. TI Two-dimensional numerical modeling of direct-current electric arcs in nonequilibrium SO PLASMA CHEMISTRY AND PLASMA PROCESSING LA English DT Article DE nonequilibrium; arc-anode attachment; species diffusion; high-intensity arc; nonequilibrium boundary layer ID ANODE-BOUNDARY-LAYER; THERMAL-DIFFUSION; GAS-MIXTURES; MULTICOMPONENT DIFFUSION; SIMPLE APPROXIMATION; AMBIPOLAR DIFFUSION; PLASMAS; ARGON AB A numerical model has been developed to analyze arc-anode attachment in direct-current electric arcs. The developed model fully couples a plasma flow with electromagnetic fields in a self-consistent manner. Electrons and heavy species are assumed to have different temperatures. Species continuities are taken into account to address the chemical nonequilibrium with the Self-Consistent Effective Binary Diffusion (SCEBD) formulation. Electric and magnetic field equations are determined with a newly developed Ohm's law, an improvement over the conventional generalized Ohm's law. The governing equations are discretized and solved using the Finite Volume Method (FVM) and Gauss-Seidel Line Relaxation (GSLR) method in a two-dimensional domain. The model is applied to a two-dimensional axisymmetric high-intensity argon arc. The results are compared favorably with experimental and other numerical data. A significant electric potential drop has been observed in the vicinity of the anode due to the thermal and chemical nonequilibrium effects. C1 [Park, J.] Novellus Syst Inc, San Jose, CA 95134 USA. [Heberlein, J.; Pfender, E.; Candler, G.] Univ Minnesota, Minneapolis, MN 55455 USA. [Chang, C. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Park, J (reprint author), Novellus Syst Inc, San Jose, CA 95134 USA. EM joon.park@novellus.com NR 33 TC 23 Z9 25 U1 1 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0272-4324 J9 PLASMA CHEM PLASMA P JI Plasma Chem. Plasma Process. PD APR PY 2008 VL 28 IS 2 BP 213 EP 231 DI 10.1007/s11090-008-9120-8 PG 19 WC Engineering, Chemical; Physics, Applied; Physics, Fluids & Plasmas SC Engineering; Physics GA 299HT UT WOS:000255747400005 ER PT J AU Chapman, IT Jenkins, I Budny, RV Graves, JP Pinches, SD Saarelma, S AF Chapman, I. T. Jenkins, I. Budny, R. V. Graves, J. P. Pinches, S. D. Saarelma, S. CA Jet EFDA Contributors TI Sawtooth control using off-axis NBI SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ENERGETIC TRAPPED-PARTICLES; TOROIDAL PLASMA ROTATION; CYCLOTRON CURRENT DRIVE; INTERNAL KINK MODE; STABILIZATION; DISCHARGES; TOKAMAKS; JET; CONFINEMENT; STABILITY AB It has previously been observed that neo-classical tearing modes can be triggered by long period sawteeth even at low values of beta. Since fusion-born a particles are predicted to invoke long period sawteeth, mechanisms to control sawteeth are important for ITER. Here, sawtooth behaviour in off-axis neutral beam injection (NBI) heated plasmas in JET is presented. It is found that the off-axis NBI can be used to destabilize sawteeth even in discharges with concurrent stabilizing on-axis neutral beams. Drift kinetic modelling of such discharges qualitatively shows that the passing fast ions born due to the NBI determine the stability of the n = 1 internal kink mode, thought to be related to sawtooth oscillations. In particular, when the beam ions are deposited outside the q = 1 surface, they can result in more frequent sawteeth. It is proposed that off-axis neutral beams could be used as an actuator for sawtooth control in ITER. Provided that the q = 1 surface is sufficiently core localized, the strongly passing population induced by the negative-ion NBI planned for ITER may be able to significantly destabilize the sawteeth. C1 [Chapman, I. T.; Jenkins, I.; Pinches, S. D.; Saarelma, S.] UKAEA Fus Assoc, EURATOM, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Budny, R. V.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Graves, J. P.] CRPP, Assoc EURATOM Confed Suisse, EFPL, Lausanne, Switzerland. RP Chapman, IT (reprint author), UKAEA Fus Assoc, EURATOM, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM ian.chapman@ukaea.org.uk NR 41 TC 26 Z9 27 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD APR PY 2008 VL 50 IS 4 AR 045006 DI 10.1088/0741-3335/50/4/045006 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 279MR UT WOS:000254359800007 ER PT J AU Flanagan, TB AF Flanagan, Ted B. TI Frederick A. Lewis AN APPRECIATION SO PLATINUM METALS REVIEW LA English DT Biographical-Item C1 [Flanagan, Ted B.] Univ Vermont, Burlington, VT 05405 USA. [Flanagan, Ted B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Flanagan, Ted B.] Queens Univ Belfast, Belfast, Antrim, North Ireland. RP Flanagan, TB (reprint author), Univ Vermont, Burlington, VT 05405 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU JOHNSON MATTHEY PUBL LTD CO PI LONDON PA HATTON GARDEN, LONDON EC1N 8EE, ENGLAND SN 1471-0676 J9 PLATIN MET REV JI Platin. Met. Rev. PD APR PY 2008 VL 52 IS 2 BP 120 EP 122 DI 10.1595/147106708X298836 PG 3 WC Chemistry, Physical SC Chemistry GA 452MW UT WOS:000266545400007 ER PT J AU Bernstein, R Thornberg, SM Irwin, AN Hochrein, JM Derzon, DK Klamo, SB Clough, RL AF Bernstein, Robert Thornberg, Steven M. Irwin, Adriane N. Hochrein, James M. Derzon, Dora K. Klamo, Sara B. Clough, Roger L. TI Radiation-oxidation mechanisms: Volatile organic degradation products from polypropylene having selective C-13 labeling studied by GC/MS SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE polypropylene; oxidation; volatile degradation products; GC/MS; radiation degradation; C-13 ID THERMAL-OXIDATION; SOLID-STATE; THERMOOXIDATIVE DEGRADATION; IONIZING-RADIATION; POLYMER REACTIONS; ISOTACTIC POLYPROPYLENE; ATACTIC POLYPROPYLENE; INITIATED OXIDATIONS; GAMMA-IRRADIATION; NMR AB PP samples, in which the three unique carbon atom positions along the chain were selectively labeled with C-13, have been subjected to gamma-irradiation in the presence of oxygen, and the resulting organic volatile products analyzed by GUMS. The isotopic labeling patterns in 33 organic degradation compounds have been assigned by comparison of the four mass spectra for each compound (from unlabeled PP, and from the three labeled PP materials). The volatile products have been "mapped" onto their positions of origin from the PP macromolecule, and insights have been gained into the chemistry through which these compounds must have formed. Most products show high specificity of isotopic labeling, indicating a single dominant reaction pathway. Oxidation chemistry occurred heavily at the C(2) tertiary carbon, with chemistry also at C(l) methylene. Methyl ketones are in abundance, along with alcohols, some aliphatic hydrocarbons, and other compound types. The C(3) methyl carbon remained attached to its original C(2) position in all catenated degradation products, and underwent no chemistry. However, products containing "non-catenated" carbons (i.e., not bonded to any other carbon atom) consisted entirely of a mix of C(3) and C(1). By examination of the labeling patterns, many products could be assigned to two successive chain scission events in close proximity, while others are clearly seen to arise from cleavage, followed by radical-radical recombination reactions. Interestingly, the former products (two chain scissions) are all found to have an odd number of carbon atoms along their chain, while the latter (scission followed by radical-radical reaction) all have an even number of carbons. An explanation of this odd/even phenomenon is provided in terms of the symmetry of the PP macromolecule. Published by Elsevier Ltd. C1 [Bernstein, Robert; Thornberg, Steven M.; Irwin, Adriane N.; Hochrein, James M.; Derzon, Dora K.; Clough, Roger L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Klamo, Sara B.] CALTECH, Arnold & Mabel Beckman Labs Chem Synth, Pasadena, CA 91125 USA. RP Clough, RL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM traveler1949@comcast.net RI Bernstein, Robert/F-8396-2013 NR 50 TC 16 Z9 17 U1 3 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD APR PY 2008 VL 93 IS 4 BP 854 EP 870 DI 10.1016/j.polymdegradstab.2009.01.020 PG 17 WC Polymer Science SC Polymer Science GA 300JQ UT WOS:000255820500013 ER PT J AU Krzyminski, KJ Jasionowski, M Gutowska, A AF Krzyminski, Karol J. Jasionowski, Marek Gutowska, Anna TI Reversible sol-gel transitions in aqueous solutions of N-isopropylacrylamide ionic copolymers SO POLYMER INTERNATIONAL LA English DT Article DE thermo-responsive polymers; sol-gel transition; N-isopropylacrylamide; ionic copolymers ID POLY(N-ISOPROPYLACRYLAMIDE); TEMPERATURE; HYDROGELS; POLYMERS; NETWORKS; DELIVERY; BEHAVIOR; SYSTEM; POINT; WATER AB Ionic copolymers of N-isopropylacrylamide (NIPA) exhibiting sol-gel transitions in aqueous solutions were investigated. The studies were aimed at understanding of the structure-property relationship in the design of injectable, in situ forming gels for potential biomedical applications in delivery of therapeutics and tissue engineering. Aqueous solutions of NIPA ionic copolymers were found to flow freely at ambient temperatures and formed soft gels with controlled syneresis above 32 degrees C, the lower critical solution temperature of NIPA. The sol-gel transitions and temperature-dependent properties of the resulting gels were analyzed using dynamic rheometry and ultraviolet and infrared spectrometry, and were found to be controlled by the molecular weight and composition of copolymers, ionization state of comonomers and composition of aqueous solvent. (c) 2008 Society of Chemical Industry. C1 [Krzyminski, Karol J.; Jasionowski, Marek; Gutowska, Anna] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Gutowska, A (reprint author), Adv Imaging Technol, 2400 Stevens Dr,Suite B, Richland, WA 99354 USA. EM anna.gutowska@aitimaging.com NR 27 TC 5 Z9 5 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0959-8103 J9 POLYM INT JI Polym. Int. PD APR PY 2008 VL 57 IS 4 BP 592 EP 604 DI 10.1002/pi.2318 PG 13 WC Polymer Science SC Polymer Science GA 284EK UT WOS:000254688800006 ER PT J AU Khosla, R Inman, D Westfall, DG Reich, RM Frasier, M Mzuku, M Koch, B Hornung, A AF Khosla, R. Inman, D. Westfall, D. G. Reich, R. M. Frasier, M. Mzuku, M. Koch, B. Hornung, A. TI A synthesis of multi-disciplinary research in precision agriculture: site-specific management zones in the semi-arid western Great Plains of the USA SO PRECISION AGRICULTURE LA English DT Article; Proceedings Paper CT 6th European Conference on Precision Agriculture CY JUN, 2007 CL Skiathos, GREECE DE management zones; nitrogen fertilizer; variable-rate; net returns; nitrogen-use efficiency ID SOIL ELECTRICAL-CONDUCTIVITY; NITROGEN MANAGEMENT; WATER-QUALITY; NITRATE; YIELD; CORN; VARIABILITY; MOISTURE; SYSTEMS; SCALE AB Researchers from Colorado State University, in collaboration with scientists from the United States Department of Agriculture (USDA), initiated a long-term multi-disciplinary study in precision agriculture in 1997. Site-specific management zones (SSMZ) were investigated as a means of improving nitrogen management in irrigated maize cropping systems. The objective was to develop precise nutrient management strategies for semi-arid irrigated cropping systems. This study was conducted in five fields in northeastern Colorado, USA. Two techniques for delineating management zones were developed and compared: SSMZ and yield-based management zones (YBMZ). Nitrogen uptake and grain yield differences among SSMZs were compared as were soil properties. Both management zone techniques were used to divide fields into smaller units that were different with regard to productivity potential (e.g., high zones had high productivity potential while low zones had low productivity potential). Economic analysis was also performed. Based on grain yield productivity, the SSMZs performed better than the YBMZ technique in most cases. Grain yield and N uptake between the low and high productivity management zones were statistically different for most site-years and N fertilizer rates (p < 0.05). Soil properties helped to explain the productivity potential of the management zones. The low SSMZ was markedly different from the high SSMZ based on bulk density, organic carbon, sand, silt, porosity and soil moisture. Net returns ranged from 188 to 679 USD ha(-1). In two out of three site-years the variable yield goal strategy resulted in the largest net returns. In this study, the SSMZ approach delineates areas of different productivity accurately across the agricultural fields. The SSMZs are different with regard to soil properties as well as grain yield and N uptake. Site-specific management zones are an inexpensive and pragmatic approach to precise N management in irrigated maize. C1 [Khosla, R.; Westfall, D. G.; Mzuku, M.; Koch, B.; Hornung, A.] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA. [Inman, D.] Natl Bioenergy Ctr, Natl Reneweable Energy Lab, Golden, CO 80401 USA. [Reich, R. M.] Colorado State Univ, Dep Forest Rangeland & Watershed Stewardship, Ft Collins, CO 80523 USA. [Frasier, M.] Colorado State Univ, Dept Agr & Resource Econ, Ft Collins, CO 80523 USA. RP Khosla, R (reprint author), Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA. EM raj.khosla@colostate.edu NR 50 TC 15 Z9 15 U1 1 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1385-2256 J9 PRECIS AGRIC JI Precis. Agric. PD APR PY 2008 VL 9 IS 1-2 BP 85 EP 100 DI 10.1007/s11119-008-9057-1 PG 16 WC Agriculture, Multidisciplinary SC Agriculture GA 280QH UT WOS:000254440800007 ER PT J AU Hashimoto, K Izubuchi, T AF Hashimoto, Koichi Izubuchi, Taku CA RBC Collaboration TI eta' meson from two flavor dynamical domain wall fermions SO PROGRESS OF THEORETICAL PHYSICS LA English DT Article ID LATTICE GAUGE-THEORY; CHIRAL FERMIONS; U(1) PROBLEM; QCD AB We explore the spectrum of a flavor singlet pseudoscalar meson, eta', in two-flavor (N(f) = 2) lattice Quantum Chromo Dynamics (QCD). The continuum-like relation between the topology of the QCD vacuum and the U(1)(A) anomaly, which prevents the eta' meson from being a Nambu-Goldstone boson, is expected to hold in the domain wall fermions (DWF) used as a lattice quark field in this work. Although our simulation is limited to relatively heavy quark masses and the statistical error is not small despite the improvements in the measurements and fitting procedures for meson propagators, we obtained m(eta') = 819(127) MeV for the N(f) = 2 QCD, where the error is only statistical. Several sources of systematic errors, which may be significant, are discussed. Results for the other mesons are also reported. C1 [Hashimoto, Koichi] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan. [Hashimoto, Koichi] RIKEN, Radiat Lab, Wako, Saitama 3510198, Japan. [Izubuchi, Taku] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Hashimoto, K (reprint author), Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan. NR 54 TC 12 Z9 12 U1 0 U2 0 PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE PI KYOTO PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN SN 0033-068X J9 PROG THEOR PHYS JI Prog. Theor. Phys. PD APR PY 2008 VL 119 IS 4 BP 599 EP 641 DI 10.1143/PTP.119.599 PG 43 WC Physics, Multidisciplinary SC Physics GA 307BL UT WOS:000256292500005 ER PT J AU Yilmaz, N Donaldson, B Gill, W Erikson, W AF Yilmaz, Nadir Donaldson, Burl Gill, Walter Erikson, William TI Solid propellant burning rate from strand burner pressure measurement SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE propellant burning rate; propellant strand burner; solid propellant combustion; solid rocket motors AB Strand burner pressure - time data are analyzed to determine if the propellant burning rate can be extracted. This approach is based on strand burner pressure-time history that is related to the temperature change due to exothermic reaction heating of chamber gases and gas addition to the chamber by propellant combustion products. In support of this method, chemical equilibrium calculations were made to project product composition, internal energy, and other needed properties. A mathematical model was formulated and solved numerically and the calculated burning rates were compared with the experimental wire-break time results provided simultaneously and with the propellant manufacturer's results, when available. The comparisons reveal that the approach has merit and that more accurate pressure determination coupled with additional thermochemical information and strand burner gas temperature measurements has the potential to make this approach a viable technique and one that can be applied in conjunction with other burning rate measurements. The proposed method is similar to a well-developed technique which is commonly applied to ballistic powders but with adjustments for the differences in geometry, pressure, and time of event. C1 [Yilmaz, Nadir] New Mexico Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA. [Donaldson, Burl; Gill, Walter; Erikson, William] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Yilmaz, N (reprint author), New Mexico Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA. EM yilmaznadir@yahoo.com NR 14 TC 7 Z9 7 U1 4 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD APR PY 2008 VL 33 IS 2 BP 109 EP 117 DI 10.1002/prep.200800216 PG 9 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 293SU UT WOS:000255355800006 ER PT J AU Asaithamby, A Uematsu, N Chatterjee, A Story, MD Burma, S Chen, DJ AF Asaithamby, Aroumougame Uematsu, Naoya Chatterjee, Aloke Story, Michael D. Burma, Sandeep Chen, David J. TI Repair of HZE-Particle-induced DNA double-strand breaks in normal human fibroblasts SO RADIATION RESEARCH LA English DT Article ID DEPENDENT PROTEIN-KINASE; HISTONE H2AX PHOSPHORYLATION; MULTIPLY DAMAGED SITES; MAMMALIAN-CELLS; HEAVY-IONS; HIGH-LET; IONIZING-RADIATIONS; CELLULAR-RESPONSE; 53BP1; IRRADIATION AB DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and gamma rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using gamma-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and gamma radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with gamma-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of gamma-H2AX. Spatial co-localization analysis showed that unlike gamma-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and gamma rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles. (c) 2008 by Radiation Research Society. C1 [Asaithamby, Aroumougame; Uematsu, Naoya; Story, Michael D.; Burma, Sandeep; Chen, David J.] Univ Texas SW Med Ctr Dallas, Dept Radiat Oncol, Div Mol Radiat Biol, Dallas, TX 75390 USA. [Chatterjee, Aloke] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Chen, DJ (reprint author), Univ Texas SW Med Ctr Dallas, Dept Radiat Oncol, Div Mol Radiat Biol, Dallas, TX 75390 USA. EM David.Chen@UTsouthwestern.edu NR 46 TC 85 Z9 86 U1 2 U2 7 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD APR PY 2008 VL 169 IS 4 BP 437 EP 446 DI 10.1667/RR1165.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 280SP UT WOS:000254446800007 PM 18363429 ER PT J AU Crandall, D Ahmadi, G Leonard, D Ferer, M Smith, DH AF Crandall, Dustin Ahmadi, Goodarz Leonard, Douglas Ferer, Martin Smith, Duane H. TI A new stereolithography experimental porous flow device SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID RELATIVE PERMEABILITY; 2-PHASE FLOW; PORE-SCALE; MEDIA; NETWORK; MODELS; DISPLACEMENTS; FLUID; PERCOLATION; PARTICLES AB A new method for constructing laboratory-scale porous media with increased pore-level variabilities for two-phase flow experiments is presented here. These devices have been created with stereolithography directly on glass, thus improving the stability of the model created with this precision rapid construction technique. The method of construction and improved parameters are discussed in detail, followed by a brief comparison of two-phase drainage results for air invasion into the water-saturated porous medium. Flow through the model porous medium is shown to substantiate theoretical fractal predictions. (C) 2008 American Institute of Physics. C1 [Crandall, Dustin; Ferer, Martin; Smith, Duane H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Crandall, Dustin; Ahmadi, Goodarz] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA. [Ahmadi, Goodarz; Leonard, Douglas] Clarkson Univ, Ctr Air Resources Engn & Sci, Potsdam, NY 13699 USA. [Ferer, Martin; Smith, Duane H.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. RP Crandall, D (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM dustin.crandall@nr.netl.doe.gov RI Crandall, Dustin/B-1257-2010 NR 31 TC 15 Z9 15 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2008 VL 79 IS 4 AR 044501 DI 10.1063/1.2903740 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 295EC UT WOS:000255456800023 PM 18447537 ER PT J AU Downing, KH Mooney, PE AF Downing, Kenneth H. Mooney, Paul E. TI A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HYBRID PIXEL DETECTOR; CCD CAMERA; 400 KV; PERFORMANCE; TOMOGRAPHY; CRYSTALLOGRAPHY; ACQUISITION; MICROGRAPHS; COLLECTION; RESOLUTION AB Electron microscopists are increasingly turning to intermediate voltage electron microscopes (IVEMs) operating at 300-400 kV for a wide range of studies. They are also increasingly taking advantage of slow-scan charge coupled device (CCD) cameras, which have become widely used on electron microscopes. Under some conditions, CCDs provide an improvement in data quality over photographic film, as well as the many advantages of direct digital readout. However, CCD performance is seriously degraded on IVEMs compared to the more conventional 100 kV microscopes. In order to increase the efficiency and quality of data recording on IVEMs, we have developed a CCD camera system in which the electrons are decelerated to below 100 kV before impacting the camera, resulting in greatly improved performance in both signal quality and resolution compared to other CCDs used in electron microscopy. These improvements will allow high-quality image and diffraction data to be collected directly with the CCD, enabling improvements in data collection for applications including high-resolution electron crystallography, single particle reconstruction of protein structures, tomographic studies of cell ultrastructure, and remote microscope operation. This approach will enable us to use even larger format CCD chips that are being developed with smaller pixels. (C) 2008 American Institute of Physics. C1 [Downing, Kenneth H.] Lawrence Berkeley Natl Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. [Mooney, Paul E.] Gatan Inc, Pleasanton, CA 94588 USA. RP Downing, KH (reprint author), Lawrence Berkeley Natl Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. EM khdowning@lbl.gov FU NCRR NIH HHS [RR12183]; NIGMS NIH HHS [GM75519, R01 GM075519, P01 GM051487] NR 27 TC 10 Z9 10 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2008 VL 79 IS 4 AR 043702 DI 10.1063/1.2902853 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 295EC UT WOS:000255456800014 PM 18447528 ER PT J AU Jang, ZH Suh, BJ Corti, M Cattaneo, L Hajny, D Borsa, F Luban, M AF Jang, Z. H. Suh, B. J. Corti, M. Cattaneo, L. Hajny, D. Borsa, F. Luban, M. TI Broadband electron spin resonance at low frequency without resonant cavity SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MODULATION; SPECTROSCOPY; ESR; EPR AB We have developed a nonconventional broadband electron spin resonance (ESR) spectrometer operating continuously in the frequency range from 0.5 to 9 GHz. Dual antenna structure and the microwave absorbing environment differentiate the setup from the conventional one and enable broadband operation with any combination of frequency or magnetic field modulation and frequency or magnetic field sweeping. Its performance has been tested with the measurements on a 1,1-diphenyl-2-picrylhydrazyl (DPPH) sample and with the measurements on the single molecular magnet, V6, in solid state at low temperature. (C) 2008 American Institute of Physics. C1 [Jang, Z. H.] Kookmin Univ, Dept Phys, Seoul 136702, South Korea. [Suh, B. J.] Cathol Univ Korea, Dept Phys, Puchon 420743, South Korea. [Corti, M.; Cattaneo, L.; Hajny, D.; Borsa, F.] Unita CNISM INFM, I-27100 Pavia, Italy. [Corti, M.; Cattaneo, L.; Hajny, D.; Borsa, F.] Dipartimento Fis A Volta, I-27100 Pavia, Italy. [Borsa, F.; Luban, M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Borsa, F.; Luban, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Jang, ZH (reprint author), Kookmin Univ, Dept Phys, Seoul 136702, South Korea. NR 16 TC 9 Z9 9 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2008 VL 79 IS 4 AR 046101 DI 10.1063/1.2901382 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 295EC UT WOS:000255456800045 PM 18447559 ER PT J AU Park, H Tsang, T Kirk, HG Ladeinde, F Graves, VB Spampinato, PT Carroll, AJ Titus, PH McDonald, KT AF Park, H. Tsang, T. Kirk, H. G. Ladeinde, F. Graves, V. B. Spampinato, P. T. Carroll, A. J. Titus, P. H. McDonald, K. T. TI Optical diagnostics of mercury jet for an intense proton target SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FLOW AB An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper. (C) 2008 American Institute of Physics. C1 [Park, H.; Ladeinde, F.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Tsang, T.; Kirk, H. G.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Graves, V. B.; Spampinato, P. T.; Carroll, A. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Titus, P. H.] MIT, Cambridge, MA 02139 USA. [McDonald, K. T.] Princeton Univ, Princeton, NJ 08544 USA. RP Ladeinde, F (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA. EM foluso.ladeinde@sunysb.edu NR 15 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2008 VL 79 IS 4 AR 045111 DI 10.1063/1.2912820 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 295EC UT WOS:000255456800042 PM 18447556 ER PT J AU Avignone, FT Elliott, SR Engel, J AF Avignone, Frank T., III Elliott, Steven R. Engel, Jonathan TI Double beta decay, Majorana neutrinos, and neutrino mass SO REVIEWS OF MODERN PHYSICS LA English DT Review ID RANDOM-PHASE-APPROXIMATION; NUCLEAR-MATRIX ELEMENTS; BROKEN LEPTON NUMBER; GRAN-SASSO 1990-2003; 2-BETA DECAY; SHELL-MODEL; CRYSTAL SCINTILLATORS; 0-NU-BETA-BETA DECAY; PROTON-NEUTRON; PARTICLE PHYSICS AB The theoretical and experimental issues relevant to neutrinoless double beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics, and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the nonobservation of neutrinoless double beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics. C1 [Avignone, Frank T., III] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Elliott, Steven R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Engel, Jonathan] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. RP Avignone, FT (reprint author), Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. EM avignone@sc.edu; elliotts@lanl.gov; engelj@physics.unc.edu NR 224 TC 553 Z9 554 U1 7 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD APR-JUN PY 2008 VL 80 IS 2 BP 481 EP 516 DI 10.1103/RevModPhys.80.481 PG 36 WC Physics, Multidisciplinary SC Physics GA 310KN UT WOS:000256528500005 ER PT J AU Urtiew, PA Vandersall, KS Tarver, CM Garcia, F Forbes, JW AF Urtiew, P. A. Vandersall, K. S. Tarver, C. M. Garcia, F. Forbes, J. W. TI Shock initiation of composition B and C-4 explosives: Experiments and modeling SO RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article AB Shock initiation experiments with composition B and C-4 HE were performed to obtain in situ pressure gauge data for the purpose of providing the ignition and growth reactive flow model with proper modeling parameters. A 100-mm-bore propellant-driven gas gun was utilized to initiate the explosive charges containing manganin piezoresistive pressure gauge packages embedded in the explosive sample. Experimental data provided new information on the shock velocity-particle velocity relationship for each of the investigated material in their respective pressure range. The run-to-detonation distance points in the pop plot for these experiments showed agreement with previously published data, and ignition and growth modeling calculations resulted in a good fit to the experimental data. Identical ignition and growth reaction rate parameters were used for C-4 and composition B, and the composition B model also included a third reaction rate to simulate the completion of reaction by the TNT component. This model can be applied to shock initiation scenarios that have not or cannot be tested experimentally with a high level of confidence in its predictions. C1 [Urtiew, P. A.; Vandersall, K. S.; Tarver, C. M.; Garcia, F.] Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. [Forbes, J. W.] Univ Maryland, Ctr Energet Concepts Dev, College Pk, MD 20742 USA. RP Urtiew, PA (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. NR 10 TC 8 Z9 9 U1 2 U2 15 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1990-7931 J9 RUSS J PHYS CHEM B+ JI Russ. J. Phys. Chem. B PD APR PY 2008 VL 2 IS 2 BP 162 EP 171 DI 10.1134/S1990793108020036 PG 10 WC Physics, Atomic, Molecular & Chemical SC Physics GA 305PE UT WOS:000256189500003 ER PT J AU Wang, CZ Lu, WC Yao, YX Li, J Yip, S Ho, KM AF Wang, Cai-Zhuang Lu, Wen-Cai Yao, Yong-Xin Li, Ju Yip, Sidney Ho, Kai-Ming TI Tight-binding Hamiltonian from first-principles calculations SO SCIENTIFIC MODELING AND SIMULATIONS LA English DT Article ID MINIMAL BASIS-SETS; ELECTRON CORRELATION; MOLECULAR-DYNAMICS; PSEUDOPOTENTIALS; MODEL C1 [Wang, Cai-Zhuang; Yao, Yong-Xin; Ho, Kai-Ming] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, Cai-Zhuang; Yao, Yong-Xin; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lu, Wen-Cai] Jilin Univ, State Key Lab Theoret & Computat Chem, Changchun 130021, Peoples R China. [Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Yip, Sidney] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Wang, CZ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM wangcz@ameslab.gov RI Li, Ju/A-2993-2008; Yao, Yongxin/B-7320-2008 OI Li, Ju/0000-0002-7841-8058; NR 29 TC 3 Z9 3 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1874-8554 J9 SCI MODEL SIMUL JI Sci. Model. Simul. PD APR PY 2008 VL 15 IS 1-3 BP 81 EP 95 DI 10.1007/s10820-008-9108-y PG 15 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 405CX UT WOS:000263201100008 ER PT J AU Wang, CZ Lee, GD Li, J Yip, S Ho, KM AF Wang, Cai-Zhuang Lee, Gun-Do Li, Ju Yip, Sidney Ho, Kai-Ming TI Atomistic simulation studies of complex carbon and silicon systems using environment-dependent tight-binding potentials SO SCIENTIFIC MODELING AND SIMULATIONS LA English DT Article ID SI AD-DIMERS; TETRAHEDRAL AMORPHOUS-CARBON; MINIMAL BASIS-SETS; MOLECULAR-DYNAMICS; SCREW DISLOCATION; SI(100) SURFACE; LOW-TEMPERATURE; DIFFUSION; SI(001); MODEL C1 [Wang, Cai-Zhuang; Ho, Kai-Ming] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lee, Gun-Do] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South Korea. [Lee, Gun-Do] Seoul Natl Univ, Interuniv Semicond Res Ctr, Seoul 151742, South Korea. [Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Yip, Sidney] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Yip, Sidney] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. RP Wang, CZ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM wangcz@ameslab.gov RI Li, Ju/A-2993-2008; Lee, Gun-Do/L-1259-2013 OI Li, Ju/0000-0002-7841-8058; Lee, Gun-Do/0000-0001-8328-8625 NR 81 TC 0 Z9 0 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1874-8554 J9 SCI MODEL SIMUL JI Sci. Model. Simul. PD APR PY 2008 VL 15 IS 1-3 BP 97 EP 121 DI 10.1007/s10820-008-9109-x PG 25 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 405CX UT WOS:000263201100009 ER PT J AU Lorenzana, HE Belak, JF Bradley, KS Bringa, EM Budil, KS Cazamias, JU El-Dasher, B Hawreliak, JA Hessler, J Kadau, K Kalantar, DH McNaney, JM Milathianaki, D Rosolankova, K Swift, DC Taravillo, M Van Buuren, TW Wark, JS de la Rubia, TD AF Lorenzana, H. E. Belak, J. F. Bradley, K. S. Bringa, E. M. Budil, K. S. Cazamias, J. U. El-Dasher, B. Hawreliak, J. A. Hessler, J. Kadau, K. Kalantar, D. H. McNaney, J. M. Milathianaki, D. Rosolankova, K. Swift, D. C. Taravillo, M. Van Buuren, T. W. Wark, J. S. de la Rubia, T. Diaz TI Shocked materials at the intersection of experiment and simulation SO SCIENTIFIC MODELING AND SIMULATIONS LA English DT Article DE Shock; Phase transformations; Damage; Shock diagnostic tools; Molecular dynamics materials simulation; Ultrafast phenomena ID X-RAY-DIFFRACTION; PARTICLE-SIZE DISTRIBUTIONS; LITHIUM-FLUORIDE CRYSTALS; HIGH-PRESSURE; PHASE-TRANSITION; PLASTIC-DEFORMATION; LASER; IRON; COMPRESSION; TEMPERATURE AB Understanding the dynamic lattice response of solids under the extreme conditions of pressure, temperature and strain rate is a scientific quest that spans nearly a century. Critical to developing this understanding is the ability to probe and model the spatial and temporal evolution of the material microstructure and properties at the scale of the relevant physical phenomena-nanometers to micrometers and picoseconds to nanoseconds. While experimental investigations over this range of spatial and temporal scales were unimaginable just a decade ago, new technologies and facilities currently under development and on the horizon have brought these goals within reach for the first time. The equivalent advancements in simulation capabilities now mean that we can conduct simulations and experiments at overlapping temporal and spatial scales. In this article, we describe some of our studies which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale molecular dynamics simulations to investigate the real-time physical phenomena that control the dynamic response of shocked materials. C1 [Lorenzana, H. E.; Belak, J. F.; Bradley, K. S.; Bringa, E. M.; Budil, K. S.; El-Dasher, B.; Hawreliak, J. A.; Kalantar, D. H.; McNaney, J. M.; Milathianaki, D.; Swift, D. C.; Van Buuren, T. W.; de la Rubia, T. Diaz] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cazamias, J. U.] Univ Alabama Birmingham, Birmingham, AL USA. [Hessler, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kadau, K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Rosolankova, K.; Wark, J. S.] Univ Oxford, Oxford, England. [Taravillo, M.] Univ Complutense Madrid, Madrid, Spain. RP Lorenzana, HE (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM HLorenzana@llnl.gov RI Bringa, Eduardo/F-8918-2011; Taravillo, Mercedes/G-2147-2011; McNaney, James/F-5258-2013 OI Taravillo, Mercedes/0000-0003-1159-8530; FU Laboratory Directed Research and Development Program at LLNL [06-SI-004]; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Basic Energy Sciences, [DE-AC02-06CH11357]; MEC [MAT2006-13548-C02-01] FX This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 06-SI-004 and under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would like to thank the staff at the Vulcan Laser Facility at the Rutherford Appleton Laboratory, the Janus laser at Lawrence Livermore National Laboratory, and the University of Rochester Laboratory for Laser Energetics under the NLUF grants program. MT acknowledges the Secretaria de Estado de Educacion y Universidades of the Government of Spain for a postdoctoral fellowship and the MEC for partial support through grant MAT2006-13548-C02-01. NR 64 TC 5 Z9 6 U1 5 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1874-8554 J9 SCI MODEL SIMUL JI Sci. Model. Simul. PD APR PY 2008 VL 15 IS 1-3 BP 159 EP 186 DI 10.1007/s10820-008-9107-z PG 28 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 405CX UT WOS:000263201100012 ER PT J AU Radmilovic, V Tolley, A Marquis, EA Rossell, MD Lee, Z Dahmen, U AF Radmilovic, V. Tolley, A. Marquis, E. A. Rossell, M. D. Lee, Z. Dahmen, U. TI Monodisperse Al-3(LiScZr) core/shell precipitates in al alloys SO SCRIPTA MATERIALIA LA English DT Article DE atom probe tomography (APT); electron microscopy; dispersion strengthening; core/shell precipitates; Al alloy ID ZR ALLOYS; ALUMINUM-ALLOYS; LITHIUM AB We demonstrate a way of producing monodisperse Al-3(LiScZr) core/shell inclusions using solid-state reactions. A uniform distribution of particles with a Li- and Sc-rich core surrounded by Li-rich shell a few nanometers thick with Zr segregating at the core/shell interface can be made reproducibly by exploiting kinetic and thermodynamic parameters. This approach to generating precipitate distributions can be applied to a range of alloys and could lead to new types of dispersion-strengthened materials. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Radmilovic, V.; Tolley, A.; Rossell, M. D.; Lee, Z.; Dahmen, U.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Tolley, A.] Consejo Nacl Invest Cient & Tecn, CNEA, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Marquis, E. A.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP Radmilovic, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM vrradmilovic@lbl.gov RI Lee, Zonghoon/G-1474-2011; Marquis, Emmanuelle/O-5647-2014; Rossell, Marta/E-9785-2017 OI Lee, Zonghoon/0000-0003-3246-4072; Marquis, Emmanuelle/0000-0002-6476-2835; NR 20 TC 26 Z9 31 U1 2 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD APR PY 2008 VL 58 IS 7 BP 529 EP 532 DI 10.1016/j.scriptamat.2007.11.012 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 269ZJ UT WOS:000253689100002 ER PT J AU Hattar, K Demkowicz, MJ Misra, A Robertson, IM Hoagland, RG AF Hattar, K. Demkowicz, M. J. Misra, A. Robertson, I. M. Hoagland, R. G. TI Arrest of He bubble growth in Cu-Nb multilayer nanocomposites SO SCRIPTA MATERIALIA LA English DT Article DE transmission electron microscopy (TEM); composites; layered structures and superlattices; microstructure; ion beam methods : implantation ID NANOSCALE CU/NB MULTILAYERS; METALLIC COMPOSITES; GAS BUBBLES; HELIUM; IRRADIATION; NUCLEATION; INTERFACES; MECHANISMS; STABILITY; PRESSURE AB Transmission electron microscopy on Cu-Nb multilayer nanocomposites implanted with 10(17) cm(-2) of 33 keV He-4(+) at 763 K revealed uniformly dispersed He bubbles of 1-2 nm diameter in Nb and a broad distribution of larger ones in Cu. Bubbles in Cu were confined by the neighboring Nb, limiting their size normal to Cu-Nb interfaces to the Cu layer. The conditions under which layered composite morphology may be used to control He bubble distributions in materials under irradiation are discussed. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Hattar, K.; Demkowicz, M. J.; Misra, A.; Hoagland, R. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hattar, K.; Robertson, I. M.] Univ Illinois, Urbana, IL 61801 USA. RP Demkowicz, MJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM demkowicz@lanl.gov RI Hoagland, Richard/G-9821-2012; Misra, Amit/H-1087-2012 NR 30 TC 54 Z9 54 U1 2 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD APR PY 2008 VL 58 IS 7 BP 541 EP 544 DI 10.1016/j.scriptamat.2007.11.007 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 269ZJ UT WOS:000253689100005 ER PT J AU Lee, MH Bae, DH Kim, DH Kim, WT Sordelet, DJ Kim, KB Eckert, J AF Lee, Min Ha Bae, Dong Hyun Kim, Do Hyang Kim, Won Tae Sordelet, Daniel J. Kim, Ki Buem Eckert, Juergen TI Nanocrystallization at shear bands in bulk metallic glass matrix composites SO SCRIPTA MATERIALIA LA English DT Article DE metallic glass; shear band; metallic glass composite; nanocrystallization ID TRANSMISSION ELECTRON-MICROSCOPY; PLASTIC-DEFORMATION; AMORPHOUS METAL; WARM EXTRUSION; ALLOY; CRYSTALLIZATION; PRESSURE; BEHAVIOR; FRACTURE; POWDERS AB We investigated the effect of reinforcement on the formation of nanocrystals at shear bands in a Ni-based metallic glass matrix composite in comparison with monolithic Ni-based bulk metallic glass when shear bands are generated during deformation. The results suggest that the occurrence of nanocrystallization at a shear band implies a stress concentration by a geometrical effect of the reinforcement phase on the compressive loading conditions. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lee, Min Ha; Eckert, Juergen] IFW Dresden, Inst Complex Mat, D-01171 Dresden, Germany. [Bae, Dong Hyun; Kim, Do Hyang] Yonsei Univ, Dept Met Engn, Seoul 120749, South Korea. [Kim, Won Tae] Cheongju Univ, Div Appl Sci, Chonju 360764, South Korea. [Sordelet, Daniel J.] Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [Kim, Ki Buem] Sejong Univ, Fac Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea. [Eckert, Juergen] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany. RP Lee, MH (reprint author), IFW Dresden, Inst Complex Mat, POB 27 01 16, D-01171 Dresden, Germany. EM m.h.lee@ifw-dresden.de RI Juhyun, Oh/H-9185-2012; bang, changwook/J-7922-2012 NR 25 TC 16 Z9 16 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD APR PY 2008 VL 58 IS 8 BP 651 EP 654 DI 10.1016/j.scriptamat.2007.11.032 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 277FH UT WOS:000254197600009 ER PT J AU Berdahl, P Akbari, H Jacobs, J Klink, F AF Berdahl, Paul Akbari, Hashern Jacobs, Jeffry Klink, Frank TI Surface roughness effects on the solar reflectance of cool asphalt shingles SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE cool roofing; asphalt shingle reflectance; rough surface ID SPECTRAL OPTICAL-PROPERTIES; PIGMENTS AB We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the "micro-reflectance" of a small surface region to the "macro-reflectance" of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with small corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication. (c) 2007 Elsevier B.V. All rights reserved. C1 [Berdahl, Paul; Akbari, Hashern] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Heat Isl Grp, Berkeley, CA 94720 USA. [Jacobs, Jeffry; Klink, Frank] 3M Co, Ind Mineral Prod Div, St Paul, MN 55144 USA. RP Berdahl, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Heat Isl Grp, Berkeley, CA 94720 USA. EM phberdahl@lbl.gov NR 5 TC 15 Z9 16 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD APR PY 2008 VL 92 IS 4 BP 482 EP 489 DI 10.1016/j.solmat.2007.10.011 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 272OL UT WOS:000253869000016 ER PT J AU Mascarenas, D Flynn, E Todd, M Park, G Farrar, C AF Mascarenas, David Flynn, Eric Todd, Michael Park, Gyuhae Farrar, Charles TI Wireless sensor technologies for monitoring civil structures SO SOUND AND VIBRATION LA English DT Article; Proceedings Paper CT 26th International Modal Analysis Conference CY FEB, 2008 CL Orlando, FL AB Wireless sensor networks (WSNs) for structural health monitoring (SHM) applications can allow for a rapid assessment of structural integrity after an event such as a natural disaster puts the reliability of civil infrastructure in question. Unfortunately, there are many technical challenges associated with employing such a WSN in civil infrastructure for operation over multiple decades. Maintenance costs must remain low enough to justify the integration of such a WSN into a given structure. The technical challenges include ensuring power is delivered to the sensor nodes, reducing installation and maintenance costs, and automating the collection and analysis of data collected by a wireless sensor network. Here we explore possible solutions to the technical challenges presented by WSN for SHM applications. A,'mobile host" WSN has been developed where a civil structure is instrumented with sensor nodes capable of being powered solely on energy transmitted to the sensor node wirelessly by the mobile host. When the sensor node has received adequate energy for making a given measurement, the sensor node performs the necessary measurement operations and then wirelessly transmits the measurement to the mobile host. These operations are then repeated for all desired sensor nodes in the network. C1 [Mascarenas, David; Flynn, Eric; Todd, Michael] Univ Calif San Diego, San Diego, CA 92103 USA. [Park, Gyuhae; Farrar, Charles] Los Alamos Natl Lab, Los Alamos, NM USA. RP Mascarenas, D (reprint author), Univ Calif San Diego, San Diego, CA 92103 USA. EM dmascare@ucsd.edu RI Farrar, Charles/C-6954-2012 NR 4 TC 17 Z9 17 U1 0 U2 3 PU ACOUSTICAL PUBL INC PI BAY VILLAGE PA 27101 E OVIATT RD, PO BOX 40416, BAY VILLAGE, OH 44140 USA SN 1541-0161 J9 SOUND VIB JI Sound Vib. PD APR PY 2008 VL 42 IS 4 BP 16 EP 21 PG 6 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 297LM UT WOS:000255618200004 ER PT J AU Lin, RP Curtis, DW Larson, DE Luhmann, JG McBride, SE Maier, MR Moreau, T Tindall, CS Turin, P Wang, L AF Lin, R. P. Curtis, D. W. Larson, D. E. Luhmann, J. G. McBride, S. E. Maier, M. R. Moreau, T. Tindall, C. S. Turin, P. Wang, Linghua TI The STEREO IMPACT Suprathermal Electron (STE) instrument SO SPACE SCIENCE REVIEWS LA English DT Review DE solar energetic particles; energetic particle detectors; STEREO mission; suprathermal electrons; silicon detectors ID III RADIO-BURSTS; WIND SPACECRAFT; EVENTS; ORIGIN; ACCELERATION; SILICON; ENERGY AB The Suprathermal Electron (STE) instrument, part of the IMPACT investigation on both spacecraft of NASA's STEREO mission, is designed to measure electrons from similar to 2 to similar to 100 keV. This is the primary energy range for impulsive electron/(3)He-rich energetic particle events that are the most frequently occurring transient particle emissions from the Sun, for the electrons that generate solar type III radio emission, for the shock accelerated electrons that produce type II radio emission, and for the superhalo electrons (whose origin is unknown) that are present in the interplanetary medium even during the quietest times. These electrons are ideal for tracing heliospheric magnetic field lines back to their source regions on the Sun and for determining field line lengths, thus probing the structure of interplanetary coronal mass ejections (ICMEs) and of the ambient inner heliosphere. STE utilizes arrays of small, passively cooled thin window silicon semiconductor detectors, coupled to state-of-the-art pulse-reset front-end electronics, to detect electrons down to similar to 2 keV with about 2 orders of magnitude increase in sensitivity over previous sensors at energies below similar to 20 keV. STE provides energy resolution of Delta E/E similar to 10-25% and the angular resolution of similar to 20 degrees over two oppositely directed similar to 80 degrees x 80 degrees fields of view centered on the nominal Parker spiral field direction. C1 [Lin, R. P.; Wang, Linghua] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lin, R. P.; Curtis, D. W.; Larson, D. E.; Luhmann, J. G.; McBride, S. E.; Moreau, T.; Turin, P.; Wang, Linghua] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Maier, M. R.; Tindall, C. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lin, RP (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM rlin@ss1.berkeley.edu RI Wang, Linghua/C-4938-2014 OI Wang, Linghua/0000-0001-7309-4325 NR 23 TC 24 Z9 24 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD APR PY 2008 VL 136 IS 1-4 BP 241 EP 255 DI 10.1007/s11214-008-9330-7 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 322OC UT WOS:000257384200010 ER PT J AU Bingham, D Sitter, R Kelly, E Moore, L Olivas, JD AF Bingham, Derek Sitter, Randy Kelly, Elizabeth Moore, Leslie Olivas, J. David TI Factorial designs with multiple levels of randomization SO STATISTICA SINICA LA English DT Article DE blocking; orthogonal array; split-lot; split-plot; strip-plot ID SPLIT-PLOT DESIGNS; MINIMUM-ABERRATION; OPTIMAL BLOCKING; 2-LEVEL; RESOLUTION AB Design and analysis of factorial experiments with randomization restrictions has received considerable attention in recent years; motivated by studies of multi-stage processes or systems. This has given rise to seemingly unrelated methods of design construction, specific to the layout (e.g., split-plot, split-lot, strip-plot designs). We develop a general approach to this problem that includes most approaches in the literature as special cases, and is easily adaptable to designs which are combinations of different layouts. C1 [Bingham, Derek; Sitter, Randy] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada. [Kelly, Elizabeth; Moore, Leslie; Olivas, J. David] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Bingham, D (reprint author), Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada. EM dbingham@stat.sfu.ca; sitter@stat.sfu.ca; ekelly@lanl.gov; Imoore@lanl.gov; dolivas@lanl.gov NR 17 TC 9 Z9 9 U1 0 U2 0 PU STATISTICA SINICA PI TAIPEI PA C/O DR H C HO, INST STATISTICAL SCIENCE, ACADEMIA SINICA, TAIPEI 115, TAIWAN SN 1017-0405 J9 STAT SINICA JI Stat. Sin. PD APR PY 2008 VL 18 IS 2 BP 493 EP 513 PG 21 WC Statistics & Probability SC Mathematics GA 301GW UT WOS:000255885400007 ER PT J AU Dooner, MS Aliotta, JM Pimentel, J Dooner, GJ Abedi, M Colvin, G Liu, Q Weier, HU Johnson, KW Quesenberry, PJ AF Dooner, Mark S. Aliotta, Jason M. Pimentel, Jeffrey Dooner, Gerri J. Abedi, Mehrdad Colvin, Gerald Liu, Qin Weier, Heinz-Ulli Johnson, Kevin W. Quesenberry, Peter J. TI Conversion potential of marrow cells into lung cells fluctuates with cytokine-induced cell cycle SO STEM CELLS AND DEVELOPMENT LA English DT Article ID HEMATOPOIETIC STEM-CELLS; BONE-MARROW; GENE-EXPRESSION; INDUCED DEFECT; IN-VIVO; ENGRAFTMENT; CONTINUUM; HEPATOCYTES; PROGENITORS; PLASTICITY AB Green fluorescent protein (GFP)-labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung-specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit the cell cycle by exposure to interleukin-3 (IL-3), IL-6, IL-11, and Steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G(1)/S interface of the cell cycle have a three-fold increase in cells that assume a nonhematopoietic or pulmonary epithelial cell phenotype and that this increase is no longer seen in late S/G(2). These cells have been characterized as GFP(+) CD45(-) and GFP(+) cytokeratin(+). Thus, marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine-induced cell cycle transit. Previous studies have shown that the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse the cell cycle, leading to a continuum model of stem cell regulation. The present study indicates that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum. C1 [Dooner, Mark S.; Aliotta, Jason M.; Dooner, Gerri J.; Colvin, Gerald; Johnson, Kevin W.; Quesenberry, Peter J.] Rhode Isl Hosp, Ctr Stem Cell Biol Res, Dept Med Oncol Res, Providence, RI 02903 USA. [Pimentel, Jeffrey; Abedi, Mehrdad] Roger Williams Med Ctr, Dept Res, Providence, RI 02908 USA. [Liu, Qin] Univ Massachusetts, Sch Med, Worcester, MA 01655 USA. [Weier, Heinz-Ulli] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Dooner, MS (reprint author), Rhode Isl Hosp, Ctr Stem Cell Biol Res, Dept Med Oncol Res, 593 Eddy St, Providence, RI 02903 USA. EM mdooner@lifespan.org FU NCRR NIH HHS [P20RR018757-04]; NHLBI NIH HHS [1KO8 HL072332-01, 1R01HL-73747-02, K08 HL086868]; NIDDK NIH HHS [1R01DK61858-03, 5K08 DK064980] NR 48 TC 18 Z9 19 U1 0 U2 3 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1547-3287 J9 STEM CELLS DEV JI Stem Cells Dev. PD APR PY 2008 VL 17 IS 2 BP 207 EP 219 DI 10.1089/scd.2007.0195 PG 13 WC Cell & Tissue Engineering; Hematology; Medicine, Research & Experimental; Transplantation SC Cell Biology; Hematology; Research & Experimental Medicine; Transplantation GA 297DK UT WOS:000255597100001 PM 18447637 ER PT J AU Lambert, AR Sussman, D Shen, B Maunus, R Nix, J Samuelson, J Xu, SY Stoddard, BL AF Lambert, Abigail R. Sussman, Django Shen, Betty Maunus, Robert Nix, Jay Samuelson, James Xu, Shuang-Yong Stoddard, Barry L. TI Structures of the rare-cutting restriction endonuclease NotI reveal a unique metal binding fold involved in DNA binding SO STRUCTURE LA English DT Article ID IRON-SULFUR CLUSTERS; CRYSTAL-STRUCTURE; ANGSTROM RESOLUTION; NUCLEASE SUPERFAMILY; HOMING ENDONUCLEASE; ENZYMES; PROTEIN; SEQUENCE; RECOGNITION; REPAIR AB The structure of the rare-cutting restriction endonuclease NotI, which recognizes the 8 by target 5'-GCG GCCGC-3', has been solved with and without bound DNA. Because of its specificity (recognizing a site that occurs once per 65 kb), NotI is used to generate large genomic fragments and to map DNA methylation status. NotI contains a unique metal binding fold, found in a variety of putative endonucleases, occupied by an iron atom coordinated within a tetrahedral Cys4 motif. This domain positions nearby protein elements for DNA recognition, and serves a structural role. While recognition of the central six base pairs of the target is accomplished via a saturated hydrogen bond network typical of restriction enzymes, the most peripheral base pairs are engaged in a single direct contact in the major groove, reflecting reduced pressure to recognize those positions. NotI may represent an evolutionary intermediate between mobile endonucleases (which recognize longer target sites) and canonical restriction endonucleases. C1 [Lambert, Abigail R.; Stoddard, Barry L.] Univ Washington, Grad Program Biomol Struct & Design, Seattle, WA 98195 USA. [Lambert, Abigail R.; Sussman, Django; Shen, Betty; Stoddard, Barry L.] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA. [Maunus, Robert; Samuelson, James; Xu, Shuang-Yong] New England Biolabs Inc, Ipswitch, MA 01938 USA. [Nix, Jay] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Stoddard, BL (reprint author), Univ Washington, Grad Program Biomol Struct & Design, Seattle, WA 98195 USA. EM bstoddar@fhcrc.org FU NCRR NIH HHS [P41 RR-01081, P41 RR001081]; NIGMS NIH HHS [T32 GM07270, R01 GM049857-12, T32 GM007270-33, R01 GM049857, R01 GM49857, T32 GM007270] NR 50 TC 26 Z9 26 U1 0 U2 2 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD APR PY 2008 VL 16 IS 4 BP 558 EP 569 DI 10.1016/j.str.2008.01.017 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 287QT UT WOS:000254932300008 PM 18400177 ER PT J AU Forsberg, C AF Forsberg, Charles TI Biofuels SO TECHNOLOGY REVIEW LA English DT Letter C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Forsberg, C (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU MASS INST TECHNOL PI CAMBRIDGE PA TECHNOLOGY REVIEW, INC, ONE MAIN ST, 7TH FLOOR, CAMBRIDGE, MA 02142 USA SN 1099-274X J9 TECHNOL REV JI Technol. Rev. PD APR PY 2008 VL 111 IS 2 BP 10 EP 10 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 268BI UT WOS:000253552500001 ER PT J AU Delle Monache, L Wilczak, J McKeen, S Grell, G Pagowski, M Peckham, S Stull, R Mchenry, J McQueen, J AF Delle Monache, Luca Wilczak, James McKeen, Stuart Grell, Georg Pagowski, Mariusz Peckham, Steven Stull, Roland Mchenry, John McQueen, Jeffrey TI A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID MULTISCALE GEM MODEL; CHEMISTRY; VERIFICATION AB Kalman filtering (KF) is used to estimate systematic errors in surface ozone forecasts. The KF updates its estimate of future ozone-concentration bias using past forecasts and observations. The optimum filter parameter is estimated via sensitivity analysis. KF performance is tested for deterministic, ensemble-averaged and probabilistic forecasts. Eight simulations were run for 56 d during summer 2004 over northeastern USA and southern Canada, with 358 ozone surface stations. KF improves forecasts of ozone-concentration magnitude (measured by root mean square error) and the ability to predict rare events (measured by the critical success index), for deterministic and ensemble-averaged forecasts. It improves the 24-h maximum ozone-concentration prediction (measured by the unpaired peak prediction accuracy), and improves the linear dependency and timing of forecasted and observed ozone concentration peaks (measured by a lead/lag correlation). KF also improves the predictive skill of probabilistic forecasts of concentration greater than thresholds of 10-50 ppbv, but degrades it for thresholds of 70-90 ppbv. KF reduces probabilistic forecast bias. The combination of KF and ensemble averaging presents a significant improvement for real-time ozone forecasting because KF reduces systematic errors while ensemble-averaging reduces random errors. When combined, they produce the best overall ozone forecast. C1 [Delle Monache, Luca; Stull, Roland] Univ British Columbia, Earth & Ocean Sci Dept, Atmospher Sci Programme, Vancouver, BC V5Z 1M9, Canada. [Wilczak, James] Natl Ocean & Atmsphere Adm, Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA. [McKeen, Stuart; Grell, Georg; Peckham, Steven] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [McKeen, Stuart] Natl Ocean & Atmsphere Adm, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Grell, Georg; Pagowski, Mariusz; Peckham, Steven] Natl Ocean & Atmsphere Adm, Earth Syst Res Lab, Global Syst Div, Boulder, CO USA. [Pagowski, Mariusz] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Mchenry, John] N Carolina State Univ, Baron Adv Meteorol Syst, Raleigh, NC 27695 USA. [McQueen, Jeffrey] Natl Ocean & Atmsphere Adm, Natl Ctr Environm Predict, Natl Weather Serv, Camp Springs, MD USA. RP Delle Monache, L (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM ldm@llnl.gov RI McKeen, Stuart/H-9516-2013; grell, georg/B-6234-2015; pagowski, mariusz/H-4498-2013 OI grell, georg/0000-0001-5214-8742; pagowski, mariusz/0000-0002-7703-0529 NR 39 TC 24 Z9 24 U1 0 U2 5 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 EI 1600-0889 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD APR PY 2008 VL 60 IS 2 BP 238 EP 249 DI 10.1111/j.1600-0889.2007.00332.x PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 278HZ UT WOS:000254277200010 ER PT J AU Shvidler, M Karasaki, K AF Shvidler, Mark Karasaki, Kenzi TI Exact averaging of stochastic equations for flow in porous media SO TRANSPORT IN POROUS MEDIA LA English DT Article DE heterogeneous porous media; random; flow; exact; averaging; non-local ID HETEROGENEOUS MEDIA; CONDUCTIVITY AB It is well-known that at present, exact averaging of the equations for flow and transport in random porous media have been proposed for limited special fields. Moreover, approximate averaging methods-for example, the convergence behavior and the accuracy of truncated perturbation series-are not well-studied, and in addition, calculation of high-order perturbations is very complicated. These problems have for a long time stimulated attempts to find the answer to the question: Are there in existence some, exact, and sufficiently general forms of averaged equations? Here, we present an approach for finding the general exactly averaged system of basic equations for steady flow with sources in unbounded stochastically homogeneous fields. We do this by using (1) the existence and some general properties of Green's functions for the appropriate stochastic problem, and (2) some information about the random field of conductivity. This approach enables us to find the form of the averaged equations without directly solving the stochastic equations or using the usual assumption regarding any small parameters. In the common case of a stochastically homogeneous conductivity field we present the exactly averaged new basic non-local equation with a unique kernel-vector. We show that in the case of some type of global symmetry (isotropy, transversal isotropy, or orthotropy), we can for three-dimensional and two-dimensional flow in the same way derive the exact averaged non-local equations with a unique kernel-tensor. When global symmetry does not exist, the non-local equation with a kernel-tensor involves complications and leads to an ill-posed problem. C1 [Shvidler, Mark; Karasaki, Kenzi] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Karasaki, K (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, MS 90-1116, Berkeley, CA 94720 USA. EM Mshvidler@lbl.gov; kkarasaki@lbl.gov NR 26 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD APR PY 2008 VL 72 IS 3 BP 295 EP 310 DI 10.1007/s11242-007-9151-2 PG 16 WC Engineering, Chemical SC Engineering GA 267SR UT WOS:000253530000002 ER PT J AU Randeniya, DIB Gunaratne, M Sarkar, S Nazef, A AF Randeniya, D. I. B. Gunaratne, M. Sarkar, S. Nazef, A. TI Calibration of inertial and vision systems as a prelude to multi-sensor fusion SO TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES LA English DT Article DE inertial navigation; inertial vision fusion; inertial vision outdoor calibration; multi-sensor fusion; INS/SFM fusion AB Effective integration of vision and inertial sensing can be used to overcome the classical issue of inertial divergence in inertial systems over time. However, for such integration, two types of calibration need to be performed, namely, (a) calibration to estimate the intrinsic properties of the vision cameras, such as the focal length and lens distortion parameters, and (b) determination of the transformation between the camera and the inertial system. While there are a variety of approaches to calibrate a camera optically, only a few accomplishments have been reported on calibration of cameras with inertial systems. Even the latter ones have been developed under indoor conditions. Calibration of a two sensor system under indoor conditions does not provide an appropriate and practical transformation for use in outdoor maneuvers due to invariable differences between outdoor and indoor conditions. Also, use of custom calibration objects in outdoor operational conditions is not feasible due to larger field of view that requires relatively large calibration object sizes. Hence calibration becomes a critical issue particularly if the integrated system is used in Intelligent Transportation Systems applications. In such cases it is essential that the two sensor system be calibrated in an outdoor setting in the final configuration of the vehicle. This paper introduces a calibration technique to determine the optimized transformation between the inertial and vision sensor systems in an outdoor setting. The derived intrinsic properties and the transformation between individual sensors are verified during two separate test runs on a section of an actual roadway. Finally, on a third roadway section the inertial and converted vision data are successfully compared with data from a manual survey performed. (C) 2007 Published by Elsevier Ltd. C1 [Randeniya, D. I. B.; Gunaratne, M.; Sarkar, S.; Nazef, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Randeniya, DIB (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,MS 6054, Oak Ridge, TN 37831 USA. EM randeniyadi@ornl.gov RI Sarkar, Sudeep/A-8213-2009 OI Sarkar, Sudeep/0000-0001-7332-4207 NR 29 TC 11 Z9 13 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-090X J9 TRANSPORT RES C-EMER JI Transp. Res. Pt. C-Emerg. Technol. PD APR PY 2008 VL 16 IS 2 BP 255 EP 274 DI 10.1016/j.trc.2007.08.003 PG 20 WC Transportation Science & Technology SC Transportation GA 334DA UT WOS:000258201300009 ER PT J AU Wu, CH Mulchandani, A Chen, W AF Wu, Cindy H. Mulchandani, Ashok Chen, Wilfred TI Versatile microbial surface-display for environmental remediation and biofuels production SO TRENDS IN MICROBIOLOGY LA English DT Review ID BACTERIAL MAGNETIC PARTICLES; EXPRESSED ORGANOPHOSPHORUS HYDROLASE; PSEUDOMONAS-PUTIDA JS444; GRAM-POSITIVE BACTERIA; ICE-NUCLEATION PROTEIN; COLI CELL-SURFACE; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; YEAST-STRAIN; ETHANOL-PRODUCTION AB Surface display is a powerful technique that uses natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications, ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production. C1 [Wu, Cindy H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mulchandani, Ashok; Chen, Wilfred] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. RP Chen, W (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM Wilfred@engr.ucr.edu RI Chen, Wilfred/H-4335-2013; Mulchandani, Ashok/B-9692-2016 OI Mulchandani, Ashok/0000-0002-2831-4154 NR 79 TC 55 Z9 56 U1 4 U2 27 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0966-842X J9 TRENDS MICROBIOL JI Trends Microbiol. PD APR PY 2008 VL 16 IS 4 BP 181 EP 188 DI 10.1016/j.tim.2008.01-003 PG 8 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 293PB UT WOS:000255346100008 PM 18321708 ER PT J AU Keller, S Zhang, TQ Webb, S Brugam, R Johnson, K Lin, ZQ AF Keller, S. Zhang, T. Q. Webb, S. Brugam, R. Johnson, K. Lin, Z. -Q. TI Effects of suburban land use on phosphorus fractions and speciation in the Upper Peruque Creek, Eastern Missouri SO WATER ENVIRONMENT RESEARCH LA English DT Article DE land use; phosphorus; fraction; speciation; X-ray absorption; near-edge structure spectroscopy; Missouri Upper Peruque Creek ID DYNAMICS AB This field study was conducted to explore the spatial and seasonal changes in total phosphorus and fraction distribution in relation to land uses. Water samples were collected biweekly at four sampling locations, which represented different potential phosphorus sources along the Upper Peruque Creek in Eastern Missouri. Total phosphorus concentrations of > 0.8 mg/ L appeared sporadically at site 2, downstream of a small community, with an average of 0.82 +/- 0.14 mg/ L in fall. Particulate phosphorus accounted for approximately 80% of total phosphorus at all sampling sites, except for site 2, where approximately 50 to 75% of dissolved phosphorus was often observed. Approximately 71 and 85% of total phosphorus in the sediment was in the form of iron(III) phosphate at the headwaters and downstream sites, respectively; 29 and 15% was in the form of phytic acid at the two sites. Land uses affect the total phosphorus concentration and alternate phosphorus fraction and speciation in the creek. C1 [Johnson, K.] So Illinois Univ, Dept Biol Sci, Edwardsville, IL 62026 USA. [Keller, S.; Johnson, K.; Lin, Z. -Q.] So Illinois Univ, Environm Sci Program, Edwardsville, IL 62026 USA. [Zhang, T. Q.] Greenhouse & Proc Crops Res Ctr, Toronto, ON, Canada. [Webb, S.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. RP Keller, S (reprint author), So Illinois Univ, Environm Sci Program, Edwardsville, IL 62026 USA. EM zhlin@siue.edu RI Webb, Samuel/D-4778-2009 OI Webb, Samuel/0000-0003-1188-0464 NR 33 TC 2 Z9 2 U1 0 U2 4 PU WATER ENVIRONMENT FEDERATION PI ALEXANDRIA PA 601 WYTHE ST, ALEXANDRIA, VA 22314-1994 USA SN 1061-4303 J9 WATER ENVIRON RES JI Water Environ. Res. PD APR PY 2008 VL 80 IS 4 BP 316 EP 323 DI 10.2175/106143007X221283 PG 8 WC Engineering, Environmental; Environmental Sciences; Limnology; Water Resources SC Engineering; Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 298CL UT WOS:000255663900005 PM 18536482 ER PT J AU Dalder, E Pastrnak, JW Engel, J Forrest, RS Kokko, E Mcternan, K Waldron, D AF Dalder, E. Pastrnak, J. W. Engel, J. Forrest, R. S. Kokko, E. Mcternan, K. Waldron, D. TI Friction stir welding of thick-walled aluminum pressure vessels SO WELDING JOURNAL LA English DT Editorial Material C1 [Dalder, E.; Pastrnak, J. W.; Kokko, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Engel, J.; Forrest, R. S.; Mcternan, K.; Waldron, D.] Adv Joint Technol Inc, Santa Ana, CA USA. RP Dalder, E (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 10 TC 4 Z9 4 U1 0 U2 1 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD APR PY 2008 VL 87 IS 4 BP 40 EP 44 PG 5 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 284HO UT WOS:000254697700007 ER PT J AU Lin, YY Liu, GD Wai, CM Lin, YH AF Lin, Ying-Ying Liu, Guodong Wai, C. M. Lin, Yuehe TI Bioelectrochemical immunoassay of polychlorinated biphenyl SO ANALYTICA CHIMICA ACTA LA English DT Article DE polychlorinated biphenyls; immunoassay; screen-printed electrodes ID LINKED-IMMUNOSORBENT-ASSAY; ELECTROCHEMICAL IMMUNOSENSOR; PCBS; RADIOIMMUNOASSAY; SOIL AB A simple, rapid, and highly sensitive bioelectrochemical immunoassay method based on magnetic beads (MBs) and disposable screen-printed electrodes (SPE) has been developed to detect polychlorinated biphenyls (PCBs). The principle of this bioassay is based on a direct competitive enzyme-linked immunosorbent assay using PCB-antibody-coated MBs and horseradish peroxidase (HRP)-labeled PCB (HRP-PCB). A magnetic process platform was used to mix and shake the samples during the immunoreactions and to separate free and unbound reagents after the liquid-phase competitive immunoreactions among PCB-antibody-coated MBs, PCB analyte, and HRP-PCB. After a complete immunoassay, the HRP tracers attached to MBs were transferred to a substrate solution containing o-aminophenol and hydrogen peroxide for electrochemical detection. The different parameters, including the amount of HRP-PCB conjugates, immunoreaction time, and the concentration of substrate that governs the analytical performance of the immunoassay have been studied in detail and optimized. The detection limit of 10 pg mL(-1) was obtained under optimum experimental conditions. The performance of this bioelectrochemical immunoassay was successfully evaluated with untreated river water spiked with PCBs, and the results were validated by commercial PCB enzyme-linked immunosorbent assay kit, indicating that this convenient and sensitive technique offers great promise for decentralized environmental application and trace PCBs monitoring. (C) 2008 Published by Elsevier B.V. C1 [Lin, Ying-Ying; Liu, Guodong; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lin, Ying-Ying; Wai, C. M.] Univ Idaho, Dept Chem, Moscow, ID 83843 USA. [Liu, Guodong] N Dakota State Univ, Dept Chem & Mol Biol, Fargo, ND 58105 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM cwai@uidaho.edu; Yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU NIEHS NIH HHS [U54 ES16015]; NINDS NIH HHS [NS058161-01] NR 20 TC 17 Z9 20 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD MAR 31 PY 2008 VL 612 IS 1 BP 23 EP 28 DI 10.1016/j.aca.2008.01.080 PG 6 WC Chemistry, Analytical SC Chemistry GA 283YS UT WOS:000254673000003 PM 18331854 ER PT J AU Chen, YC Zhong, XY Konicek, AR Grierson, DS Tai, NH Lin, IN Kabius, B Hiller, JM Sumant, AV Carpick, RW Auciello, O AF Chen, Y. C. Zhong, X. Y. Konicek, A. R. Grierson, D. S. Tai, N. H. Lin, I. N. Kabius, B. Hiller, J. M. Sumant, A. V. Carpick, R. W. Auciello, O. TI Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOCRYSTALLINE DIAMOND; BEHAVIOR; SILICON AB This letter describes the fundamental process underlying the synthesis of ultrananocrystalline diamond (UNCD) films, using a new low-pressure, heat-assisted bias-enhanced nucleation (BEN)/bias enhanced growth (BEG) technique, involving H(2)/CH(4) gas chemistry. This growth process yields UNCD films similar to those produced by the Ar-rich/CH(4) chemistries, with pure diamond nanograins (3-5 nm), but smoother surfaces (similar to 6 nm rms) and higher growth rate (similar to 1 mu m/h). Synchrotron-based x-Ray absorption spectroscopy, atomic force microscopy, and transmission electron microscopy studies on the BEN-BEG UNCD films provided information critical to understanding the nucleation and growth mechanisms, and growth condition-nanostructure-property relationships. (C) 2008 American Institute of Physics. C1 [Chen, Y. C.; Auciello, O.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chen, Y. C.; Tai, N. H.] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. [Konicek, A. R.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Grierson, D. S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Lin, I. N.] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. [Zhong, X. Y.; Kabius, B.; Hiller, J. M.] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Sumant, A. V.; Auciello, O.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Carpick, R. W.] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. RP Auciello, O (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM auciello.@anl.gov RI Hiller, Jon/A-2513-2009 OI Hiller, Jon/0000-0001-7207-8008 NR 19 TC 20 Z9 20 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 31 PY 2008 VL 92 IS 13 AR 133113 DI 10.1063/1.2838303 PG 3 WC Physics, Applied SC Physics GA 283XN UT WOS:000254669900081 ER PT J AU Morfa, AJ Rowlen, KL Reilly, TH Romero, MJ van de Lagemaat, J AF Morfa, Anthony J. Rowlen, Kathy L. Reilly, Thomas H., III Romero, Manuel J. van de Lagemaat, Jao TI Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics (vol 92, 013504, 2008) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Reilly, Thomas H., III; Romero, Manuel J.; van de Lagemaat, Jao] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Morfa, Anthony J.; Rowlen, Kathy L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP van de Lagemaat, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jao_vandelagemaat@nrel.gov RI van de Lagemaat, Jao/J-9431-2012 NR 1 TC 1 Z9 1 U1 3 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 31 PY 2008 VL 92 IS 13 AR 139901 DI 10.1063/1.2898728 PG 1 WC Physics, Applied SC Physics GA 283XN UT WOS:000254669900119 ER PT J AU Pacile, D Meyer, JC Girit, CO Zettl, A AF Pacile, D. Meyer, J. C. Girit, C. Oe. Zettl, A. TI The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes SO APPLIED PHYSICS LETTERS LA English DT Article ID EPITAXIAL GRAPHENE; BILAYER GRAPHENE; NANOTUBES; CRYSTALS; GROWTH; FILMS AB We describe the synthesis of very thin sheets (between a few and ten atomic layers) of hexagonal boron nitride (h-BN), prepared either on a SiO2 substrate or freely suspended. Optical microscopy, atomic force microscopy, and transmission electron microscopy have been used to characterize the morphology of the samples and to distinguish between regions of different thicknesses. Comparison is made to previous studies on single- and few-layer graphene. This synthesis opens the door to experimentally accessing the two-dimensional phase of boron nitride. C1 [Pacile, D.; Meyer, J. C.; Girit, C. Oe.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Pacile, D.; Meyer, J. C.; Girit, C. Oe.; Zettl, A.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Pacile, D.] Univ Calabria, Ist Nazl Fis Nucl, I-87036 Cosenza, Italy. [Pacile, D.] Univ Calabria, Dip Fis, I-87036 Cosenza, Italy. RP Pacile, D (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM dpacile@fis.unical.it RI Meyer, Jannik/H-8541-2012; Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016; OI Meyer, Jannik/0000-0003-4023-0778; Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X; Pacile, Daniela/0000-0001-6219-3889 NR 28 TC 377 Z9 382 U1 42 U2 248 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 31 PY 2008 VL 92 IS 13 AR 133107 DI 10.1063/1.2903702 PG 3 WC Physics, Applied SC Physics GA 283XN UT WOS:000254669900075 ER PT J AU Turner, JJ Jordan-Sweet, JL Upton, M Hill, JP Tokura, Y Tomioka, Y Kevan, SD AF Turner, Joshua J. Jordan-Sweet, Jean L. Upton, Mary Hill, John P. Tokura, Yoshinori Tomioka, Yasuhide Kevan, Stephen D. TI Domain mapping of a Ca-doped manganite SO APPLIED PHYSICS LETTERS LA English DT Article ID COLOSSAL MAGNETORESISTANCE; PHASE-SEPARATION; LA0.5CA0.5MNO3; PR1-XCAXMNO3; FILMS AB We have performed microdiffraction experiments to map the crystallographic domain structure of the Ca-doped manganite Pr(0.5)Ca(0.5)MnO(3) by microfocusing x-rays through a glass capillary. Domain structure on the order of a few microns is observed. We suggest that this finding implies that the crystallographic domains maybe relevant to the phenomenon of phase separation-such twin boundaries could help determine the submicron size disorder that has been observed recently, and thus may ultimately play a role in colossal magnetoresistance. (C) 2008 American Institute of Physics. C1 [Turner, Joshua J.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Turner, Joshua J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jordan-Sweet, Jean L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Upton, Mary; Hill, John P.] Brookhaven Natl Lab, Dept Condensed Matter Phys, Upton, NY 11973 USA. [Tokura, Yoshinori; Tomioka, Yasuhide] Natl Inst Ind Sci, Correlated Electron Res Ctr, Tsukuba, Ibaraki 3050033, Japan. [Kevan, Stephen D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. RP Turner, JJ (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. EM jjturner@lbl.gov RI Kevan, Stephen/F-6415-2010; Tokura, Yoshinori/C-7352-2009 OI Kevan, Stephen/0000-0002-4621-9142; NR 24 TC 2 Z9 2 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 31 PY 2008 VL 92 IS 13 AR 131907 DI 10.1063/1.2905283 PG 3 WC Physics, Applied SC Physics GA 283XN UT WOS:000254669900027 ER PT J AU Van Neste, CW Senesac, LR Yi, D Thundat, T AF Van Neste, C. W. Senesac, L. R. Yi, D. Thundat, T. TI Standoff detection of explosive residues using photothermal microcantilevers SO APPLIED PHYSICS LETTERS LA English DT Article AB Standoff detection of trace explosives is gaining attention due to its immediate relevance in countering terrorist threats based on explosive devices. However, most currently available standoff techniques rely on expensive, complex, and bulky equipment. We have demonstrated highly selective and sensitive standoff detection of explosive residues on surfaces by using photothermal spectroscopy carried out with bimaterial microcantilever sensors. The demonstrated sensitivity of the technique, 100 ng/cm(2), is sufficient to detect the explosive contamination generally found on explosive devices. The sensitivity of the technique can be further improved by optimizing the bimaterial cantilever and by using higher intensity infrared sources. (C) 2008 American Institute of Physics. C1 [Van Neste, C. W.; Senesac, L. R.; Yi, D.; Thundat, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Thundat, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM thundattg@ornl.gov NR 22 TC 29 Z9 29 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 31 PY 2008 VL 92 IS 13 AR 134102 DI 10.1063/1.2901145 PG 3 WC Physics, Applied SC Physics GA 283XN UT WOS:000254669900114 ER PT J AU Raman, RN Pivetti, CD Matthews, DL Troppmann, C Demos, SG AF Raman, Rajesh N. Pivetti, Christopher D. Matthews, Dennis L. Troppmann, Christoph Demos, Stavros G. TI Quantification of in vivo autofluorescence dynamics during renal ischemia and reperfusion under 355 nm excitation SO OPTICS EXPRESS LA English DT Article ID RAT-KIDNEY; MICRODIALYSIS; LACTATE; GLUCOSE; TISSUE; FLUORESCENCE; SPECTROSCOPY; FLUOROMETER; METABOLISM; INSITU AB We explore a method to quantitatively assess the ability of in vivo autofluorescence as a means to quantify the progression of longer periods of renal warm ischemia and reperfusion in a rat model. The method employs in vivo monitoring of tissue autofluorescence arising mainly from NADH as a means to probe the organ's function and response to reperfusion. Clinically relevant conditions are employed that include exposure of the kidney to ischemia on the order of tens of minutes to hours. The temporal profile during the reperfusion phase of the autofluorescence intensity averaged over an area as large as possible was modeled as the product of two independent exponential functions. Time constants were extracted from fits to the experimental data and their average values were found to increase with injury time. (C) 2008 Optical Society of America. C1 [Raman, Rajesh N.; Matthews, Dennis L.; Demos, Stavros G.] Univ Calif Davis, Ctr Biophoton, Sacramento, CA 95817 USA. [Raman, Rajesh N.; Matthews, Dennis L.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Pivetti, Christopher D.; Troppmann, Christoph] Univ Calif Davis, Med Ctr, Dept Surg, Sacramento, CA 95817 USA. [Demos, Stavros G.] Univ Calif Davis, Med Ctr, Dept Urol, Sacramento, CA 95817 USA. [Matthews, Dennis L.; Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Raman, RN (reprint author), Univ Calif Davis, Ctr Biophoton, Sacramento, CA 95817 USA. EM topraman@ucdavis.edu NR 25 TC 7 Z9 8 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD MAR 31 PY 2008 VL 16 IS 7 BP 4930 EP 4944 DI 10.1364/OE.16.004930 PG 15 WC Optics SC Optics GA 290CL UT WOS:000255100400058 PM 18542592 ER PT J AU Klepper, CC Williams, JM Truhan, JJ Qu, J Riester, L Hazelton, RC Moschella, JJ Blau, PJ Anderson, JP Popoola, OO Keitz, MD AF Klepper, C. C. Williams, J. M. Truhan, J. J., Jr. Qu, J. Riester, L. Hazelton, R. C. Moschella, J. J. Blau, P. J. Anderson, J. P. Popoola, O. O. Keitz, M. D. TI Tribo-mechanical properties of thin boron coatings deposited on polished cobalt alloy surfaces for orthopedic applications SO THIN SOLID FILMS LA English DT Article DE boron; amorphous materials; coatings; biomaterials; deposition process; Rutherford backscattering spectroscopy; tribology; cobalt alloy ID ELASTIC-MODULUS; FILMS; QUANTIFICATION; POLYETHYLENE; PLASMAS; SYSTEM AB This paper presents experimental evidence that thin (< similar to 200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 degrees C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford backscattering spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. (c) 2007 Elsevier B.V. All rights reserved. C1 [Klepper, C. C.; Williams, J. M.; Hazelton, R. C.; Moschella, J. J.; Keitz, M. D.] HY Tech Res Corp, Radford, VA 24141 USA. [Truhan, J. J., Jr.] Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37996 USA. [Qu, J.; Riester, L.; Blau, P. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Anderson, J. P.; Popoola, O. O.] Zimmer Inc, Warsaw, IN 46581 USA. RP Klepper, CC (reprint author), HY Tech Res Corp, Radford, VA 24141 USA. EM kleppercc@ieee.org RI Klepper, C.Christopher/I-9904-2016; OI Klepper, C.Christopher/0000-0001-9107-8337; Qu, Jun/0000-0001-9466-3179 FU NIAMS NIH HHS [R43 AR051262, R43 AR051262-01] NR 25 TC 14 Z9 14 U1 2 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 31 PY 2008 VL 516 IS 10 BP 3070 EP 3080 DI 10.1016/j.tsf.2007.10.111 PG 11 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 283KH UT WOS:000254634600040 PM 19340285 ER PT J AU Burkholder, BK Grant, GE Haggerty, R Khangaonkar, T Wampler, PJ AF Burkholder, Barbara K. Grant, Gordon E. Haggerty, Roy Khangaonkar, Tarang Wampler, Peter J. TI Influence of hyporheic flow and geomorphology on temperature of a large, gravel-bed river, Clackamas River, Oregon, USA SO HYDROLOGICAL PROCESSES LA English DT Article; Proceedings Paper CT General Assembly of the European-Geosciences-Union CY APR 15-20, 2007 CL Vienna, AUSTRIA SP European Geosci Union DE hyporheic exchange; river temperature; gravel bars; geomorphology; groundwater modelling ID SURFACE-TEMPERATURE; STREAM TEMPERATURES; TRANSIENT STORAGE; MOUNTAIN STREAMS; WATER-QUALITY; TIME-SERIES; ZONE; DYNAMICS; EXCHANGE; PATHS AB The hyporheic zone influences the thermal regime of rivers, buffering temperature by storing and releasing heat over a range of timescales. We examined the relationship between hyporheic exchange and temperature along a 24-km reach of the lower Clackamas River, a large gravel-bed river in northwestern Oregon (median discharge = 75.7 m(3)/s; minimum mean monthly discharge = 22-7 m(3)/s in August 2006). With a simple mixing model, we estimated how much hyporheic exchange cools the river during hot Summer months. Hyporheic exchange was primarily identified by temperature anomalies, which are patches of water that demonstrate at least a 1 degrees C temperature difference from the main channel. Forty hyporheic temperature anomalies were identified through field investigations and thermal-infrared-raiometry (TIR) in summer 2006. The location of anomalies was associated with specific geomorphic features, primarily bar channels and bar heads that act as preferential pathways for hyporheic flow. Detailed field characterization and groundwater modelling on three Clackamas gravel bars indicate residence times of hyporheic water can vary from hours to weeks and months. This was largely determined by hydraulic conductivity, which is affected by how recently the gravel bar formed or was reworked. Upscaling of modelled discharges and hydrologic parameters from these bars to other anomalies on the Clackamas network shows that hyporheic discharge from anomalies comprises a small fraction (<< 1%) of mainstem discharge, resulting in small river-cooling effects (0-012 degrees C). However, the presence of cooler patches of water within rivers can act as thermal refugia for fish and other aquatic organisms, making the creation or enhancement of hyporheic exchange an attractive method in restoring the thermal regime of rivers. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Burkholder, Barbara K.; Haggerty, Roy] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA. [Grant, Gordon E.] USDA, Forest Serv, Pacific NW Res Stn, Corvallis, OR 97331 USA. [Khangaonkar, Tarang] Pacific NW Natl Lab, Marine Sci Lab, Seattle, WA 98382 USA. [Wampler, Peter J.] Grand Valley State Univ, Dept Geol, Allendale, MI 49401 USA. RP Haggerty, R (reprint author), Oregon State Univ, Dept Geosci, 104 Wilkinson Hall, Corvallis, OR 97331 USA. EM haggerti@geo.oregonstate.edu RI Haggerty, Roy/A-5863-2009; Wampler, Peter/A-6262-2013 OI Wampler, Peter/0000-0001-8689-3804 NR 48 TC 42 Z9 42 U1 4 U2 37 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0885-6087 J9 HYDROL PROCESS JI Hydrol. Process. PD MAR 30 PY 2008 VL 22 IS 7 BP 941 EP 953 DI 10.1002/hyp.6984 PG 13 WC Water Resources SC Water Resources GA 285ZQ UT WOS:000254815100004 ER PT J AU Allen, TR Gan, J Cole, JI Miller, MK Busby, JT Shutthanandan, S Thevuthasan, S AF Allen, T. R. Gan, J. Cole, J. I. Miller, M. K. Busby, J. T. Shutthanandan, S. Thevuthasan, S. TI Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CASCADE DAMAGE CONDITIONS; FERRITIC STEELS; NEUTRON-IRRADIATION; DEFECT PRODUCTION; STABILITY; ALLOYS; PARTICLES AB Ferritic-martensitic (FM) alloys are expected to play an important role as cladding or structural components in Generation IV systems operating in the temperature range 350-700 degrees C and to doses up to 200 dpa. Oxide dispersion strengthened (ODS) ferritic-martensitic steels have been developed to operate at higher temperatures than traditional FM steels. These steels contain nanometer-sized Y-Ti-O nanoclusters as a strengthening mechanism. Heavy ion irradiation has been used to determine the nanocluster stability over a temperature range of 500-700 degrees C to doses of 150 dpa. At all temperatures, the average nanocluster size decreases but the nanocluster density increases. The increased density of smaller nanoclusters under radiation should lead to strengthening of the matrix. While a reduction in size under irradiation has been reported in some other studies, many report oxide stability. The data from this study are contrasted to the available literature to highlight the differences in the reported radiation response. (C) 2007 Elsevier B.V. All rights reserved. C1 [Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. [Gan, J.; Cole, J. I.] Idaho Natl Lab, Idaho Falls, ID USA. [Miller, M. K.; Busby, J. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Shutthanandan, S.; Thevuthasan, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Allen, TR (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. EM allen@engr.wisc.edu OI Allen, Todd/0000-0002-2372-7259; Cole, James/0000-0003-1178-5846 NR 39 TC 68 Z9 71 U1 1 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 30 PY 2008 VL 375 IS 1 BP 26 EP 37 DI 10.1016/j.jnucmat.2007.11.001 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 289XW UT WOS:000255088200003 ER PT J AU Contescu, CI Baker, FS Hunt, RD Collins, JL Burchell, TD AF Contescu, Cristian I. Baker, Frederick S. Hunt, Rodney D. Collins, Jack L. Burchell, Timothy D. TI Selection of water-dispersible carbon black for fabrication of uranium oxicarbide microspheres SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CONTINUOUS PK DISTRIBUTION; SURFACES; ADSORPTION; CHEMISTRY; ACIDITY; SITES AB Fabrication of uranium oxicarbide microspheres, a component of TRISO fuel particles for high temperature nuclear power systems, is based on the internal gelation of uranium salts in the presence of carbon black. In order to obtain a high quality product, carbon black should remain dispersed during all phases of the gelation process. In this study, the surface and structural properties of several commercial carbon black materials, and the use of dispersing agents was examined with the goal of finding optimal conditions for stabilizing submicron-sized carbon black dispersions. Traditional methods for stabilizing dispersions, based on the use of dispersing agents, failed to stabilize carbon dispersions against large pH variations, typical for the internal gelation process. An alternate dispersing method was proposed, based on using surface-modified carbons functionalized. with strongly ionized surface groups (sodium sulfonate). With a proper choice of surface modifiers, these advanced carbons disperse easily to particles in the range of 0.15-0.20 mu m and the dispersions remain stable during the conditions of internal gelation. Published by Elsevier B.V. C1 [Contescu, Cristian I.; Baker, Frederick S.; Burchell, Timothy D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Hunt, Rodney D.; Collins, Jack L.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Contescu, CI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS-6087, Oak Ridge, TN 37831 USA. EM contescuci@ornl.gov RI Contescu, Cristian/E-8880-2011; Burchell, Tim/E-6566-2017 OI Contescu, Cristian/0000-0002-7450-3722; Burchell, Tim/0000-0003-1436-1192 NR 21 TC 5 Z9 5 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 30 PY 2008 VL 375 IS 1 BP 38 EP 51 DI 10.1016/j.jnucmat.2007.10.008 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 289XW UT WOS:000255088200004 ER PT J AU Xiang, SK Huang, HC Hsiung, LM AF Xiang, Shikai Huang, Hanchen Hsiung, L. M. TI Quantum mechanical calculations of uranium phases and niobium defects in gamma-uranium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LIGHT ACTINIDES; CHARGE-DENSITY; ZR ALLOY; WAVE; TEMPERATURES; BEHAVIOR; ENERGY AB Depleted uranium (U) from fuel enrichment processes has a variety of applications due to its high density. With the addition of a small concentration of niobium (Nb), U becomes stainless. Nb is fully miscible with the high-temperature gamma phase of U and tends to segregate upon cooling below 1050 K. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using quantum mechanical calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution 0.59 eV, that of Nb interstitial at octahedral site 1.58 eV, and that of Nb interstitial at tetrahedral site 2.35 CV in the dilute limit of isolated defects; all with reference to a reservoir of the pure gamma phase U and pure Nb. The analysis of electronic structures reveals the correlation of formation energies of Nb defects with the local perturbations of electron distribution. Higher formation energy of Nb defects correlates with larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in the gamma phase U. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xiang, Shikai; Huang, Hanchen] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Hsiung, L. M.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. RP Huang, HC (reprint author), Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. EM hanchen@rpi.edu RI Huang, Hanchen/A-9323-2008 NR 25 TC 18 Z9 18 U1 5 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 30 PY 2008 VL 375 IS 1 BP 113 EP 119 DI 10.1016/j.jnucmat.2007.11.003 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 289XW UT WOS:000255088200012 ER PT J AU Hosemann, P Swadener, JG Kiener, D Was, GS Maloy, SA Li, N AF Hosemann, P. Swadener, J. G. Kiener, D. Was, G. S. Maloy, S. A. Li, N. TI An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STIP-II; IRRADIATION; PROTONS; ALLOYS AB The superior properties of ferritic/martensitic steels in a radiation environment (low swelling, low activation under irradiation and good corrosion resistance) make them good candidates for structural parts in future reactors and spallation sources. While it cannot substitute for true reactor experiments, irradiation by charged particles from accelerators can reduce the number of reactor experiments and support fundamental research for a better understanding of radiation effects in materials. Based on the nature of low energy accelerator experiments, only a small volume of material can be uniformly irradiated. Micro and nanoscale post irradiation tests thus have to be performed. We show here that nanoindentation and micro-compression testing on T91 and HT-9 stainless steel before and after ion irradiation are useful methods to evaluate the radiation induced hardening. (C) 2007 Elsevier B.V. All rights reserved. C1 [Hosemann, P.; Swadener, J. G.; Maloy, S. A.; Li, N.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Hosemann, P.] Univ Leoben, A-8700 Leoben, Austria. [Was, G. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Kiener, D.] Austrian Acad Sci, A-8700 Leoben, Austria. RP Hosemann, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM peterh@lanl.gov RI Kiener, Daniel/B-2202-2008; Maloy, Stuart/A-8672-2009; OI Kiener, Daniel/0000-0003-3715-3986; Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213; Swadener, John G/0000-0001-5493-3461 NR 20 TC 45 Z9 45 U1 4 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 30 PY 2008 VL 375 IS 1 BP 135 EP 143 DI 10.1016/j.jnucmat.2007.11.004 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 289XW UT WOS:000255088200014 ER PT J AU Uberuaga, BP Valone, SM AF Uberuaga, Blas Pedro Valone, Steven M. TI Simulations of vacancy cluster behavior in delta-Pu SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID EMBEDDED-ATOM POTENTIALS; VOID FORMATION; IRRADIATION; PLUTONIUM; HELIUM; TEMPERATURE; METALS AB Using rates for vacancy diffusion in plutonium (Pu) found with parallel-replica dynamics, we develop a kinetic Monte Carlo (KMC) model of void growth and mobility. We compare and contrast the behavior of voids in Pu as predicted using vacancy mobilities from two different modified embedded atom method (MEAM) descriptions of Pu. We find that void behavior depends sensitively on the values used for vacancy mobility. In particular, we find that voids are very mobile in one model of Pit, but are essentially immobile in another, leading to very different void structures over time. This second model also predicts lifetimes for voids that are extremely long, and seemingly unphysical, suggesting that the first model is more representative of real Pu. Published by Elsevier B.V. C1 [Uberuaga, Blas Pedro; Valone, Steven M.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM blas@lanl.gov NR 18 TC 9 Z9 9 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 30 PY 2008 VL 375 IS 1 BP 144 EP 150 DI 10.1016/j.jnucmat.2008.01.001 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 289XW UT WOS:000255088200015 ER PT J AU Powell, AJ Conant, GC Brown, DE Carbone, I Dean, RA AF Powell, Amy J. Conant, Gavin C. Brown, Douglas E. Carbone, Ignazio Dean, Ralph A. TI Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens SO BMC GENOMICS LA English DT Article ID INDUCED POINT MUTATION; GENOME SEQUENCE; MAGNAPORTHE-GRISEA; ENTOMOPATHOGENIC FUNGI; SECONDARY METABOLISM; MOLECULAR EVOLUTION; FUNCTIONAL-ANALYSIS; ASPERGILLUS-ORYZAE; ADAPTIVE EVOLUTION; A-ORYZAE AB Background: Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known importance in virulence in bacteria and viruses. Results: To determine if patterns of gene duplication differed between pathogens and non-pathogens, we identified gene families across nine euascomycete and two basidiomycete species. Gene family size distributions were fit to power laws to compare gene duplication trends in pathogens versus non-pathogens. Fungal phytopathogens showed globally altered patterns of gene duplication, as indicated by differences in gene family size distribution. We also identified sixteen examples of gene family expansion and five instances of gene family contraction in pathogenic lineages. Expanded gene families included those predicted to be important in melanin biosynthesis, host cell wall degradation and transport functions. Contracted families included those encoding genes involved in toxin production, genes with oxidoreductase activity, as well as subunits of the vacuolar ATPase complex. Surveys of the functional distribution of gene duplicates indicated that pathogens show enrichment for gene duplicates associated with receptor and hydrolase activities, while euascomycete pathogens appeared to have not only these differences, but also significantly more duplicates associated with regulatory and carbohydrate binding functions. Conclusion: Differences in the overall levels of gene duplication in phytopathogenic species versus non-pathogenic relatives implicate gene inventory flux as an important virulence-associated process in fungi. We hypothesize that the observed patterns of gene duplicate enrichment, gene family expansion and contraction reflect adaptation within pathogenic life histories. These adaptations were likely shaped by ancient, as well as contemporary, intimate associations with monocot hosts. C1 [Brown, Douglas E.; Carbone, Ignazio; Dean, Ralph A.] N Carolina State Univ, Dept Plant Pathol, Ctr Integrated Fungal Res, Raleigh, NC 27695 USA. [Conant, Gavin C.] Univ Dublin Trinity Coll, Smurfit Inst Genet, Dublin 2, Ireland. [Powell, Amy J.] Sandia Natl Labs, Dept Computat Syst Biol, Albuquerque, NM 87185 USA. RP Dean, RA (reprint author), N Carolina State Univ, Dept Plant Pathol, Ctr Integrated Fungal Res, Box 7616, Raleigh, NC 27695 USA. EM ajpowel@sandia.gov; conantg@tcd.ie; debrown@unity.ncsu.edu; ignazio_carbone@ncsu.edu; radean2@ncsu.edu OI Conant, Gavin/0000-0002-8677-4933 FU NIAID NIH HHS [T32 AI052080] NR 99 TC 23 Z9 23 U1 1 U2 16 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD MAR 28 PY 2008 VL 9 AR 147 DI 10.1186/1471-2164-9-147 PG 15 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 298SS UT WOS:000255708000002 PM 18373860 ER PT J AU Kassianov, EI Ovtchinnikov, M AF Kassianov, Evgueni I. Ovtchinnikov, Mikhail TI On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLEAR-SKY; MODIS; PRODUCTS; ATMOSPHERES; DATASETS; IMPACT; TERRA; OCEAN AB The traditional conversion of satellite-observed reflectances to the aerosol optical depth (AOD) is highly conjectural in the vicinity of clouds due to the 3D cloud-induces enhancement of the apparent reflectance. This study uses 3D Monte Carlo radiative transfer calculations and simulated cloud and aerosol fields to illustrate that for clear pixels the reflectance ratios for two pairs of wavelengths (660, 470 nm and 870, 470 nm) are less sensitive to the 3D cloud effects than the reflectances themselves. We develop a new algorithm for converting these two ratios to three spectral values of AOD and show that it is accurate to within 10% for the majority of clear pixels in our model-inverse problem. This preliminary study suggests that the proposed approach can be used to significantly improve the accuracy of the AOD retrieved from spectral satellite observations under partly cloudy conditions. C1 [Kassianov, Evgueni I.; Ovtchinnikov, Mikhail] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Kassianov, EI (reprint author), Pacific NW Natl Lab, 3200 Q Ave,MSIN K9-24, Richland, WA 99354 USA. EM evgueni.kassianov@pnl.gov NR 19 TC 26 Z9 26 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 28 PY 2008 VL 35 IS 6 AR L06807 DI 10.1029/2008GL033231 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 281XL UT WOS:000254532100002 ER PT J AU Galperin, M Tretiak, S AF Galperin, Michael Tretiak, Sergei TI Linear optical response of current-carrying molecular junction: A nonequilibrium Green's function-time-dependent density functional theory approach SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID SURFACE-ENHANCED RAMAN; SINGLE-MOLECULE; TUNNELING SPECTROSCOPY; ELECTRON-TRANSPORT; QUANTUM TRANSPORT; CARBON NANOTUBES; ORGANIC-MOLECULE; SCATTERING; CONDUCTANCE; EXCITATIONS AB We propose a scheme for calculation of linear optical response of current-carrying molecular junctions for the case when electronic tunneling through the junction is much faster than characteristic time of external laser field. We discuss relationships between nonequilibrium Green's function (NEGF) and time-dependent density functional theory (TDDFT) approaches and derive expressions for optical response and linear polarizability within NEGF-TDDFT scheme. Corresponding results for isolated molecule, derived within TDDFT approach previously, are reproduced when coupling to contacts is neglected. (C) 2008 American Institute of Physics. C1 [Galperin, Michael; Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Galperin, M (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM galperin@lanl.gov RI Galperin, Michael/B-2838-2011; Tretiak, Sergei/B-5556-2009 OI Galperin, Michael/0000-0002-1401-5970; Tretiak, Sergei/0000-0001-5547-3647 NR 103 TC 32 Z9 32 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 28 PY 2008 VL 128 IS 12 AR 124705 DI 10.1063/1.2876011 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 281ZK UT WOS:000254537200059 PM 18376958 ER PT J AU Nichols, P Bylaska, EJ Schenter, GK de Jong, W AF Nichols, Patrick Bylaska, Eric J. Schenter, Gregory K. de Jong, Wibe TI Equatorial and apical solvent shells of the UO22+ ion SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ABSORPTION FINE-STRUCTURE; 1ST-PRINCIPLES MOLECULAR-DYNAMICS; MULTIPLE-SCATTERING CALCULATIONS; DENSITY-FUNCTIONAL CALCULATIONS; EFFECTIVE CORE POTENTIALS; WATER-EXCHANGE MECHANISM; AQUEOUS-SOLUTION; COORDINATION ENVIRONMENT; DIOXOURANIUM(VI) ION; URANYL COORDINATION AB First principles molecular dynamics simulations of the hydration shells surrounding UO22+ ions are reported for temperatures near 300 K. Most of the simulations were done with 64 solvating water molecules (22 ps). Simulations with 122 water molecules (9 ps) were also carried out. The hydration structure predicted from the simulations was found to agree with very well-known results from x-ray data. The average U=O bond length was found to be 1.77 angstrom. The first hydration shell contained five trigonally coordinated water molecules that were equatorially oriented about the O-U-O axis with the hydrogen atoms oriented away from the uranium atom. The five waters in the first shell were located at an average distance of 2.44 angstrom (2.46 angstrom, 122 water simulation). The second hydration shell was composed of distinct equatorial and apical regions resulting in a peak in the U-O radial distribution function at 4.59 angstrom. The equatorial second shell contained ten water molecules hydrogen bonded to the five first shell molecules. Above and below the UO22+ ion, the water molecules were found to be significantly less structured. In these apical regions, water molecules were found to sporadically hydrogen bond to the oxygen atoms of the UO22+, oriented in such a way as to have their protons pointed toward the cation. While the number of apical waters varied greatly, an average of five to six waters was found in this region. Many water transfers into and out of the equatorial and apical second solvation shells were observed to occur on a picosecond time scale via dissociative mechanisms. Beyond these shells, the bonding pattern substantially returned to the tetrahedral structure of bulk water. (C) 2008 American Institute of Physics. C1 [Nichols, Patrick; Bylaska, Eric J.; de Jong, Wibe] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Schenter, Gregory K.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Bylaska, EJ (reprint author), Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM eric.bylaska@pnl.gov RI DE JONG, WIBE/A-5443-2008; Schenter, Gregory/I-7655-2014 OI DE JONG, WIBE/0000-0002-7114-8315; Schenter, Gregory/0000-0001-5444-5484 NR 68 TC 56 Z9 56 U1 5 U2 30 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 28 PY 2008 VL 128 IS 12 AR 124507 DI 10.1063/1.2884861 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 281ZK UT WOS:000254537200044 PM 18376943 ER PT J AU Vukmirovic, N Wang, LW AF Vukmirovic, Nenad Wang, Lin-Wang TI Charge patching method for electronic structure of organic systems SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CONJUGATED POLYMERS; MOLECULAR-STRUCTURE; PAMAM DENDRIMERS; POLYACETYLENE; POLYPYRROLE; GEOMETRIES; PYRROLE; SPECTRA AB The development of the charge patching method for the calculation of the electronic structure of organic systems containing a large number of atoms was presented. The method was tested on a range of systems including alkane and alkene chains, polyacenes, polythiophenes, polypyrroles, polyfuranes, polyphenylene vinylene, and poly (amidoamine) dendrimers. The results obtained by the method are in very good agreement with direct calculations based on density functional theory, since the eigenstate errors are typically of the order of a few tens of meV. (c) 2008 American Institute of Physics. C1 [Vukmirovic, Nenad; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Vukmirovic, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM nvukmirovic@lbl.gov RI Vukmirovic, Nenad/D-9489-2011 OI Vukmirovic, Nenad/0000-0002-4101-1713 NR 24 TC 28 Z9 28 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 28 PY 2008 VL 128 IS 12 AR 121102 DI 10.1063/1.2901965 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 281ZK UT WOS:000254537200002 PM 18376901 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Evidence for D-0-(D)over-bar(0) mixing using the CDF II detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEARCH; DECAYS AB We measure the time dependence of the ratio of decay rates for the rare decay D-0 -> K+pi(-) to the Cabibbo-favored decay D-0 -> K-pi(+). A signal of 12.7x10(3) D-0 -> K+pi(-) decays was obtained using the Collider Detector at Fermilab II detector at the Fermilab Tevatron with an integrated luminosity of 1.5 fb(-1). We measure the D-0-(D) over bar (0) mixing parameters (R-D,y('),x('2)), and find that the data are inconsistent with the no-mixing hypothesis with a probability equivalent to 3.8 Gaussian standard deviations. C1 [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wurthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Semenov, A.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C.; Neubauer, M. S.; Pitts, K.; Rogers, E.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Hirschbuehl, D.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Volobouev, I.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Lee, J.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Lee, J.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Lee, J.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Lee, J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Lee, J.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Heinemann, B.; Lin, C.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Mulmenstadt, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cerrito, L.; Lancaster, M.; Malde, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Lai, S.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Lai, S.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Pounder, N.; Renton, P.; Stelzer, B.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Loreti, M.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Lami, S.; Morello, M.; Punzi, G.; Scuri, F.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Lami, S.; Morello, M.; Punzi, G.; Scuri, F.; Turini, N.; Volpi, G.] Univ Siena, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Lami, S.; Morello, M.; Punzi, G.; Scuri, F.; Turini, N.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chang, S. H.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Halkiadakis, E.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste Udine, Ist Nazl Fis Nucl, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; messina, andrea/C-2753-2013; Ivanov, Andrew/A-7982-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; Kim, Soo-Bong/B-7061-2014 OI Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; NR 20 TC 92 Z9 92 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 121802 DI 10.1103/PhysRevLett.100.121802 PG 7 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800016 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of lifetime and decay-width difference in B-S(0)-> J/psi phi decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGULAR-DISTRIBUTIONS; DETECTOR AB We measure the mean lifetime tau=2/(Gamma(L)+Gamma(H)) and the decay-width difference Delta Gamma=Gamma(L)-Gamma(H) of the light and heavy mass eigenstates of the B-s(0) meson, B-sL(0) and B-sH(0), in B-s(0)-> J/psi phi decays using 1.7 fb(-1) of data collected with the CDF II detector at the Fermilab Tevatron pp collider. Assuming CP conservation, a good approximation for the B-s(0) system in the standard model, we obtain Delta Gamma=0.076(-0.063)(+0.059)(stat)+/- 0.006(syst) ps(-1) and tau=1.52 +/- 0.04(stat)+/- 0.02(syst) ps, the most precise measurements to date. Our constraints on the weak phase and Delta Gamma are consistent with CP conservation. C1 [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kilminster, B.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wurthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Datta, M.; Derwent, P. F.; Ginsburg, C. M.; Glenzinski, D.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Lu, R. -S.; Lukens, P.; Madrak, R.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maksimovic, P.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Shapiro, M. D.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez, M.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Gunay-Unalan, Z.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Volpi, G.] Univ Siena, Ist Nazl Fis Nucl Pisa, I-53100 Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanetti, A.] Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste Udine, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Kim, Soo-Bong/B-7061-2014; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; messina, andrea/C-2753-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013 OI Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315 NR 20 TC 47 Z9 47 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 121803 DI 10.1103/PhysRevLett.100.121803 PG 7 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800017 ER PT J AU Arvanitaki, A Dimopoulos, S Geraci, AA Hogan, J Kasevich, M AF Arvanitaki, Asimina Dimopoulos, Savas Geraci, Andrew A. Hogan, Jason Kasevich, Mark TI How to test atom and neutron neutrality with atom interferometry SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATE AB We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10(-28)e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10(-28)e, 7 orders of magnitude below current bounds. C1 [Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A.; Hogan, Jason; Kasevich, Mark] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Arvanitaki, Asimina] Stanford Linear Accelerator Ctr, Theory Grp, Menlo Pk, CA 94025 USA. RP Arvanitaki, A (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM aarvan@stanford.edu; savas@stanford.edu; aageraci@nist.gov; hogan@stanford.edu; kasevich@stanford.edu NR 21 TC 21 Z9 21 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 120407 DI 10.1103/PhysRevLett.100.120407 PG 4 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800007 PM 18517846 ER PT J AU Eggert, J Brygoo, S Loubeyre, P McWilliams, RS Celliers, PM Hicks, DG Boehly, TR Jeanloz, R Collins, GW AF Eggert, J. Brygoo, S. Loubeyre, P. McWilliams, R. S. Celliers, P. M. Hicks, D. G. Boehly, T. R. Jeanloz, R. Collins, G. W. TI Hugoniot data for helium in the ionization regime SO PHYSICAL REVIEW LETTERS LA English DT Article ID SHOCK COMPRESSION; PRESSURE AB Hugoniot data were obtained for fluid He in the 100 GPa pressure range by shock compression of samples statically precompressed in diamond-anvil cells. The initial (precompressed) He density (rho(1)) for each experiment was tuned to a value between rho(0L) < rho(1) < 3.3 rho(0L), where rho(0L) is the zero-pressure density of the cryogenic liquid (rho(0L)=0.123 g/cm(3)). The maximum observed shock-compression ratios range from rho/rho(1) = 6 for rho(1) = rho(0L) to rho/rho(1) = 4 for rho(1) >= 3 rho(0L) (i.e., rho/rho(0L) >= 12). Data show an increase in compressibility at the onset of ionization, similar to theoretical predictions. C1 [Eggert, J.; Brygoo, S.; McWilliams, R. S.; Celliers, P. M.; Hicks, D. G.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Brygoo, S.; Loubeyre, P.] CEA, Commiss Energie Atom, Dept Phys Theor & Applicat, F-91680 Bruyeres Le Chatel, France. [McWilliams, R. S.; Jeanloz, R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Boehly, T. R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA. RP Eggert, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Collins, Gilbert/G-1009-2011; Hicks, Damien/B-5042-2015; McWilliams, R./J-4358-2016 OI Hicks, Damien/0000-0001-8322-9983; NR 30 TC 64 Z9 67 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 124503 DI 10.1103/PhysRevLett.100.124503 PG 4 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800034 PM 18517873 ER PT J AU Hartemann, FV Siders, CW Barty, CPJ AF Hartemann, F. V. Siders, C. W. Barty, C. P. J. TI Compton scattering in ignited thermonuclear plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID RADIATION; ELECTRONS; ACCELERATION; LASERS; GAIN AB Inertially confined, ignited thermonuclear D-T plasmas will produce intense blackbody radiation at temperatures T greater than or similar to 20 keV; it is shown that the injection of GeV electrons into the burning core can efficiently generate high-energy Compton scattering photons. Moreover, the spectrum scattered in a small solid angle can be remarkably monochromatic, due to kinematic pileup; a peak brightness in excess of 10(30) photons/(mm(2) mrad(2) s 0.1% bandwidth) is predicted. These results are discussed within the context of the Schwinger field and the Sunyaev-Zel'dovich effect. C1 [Hartemann, F. V.; Siders, C. W.; Barty, C. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hartemann, FV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 22 TC 9 Z9 9 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 125001 DI 10.1103/PhysRevLett.100.125001 PG 4 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800036 PM 18517875 ER PT J AU Kharlampieva, E Ankner, JF Rubinstein, M Sukhishvili, SA AF Kharlampieva, Eugenia Ankner, John F. Rubinstein, Michael Sukhishvili, Svetlana A. TI pH-induced release of polyanions from multilayer films SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESPONSIVE POLYELECTROLYTE MULTILAYERS; POLYMER-FILMS; WEAK POLYELECTROLYTES; POLY(ACRYLIC ACID); MOLECULAR-WEIGHT; THIN-FILMS; STABILITY AB We discovered pH-induced selective desorption and readsorption of weakly acidic polymers from polyacid or polybase layer-by-layer films. In situ attenuated total reflection Fourier transform infrared spectroscopy confirms the selectivity of polyacid release and shows that film response is caused by pH-induced charge imbalance. Experimentally the characteristic time of chain release tau scales with molar mass M as M(1.1 +/- 0.1). A new theoretical model of "sticky gel electrophoresis" of entangled polyacids agrees with experiments and predicts tau similar to MH, where H is film thickness. Neutron reflectivity shows that polyacid release results in disordering of the film structure. C1 [Rubinstein, Michael] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. [Kharlampieva, Eugenia; Sukhishvili, Svetlana A.] Stevens Inst Technol, Dept Chem & Chem Biol, Hoboken, NJ 07030 USA. [Ankner, John F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Rubinstein, M (reprint author), Univ N Carolina, Dept Chem, CB 3290, Chapel Hill, NC 27599 USA. OI Ankner, John/0000-0002-6737-5718 FU NHLBI NIH HHS [1-R01-HL0775486A] NR 26 TC 31 Z9 31 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 128303 DI 10.1103/PhysRevLett.100.128303 PG 4 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800078 PM 18517917 ER PT J AU Liu, L Yu, PY Ma, ZX Mao, SS AF Liu, Lei Yu, Peter Y. Ma, Zhixun Mao, Samuel S. TI Ferromagnetism in GaN : Gd: A density functional theory study SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC SEMICONDUCTORS; HUBBARD-U; MONOPNICTIDES AB First-principle calculations of the electronic structure and magnetic interaction of GaN:Gd have been performed within the generalized gradient approximation (GGA) of the density functional theory with the on-site Coulomb energy U taken into account (also referred to as GGA+U). The ferromagnetic p-d coupling is found to be over 2 orders of magnitude larger than the s-d exchange coupling. The experimental colossal magnetic moments and room-temperature ferromagnetism in GaN:Gd reported recently are explained by the interaction of Gd 4f spins via p-d coupling involving holes introduced by intrinsic defects such as Ga vacancies. C1 [Liu, Lei; Yu, Peter Y.; Ma, Zhixun; Mao, Samuel S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Liu, Lei; Yu, Peter Y.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Liu, L (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 21 TC 88 Z9 89 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 127203 DI 10.1103/PhysRevLett.100.127203 PG 4 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800067 PM 18517906 ER PT J AU Niklasson, AMN AF Niklasson, Anders M. N. TI Extended Born-Oppenheimer molecular dynamics SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; SYMPLECTIC INTEGRATORS; CLASSICAL TRAJECTORIES; EQUILIBRIUM; MATRIX; FRAGMENTATION; GRADIENTS; CONSTANTS; ORBITALS; CLUSTERS AB A Lagrangian generalization of time-reversible Born-Oppenheimer molecular dynamics Niklasson et al. [Phys. Rev. Lett. 97, 123001 (2006)] is proposed. The formulation enables the application of higher-order symplectic or geometric integration schemes that are stable and energy conserving even under incomplete self-consistency convergence. It is demonstrated how the accuracy is improved by over an order of magnitude compared to previous formulations at the same level of computational cost. The proposed Lagrangian includes extended electronic degrees of freedom as auxiliary dynamical variables in addition to the nuclear coordinates and momenta. While the nuclear degrees of freedom propagate on the Born-Oppenheimer potential energy surface, the extended auxiliary electronic degrees of freedom evolve as a harmonic oscillator centered around the adiabatic propagation of the self-consistent ground state. C1 [Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Niklasson, Anders M. N.] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. RP Niklasson, AMN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 31 TC 49 Z9 49 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 123004 DI 10.1103/PhysRevLett.100.123004 PG 4 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800022 PM 18517861 ER PT J AU Rochau, GA Bailey, JE Maron, Y Chandler, GA Dunham, GS Fisher, DV Fisher, VI Lemke, RW MacFarlane, JJ Peterson, KJ Schroen, DG Slutz, SA Stambulchik, E AF Rochau, G. A. Bailey, J. E. Maron, Y. Chandler, G. A. Dunham, G. S. Fisher, D. V. Fisher, V. I. Lemke, R. W. MacFarlane, J. J. Peterson, K. J. Schroen, D. G. Slutz, S. A. Stambulchik, E. TI Radiating shock measurements in the Z-pinch dynamic hohlraum SO PHYSICAL REVIEW LETTERS LA English DT Article ID INERTIAL-CONFINEMENT-FUSION; PLASMAS; ASTROPHYSICS; TEMPERATURE; STATES AB The Z-pinch dynamic hohlraum is an x-ray source for high energy-density physics studies that is heated by a radiating shock to radiation temperatures >200 eV. The time-dependent 300-400 eV electron temperature and 15-35 mg/cc density of this shock have been measured for the first time using space-resolved Si tracer spectroscopy. The shock x-ray emission is inferred from these measurements to exceed 50 TW, delivering >180 kJ to the hohlraum. C1 [Rochau, G. A.; Bailey, J. E.; Chandler, G. A.; Lemke, R. W.; Peterson, K. J.; Slutz, S. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Maron, Y.; Fisher, D. V.; Fisher, V. I.; Stambulchik, E.] Weizmann Inst Sci, Rehovot, Israel. [Dunham, G. S.] Ktech Corp Inc, Albuquerque, NM 87185 USA. [MacFarlane, J. J.] Prism Computat Sci, Madison, WI 53704 USA. [Schroen, D. G.] Gen Atom Co, San Diego, CA 92186 USA. RP Rochau, GA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Stambulchik, Evgeny/K-1816-2012 OI Stambulchik, Evgeny/0000-0002-7100-8793 NR 38 TC 29 Z9 30 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 125004 DI 10.1103/PhysRevLett.100.125004 PG 4 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800039 PM 18517878 ER PT J AU Sasaki, S McNulty, I AF Sasaki, Shigemi McNulty, Ian TI Proposal for generating brilliant x-ray beams carrying orbital angular momentum SO PHYSICAL REVIEW LETTERS LA English DT Article ID SYNCHROTRON-RADIATION; UNDULATOR AB We consider use of a variable polarizing undulator for generating brilliant x-ray beams carrying orbital angular momentum. We find that higher harmonics of the radiation correspond to Laguerre-Gaussian modes with azimuthal mode indices l equal to one less than the harmonic number when the undulator is operated to produce circularly polarized light. Beams with nonzero l carry orbital angular momentum quantized in units of lh per photon. When operated to produce linear polarization, the harmonics correspond to Hermite-Gaussian modes. Selection of these modes with conventional monochromator optics opens the door for new research with x-ray synchrotron and free-electron laser sources. C1 [Sasaki, Shigemi; McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Sasaki, S (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 25 TC 46 Z9 46 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 28 PY 2008 VL 100 IS 12 AR 124801 DI 10.1103/PhysRevLett.100.124801 PG 4 WC Physics, Multidisciplinary SC Physics GA 281CK UT WOS:000254473800035 PM 18517874 ER PT J AU Cahoon, JF Sawyer, KR Schlegel, JP Harris, CB AF Cahoon, James F. Sawyer, Karma R. Schlegel, Jacob P. Harris, Charles B. TI Determining transition-state geometries in liquids using 2D-IR SO SCIENCE LA English DT Article ID 2D IR SPECTROSCOPY; METAL-CARBONYL COMPOUNDS; HYDROGEN-BOND; TEMPERATURE; SPECTRA; FREQUENCY; DYNAMICS; EXCHANGE; FE(CO)5; RELAXATION AB Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short- lived structures in liquids. We show that two- dimensional infrared ( 2D- IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)(5), in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction. C1 [Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.] Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu NR 30 TC 103 Z9 104 U1 2 U2 53 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAR 28 PY 2008 VL 319 IS 5871 BP 1820 EP 1823 DI 10.1126/science.1154041 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 279ZF UT WOS:000254394000045 PM 18369145 ER PT J AU Ravula, SK Branch, DW James, CD Townsend, RJ Hill, M Kaduchak, G Ward, M Brener, I AF Ravula, Surendra K. Branch, Darren W. James, Conrad D. Townsend, Rosemary J. Hill, Martyn Kaduchak, Gregory Ward, Mike Brener, Igal TI A microfluidic system combining acoustic and dielectrophoretic particle preconcentration and focusing SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE acoustics; dielectrophoresis; microfluidics; particle focusing ID ULTRASONIC STANDING-WAVE; TRANSMISSION-LINE ANALOGY; PIEZOELECTRIC TRANSDUCERS; LAMINAR-FLOW; MANIPULATION; FIELD; MICROPARTICLES; SEPARATOR; CHIP AB Microfabricated systems have recently become useful for routing particles to precise locations in microfluidic channels. In this paper we discuss the modeling, fabrication and characterization of such a platform that combines acoustic forces and ac dielectrophoresis (DEP). This system integrates a bulk lead zirconate titanate (PZT) slab with substrate patterned microelectrodes for DEP manipulation of particles. Moreover, a one-dimensional transmission line model is presented to understand the coupling of the acoustic and dielectrophoretic transducers with the microdevice. While the acoustic model does not predict the lateral coupling in the system, it does provide some insight into axial (thickness-mode) frequencies of operation. Experiments are also conducted in which particles were routed into a large (0.75 mm wide) microchannel and preconcentrated and focused into coarse bundles by coupling an acoustic wave into the channel. Subsequently, particles are further focused into single file particle streams using interdigitated DEP electrodes. This system can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles. (c) 2007 Elsevier B.V. All rights reserved. C1 [Ravula, Surendra K.; Branch, Darren W.; James, Conrad D.; Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Townsend, Rosemary J.; Hill, Martyn] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kaduchak, Gregory; Ward, Mike] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ravula, SK (reprint author), Sandia Natl Labs, Bldg 858EL,Room L3305, Albuquerque, NM 87123 USA. EM skravul@sandia.gov RI Brener, Igal/G-1070-2010; Hill, Martyn/B-4727-2008 OI Brener, Igal/0000-0002-2139-5182; Hill, Martyn/0000-0001-6448-9448 NR 24 TC 26 Z9 26 U1 6 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAR 28 PY 2008 VL 130 IS 2 BP 645 EP 652 DI 10.1016/j.snb.2007.10.024 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 290FC UT WOS:000255107700014 ER PT J AU Wilkerson, MP Berg, JM AF Wilkerson, Marianne P. Berg, John M. TI Near-infrared photoluminescence from a plutonyl ion SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Letter ID LASER-INDUCED FLUORESCENCE; ELECTRONICALLY EXCITED-STATES; V ENERGY-TRANSFER; ROOM-TEMPERATURE; ACTINYL IONS; INTRA-5F FLUORESCENCE; CRYSTAL-STRUCTURE; PUF6; TRANSITIONS; SPECTROSCOPY AB We report the first example of photoluminescence from electronically excited states of the plutonyl ion. Discrete emission transitions were measured between 6000 and 10 200 cm(-1) from crystalline Cs2U(Pu)O2Cl4 cooled to 75 K following pulsed laser excitation at 628 nm. An excitation spectrum in the region of 15 000-16 500 cm(-1) is compared with 4.2 K plane-polarized absorption spectra reported by Gorshkov and Mashirov. Analysis of excited-state lifetime data suggests multiple relaxation pathways in the electronic structure of PuO2Cl42-. C1 [Wilkerson, Marianne P.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Plutonium Mfg & Technol Div, Los Alamos, NM 87545 USA. RP Wilkerson, MP (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM mpw@lanl.gov; jberg@lanl.gov OI Berg, John/0000-0002-6533-3573 NR 39 TC 12 Z9 12 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 27 PY 2008 VL 112 IS 12 BP 2515 EP 2518 DI 10.1021/jp711453j PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 277JV UT WOS:000254209400003 PM 18321085 ER PT J AU Sears, KC Ferguson, JW Dudley, TJ Houk, RS Gordon, MS AF Sears, Kyle C. Ferguson, Jill W. Dudley, Timothy J. Houk, R. S. Gordon, Mark S. TI Theoretical investigation of small polyatomic ions observed in inductively coupled plasma mass spectrometry: HxCO+ and HxN2+ (x=1, 2, 3) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INFRARED-LASER SPECTROSCOPY; FOCK PERTURBATION-THEORY; MOLECULAR-IONS; AB-INITIO; MICROWAVE SPECTROSCOPY; SPECTRAL INTERFERENCES; PROTONATED NITROGEN; FORMALDEHYDE CATION; INTERSTELLAR CLOUDS; VIBRATIONAL LEVELS AB Two series of small polyatomic ions, HxCO+ and HxN2+ (x = 1, 2, 3), were systematically characterized using three correlated theoretical techniques: density functional theory using the B3LYP functional, spin-restricted second-order perturbation theory, and singles + doubles coupled cluster theory with perturbative triples. On the basis of thermodynamic data, the existence of these ions in inductively coupled plasma mass spectrometry (ICP-MS) experiments is not surprising since the ions are predicted to be considerably more stable than their corresponding dissociation products (by 30-170 kcal/mol). While each pair of isoelectronic ions exhibit very similar thermodynamic and kinetic characteristics, there are significant differences within each series. While the mechanism for dissociation of the larger ions occurs through hydrogen abstraction, the triaton-tic ions (HCO+ and HN2+) appear to dissociate by proton abstraction. These differing mechanisms help to explain large differences in the abundances of HN2+ and HCO+ observed in ICP-MS experiments. C1 [Sears, Kyle C.; Ferguson, Jill W.; Dudley, Timothy J.; Houk, R. S.; Gordon, Mark S.] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu RI Ferguson, Jill/B-6910-2008 NR 90 TC 9 Z9 9 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 27 PY 2008 VL 112 IS 12 BP 2610 EP 2617 DI 10.1021/jp077209k PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 277JV UT WOS:000254209400015 PM 18311946 ER PT J AU Benighaus, T DiStasio, RA Lochan, RC Chai, JD Head-Gordon, M AF Benighaus, Tobias DiStasio, Robert A., Jr. Lochan, Rohini C. Chai, Jeng-Da Head-Gordon, Martin TI Semiempirical double-hybrid density functional with improved description of long-range correlation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID VAN-DER-WAALS; PLESSET PERTURBATION-THEORY; QUANTUM-CHEMICAL CALCULATIONS; ELECTRONIC-STRUCTURE METHOD; COMPONENT SCALED MP2; INTERACTION ENERGIES; BARRIER HEIGHTS; THERMOCHEMICAL KINETICS; DISPERSION CORRECTIONS; ANALYTICAL GRADIENT AB The recently proposed new family of "double-hybrid" density functionals [Grimme, S. J. Chem. Phys. 2006, 124, 34108] replaces a fraction of the semi-local correlation energy by a non-local correlation energy expression that employs the Kohn-Sham orbitals in second-order many-body perturbation theory. These functionals have provided results of high accuracy over a wide range of properties but fail to accurately describe long-range van der Waals interactions. In this work, a distance-dependent scaling factor for the non-local correlation energy is introduced to address this problem, and two new double-hybrid density functionals are proposed. The new functionals are optimized with the finite cc-pVTZ basis on training sets of atomization energies and intermolecular interaction energies. They are compared against (scaled) second-order Moller-Plesset perturbation theories and popular density functionals including the hybrid-GGA functional B3-LYP and the first double-hybrid functional (B2-PLYP). Tests are performed on an extensive set including reaction energies, barrier heights, weakly interacting complexes, transition-metal systems, molecular geometries, and harmonic vibrational frequencies. Within the cc-pVTZ atomic orbital basis, we-have demonstrated the ability to find a parametrization scheme which is simultaneously able to describe thermochemistry and weakly bound systems with a satisfactory degree of accuracy. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu RI Chai, Jeng-Da/C-3897-2009 OI Chai, Jeng-Da/0000-0002-3994-2279 NR 75 TC 77 Z9 77 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 27 PY 2008 VL 112 IS 12 BP 2702 EP 2712 DI 10.1021/jp710439w PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 277JV UT WOS:000254209400026 PM 18318517 ER PT J AU Valiev, M Bylaska, EJ Dupuis, M Tratnyek, PG AF Valiev, Marat Bylaska, Eric J. Dupuis, Michel Tratnyek, Paul G. TI Combined quantum mechanical and molecular mechanics studies of the electron-transfer reactions involving carbon tetrachloride in solution SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POTENTIAL-ENERGY SURFACE; COUPLED-CLUSTER THEORY; AB-INITIO; REDUCTIVE DECHLORINATION; CHLORINATED METHANES; THERMOCHEMICAL PROPERTIES; AQUEOUS-SOLUTION; RADICAL-ANION; KINETICS; SOLVENTS AB The reductive dechlorination of carbon tetrachloride, CCl4, by a concerted electron transfer-bond breaking mechanism was studied using combined high level quantum mechanical and molecular mechanics (QM/MM) approach. The free energy activation barriers for the first electron-transfer step were determined from the dissociation profiles of CCl4 and (CCl4-)-C-center dot Complexes in aqueous phase using hybrid-free energy QM/MM methodologies. Both density functional and coupled cluster perturbative triples (CCSD(T)) versions of QM/MM methods were investigated. The impact of the implicit solvent description based on continuum (COSMO) solvent models was also analyzed. QM/MM calculations at the CCSD(T)/aug-ce-pVDZ/SPCE level of theory predict that the activation barriers vary from 0.7 to 35.2 kcal/mol for -2.32 and 0.93 V reduction potentials respectively. Good agreement with experimental data for oxide-free iron electrodes (-0.6 to -1.2 V reduction potentials) is observed indicating that the measured activation barriers are consistent with the concerted electron transfer-bond-breaking mechanism. C1 [Valiev, Marat; Bylaska, Eric J.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Dupuis, Michel] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. [Tratnyek, Paul G.] Oregon Hlth & Sci Univ, OGI Sch Sci & Engn, Beaverton, OR 97006 USA. RP Valiev, M (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. NR 67 TC 27 Z9 27 U1 4 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 27 PY 2008 VL 112 IS 12 BP 2713 EP 2720 DI 10.1021/jp7104709 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 277JV UT WOS:000254209400027 PM 18298106 ER PT J AU Li, Y Lee, J Lal, J An, L Huang, Q AF Li, Yunqi Lee, Jooyoung Lal, Jyotsana An, Lijia Huang, Qingrong TI Effects of pH on the interactions and conformation of bovine serum albumin: Comparison between chemical force microscopy and small-angle neutron scattering SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MONTE-CARLO-SIMULATION; SINGLE-MOLECULE; SPECTROSCOPY; PROTEINS; KINETICS; ADHESION; CHARGE; AFM; SURFACTANTS; RESOLUTION AB The conformation of bovine serum albumin (BSA), as well as its interactions with negatively charged mica surfaces in saline solutions of different pH values, have been studied by small-angle neutron scattering (SANS) and chemical force microscopy (CFM), respectively. A new approach to extract the contribution of elementary interactions from the statistically averaged force-extension curves through self-consistent fitting was proposed and used to understand the effects of pH on the interactions and conformation of BSA in saline solutions. When pH increases, the SANS results reveal that the sizes of BSA molecules increase slightly, while the statistical analysis of the CFM results shows that the averaged pull-off force for the elongation monotonously decreases. The decrease of pull-off force with the increase of pH results from the decrease in the strength of hydrogen bonding and the number of interaction pairs, as well as the slight increase of the strength of van der Waals interaction. When pH approaches the isoelectric point (pI) of BSA, results from both SANS and CFM suggest a loss of long-range interactions in BSA molecules. Our results also suggest that the force-extension curve is mainly contributed by the van der Waals interaction. The combination of SANS and CFM provides new insight to understand the interactions and conformation of BSA molecules. C1 [Li, Yunqi; Lee, Jooyoung; Huang, Qingrong] Rutgers State Univ, Dept Food Sci, New Brunswick, NJ 08901 USA. [Li, Yunqi; An, Lijia] Acad Sinica, Changchun Inst Appl Chem, Polymer Phys Lab & Chem, Changchun 130022, Peoples R China. [Lal, Jyotsana] Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Huang, Q (reprint author), Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901 USA. EM qhuang@aesop.rutgers.edu RI Li, Yunqi/C-8372-2016 OI Li, Yunqi/0000-0002-5190-3037 NR 70 TC 25 Z9 25 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 27 PY 2008 VL 112 IS 12 BP 3797 EP 3806 DI 10.1021/jp077392h PG 10 WC Chemistry, Physical SC Chemistry GA 277JU UT WOS:000254209300027 PM 18311964 ER PT J AU Kauffman, DR Star, A AF Kauffman, Douglas R. Star, Alexander TI Simultaneous spectroscopic and solid-state electronic measurement of single-walled carbon nanotube devices SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Letter ID FIELD-EFFECT TRANSISTORS; CHEMICAL SENSORS; CHARGE-TRANSFER; NO2; SENSITIVITY; ADSORPTION; CONTACT; CHEMISORPTION; TRANSPARENT; REACTIVITY AB We describe simultaneous spectroscopic and solid-state electronic operation of a single-walled carbon nanotube (SWNT) thin film device under the influence of NH3 and NO2 gases. Using this simultaneous approach we show that both the optical absorbance and network conductance show a shared time dependency upon exposure to NH3 or NO2 gas. We show that the device behavior is dominated by gas adsorption on the SWNT network, and we explore the role of network density in regards to device behavior under gas exposure. Last, we provide evidence to suggest that the device sensitivity toward a particular analyte can be tuned by simply varying the density of the SWNT network. C1 [Kauffman, Douglas R.; Star, Alexander] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Kauffman, Douglas R.; Star, Alexander] US DOE, Natl Energy TEchnol Lab, Pittsburgh, PA 15236 USA. RP Star, A (reprint author), Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. EM astar@pitt.edu RI Star, Alexander/C-3399-2013 NR 41 TC 18 Z9 18 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 27 PY 2008 VL 112 IS 12 BP 4430 EP 4434 DI 10.1021/jp800166m PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 290FM UT WOS:000255108700002 ER PT J AU Yano, J Kern, J Pushkar, Y Sauer, K Glatzel, P Bergmann, U Messinger, J Zouni, A Yachandra, VK AF Yano, Junko Kern, Jan Pushkar, Yulia Sauer, Kenneth Glatzel, Pieter Bergmann, Uwe Messinger, Johannes Zouni, Athina Yachandra, Vittal K. TI High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE X-ray absorption fine structure; manganese; oxygen-evolving complex; polarized X-ray absorption fine structure; photosystem II; photosystem II single crystals ID OXYGEN-EVOLVING COMPLEX; PHOTOSYSTEM-II MEMBRANES; ABSORPTION SPECTROSCOPY; MANGANESE COMPLEX; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; STRONTIUM EXAFS; SINGLE-CRYSTALS; CLUSTER; MN AB The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ray diffraction, X-ray absorption fine structure (EXAFS) and other spectroscopic techniques, has been addressed using polarized EXAFS techniques applied to oriented photosystem II (PSII) membrane preparations and PSII single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS, is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K beta emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states. C1 [Yano, Junko; Pushkar, Yulia; Sauer, Kenneth; Yachandra, Vittal K.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Melvin Calvin Lab, Berkeley, CA 94720 USA. [Yano, Junko; Pushkar, Yulia; Sauer, Kenneth] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kern, Jan; Zouni, Athina] Tech Univ Berlin, Max Volmer Lab Biophys Chem, D-10623 Berlin, Germany. [Glatzel, Pieter] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Bergmann, Uwe] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Messinger, Johannes] Max Planck Inst Bioanorgan Chem, D-45470 Mulheim, Germany. RP Yachandra, VK (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Melvin Calvin Lab, Berkeley, CA 94720 USA. EM vkyachandra@lbl.gov RI Glatzel, Pieter/E-9958-2010; Kern, Jan/G-2586-2013 OI Glatzel, Pieter/0000-0001-6532-8144; Kern, Jan/0000-0002-7272-1603 FU NIGMS NIH HHS [GM 55302, R01 GM055302, R56 GM055302] NR 37 TC 27 Z9 27 U1 0 U2 14 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD MAR 27 PY 2008 VL 363 IS 1494 BP 1139 EP 1147 DI 10.1098/rstb.2007.2209 PG 9 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 261YX UT WOS:000253117000004 PM 17954437 ER PT J AU Zein, S Kulik, LV Yano, J Kern, J Pushkar, Y Zouni, A Yachandra, VK Lubitz, W Neese, F Messinger, J AF Zein, Samir Kulik, Leonid V. Yano, Junko Kern, Jan Pushkar, Yulia Zouni, Athina Yachandra, Vittal K. Lubitz, Wolfgang Neese, Frank Messinger, Johannes TI Focusing the view on nature's water-splitting catalyst SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE photosystem II; oxygen evolution; manganese cluster; EPR/ENDOR; EXAFS; density functional theory ID OXYGEN-EVOLVING COMPLEX; RAY-ABSORPTION SPECTROSCOPY; O BOND FORMATION; PHOTOSYSTEM-II MEMBRANES; MULTILINE EPR SIGNAL; MANGANESE CLUSTER; MN4CA CLUSTER; MN CLUSTER; OXIDIZING COMPLEX; STRONTIUM EXAFS AB Nature invented a catalyst about 3 Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere. C1 [Zein, Samir; Lubitz, Wolfgang; Messinger, Johannes] Max Planck Inst Bioanorgan Chem, D-45470 Mulheim, Germany. [Zein, Samir; Neese, Frank] Univ Bonn, Inst Phys & Theoret Chem, Lehrstuhl Theoret Chem, D-53115 Bonn, Germany. [Kulik, Leonid V.] Russian Acad Sci, Inst Chem Kinet & Combust, Novosibirsk 630090, Russia. [Yano, Junko; Pushkar, Yulia; Yachandra, Vittal K.] Lawrence Berkely Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kern, Jan] Tech Univ Berlin, Max Volmer Lab, D-10623 Berlin, Germany. RP Messinger, J (reprint author), Max Planck Inst Bioanorgan Chem, Stiftstr 34-36, D-45470 Mulheim, Germany. EM messinger@mpi-muelheim.mpg.de RI Kern, Jan/G-2586-2013; Neese, Frank/J-4959-2014 OI Kern, Jan/0000-0002-7272-1603; Neese, Frank/0000-0003-4691-0547 FU NIGMS NIH HHS [GM 55302, R01 GM055302, R56 GM055302] NR 64 TC 52 Z9 53 U1 1 U2 26 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD MAR 27 PY 2008 VL 363 IS 1494 BP 1167 EP 1177 DI 10.1098/rstb.2007.2212 PG 11 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 261YX UT WOS:000253117000010 PM 17989003 ER PT J AU Strickler, MA Hwang, HJ Burnap, RL Yano, J Walker, LM Service, RJ Britt, RD Hillier, W Debus, RJ AF Strickler, Melodie A. Hwang, Hong Jin Burnap, Robert L. Yano, Junko Walker, Lee M. Service, Rachel J. Britt, R. David Hillier, Warwick Debus, Richard J. TI Glutamate-354 of the CP43 polypeptide interacts with the oxygen-evolving Mn4Ca cluster of photosystem II: a preliminary characterization of the Glu354Gln mutant SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE Fourier transform infrared spectroscopy (FTIR); Mn cluster; oxygen evolution; S-state cycle; water oxidation; site-directed mutagenesis ID FTIR DIFFERENCE SPECTROSCOPY; S-STATE CYCLE; TRANSFORM INFRARED-SPECTROSCOPY; SYNECHOCYSTIS SP PCC6803; WATER-OXIDATION COMPLEX; D1 POLYPEPTIDE; UNDERGOES OXIDATION; MANGANESE CLUSTER; S-3 TRANSITIONS; NO EVIDENCE AB In the recent X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is assigned as a ligand of the O-2-evolving Mn4Ca cluster. In this communication, a preliminary characterization of the CP43-Glu354Gln mutant of the cyanobacterium Synechocystis sp. PCC 6803 is presented. The steady-state rate of O-2 evolution in the mutant cells is only approximately 20% compared with the wild-type, but the kinetics of O-2 release are essentially unchanged and the O-2-flash yields show normal period-four oscillations, albeit with lower overall intensity. Purified PSII particles exhibit an essentially normal S-2 state multiline electron paramagnetic resonance (EPR) signal, but exhibit a substantially altered S-2-minus-S-1 Fourier transform infrared (FTIR) difference spectrum. The intensities of the mutant EPR and FTIR difference spectra (above 75% compared with wild-type) are much greater than the O-2 signals and suggest that CP43-Glu354Gln PSII reaction centres are heterogeneous, with a minority fraction able to evolve O-2 with normal O-2 release kinetics and a majority fraction unable to advance beyond the S-2 or S-3 states. The S-2-minus-S-1 FTIR difference spectrum of CP43-Glu354Gln PSII particles is altered in both the symmetric and asymmetric carboxylate stretching regions, implying either that CP43-Glu354 is exquisitely sensitive to the increased charge that develops on the Mn4Ca cluster during the S-1 -> S-2 transition or that the CP43-Glu354Gln mutation changes the distribution of Mn(III) and Mn(IV) oxidation states within the Mn4Ca cluster in the S-1 and/or S-2 states. C1 [Strickler, Melodie A.; Walker, Lee M.; Service, Rachel J.; Debus, Richard J.] Univ Calif Riverside, Dept Biochem, Riverside, CA 92521 USA. [Hwang, Hong Jin; Burnap, Robert L.] Oklahoma State Univ, Dept Microbiol & Mol Genet, Stillwater, OK 74078 USA. [Yano, Junko] Lawrence Berkely Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Britt, R. David] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Hillier, Warwick] Australian Natl Univ, Res Sch Biol Sci, Photobioenerget Grp, Canberra, ACT 0200, Australia. RP Debus, RJ (reprint author), Univ Calif Riverside, Dept Biochem, Riverside, CA 92521 USA. EM richard.debus@ucr.edu RI Hillier, Warwick/D-1034-2009 FU NIGMS NIH HHS [GM-076232, GM-055302, R01 GM055302, R29 GM048242, R01 GM048242, R01 GM066136, R56 GM055302, R01 GM076232, GM-066136] NR 51 TC 19 Z9 19 U1 0 U2 7 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD MAR 27 PY 2008 VL 363 IS 1494 BP 1179 EP 1187 DI 10.1098/rstb.2007.2213 PG 9 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 261YX UT WOS:000253117000012 PM 17954433 ER PT J AU Ye, M Meyer, PD Neuman, SP AF Ye, Ming Meyer, Philip D. Neuman, Shlomo P. TI On model selection criteria in multimodel analysis SO WATER RESOURCES RESEARCH LA English DT Article ID SCHWARZ INFORMATION CRITERION; STEADY-STATE CONDITIONS; AQUIFER PARAMETERS; REGRESSION-MODELS; CROSS-VALIDATION; BAYES FACTORS; LIKELIHOOD; UNCERTAINTY; TRANSIENT; INFERENCE AB Hydrologic systems are open and complex, rendering them prone to multiple conceptualizations and mathematical descriptions. There has been a growing tendency to postulate several alternative hydrologic models for a site and use model selection criteria to (1) rank these models, (2) eliminate some of them, and/or (3) weigh and average predictions and statistics generated by multiple models. This has led to some debate among hydrogeologists about the merits and demerits of common model selection (also known as model discrimination or information) criteria such as AIC, AICc, BIC, and KIC and some lack of clarity about the proper interpretation and mathematical representation of each criterion. We examine the model selection literature to find that (1) all published rigorous derivations of AIC and AICc require that the (true) model having generated the observational data be in the set of candidate models; (2) though BIC and KIC were originally derived by assuming that such a model is in the set, BIC has been rederived by Cavanaugh and Neath (1999) without the need for such an assumption; and (3) KIC reduces to BIC as the number of observations becomes large relative to the number of adjustable model parameters, implying that it likewise does not require the existence of a true model in the set of alternatives. We explain why KIC is the only criterion accounting validly for the likelihood of prior parameter estimates, elucidate the unique role that the Fisher information matrix plays in KIC, and demonstrate through an example that it imbues KIC with desirable model selection properties not shared by AIC, AICc, or BIC. Our example appears to provide the first comprehensive test of how AIC, AICc, BIC, and KIC weigh and rank alternative models in light of the models' predictive performance under cross validation with real hydrologic data. C1 [Ye, Ming] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA. [Neuman, Shlomo P.] Univ Arizona, Dept Hydrol, Tucson, AZ 85721 USA. [Meyer, Philip D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ye, M (reprint author), Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA. EM neuman@hwr.arizona.edu RI Ye, Ming/A-5964-2008; OI Meyer, Philip/0000-0002-8714-4693 NR 53 TC 110 Z9 109 U1 1 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD MAR 27 PY 2008 VL 44 IS 3 AR W03428 DI 10.1029/2008WR006803 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 281YS UT WOS:000254535400002 ER PT J AU Gao, F Zhang, Y Posselt, M Weber, WJ AF Gao, F. Zhang, Y. Posselt, M. Weber, W. J. TI Computational study of anisotropic epitaxial recrystallization in 4H-SiC SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SILICON-CARBIDE; AMORPHIZATION; IMPLANTATION; TEMPERATURE; IRRADIATION; SIMULATIONS AB Two nano-sized amorphous layers were created within a crystalline cell to study anisotropic expitaxial recrystallization using molecular dynamics (MD) methods in 4H-SiC. Both amorphous layers were created with the normal of the amorphous-crystalline (a-c) interfaces along the [0001] direction, but one had a microscopic extension along the [(1) over bar2 (1) over bar0] direction, i.e. the dimension along the [(1) over bar2 (1) over bar0] direction is much larger than that along the [(1) over bar 010] direction (I(x) model), and the other had a microscopic extension along the [(1) over bar 010] direction (I(y) model). The amorphous layer within the I(x) model can be completely recrystallized at 2000 K within an achievable simulation time, and the recrystallization is driven by a step-regrowth mechanism. On the other hand, the nucleation and growth of secondary ordered phases are observed at high temperatures in the I(y) model. The temperature for recrystallization of the amorphous layer into high-quality 4H-SiC is estimated to be below 1500 K. Compared with other models, it is found that the regrowth rates and recrystallization mechanisms depend strongly on the orientation of 4H-SiC, whereas the activation energy spectra for recrystallization processes are independent of any specific polytypic structure, with activation energies ranging from 0.8 to 1.7 eV. C1 [Gao, F.; Zhang, Y.; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Posselt, M.] Forschung Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat, D-01314 Dresden, Germany. RP Gao, F (reprint author), Pacific NW Natl Lab, MS K8-93,POB 999, Richland, WA 99352 USA. EM fei.gao@pnl.gov RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; NR 26 TC 2 Z9 2 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 26 PY 2008 VL 20 IS 12 AR 125203 DI 10.1088/0953-8984/20/12/125203 PG 8 WC Physics, Condensed Matter SC Physics GA 275VW UT WOS:000254101300007 ER PT J AU Tobin, JG Soderlind, P Landa, A Moore, KT Schwartz, AJ Chung, BW Wall, MA Wills, JM Haire, RG Kutepov, AL AF Tobin, J. G. Soderlind, P. Landa, A. Moore, K. T. Schwartz, A. J. Chung, B. W. Wall, M. A. Wills, J. M. Haire, R. G. Kutepov, A. L. TI On the electronic configuration in Pu: spectroscopy and theory SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID STRONGLY-CORRELATED STATE; DELTA-PLUTONIUM; CRYSTAL-STRUCTURES; 5F ELECTRONS; PHOTOELECTRON-SPECTROSCOPY; 1ST-PRINCIPLES THEORY; LIGHT ACTINIDES; PHOTOEMISSION; METALS; SPIN AB Photoelectron spectroscopy, synchrotron-radiation-based x-ray absorption, electron energy loss spectroscopy, and density-functional calculations within the mixed-level and magnetic models, together with canonical band theory, have been used to study the electron configuration in Pu. These methods suggest a 5f(n) occupation for Pu of 5 <= n < 6, with n not equal 6, contrary to what has recently been suggested in several publications. We show that the n = 6 picture is inconsistent with the usual interpretation of photoemission, x-ray absorption, and electron energy loss spectra. Instead, these spectra support the traditional conjecture of a 5f(5) occupation in Pu as is obtained by density-functional theory. We further argue, based on 5f-band filling, that an n = 6 hypothesis is incompatible with the position of Pu in the actinide series and its monoclinic ground-state phase. C1 [Tobin, J. G.; Soderlind, P.; Landa, A.; Moore, K. T.; Schwartz, A. J.; Chung, B. W.; Wall, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wills, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Haire, R. G.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Kutepov, A. L.] Russian Fed Nucl Ctr, Inst Tech Phys VNIITF, Snezhinsk, Russia. RP Tobin, JG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tobin1@llnl.gov RI Chung, Brandon/G-2929-2012; Tobin, James/O-6953-2015 NR 67 TC 26 Z9 26 U1 4 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 26 PY 2008 VL 20 IS 12 AR 125204 DI 10.1088/0953-8984/20/12/125204 PG 9 WC Physics, Condensed Matter SC Physics GA 275VW UT WOS:000254101300008 ER PT J AU Wang, YJ Zhao, YS Zhang, JZ Xu, HW Wang, LP Luo, SN Daemen, LL AF Wang, Yuejian Zhao, Yusheng Zhang, Jianzhong Xu, Hongwu Wang, Liping Luo, Sheng-Nian Daemen, Luke L. TI In situ phase transition study of nano- and coarse-grained TiO(2) under high pressure/temperature conditions SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY-DIFFRACTION; ANATASE TIO2; PRESSURE; NANOCRYSTALS; STABILITY; BEHAVIOR; EQUATION; TITANIA; STATE; GPA AB A comparative phase transition study of nanocrystalline and micro-TiO(2) has been conducted under high pressure-temperature (P-T) conditions using energy-dispersive synchrotron x-ray diffraction (XRD). Our study reveals that on compression at room temperature, the micro-tetragonal anatase-type TiO(2) started to transform to the orthorhombic columbite-type TiO(2) near 1.6 GPa. In contrast, we did not observe this phase transition in nano-anatase at pressures of up to 8.5 GPa. At 8.5 GPa, by applying moderate heat, both samples were transformed completely to columbite-type TiO(2) almost simultaneously, indicating that heat treatment could significantly expedite this phase transition. These columbite-type TiO(2) phases were quenchable because after cooling them to room temperature and decompressing them to 2.0 GPa, the XRD patterns displayed no changes in comparison with those collected at 8.6 GPa and 1270 K. At 2 GPa, we heated the specimens again, and the rutile-type TiO(2) started to emerge around 970 K. This phase was also quenchable after cooling and releasing pressure to ambient conditions. The grain size effects on the phase transition were discussed based on the kinetics mechanism. This study should be of considerable interest to the fields of materials science and condensed matter. C1 [Wang, Yuejian; Zhao, Yusheng; Zhang, Jianzhong; Daemen, Luke L.] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. [Xu, Hongwu] Los Alamos Natl Lab, EES Div, Los Alamos, NM 87545 USA. [Wang, Liping] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Luo, Sheng-Nian] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. RP Wang, YJ (reprint author), Los Alamos Natl Lab, LANSCE Div, POB 1663, Los Alamos, NM 87545 USA. EM Yuejianw@lanl.gov RI Luo, Sheng-Nian /D-2257-2010; Lujan Center, LANL/G-4896-2012; OI Luo, Sheng-Nian /0000-0002-7538-0541; Xu, Hongwu/0000-0002-0793-6923; Zhang, Jianzhong/0000-0001-5508-1782 NR 26 TC 12 Z9 13 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 26 PY 2008 VL 20 IS 12 AR 125224 DI 10.1088/0953-8984/20/12/125224 PG 6 WC Physics, Condensed Matter SC Physics GA 275VW UT WOS:000254101300028 ER PT J AU Zheng, H Ma, D Bao, XH Hu, JZ Kwak, JH Wang, Y Peden, CHF AF Zheng, Heng Ma, Ding Bao, Xinhe Hu, Jian Zhi Kwak, Ja Hun Wang, Yong Peden, Charles H. F. TI Direct observation of the active center for methane dehydroaromatization using an ultrahigh field Mo-95 NMR spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SOLID-STATE NMR; ZEOLITE CATALYSTS; HYDRODESULFURIZATION CATALYSTS; MO; AROMATIZATION; NAPHTHALENE; CONVERSION; MO/H-ZSM5; MO/HZSM-5; BENZENE AB The use of an ultrahigh magnetic field spectrometer and Mo-95 isotope enrichment facilitate the direct observation of the local structure of Mo species on Mo/zeolite catalysts by 95Mo NMR. Top trace: The experimental 95Mo NMR spectrum of 6Mo/HZSM-5. Bottom traces: The simulated overall spectrum (orange), the spectral component corresponding to MoO3 (purple), and the component corresponding to the exchanged Mo species (green). The exchanged Mo species proved to be the active center for the methane dehydroaromatization (MDA) reaction. C1 [Zheng, Heng; Ma, Ding; Bao, Xinhe] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China. [Hu, Jian Zhi; Kwak, Ja Hun; Wang, Yong; Peden, Charles H. F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bao, XH (reprint author), Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China. EM xhbao@dicp.ac.cn RI Hu, Jian Zhi/F-7126-2012; Wang, Yong/C-2344-2013; Kwak, Ja Hun/J-4894-2014; li, haobo/P-5373-2014; OI li, haobo/0000-0002-9215-3754; Peden, Charles/0000-0001-6754-9928 NR 22 TC 53 Z9 55 U1 9 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 26 PY 2008 VL 130 IS 12 BP 3722 EP + DI 10.1021/ja7110916 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 276WE UT WOS:000254173600009 PM 18311978 ER PT J AU Sarangi, R Gorelsky, SI Basumallick, L Hwang, HJ Pratt, RC Stack, TDP Lu, Y Hodgson, KO Hedman, B Solomon, EI AF Sarangi, Ritimukta Gorelsky, Serge I. Basumallick, Lipika Hwang, Hee Jung Pratt, Russell C. Stack, T. Daniel P. Lu, Yi Hodgson, Keith O. Hedman, Britt Solomon, Edward I. TI Spectroscopic and density functional theory studies of the blue-copper site in M121SeM and C112SeC azurin: Cu-Se versus Cu-S bonding SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRONIC POPULATION ANALYSIS; MAGNETIC CIRCULAR-DICHROISM; MOLECULAR WAVE FUNCTIONS; RAY-ABSORPTION SPECTROSCOPY; RESONANCE RAMAN-SPECTRA; PSEUDOMONAS-AERUGINOSA AZURIN; EXPRESSED PROTEIN LIGATION; FORMATE DEHYDROGENASE-H; LIGAND K-EDGE; CRYSTAL-STRUCTURE AB S K-edge X-ray absorption, UV-vis absorption, magnetic circular dichroism (MCD), and resonance Raman spectroscopies are used to investigate the electronic structure differences among WT, M121 SeM, and C112SeC Pseudomonas aeruginosa (P.a) azurin. A comparison of S K-edge XAS of WT and M121SeM azurin and a Cull-thioether model complex shows that the 38% S character in the ground state wave function of the blue-copper (BC) sites solely reflects the Cu-S-Cys, bond. Resonance Raman (rR) data on WT and C112SeC azurin give direct evidence for the kinematic coupling between the Cu-S-Cys stretch and the cysteine deformation modes in WT azurin, which leads to multiple features in the rR spectrum of the BC site. The UV-vis absorption and MCD data on WT, M121SeM, and C112SeC give very similar C-0/D-0 ratios, indicating that the C-term MCD intensity mechanism involves Cu-centered spin-orbit coupling (SOC). The spectroscopic data combined with density functional theory (DFT) calculations indicate that S-Cys and Se-Cys have similar covalent interactions with Cu at their respective bond lengths of 2.1 and 2.3 angstrom. This reflects the similar electronegativites of S and Se in the thiolate/selenolate ligand fragment and explains the strong spectroscopic similarities between WT and C112SeC azurin. C1 [Hwang, Hee Jung; Lu, Yi] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Hwang, Hee Jung; Lu, Yi] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA. [Sarangi, Ritimukta; Gorelsky, Serge I.; Basumallick, Lipika; Pratt, Russell C.; Stack, T. Daniel P.; Hodgson, Keith O.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Lu, Y (reprint author), Univ Illinois, Dept Chem, 1209 W Calif St, Urbana, IL 61801 USA. EM yi-lu@uiuc.edu; Hodgson@ssrl.slac.stanford.edu; Hedman@ssri.slac.stanford.edu; edward.solomon@stanford.edu RI Lu, Yi/B-5461-2010 OI Lu, Yi/0000-0003-1221-6709 FU NCRR NIH HHS [P41 RR001209, RR-01209]; NIGMS NIH HHS [GM50730, R01 GM050730, R01 GM050730-14, R29 GM050730] NR 85 TC 30 Z9 31 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 26 PY 2008 VL 130 IS 12 BP 3866 EP 3877 DI 10.1021/ja076495a PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 276WE UT WOS:000254173600045 PM 18314977 ER PT J AU Rhee, YM Head-Gordon, M AF Rhee, Young Min Head-Gordon, Martin TI A delicate electronic balance between metal and ligand in [Cu-P-Cu-P] diamondoids: Oxidation state dependent plasticity and the formation of a singlet diradicaloid SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BLUE-COPPER PROTEINS; RAY-ABSORPTION SPECTROSCOPY; ALCALIGENES-FAECALIS S-6; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS SETS; WAVE-FUNCTIONS; MOLECULAR CALCULATIONS; ANGSTROM RESOLUTION; THEORETICAL-MODELS; CRYSTAL-STRUCTURE AB Transition metal atoms often participate in redox reactions as catalytic sites, where ligand groups play an important role in orchestrating catalytic activity, especially in metalloenzymes. A major issue is to understand connections between oxidation state and geometry at the metal center, because geometric reorganization is directly related to reaction rate. In this article, we analyze an intriguing oxidation-induced geometrical change in [Cu-P-Cu-P] ring structures (similar to 0.6 angstrom change in metal-metal distance) using quantum chemical approaches. We find that the Cu-P interactions in the ring of the neutral species consist of four localized P --> Cu dative bonds. Successive oxidations extract electrons predominantly from P atoms on the ring rather than Cu sites. It emerges that as a result, the Cu-P interactions change and also exhibit partial Cu(3d) --> P donation, which causes the large distortion in geometry. We also find that the dication possesses a large degree of diradical character, forming a rare example of an observed species that is a singlet diradicaloid. This hypothesis is supported by our computational results as well as previously reported experimental features. C1 [Rhee, Young Min; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Rhee, Young Min; Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu RI Rhee, Young/E-9940-2012 NR 77 TC 13 Z9 13 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 26 PY 2008 VL 130 IS 12 BP 3878 EP 3887 DI 10.1021/ja0764916 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 276WE UT WOS:000254173600046 PM 18314976 ER PT J AU Wintergerst, MP Levitskaia, TG Moyer, BA Sessler, JL Delmau, LH AF Wintergerst, Matthieu P. Levitskaia, Tatiana G. Moyer, Bruce A. Sessler, Jonathan L. Delmau, Laetitia H. TI Calix[4]pyrrole: A new ion-pair receptor as demonstrated by liquid-liquid extraction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SOLVENT-EXTRACTION; ANION RECOGNITION; ORGANIC-SOLVENT; SELECTIVITY; CHLORIDE; CATION; SALTS; 1,2-DICHLOROETHANE; CALIXPYRROLES; DEPENDENCE AB Solvent-extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs cesium salt and receptor concentration, indicating the formation of an ion-paired 1:1:1 cesium:calix[4]pyrrole: halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent-extraction system, with either chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride than for the cesium bromide. The ion-pairing free energies between the Calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr. C1 [Wintergerst, Matthieu P.; Levitskaia, Tatiana G.; Moyer, Bruce A.; Delmau, Laetitia H.] Oak Ridge Natl Lab, Div Chem Sci, Chem Separat Grp, Oak Ridge, TN 37831 USA. [Sessler, Jonathan L.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. RP Wintergerst, MP (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Chem Separat Grp, POB 2008,MS-6119, Oak Ridge, TN 37831 USA. EM moyerba@ornl.gov; sessler@mail.utexas.edu; delmaulh@ornl.gov RI Moyer, Bruce/L-2744-2016 OI Moyer, Bruce/0000-0001-7484-6277 FU NIGMS NIH HHS [GM 58907] NR 43 TC 106 Z9 106 U1 7 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 26 PY 2008 VL 130 IS 12 BP 4129 EP 4139 DI 10.1021/ja7102179 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 276WE UT WOS:000254173600077 PM 18311976 ER PT J AU Lei, CH Soares, TA Shin, YS Liu, J Ackerman, EJ AF Lei, Chenghong Soares, Thereza A. Shin, Yongsoon Liu, Jun Ackerman, Eric J. TI Enzyme specific activity in functionalized nanoporous supports SO NANOTECHNOLOGY LA English DT Article ID MESOPOROUS MOLECULAR-SIEVES; SOL-GEL PROCESS; CATALYTIC ACTIVITY; GLUCOSE-OXIDASE; IMMOBILIZATION; ELECTROSTATICS; SILICA; ENCAPSULATION; CONFINEMENT; RESOLUTION AB Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P(LD)) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I(e), defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase ( GOX) and a net positively charged organophosphorus hydrolase ( OPH) were entrapped spontaneously in NH(2)- and HOOC-functionalized mesoporous silica ( 300 angstrom, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing PLD. With decreasing PLD, Ie of GOX in FMS increased from < 35% to > 150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing PLD. With increasing PLD, the corresponding Ie of OPH in FMS increased from 100% to > 200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high PLD, consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high PLD and may promote a more favorable confinement environment that enhances the OPH activity. C1 [Lei, Chenghong; Soares, Thereza A.; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lei, CH (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Eric.Ackerman@pnl.gov RI Soares, Thereza/G-1065-2010 OI Soares, Thereza/0000-0002-5891-6906 NR 31 TC 34 Z9 35 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAR 26 PY 2008 VL 19 IS 12 AR 125102 DI 10.1088/0957-4484/19/12/125102 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 276WK UT WOS:000254174200002 PM 21817721 ER PT J AU Luber, E Mohammadi, R Ophus, C Lee, Z Nelson-Fitzpatrick, N Westra, K Evoy, S Dahmen, U Radmilovic, V Mitlin, D AF Luber, E. Mohammadi, R. Ophus, C. Lee, Z. Nelson-Fitzpatrick, N. Westra, K. Evoy, S. Dahmen, U. Radmilovic, V. Mitlin, D. TI Tailoring the microstructure and surface morphology of metal thin films for nano-electro-mechanical systems applications SO NANOTECHNOLOGY LA English DT Article ID ATOMIC-FORCE MICROSCOPY; SILICON; NI; DEPOSITION; GROWTH; CANTILEVERS; NANOINDENTATION; DEFORMATION; STRESS; ALLOYS AB Metallic structural components for micro-electro-mechanical/nano-electro-mechanical systems (MEMS/NEMS) are promising alternatives to silicon-based materials since they are electrically conductive, optically reflective and ductile. Polycrystalline mono-metallic films typically exhibit low strength and hardness, high surface roughness, and significant residual stress, making them unusable for NEMS. In this study we demonstrate how to overcome these limitations by co-sputtering Ni-Mo. Detailed investigation of the Ni-Mo system using transmission electron microscopy and high-resolution transmission electron microscopy (TEM/HRTEM), x-ray diffraction (XRD), nanoindentation, and atomic force microscopy (AFM) reveals the presence of an amorphous-nanocrystalline microstructure which exhibits enhanced hardness, metallic conductivity, and sub-nanometer root mean square (RMS) roughness. Uncurled NEMS cantilevers with MHz resonant frequencies and quality factors ranging from 200-900 are fabricated from amorphous Ni-Mo. Using a sub-regular solution model it is shown that the electrical conductivity of Ni-Mo is in excellent agreement with Bhatia's structural model of electrical resistivity in binary alloys. Using a Langevin-type stochastic rate equation the structural evolution of amorphous Ni-Mo is modeled; it is shown that the growth instability due to the competing processes of surface diffusion and self-shadowing is heavily damped out due to the high thermal energies of sputtering, resulting in extremely smooth films. C1 [Lee, Z.; Dahmen, U.; Radmilovic, V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, NCEM, Berkeley, CA 94720 USA. [Luber, E.; Mohammadi, R.; Ophus, C.; Nelson-Fitzpatrick, N.; Evoy, S.; Mitlin, D.] Natl Inst Nanotechnol, Edmonton, AB, Canada. [Luber, E.; Mohammadi, R.; Ophus, C.; Nelson-Fitzpatrick, N.; Westra, K.; Evoy, S.; Mitlin, D.] Univ Alberta, Edmonton, AB T6G 2M7, Canada. RP Radmilovic, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, NCEM, Berkeley, CA 94720 USA. EM VRRadmilovic@lbl.gov; dmitlin@ualberta.ca RI Lee, Zonghoon/G-1474-2011; Ophus, Colin/H-2350-2013; Mitlin , David /M-5328-2016; OI Lee, Zonghoon/0000-0003-3246-4072; Mitlin , David /0000-0002-7556-3575; Evoy, Stephane/0000-0003-4587-3502; Luber, Erik/0000-0003-1623-0102; Ophus, Colin/0000-0003-2348-8558 NR 43 TC 13 Z9 13 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAR 26 PY 2008 VL 19 IS 12 AR 125705 DI 10.1088/0957-4484/19/12/125705 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 276WK UT WOS:000254174200027 PM 21817746 ER PT J AU Utschig, LM Chen, LX Poluektov, OG AF Utschig, Lisa M. Chen, Lin X. Poluektov, Oleg G. TI Discovery of native metal ion sites located on the ferredoxin docking side of photosystem I SO BIOCHEMISTRY LA English DT Article ID BACTERIAL REACTION CENTERS; PROTON-TRANSFER RATE; ELECTRON-TRANSFER; ANGSTROM RESOLUTION; COPPER; IDENTIFICATION; PATHWAY; BINDING; PROTEINS; CD2+ AB Photosystem I (PSI) is a large membrane protein that catalyzes light-driven electron transfer across the thylakoid membrane from plastocyanin located in the lumen to ferredoxin in the stroma. Metal analysis reveals that PSI isolated from the cyanobacterial membranes of Synechococcus leopoliensis has a near-stoichiometric 1 molar equiv of Zn2+ per PSI monomer and two additional surface metal ion sites that favor Cu2+ binding. Two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy reveals coupling to the so-called remote nitrogen of a single histidine coordinated to one of the Cu2+ centers. EPR and X-ray absorption fine structure (XAFS) studies of 2Cu-PSI complexes reveal the direct interaction of ferredoxin with the Cu2+ centers on PSI, establishing the location of native metal sites on the ferredoxin docking side of PSI. On the basis of these spectroscopic results and previously reported site-directed mutagenesis studies, inspection of the PSI crystal structure reveals a cluster of three highly conserved residues, His(D95), Glu(D103), and Asp(C23), as a likely Cu2+ binding site. The discovery of surface metal sites on the acceptor side of PSI provides a unique opportunity to probe the stromal region of PSI and the interactions of PSI with its reaction partner, the soluble electron carrier protein ferredoxin. C1 [Utschig, Lisa M.; Chen, Lin X.; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Utschig, LM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM utschig@ant.gov NR 36 TC 7 Z9 7 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAR 25 PY 2008 VL 47 IS 12 BP 3671 EP 3676 DI 10.1021/bi800038d PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 276FY UT WOS:000254127900009 PM 18293937 ER PT J AU Derbyshire, ER Gunn, A Ibrahim, M Spiro, TG Britt, RD Marletta, MA AF Derbyshire, Emily R. Gunn, Alexander Ibrahim, Mohammed Spiro, Thomas G. Britt, R. David Marletta, Michael A. TI Characterization of two different five-coordinate soluble guanylate cyclase ferrous-nitrosyl complexes SO BIOCHEMISTRY LA English DT Article ID RESONANCE RAMAN-SPECTROSCOPY; YC-1 BINDING-SITE; NITRIC-OXIDE; FUNCTIONAL-CHARACTERIZATION; PARAMAGNETIC-RESONANCE; HEME DOMAIN; ACTIVATION; NO; ENZYME; EXPRESSION AB Soluble guanylate cyclase (sGC), a hemoprotein, is the primary nitric oxide (NO) receptor in higher eukaryotes. The binding of NO to sGC leads to the formation of a five-coordinate ferrous-nitrosyl complex and a several hundred-fold increase in cGMP synthesis. NO activation of sGC is influenced by GTP and the allosteric activators YC-1 and BAY 41-2272. Electron paramagnetic resonance (EPR) spectroscopy shows that the spectrum of the sGC ferrous-nitrosyl complex shifts in the presence of YC-1, BAY 41-2272, or GTP in the presence of excess NO relative to the heme. These molecules shift the EPR signal from one characterized by g(1) = 2.083, g(2) = 2.036, and g(3) = 2.012 to a signal characterized by g(1) = 2.106, g(2) = 2.029, and g(3) = 2.010. The truncated heme domain constructs beta 1(1-194) and beta 2(1-217) were compared to the full-length enzyme. The EPR spectrum of the beta 2(1-217)-NO complex is characterized by g(1) = 2.106, g(2) = 2.025, and g(3) = 2.010, indicating the protein is a good model for the sGC-NO complex in the presence of the activators, while the spectrum of the beta 1(1-194)-NO complex resembles the EPR spectrum of sGC in the absence of the activators. Low-temperature resonance Raman spectra of the beta 1(1-194)-NO and beta 2(1-217)-NO complexes show that the Fe-NO stretching vibration of the beta 2(1-217)-NO complex (535 cm(-1)) is significantly different from that of the beta 1(1-194)-NO complex (527 cm(-1)). This shows that sGC can adopt different five-coordinate ferrous nitrosyl conformations and suggests that the Fe-NO conformation characterized by this unique EPR signal and Fe-NO stretching vibration represents a highly active sGC state. C1 [Derbyshire, Emily R.; Marletta, Michael A.] Univ Calif Berkeley, QB3 Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Gunn, Alexander; Britt, R. David] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Ibrahim, Mohammed; Spiro, Thomas G.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, QB3 Inst, Dept Mol & Cell Biol, 570 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu FU NIGMS NIH HHS [GM33576, R01 GM033576-39, GM077365, GM73789, R01 GM073789, R01 GM073789-03, R01 GM077365-02, R01 GM077365, R01 GM033576] NR 38 TC 25 Z9 27 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAR 25 PY 2008 VL 47 IS 12 BP 3892 EP 3899 DI 10.1021/bi7022943 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 276FY UT WOS:000254127900032 PM 18302323 ER PT J AU Yin, CL Li, GB Jin, TN You, LP Tao, JL Richardson, JW Loong, CK Sun, JL Liao, FH Lin, JH AF Yin, Congling Li, Guobao Jin, Tounan You, Liping Tao, Julian Richardson, James W. Loong, Chun-K. Sun, Junliang Liao, Fuhui Lin, Jianhua TI Synthesis, structure, and characterization of the hexagonal provskite Ba5In0.93Mn4O14.40 SO CHEMISTRY OF MATERIALS LA English DT Article ID HIGH-DIELECTRIC-CONSTANT; CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; PEROVSKITE; CHEMISTRY; CACU3TI4O12; DIFFRACTION; CERAMICS; BAMNO3-X; PHASE AB Ba5In0.93Mn4O14.40 was synthesized in air at 1300 degrees C by traditional solid state reaction and structurally characterized using powder X-ray diffraction, neutron diffraction, and selected area electron diffraction (SAED). It crystallizes in the hexagonal space group P6(3)/MMC with a = 5.7389(1) angstrom and c = 23.6418(1) angstrom and was formed by pseudoclose-packed BaO3-x layers in a sequence of (cchhh)(2) with In and Mn cations occupying the oxygen octahedral holes. C1 [Yin, Congling; Li, Guobao; Sun, Junliang; Liao, Fuhui; Lin, Jianhua] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China. [You, Liping] Peking Univ, Electron Microscopy Lab, Beijing 100871, Peoples R China. [Jin, Tounan] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100022, Peoples R China. [Tao, Julian; Richardson, James W.; Loong, Chun-K.] Argonne Natl Lab, Intense Pulse Neutron Source Div, Argonne, IL 60439 USA. RP Li, GB (reprint author), Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China. EM liguobao@pku.edu.cn; jhlin@pku.edu.cn RI Li, Guobao/F-3690-2016 OI Li, Guobao/0000-0003-3061-193X NR 35 TC 6 Z9 7 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD MAR 25 PY 2008 VL 20 IS 6 BP 2110 EP 2116 DI 10.1021/cm7025152 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 276GH UT WOS:000254128800013 ER PT J AU Tobash, PH Meyers, JJ DiFilippo, G Bobev, S Ronning, F Thompson, JD Sarrao, JL AF Tobash, Paul H. Meyers, John J. DiFilippo, Gary Bobev, Svilen Ronning, Filip Thompson, Joe D. Sarrao, John L. TI Structure and properties of a new family of nearly equiatomic rare-earth metal-tin-germanides RESn1+xGe1-x (RE = Y, Gd-Tm): an unusual example of site preferences between elements from the same group SO CHEMISTRY OF MATERIALS LA English DT Article ID ZINTL PHASE; ELECTRONIC-STRUCTURE; INTERMETALLIC COMPOUNDS; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; LA-ND; NAZN13 STRUCTURE; ER COMPOUNDS; SOLID-STATE; NETWORK AB Seven nearly stoichiometric compounds with general formulas RESn1+xGe1-x (RE = Y, Gd-Tm; x approximate to +/-0.15) have been synthesized from the corresponding elements using high-temperature reactions and molten Sn as a metal flux. They crystallize with the centrosymmetric space group Cmcm (No. 63) and their structures can be viewed as built up of two distinct polyanionic moieties: infinite (1)(infinity)[Ge-2] zigzag chains and squate sheets of tin atoms, (2)(infinity)[Sn], with rare-earth cations enclosed between them. Within this formalism, such a bonding arrangement can also be described as a ternary derivative of the ZrSi2 structure (Pearson's symbol oC12), obtained by "coloring" the anionic sites with two different elements, Ge and Sn in the present case. This is a unique aspect of the crystal chemistry of the intermetallic compounds in general, because elements from the same group typically do not show a tendency for site preferences. It is discussed in detail, along with an analysis of the trends across the whole series. The temperature dependence of the magnetic susceptibility, resistivity, and specific heat for all members of this family (some measured down to 400 mK and in applied fields up to 70 kOe) are reported as well. All lanthanide compounds are metallic and order antiferromagnetically at low temperatures. C1 [Tobash, Paul H.; Meyers, John J.; DiFilippo, Gary; Bobev, Svilen] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Ronning, Filip; Thompson, Joe D.; Sarrao, John L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Bobev, S (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM bobev@udel.edu OI Ronning, Filip/0000-0002-2679-7957 NR 73 TC 23 Z9 23 U1 2 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAR 25 PY 2008 VL 20 IS 6 BP 2151 EP 2159 DI 10.1021/cm7033799 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 276GH UT WOS:000254128800018 ER PT J AU Alam, TM Clawson, JS Bonhomme, F Thoma, SG Rodriguez, MA Zheng, S Autschbach, J AF Alam, Todd M. Clawson, Jacalyn S. Bonhomme, Francois Thoma, Steven G. Rodriguez, Mark A. Zheng, Shaohui Autschbach, Jochen TI A solid-state NMR, X-ray diffraction, and ab initio investigation into the structures of novel tantalum oxyfluoride clusters SO CHEMISTRY OF MATERIALS LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; FLUORIDE CRYSTAL-STRUCTURES; NUCLEAR-MAGNETIC-RESONANCE; CHEMICAL-SHIFTS; RELATIVISTIC APPROXIMATION; F-19; ENERGY; EXCHANGE; SPECTRA; ORDER AB A series of tantalum oxyfluoride materials containing the [Ta4F16O4](4-) and [Ta8F24O12](8-) anion clusters have been synthesized and characterized using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) spectroscopy. The structure of both tantalum oxyfluoride materials display octahedrally bonded tantalum atoms with bridging oxygen and terminal fluoride atoms. The [Ta4F16O4](4-) cluster is an eight-membered ring, whereas the [Ta8F24O12](8-) cluster forms a cagelike structure. Solid-state dynamics of these clusters were explored by monitoring the impact of temperature on the one-dimensional (ID) F-19 magic angle spinning (MAS) NMR, C-13 cross-polarization (CP) MAS NMR, and two-dimensional (2D) double quantum (DQ) F-19 MAS NMR spectra. The DQ F-19 NMR correlation experiments allowed the through space connectivity between the different resolved fluorine environments to be determined, thus aiding in the spectral assignment and structural refinement of these materials. Ab initio F-19 NMR chemical shift calculations were used to assist in the interpretation of the F-19 NMR spectra. The influence of scalar relativistic and Ta-F spin-orbit coupling on the F-19 NMR shielding calculation arising from bonding to tantalum atoms, is also addressed. C1 [Alam, Todd M.; Clawson, Jacalyn S.; Bonhomme, Francois; Thoma, Steven G.; Rodriguez, Mark A.] Sandia Natl Labs, Dept Elect & Nanostruct Mat, Dept Geochem, Dept Mat Characterizat, Albuquerque, NM 87185 USA. [Alam, Todd M.; Clawson, Jacalyn S.; Bonhomme, Francois; Thoma, Steven G.; Rodriguez, Mark A.] Sandia Natl Labs, Dept Fuels & Energy Transit, Albuquerque, NM 87185 USA. [Zheng, Shaohui; Autschbach, Jochen] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. RP Alam, TM (reprint author), Sandia Natl Labs, Dept Elect & Nanostruct Mat, Dept Geochem, Dept Mat Characterizat, POB 5800, Albuquerque, NM 87185 USA. EM tmalam@sandia.gov RI zheng, shaohui/G-2600-2011; Autschbach, Jochen/S-5472-2016 OI Autschbach, Jochen/0000-0001-9392-877X NR 58 TC 19 Z9 19 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAR 25 PY 2008 VL 20 IS 6 BP 2205 EP 2217 DI 10.1021/cm0717763 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 276GH UT WOS:000254128800025 ER PT J AU Krauss, RM Mangravite, LM Smith, JD Medina, MW Wang, D Guo, XQ Rieder, MJ Simon, JA Hulley, SB Waters, D Saad, M Williams, PT Taylor, KD Yang, HY Nickerson, DA Rotter, JI AF Krauss, Ronald M. Mangravite, Lara M. Smith, Joshua D. Medina, Marisa W. Wang, Dai Guo, Xiuqing Rieder, Mark J. Simon, Joel A. Hulley, Steven B. Waters, David Saad, Mohammed Williams, Paul T. Taylor, Kent D. Yang, Huiying Nickerson, Deborah A. Rotter, Jerome I. TI Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment SO CIRCULATION LA English DT Article DE cholesterol; genetics; lipids; lipoproteins; statins ID SINGLE-NUCLEOTIDE POLYMORPHISMS; CORONARY-HEART-DISEASE; HYPERCHOLESTEROLEMIA; PLASMA; TRIALS; LDL; PHARMACOGENETICS; METAANALYSIS; THERAPY; STATINS AB Background - Use of 3-hydroxyl-3-methylglutaryl-3 coenzyme A reductase (HMGCR) inhibitors, or statins, reduces cardiovascular disease risk by lowering plasma low-density lipoprotein cholesterol (LDL-C) concentrations. However, LDL-C response is variable and influenced by many factors, including racial ancestry, with attenuated response in blacks compared with whites. We hypothesized that single nucleotide polymorphisms in the gene encoding HMGCR, a rate-limiting enzyme in cholesterol synthesis and the direct enzymatic target of statins, contribute to variation in statin response. Methods and Results - Genomic resequencing of HMGCR in 24 blacks and 23 whites identified 79 single nucleotide polymorphisms. Eleven single nucleotide polymorphisms were selected to tag common linkage disequilibrium clusters. These single nucleotide polymorphisms and the common haplotypes inferred from them were tested for association with plasma LDL-C and LDL-C response to simvastatin treatment ( 40 mg/d for 6 weeks) in 326 blacks and 596 whites. Black carriers of H7 and/or H2 had significantly lower baseline LDL-C (P = 0.0006) and significantly attenuated LDL-C response compared with black participants who did not carry either haplotype as measured by absolute response ( -1.23 +/- 0.04 mmol/L, n = 209, versus -1.45 = 0.06 mmol/L, n = 117; P = 0.0008) and percent response (-36.9 +/- 1.0% versus -40.6 +/- 1.3%; P = 0.02), but no haplotype effect was observed in whites. Percent LDL-C response was lowest in carriers of both H2 and H7, all but one of whom were black (-28.2 +/- 4.9%, n = 12 H2 + H7 carriers, versus -41.5 +/- 0.5%, n = 650 H2/H7 noncarriers; P = 0.001). LDL-C responses in H7 and/or H2 noncarriers were indistinguishable between blacks and whites. Conclusions - HMGCR gene polymorphisms are associated with reduced plasma LDL-C and LDL-C response to simvastatin, and these effects are most evident in blacks. C1 [Krauss, Ronald M.; Mangravite, Lara M.; Medina, Marisa W.] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA. [Smith, Joshua D.; Rieder, Mark J.; Nickerson, Deborah A.] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. [Wang, Dai; Guo, Xiuqing; Taylor, Kent D.; Yang, Huiying; Rotter, Jerome I.] Cedars Sinai Med Ctr, Inst Med Genet, Los Angeles, CA 90048 USA. [Guo, Xiuqing; Taylor, Kent D.; Yang, Huiying; Rotter, Jerome I.] Univ Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90024 USA. [Guo, Xiuqing; Taylor, Kent D.; Yang, Huiying; Rotter, Jerome I.] Univ Calif Los Angeles, Sch Med, Dept Pediat, Los Angeles, CA 90024 USA. [Simon, Joel A.] Vet Affairs Med Ctr, Med Serv, Gen Internal Med Sect, San Francisco, CA 94121 USA. [Simon, Joel A.; Hulley, Steven B.] Univ Calif San Francisco, Sch Med, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA. [Waters, David] San Francisco Gen Hosp, Dept Med, San Francisco, CA 94110 USA. [Saad, Mohammed] SUNY Stony Brook, Hlth Sci Ctr, Dept Preventat Med, Stony Brook, NY 11794 USA. [Williams, Paul T.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Krauss, RM (reprint author), Childrens Hosp Oakland, Res Inst, 5700 Martin Luther King Jr Way, Oakland, CA 94609 USA. EM rkrauss@chori.org FU NCRR NIH HHS [M01-RR00425]; NHLBI NIH HHS [U01 HL069757, U01 HL69757] NR 35 TC 102 Z9 102 U1 0 U2 7 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD MAR 25 PY 2008 VL 117 IS 12 BP 1537 EP 1544 DI 10.1161/CIRCULATIONAHA.107.708388 PG 8 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 278PJ UT WOS:000254298500006 PM 18332269 ER PT J AU Park, MJ Nedoma, AJ Geissler, PL Balsara, NP Jackson, A Cookson, D AF Park, Moon Jeong Nedoma, Alisyn J. Geissler, Phillip L. Balsara, Nitash P. Jackson, Andrew Cookson, David TI Humidity-induced phase transitions in ion-containing block copolymer membranes SO MACROMOLECULES LA English DT Article ID MICROPHASE SEPARATION; POLYSTYRENE; BEHAVIOR; SOLVENTS; SYSTEMS; STATE AB The phase behavior of ion-containing block copolymer membranes in equilibrium with humidified air is studied as a function of the relative humidity (RH) of the surrounding air, ion content of the copolymer, and temperature. Increasing RH at constant temperature results in both disorder-to-order and order-to-order transitions. In-situ small-angle neutron scattering experiments on the open block copolymer system, when combined with wafer uptake measurement, indicate that the disorder-to-order transition is driven by an increase in the partial molar entropy of the water molecules in the ordered phase relative to that in the disordered phase. This is in contrast to most systems wherein increasing entropy results in stabilization of the disordered phase. C1 [Park, Moon Jeong; Nedoma, Alisyn J.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Park, Moon Jeong; Nedoma, Alisyn J.; Cookson, David] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Park, Moon Jeong; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Jackson, Andrew] Natl Inst Stand & Technol, NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jackson, Andrew] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Cookson, David] Argonne Natl Lab, Australian Synchroton Res Program, Argonne, IL 60439 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Jackson, Andrew/B-9793-2008; Park, Moon Jeong/F-5752-2013; OI Jackson, Andrew/0000-0002-6296-0336; Nedoma, Alisyn/0000-0002-3537-2846 NR 25 TC 31 Z9 32 U1 4 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAR 25 PY 2008 VL 41 IS 6 BP 2271 EP 2277 DI 10.1021/ma702320t PG 7 WC Polymer Science SC Polymer Science GA 276HZ UT WOS:000254133200049 ER PT J AU McHugh, KM Lin, Y Zhou, Y Johnson, SB Delplanque, JP Lavernia, EJ AF McHugh, K. M. Lin, Y. Zhou, Y. Johnson, S. B. Delplanque, J. -P. Lavernia, E. J. TI Microstructure evolution during spray rolling and heat treatment of 2124 Al SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 3rd International Conference on Spray Deposition and Melt Atomization (SDAM 2006)/6th International Conference on Spray Forming (ICSF VI) CY SEP 04-06, 2006 CL Univ Bremen, Bremen, GERMANY HO Univ Bremen DE spray forming; spray rolling; strip casting; 2124 aluminum ID ALUMINUM-ALLOYS; THIN STRIPS AB Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined. (c) 2007 Elsevier B.V. All rights reserved. C1 [McHugh, K. M.] Idaho Natl Lab, Ind Technol Dept, Idaho Falls, ID 83415 USA. [Lin, Y.; Zhou, Y.; Johnson, S. B.; Delplanque, J. -P.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP McHugh, KM (reprint author), Idaho Natl Lab, Ind Technol Dept, Idaho Falls, ID 83415 USA. EM kevin.mchugh@inl.gov RI Lavernia, Enrique/I-6472-2013; Delplanque, Jean-Pierre/I-8690-2016; OI Lavernia, Enrique/0000-0003-2124-8964; Delplanque, Jean-Pierre/0000-0003-1774-1641 NR 23 TC 14 Z9 19 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAR 25 PY 2008 VL 477 IS 1-2 BP 26 EP 34 DI 10.1016/j.msea.2007.04.130 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 285MH UT WOS:000254780400006 ER PT J AU McHugh, KM Lin, Y Zhou, Y Lavernia, EJ AF McHugh, K. M. Lin, Y. Zhou, Y. Lavernia, E. J. TI Influence of cooling rate on phase formation in spray-formed H13 tool steel SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 3rd International Conference on Spray Deposition and Melt Atomization (SDAM 2006)/6th International Conference on Spray Forming (ICSF VI) CY SEP 04-06, 2006 CL Univ Bremen, Bremen, GERMANY HO Univ Bremen DE spray forming; rapid tooling; molds and dies; H13 tool steel ID MICROSTRUCTURE AB Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H 13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described. (c) 2007 Elsevier B.V. All rights reserved. C1 [McHugh, K. M.] Idaho Natl Lab, Ind Technol Dept, Idaho Falls, ID 83415 USA. [Lin, Y.; Zhou, Y.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP McHugh, KM (reprint author), Idaho Natl Lab, Ind Technol Dept, Idaho Falls, ID 83415 USA. EM kevin.mchugh@inl.gov RI Lavernia, Enrique/I-6472-2013 OI Lavernia, Enrique/0000-0003-2124-8964 NR 13 TC 11 Z9 21 U1 1 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAR 25 PY 2008 VL 477 IS 1-2 BP 50 EP 57 DI 10.1016/j.msea.2007.05.121 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 285MH UT WOS:000254780400009 ER PT J AU Conrad, H Yang, D Becher, P AF Conrad, H. Yang, Di Becher, P. TI Effect of an applied electric field on the flow stress of ultrafine-grained 2.5Y-TZP at high temperatures SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE zirconia; electric field; space charge; threshold stress; vacancies ID YTTRIA-STABILIZED ZIRCONIA; SPACE-CHARGE; SUPERPLASTIC DEFORMATION; PLASTIC-DEFORMATION; SOLUTE SEGREGATION; BOUNDARY ANALYSIS; THRESHOLD STRESS; CERAMICS; POLYCRYSTALS; DEPENDENCE AB Application of a dc electric field (E=46V/cm) during the tensile deformation of an ultrafine-grained 2.5Y-TZP (d=350nm) at 1450 degrees C resulted in a significant reduction in the flow stress or, which reversed upon removal of the field. At strains epsilon <= 0.6, the reduction in flow stress Delta sigma(E) consisted of two components: (a) a rapid initial decrease in stress (Delta sigma(E)*) due to the effect of the field on the deformation mechanism(s) and (b) a longer-time decrease in stress (Delta sigma(T)) due to Joule heating, giving Delta sigma(E) = Delta sigma(E)* + Delta sigma(T). At epsilon > 0.6, an additional contribution (Delta sigma(str)(E)) occurred, E which was attributed to a change in defect structure, e.g., grain growth and cavitation. It was concluded that the rate-controlling mechanism in the present tests is grain boundary sliding accommodated by lattice diffusion of the Zr ions with a threshold stress sigma(o), giving an acting effective stress sigma(e) = sigma - sigma(o). It was determined for this case that Delta sigma(E)* contained reductions in both the effective stress (Delta sigma(e,E)*) and in the threshold stress (Delta sigma(o,E)). Analysis of the behavior in terms of an electrochemical potential for vacancy formation showed that Delta sigma(e,E)* and Delta sigma(o,E) are related to changes in the electric field potential pertaining to the space charge at the grain boundaries. The calculated width of the space charge region acted on by the electric field was 3-5 ran in the temperature range of 1450-1550 degrees C. (c) 2007 Elsevier B.V. All rights reserved. C1 [Conrad, H.; Yang, Di] N Carolina State Univ, Mat Sci & Engn Dept, Raleigh, NC 27695 USA. [Becher, P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Conrad, H (reprint author), N Carolina State Univ, Mat Sci & Engn Dept, Raleigh, NC 27695 USA. EM hans_conrad@ncsu.edu NR 26 TC 16 Z9 18 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAR 25 PY 2008 VL 477 IS 1-2 BP 358 EP 365 DI 10.1016/j.msea.2007.05.057 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 285MH UT WOS:000254780400049 ER PT J AU Halloran, ME Ferguson, NM Eubank, S Longini, IM Cummings, DAT Lewis, B Xu, SF Fraser, C Vullikanti, A Germann, TC Wagener, D Beckman, R Kadau, K Barrett, C Macken, CA Burke, DS Cooley, P AF Halloran, M. Elizabeth Ferguson, Neil M. Eubank, Stephen Longini, Ira M., Jr. Cummings, Derek A. T. Lewis, Bryan Xu, Shufu Fraser, Christophe Vullikanti, Anil Germann, Timothy C. Wagener, Diane Beckman, Richard Kadau, Kai Barrett, Chris Macken, Catherine A. Burke, Donald S. Cooley, Philip TI Modeling targeted layered containment of an influenza pandemic in the United States SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID STRATEGIES AB Planning a response to an outbreak of a pandemic strain of influenza is a high public health priority. Three research groups using different individual-based, stochastic simulation models have examined the consequences of intervention strategies chosen in consultation with U.S. public health workers. The first goal is to simulate the effectiveness of a set of potentially feasible intervention strategies. Combinations called targeted layered containment (TLC) of influenza antiviral treatment and prophylaxis and nonpharmaceutical interventions of quarantine, isolation, school closure, community social distancing, and workplace social distancing are considered. The second goal is to examine the robustness of the results to model assumptions. The comparisons focus on a pandemic outbreak in a population similar to that of Chicago, with approximate to 8.6 million people. The simulations suggest that at the expected transmissibility of a pandemic strain, timely implementation of a combination of targeted household antiviral prophylaxis, and social distancing measures could substantially lower the illness attack rate before a highly efficacious vaccine could become available. Timely initiation of measures and school closure play important roles. Because of the current lack of data on which to base such models, further field research is recommended to learn more about the sources of transmission and the effectiveness of social distancing measures in reducing influenza transmission. C1 [Halloran, M. Elizabeth; Longini, Ira M., Jr.] Univ Washington, Sch Publ Hlth & Community Med, Dept Biostat, Seattle, WA 98195 USA. [Halloran, M. Elizabeth; Longini, Ira M., Jr.; Xu, Shufu] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Program Biostat & Biomath, Seattle, WA 98109 USA. [Germann, Timothy C.; Kadau, Kai; Macken, Catherine A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ferguson, Neil M.; Cummings, Derek A. T.; Fraser, Christophe] Univ London Imperial Coll Sci Technol & Med, Dept Infect Dis Epidemiol, London W2 1PG, England. [Wagener, Diane; Cooley, Philip] Res Triangle Inst, Res Triangle Pk, NC 27709 USA. [Burke, Donald S.] Univ Pittsburgh, Grad Sch Publ Hlth, Pittsburgh, PA 15261 USA. [Eubank, Stephen; Lewis, Bryan; Vullikanti, Anil; Beckman, Richard; Barrett, Chris] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. RP Halloran, ME (reprint author), Univ Washington, Sch Publ Hlth & Community Med, Dept Biostat, Seattle, WA 98195 USA. EM betz@u.washington.edu RI Ferguson, Neil/B-8578-2008; Eubank, Stephen/D-7497-2011; Fraser, Christophe/A-8109-2008; OI Ferguson, Neil/0000-0002-1154-8093; Eubank, Stephen/0000-0002-7177-309X; Fraser, Christophe/0000-0003-2399-9657; /0000-0002-5704-8094 FU Medical Research Council [G0600719]; NIGMS NIH HHS [U01 GM070694, U01 GM070698, U01 GM070708, U01 GM070749, U01-GM070694, U01-GM070698, U01-GM070708, U01-GM070749] NR 17 TC 262 Z9 265 U1 4 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 25 PY 2008 VL 105 IS 12 BP 4639 EP 4644 DI 10.1073/pnas.0706849105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 285JI UT WOS:000254772700021 PM 18332436 ER PT J AU Bindu, R Maiti, K Rawat, R Khalid, S AF Bindu, R. Maiti, Kalobaran Rawat, R. Khalid, S. TI Electronic and structural transition in La(0.2)Sr(0.8)MnO(3) SO APPLIED PHYSICS LETTERS LA English DT Article ID MANGANITES AB We investigate the interplay between the electronic and structural transitions in La(0.2)Sr(0.8)MnO(3). The transport and specific heat measurements exhibit unusual evolution and the signature of a first order phase transition at around 265 K. Mn K-edge extended x-ray absorption fine structure (EXAFS) results reveal distortion in the MnO(6) octahedrons, even in the cubic phase, and a remarkable evolution of the distortion across the phase transition. These results manifest the importance of fluctuations in Mn 3d orbital occupancy on their electronic properties, which may help in understanding the orbital and spin ordering proposed in these systems. (c) 2008 American Institute of Physics. C1 [Bindu, R.; Maiti, Kalobaran] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India. [Rawat, R.] UGC DAE Consortium Sci Res, Indore 452017, India. [Khalid, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bindu, R (reprint author), Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM kbmaiti@tifr.res.in OI Rawat, Rajeev/0000-0003-3120-3276 NR 16 TC 8 Z9 8 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 24 PY 2008 VL 92 IS 12 AR 121906 DI 10.1063/1.2898885 PG 3 WC Physics, Applied SC Physics GA 281PJ UT WOS:000254510300021 ER PT J AU Bonanno, PL O'Malley, SM Sirenko, AA Kazimirov, A Cai, ZH Wunderer, T Bruckner, P Scholz, F AF Bonanno, P. L. O'Malley, S. M. Sirenko, A. A. Kazimirov, A. Cai, Z. -H. Wunderer, T. Brueckner, P. Scholz, F. TI Intrafacet migration effects in InGaN/GaN structures grown on triangular GaN ridges studied by submicron beam x-ray diffraction SO APPLIED PHYSICS LETTERS LA English DT Article ID HETEROSTRUCTURES; TILT AB Synchrotron radiation has been utilized for x-ray diffraction and reciprocal space mapping of InGaN/GaN multiple-quantum-well (MQW) structures grown on the sidewalls of 10-mu m-wide triangular GaN ridges with {1-1.1} facets. Samples were produced by lateral overgrowth through a patterned dielectric mask by using metal-organic vapor-phase epitaxy. Global MQW strain, period, and the tilt of the (00.1) crystallographic planes have been measured across the sidewall facets using a 240 nm x-ray beam. Results of this study are interpreted in terms of suppressed intrafacet migration of In and Ga precursors during the MQW growth. (c) 2008 American Institute of Physics. C1 [Bonanno, P. L.; O'Malley, S. M.; Sirenko, A. A.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Kazimirov, A.] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [Cai, Z. -H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Wunderer, T.; Brueckner, P.; Scholz, F.] Univ Ulm, Inst Optoelect, D-89081 Ulm, Germany. RP Bonanno, PL (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. EM plb2@njit.edu NR 13 TC 6 Z9 6 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 24 PY 2008 VL 92 IS 12 AR 123106 DI 10.1063/1.2901142 PG 3 WC Physics, Applied SC Physics GA 281PJ UT WOS:000254510300077 ER PT J AU Comstock, MJ Levy, N Cho, J Berbil-Bautista, L Crommie, MF Poulsen, DA Frechet, JMJ AF Comstock, Matthew J. Levy, Niv Cho, Jongweon Berbil-Bautista, Luis Crommie, Michael F. Poulsen, Daniel A. Frechet, Jean M. J. TI Measuring reversible photomechanical switching rates for a molecule at a surface SO APPLIED PHYSICS LETTERS LA English DT Article ID AZOBENZENE AB We have used single-molecule-resolved scanning tunneling microscopy to measure the photomechanical switching rates of azobenzene-derived molecules at a gold surface during exposure to UV and visible light. This enables the direct determination of both the forward and reverse photoswitching cross sections for surface-mounted molecules at different wavelengths. In a dramatic departure from molecular behavior in solution-based environments, visible light does not efficiently reverse the reaction for azobenzene-derived molecules at a gold surface. (c) 2008 American Institute of Physics. C1 [Comstock, Matthew J.; Levy, Niv; Cho, Jongweon; Berbil-Bautista, Luis; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Comstock, Matthew J.; Levy, Niv; Cho, Jongweon; Berbil-Bautista, Luis; Crommie, Michael F.; Poulsen, Daniel A.; Frechet, Jean M. J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Poulsen, Daniel A.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Crommie, MF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM crommie@berkeley.edu RI Cho, Jongweon/F-3704-2011; OI Frechet, Jean /0000-0001-6419-0163 NR 11 TC 38 Z9 38 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 24 PY 2008 VL 92 IS 12 AR 123107 DI 10.1063/1.2901877 PG 3 WC Physics, Applied SC Physics GA 281PJ UT WOS:000254510300078 ER PT J AU Hoa, NTQ Lee, Z Kang, SH Radmilovic, V Kim, ET AF Hoa, Nguyen Thi Quynh Lee, Zonghoon Kang, Seung-Hee Radmilovic, Velimir Kim, Eui-Tae TI Synthesis and ferromagnetism of Co-doped TiO(2-delta) nanobelts by metallorganic chemical vapor deposition SO APPLIED PHYSICS LETTERS LA English DT Article ID ROOM-TEMPERATURE FERROMAGNETISM; TI1-XCOXO2 AB Ti(1-x)Co(x)O(2-delta) nanobelts were synthesized without using any metal catalysts by metallorganic chemical vapor deposition. The nanobelts consisted of similar to 10-20 nm nanocrystallites, which were dominantly rutile structure. The Ti(0.986)Co(0.014)O(2-delta) nanobelt sample showed a magnetic anisotropy with a high coercive field value (similar to 500 Oe) at room temperature, significantly affected by intrinsic effect. In contrast, the Ti(0.982)Co(0.018)O(2-delta) nanobelt sample revealed isotropic magnetic characteristics due to enhanced Co clustering. A few or several Co clusters per nanobelt were typically observed even in the lightly Co-doped Ti(0.986)Co(0.014)O(2-delta) nanobelts because of the very thin thickness (similar to 20 nm) and high specific surface area of nanobelts. (c) 2008 American Institute of Physics. C1 [Hoa, Nguyen Thi Quynh; Kang, Seung-Hee; Kim, Eui-Tae] Chungnam Natl Univ, Div Nano Engn, Taejon 305764, South Korea. [Lee, Zonghoon; Radmilovic, Velimir] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Hoa, NTQ (reprint author), Chungnam Natl Univ, Div Nano Engn, Daeduk Sci Town, Taejon 305764, South Korea. EM etkim@cnu.ac.kr RI Lee, Zonghoon/G-1474-2011 OI Lee, Zonghoon/0000-0003-3246-4072 NR 13 TC 6 Z9 6 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 24 PY 2008 VL 92 IS 12 AR 122508 DI 10.1063/1.2904648 PG 3 WC Physics, Applied SC Physics GA 281PJ UT WOS:000254510300060 ER PT J AU Meyer, JC Girit, CO Crommie, MF Zettl, A AF Meyer, Jannik C. Girit, C. O. Crommie, M. F. Zettl, A. TI Hydrocarbon lithography on graphene membranes SO APPLIED PHYSICS LETTERS LA English DT Article ID BEAM-INDUCED DEPOSITION; CHEMICAL-VAPOR-DEPOSITION; RESOLUTION LIMIT; CARBON NANOTUBES; ROOM-TEMPERATURE; ELECTRON; NANOSTRUCTURES; FABRICATION; FILMS; GAS AB We present a simple and efficient way to obtain freestanding graphene membranes. On these membranes, we demonstrate that electron-beam induced deposition of carbon can be used to obtain arbitrary patterns with a nanometer-scale resolution. In the case of a periodic grating, we obtain a half-pitch of 2.5 nm. Electron-beam induced deposition on graphene might be used to create nanometer-scale doping patterns, diffraction gratings, or etch masks in this novel electronic material. (c) 2008 American Institute of Physics. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Meyer, JC (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM email@jannikmeyer.de RI Meyer, Jannik/H-8541-2012; Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016 OI Meyer, Jannik/0000-0003-4023-0778; Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X NR 32 TC 175 Z9 175 U1 6 U2 73 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 24 PY 2008 VL 92 IS 12 AR 123110 DI 10.1063/1.2901147 PG 3 WC Physics, Applied SC Physics GA 281PJ UT WOS:000254510300081 ER PT J AU Ophus, C Fitzpatrick, NN Lee, Z Luber, E Harrower, C Westra, K Dahmen, U Radmilovic, V Evoy, S Mitlin, D AF Ophus, C. Fitzpatrick, N. Nelson Lee, Z. Luber, E. Harrower, C. Westra, K. Dahmen, U. Radmilovic, V. Evoy, S. Mitlin, D. TI Resonance properties and microstructure of ultracompliant metallic nanoelectromechanical systems resonators synthesized from Al-32 at. % Mo amorphous-nanocrystalline metallic composites SO APPLIED PHYSICS LETTERS LA English DT Article ID TEMPERATURE; CANTILEVERS; GLASSES; ALUMINA AB This study details the resonance properties of 20 nm thick nanoelectromechanical system scale cantilevers fabricated from a metallic Al-32 at. % Mo nanocomposite. The advantage of the Al-32 at. % Mo alloy is that its strength and near-atomic surface smoothness enable fabrication of single-anchored metallic cantilevers with extreme length-to-thickness ratios, as high as 400: 1. This yields uniquely compliant structures with exquisite force sensitivity. For example, an 8 mu m long, 20 nm thick Al-32 at. % Mo device has a spring constant of K congruent to 280 mu N/m. We show through transmission electron microscope analysis and continuum modeling that the relevant damping mechanisms are related to the device microstructure. (c) 2008 American Institute of Physics. C1 [Lee, Z.; Dahmen, U.; Radmilovic, V.] Lawrence Berkeley Natl Lab, NCEM, Berkeley, CA 94720 USA. [Westra, K.; Evoy, S.] Univ Alberta, Edmonton, AB T6G 2V4, Canada. [Ophus, C.; Fitzpatrick, N. Nelson; Luber, E.; Harrower, C.; Evoy, S.; Mitlin, D.] Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada. [Ophus, C.; Luber, E.; Harrower, C.; Mitlin, D.] Univ Alberta, Edmonton, AB T6G 2G6, Canada. RP Radmilovic, V (reprint author), Lawrence Berkeley Natl Lab, NCEM, Berkeley, CA 94720 USA. EM VRRadmilovic@lbl.gov; dmitlin@ulaberta.ca RI Lee, Zonghoon/G-1474-2011; Ophus, Colin/H-2350-2013; Mitlin , David /M-5328-2016; OI Lee, Zonghoon/0000-0003-3246-4072; Mitlin , David /0000-0002-7556-3575; Evoy, Stephane/0000-0003-4587-3502; Luber, Erik/0000-0003-1623-0102; Ophus, Colin/0000-0003-2348-8558 NR 17 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 24 PY 2008 VL 92 IS 12 AR 123108 DI 10.1063/1.2841849 PG 3 WC Physics, Applied SC Physics GA 281PJ UT WOS:000254510300079 ER PT J AU Zhang, JX Wu, R Choudhury, S Li, YL Hu, SY Chen, LQ AF Zhang, J. X. Wu, R. Choudhury, S. Li, Y. L. Hu, S. Y. Chen, L. Q. TI Three-dimensional phase-field simulation of domain structures in ferroelectric islands SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; PBTIO3; MODEL; SIZE AB A three-dimensional phase-field model was developed for studying domain structures in ferroelectric islands attached onto a substrate. It simultaneously takes into account the long-range electric and elastic interactions, substrate constraint, as well as the stress relaxation caused by the surfaces of an island. The phase-field simulations demonstrated that the domain structures of ferroelectric islands could be dramatically different from those of continuous thin films due to the change of stress state. The stress distribution inside islands is highly dependent on the aspect ratio of the islands. It provides us an effective way for engineering the domain structures of ferroelectric materials. (C) 2008 American Institute of Physics. C1 [Zhang, J. X.; Wu, R.; Choudhury, S.; Li, Y. L.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Hu, S. Y.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, JX (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM jzz108@psu.edu RI Choudhury, Samrat/B-4115-2009; Zhang, Jingxian/B-2253-2010; Chen, LongQing/I-7536-2012; OI Chen, LongQing/0000-0003-3359-3781; HU, Shenyang/0000-0002-7187-3082 NR 24 TC 15 Z9 15 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 24 PY 2008 VL 92 IS 12 AR 122906 DI 10.1063/1.2903107 PG 3 WC Physics, Applied SC Physics GA 281PJ UT WOS:000254510300066 ER PT J AU Karev, GP Korotkov, VN AF Karev, Georgy P. Korotkov, Vladimir N. TI Ergodicity and successions in Prioksko-Terrasnyi biosphere reserve SO ECOLOGICAL MODELLING LA English DT Article; Proceedings Paper CT 5th European Conference on Ecological Modelling CY SEP 19-23, 2005 CL Pushchino, RUSSIA DE forest ecosystem; succession model; ergodic theorem ID FOREST; MODELS; MANAGEMENT AB The "ergodic theorems in biology" were proved earlier within the structural model of succession. The results obtained can serve as a theoretical basis in numerical processing of data on ecological monitoring of undisturbed forests lands. A simple theoretical approach to estimate the deviation of the current state of forest ecosystem from its steady state is suggested. The method is applied to data from the Prioksko-Terrasny Reserve. Published by Elsevier B.V. C1 [Karev, Georgy P.] ORISE, Bethesda, MD 20894 USA. [Korotkov, Vladimir N.] All Russian Res Inst Silviculture & Mech Forestry, Moscow 141200, Russia. RP Karev, GP (reprint author), ORISE, 8600 Rockville Pike, Bethesda, MD 20894 USA. EM gkarev@hotmail.com; korotkovv@list.ru RI Korotkov, Vladimir/E-4849-2014 OI Korotkov, Vladimir/0000-0002-1367-2303 NR 15 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 J9 ECOL MODEL JI Ecol. Model. PD MAR 24 PY 2008 VL 212 IS 1-2 BP 116 EP 121 DI 10.1016/j.ecolmodel.2007.10.015 PG 6 WC Ecology SC Environmental Sciences & Ecology GA 277PM UT WOS:000254227100015 ER PT J AU Esswein, AJ Veige, AS Piccoli, PMB Schultz, AJ Nocera, DG AF Esswein, Arthur J. Veige, Adam S. Piccoli, Paula M. B. Schultz, Arthur J. Nocera, Daniel G. TI Intramolecular C-H bond activation and redox isomerization across two-electron mixed valence diiridium cores SO ORGANOMETALLICS LA English DT Article ID COOPERATIVE BIMETALLIC REACTIVITY; NEUTRON-DIFFRACTION STRUCTURE; OXIDATIVE ADDITION-REACTIONS; REDUCTIVE-ELIMINATION; CARBON-HYDROGEN; MOLECULAR-STRUCTURE; SIGMA-COMPLEX; BENZENE; HYDRIDE; IRIDIUM AB Metal-metal cooperativity enables the reaction of carbon-based substrates at diiridium two-electron mixed valence centers. Arylation of Ir-2(0,II)(tfepma)(3)Cl-2 (1) (tfepma = bis[(bistrifluoroethoxy)phosphino]methylamine) with RMgBr (R = C6H5 and C6D5) is followed by C-H bond activation to furnish the bridging benzyne complex Ir-2(II,II)(tfepma)(3)(mu-C6H4)(C6H5)H (2), as the kinetic product. At ambient temperature, 2 isomerizes to Ir-2(II,III)(tfepma)(3)(mu-C6H4)(C6H5)H (3) (k(obs) = 9.57 +/- 0.10 x 10(-5) s(-1) at 31.8 degrees C, Delta H-double dagger = 21.7 +/- 0.3 kcal/mol, Delta S-double dagger = -7.4 +/- 0.9 eu), in which the benzyne moiety is conserved and the Ir-III center is ligated by terminal hydride and phenyl groups. The same reaction course is observed for arylation of 1 with C6D5MgBr to produce 2-d(10) and 3-d(10) accompanied by an inverse isotope effect, k(h)/k(d) = 0.44 (k(obs) = 2.17 +/- 0.10 x 10(-4) s(-1) in C6D6 solution at 31.8 degrees C, Delta H-double dagger = 24.9 +/- 0.7 kcal/mol, Delta S-double dagger = -6.4 +/- 2.4 eu). 2 reacts swiftly with hydrogen to provide Ir2(II,II)(tfepma)(3)H-4 as both the syn and anti isomers (4-syn and 4-anti, respectively). The hydrides of 4-syn were directly located by neutron diffraction analysis. X-ray crystallographic examination of 2, 2-d(10), 3, and 4-syn indicates that cooperative reactivity at the bimetallic diiridium core is facilitated by the ability of the two-electron mixed valence framework to accommodate the oxidation state changes and ligand rearrangements attendant to the reaction of the substrate. C1 [Esswein, Arthur J.; Nocera, Daniel G.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Piccoli, Paula M. B.; Schultz, Arthur J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Nocera, DG (reprint author), MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM nocera@mit.edu NR 61 TC 24 Z9 24 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD MAR 24 PY 2008 VL 27 IS 6 BP 1073 EP 1083 DI 10.1021/om7007748 PG 11 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 275PV UT WOS:000254085000012 ER PT J AU Choi, MG Ho, TC Angelici, RJ AF Choi, Moon-Gun Ho, Teh C. Angelici, Robert J. TI Arene binding affinities in [CpRu(eta(6)-arene)](+) complexes: Models for the adsorption of arenes on hydrodesulfurization catalysts SO ORGANOMETALLICS LA English DT Article ID SULFUR-COORDINATED THIOPHENES; ULTRA-DEEP DESULFURIZATION; NITROGEN-COMPOUNDS; DISPLACEMENT-REACTIONS; SELECTIVE ADSORPTION; MOLECULAR STRUCTURE; CRYSTAL-STRUCTURE; LIGAND-EXCHANGE; METAL-COMPLEXES; DIESEL FUELS AB Product/reactant ratios (Y) were determined for the reactions CpRu(eta(6)-DBT)(+) + L reversible arrow CpRu(eta(6)-L)(+) + DBT (where DBT is dibenzothiophene and L is a homo- or heterocyclic arene), which were conducted under UV photolysis conditions. In the photostationary state, the Y values for the different arenes decrease in the following order: mesitylene (17) > toluene (13) > indole (9.1) > carbazole (6.7) > benzene (5.9) > fluorene (5.1) > biphenyl (3.9) > DBT (1.0) > phenanthrene (0.65) > naphthalene (0.35). In general, alkyl-substituted arenes have a higher binding affinity than the parent arene, except for tert-butyl groups, which decrease the Y values. These trends in eta(6)-arene binding to CpRu+ provide a basis for understanding competitive adsorption of arenes on metal sites of hydrotreating catalysts. Such arene components in petroleum feedstocks reduce the rates of hydrodesulfurization of dibenzothiophenes. C1 [Choi, Moon-Gun] Yonsei Univ, Dept Chem, Seoul 120749, South Korea. [Choi, Moon-Gun] Yonsei Univ, Ctr Bioact Mol Hybrids, Seoul 120749, South Korea. [Ho, Teh C.] ExxonMobil Res & Engn Co, Corp Strateg Res Labs, Annandale, NJ 08801 USA. [Angelici, Robert J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Angelici, Robert J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Choi, MG (reprint author), Yonsei Univ, Dept Chem, Seoul 120749, South Korea. EM choim@yonsei.ac.kr; angelici@iastate.edu NR 79 TC 10 Z9 10 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD MAR 24 PY 2008 VL 27 IS 6 BP 1098 EP 1105 DI 10.1021/om700773j PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 275PV UT WOS:000254085000015 ER PT J AU Bazinet, P Tilley, TD AF Bazinet, Patrick Tilley, T. Don TI Octa- and nonamethylfluorenyl complexes of Zr(II), Zr(IV), and Hf(IV). Investigation of steric and electronic effects SO ORGANOMETALLICS LA English DT Article ID OLEFIN POLYMERIZATION CATALYSTS; PERMETHYLINDENYL COMPLEXES; MOLECULAR-STRUCTURES; FLUORENYL COMPLEXES; ORGANOMETALLIC COMPLEXES; METALLOCENE COMPLEXES; ZIRCONOCENE COMPLEXES; GROUP-4 METALLOCENES; CRYSTAL-STRUCTURES; RING SUBSTITUENTS AB The lithium salts of 1, 2,3,4,5,6,7,8 -octamethyl fluorenyl (Flu '') and 1,2,3,4,5,6,7,8,9-nonamethylfluorenyI (Flu*) were reacted with Zr and Hf half-sandwich complexes to generate mixed-ligand-metallocenes Cp '' Flu '' ZrCl(2) (1), Cp '' Flu*ZrCl(2) (2), and Cp*Flu*HfCl(2) (3) (Cp '' = 1,3-(SiMe(3))(2)C(5)H(3), CP* = C(5)Me(5)). Reaction of the metallocene dichlorides with MeLi yielded the dimethyl derivatives Cp '' Flu*ZrMe(2) (4) and Cp*Flu*HfMe(2) (5). Reduction of the zirconocene dichlorides in the presence of CO gas yielded the dicarbonyl derivatives Cp '' Flu '' Zr(CO)(2) (6) and Cp '' Flu*Zr(CO)(2) (7), which represent the first examples of zirconocene dicarbonyls containing a fluorenyl ligand derivative. Structural characterization of the zirconocene dichloride 2 and the dicarbonyls 6 and 7 revealed that the methylated fluorenyl ligands adopt an eta(5) coordination and display a twisted tricyclic core in each case. A spectroscopic study of a small series of zirconocene dicarbonyl analogues indicates that the methylated fluorenyl ligands are strong electron donors and similar in this regard to heptamethylindenyl (Ind*) and Cp*. C1 [Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Ernest Orlando Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu NR 45 TC 10 Z9 10 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD MAR 24 PY 2008 VL 27 IS 6 BP 1267 EP 1274 DI 10.1021/om701133e PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 275PV UT WOS:000254085000037 ER PT J AU Masuda, JD Jantunen, KC Scott, BL Kiplinger, JL AF Masuda, Jason D. Jantunen, Kimberly C. Scott, Brian L. Kiplinger, Jaqueline L. TI Synthesis, characterization, and reactivity of the thermally stable lutetium tris(alkyl) complex ((t)Bu(2)bpy)Lu(CH2SiMe3)(3) SO ORGANOMETALLICS LA English DT Article ID EARTH-METAL COMPLEXES; ACTINIDE PHOSPHINIDENE COMPLEXES; RAY CRYSTAL-STRUCTURE; STRUCTURAL-CHARACTERIZATION; MOLECULAR-STRUCTURE; IMIDO COMPLEXES; ALKYL COMPLEXES; PENTAVALENT-URANYL; HYDRIDE COMPLEXES; ORGANOLANTHANIDE COMPLEXES AB 4,4'-Di-tert-butyl-2,2'-bipyridyI ((t)Bu(2)bpy) stabilizes the thermally sensitive [Lu(CH2SiMe3)31 unit, giving the isolable Iutetium(III) (trimethylsilyl)methyl complex ((t)Bu(2)bpy)Lu(CH2SiMe3)(3) (4). This tris(alkyl) complex does not undergo alkane elimination, and it readily reacts with Ph3COH, H2N-2,6-Pr-i(2)-C6H3, H2N-2,4,6-Bu-t(3)-C6H2, and N,N-dicyclohexylcai-bodiimide (DCHCDI) to afford a variety of Lu(III) tris(alkoxide), tris(amide), mono(amide) bis(alkyl), and amidinate bis(alkyl) compounds. Reaction of the amide bis(alkyl) complex ((t)Bu(2)bpy)Lu(NH-2,4,6-Bu-t(3)-C6H2)(CH2SiMe3)(2) (7) with triphenylphosphine oxide gives (Ph3P=0)(2)Lu(NH-2.4,6-Bu-t(3)-C6H2)(CH2SiMe3)(2) (9), showing that the bidentate (t)Bu(2)bpy ligand can be displaced. C1 [Masuda, Jason D.; Jantunen, Kimberly C.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stop J514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Masuda, Jason/0000-0002-6195-9691 NR 74 TC 25 Z9 25 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD MAR 24 PY 2008 VL 27 IS 6 BP 1299 EP 1304 DI 10.1021/om701159d PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 275PV UT WOS:000254085000040 ER PT J AU Burrell, AK McCleskey, TM Jia, QX AF Burrell, Anthony K. McCleskey, T. Mark Jia, Q. X. TI Polymer assisted deposition SO CHEMICAL COMMUNICATIONS LA English DT Article ID CHALCOGENIDE THIN-FILMS; IONIC-LAYER ADSORPTION; DIELECTRIC-PROPERTIES; CHEMICAL-DEPOSITION; TEMPERATURE; OXIDES AB Polymer assisted deposition (PAD) is a chemical solution route to high quality thin films of metal oxides. This technique employs metal ions coordinated to polymers as the film precursor. The use of polymer bound metals has several advantages. The polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of uniform metal oxide films. The nature of the metal oxide deposition is dominated by bottom-up growth, leading to ready formation of crack-free epitaxial metal oxides and the ability to coat nanofeatured substrates in a conformal fashion. C1 [Burrell, Anthony K.; McCleskey, T. Mark; Jia, Q. X.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Burrell, AK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM Burrell@LANL.GOV RI McCleskey, Thomas/J-4772-2012; Jia, Q. X./C-5194-2008; OI Mccleskey, Thomas/0000-0003-3750-3245 NR 24 TC 48 Z9 50 U1 6 U2 62 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD MAR 21 PY 2008 IS 11 BP 1271 EP 1277 DI 10.1039/b712910f PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 279KA UT WOS:000254352900001 PM 18389105 ER PT J AU Lai, P Hu, MZ Shi, D Blom, D AF Lai, Peng Hu, Michael Z. Shi, Donglu Blom, Douglas TI STEM characterization on silica nanowires with new mesopore structures by space-confined self-assembly within nano-scale channels SO CHEMICAL COMMUNICATIONS LA English DT Article ID MEMBRANES; ARRAYS AB "Critical" channel diameters were found (below which space confinement takes effect, leading to more uniform and ordered mesopore structures) in the study of evaporation-induced co-assembly of triblock-copolymer (P123) and silica molecular precursors (TEOS, tetraethyl orthosilicate) by employing channels in anodized aluminum oxide (AAO, 13-200 nm channel diameter) and in track-etched polycarbonate (EPC, 10-80 nm channel diameter) and for the first time we have observed a new mesopore structure (i.e., packed hollow spheres) in silica nanowires formed in AAO channels with diameters from 30 to 80 nm. C1 [Lai, Peng; Hu, Michael Z.; Blom, Douglas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lai, Peng; Shi, Donglu] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. RP Hu, MZ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hum1@ornl.gov OI Hu, Michael/0000-0001-8461-9684 NR 13 TC 26 Z9 26 U1 0 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD MAR 21 PY 2008 IS 11 BP 1338 EP 1340 DI 10.1039/b717461f PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 279KA UT WOS:000254352900022 PM 18389126 ER PT J AU Deng, YQ Roux, B AF Deng, Yuqing Roux, Benoit TI Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID STOCHASTIC BOUNDARY-CONDITIONS; REPLICA-EXCHANGE METHOD; STANDARD FREE-ENERGY; COMPUTER-SIMULATIONS; WATER-MOLECULES; EFFICIENT GENERATION; NONPOLAR CAVITIES; PROTEIN-BINDING; ATOMIC CHARGES; AM1-BCC MODEL C1 [Deng, Yuqing; Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, Chicago, IL 60637 USA. RP Deng, YQ (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM roux@chicago.edu NR 57 TC 61 Z9 62 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 21 PY 2008 VL 128 IS 11 AR 115103 DI 10.1063/1.2842080 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 278NB UT WOS:000254292500074 PM 18361618 ER PT J AU Goncher, SJ Moore, DT Sveum, NE Neumark, DM AF Goncher, Scott J. Moore, David T. Sveum, Niels E. Neumark, Daniel M. TI Photofragment translational spectroscopy of propargyl radicals at 248 nm SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-ABSORPTION-SPECTRUM; CROSS-SECTIONS; AB-INITIO; PHOTOELECTRON-SPECTRUM; IONIZATION-POTENTIALS; MOLECULAR-BEAM; C3H3 RADICALS; GROUND-STATE; CARBON-ATOMS; ALLENE AB The photodissociation of propargyl radical, C(3)H(3), and its perdeuterated isotopolog was investigated using photofragment translational spectroscopy. Propargyl radicals were produced by 193 nm photolysis of allene entrained in a molecular beam expansion and then photodissociated at 248 nm. Photofragment time-of-flight spectra were measured at a series of laboratory angles using electron impact ionization coupled to a mass spectrometer. Data for ion masses corresponding to C(3)H(2)(+), C(3)H(+), C(3)(+), and the analogous deuterated species show that both H and H(2) loss occur. The translational energy distributions for these processes have average values < E(T)>=5.7 and 15.3 kcal/mol, respectively, and are consistent with dissociation on the ground state following internal conversion, with no exit barrier for H loss but a tight transition state for H(2) loss. Our translational energy distribution for H atom loss is similar to that in a previous work on propargyl in which the H atom, rather than the heavy fragment, was detected. The branching ratio for H loss/H(2) loss was determined to be 97.6/2.4 +/- 1.2, in good agreement with previous calculations. (c) 2008 American Institute of Physics. C1 [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Sveum, Niels E.] Intel Corp, Hillsboro, OR 97124 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Moore, David/A-7393-2008; Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 NR 44 TC 14 Z9 14 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 21 PY 2008 VL 128 IS 11 AR 114303 DI 10.1063/1.2840350 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 278NB UT WOS:000254292500023 PM 18361567 ER PT J AU Harding, ME Vazquez, J Ruscic, B Wilson, AK Gauss, J Stanton, JF AF Harding, Michael E. Vazquez, Juana Ruscic, Branko Wilson, Angela K. Gauss, Juergen Stanton, John F. TI High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; COUPLED-CLUSTER SINGLE; GAUSSIAN-BASIS SETS; CONSISTENT BASIS-SETS; WAVE-FUNCTIONS; COMPUTATIONAL THERMOCHEMISTRY; ELECTRONIC-STRUCTURE; SEXTUPLE ZETA; TABLES; WATER AB Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of < 1 kJ mol(-1) theoretical thermochemistry. (c) 2008 American Institute of Physics. C1 [Harding, Michael E.; Vazquez, Juana; Gauss, Juergen] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55099 Mainz, Germany. [Vazquez, Juana; Stanton, John F.] Univ Texas Austin, Inst Theoret Chem, Dept Chem & Biochem, Austin, TX 78712 USA. [Ruscic, Branko] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wilson, Angela K.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. RP Harding, ME (reprint author), Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55099 Mainz, Germany. EM jfstanton@mail.utexas.edu RI Harding, Michael/B-3366-2009; Vazquez, Juana/C-5602-2009; Ruscic, Branko/A-8716-2008 OI Harding, Michael/0000-0002-3633-493X; Ruscic, Branko/0000-0002-4372-6990 NR 51 TC 190 Z9 190 U1 3 U2 55 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 21 PY 2008 VL 128 IS 11 AR 114111 DI 10.1063/1.2835612 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 278NB UT WOS:000254292500014 ER PT J AU Wang, XB Matheis, K Ioffe, IN Goryunkov, AA Yang, J Kappes, MM Wang, LS AF Wang, Xue-Bin Matheis, Katerina Ioffe, Ilya N. Goryunkov, Alexey A. Yang, Jie Kappes, Manfred M. Wang, Lai-Sheng TI High resolution and low-temperature photoelectron spectroscopy of an oxygen-linked fullerene dimer dianion: C(120)O(2-) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURES; MOLECULAR-SYSTEMS; C-60; SUPERCONDUCTIVITY; IONS; COULOMB; ANIONS; PHOTODETACHMENT; TRANSITIONS; STABILITY AB C(120)O comprises two C(60) cages linked by a furan ring and is formed by reactions of C(60)O and C(60). We have produced doubly charged anions of this fullerene dimer (C(120)O(2-)) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several photon energies. The second electron affinity of C(120)O was measured to be 1.02 +/- 0.03 eV and the intramolecular Coulomb repulsion was estimated to be about 0.8 eV in C(120)O(2-) on the basis of the observed repulsive Coulomb barrier. A low-lying excited state ((2)B(1)) was also observed for C(120)O(-) at 0.09 eV above the ground state ((2)A(1)). The C(120)O(2-) dianion can be viewed as a single electron on each C(60) ball very weakly coupled. Theoretical calculations showed that the singlet and triplet states of C(120)O(2-) are nearly degenerate and can both be present in the experiment. The computed electron binding energies and excitation energies, as well as Franck-Condon factors, are used to help interpret the photoelectron spectra. A C-C bond-cleaved isomer, C(60)-O-C(60)(2-), was also observed with a higher electron binding energy of 1.54 eV. (c) 2008 American Institute of Physics. C1 [Wang, Xue-Bin; Yang, Jie; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin; Yang, Jie; Kappes, Manfred M.; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Matheis, Katerina; Kappes, Manfred M.] Univ Karlsruhe, Inst Phys Chem, D-76128 Karlsruhe, Germany. [Ioffe, Ilya N.; Goryunkov, Alexey A.] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119992, Russia. RP Wang, XB (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ioffe@thermo.chem.msu.ru; manfred.kappes@chemie.uni-karlsruhe.de; ls.wang@pnl.gov RI Goryunkov, Alexey/K-7653-2014; Ioffe, Ilya/D-6319-2015 OI Goryunkov, Alexey/0000-0003-4460-5370; NR 36 TC 11 Z9 11 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 21 PY 2008 VL 128 IS 11 AR 114307 DI 10.1063/1.2889384 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 278NB UT WOS:000254292500027 PM 18361571 ER PT J AU Bogen, KT Gouveia, FJ AF Bogen, K. T. Gouveia, F. J. TI Impact of spatiotemporal fluctuations in airborne chemical concentration on toxic hazard assessment SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE acute toxicity; atmospheric dispersion; hydrogen cyanide; modeling; risk ID PROBABILITY DENSITY-FUNCTION; ATMOSPHERIC SURFACE-LAYER; DISPERSING PLUME; FIELD EXPERIMENT; LETHAL TOXICITY; MAJOR HAZARDS; SIMPLE-MODEL; DIFFUSION; EXPOSURE; CHLORINE AB Models widely used to assess atmospheric chemical-dispersion hazards for emergency response rely on acute exposure guideline level (AEGL) or similar concentration guidelines to map geographic areas potentially affected by corresponding levels of toxic severity. By ignoring substantial, random variability in concentration over time and space, such standard methods routinely underestimate the size of potentially affected areas. Underestimation due to temporal fluctuation - applicable to chemicals like hydrogen cyanide (HCN) for which peak concentrations best predict acute toxicity - becomes magnified by spatial fluctuation, defined as heterogeneity in average concentration at each location relative to standard-method predictions. The combined impact of spatiotemporal fluctuation on size of assessed threat areas was studied using a statistical-simulation assessment method calibrated to Joint Urban 2003 Oklahoma City field-tracer data. For a hypothetical 60-min urban release scenario involving HCN gas, the stochastic method predicted that lethal/severe effects could occur in an area 18 or 25 times larger than was predicted by standard methods targeted to a 60-min AEGL, assuming wind speeds >= 2.0 or <= 1.5 m/s, respectively. The underestimation doubled when the standard method was targeted to a 10-min AEGL. Further research and field data are needed for improved stochastic methods to assess spatiotemporal fluctuation effects. (c) 2007 Elsevier B.V. All rights reserved. C1 [Bogen, K. T.; Gouveia, F. J.] Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. RP Bogen, KT (reprint author), Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. EM kbogen@exponent.com NR 50 TC 9 Z9 9 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD MAR 21 PY 2008 VL 152 IS 1 BP 228 EP 240 DI 10.1016/j.jhazmat.2007.06.116 PG 13 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 283UB UT WOS:000254660900028 PM 17706864 ER PT J AU Chuang, WY AF Chuang, Wu-yen TI Topological twisted sigma model with H-flux revisited SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID MANIFOLDS AB In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. We show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the B-field. We then discuss the topological feature of the model. C1 [Chuang, Wu-yen] Stanford Univ, ITP, Stanford, CA 94305 USA. [Chuang, Wu-yen] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Chuang, WY (reprint author), Stanford Univ, ITP, Stanford, CA 94305 USA. EM wychuang@stanford.edu OI Chuang, Wu-Yen/0000-0003-3230-3252 NR 17 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD MAR 21 PY 2008 VL 41 IS 11 AR 115402 DI 10.1088/1751-8113/41/11/115402 PG 11 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 276OU UT WOS:000254152700013 ER PT J AU Montag, C AF Montag, Christoph TI Beam-beam dynamics in an electron-ion collider with detector-integrated dipole SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE beam separation; detector-integrated dipole; emittance growth; electron ion collider AB To maximize luminosity in a collider, low-beta quadrupoles need to be installed as close as possible to the interaction point (IP), where beams are focussed to small spot sizes. In an asymmetric collider such as an asymmetric B-factory [An Asymmetric B Factory Based on PEP: Conceptual Design Report, SLAC-0372 [1]; KEKB B-Factory Design Report, KEK Report 95-7 [2]] or an electron-ion collider [Hera-A Proposal for a Large Electron Proton Colliding Beam Facility at DESY, DESY HERA 81-10 [3]; M. Farkhondeh, V. Ptitsyn (Eds.), eRHIC Zeroth Order Design Report, BNL Note C-A/AP/142; L. Merminga, Y. Derbenev, ELIC: an electron-light ion collider at CEBAF, ICFA Beam Dynamics Newsletter No. 30, 2003, p. 22; J.B. Dainton, M. Klein, P. Newman, E. Perez, F. Willeke, Deep Inelastic Electron-Nucleon Scattering at the LHC, DESY 06-006, and Cockcroft-06-04], beams of different energy are brought into collision at the IP. The energy difference requires separate focusing systems for the two beams. Placing regular separator dipoles between the IP and the focussing system either reduces the available space for the detector and therefore the detector acceptance or forces the low-beta quads to be placed further away from the IP, resulting in reduced luminosity. Combining the separation and focusing functions of the innermost elements by using off-center quadrupoles and/or additional dipole coils on superconducting low-beta quadrupoles ameliorates the problem somewhat. However, even in this case the separation occurs rather far away from the interaction point, leading to a large width of the synchrotron radiation fan generated by the deflection of the lower-energy electron or positron beam. To overcome these limitations in the eRHIC design, we have proposed integration of dipole coils in the (superconducting) detector solenoid [C. Montag, et al., Interaction region design for the electron-ion collider eRHIC, in: Proceedings of the PAC 2005, 2005], a concept that had originally been proposed for the Linear Collider detector solenoid [B. Parker, A. Seryi, Phys. Rev. ST Accel. Beams 8 (2005) 041001]. This results in a curved trajectory of the lower-energy electron beam across the interaction point, and therefore in a considerable transverse offset of the head and tail of the long ion bunches with respect to the (short) electron bunches. This paper examines beam dynamics issues arising from the collision of a long high-energy ion beam with a lower-energy electron beam on a trajectory curved by the detector-integrated dipole. (C) 2007 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Montag, C (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM montag@bnl.gov NR 12 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 21 PY 2008 VL 587 IS 2-3 BP 145 EP 150 DI 10.1016/j.nima.2007.12.014 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 292AK UT WOS:000255238600001 ER PT J AU Takahashi, N Shibata, K Sato, TJ Arai, M Mezei, F AF Takahashi, Nobuaki Shibata, Kaoru Sato, Taku J. Arai, Masatoshi Mezei, Ferenc TI A novel time-spatial-focusing momentum-correction analyzer for the near-backscattering spectrometer DIANA at J-PARC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE inelastic neutron scattering; backscattering; analyzer; time focusing; spatial focusing; momentum correction ID ISIS-PULSED-SOURCE; DIFFRACTION; PERFORMANCE; SCATTERING; IRIS AB We have developed a novel configuration concept of crystal chips for time-of-flight (TOF) crystal-analyzer neutron inelastic scattering spectrometers, which simultaneously achieve time-focusing, spatial-focusing and momentum-correcting abilities. This concept will be adopted for the planned TOF near-backscattering spectrometer, DIANA which has been proposed for construction at the Japan Proton Accelerator Research Complex (J-PARC). We will first discuss the new analyzer layout method satisfying both time- and spatial-focusing and momentum-correction concepts and then the focusing performances as evaluated by Monte-Carlo simulations and compared to the generally used energy-focusing analyzer configuration. (C) 2008 Elsevier B.V. All rights reserved. C1 [Takahashi, Nobuaki; Shibata, Kaoru; Arai, Masatoshi] Japan Atom Energy Agcy, J PARC Ctr, Naka Ku, Ibaraki 3191195, Japan. [Sato, Taku J.] Univ Tokyo, Inst Solid State Phys, Naka Ku, Ibaraki 3191106, Japan. [Mezei, Ferenc] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. [Mezei, Ferenc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Takahashi, N (reprint author), Japan Atom Energy Agcy, J PARC Ctr, Naka Ku, Shirakatashirane 2-4, Ibaraki 3191195, Japan. EM takahashi.nobuaki68@jaea.go.jp RI Sato, Taku/I-7664-2015 OI Sato, Taku/0000-0003-2511-4998 NR 14 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 21 PY 2008 VL 587 IS 2-3 BP 350 EP 362 DI 10.1016/j.nima.2008.01.070 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 292AK UT WOS:000255238600022 ER PT J AU Kangas, LJ Keller, PE Siciliano, ER Kouzes, RT Ely, JH AF Kangas, Lars J. Keller, Paul E. Siciliano, Eduard R. Kouzes, Richard T. Ely, James H. TI The use of artificial neural networks in PVT-based radiation portal monitors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE artificial neural network; portal monitor; naturally occurring radioactive material; NORM; special nuclear material; SNM; plastic scintillator; spectral analysis; radiation detection; border security; detection of illicit materials AB Polyvinyl toluene (PVT)-based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While such systems can provide good sensitivity for detecting the presence of radioactive materials, they have poor spectral resolution that limits their ability to identify the isotopic content of the source of radiation. Without use of spectral information, RPMs cannot distinguish innocent materials that contain low levels of normally occurring radioactive materials (NORM) from special nuclear materials of concern. Thus, to reduce the number of "nuisance" alarms produced in PVT-based RPMs by innocent materials, algorithms that analyze spectra from PVT detectors must be optimized to make use of the limited information contained in their energy spectra. This paper reports the first application of artificial neural networks (ANNs) in such an analysis. This work was performed as a feasibility study whose primary objective was to describe how an ANN-based alarm algorithm can be used to reduce the nuisance/false alarm probability while maintaining high-detection probabilities for radioactive sources of interest. The spectra used in this study were obtained from a limited set of actual PVT-based RPM data, and included cases where simulated spectra were inserted into the measured spectra. This paper also includes an analysis of spectral channel importance and shows evaluations of two methods used to reduce the initial set of energy spectra channels into smaller sets. Although not a comprehensive study, the results of this work show that it is possible to use ANNs successfully to discriminate NORM from other materials for realistic PVT-based RPM spectra. The algorithms described may also have potential application in the analysis of sodium iodide based RPM spectra. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kangas, Lars J.; Keller, Paul E.; Siciliano, Eduard R.; Kouzes, Richard T.; Ely, James H.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kouzes, RT (reprint author), Pacific NW Natl Lab, MS K7-22,POB 999, Richland, WA 99352 USA. EM rkouzes@pnl.gov NR 29 TC 20 Z9 20 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 21 PY 2008 VL 587 IS 2-3 BP 398 EP 412 DI 10.1016/j.nima.2008.01.065 PG 15 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 292AK UT WOS:000255238600026 ER PT J AU Shin, TJ Dierker, SB Smith, GC AF Shin, Tae Joo Dierker, Steven B. Smith, Graham C. TI Two-dimensional multiwire gas proportional detector for X-ray photon correlation spectroscopy of condensed matter SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE two-dimensional multiwire gas proportional detector; X-ray photon correlation spectroscopy (XPCS); speckle patterns ID POSITION RESOLUTION; SPATIAL-RESOLUTION; RADIATION; CHAMBERS; SPECKLE; DIFFRACTION; REGION AB Details of a two-dimensional (2-D) multiwire gas proportional detector for X-ray photon correlation spectroscopy (XPCS) of condensed matter are described. The characteristics of the gas proportional detector at 8 keV, 0.3 pC anode charge, and 3 bar (absolute) of Xe/10%CO2 are as follows: 8.5 x 10(-7) counts/s (100 x 100 mu m(2)) dark count rate, similar to mu s time resolution, similar to 48 and 73 mu m position resolution (FWHM) along and across the anode wire direction, respectively, and similar to 80% quantum efficiency. The effects of incident photon energy, anode charge (i.e., gain), gas drift depth, and gas pressure on position resolution are discussed. Static and dynamic speckle patterns, measured from disordered aerogel and polystyrene/polybutadiene blends by a partially coherent synchrotron X-ray source, demonstrate that a 2-D multiwire gas proportional detector is very suitable for the dynamic study of condensed matter with relaxation times in the order of mu s to 10(3) s and atomic length scale. (C) 2008 Elsevier B.V. All rights reserved. C1 [Shin, Tae Joo] Pohang Accelerator Lab, Kyungbuk 790784, South Korea. [Dierker, Steven B.; Smith, Graham C.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Shin, TJ (reprint author), Pohang Accelerator Lab, Kyungbuk 790784, South Korea. EM stj@postech.ac.kr RI Shin, Tae Joo/R-7434-2016 OI Shin, Tae Joo/0000-0002-1438-3298 NR 19 TC 1 Z9 1 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 21 PY 2008 VL 587 IS 2-3 BP 434 EP 440 DI 10.1016/j.nima.2008.01.085 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 292AK UT WOS:000255238600029 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Jechow, M Pavel, N Molina, AGY Antonelli, S Antonioli, P Bari, G Basile, M Bellagamba, L Bindi, M Boscherini, D Bruni, A Bruni, G Cifarelli, L Cindolo, F Contin, A Corradi, M De Pasquale, S Iacobucci, G Margotti, A Nania, R Polini, A Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Kind, OM Nuncio-Quiroz, AE Paul, E Renner, R Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ma, KJ Ibrahim, ZA Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Gil, M Olkiewicz, K Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Alder, V Behrens, U Bloch, I Blohm, C Bonato, A Borras, K Ciesielski, R Coppola, N Dossanov, A Drugakov, V Fourletova, J Geiser, A Gladkov, D Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Horn, C Huttmann, A Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Rinaldi, L Roloff, P Rubinsky, I Santamarta, R Schneekloth, U Spiridonov, A Stadie, H Szuba, D Szuba, J Theedt, T Wolf, G Wrona, K Youngman, C Zeuner, W Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Forrest, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Gosau, T Holm, U Klanner, R Lohrmann, E Salehi, H Schleper, P Schorner-Sadenius, T Sztuk, J Wichmann, K Wick, K Foudas, C Fry, C Long, KR Tapper, AD Kataoka, M Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Borodin, M Kozulia, A Lisovyi, M Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Soares, M Terron, J Zambrana, M Corriveau, F Liu, C Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Zotkin, SA Abt, I Buttner, C Caldwell, A Kollar, D Schmidke, WB Sutiak, J Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Korcsak-Gorzo, K Oliver, K Patel, S Roberfroid, V Robertson, A Straub, PB Uribe-Estrada, C Walczak, R Bellan, P Bertolin, A Brugnera, R Carlin, R Dal Corso, F Dusini, S Garfagnini, A Limentani, S Longhin, A Stanco, L Turcato, M Oh, BY Raval, A Ukleja, J Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Gabareen, A Ingbir, R Kananov, S Levy, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Ferrero, ML Monaco, V Sacchi, R Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Boutle, SK Butterworth, JM Gwenlan, C Jones, TW Loizides, JH Sutton, MR Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Tymieniecka, T Ukleja, A Zarnecki, AF Adamus, M Plucinski, P Eisenberg, Y Giller, I Hochman, D Karshon, U Rosin, M Brownson, E Danielson, T Everett, A Kcira, D Reeder, DD Ryan, P Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Jechow, M. Pavel, N. Molina, A. G. Yaguees Antonelli, S. Antonioli, P. Bari, G. Basile, M. Bellagamba, L. Bindi, M. Boscherini, D. Bruni, A. Bruni, G. Cifarelli, L. Cindolo, F. Contin, A. Corradi, M. De Pasquale, S. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Kind, O. M. Nuncio-Quiroz, A. E. Paul, E. Renner, R. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ma, K. J. Ibrahim, Z. A. Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Gil, M. Olkiewicz, K. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Alder, V. Behrens, U. Bloch, I. Blohm, C. Bonato, A. Borras, K. Ciesielski, R. Coppola, N. Dossanov, A. Drugakov, V. Fourletova, J. Geiser, A. Gladkov, D. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Horn, C. Huettmann, A. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Rinaldi, L. Roloff, P. Rubinsky, I. Santamarta, R. Schneekloth, U. Spiridonov, A. Stadie, H. Szuba, D. Szuba, J. Theedt, T. Wolf, G. Wrona, K. Youngman, C. Zeuner, W. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Gosau, T. Holm, U. Klanner, R. Lohrmann, E. Salehi, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Wichmann, K. Wick, K. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Kataoka, M. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Borodin, M. Kozulia, A. Lisovyi, M. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Zambrana, M. Corriveau, F. Liu, C. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Zotkin, S. A. Abt, I. Buettner, C. Caldwell, A. Kollar, D. Schmidke, W. B. Sutiak, J. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Korcsak-Gorzo, K. Oliver, K. Patel, S. Roberfroid, V. Robertson, A. Straub, P. B. Uribe-Estrada, C. Walczak, R. Bellan, P. Bertolin, A. Brugnera, R. Carlin, R. Dal Corso, F. Dusini, S. Garfagnini, A. Limentani, S. Longhin, A. Stanco, L. Turcato, M. Oh, B. Y. Raval, A. Ukleja, J. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Gabareen, A. Ingbir, R. Kananov, S. Levy, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Ferrero, M. I. Monaco, V. Sacchi, R. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Boutle, S. K. Butterworth, J. M. Gwenlan, C. Jones, T. W. Loizides, J. H. Sutton, M. R. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Tymieniecka, T. Ukleja, A. Zarnecki, A. F. Adamus, M. Plucinski, P. Eisenberg, Y. Giller, I. Hochman, D. Karshon, U. Rosin, M. Brownson, E. Danielson, T. Everett, A. Kcira, D. Reeder, D. D. Ryan, P. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA Zeus Collaboration TI Three- and four-jet final states in photoproduction at HERA SO NUCLEAR PHYSICS B LA English DT Article DE QCD; photoproduction; jets; multi-parton interactions ID DEEP-INELASTIC SCATTERING; CENTRAL TRACKING DETECTOR; DOUBLE PARTON SCATTERING; ZEUS BARREL CALORIMETER; MONTE-CARLO SIMULATION; DIJET CROSS-SECTIONS; EP COLLIDER HERA; (P)OVER-BAR-P COLLISIONS; HADRON-COLLISIONS; SPIN CORRELATIONS AB Three- and four-jet final states have been measured in photoproduction at HERA using the ZEUS detector with an integrated luminosity of 121 pb(-1). The results are presented for jets with transverse energy E-T(jet)> 6 GeV and pseudorapidity vertical bar eta(jet)vertical bar < 2.4, in the kinematic region given by the virtuality of the photon Q(2)<1 GeV2 and the inelasticity 0.2 <= y <= 0.85 and in two mass regions defined as 25 <= M-nj < 50 GeV and M-nj >= 50 GeV, where M-nj is the invariant mass of the n-jet system. The four-jet photoproduction cross section has been measured for the first time and represents the highest-order process studied at HERA. Both the three- and four-jet cross sections have been compared with leading-logarithmic parton-shower Monte Carlo models, with and without multi-parton interactions. The three-jet cross sections have been compared to an O(alpha alpha(2)(s)) perturbative QCD calculation. (c) 2007 Elsevier B.V. All rights reserved. C1 [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Univ & INFN Florence, Florence, Italy. [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Jechow, M.; Pavel, N.; Molina, A. G. Yaguees] Humboldt Univ, Inst Phys, Berlin, Germany. [Antonelli, S.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Sartorelli, G.; Zichichi, A.] Univ & INFN Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Kind, O. M.; Nuncio-Quiroz, A. E.; Paul, E.; Renner, R.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.; Ma, K. J.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Jabatan Fiz, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Alder, V.; Behrens, U.; Bloch, I.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Dossanov, A.; Drugakov, V.; Fourletova, J.; Geiser, A.; Gladkov, D.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Horn, C.; Huettmann, A.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Stadie, H.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Youngman, C.; Zeuner, W.] DESY, D-2000 Hamburg, Germany. [Lohmann, W.; Schlenstedt, S.] DESY, Zeuthen, Germany. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Gosau, T.; Holm, U.; Klanner, R.; Lohrmann, E.; Salehi, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Wichmann, K.; Wick, K.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Kataoka, M.; Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Borodin, M.; Kozulia, A.; Lisovyi, M.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Borodin, M.; Kozulia, A.; Lisovyi, M.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Nucl Phys, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.; Zotkin, S. A.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Buettner, C.; Caldwell, A.; Kollar, D.; Schmidke, W. B.; Sutiak, J.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Rinaldi, L.; Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Patel, S.; Roberfroid, V.; Robertson, A.; Straub, P. B.; Uribe-Estrada, C.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bellan, P.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.; Turcato, M.] Univ & INFN, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Ukleja, J.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Gabareen, A.; Ingbir, R.; Kananov, S.; Levy, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Gwenlan, C.; Jones, T. W.; Loizides, J. H.; Sutton, M. R.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Rinaldi, L.; Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Ukleja, A.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Giller, I.; Hochman, D.; Karshon, U.; Rosin, M.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Brownson, E.; Danielson, T.; Everett, A.; Kcira, D.; Reeder, D. D.; Ryan, P.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. RP Gallo, E (reprint author), Univ & INFN Florence, Florence, Italy. EM gallo@mail.desy.de RI Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Wing, Matthew/C-2169-2008; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012 OI Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; NR 67 TC 16 Z9 16 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD MAR 21 PY 2008 VL 792 IS 1-2 BP 1 EP 47 DI 10.1016/j.nuclphysb.2007.08.021 PG 47 WC Physics, Particles & Fields SC Physics GA 258KS UT WOS:000252867400001 ER PT J AU Antao, SM Benmore, CJ Li, BS Wang, LP Bychkov, E Parise, JB AF Antao, Sytle M. Benmore, Chris J. Li, Baosheng Wang, Liping Bychkov, Evgeny Parise, John B. TI Network rigidity in GeSe(2) glass at high pressure SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERMEDIATE-RANGE ORDER; ULTRASONIC INTERFEROMETRY; CHALCOGENIDE GLASSES; MOLECULAR-DYNAMICS; REFRACTIVE-INDEX; ELASTIC-MODULI; AMORPHOUS SIO2; LIQUID GESE2; X-RADIATION; GE GLASSES AB Acoustic measurements using synchrotron radiation have been performed on glassy GeSe(2) up to pressures of 9.6 GPa. A minimum observed in the shear-wave velocity, associated anomalous behavior in Poisson's ratio, and discontinuities in elastic moduli at 4 GPa are indicative of a gradual structural transition in the glass. This is attributed to a network rigidity minimum originating from a competition between two densification mechanisms. At pressures up to 3 GPa, a conversion from edge- to corner-sharing tetrahedra results in a more flexible network. This is contrasted by a gradual increase in coordination number with pressure, which leads to an overall stiffening of the glass. C1 [Antao, Sytle M.; Benmore, Chris J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Li, Baosheng; Wang, Liping; Parise, John B.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Li, Baosheng; Wang, Liping; Parise, John B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Bychkov, Evgeny] Univ Littoral, CNRS, LPCA, UMR 8101, F-59140 Dunkerque, France. RP Antao, SM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM sytle.antao@anl.gov RI Li, Baosheng/C-1813-2013; OI Benmore, Chris/0000-0001-7007-7749 NR 38 TC 30 Z9 30 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 115501 DI 10.1103/PhysRevLett.100.115501 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300032 PM 18517792 ER PT J AU Bianconi, G Gulbahce, N Motter, AE AF Bianconi, Ginestra Gulbahce, Natali Motter, Adilson E. TI Local structure of directed networks SO PHYSICAL REVIEW LETTERS LA English DT Article AB Previous work on undirected small-world networks established the paradigm that locally structured networks tend to have a high density of short loops. On the other hand, many realistic networks are directed. Here we investigate the local organization of directed networks and find, surprisingly, that real networks often have very few short loops as compared to random models. We develop a theory and derive conditions for determining if a given network has more or less loops than its randomized counterparts. These findings carry broad implications for structural and dynamical processes sustained by directed networks. C1 [Bianconi, Ginestra] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy. [Gulbahce, Natali] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gulbahce, Natali] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Gulbahce, Natali] Northeastern Univ, Ctr Complex Networks Res, Boston, MA 02115 USA. [Gulbahce, Natali] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Motter, Adilson E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Motter, Adilson E.] Northwestern Univ, NICO, Evanston, IL 60208 USA. RP Bianconi, G (reprint author), Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34014 Trieste, Italy. NR 27 TC 36 Z9 39 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 118701 DI 10.1103/PhysRevLett.100.118701 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300077 PM 18517837 ER PT J AU Han, Y Unal, B Qin, FL Jing, DP Jenks, CJ Liu, DJ Thiel, PA Evans, JW AF Han, Yong Unal, Baris Qin, Feili Jing, Dapeng Jenks, C. J. Liu, Da-Jiang Thiel, P. A. Evans, J. W. TI Kinetics of facile bilayer island formation at low temperature: Ag/NiAl(110) SO PHYSICAL REVIEW LETTERS LA English DT Article ID GROWTH; FILMS AB Facile nucleation and growth of bilayer Ag(110) islands on NiAl(110) is observed by STM for Ag deposition at temperatures as low as 127 K. Density functional theory analysis for supported Ag films determines adatom adsorption energies (which favor bilayer islands), interaction energies, and diffusion barriers. Analysis of an atomistic lattice-gas model incorporating these energies elucidates the role of strongly anisotropic interactions in enabling the upward mass transport needed for bilayer island formation. C1 [Han, Yong; Qin, Feili] Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. [Unal, Baris] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Unal, Baris; Qin, Feili; Jing, Dapeng; Jenks, C. J.; Liu, Da-Jiang; Thiel, P. A.; Evans, J. W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Jing, Dapeng; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Mat Sci, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Engn, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Han, Y (reprint author), Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. RI Han, Yong/F-5701-2012; Jing, Dapeng/M-3455-2014 OI Han, Yong/0000-0001-5404-0911; Jing, Dapeng/0000-0001-7600-7071 NR 18 TC 22 Z9 22 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 116105 DI 10.1103/PhysRevLett.100.116105 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300042 PM 18517802 ER PT J AU Hindmarch, AT Kinane, CJ MacKenzie, M Chapman, JN Henini, M Taylor, D Arena, DA Dvorak, J Hickey, BJ Marrows, CH AF Hindmarch, A. T. Kinane, C. J. MacKenzie, M. Chapman, J. N. Henini, M. Taylor, D. Arena, D. A. Dvorak, J. Hickey, B. J. Marrows, C. H. TI Interface induced uniaxial magnetic anisotropy in amorphous CoFeB films on AlGaAs(001) SO PHYSICAL REVIEW LETTERS LA English DT Article ID CIRCULAR-DICHROISM; ALLOYS AB We demonstrate an isolated magnetic interface anisotropy in amorphous CoFeB films on (Al)GaAs(001), similar to that in epitaxial films but without a magnetocrystalline anisotropy term. The direction of the easy axis corresponds to that due to the interfacial interaction proposed for epitaxial films. We show that the anisotropy is determined by the relative orbital component of the atomic magnetic moments. Charge transfer is ruled out as the origin of the interface anisotropy, and it is postulated that the spin-orbit interaction in the semiconductor is crucial in determining the magnetic anisotropy. C1 [Hindmarch, A. T.; Kinane, C. J.; Hickey, B. J.; Marrows, C. H.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [MacKenzie, M.; Chapman, J. N.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Henini, M.; Taylor, D.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Arena, D. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dvorak, J.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Hindmarch, AT (reprint author), Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. EM a.t.hindmarch@leeds.ac.uk RI Marrows, Christopher/D-7980-2011; Hindmarch, Aidan/B-7970-2012; Henini, Mohamed/E-8520-2012; Hickey, B J/B-3333-2016; OI Henini, Mohamed/0000-0001-9414-8492; Hickey, B J/0000-0001-8289-5618; Marrows, Christopher/0000-0003-4812-6393 NR 27 TC 32 Z9 32 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 117201 DI 10.1103/PhysRevLett.100.117201 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300057 PM 18517817 ER PT J AU Lerner, IV Varlamov, AA Vinokur, VM AF Lerner, I. V. Varlamov, A. A. Vinokur, V. M. TI Fluctuation spectroscopy of granularity in superconducting structures SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRONG MAGNETIC-FIELD; MAGNETORESISTANCE; METALS; LIMIT AB We suggest to use "fluctuation spectroscopy" as a method to detect granularity in a disordered metal close to a superconducting transition. We show that with lowering temperature T the resistance R(T) of a system of relatively large grains initially grows due to the fluctuation suppression of the one-electron tunneling but decreases with further lowering T due to the coherent charge transfer of the fluctuation Cooper pairs. Under certain conditions, such a maximum in R(T) turns out to be sensitive to weak magnetic fields due to a novel Maki-Thompson-type mechanism. C1 [Lerner, I. V.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Lerner, I. V.; Varlamov, A. A.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Varlamov, A. A.] CNR, COHERENTIA INFM, I-00133 Rome, Italy. RP Lerner, IV (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. NR 15 TC 9 Z9 9 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 117003 DI 10.1103/PhysRevLett.100.117003 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300055 PM 18517815 ER PT J AU Moon, SJ Choi, WS Kim, SJ Lee, YS Khalifah, PG Mandrus, D Noh, TW AF Moon, S. J. Choi, W. S. Kim, S. J. Lee, Y. S. Khalifah, P. G. Mandrus, D. Noh, T. W. TI Orbital-driven electronic structure changes and the resulting optical anisotropy of the quasi-two-dimensional spin gap compound La4Ru2O10 SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIMERIZATION AB We investigated the electronic response of the quasi-two-dimensional spin gap compound La4Ru2O10 using optical spectroscopy. We observed the drastic changes in the optical spectra as the temperature decreased, resulting in anisotropy in the electronic structure of the spin-singlet ground state. Using the orbital-dependent hopping analysis, we found that orbital ordering plays a crucial role in forming the spin gap state in the non-one-dimensional material. C1 [Moon, S. J.; Choi, W. S.; Kim, S. J.; Noh, T. W.] Seoul Natl Univ, Dept Phys & Astron, ReCOE & FPRD, Seoul 151747, South Korea. [Lee, Y. S.] Soongsil Univ, Dept Phys, Seoul 156743, South Korea. [Khalifah, P. G.] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. [Khalifah, P. G.; Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Noh, TW (reprint author), Seoul Natl Univ, Dept Phys & Astron, ReCOE & FPRD, Seoul 151747, South Korea. EM twnoh@snu.ac.kr RI Noh, Tae Won /K-9405-2013; Choi, Woo Seok/G-8783-2014; Mandrus, David/H-3090-2014 NR 14 TC 9 Z9 9 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 116404 DI 10.1103/PhysRevLett.100.116404 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300046 PM 18517806 ER PT J AU Schiffer, JP Freeman, SJ Clark, JA Deibel, C Fitzpatrick, CR Gros, S Heinz, A Hirata, D Jiang, CL Kay, BP Parikh, A Parker, PD Rehm, KE Villari, ACC Werner, V Wrede, C AF Schiffer, J. P. Freeman, S. J. Clark, J. A. Deibel, C. Fitzpatrick, C. R. Gros, S. Heinz, A. Hirata, D. Jiang, C. L. Kay, B. P. Parikh, A. Parker, P. D. Rehm, K. E. Villari, A. C. C. Werner, V. Wrede, C. TI Nuclear structure relevant to neutrinoless double beta decay: (76)Ge and (76)Se SO PHYSICAL REVIEW LETTERS LA English DT Article ID MATRIX ELEMENTS; ISOTOPES AB The possibility of observing neutrinoless double beta decay offers the opportunity of determining the effective neutrino mass if the nuclear matrix element were known. Theoretical calculations are uncertain, and measurements of the occupations of valence orbits by nucleons active in the decay can be important. The occupation of valence neutron orbits in the ground states of (76)Ge (a candidate for such decay) and (76)Se (the daughter nucleus) were determined by precisely measuring cross sections for both neutron-adding and removing transfer reactions. Our results indicate that the Fermi surface is much more diffuse than in theoretical calculations. We find that the populations of at least three orbits change significantly between these two ground states while in the calculations, the changes are confined primarily to one orbit. C1 [Schiffer, J. P.; Gros, S.; Jiang, C. L.; Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Freeman, S. J.; Fitzpatrick, C. R.; Kay, B. P.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Clark, J. A.; Deibel, C.; Heinz, A.; Parikh, A.; Parker, P. D.; Werner, V.; Wrede, C.] Yale Univ, New Haven, CT 06520 USA. [Hirata, D.; Villari, A. C. C.] CEA, IN2P3, GANIL, CNRS,DSM, F-14076 Caen 5, France. [Hirata, D.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. RP Schiffer, JP (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM schiffer@anl.gov RI Kay, Benjamin/F-3291-2011; Heinz, Andreas/E-3191-2014; Hirata, Daisy/F-3199-2013; Werner, Volker/C-1181-2017; Freeman, Sean/B-1280-2010 OI Kay, Benjamin/0000-0002-7438-0208; Werner, Volker/0000-0003-4001-0150; Fitzpatrick, Catherine/0000-0002-8866-9547; Freeman, Sean/0000-0001-9773-4921 NR 17 TC 88 Z9 88 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 112501 DI 10.1103/PhysRevLett.100.112501 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300018 PM 18517778 ER PT J AU Zhao, HB Smith, KJ Fan, Y Lupke, G Bhattacharya, A Bader, SD Warusawithana, M Zhai, X Eckstein, JN AF Zhao, H. B. Smith, K. J. Fan, Y. Luepke, G. Bhattacharya, A. Bader, S. D. Warusawithana, M. Zhai, X. Eckstein, J. N. TI Viscous spin exchange torque on precessional magnetization in (LaMnO3)(2n)/(SrMnO3)(n) superlattices SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE-SEPARATION; FERROMAGNET; RESONANCE AB Photoinduced magnetization dynamics is investigated in chemically ordered (LaMnO3)(2n)/(SrMnO3)(n) superlattices using the time-resolved magneto-optic Kerr effect. A monotonic frequency-field dependence is observed for the n = 1 superlattice, indicating a single spin population consistent with a homogeneous hole distribution. In contrast, for n >= 2 superlattices, a large precession frequency is observed at low fields indicating the presence of an exchange torque in the dynamic regime. We attribute the emergence of exchange torque to the coupling between two spin populations-viscous and fast spins. C1 [Zhao, H. B.; Smith, K. J.; Fan, Y.; Luepke, G.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Bhattacharya, A.; Bader, S. D.] Argonne Natl Lab, Ctr Nanoscale Mat & Mat Sci Div, Argonne, IL 60349 USA. [Warusawithana, M.; Zhai, X.; Eckstein, J. N.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Zhao, HB (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. RI Bhattacharya, Anand/G-1645-2011; Fan, Yichun/F-4234-2012; Bader, Samuel/A-2995-2013 OI Bhattacharya, Anand/0000-0002-6839-6860; NR 22 TC 11 Z9 12 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 117208 DI 10.1103/PhysRevLett.100.117208 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300064 PM 18517824 ER PT J AU Zheng, LJ Takahashi, H Fredrickson, ED AF Zheng, L. J. Takahashi, H. Fredrickson, E. D. TI Edge-localized modes explained as the amplification of scrape-off-layer current coupling SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIII-D TOKAMAK; TRANSPORT; DISCHARGES; DIVERTOR; WALL AB It is shown that the edge-localized modes (ELMs) observed in tokamak H mode discharges can be explained as external magnetohydrodynamic (MHD) mode amplification due to coupling with scrape-off-layer current. The proposed model offers a new ELM mechanism that produces a sharp onset and initial fast growth of magnetic perturbations even when the underlying equilibrium is only marginally unstable for a MHD mode and also a quick quenching after the bursting peak. The theory also reproduces various other ELM features. C1 Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Takahashi, H.; Fredrickson, E. D.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zheng, LJ (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. NR 17 TC 8 Z9 8 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 21 PY 2008 VL 100 IS 11 AR 115001 DI 10.1103/PhysRevLett.100.115001 PG 4 WC Physics, Multidisciplinary SC Physics GA 278MZ UT WOS:000254292300031 PM 18517791 ER PT J AU Bidartondo, MI Bruns, TD Blackwell, M Edwards, I Taylor, AFS Horton, T Zhang, N Koljalg, U May, G Kuyper, TW Bever, JD Gilbert, G Taylor, JW DeSantis, TZ Pringle, A Borneman, J Thorn, G Berbee, M Mueller, GM Andersen, GL Vellinga, EC Branco, S Anderson, I Dickie, IA Avis, P Timonen, S Kjoller, R Lodge, DJ Bateman, RM Purvis, A Crous, PW Hawkes, C Barraclough, T Burt, A Nilsson, RH Larsson, KH Alexander, I Moncalvo, JM Berube, J Spatafora, J Lumbsch, HT Blair, JE Suh, SO Pfister, DH Binder, M Boehm, EW Kohn, L Mata, JL Dyer, P Sung, GH Dentinger, B Simmons, EG Baird, RE Volk, TJ Perry, BA Kerrigan, RW Campbell, J Rajesh, J Reynolds, DR Geiser, D Humber, RA Hausmann, N Szaro, T Stajich, J Gathman, A Peay, KG Henkel, T Robinson, CH Pukkila, PJ Nguyen, NH Villalta, C Kennedy, P Bergemann, S Aime, MC Kauff, F Porras-Alfaro, A Gueidan, C Beck, A Andersen, B Marek, S Crouch, JA Kerrigan, J Ristaino, JB Hodge, KT Kuldau, G Samuels, GJ Raja, HA Voglmayr, H Gardes, M Janos, DP Rogers, JD Cannon, P Woolfolk, SW Kistler, HC Castellano, MA Maldonado-Ramirez, SL Kirk, PM Farrar, JJ Osmundson, T Currah, RS Vujanovic, V Chen, WD Korf, RP Atallah, ZK Harrison, KJ Guarro, J Bates, ST Bonello, P Bridge, P Schell, W Rossi, W Stenlid, J Frisvad, JC Miller, RM Baker, SE Hallen, HE Janso, JE Wilson, AW Conway, KE Egerton-Warburton, L Wang, Z Eastburn, D Ho, WWH Kroken, S Stadler, M Turgeon, G Lichtwardt, RW Stewart, EL Wedin, M Li, DW Uchida, JY Jumpponen, A Deckert, RJ Beker, HJ Rogers, SO Xu, JAP Johnston, P Shoemaker, RA Liu, MA Marques, G Summerell, B Sokolski, S Thrane, U Widden, P Bruhn, JN Bianchinotti, V Tuthill, D Baroni, TJ Barron, G Hosaka, K Jewell, K Piepenbring, M Sullivan, R Griffith, GW Bradley, SG Aoki, T Yoder, WT Ju, YM Berch, SM Trappe, M Duan, WJ Bonito, G Taber, RA Coelho, G Bills, G Ganley, A Agerer, R Nagy, L Roy, BA Laessoe, T Hallenberg, N Tichy, HV Stalpers, J Langer, E Scholler, M Krueger, D Pacioni, G Poder, R Pennanen, T Capelari, M Nakasone, K Tewari, JP Miller, AN Decock, C Huhndorf, S Wach, M Vishniac, HS Yohalem, DS Smith, ME Glenn, AE Spiering, M Lindner, DL Schoch, C Redhead, SA Ivors, K Jeffers, SN Geml, J Okafor, F Spiegel, FW Dewsbury, D Carroll, J Porter, TM Pashley, C Carpenter, SE Abad, G Voigt, K Arenz, B Methven, AS Schechter, S Vance, P Mahoney, D Kang, SC Rheeder, JP Mehl, J Greif, M Ngala, GN Ammirati, J Kawasaki, M Gwo-Fang, YA Matsumoto, T Smith, D Koenig, G Luoma, D May, T Leonardi, M Sigler, L Taylor, DL Gibson, C Sharpton, T Hawksworth, DL Dianese, JC Trudell, SA Paulus, B Padamsee, M Callac, P Lima, N White, M Barreau, C Juncai, MA Buyck, B Rabeler, RK Liles, MR Estes, D Carter, R Herr, JM Chandler, G Kerekes, J Cruse-Sanders, J Marquez, RG Horak, E Fitzsimons, M Doring, H Yao, S Hynson, N Ryberg, M Arnold, AE Hughes, K AF Bidartondo, M. I. Bruns, Thomas D. Blackwell, Meredith Edwards, Ivan Taylor, Andy F. S. Horton, Thomas Zhang, Ning Koljalg, Urmas May, Georgiana Kuyper, Thomas W. Bever, James D. Gilbert, Gregory Taylor, John W. DeSantis, Todd Z. Pringle, Anne Borneman, James Thorn, Greg Berbee, Mary Mueller, Gregory M. Andersen, Gary L. Vellinga, Else C. Branco, Sara Anderson, Ian Dickie, Ian A. Avis, Peter Timonen, Sari Kjoller, Rasmus Lodge, D. J. Bateman, Richard M. Purvis, Andy Crous, Pedro W. Hawkes, Christine Barraclough, Tim Burt, Austin Nilsson, R. H. Larsson, Karl-Henrik Alexander, Ian Moncalvo, Jean-Marc Berube, Jean Spatafora, Joseph Lumbsch, H. Thorsten Blair, Jaime E. Suh, Sung-Oui Pfister, Donald H. Binder, Manfred Boehm, Eric W. Kohn, Linda Mata, Juan L. Dyer, Paul Sung, Gi-Ho Dentinger, Bryn Simmons, Emory G. Baird, Richard E. Volk, Thomas J. Perry, Brian A. Kerrigan, Richard W. Campbell, Jinx Rajesh, Jeewon Reynolds, Don R. Geiser, David Humber, Richard A. Hausmann, Natasha Szaro, Tim Stajich, Jason Gathman, Allen Peay, Kabir G. Henkel, Terry Robinson, Clare H. Pukkila, Patricia J. Nguyen, Nhu H. Villalta, Christopher Kennedy, Peter Bergemann, Sarah Aime, M. Catherine Kauff, Frank Porras-Alfaro, Andrea Gueidan, Cecile Beck, Andreas Andersen, Birgitte Marek, Stephen Crouch, Jo A. Kerrigan, Julia Ristaino, Jean Beagle Hodge, Kathie T. Kuldau, Gretchen Samuels, Gary J. Raja, Huzefa A. Voglmayr, Hermann Gardes, Monique Janos, David P. Rogers, Jack D. Cannon, Paul Woolfolk, Sandra W. Kistler, H. C. Castellano, Michael A. Maldonado-Ramirez, Sandra L. Kirk, Paul M. Farrar, James J. Osmundson, Todd Currah, Randolph S. Vujanovic, Vladimir Chen, Weidong Korf, Richard P. Atallah, Zahi K. Harrison, Ken J. Guarro, Josep Bates, Scott T. Bonello, Pierluigi (Enrico) Bridge, Paul Schell, Wiley Rossi, Walter Stenlid, Jan Frisvad, Jens C. Miller, R. M. Baker, Scott E. Hallen, Heather E. Janso, Jeffrey E. Wilson, Andrew W. Conway, Kenneth E. Egerton-Warburton, Louise Wang, Zheng Eastburn, Darin Ho, Wellcome W. Hong Kroken, Scott Stadler, Marc Turgeon, Gillian Lichtwardt, Robert W. Stewart, Elwin L. Wedin, Mats Li, De-Wei Uchida, Janice Y. Jumpponen, Ari Deckert, Ron J. Beker, Henry J. Rogers, Scott O. Xu, Jianping Johnston, Peter Shoemaker, R. A. Liu, Miao Marques, G. Summerell, Brett Sokolski, Serge Thrane, Ulf Widden, Paul Bruhn, Johann N. Bianchinotti, Virginia Tuthill, Dorothy Baroni, Timothy J. Barron, George Hosaka, Kentaro Jewell, Kelsea Piepenbring, Meike Sullivan, Raymond Griffith, Gareth W. Bradley, S. G. Aoki, Takayuki Yoder, Wendy T. Ju, Yu-Ming Berch, Shannon M. Trappe, Matt Duan, Weijun Bonito, Gregory Taber, Ruth A. Coelho, Gilberto Bills, Gerald Ganley, Austen Agerer, Reinhard Nagy, Laszlo Roy, Barbara A. Laessoe, Thomas Hallenberg, Nils Tichy, Hans-Volker Stalpers, Joost Langer, Ewald Scholler, Markus Krueger, Dirk Pacioni, Giovanni Poeder, Reinhold Pennanen, Taina Capelari, Marina Nakasone, Karen Tewari, J. P. Miller, Andrew N. Decock, Cony Huhndorf, Sabine Wach, Mark Vishniac, Helen S. Yohalem, David S. Smith, Matthew E. Glenn, Anthony E. Spiering, Martin Lindner, Daniel L. Schoch, Conrad Redhead, Scott A. Ivors, Kelly Jeffers, Steven N. Geml, Jozsef Okafor, Florence Spiegel, Frederick W. Dewsbury, Damon Carroll, Juliet Porter, Terri M. Pashley, Catherine Carpenter, Steven E. Abad, Gloria Voigt, Kerstin Arenz, Brett Methven, Andrew S. Schechter, Shannon Vance, Paula Mahoney, Dan Kang, Seogchan Rheeder, John P. Mehl, James Greif, Matthew Ngala, George Ndzi Ammirati, Joe Kawasaki, Masako Gwo-Fang, Yuan Matsumoto, Tadahiko Smith, David Koenig, Gina Luoma, Daniel May, Tom Leonardi, Marco Sigler, Lynne Taylor, D. L. Gibson, Cara Sharpton, Thomas Hawksworth, David L. Dianese, Jose Carmine Trudell, Steven A. Paulus, Barbara Padamsee, Mahajabeen Callac, Philippe Lima, Nelson White, Merlin Barreau, C. Juncai, M. A. Buyck, Bart Rabeler, Richard K. Liles, Mark R. Estes, Dwayne Carter, Richard Herr, J. M., Jr. Chandler, Gregory Kerekes, Jennifer Cruse-Sanders, Jennifer Galan Marquez, R. Horak, Egon Fitzsimons, Michael Doering, Heidi Yao, Su Hynson, Nicole Ryberg, Martin Arnold, A. E. Hughes, Karen TI Preserving accuracy in GenBank SO SCIENCE LA English DT Letter ID ANNOTATION; SEQUENCES; ERRORS C1 [Bidartondo, M. I.] Univ London Imperial Coll Sci Technol & Med, Richmond TW9 3DS, England. Royal Bot Gardens, Richmond TW9 3DS, Surrey, England. [Bruns, Thomas D.; Taylor, John W.; Vellinga, Else C.; Hausmann, Natasha; Szaro, Tim; Stajich, Jason; Peay, Kabir G.; Nguyen, Nhu H.; Villalta, Christopher; Schechter, Shannon; Sharpton, Thomas; Kerekes, Jennifer; Hynson, Nicole] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Blackwell, Meredith] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Edwards, Ivan; Rabeler, Richard K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Taylor, Andy F. S.] Swedish Univ Agr Sci, S-75007 Uppsala, Sweden. [Horton, Thomas] SUNY ESF, Ithaca, NY 13210 USA. [Zhang, Ning; Hodge, Kathie T.; Korf, Richard P.; Turgeon, Gillian; Carroll, Juliet] Cornell Univ, Ithaca, NY 14853 USA. [Koljalg, Urmas] Univ Tartu, EE-51005 Tartu, Estonia. [May, Georgiana; Kistler, H. C.; Arenz, Brett; Padamsee, Mahajabeen] Univ Minnesota, St Paul, MN 55108 USA. [Kuyper, Thomas W.] Wageningen Univ, NL-6708 Wageningen, Netherlands. [Bever, James D.] Indiana Univ, Bloomington, IN 47405 USA. [Gilbert, Gregory] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [DeSantis, Todd Z.; Andersen, Gary L.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Pringle, Anne; Pfister, Donald H.; Smith, Matthew E.] Harvard Univ, Cambridge, MA 02138 USA. [Borneman, James] Univ Calif, Riverside, CA 92521 USA. [Thorn, Greg] Univ Western Ontario, London, ON N6A 5B8, Canada. [Berbee, Mary] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada. [Mueller, Gregory M.; Lumbsch, H. Thorsten; Hosaka, Kentaro; Huhndorf, Sabine; Greif, Matthew] Field Museum Nat Hist, Chicago, IL 60605 USA. [Branco, Sara; Fitzsimons, Michael] Univ Chicago, Chicago, IL 60637 USA. [Anderson, Ian] Univ Western Sydney, Penrith, NSW 1797, Australia. [Dickie, Ian A.] Landcare Res, Lincoln 7640, New Zealand. [Avis, Peter] Indiana U NW & Field Museum, Gary, IN 46408 USA. [Timonen, Sari] Univ Helsinki, FIN-00014 Helsinki, Finland. [Kjoller, Rasmus] Univ Copenhagen, Biol Inst, DK-1353 Copenhagen, Denmark. [Lodge, D. J.] US Forest Serv, USDA, Luquillo, PR USA. [Bateman, Richard M.; Doering, Heidi] Royal Botan Gardens, Richmond TW9 3DS, Surrey, England. [Purvis, Andy; Barraclough, Tim; Burt, Austin] Imperial Coll London, London SW7 2AZ, England. [Crous, Pedro W.] CBS Fungal Biodivers Ctr, NL-3584 Utrecht, Netherlands. [Hawkes, Christine] Univ Texas Austin, Austin, TX 78712 USA. [Nilsson, R. H.; Larsson, Karl-Henrik; Hallenberg, Nils; Ryberg, Martin] Gothenburg Univ, S-40530 Gothenburg, Sweden. [Alexander, Ian] Univ Aberdeen, Aberdeen AB24 3UU, Scotland. [Moncalvo, Jean-Marc; Dentinger, Bryn] Royal Ontario Museum, Toronto, ON M5S 2C6, Canada. [Moncalvo, Jean-Marc; Dentinger, Bryn] Univ Toronto, Toronto, ON M5S 2C6, Canada. [Berube, Jean] Canadian Forest Serv, Quebec City, PQ G1V 4C7, Canada. [Spatafora, Joseph; Sung, Gi-Ho; Trappe, Matt; Schoch, Conrad; Luoma, Daniel] Oregon State Univ, Corvallis, OR 97331 USA. [Blair, Jaime E.] Amherst Coll, Amherst, MA 01002 USA. [Suh, Sung-Oui] American Type Culture Collect, Manassas, VA 20110 USA. [Binder, Manfred; Wilson, Andrew W.] Clark Univ, Worcester, MA 01610 USA. [Boehm, Eric W.] Kean Univ, Union, NJ 07083 USA. [Kohn, Linda; Dewsbury, Damon; Porter, Terri M.] Univ Toronto, Toronto, ON L5L 1C6, Canada. [Mata, Juan L.] Univ S Alabama, Mobile, AL 36688 USA. [Dyer, Paul] Univ Nottingham, Nottingham NG7 2RD, England. [Simmons, Emory G.] Wabash Coll, Crawfordsville, IN 47933 USA. [Baird, Richard E.; Woolfolk, Sandra W.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Volk, Thomas J.] Univ Wisconsin, La Crosse, WI 54601 USA. [Perry, Brian A.] San Francisco State Univ, San Francisco, CA 94132 USA. [Kerrigan, Richard W.] Sylvan Res, Kittanning, PA 16201 USA. [Campbell, Jinx] Univ So Mississippi, Hattiesburg, MS 39406 USA. [Rajesh, Jeewon] Univ Hong Kong, Hong Kong, Peoples R China. [Reynolds, Don R.] Univ Calif Herbarium, Berkeley, CA 94720 USA. [Geiser, David; Kuldau, Gretchen; Stewart, Elwin L.; Kang, Seogchan] Penn State Univ, University Pk, PA 16802 USA. [Humber, Richard A.] USDA ARS Biol IPM Res, Ithaca, NY 14850 USA. [Gathman, Allen] SE Missouri St U, Cape Girardeau, MO 63701 USA. [Henkel, Terry] Humboldt State Univ, Arcata, CA 95521 USA. [Robinson, Clare H.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Pukkila, Patricia J.] Univ N Carolina, Chapel Hill, NC 27514 USA. [Kennedy, Peter] Lewis & Clark Coll, Portland, OR 97219 USA. [Bergemann, Sarah] Middle Tennessee State Univ, Murfreesboro, TN 37129 USA. [Aime, M. Catherine] Louisiana State U Agr Ctr, Baton Rouge, LA 70803 USA. [Kauff, Frank] Univ Kaiserslautern, D-67653 Kaiserslautern, Germany. [Porras-Alfaro, Andrea] Univ New Mexico, Albuquerque, NM 87131 USA. [Gueidan, Cecile; Schell, Wiley; Bonito, Gregory] Duke Univ, Durham, NC 27708 USA. [Beck, Andreas] Bot Staatssammlung Muenchen, D-80638 Munich, Germany. [Andersen, Birgitte; Thrane, Ulf] Tech Univ Denmark, DK-2800 Lyngby, Denmark. [Marek, Stephen; Conway, Kenneth E.; Vishniac, Helen S.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Crouch, Jo A.; Sullivan, Raymond] Rutgers State Univ, New Brunswick, NJ USA. [Kerrigan, Julia; Jeffers, Steven N.] Clemson Univ, Clemson, SC 29634 USA. [Ristaino, Jean Beagle] N Carolina State Univ, Raleigh, NC 27695 USA. [Samuels, Gary J.] USDA Systemat Mycol & Microbiol, Beltsville, MD 10300 USA. [Raja, Huzefa A.; Eastburn, Darin] Univ Illinois, Urbana, IL 61820 USA. [Voglmayr, Hermann] Univ Vienna, A-1030 Vienna, Austria. [Gardes, Monique] Univ Toulouse 3, F-31062 Toulouse, France. [Janos, David P.] Miami Univ, Oxford, OH 45056 USA. [Rogers, Jack D.] Washington State Univ, Pullman, WA 99164 USA. [Cannon, Paul; Kirk, Paul M.] CABI, Egham TW20 9TY, Surrey, England. [Castellano, Michael A.] US Forest Serv, USDA, Corvallis, OR 97331 USA. [Maldonado-Ramirez, Sandra L.] Univ Puerto Rico, Mayaguez, PR 00681 USA. [Farrar, James J.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Osmundson, Todd] Columbia Univ, New York, NY 10458 USA. [Osmundson, Todd] New York Bot Garden, New York, NY 10458 USA. [Currah, Randolph S.; Tewari, J. P.; Sigler, Lynne] Univ Alberta, Edmonton, AB T6G 2R3, Canada. [Vujanovic, Vladimir] Univ Saskatchewan, Saskatoon, SK S7N 5C9, Canada. [Chen, Weidong] Washington State Univ, USDA ARS, Pullman, WA 99164 USA. [Atallah, Zahi K.] Univ Wisconsin Madison, Madison, WI 53706 USA. [Harrison, Ken J.] Canadian Forest Serv, Fredericton, NB E3B 5P7, Canada. [Guarro, Josep] Univ Rovira & Virgili, Reus 43201, Spain. [Bates, Scott T.] Arizona State Univ, Tempe, AZ 85287 USA. [Bonello, Pierluigi (Enrico)] Ohio State Univ, Columbus, OH 43210 USA. [Bridge, Paul] British Antarctic Survey, Cambridge CB3 0ET, England. [Rossi, Walter; Pacioni, Giovanni; Leonardi, Marco] Univ Aquila, I-67040 Laquila, Italy. [Stenlid, Jan] Swedish Univ Agr Sci, S-75007 Uppsala, Sweden. [Frisvad, Jens C.] Tech Univ Denmark, DK-2800 Lyngby, Denmark. [Miller, R. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Baker, Scott E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hallen, Heather E.] Michigan State Univ, E Lansing, MI 48824 USA. [Janso, Jeffrey E.] Wyeth Res, Pearl River, NY 10965 USA. [Egerton-Warburton, Louise] Chicago Bot Garden, Chicago, IL 60022 USA. [Wang, Zheng] Yale Univ, New Haven, CT 06520 USA. [Ho, Wellcome W. Hong] MAF Biosecur New Zealand, Wellington, New Zealand. [Kroken, Scott; Gibson, Cara; Arnold, A. E.] Univ Arizona, Tucson, AZ 85721 USA. [Stadler, Marc] Univ Bayreuth, D-44227 Dortmund, Germany. [Stadler, Marc] InterMed Discovery GmbH, D-44227 Dortmund, Germany. [Lichtwardt, Robert W.] Univ Kansas, Lawrence, KS 66045 USA. [Wedin, Mats] Swedish Museum Nat Hist, S-10405 Stockholm, Sweden. [Li, De-Wei] Connecticut Agr Expt Stn, New Haven, CT 06511 USA. [Uchida, Janice Y.] Univ Hawaii, Honolulu, HI 96822 USA. [Jumpponen, Ari] Kansas State Univ, Manhattan, KS 66506 USA. [Deckert, Ron J.] Weber State Univ, Ogden, UT 84408 USA. [Beker, Henry J.] Royal Holloway Univ London, London TW20 0EX, England. [Rogers, Scott O.] Bowling Green State Univ, Bowling Green, OH 43403 USA. [Xu, Jianping] McMaster Univ, Hamilton, ON L8S 4L8, Canada. [Johnston, Peter; Paulus, Barbara] Landcare Res, Auckland 1072, New Zealand. [Shoemaker, R. A.] Agr Canada, Ottawa, ON K1A 0C6, Canada. [Liu, Miao] Eastern Cereal & Oilseed Res Ctr, Ottawa, ON K1A 0C6, Canada. [Marques, G.] Univ Tras Os Montes & Alto Douro, P-5001801 Vila Real, Portugal. [Summerell, Brett] Natl Herbarium New S Wales, Sydney, NSW 2000, Australia. [Sokolski, Serge] Univ Laval, Quebec City, PQ G1K 7P4, Canada. [Widden, Paul] Concordia Univ, Montreal, PQ H3G 1M8, Canada. [Bruhn, Johann N.] Univ Missouri, Columbia, MO 65211 USA. [Bianchinotti, Virginia] Univ Nacl Sur, RA-8000 Bahia Blanca, Buenos Aires, Argentina. [Tuthill, Dorothy] Univ Wyoming, Laramie, WY 82071 USA. [Baroni, Timothy J.] SUNY Coll Cortland, Cortland, NY 13045 USA. [Barron, George] Univ Guelph, Guelph, ON N1G 2W1, Canada. [Jewell, Kelsea] Seattle Childrens Hosp Res Inst, Seattle, WA 98101 USA. [Piepenbring, Meike] J W Goethe Univ, D-60325 Frankfurt, Germany. [Griffith, Gareth W.] Aberystwyth Univ, Aberystwyth SY23 3DA, Dyfed, Wales. [Bradley, S. G.] Penn State Coll Med, Hershey, PA 17033 USA. [Aoki, Takayuki] Natl Inst Agrobiol Sci, Tsukuba, Ibaraki 3058602, Japan. [Yoder, Wendy T.] Novozymes Inc, Davis, CA 95618 USA. [Ju, Yu-Ming] Acad Sinica, Taipei 115, Taiwan. [Berch, Shannon M.] Minist Forests & Range, Victoria, BC V8W 9C4, Canada. [Duan, Weijun; Juncai, M. A.] Chinese Acad Sci, Beijing 100864, Peoples R China. [Taber, Ruth A.] Texas A&M Univ, College Stn, TX 77843 USA. [Coelho, Gilberto] Univ Fed Santa Maria, BR-97105 Santa Maria, RS, Brazil. [Bills, Gerald] Merck Sharp & Dohme Espana SA, Madrid 28027, Spain. [Ganley, Austen] Massey Univ, Albany, New Zealand. [Agerer, Reinhard] Univ Munich, D-80638 Munich, Germany. [Nagy, Laszlo] Univ Szeged, H-6726 Szeged, Hungary. [Roy, Barbara A.] Univ Oregon, Eugene, OR 97403 USA. [Laessoe, Thomas] Univ Copenhagen, DK-1353 Copenhagen, Denmark. [Tichy, Hans-Volker] LUFA ITL GmbH, D-24107 Kiel, Germany. [Stalpers, Joost] CBS Fungal Biodivers Ctr, NL-3584 Utrecht, Netherlands. [Langer, Ewald] Univ Kassel, D-34109 Kassel, Germany. [Scholler, Markus] Naturkundemuseum, D-76133 Karlsruhe, Germany. [Krueger, Dirk] Umweltforschungszentrum, D-4318 Halle, Germany. [Poeder, Reinhold] Leopold Franzens Univ Innsbruck, A-6020 Innsbruck, Austria. [Pennanen, Taina] Finnish Forest Res Inst, Helsinki 170, Finland. [Capelari, Marina] Inst Bot, BR-4301 Sao Paulo, Brazil. [Nakasone, Karen] US Forest Serv, No Res Stn, USDA, St Paul, MN 55108 USA. [Miller, Andrew N.] Illinois Nat Hist Survey, Champaign, IL 61820 USA. [Decock, Cony] MUCL, B-1348 Louvain, Belgium. [Wach, Mark] Sylvan Res, Kittanning, PA 16201 USA. [Yohalem, David S.] E Malling Res, E Malling ME19 6BJ, England. [Glenn, Anthony E.] USDA Toxicol & Mycotoxin Res, College Stn, TX 77843 USA. [Spiering, Martin] Univ Dublin, Trinity Coll, Dublin, Ireland. [Lindner, Daniel L.] US Forest Serv, USDA, Madison, NJ 53726 USA. [Redhead, Scott A.] Natl Mycol Herbarium, Ottawa, ON K1A 0C6, Canada. [Ivors, Kelly] N Carolina State Univ, Fletcher, NC 28732 USA. [Geml, Jozsef; Taylor, D. L.] Univ Alaska, Fairbanks, AK 99709 USA. [Okafor, Florence] Alabama A&M Univ, Normal, AL 35762 USA. [Spiegel, Frederick W.] Univ Arkansas, Fayetteville, AR 72701 USA. [Pashley, Catherine] Univ Leicester, Leicester, Leics LE1 7RH, England. [Carpenter, Steven E.] Abbey Lane Lab, Philomath, OR 97370 USA. [Abad, Gloria] USDA APHIS PPQ PHP PSPI NIS, Beltsville, MD 10300 USA. [Voigt, Kerstin] Univ Jena, Fungal Ref Ctr, D-7745 Jena, Germany. [Methven, Andrew S.] Eastern Illinois Univ, Charleston, IL 61920 USA. [Vance, Paula] Microbiol Specialists Inc, Houston, TX 77054 USA. [Mahoney, Dan] Private Mycol Res, Lower Hutt, New Zealand. [Rheeder, John P.] MRC, ZA-7505 Tygerberg, South Africa. [Mehl, James] Univ Pretoria, FABI, ZA-0002 Pretoria, South Africa. [Ngala, George Ndzi] Bamenda Univ, Bamenda, Cameroon. [Ammirati, Joe; Trudell, Steven A.] Univ Washington, Seattle, WA 98195 USA. [Kawasaki, Masako] Kanazawa Med Univ, Kanazawa, Ishikawa 9200293, Japan. [Gwo-Fang, Yuan] FIRDI, Bioresource Collect & Res Ctr, Hsinchu 300, Taiwan. [Matsumoto, Tadahiko] Juntendo Univ, Tokyo 1130033, Japan. [Matsumoto, Tadahiko] Kurume Univ, Tokyo 1130033, Japan. [Smith, David] World Federat Culture Collect, Egham TW20 9TY, Surrey, England. [Koenig, Gina] Roche Mol Syst, Alameda, CA 94501 USA. [May, Tom] Royal Bot Gardens, Melbourne, Vic 3004, Australia. [Hawksworth, David L.] Nat Hist Museum, Madrid 28006, Spain. [Dianese, Jose Carmine] Univ Brasilia, BR-70910 Brasilia, DF, Brazil. [Callac, Philippe] INRA, F-33140 Bordeaux, France. [Lima, Nelson] Micoteca Univ Minho, P-4710 Braga, Portugal. [White, Merlin] Boise State Univ, Boise, ID 83725 USA. [Barreau, C.] INRA, CNRS, F-33140 Bordeaux, France. [Buyck, Bart] Natl Museum Nat Hist, F-75005 Paris, France. [Liles, Mark R.] Auburn Univ, Auburn, AL 36849 USA. [Estes, Dwayne] Austin Peay State Univ, Clarksville, TN 37044 USA. [Carter, Richard] Valdosta State Univ, Valdosta, GA 31698 USA. [Herr, J. M., Jr.] Univ S Carolina, Columbia, SC 29208 USA. [Chandler, Gregory] Univ N Carolina, Wilmington, NC 28403 USA. [Cruse-Sanders, Jennifer] Salem Coll Herbarium, Winston Salem, NC 27101 USA. [Galan Marquez, R.] Alcala Univ, Madrid 28801, Spain. [Horak, Egon] Zurich Herbarium, CH-8008 Zurich, Switzerland. [Yao, Su] China Ctr Ind Culture Collect, Beijing 100027, Peoples R China. [Hughes, Karen] Univ Tennessee, Knoxville, TN 37996 USA. RP Bidartondo, MI (reprint author), Univ London Imperial Coll Sci Technol & Med, Richmond TW9 3DS, England. RI Pashley, Catherine/M-9002-2015; Porras-Alfaro, Andrea/B-6258-2013; Thrane, Ulf/G-2978-2016; Langer, Ewald/D-8479-2012; Marques, Guilhermina/A-5634-2013; Voglmayr, Hermann/B-1484-2013; Dickie, Ian/C-5419-2013; Janos, David/B-2264-2008; Binder, Manfred/C-8571-2013; Ganley, Austen/L-8120-2013; Marek, Stephen/M-9865-2013; griffith, gareth/A-1970-2009; Kruger, Dirk/C-3316-2012; Gueidan, Cecile/C-8803-2014; Kjoller, Rasmus/L-7061-2014; Stadler, Marc/P-8882-2014; Capelari, Marina /D-4886-2015; Andersen, Gary/G-2792-2015; Nilsson, Henrik/A-6062-2009; Wang, Zheng/A-2318-2011; Stajich, Jason/C-7297-2008; Purvis, Andy/A-7529-2008; Porter, Teresita/H-4072-2011; Bonello, Pierluigi/E-2776-2011; Andersen, Birgitte/F-3922-2012; Crouch, Jo Anne/F-4322-2012; Crous, Pedro/H-1489-2012; Thorn, R Greg/I-3398-2012; Lima, Nelson/D-3651-2009; Lumbsch, Thorsten/K-3573-2012; Zhang, Ning/K-3046-2012 OI Pashley, Catherine/0000-0003-4023-3610; Porras-Alfaro, Andrea/0000-0002-9053-7973; Thrane, Ulf/0000-0002-6040-4141; Marques, Guilhermina/0000-0003-0963-5785; Taylor, Donald/0000-0002-5985-9210; Kistler, Harold/0000-0001-5312-6297; Voglmayr, Hermann/0000-0001-7666-993X; Dickie, Ian/0000-0002-2740-2128; Janos, David/0000-0002-3877-0110; Ganley, Austen/0000-0002-1917-7522; Marek, Stephen/0000-0002-0146-8049; Kruger, Dirk/0000-0002-7305-5104; Kjoller, Rasmus/0000-0002-2027-4119; Stadler, Marc/0000-0002-7284-8671; Andersen, Gary/0000-0002-1618-9827; Wang, Zheng/0000-0002-8849-8549; Stajich, Jason/0000-0002-7591-0020; Purvis, Andy/0000-0002-8609-6204; Andersen, Birgitte/0000-0002-4544-9886; Crous, Pedro/0000-0001-9085-8825; Lima, Nelson/0000-0003-2185-0613; Lumbsch, Thorsten/0000-0003-1512-835X; Zhang, Ning/0000-0003-0755-2505 NR 4 TC 104 Z9 106 U1 8 U2 118 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAR 21 PY 2008 VL 319 IS 5870 BP 1616 EP 1616 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 276VR UT WOS:000254172300015 PM 18356505 ER PT J AU Koponen, J Soderlund, M Hoffman, HJ Kliner, DAV Koplow, JP Hotoleanu, M AF Koponen, Joona Soderlund, Mikko Hoffman, Hanna J. Kliner, Dahv A. V. Koplow, Jeffrey P. Hotoleanu, Mircea TI Photodarkening rate in Yb-doped silica fibers SO APPLIED OPTICS LA English DT Article ID ALUMINOSILICATE GLASS; OPTICAL FIBERS; LUMINESCENCE; IRRADIATION; ABSORPTION; GRATINGS; NM AB Yb-doped fibers are widely used in laser applications requiring high average output powers and highpeak-power pulse amplification. Photodarkening (PD) is recognized as one limiting factor in these fibers when pumped with high-intensity radiation. We describe an approach for performing quantitative PD studies of fibers, and we present measurements of the rate of PD in Yb-doped single-mode fibers with varying inversion levels. The method is applicable to large-mode-area fibers. We observed a seventh-order dependence of the PD rate on the excited-state Yb concentration for two different fibers; this result implies that PD of a Yb-doped fiber source fabricated using a particular fiber will be strongly dependent on the configuration of the device. (c) 2008 Optical Society of America. C1 [Koponen, Joona; Hotoleanu, Mircea] Liekki Corp, FIN-08500 Lohja, Finland. [Kliner, Dahv A. V.; Koplow, Jeffrey P.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Koponen, J (reprint author), Liekki Corp, Sorronrinne 9, FIN-08500 Lohja, Finland. EM joona.koponen@liekki.com NR 30 TC 63 Z9 63 U1 2 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 20 PY 2008 VL 47 IS 9 BP 1247 EP 1256 DI 10.1364/AO.47.001247 PG 10 WC Optics SC Optics GA 289IK UT WOS:000255048000012 PM 18709071 ER PT J AU Poyneer, LA Dillon, D Thomas, S Macintosh, BA AF Poyneer, Lisa A. Dillon, Daren Thomas, Sandrine Macintosh, Bruce A. TI Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics SO APPLIED OPTICS LA English DT Article ID FOURIER-TRANSFORM; SYSTEMS; SENSOR AB A 32 x 32 microelectricalmechanical systems mirror is controlled in a closed-loop adaptive optics test bed with a spatially filtered wavefront sensor (WFS), Fourier transform wavefront reconstruction, and calibration of references with a high-precision interferometer. When correcting the inherent aberration of the mirror, 0.7 nm rms phase error in the controllable band is achieved. when correcting an etched phase plate with atmospheric statistics, a dark hole 10(3) deeper than the uncontrollable phase is produced in the phase power spectral density. Compensation of the mirror's influence function is done with a Fourier filter, which results in improved loop convergence. Use of the spatial filter is shown to reduce the gain variability of the WFS in a quadcell configuration. (c) 2008 Optical Society of America. C1 [Poyneer, Lisa A.; Macintosh, Bruce A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dillon, Daren; Thomas, Sandrine] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Lab Adapt Opt, Santa Cruz, CA 95064 USA. RP Poyneer, LA (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM poyneer1@llnl.gov NR 22 TC 19 Z9 19 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 20 PY 2008 VL 47 IS 9 BP 1317 EP 1326 DI 10.1364/AO.47.001317 PG 10 WC Optics SC Optics GA 289IK UT WOS:000255048000021 PM 18709080 ER PT J AU Anderson, CN Naulleau, PP AF Anderson, Christopher N. Naulleau, Patrick P. TI Tilt sensitivity of the two-grating interferometer SO APPLIED OPTICS LA English DT Article ID TALBOT INTERFEROMETRY; INCREASED SHEAR; LIGHT AB Fringe formation in the two-grating interferometer is analyzed in the presence of a small parallelism error between the diffraction gratings assumed in the direction of grating shear. Our analysis shows that with partially coherent illumination, fringe contrast in the interference plane is reduced in the presence of nonzero grating tilt with the effect proportional to the grating tilt angle and the grating spatial frequencies. Our analysis also shows that for a given angle between the gratings there is an angle between the final grating and the interference plane that optimizes fringe contrast across the field. (c) 2008 Optical Society of America. C1 [Anderson, Christopher N.] Univ Calif Berkeley, Appl Sci & Technol Grp, Berkeley, CA 94720 USA. [Naulleau, Patrick P.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Anderson, CN (reprint author), Univ Calif Berkeley, Appl Sci & Technol Grp, Berkeley, CA 94720 USA. EM cnanderson@berkeley.edu NR 18 TC 4 Z9 4 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 20 PY 2008 VL 47 IS 9 BP 1327 EP 1335 DI 10.1364/AO.47.001327 PG 9 WC Optics SC Optics GA 289IK UT WOS:000255048000022 PM 18709081 ER PT J AU Kronberg, PP Bernet, ML Miniati, F Lilly, SJ Short, MB Higdon, DM AF Kronberg, P. P. Bernet, M. L. Miniati, F. Lilly, S. J. Short, M. B. Higdon, D. M. TI A global probe of cosmic magnetic fields to high redshifts SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : high-redshift; magnetic fields; methods : data analysis; quasars : general ID ROTATION MEASURE DISTRIBUTION; FARADAY-ROTATION; RADIO GALAXIES; ABSORPTION SYSTEMS; SPECTRA; SEARCH; ORIGIN; CLOUDS; QSOS AB Faraday rotation (rotation measure [RM]) probes of magnetic fields in the universe are sensitive to cosmological and evolutionary effects as z increases beyond similar to 1 because of the scalings of electron density and magnetic fields, and the growth in the number of expected intersections with galaxy-scale intervenors, dN/dz. In this new global analysis of an unprecedented large sample of RMs of high-latitude quasars extending out to z similar to 3: 7, we find that the distribution of RM broadens with redshift in the 20-80 rad m(-2) range, despite the (1 + z)(-2) wavelength dilution expected in the observed Faraday rotation. Our results indicate that the universe becomes increasingly "Faraday-opaque'' to sources beyond z similar to 2; that is, as z increases, progressively fewer sources are found with a "small'' RM in the observer's frame. This is in contrast to sources at z less than or similar to 1. They suggest that the environments of galaxies were significantly magnetized at high redshifts, with magnetic field strengths that were at least as strong within a few Gyr of the big bang as at the current epoch. We separately investigate a simple unevolving toy model in which the RM is produced by Mg II absorber systems, and find that it can approximately reproduce the observed trend with redshift. An additional possibility is that the intrinsic RM associated with the radio sources was much higher in the past, and we show that this is not a trivial consequence of the higher radio luminosities of the high-redshift sources. C1 [Kronberg, P. P.; Short, M. B.; Higdon, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kronberg, P. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Bernet, M. L.; Miniati, F.; Lilly, S. J.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. RP Kronberg, PP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kronberg@lanl.gov; mbernet@phys.ethz.ch; fm@phys.ethz.ch; simon.lilly@phys.ethz.ch; mbshort@lanl.gov; dhigdon@lanl.gov NR 27 TC 95 Z9 95 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2008 VL 676 IS 1 BP 70 EP 79 DI 10.1086/527281 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 275QG UT WOS:000254086100005 ER PT J AU Morokuma, T Doi, M Yasuda, N Akiyama, M Sekiguchi, K Furusawa, H Ueda, Y Totani, T Oda, T Nagao, T Kashikawa, N Murayama, T Ouchi, M Watson, MG Richmond, MW Lidman, C Perlmutter, S Spadafora, AL Aldering, G Wang, L Hook, IM Knop, RA AF Morokuma, Tomoki Doi, Mamoru Yasuda, Naoki Akiyama, Masayuki Sekiguchi, Kazuhiro Furusawa, Hisanori Ueda, Yoshihiro Totani, Tomonori Oda, Takeshi Nagao, Tohru Kashikawa, Nobunari Murayama, Takashi Ouchi, Masami Watson, Mike G. Richmond, Michael W. Lidman, Christopher Perlmutter, Saul Spadafora, Anthony L. Aldering, Greg Wang, Lifan Hook, Isobel M. Knop, Rob A. TI The Subaru/XMM-Newton deep survey (SXDS). V. Optically faint variable object survey SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : active; stars : variables : other; supernovae : general; surveys ID DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEI; SPECTRAL ENERGY-DISTRIBUTIONS; LYMAN BREAK GALAXIES; RR LYRAE STARS; INFRARED EXTRAGALACTIC SURVEY; SYNOPTIC SURVEY TELESCOPE; QUASI-STELLAR OBJECTS; QSO REDSHIFT SURVEY; ARRAY CAMERA IRAC AB We present our survey for optically faint variable objects using multiepoch ( 8-10 epochs over 2-4 years) i'- band imaging data obtained with Subaru Suprime-Cam over 0.918 deg(2) in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically variable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10 m class telescopes or the Hubble Space Telescope. The detection limit for variable components is i'(vari) similar to 25.5 mag. These variable objects were classified into variable stars, supernovae ( SNe), and active galactic nuclei ( AGNs), based on the optical morphologies, magnitudes, colors, and optical-mid- infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for 36% +/- 2% ( 51% +/- 3% for a bright samplewith i' < 24.4mag) of X- ray sources in the field. Number densities of variable objects as functions of time intervals Delta t and variable component magnitudes i'vari are obtained. Number densities of variable stars, SNe, and AGNs are 120, 489, and 579 objects deg(-2), respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright ( V similar to 22 mag) blue variable stars of the halo population and faint ( V similar to 23.5 mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of similar to 10(-2) kpc(-3) at a distance of > 150 kpc from the Galactic center. C1 [Morokuma, Tomoki; Sekiguchi, Kazuhiro; Nagao, Tohru; Kashikawa, Nobunari] Natl Inst Nat Sci, Natl Astron Observ Japan, Div Opt & Infrared Astron, Mitaka, Tokyo 1818588, Japan. [Morokuma, Tomoki; Doi, Mamoru] Univ Tokyo, Inst Astron, Grad Sch Sci, Mitaka, Tokyo 1810015, Japan. [Yasuda, Naoki] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Akiyama, Masayuki; Sekiguchi, Kazuhiro; Furusawa, Hisanori] Subaru Telescope, Natl Astron Observ Japan, Hilo, HI 96720 USA. [Ueda, Yoshihiro; Totani, Tomonori; Oda, Takeshi] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Murayama, Takashi] Tohoku Univ, Astron Inst, Grad Sch Sci, Sendai, Miyagi 9808578, Japan. [Ouchi, Masami] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Watson, Mike G.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Richmond, Michael W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Lidman, Christopher] European So Observ, Santiago 19001 19, Chile. [Perlmutter, Saul; Spadafora, Anthony L.; Aldering, Greg; Wang, Lifan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Wang, Lifan] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Hook, Isobel M.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Knop, Rob A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. RP Morokuma, T (reprint author), Natl Inst Nat Sci, Natl Astron Observ Japan, Div Opt & Infrared Astron, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. RI Ouchi, Masami/A-4490-2011; Yasuda, Naoki/A-4355-2011; Perlmutter, Saul/I-3505-2015 OI Perlmutter, Saul/0000-0002-4436-4661 NR 97 TC 19 Z9 19 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2008 VL 676 IS 1 BP 163 EP 183 DI 10.1086/527467 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 275QG UT WOS:000254086100014 ER PT J AU Margolin, LG Shashkov, M AF Margolin, L. G. Shashkov, M. TI Finite volume methods and the equations of finite scale: A mimetic approach SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT 9th ICFD Conference on Numerical Methods for Fluid Dynamics CY 2007 CL Univ Reading, Reading, ENGLAND SP Inst Computat Fluid Dynam HO Univ Reading DE mimetic approximation; finite volume; nonoscillatory methods ID HYPERBOLIC CONSERVATION-LAWS; ARTIFICIAL VISCOSITY; DIFFERENCE-SCHEMES; NUMERICAL-SOLUTION; DISCRETIZATIONS; DISCRETE; ACCURACY; FLUID AB After introducing the general concept of mimetic differencing, we focus on two specific methodologies, nonoscillatory methods and finite Volume approximations. We provide a brief historical account of the development of these two mimetic strategies. We then describe the extension of these strategies to new techniques, a discrete operator calculus and implicit large eddy simulation. In each case, we provide illustrative examples. Further abstraction of these ideas leads to the concept of equations of finite scale, which we advocate as a more appropriate PDE model for constructing numerical algorithms. Published in 2007 by John Wiley & Sons, Ltd. C1 [Margolin, L. G.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Shashkov, M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Margolin, LG (reprint author), Los Alamos Natl Lab, Div Appl Phys, POB 1663, Los Alamos, NM 87545 USA. EM len@lanl.gov NR 34 TC 7 Z9 7 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD MAR 20 PY 2008 VL 56 IS 8 BP 991 EP 1002 DI 10.1002/fld.1592 PG 12 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 284DK UT WOS:000254685700005 ER PT J AU Kapin, T Kucharik, M Limpouch, J Liska, R Vachal, P AF Kapin, T. Kucharik, M. Limpouch, J. Liska, R. Vachal, P. TI Arbitrary Lagrangian Eulerian method for laser plasma simulations SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT 9th ICFD Conference on Numerical Methods for Fluid Dynamics CY 2007 CL Univ Reading, Reading, ENGLAND SP Inst Computat Fluid Dynam HO Univ Reading DE laser plasma hydrodynamics; ALE method; high-velocity impact ID CONSERVATION AB The arbitrary Lagrangian Eulerian (ALE) 2D code has been developed in Cartesian and cylindrical geometries. For laser plasma simulations, the code has been extended by licat conductivity, laser absorption and QEOS equation of state. Three particular problems (originated in laser plasma experiments) for which pure Lagrangian simulation fails demonstrate the necessity Of Using the ALE method. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 [Kapin, T.; Limpouch, J.; Liska, R.; Vachal, P.] Czech Tech Univ Prague, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic. [Kucharik, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Liska, R (reprint author), Czech Tech Univ Prague, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague 1, Czech Republic. EM liska@siduri.fjfi.cvut.cz RI Vachal, Pavel/G-2131-2011; Limpouch, Jiri/L-8323-2013; Liska, Richard/C-3142-2009; OI Liska, Richard/0000-0002-6149-0440; Vachal, Pavel/0000-0002-6668-9045 NR 14 TC 6 Z9 6 U1 0 U2 10 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD MAR 20 PY 2008 VL 56 IS 8 BP 1337 EP 1342 DI 10.1002/fld.1567 PG 6 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 284DK UT WOS:000254685700045 ER PT J AU Kucharik, M Shashkov, M AF Kucharik, M. Shashkov, M. TI Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT 9th ICFD Conference on Numerical Methods for Fluid Dynamics CY 2007 CL Univ Reading, Reading, ENGLAND SP Inst Computat Fluid Dynam HO Univ Reading DE ALE; conservative interpolations; Voronoi meshes ID LINEARITY AB Remapping is one of the essential parts of most arbitrary Lagrangian-Eulerian methods. Here, we extend the idea of swept integration introduced in (J. Comput. Phys. 2003; 184(1):266-298) to meshes with connectivity changing in Voronoi-like manner. To demonstrate properties of the developed method, we present several numerical examples. Published in 2007 by John Wiley & Sons, Ltd. C1 [Kucharik, M.; Shashkov, M.] Los Alamos Natl Lab, T7 Grp, MS B284, Los Alamos, NM 87545 USA. RP Kucharik, M (reprint author), Los Alamos Natl Lab, T7 Grp, MS B284, POB 1663, Los Alamos, NM 87545 USA. EM kucharik@lanl.gov NR 7 TC 12 Z9 12 U1 0 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD MAR 20 PY 2008 VL 56 IS 8 BP 1359 EP 1365 DI 10.1002/fld.1577 PG 7 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 284DK UT WOS:000254685700048 ER PT J AU Shashkov, M AF Shashkov, M. TI Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT 9th ICFD Conference on Numerical Methods for Fluid Dynamics CY 2007 CL Univ Reading, Reading, ENGLAND SP Inst Computat Fluid Dynam HO Univ Reading DE multimaterial hydro; closure models; mixed cells; ALE; finite difference methods; compressible flow ID 2-PHASE FLOW AB High-speed multimaterial flows with strong shear deformations occur in many problems. Due to the nature of shock wave propagation in complex materials, the arbitrary Lagrangian-Eulerian (ALE) methods are currently the only proven technology to simulate such problems. In ALE methods, the mesh does not move with the fluid, so that it is unavoidable that mixed cells containing two or more materials will appear; such mixed cells require a special Closure model to be well posed. In this paper, we will discuss some of the possible models. Published in 2007 by John Wiley & Sons, Ltd. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shashkov, M (reprint author), Los Alamos Natl Lab, T-7 MS B284, Los Alamos, NM 87545 USA. EM shashkov@lanl.gov NR 9 TC 25 Z9 25 U1 0 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD MAR 20 PY 2008 VL 56 IS 8 BP 1497 EP 1504 DI 10.1002/fld.1574 PG 8 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 284DK UT WOS:000254685700065 ER PT J AU Chandra, D Sharma, A Chellappa, R Cathey, WN Lynch, FE Bowman, RC Wermer, JR Paglieri, SN AF Chandra, Dhanesh Sharma, Archana Chellappa, Raja Cathey, William N. Lynch, Franklin E. Bowman, Robert C., Jr. Wermer, Joseph R. Paglieri, Stephen N. TI Hydriding and structural characteristics of thermally cycled and cold-worked V-0.5 at.%C alloy SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE metal hydrides; domain structure; thermal cycling; cold-working; V-0.5 at.%C alloy ID METAL-HYDROGEN SYSTEMS; X-RAY-DIFFRACTION; INTERMETALLIC COMPOUND; H SYSTEMS; HYSTERESIS; VANADIUM; THERMODYNAMICS; ABSORPTION; PRESSURE; NIOBIUM AB High pressure hydrides Of V0.995C0.005 were thermally cycled between beta(2)- and gamma-phases hydrides for potential use in cryocoolers/heat pumps for space applications. The effect of addition of carbon to vanadium, on the plateau enthalpies of the high pressure beta(2) + gamma region is minimal. This is in contrast to the calculated plateau enthalpies for low pressure (a + 01) mixed phases which showed a noticeable lowering of the values. Thermal cycling between beta(2)-and gamma-phase hydrides increased the absorption pressures but desorption pressure did not change significantly and the free energy loss due to hysteresis also increased. Hydriding of the alloy with prior cold-work increased the pressure hysteresis significantly and lowered the hydrogen capacity. In contrast to the alloy without any prior straining (as-cast), desorption pressure of the alloy with prior cold-work also decreased significantly. Microstrains, (1/2), in the beta(2)-phase lattice of the thermally cycled hydrides decreased after 778 cycles and the domain sizes increased. However, in the gamma-phase, both the microstrains and the domain sizes decreased after thermal cycling indicating no particle size effect. The dehydrogenated alpha-phase after 778 thermal cycles also showed residual microstrains. in the lattice, similar to those observed in intermetallic hydrides. The effect of thermal cycling (up to 4000 cycles between beta(2)- and gamma-phases) and cold working on absorption/desorption pressures, hydrogen storage capacity, microstrains, long-range strains, and domain sizes of beta(2)- and gamma-phase hydrides Of V0.995C0.005 alloys are presented. Published by Elsevier B.V. C1 [Chandra, Dhanesh; Sharma, Archana; Chellappa, Raja; Cathey, William N.] Univ Nevada, Reno, NV 89557 USA. [Lynch, Franklin E.] HCI, Littleton, CO 80125 USA. [Bowman, Robert C., Jr.] NASA, Jet Propuls Lab, Pasadena, CA 91109 USA. [Wermer, Joseph R.; Paglieri, Stephen N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chandra, D (reprint author), Univ Nevada, Reno, NV 89557 USA. EM dchandra@unr.edu OI Bowman, Robert/0000-0002-2114-1713 NR 66 TC 21 Z9 21 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD MAR 20 PY 2008 VL 452 IS 2 BP 312 EP 324 DI 10.1016/j.jallcom.2006.11.078 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 275UI UT WOS:000254096800024 ER PT J AU Gleckler, PJ Taylor, KE Doutriaux, C AF Gleckler, P. J. Taylor, K. E. Doutriaux, C. TI Performance metrics for climate models SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WATER-VAPOR; PROJECT; GPCP; UNCERTAINTIES; VARIABILITY; PRODUCTS; DATASET; CLOUDS; ISCCP AB Objective measures of climate model performance are proposed and used to assess simulations of the 20th century, which are available from the Coupled Model Intercomparison Project (CMIP3) archive. The primary focus of this analysis is on the climatology of atmospheric fields. For each variable considered, the models are ranked according to a measure of relative error. Based on an average of the relative errors over all fields considered, some models appear to perform substantially better than others. Forming a single index of model performance, however, can be misleading in that it hides a more complex picture of the relative merits of different models. This is demonstrated by examining individual variables and showing that the relative ranking of models varies considerably from one variable to the next. A remarkable exception to this finding is that the so-called "mean model'' consistently outperforms all other models in nearly every respect. The usefulness, limitations and robustness of the metrics defined here are evaluated 1) by examining whether the information provided by each metric is correlated in any way with the others, and 2) by determining how sensitive the metrics are to such factors as observational uncertainty, spatial scale, and the domain considered (e. g., tropics versus extra-tropics). An index that gauges the fidelity of model variability on interannual time-scales is found to be only weakly correlated with an index of the mean climate performance. This illustrates the importance of evaluating a broad spectrum of climate processes and phenomena since accurate simulation of one aspect of climate does not guarantee accurate representation of other aspects. Once a broad suite of metrics has been developed to characterize model performance it may become possible to identify optimal subsets for various applications. C1 [Gleckler, P. J.; Taylor, K. E.; Doutriaux, C.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP Gleckler, PJ (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. EM pgleckler@llnl.gov RI Taylor, Karl/F-7290-2011 OI Taylor, Karl/0000-0002-6491-2135 NR 33 TC 367 Z9 376 U1 6 U2 80 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 20 PY 2008 VL 113 IS D6 AR D06104 DI 10.1029/2007JD008972 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 281UD UT WOS:000254523500002 ER PT J AU Pan, AC Sezer, D Roux, B AF Pan, Albert C. Sezer, Deniz Roux, Benoit TI Finding transition pathways using the string method with swarms of trajectories SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; PROTEIN-FOLDING KINETICS; CONFORMATIONAL-CHANGE; SINGLE-PARAMETER; FREE-ENERGY; ISOMERIZATION; COORDINATE; ENERGETICS; MECHANICS; ALGORITHM AB An approach to find transition pathways in complex systems is presented. The method, which is related to the string method in collective variables of Maragliano et al. (J. Chem. Phys. 2006, 125, 024106), is conceptually simple and straightforward to implement. It consists of refining a putative transition path in the multidimensional space supported by a set of collective variables using the average dynamic drift of those variables. This drift is estimated on-the-fly via swarms of short unbiased trajectories started at different points along the path. Successive iterations of this algorithm, which can be naturally distributed over many computer nodes with negligible interprocessor communication, refine an initial trial path toward the most probable transition path (MPTP) between two stable basins. The method is first tested by determining the pathway for the C-7eq to C-7ax transition in an all-atom model of the alanine dipeptide in vacuum, which has been studied previously with the string method in collective variables. A transition path is found with a committor distribution peaked at 1/2 near the free energy maximum, in accord with previous results. Last, the method is applied to the allosteric conformational change in the nitrogen regulatory protein C (NtrC), represented here with a two-state elastic network model. Even though more than 550 collective variables are used to describe the conformational change, the path converges rapidly. Again, the committor distribution is found to be peaked around 1/2 near the free energy maximum between the two stable states, confirming that a genuine transition state has been localized in this complex multidimensional system. C1 [Pan, Albert C.; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, Chicago, IL 60637 USA. [Roux, Benoit] Argonne Natl Lab, Div Math & Comp Sci, Biosci Div, Argonne, IL 60439 USA. [Sezer, Deniz] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. RP Roux, B (reprint author), Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, 920 E 58Th St, Chicago, IL 60637 USA. EM roux@uchicago.edu RI Pan, Albert/G-1475-2013; OI Pan, Albert/0000-0001-5050-5603 FU NCI NIH HHS [CA-93577, R01 CA093577, R01 CA093577-05] NR 41 TC 135 Z9 135 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 20 PY 2008 VL 112 IS 11 BP 3432 EP 3440 DI 10.1021/jp0777059 PG 9 WC Chemistry, Physical SC Chemistry GA 273QD UT WOS:000253945900023 PM 18290641 ER PT J AU Harder, E Anisimov, VM Whitfield, TW MacKerell, AD Roux, B AF Harder, Edward Anisimov, Victor M. Whitfield, Troy W. MacKerell, Alexander D., Jr. Roux, Benoit TI Understanding the dielectric properties of liquid amides from a polarizable force field SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CLASSICAL DRUDE OSCILLATOR; CAR-PARRINELLO EQUATIONS; PROTEIN SECONDARY STRUCTURE; COMPUTER-SIMULATION; N-METHYLACETAMIDE; BETA-HAIRPIN; HALIDE-IONS; VIBRATIONAL SPECTROSCOPY; FLUCTUATING CHARGE AB The role played by electronic polarization in the dielectric properties of liquid N-methyl acetamide (NMA) is examined using molecular dynamics simulations with a polarizable force field based on classical Drude oscillators. The model presented is the first force field shown to reproduce the anomalously large dielectric constant of liquid NMA. Details of the molecular polarizability are found to be important. For instance, all elements of the polarizability tensor, rather then just the trace, impact on the condensed phase properties. Two factors related to electronic polarizability are found to contribute to this large dielectric constant. First is the significant enhancement of the mean amide molecular dipole magnitude, which is 50% larger in the liquid than in the gas phase. Second is the consequent strong hydrogen bonding between molecular neighbors that enhances the orientational alignment of the molecular dipoles. Polarizable. models of amide compounds that have two (acetamide) and zero (N,N-dimethyl acetamide) polar hydrogen-bond donor atoms are also investigated. Experimentally, the neat liquid dielectric constants at 373 K are 100 for NMA, 66 for acetamide and 26 for N,N-dimethyl acetamide. The polarizable models replicate this trend, predicting a dielectric constant of 92 +/- 5 for NMA, 66 +/- 3 for acetamide and 23 +/- 1 for N,N-dimethyl acetamide. C1 [Anisimov, Victor M.; MacKerell, Alexander D., Jr.] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Baltimore, MD 21201 USA. [Harder, Edward; Roux, Benoit] Univ Chicago, Ctr Integrat Sci, Chicago, IL 60637 USA. [Whitfield, Troy W.] Argonne Natl Lab, Div Math & Comp Sci, Biosci Div, Argonne, IL 60439 USA. RP MacKerell, AD (reprint author), Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Baltimore, MD 21201 USA. EM alex@outerbanks.umaryland.edu; roux@uchicago.edu OI MacKerell, Alex/0000-0001-8287-6804 FU NIGMS NIH HHS [GM 51501, GM 072558, R01 GM051501, R01 GM072558, R29 GM051501] NR 99 TC 70 Z9 70 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 20 PY 2008 VL 112 IS 11 BP 3509 EP 3521 DI 10.1021/jp709729d PG 13 WC Chemistry, Physical SC Chemistry GA 273QD UT WOS:000253945900032 PM 18302362 ER PT J AU Hubert, C Bachelot, R Plain, J Kostcheev, S Lerondel, G Juan, M Royer, P Zou, SL Schatz, GC Wiederrecht, GP Gray, SK AF Hubert, Christophe Bachelot, Renaud Plain, Jerome Kostcheev, Sergei Lerondel, Gilles Juan, Mathieu Royer, Pascal Zou, Shengli Schatz, George C. Wiederrecht, Gary P. Gray, Stephen K. TI Near-field polarization effects in molecular-motion-induced photochemical imaging SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DISCRETE-DIPOLE APPROXIMATION; METAL NANOPARTICLES; POLYMERS; ANISOTROPY AB We demonstrate near-field polarization-sensitive photochemical imaging of the optical near fields produced by metal nanostructures under a variety of illumination conditions. The method relies on the optically induced vectorial molecular mass transport of a light-sensitive polymer. The experimental and theoretical results clearly show that this method can map the three spatial components of the optical near field of complex metal nanostructures. The method was applied to map the electromagnetic near field of silver bowtie nanostructures. In particular, we find that longitudinally polarized plasmons are confined at the top of the metallic structures. Furthermore, the intricate optical near fields in the polymer lead to molecular trapping regions at intensity minima. C1 [Hubert, Christophe; Bachelot, Renaud; Plain, Jerome; Kostcheev, Sergei; Lerondel, Gilles; Juan, Mathieu; Royer, Pascal] Univ Technol Troyes, Lab Nanotechnol & Instrumentat Opt, Inst Charles Delaunay, CNRS,FRE 2848, F-10000 Troyes, France. [Zou, Shengli] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA. [Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wiederrecht, Gary P.; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wiederrecht, Gary P.; Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Hubert, C (reprint author), Univ St Etienne, Lab Hubert Curien, CNRS, UMR 5516, 18 Rue Professeur Benoit Lauras, F-42000 St Etienne, France. EM Christophe.hubert@univ-st-etienne.fr; renaud.bachelot@utt.fr RI Plain, Jerome/A-2888-2009; Juan, Mathieu/C-6331-2008; Lerondel, Gilles/D-1559-2011; Bachelot, Renaud/M-6888-2015 OI Juan, Mathieu/0000-0002-2740-8001; NR 25 TC 32 Z9 32 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 20 PY 2008 VL 112 IS 11 BP 4111 EP 4116 DI 10.1021/jp7096263 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 273QG UT WOS:000253946200016 ER PT J AU Jung, HS Lee, JK Lee, J Kang, BS Jia, Q Nastasi, M AF Jung, Hyun Suk Lee, Jung-Kun Lee, Jaegab Kang, Bo Soo Jia, Quanxi Nastasi, Michael TI Strain relaxation in sol-gel grown epitaxial anatase thin films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TIO2 FILMS; LOW-COST; LAALO3; SUBSTRATE; MICROSTRUCTURE; MICROSCOPY; INTERFACES; DEPOSITION; STRESS; OXIDES AB Anatase TiO2 thin films on LaAlO3 (LAO) substrates were epitaxially grown at a temperature as low as 350 degrees C using a simple sol-gel process. X-ray diffraction and high-resolution transmission electron microscopy showed that the anatase films have the epitaxial relationship of (001)(TiO2)parallel to(001)(LaAlO3). While the low-temperature growth of the anatase film yielded a residual strain, subsequent annealing at higher temperatures can remove the strain and recover the lattice parameters of a perfect anatase crystal. Measurements of the oxygen content in the anatase films by non-Rutherford elastic resonance scattering analysis suggest that the strain relaxation during higher temperature annealing is due to the incorporation of oxygen and the concomitant annihilation of oxygen vacancies. C1 [Jung, Hyun Suk; Lee, Jung-Kun; Jia, Quanxi; Nastasi, Michael] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Jung, Hyun Suk; Lee, Jaegab] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. [Kang, Bo Soo] Samsung Adv Inst Technol, Analyt Engn Ctr, Suwon 440600, South Korea. RP Lee, JK (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM jul37@engr.pitt.edu RI Jung, Hyun Suk/D-4745-2011; Jia, Q. X./C-5194-2008; Jung, Hyun Suk/H-3659-2015; OI Jung, Hyun Suk/0000-0002-7803-6930 NR 30 TC 9 Z9 10 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 20 PY 2008 VL 112 IS 11 BP 4205 EP 4208 DI 10.1021/jp076194n PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 273QG UT WOS:000253946200031 ER PT J AU Mei, D Deskins, NA Dupuis, M Ge, QF AF Mei, Donghai Deskins, N. Aaron Dupuis, Michel Ge, Qingfeng TI Density functional theory study of methanol decomposition on the CeO2(110) surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; IR MOLECULAR PROBE; LOW-INDEX SURFACES; ELECTRONIC-STRUCTURE; OXYGEN VACANCY; CERIUM OXIDE; POLYCRYSTALLINE CERIA; SADDLE-POINTS AB Methanol decomposition on the stoichiometric CeO2(110) surface has been investigated using density functional theory slab calculations. Three possible initial steps to decompose methanol by breaking one of three bonds (O-H, C-O, and C-H) of methanol were examined. The relative order of thermodynamic stability for the three possible bond scission steps is C-H > O-H > C-O. We further isolated transition states and determined activation energies for each of the bond-breaking modes using the nudged elastic method. The activation barrier for the most favorable dissociation mode, the O-H bond scission, is 0.3 eV on the (110) surface. An even lower activation barrier (< 0.1 eV) has been obtained on the CeO2(111) surface for the same bond-breaking mode. We also calculated pre-exponential factors based on the harmonic approximation and obtained overall rate constants at 300 and 500 K for all three initial decomposition steps. In contrast to the order of thermodynamic stability, the calculated bond breaking barriers indicated a different favorable bond breaking order: O-H > C-O > C-H. Our results are consistent with experimental observation that methoxy is the dominant surface species after the stoichiometric CeO2 surface was exposed to methanol. The experimentally observed methanol chemistry was determined by the kinetics of the initial dissociation steps rather than the thermodynamic stability of product states.. The surface coverage of methanol was found to affect the relative stability between molecular and dissociative adsorption modes: Dissociative adsorption modes are preferred for methanol coverages up to 0.5 ML but only molecular adsorption was found to be stable at a full monolayer coverage. C1 [Mei, Donghai; Deskins, N. Aaron; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Ge, Qingfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. RP Mei, D (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnl.gov; qge@chem.siu.edu RI Ge, Qingfeng/A-8498-2009; Mei, Donghai/D-3251-2011; Deskins, Nathaniel/H-3954-2012; Mei, Donghai/A-2115-2012 OI Ge, Qingfeng/0000-0001-6026-6693; Mei, Donghai/0000-0002-0286-4182 NR 61 TC 23 Z9 24 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 20 PY 2008 VL 112 IS 11 BP 4257 EP 4266 DI 10.1021/jp710484b PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 273QG UT WOS:000253946200038 ER PT J AU Shen, MM Liu, DJ Jenks, CJ Thiel, PA AF Shen, Mingmin Liu, Da-Jiang Jenks, Cynthia J. Thiel, Patricia A. TI Novel self-organized structure of a Ag-S complex on the Ag(111) surface below room temperature SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-DYNAMICS; SULFUR; SILVER; OXYGEN; EPOXIDATION; DIFFUSION; ETHYLENE; ENVIRONMENTS; MECHANISM; OXIDATION AB A well-ordered, self-organized dot-row structure appears after adsorption of S on Ag(111) at 200 K. This dot-row motif, which exhibits fixed spacing between dots within rows, is present over a wide range of coverage. The dots are probably Ag3S3 clusters with adsorbed S in the spaces between dots. Dynamic rearrangements are observed. Small domains of aligned dot-rows form during adsorption and grow quickly after adsorption ends. The domains also exhibit large equilibrium fluctuations after adsorption. The dot-row structure disappears reversibly upon heating above 200 K and transforms reversibly to an "elongated island" structure upon cooling below 200 K. DFT supports the assignment of the dots as Ag3S3 trimers and also lends insight into the possible origins of other structures observed in this complex system. C1 [Shen, Mingmin; Thiel, Patricia A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thiel, Patricia A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Liu, Da-Jiang; Jenks, Cynthia J.; Thiel, Patricia A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Shen, MM (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM shenmm@iastate.edu RI Shen, Mingmin/A-9293-2012 NR 46 TC 16 Z9 16 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 20 PY 2008 VL 112 IS 11 BP 4281 EP 4290 DI 10.1021/jp710751b PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 273QG UT WOS:000253946200041 ER PT J AU Dai, B Sholl, DS Johnson, JK AF Dai, Bing Sholl, David S. Johnson, J. Karl TI First-principles study of experimental and hypothetical Mg(BH4)(2) crystal structures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID REVERSIBLE HYDROGEN STORAGE; DESTABILIZED METAL-HYDRIDES; AUGMENTED-WAVE METHOD; PRECURSOR NANOPARTICLES; MAGNESIUM BOROHYDRIDE; MECHANICAL-PROPERTIES; ELECTRONIC-STRUCTURE; ZEOLITE SYNTHESIS; TETRAHYDROBORATE; STABILITY AB We have used first-principles density functional theory to relax the experimentally reported crystal structures for the low- and high-temperature phases of Mg(BH4)(2), which contain 330 and 704 atoms per unit cell, respectively. The relaxed low-temperature structure was found to belong to the P6(1)22 space group, whereas the original experimental structure has P6(1) symmetry. The higher symmetry identified in our calculations may be the T = 0 ground-state structure or may be the actual room-temperature structure because it is difficult to distinguish between P6(1) and P6(1)22 with the available powder diffraction data. We have identified several hypothetical structures for Mg(BH4)2 that have calculated total energies that are close to the low-temperature ground-state structure, including two structures that lie within 0.2 eV per formula unit of the ground-state structure. These alternate structures are all much simpler than the experimentally observed structure. We have used Bader charge analysis to compute the charge distribution in the P6122 Mg(BH4)2 structure and have compared this with charges in the much simpler Mg(AlH4)(2) structure. We find that the B-H bonds are significantly more covalent than the Al-H bonds; this difference in bond character may contribute to the very different crystal structures for these two materials. Our calculated vibrational frequencies for the P6122 structure are in good agreement with experimental Raman spectra for the low-temperature Mg(BH4)2 structure. The calculated total energy of the high-temperature structure is only about 0.1 eV per formula unit higher in energy than the low-temperature structure. C1 [Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Sholl, David S.; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Sholl, David S.] Georgia Inst Technol, Dept Chem & Biomol Engn, Atlanta, GA 30332 USA. [Dai, Bing] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. EM karlj@pitt.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 NR 55 TC 53 Z9 54 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 20 PY 2008 VL 112 IS 11 BP 4391 EP 4395 DI 10.1021/jp710154t PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 273QG UT WOS:000253946200056 ER PT J AU Hightower, M Pierce, SA AF Hightower, Mike Pierce, Suzanne A. TI The energy challenge SO NATURE LA English DT Editorial Material C1 [Hightower, Mike] Sandia Natl Labs, Energy Syst Anal Dept, Albuquerque, NM 87185 USA. [Pierce, Suzanne A.] Sandia Natl Labs, Geohydrol Dept, Albuquerque, NM 87185 USA. RP Hightower, M (reprint author), Sandia Natl Labs, Energy Syst Anal Dept, POB 5800, Albuquerque, NM 87185 USA. OI Pierce, Suzanne A/0000-0002-3050-1987 NR 3 TC 82 Z9 83 U1 3 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAR 20 PY 2008 VL 452 IS 7185 BP 285 EP 286 DI 10.1038/452285a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 276BX UT WOS:000254117400024 PM 18354460 ER PT J AU Peskin, ME AF Peskin, Michael E. TI Particle physics - Song of the electroweak penguin SO NATURE LA English DT Editorial Material ID CP-VIOLATION; B-MESONS; DECAYS C1 Stanford Univ, Stanford Linear Accelerator Ctr, Particle Phys & Astrophys Div, Theoret Phys Grp, Menlo Pk, CA 94025 USA. RP Peskin, ME (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Particle Phys & Astrophys Div, Theoret Phys Grp, Menlo Pk, CA 94025 USA. OI Peskin, Michael/0000-0001-6403-6828 NR 13 TC 15 Z9 15 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAR 20 PY 2008 VL 452 IS 7185 BP 293 EP 294 DI 10.1038/452293a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 276BX UT WOS:000254117400029 PM 18354467 ER PT J AU Desnues, C Rodriguez-Brito, B Rayhawk, S Kelley, S Tran, T Haynes, M Liu, H Furlan, M Wegley, L Chau, B Ruan, YJ Hall, D Angly, FE Edwards, RA Li, LL Thurber, RV Reid, RP Siefert, J Souza, V Valentine, DL Swan, BK Breitbart, M Rohwer, F AF Desnues, Christelle Rodriguez-Brito, Beltran Rayhawk, Steve Kelley, Scott Tran, Tuong Haynes, Matthew Liu, Hong Furlan, Mike Wegley, Linda Chau, Betty Ruan, Yijun Hall, Dana Angly, Florent E. Edwards, Robert A. Li, Linlin Thurber, Rebecca Vega Reid, R. Pamela Siefert, Janet Souza, Valeria Valentine, David L. Swan, Brandon K. Breitbart, Mya Rohwer, Forest TI Biodiversity and biogeography of phages in modern stromatolites and thrombolites SO NATURE LA English DT Article ID VIRAL COMMUNITIES; ONLINE TOOL; VIRUSES; MARINE; ENVIRONMENTS; DIVERSITY; SEQUENCES; ALIGNMENT AB Viruses, and more particularly phages ( viruses that infect bacteria), represent one of the most abundant living entities in aquatic and terrestrial environments. The biogeography of phages has only recently been investigated and so far reveals a cosmopolitan distribution of phage genetic material ( or genotypes)(1-4). Here we address this cosmopolitan distribution through the analysis of phage communities in modern microbialites, the living representatives of one of the most ancient life forms on Earth. On the basis of a comparative metagenomic analysis of viral communities associated with marine ( Highborne Cay, Bahamas) and freshwater ( Pozas Azules II and Rio Mesquites, Mexico) microbialites, we show that some phage genotypes are geographically restricted. The high percentage of unknown sequences recovered from the three metagenomes (>97%), the low percentage similarities with sequences from other environmental viral ( n = 42) and microbial ( n = 36) metagenomes, and the absence of viral genotypes shared among microbialites indicate that viruses are genetically unique in these environments. Identifiable sequences in the Highborne Cay metagenome were dominated by single- stranded DNA microphages that were not detected in any other samples examined, including sea water, fresh water, sediment, terrestrial, extreme, metazoan- associated and marine microbial mats. Finally, a marine signature was present in the phage community of the Pozas Azules II microbialites, even though this environment has not been in contact with the ocean for tens of millions of years. Taken together, these results prove that viruses in modern microbialites display biogeographical variability and suggest that they may be derived from an ancient community. C1 [Desnues, Christelle; Rodriguez-Brito, Beltran; Rayhawk, Steve; Kelley, Scott; Tran, Tuong; Haynes, Matthew; Liu, Hong; Furlan, Mike; Wegley, Linda; Chau, Betty; Hall, Dana; Angly, Florent E.; Edwards, Robert A.; Li, Linlin; Thurber, Rebecca Vega; Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Rodriguez-Brito, Beltran; Rayhawk, Steve; Edwards, Robert A.] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Kelley, Scott; Edwards, Robert A.; Rohwer, Forest] San Diego State Univ, Ctr Microbial Sci, San Diego, CA 92182 USA. [Ruan, Yijun] Genome Inst Singapore, Singapore 138672, Singapore. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Reid, R. Pamela] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Siefert, Janet] Rice Univ, Dept Stat, Houston, TX 77251 USA. [Souza, Valeria] Univ Nacl Autonoma Mexico, Dept Ecol Evolut, Inst Ecol, Mexico City 04510, DF, Mexico. [Valentine, David L.; Swan, Brandon K.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. [Breitbart, Mya] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. RP Desnues, C (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM cdesnues@yahoo.fr RI Breitbart, Mya/B-1366-2009; Angly, Florent/A-7717-2011; Li, Linlin/E-3335-2010; Valentine, David/E-5594-2012; Desnues, Christelle/B-1383-2010; OI Breitbart, Mya/0000-0003-3210-2899; Angly, Florent/0000-0002-8999-0738; Desnues, Christelle/0000-0002-2178-0355; Valentine, David/0000-0001-5914-9107 NR 30 TC 131 Z9 139 U1 5 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAR 20 PY 2008 VL 452 IS 7185 BP 340 EP U5 DI 10.1038/nature06735 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 276BX UT WOS:000254117400044 PM 18311127 ER PT J AU Nomura, Y Papucci, M AF Nomura, Yasunori Papucci, Michele TI A simple and realistic model of supersymmetry breaking SO PHYSICS LETTERS B LA English DT Article ID GAUGE MEDIATION; SUPERGRAVITY; HIERARCHY AB We present a simple and realistic model of supersymmetry breaking. In addition to the minimal supersymmetric standard model, we only introduce a hidden sector gauge group SU(5) and three fields X, F and (F) over bar. Supersymmetry is broken at a local minimum of the potential, and its effects are transmitted to the supersymmetric standard model sector through both standard model gauge loops and local operators suppressed by the cutoff scale, which is taken to be the unification scale. The form of the local operators is controlled by a U(1) symmetry. The generated supersymmetry breaking and mu parameters are comparable in size, and no flavor or CP violating terms arise. The spectrum of the first two generation superparticles is that of minimal gauge mediation with the number of messengers N-mess = 5 and the messenger scale 10(11) GeV less than or similar to M-mess less than or similar to 10(13) GeV. The spectrum of the Higgs bosons and third generation superparticles, however, can deviate from it. The lightest supersymmetric particle is the gravitino with a mass of order (1-10) GeV. (C) 2008 Elsevier B.V. All rights reserved. C1 [Nomura, Yasunori] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Nomura, Yasunori] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Papucci, Michele] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Nomura, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM ynomura@Ibl.gov OI Nomura, Yasunori/0000-0002-1497-1479 NR 32 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 20 PY 2008 VL 661 IS 2-3 BP 145 EP 153 DI 10.1016/j.physletb.2008.01.052 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282GY UT WOS:000254557000015 ER PT J AU Wu, SL Mickley, LJ Leibensperger, EM Jacob, DJ Rind, D Streets, DG AF Wu, Shiliang Mickley, Loretta J. Leibensperger, Eric M. Jacob, Daniel J. Rind, David Streets, David G. TI Effects of 2000-2050 global change on ozone air quality in the United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL TROPOSPHERIC OZONE; SURFACE OZONE; CLIMATE-CHANGE; ISOPRENE EMISSION; GODDARD-INSTITUTE; MODEL; POLLUTION; DISTRIBUTIONS; SENSITIVITY; CHEMISTRY AB We investigate the effects on U. S. ozone air quality from 2000 - 2050 global changes in climate and anthropogenic emissions of ozone precursors by using a global chemical transport model ( GEOS- Chem) driven by meteorological fields from the NASA Goddard Institute for Space Studies general circulation model ( NASA/ GISS GCM). We follow the Intergovernmental Panel on Climate Change A1B scenario and separate the effects from changes in climate and anthropogenic emissions through sensitivity simulations. The 2000 - 2050 changes in anthropogenic emissions reduce the U. S. summer daily maximum 8- hour ozone by 2 - 15 ppb, but climate change causes a 2 - 5 ppb positive offset over the Midwest and northeastern United States, partly driven by decreased ventilation from convection and frontal passages. Ozone pollution episodes are far more affected by climate change than mean values, with effects exceeding 10 ppb in the Midwest and northeast. We find that ozone air quality in the southeast is insensitive to climate change, reflecting compensating effects from changes in isoprene emission and air pollution meteorology. We define a " climate change penalty'' as the additional emission controls necessary to meet a given ozone air quality target. We find that a 50% reduction in U. S. NOx emissions is needed in the 2050 climate to reach the same target in the Midwest as a 40% reduction in the 2000 climate. Emission controls reduce the magnitude of this climate change penalty and can even turn it into a climate benefit in some regions. C1 [Wu, Shiliang; Mickley, Loretta J.; Leibensperger, Eric M.; Jacob, Daniel J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Rind, David] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wu, SL (reprint author), Harvard Univ, Sch Engn & Appl Sci, Pierce Hall,20 Oxford St, Cambridge, MA 02138 USA. EM s.wu@post.harvard.edu RI Mickley, Loretta/D-2021-2012; Chem, GEOS/C-5595-2014; OI Mickley, Loretta/0000-0002-7859-3470; Streets, David/0000-0002-0223-1350 NR 64 TC 126 Z9 127 U1 2 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 19 PY 2008 VL 113 IS D6 AR D06302 DI 10.1029/2007JD008917 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 281UC UT WOS:000254523400002 ER PT J AU Bud'ko, SL Law, SA Canfield, PC Samolyuk, GD Torikachvili, MS Schmiedeshoff, GM AF Bud'ko, S. L. Law, S. A. Canfield, P. C. Samolyuk, G. D. Torikachvili, M. S. Schmiedeshoff, G. M. TI Thermal expansion and magnetostriction of pure and doped RAgSb2 (R = Y, Sm, La) single crystals SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 13th Conference on Liquid and Amorphous Metals CY JUL 08-14, 2007 CL Ekaterinburg, RUSSIA ID ND; RESISTIVITY; DEPENDENCE; TRANSPORT; COMPOUND; PRESSURE; CEAGSB2; TM; GD; CE AB Data on temperature-dependent, anisotropic thermal expansion in pure and doped RAgSb2 (R = Y, Sm, La) single crystals are presented. Using the Ehrenfest relation and heat capacity measurements, uniaxial pressure derivatives for long range magnetic ordering and charge density wave transition temperatures are evaluated and compared with the results of the direct measurements under hydrostatic pressure. In-plane and c-axis pressure have opposite effects on the phase transitions in these materials, with in-plane effects being significantly weaker. Quantum oscillations in magnetostriction were observed for the three pure compounds, with the possible detection of new frequencies in SmAgSb2 and LaAgSb2. The uniaxial (along the c-axis) pressure derivatives of the dominant extreme orbits (beta) were evaluated for YAgSb2 and LaAgSb2. C1 [Bud'ko, S. L.; Law, S. A.; Canfield, P. C.; Samolyuk, G. D.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.; Law, S. A.; Canfield, P. C.; Samolyuk, G. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Schmiedeshoff, G. M.] Occidental Coll, Dept Phys, Los Angeles, CA 90041 USA. RP Bud'ko, SL (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 NR 32 TC 2 Z9 2 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 19 PY 2008 VL 20 IS 11 AR 115210 DI 10.1088/0953-8984/20/11/115210 PG 10 WC Physics, Condensed Matter SC Physics GA 275VV UT WOS:000254101200036 PM 21694227 ER PT J AU Hosokawa, S Pilgrim, WC Sinn, H Alp, EE AF Hosokawa, S. Pilgrim, W-C Sinn, H. Alp, E. E. TI The possibility of transverse excitation modes in liquid Ga SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 13th Conference on Liquid and Amorphous Metals CY JUL 08-14, 2007 CL Ekaterinburg, RUSSIA ID X-RAY-SCATTERING; MICROSCOPIC DYNAMICS; ELECTRONIC-PROPERTIES; GALLIUM; NEUTRONS; POINT; WATER AB The dynamic structure factor S(Q, omega) of liquid Ga was measured at 100 degrees C using a high resolution inelastic x-ray scattering (IXS) spectrometer at 3-ID-C/APS. The spectra obtained clearly demonstrate the existence of longitudinal propagating modes at small Q values, like a previous IXS result at 42. C obtained by Scopigno et al and an inelastic neutron scattering (INS) one at 47. C obtained by Bove et al, but unlike an INS study at 57. C by Bermejo et al. The dispersion relation of the excitations deviates positively from the hydrodynamic prediction by about 13%. There are two new findings from this experiment. Firstly, an additional lower energy excitation is necessary to reproduce S(Q, omega) spectra in the Q range beyond 10 nm(-1), in agreement with the result of a first-principles molecular dynamic simulation, which may indicate a transverse acoustic mode in this peculiar liquid metal. Secondly, the quasielastic line comprises a Gaussian contribution at Q values near the first maximum in S(Q), which may indicate the existence of short-lived covalent correlation in liquid Ga with a lifetime of 0.39 ps. C1 [Hosokawa, S.; Pilgrim, W-C] Univ Marburg, Inst Phys Kern & Makromol Chem, D-35032 Marburg, Germany. [Hosokawa, S.] Hiroshima Inst Technol, Ctr Mat Res Using Third Generat Synchrotron Radia, Hiroshima 7315193, Japan. [Sinn, H.; Alp, E. E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Hosokawa, S (reprint author), Univ Marburg, Inst Phys Kern & Makromol Chem, D-35032 Marburg, Germany. EM hosokawa@cc.it-hiroshima.ac.jp NR 29 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 19 PY 2008 VL 20 IS 11 AR 114107 DI 10.1088/0953-8984/20/11/114107 PG 7 WC Physics, Condensed Matter SC Physics GA 275VV UT WOS:000254101200009 ER PT J AU Shevchenko, EV Ringler, M Schwemer, A Talapin, DV Klar, TA Rogach, AL Feldmann, J Alivisatos, AP AF Shevchenko, Elena V. Ringler, Moritz Schwemer, Alexander Talapin, Dmitri V. Klar, Thomas A. Rogach, Andrey L. Feldmann, Jochen Alivisatos, A. Paul TI Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CRYSTALS AB Different types of Binary Nanoparticle Superlattices (BNSLs) have been self-assembled from monodisperse 8.7 nm CdSe and 5.5 nm Au nanocrystals. Fluorescence spectroscopy studies of AlB2-type BNSL of CdSe and Au nanocrystals revealed considerably decreased fluorescence and a shortened fluorescence lifetime of the CdSe NCs in BNSLs compared to the GdSe-only sample. C1 [Shevchenko, Elena V.; Talapin, Dmitri V.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Ringler, Moritz; Schwemer, Alexander; Klar, Thomas A.; Rogach, Andrey L.; Feldmann, Jochen] Univ Munich, Photon & Optoelect Grp, Dept Phys, D-80799 Munich, Germany. [Ringler, Moritz; Schwemer, Alexander; Klar, Thomas A.; Rogach, Andrey L.; Feldmann, Jochen] Univ Munich, Ctr Nanosci CeNS, D-80799 Munich, Germany. RP Talapin, DV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM dvtalapin@uchicago.edu; andrey.rogach@physik.uni-muenchen.de RI Klar, Thomas/G-2587-2010; Alivisatos , Paul /N-8863-2015 OI Klar, Thomas/0000-0002-1339-5844; Alivisatos , Paul /0000-0001-6895-9048 NR 12 TC 108 Z9 109 U1 9 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 19 PY 2008 VL 130 IS 11 BP 3274 EP + DI 10.1021/ja710619s PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 273SL UT WOS:000253951900021 PM 18293987 ER PT J AU Pang, JB Xiong, SS Jaeckel, F Sun, ZC Dunphy, D Brinker, CJ AF Pang, Jiebin Xiong, Shisheng Jaeckel, Felix Sun, Zaicheng Dunphy, Darren Brinker, C. Jeffrey TI Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NANOCRYSTAL SUPERLATTICES; MEMBRANES; SIZE AB We report a general and facile method to prepare free-standing, patternable nanoparticle/polymer monolayer arrays by interfacial NP assembly within a polymeric photoresist. The ultrathin monolayer nanoparticle/polymer arrays are sufficiently robust that they can be transferred to arbitrary substrates and suspended as free-standing membranes over cm-sized holes-even with free edges. More importantly, the polymethylmethacrylate (PMMA) in the system serves as a photoresist enabling two modes of electron beam (e-beam) patterning. Lower e-beam doses direct differential nanoparticle solubility and result in nanoparticle patterns with somewhat diffuse interfaces. At higher e-beam doses the PMMA serves as a negative resist resulting in submicrometer patterns with edge roughness comparable to that of the nanoparticle diameter. These ultrathin films of monolayer nanoparticle arrays are of fundamental interest as 21) artificial solids for electronic, magnetic, and optical properties and are also of technological interest for a diverse range of applications in micro- and macroscale devices including photovoltaics, sensors, catalysis, and magnetic storage. C1 [Pang, Jiebin; Xiong, Shisheng; Sun, Zaicheng; Dunphy, Darren; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, NSF, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Jaeckel, Felix] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. RP Brinker, CJ (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, NSF, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. EM cjbrink@sandia.gov RI Sun, Zaicheng/B-5397-2012; OI Sun, Zaicheng/0000-0001-5277-5308; Jaeckel, Felix/0000-0001-6401-7010 NR 23 TC 42 Z9 42 U1 6 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 19 PY 2008 VL 130 IS 11 BP 3284 EP + DI 10.1021/ja710994m PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 273SL UT WOS:000253951900026 PM 18290650 ER PT J AU Zuo, XB Wang, JB Foster, TR Schwieters, CD Tiede, DM Butcher, SE Wang, YX AF Zuo, Xiaobing Wang, Jingbu Foster, Trenton R. Schwieters, Charles D. Tiede, David M. Butcher, Samuel E. Wang, Yun-Xing TI Global molecular structure and interfaces: Refining an RNA : RNA complex structure using solution X-ray scattering data SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TETRALOOP-RECEPTOR COMPLEX; DIPOLAR COUPLINGS; RELATIVE ORIENTATION; PROTEIN STRUCTURES; NMR; REFINEMENT; DIMER; FIELD AB Determining the global architecture of multicomponent systems is a central problem in understanding biomacromolecular machines. Defining interfaces among components and the global structure of multicomponent systems is a central problem in understanding the biological interactions on a molecular level. We demonstrate that solution X-ray scattering data can be used to precisely determine intermolecular interfaces from just the subunit structures, in the complete absence of intermolecular NMR restraints using an example of a 30 kDa RNA-RNA complex. The backbone root-mean-square deviation (rmsd) between structures that are determined using the scattering data and using intermolecular distance restraints is about 0.4 angstrom. Further, we refined the global structure of the complex using scattering data as a global restraint. The rmsd in backbone structures that are determined with and without the scattering data refinement is about 3.2 angstrom, suggesting the impact of the refinement to the overall structure. Information about the "global correctness" of solution RNA structures could not be practically obtained otherwise, due to the molecular nature of the RNA molecules, but could only be defined by the scattering data together by residual dipolar couplings. This method provides a powerful new approach for refining global structures of macromolecular complexes whose subunits are elongated. C1 [Foster, Trenton R.; Butcher, Samuel E.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Zuo, Xiaobing; Wang, Jingbu; Wang, Yun-Xing] NCI, Prot Nucle Acid Interact Sect, Struct Biophys Lab, NIH, Frederick, MD 21702 USA. [Schwieters, Charles D.] NIH, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20892 USA. [Tiede, David M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Butcher, SE (reprint author), Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. EM butcher@.biochem.wisc.edu; wangyu@ncifcrf.gov RI Zuo, Xiaobing/F-1469-2010; ID, BioCAT/D-2459-2012; OI Zuo, Xiaobing/0000-0002-0134-4804 FU Intramural NIH HHS NR 18 TC 44 Z9 44 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 19 PY 2008 VL 130 IS 11 BP 3292 EP + DI 10.1021/ja7114508 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 273SL UT WOS:000253951900030 PM 18302388 ER PT J AU Habas, SE Yang, PD Mokari, T AF Habas, Susan E. Yang, Peidong Mokari, Taleb TI Selective growth of metal and binary metal tips on CdS nanorods SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COLLOIDAL SYNTHESIS; NANOPARTICLES; NANOCRYSTALS; NANOSTRUCTURES; SIZE; RODS AB Here, we demonstrate an approach for the selective growth of Pt, PtNi, and PtCo on CdS nanorods. The hybrid nanostructures prepared via an organometallic synthesis have promise for photocatalytic and magnetic applications. C1 [Habas, Susan E.; Yang, Peidong; Mokari, Taleb] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mokari, Taleb] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Habas, Susan E.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Mokari, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM tmokari@lbl.gov RI MOKARI, TALEB/F-1685-2012 NR 18 TC 199 Z9 201 U1 11 U2 107 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 19 PY 2008 VL 130 IS 11 BP 3294 EP + DI 10.1021/ja800104w PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 273SL UT WOS:000253951900031 PM 18302389 ER PT J AU Malliakas, CD Iavarone, M Fedor, J Kanatzidis, MG AF Malliakas, Christos D. Iavarone, Maria Fedor, Jan Kanatzidis, Mercouri G. TI Coexistence and coupling of two distinct charge density waves in SM2Te5 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RARE-EARTH-ELEMENT; RTE2 R-LA; CRYSTAL-STRUCTURE; RETE3 RE; PR; GD; CE; SM; TEMPERATURE; TELLURIUM AB Sm2Te5 is an example of compound that has two separate charge density wave (CDW) distortions of its square nets of tellurium. The two CDWs originate from electronic instabilities in two distinct parts of the structure but create unique structural patterns due to mutual interference. C1 [Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Malliakas, Christos D.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Iavarone, Maria; Fedor, Jan; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu NR 25 TC 8 Z9 8 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 19 PY 2008 VL 130 IS 11 BP 3310 EP + DI 10.1021/ja7111405 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 273SL UT WOS:000253951900038 PM 18288844 ER PT J AU Yuan, Q Mannsfeld, SCB Tang, ML Toney, MF Luening, J Bao, ZA AF Yuan, Quan Mannsfeld, Stefan C. B. Tang, Ming L. Toney, Michael F. Luening, Jan Bao, Zhenan TI Thin film structure of tetraceno[2,3-b]thiophene characterized by grazing incidence X-ray scattering and near-edge X-ray absorption fine structure analysis SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FIELD-EFFECT TRANSISTOR; ORGANIC SEMICONDUCTORS; MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURES; HIGH-PERFORMANCE; EFFECT MOBILITY; PENTACENE; ELECTRONICS; MORPHOLOGY; DISPLAYS AB Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno[2,3-b]thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 angstrom, b = 7.71 angstrom, c = 15.16 angstrom, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degrees angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on charge carrier mobility are discussed. C1 [Mannsfeld, Stefan C. B.; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Yuan, Quan] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Tang, Ming L.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Toney, Michael F.; Luening, Jan] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Mannsfeld, SCB (reprint author), Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. EM mannsfel@stanford.edu; zbao@stanford.edu NR 44 TC 49 Z9 49 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 19 PY 2008 VL 130 IS 11 BP 3502 EP 3508 DI 10.1021/ja0773002 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 273SL UT WOS:000253951900062 PM 18293975 ER PT J AU Colby, DA Bergman, RG Ellman, JA AF Colby, Denise A. Bergman, Robert G. Ellman, Jonathan A. TI Synthesis of dihydropyridines and pyridines from Imines and alkynes via C-H activation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BOND ACTIVATION; HANTZSCH 1,4-DIHYDROPYRIDINES; CYCLOADDITION; COMPLEXES; 1-AZATRIENES; ACETYLENES; CATALYSTS; OLEFINS; ROUTE; RH(I) AB A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and alpha,beta-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps. C1 [Bergman, Robert G.; Ellman, Jonathan A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM bergman@cchem.berkeley.edu; jellman@uclink.berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU NIGMS NIH HHS [R01 GM069559, GM069559, R01 GM069559-08] NR 35 TC 253 Z9 256 U1 2 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 19 PY 2008 VL 130 IS 11 BP 3645 EP 3651 DI 10.1021/ja7104784 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 273SL UT WOS:000253951900078 PM 18302381 ER PT J AU Peng, HS Zhu, YT Peterson, DE Lu, YF AF Peng, Huisheng Zhu, Yuntian Peterson, Dean E. Lu, Yunfeng TI Nanolayered carbon/silica superstructures via organosilane assembly SO ADVANCED MATERIALS LA English DT Article ID POLYDIACETYLENE/SILICA NANOCOMPOSITES; MESOPOROUS CARBONS; NANOPOROUS CARBONS; BUILDING-BLOCKS; ORGANIC GROUPS; POROUS CARBON; SILICA; FABRICATION; THERMOCHROMATISM; CARBONIZATION AB Nanolayered carbon/silica superstructures with tunable morphologies (tubes, fibers, or spheres) and sizes (micro-sized or macroscopic) were synthesized by self-assembly of perylenedidimide-bridged silsesquioxane through an easy sol-gel process followed by carbonization. The derived nanocomposite materials show interesting electrical properties, i.e., the conductivity increases exponentially with temperature. C1 [Peng, Huisheng] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. [Peng, Huisheng; Zhu, Yuntian; Peterson, Dean E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lu, Yunfeng] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. RP Peng, HS (reprint author), Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. EM hpeng@lanl.gov; luucla@ucla.edu RI Zhu, Yuntian/B-3021-2008; Peng, Huisheng/G-8867-2011 OI Zhu, Yuntian/0000-0002-5961-7422; NR 42 TC 17 Z9 19 U1 2 U2 32 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD MAR 18 PY 2008 VL 20 IS 6 BP 1199 EP + DI 10.1002/adma.200701303 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 286UQ UT WOS:000254871900021 ER PT J AU Biener, J Nyce, GW Hodge, AM Biener, MM Hamza, AV Maier, SA AF Biener, Juergen Nyce, Gregory W. Hodge, Andrea M. Biener, Monika M. Hamza, Alex V. Maier, Stefan A. TI Nanoporous plasmonic metamaterials SO ADVANCED MATERIALS LA English DT Article ID ENHANCED RAMAN-SCATTERING; REPLACEMENT REACTION; MECHANICAL-BEHAVIOR; GOLD NANOSHELLS; POROUS GOLD; PORE-SIZE; AU; FILMS; NANOSTRUCTURES; FOAMS AB We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both 2D and 3D structures that promise a plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties Of this material system for photonic applications. C1 [Biener, Juergen; Nyce, Gregory W.; Biener, Monika M.; Hamza, Alex V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Hodge, Andrea M.] Univ So Calif, Dept Mech & Aerosp Engn, Los Angeles, CA 90089 USA. [Maier, Stefan A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Expt Solid State Grp, London SW7 2AZ, England. RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. EM biener2@llnl.gov; nyce2@llnl.gov NR 42 TC 152 Z9 153 U1 11 U2 121 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD MAR 18 PY 2008 VL 20 IS 6 BP 1211 EP 1217 DI 10.1002/adma.200701899 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 286UQ UT WOS:000254871900023 ER PT J AU Doukov, TI Blasiak, LC Seravalli, J Ragsdale, SW Drennan, CL AF Doukov, Tzanko I. Blasiak, Leah C. Seravalli, Javier Ragsdale, Stephen W. Drennan, Catherine L. TI Xenon in and at the end of the tunnel of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase SO BIOCHEMISTRY LA English DT Article ID HYBRID-CLUSTER PROTEIN; DESULFOVIBRIO-VULGARIS HILDENBOROUGH; COENZYME-A SYNTHASE; CLOSTRIDIUM-THERMOACETICUM; ACETYL-COENZYME; CARBOXYDOTHERMUS-HYDROGENOFORMANS; ANGSTROM RESOLUTION; ESCHERICHIA-COLI; ACTIVE-SITES; ENZYME AB A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster- generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 angstrom long) to allow for intermolecular CO transport. Here, we report a 2.5 angstrom resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center. C1 [Doukov, Tzanko I.; Blasiak, Leah C.; Drennan, Catherine L.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Drennan, Catherine L.] MIT, Dept Biol, Cambridge, MA 02139 USA. [Doukov, Tzanko I.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Seravalli, Javier; Ragsdale, Stephen W.] Univ Nebraska, Beadle Ctr, Dept Biochem, Lincoln, NE 68588 USA. RP Drennan, CL (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA. EM cdrennan@mit.edu FU NIGMS NIH HHS [GM39451, GM69857, R01 GM039451, R01 GM039451-24, R01 GM069857, R37 GM039451, T32 GM008334] NR 44 TC 54 Z9 57 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAR 18 PY 2008 VL 47 IS 11 BP 3474 EP 3483 DI 10.1021/bi702386t PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 273JP UT WOS:000253926500018 PM 18293927 ER PT J AU Le Coq, J Pavlovsky, A Malik, R Sanishvili, R Xu, CF Viola, RE AF Le Coq, Johanne Pavlovsky, Alexander Malik, Radhika Sanishvili, Ruslan Xu, Chengfu Viola, Ronald E. TI Examination of the mechanism of human brain aspartoacylase through the binding of an intermediate analogue SO BIOCHEMISTRY LA English DT Article ID CANAVAN-DISEASE; IDENTIFICATION; ACID AB Canavan disease is a fatal neurological disorder caused by the malfunctioning of a single metabolic enzyme, aspartoacylase, that catalyzes the deacetylation of N-acetyl-L-aspartate to produce L-aspartate and acetate. The structure of human brain aspartoacylase has been determined in complex with a stable tetrahedral intermediate analogue, N-phosphonomethyl-L-aspartate. This potent inhibitor forms multiple interactions between each of its heteroatoms and the substrate binding groups arrayed within the active site. The binding of the catalytic intermediate analogue induces the conformational ordering of several substrate binding groups, thereby setting up the active site for catalysis. The highly ordered binding of this inhibitor has allowed assignments to be made for substrate binding groups and provides strong support for a carboxypeptidase-type mechanism for the hydrolysis of the amide bond of the substrate, N-acetyl-L-aspartate. C1 [Le Coq, Johanne; Pavlovsky, Alexander; Malik, Radhika; Viola, Ronald E.] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Xu, Chengfu] Texas A&M Univ, Dept Chem & Biochem, College Stn, TX 77843 USA. [Sanishvili, Ruslan] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. RP Viola, RE (reprint author), Univ Toledo, Dept Chem, Toledo, OH 43606 USA. EM ron.viola@utoledo.edu RI Viola, Ronald/C-5904-2011; Le Coq, Johanne/L-6321-2014 FU NCI NIH HHS [Y1-CO-1020]; NIGMS NIH HHS [GM71790, Y1-GM-1104, P01 GM071790]; NINDS NIH HHS [R01 NS045664-04, NS45664, R01 NS045664] NR 20 TC 20 Z9 21 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAR 18 PY 2008 VL 47 IS 11 BP 3484 EP 3492 DI 10.1021/bi702400x PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 273JP UT WOS:000253926500019 PM 18293939 ER PT J AU Brown, LO Doorn, SK AF Brown, Leif O. Doorn, Stephen K. TI A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing SO LANGMUIR LA English DT Article ID SURFACE-ENHANCED RAMAN; ORGANIC-INORGANIC NANOPARTICLES; SHELL NANOPARTICLES; SCATTERING; IMMUNOASSAY; TAGS AB Silver nanoparticles tagged with dyes and encapsulated within a silica layer, offer a convenient potential substrate for performing multiplexed surface-enhanced Raman scattering (SERS) analysis. In contrast to our earlier work with gold particles, aggregation of silver particles is found to be mostly independent of dye addition, allowing for a reproducible preparation in which aggregation is actively induced by the addition of NaCl. Separating the aggregation step eliminates competitive binding between the dyes and silica-coating reagents, enabling the efficient use of a wide variety of weakly binding dyes to conveniently generate robust, high-intensity SERS substrates at a variety of excitation frequencies. C1 [Brown, Leif O.; Doorn, Stephen K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Brown, LO (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM leif@lanl.gov FU NIBIB NIH HHS [EB003824] NR 16 TC 47 Z9 47 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 18 PY 2008 VL 24 IS 6 BP 2277 EP 2280 DI 10.1021/la703853e PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 273OM UT WOS:000253941000005 PM 18278969 ER PT J AU Razgon, A Bergman, RG Sukenik, CN AF Razgon, Anna Bergman, Robert G. Sukenik, Chaim N. TI Ozonolysis-based route to the in situ formation of aldehyde-bearing self-assembled monolayer surfaces SO LANGMUIR LA English DT Article ID GAS-PHASE OZONE; IMMOBILIZATION; GOLD; NANOPARTICLES; REACTIVITY; CHEMISTRY AB While ozonolysis of a terminal carbon-carbon double bond to produce aldehydes is a well-established synthetic strategy for conventional solution chemistry, exposure of vinyl-terminated self-assembled monolayers to ozone has been reported to yield carboxylic acids. By using a cold solution of ozone in methanol and then adding a reducing agent to this solution, acid formation is minimized and near-quantitative aldehyde formation is achieved. The aldehyde-bearing surface is characterized by its physical and chemical properties and by ATR-FTIR spectroscopy showing a characteristic aldehyde C-H peak at 2715 cm(-1) and carbonyl peak at 1729 cm-1. The reactivity of the aldehyde-bearing surface is shown by its reaction with amines and amine derivatives to give surface-bound imines and by the reversible cycling between aldehyde and acetal. The acetal also provides a useful way to mask the aldehyde and store readily released aldehyde surface functionality for subsequent surface elaboration. C1 [Razgon, Anna; Sukenik, Chaim N.] Bar Ilan Univ, Dept Chem, Inst Nanotechnol, Ramat Gan, Israel. [Razgon, Anna; Sukenik, Chaim N.] Bar Ilan Univ, Ctr Nanomat, Inst Nanotechnol, Ramat Gan, Israel. [Bergman, Robert G.] Lawrence Berkeley Natl Lab, Div Sci, Berkeley, CA 94720 USA. [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Sukenik, CN (reprint author), Bar Ilan Univ, Dept Chem, Inst Nanotechnol, Ramat Gan, Israel. EM sukenc@mail.biu.ac.il NR 29 TC 7 Z9 7 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 18 PY 2008 VL 24 IS 6 BP 2545 EP 2552 DI 10.1021/la703120c PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 273OM UT WOS:000253941000041 PM 18251560 ER PT J AU Metzler, RA Kim, IW Delak, K Evans, JS Zhou, D Beniash, E Wilt, F Abrecht, M Chiou, JW Guo, JH Coppersmith, SN Gilbert, PUPA AF Metzler, Rebecca A. Kim, Il Won Delak, Katya Evans, John Spencer Zhou, Dong Beniash, Elia Wilt, Fred Abrecht, Mike Chiou, Jau-Wern Guo, Jinghua Coppersmith, Susan N. Gilbert, P. U. P. A. TI Probing the organic-mineral interface at the molecular level in model biominerals SO LANGMUIR LA English DT Article ID SPICULE MATRIX PROTEIN; URCHIN EMBRYO SPICULE; SOLID-STATE NMR; SHELL PROTEIN; IN-VITRO; X-PEEM; HYDROXYAPATITE; GROWTH; IDENTIFICATION; SPECTROSCOPY AB It is widely known that macromolecules, such as proteins, can control the nucleation and growth of inorganic solids in biomineralizing organisms. However, what is not known are the complementary molecular interactions, organization, and rearrangements that occur when proteins interact with inorganic solids during the formation of biominerals. The organic-mineral interface (OMI) is expected to be the site for these phenomena, and is therefore extraordinarily interesting to investigate. In this report, we employ X-ray absorption near edge (XANES) spectromicroscopy to investigate the electronic structure of both calcium carbonate mineral crystals and polypeptides, and detect changing bonds at the OMI during crystal growth in the presence of polypeptides. We acquired XANES spectra from calcium carbonate crystals grown in the presence of three mollusk nacre-associated polypeptides (AP7N, AP24N, n16N) and in the presence of a sea urchin spicule matrix protein, LSM34. All these model biominerals gave similar results, including the disruption of CO bonds in calcite and enhancement of the peaks associated with C-H bonds and C-O bonds in peptides, indicating ordering of the amino acid side chains in the mineral-associated polypeptides and carboxylate binding. This is the first evidence of the mutual effect of calcite on peptide chain and peptide chain on calcite during biomineralization. We also show that these changes do not occur when Asp and Glu are replaced in the n16N sequence with Asn and Gln, respectively, demonstrating that carboxyl groups in Asp and Glu do participate in polypeptide-mineral molecular associations. C1 [Metzler, Rebecca A.; Zhou, Dong; Coppersmith, Susan N.; Gilbert, P. U. P. A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kim, Il Won; Delak, Katya; Evans, John Spencer] NYU, Chem Phys Lab, Ctr Biomol Mat Spectroscopy, New York, NY 10010 USA. [Beniash, Elia] Forsyth Inst, Dept Biomineralizat, Boston, MA 02115 USA. [Wilt, Fred] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Abrecht, Mike] Univ Wisconsin, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. [Chiou, Jau-Wern] Natl Univ Kaohsiung, Dept Appl Phys, Kaohsiung 81148, Taiwan. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Gilbert, PUPA (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM pupa@physics.wisc.edu RI Zhou, Dong/A-2675-2011; Gilbert, Pupa/A-6299-2010 OI Gilbert, Pupa/0000-0002-0139-2099 NR 45 TC 50 Z9 50 U1 2 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 18 PY 2008 VL 24 IS 6 BP 2680 EP 2687 DI 10.1021/la7031237 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 273OM UT WOS:000253941000060 PM 18251561 ER PT J AU Jung, HS Lee, JK Lee, J Kang, BS Jia, Q Nastasi, M Noh, JH Cho, CM Yoon, SH AF Jung, Hyun Suk Lee, Jung-Kun Lee, Jaegab Kang, Bo Soo Jia, Quanxi Nastasi, Michael Noh, Jun Hong Cho, Chin-Moo Yoon, Sung Hoon TI Mobility enhanced photoactivity in sol-gel grown epitaxial anatase TiO2 films SO LANGMUIR LA English DT Article ID THIN-FILMS; PHOTOCATALYTIC ACTIVITY; EFFICIENCY; TITANIA; LAALO3; INTERFACES; CONVERSION; ELECTRODE AB Epitaxial anatase thin films were grown on single-crystal LaAlO3 substrates by a sol-gel process. The epitaxial relationship between TiO2 and LaAlO3 was found to be [100]TiO2 vertical bar vertical bar [100]LAlO3 and (001)TiO2 vertical bar vertical bar(001)LaAlO3 based on X-ray diffraction and a high-resolution transmission electron microscopy. The epitaxial anatase films show significantly improved photocatalytic properties, compared with polycrystalline anatase film on fused silica substrate. The increase in the photocatalytic activity of epitaxial anatase films is explained by enhanced charge carrier mobility, which is traced to the decreased grain boundary density in the epitaxial anatase film. C1 [Jung, Hyun Suk; Lee, Jung-Kun; Kang, Bo Soo; Jia, Quanxi; Nastasi, Michael] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Jung, Hyun Suk; Lee, Jaegab] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. [Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Noh, Jun Hong; Cho, Chin-Moo; Yoon, Sung Hoon] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea. RP Lee, JK (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM ju137@engr.pitt.edu RI Jung, Hyun Suk/D-4745-2011; Wei, Zhanhua/D-7544-2013; Jia, Q. X./C-5194-2008; Jung, Hyun Suk/H-3659-2015; OI Wei, Zhanhua/0000-0003-2687-0293; Jung, Hyun Suk/0000-0002-7803-6930 NR 24 TC 22 Z9 23 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAR 18 PY 2008 VL 24 IS 6 BP 2695 EP 2698 DI 10.1021/la702379y PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 273OM UT WOS:000253941000062 PM 18247637 ER PT J AU Antonangeli, D Benedetti, LR Farber, DL Steinle-Neumann, G Auzende, AL Badro, J Hanfland, M Krisch, M AF Antonangeli, Daniele Benedetti, Laura Robin Farber, Daniel L. Steinle-Neumann, Gerd Auzende, Anne-line Badro, James Hanfland, Michael Krisch, Michael TI Anomalous pressure evolution of the axial ratio c/a in hcp cobalt: Interplay between structure, magnetism, and lattice dynamics SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; TRANSITION-METALS; THERMAL-EXPANSION; CD; ANISOTROPY; GPA; ZN AB We performed angle-dispersive x-ray diffraction measurements on hydrostatically compressed hcp cobalt to 90 GPa. Near 75 GPa, we document an inversion in the pressure derivative of the axial ratio c/a with no discontinuity in the volume and lattice parameters compression curves. These results are also reproduced by ab initio calculations. Our study indicates significant interactions among structure, magnetism and elasticity, suggesting that the collapse of the magnetic moment is responsible for the observed anomaly in c/a, as well as for the anomalies in the elastic and vibrational properties of hcp Co at high pressure. (c) 2008 American Institute of Physics. C1 [Antonangeli, Daniele; Benedetti, Laura Robin; Farber, Daniel L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Steinle-Neumann, Gerd] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. [Auzende, Anne-line; Badro, James] Inst Phys Globe, Inst Mineral & Phys Milieux Condenses, F-75005 Paris, France. [Hanfland, Michael; Krisch, Michael] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Antonangeli, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM antonangeli3@llnl.gov RI Farber, Daniel/F-9237-2011; Steinle-Neumann, Gerd/D-8805-2012; Badro, James/A-6003-2011 NR 27 TC 16 Z9 16 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 17 PY 2008 VL 92 IS 11 AR 111911 DI 10.1063/1.2897038 PG 3 WC Physics, Applied SC Physics GA 278NA UT WOS:000254292400031 ER PT J AU Spletzer, M Raman, A Sumali, H Sullivan, JP AF Spletzer, Matthew Raman, Arvind Sumali, Hartono Sullivan, John P. TI Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays SO APPLIED PHYSICS LETTERS LA English DT Article ID MODE LOCALIZATION; CANTILEVER AB We study the use of vibration localization in large arrays of mechanically coupled, nearly identical microcantilevers for ultrasensitive mass detection and identification. We demonstrate that eigenmode changes in such an array can be two to three orders of magnitude greater than relative changes in resonance frequencies when an analyte mass is added. Moreover, the changes in eigenmodes are unique to the cantilever to which mass is added, thereby providing a characteristic "fingerprint" that identifies the particular cantilever where mass has been added. This opens the door to ultrasensitive detection and identification of multiple analytes with a single coupled array. (c) 2008 American Institute of Physics. C1 [Spletzer, Matthew; Raman, Arvind] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Spletzer, Matthew; Raman, Arvind] Purdue Univ, Birck Nanotechnol Lab, W Lafayette, IN 47907 USA. [Sumali, Hartono] Sandia Natl Labs, Appl Mech Dev Dept, Albuquerque, NM 87185 USA. [Sullivan, John P.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Dept Sci, Albuquerque, NM 87185 USA. RP Spletzer, M (reprint author), Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. EM raman@ecn.purdue.edu NR 15 TC 64 Z9 64 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 17 PY 2008 VL 92 IS 11 AR 114102 DI 10.1063/1.2899634 PG 3 WC Physics, Applied SC Physics GA 278NA UT WOS:000254292400122 ER PT J AU Zapata-Solvas, E Poyato, R Gomez-Garcia, D Dominguez-Rodriguez, A Radmilovic, V Padture, NP AF Zapata-Solvas, Eugenio Poyato, Rosalia Gomez-Garcia, Diego Dominguez-Rodriguez, Arturo Radmilovic, Velimir Padture, Nitin P. TI Creep-resistant composites of alumina and single-wall carbon nanotubes SO APPLIED PHYSICS LETTERS LA English DT Article ID CERAMIC-MATRIX NANOCOMPOSITES; FINE-GRAINED ALUMINA; DEFORMATION; TEMPERATURE; POLYMER; MECHANISMS; BOUNDARIES AB Composites of alumina (Al(2)O(3)) ceramic and single-wall carbon nanotubes (SWNTs) have been tested in uniaxial compression at 1300 and 1350 degrees C (Ar atmosphere), and they have been found to be about two orders of magnitude more creep-resistant compared to a pure alumina of about the same grain size (0.5 mu m). This is attributed to partial blocking of grain-boundary sliding by SWNTs in the composites. Since the grain boundaries in the ceramic/SWNTs composites are amenable to being engineered, this constitutes an attractive approach to the design of creep-resistant ceramic composites. (c) 2008 American Institute of Physics. C1 [Zapata-Solvas, Eugenio; Poyato, Rosalia; Gomez-Garcia, Diego; Dominguez-Rodriguez, Arturo] Univ Seville, Dept Fis Mat Condensada, E-41080 Seville, Spain. [Radmilovic, Velimir] Natl Ctr Electron Microscopy, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Padture, Nitin P.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. RP Zapata-Solvas, E (reprint author), Univ Seville, Dept Fis Mat Condensada, E-41080 Seville, Spain. EM adorod@us.es; padture.1@osu.edu RI Padture, Nitin/A-9746-2009; Zapata-Solvas, Eugenio/O-9151-2014; Gomez Garcia, Diego/H-3993-2015; Poyato, Rosalia/H-4206-2015; OI Padture, Nitin/0000-0001-6622-8559; Zapata-Solvas, Eugenio/0000-0002-6162-8788; Gomez Garcia, Diego/0000-0002-5639-4796; Poyato, Rosalia/0000-0003-4376-6615; Dominguez-Rodriguez, Arturo/0000-0003-1598-5669 NR 37 TC 19 Z9 19 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 17 PY 2008 VL 92 IS 11 AR 111912 DI 10.1063/1.2899945 PG 3 WC Physics, Applied SC Physics GA 278NA UT WOS:000254292400032 ER PT J AU Yano, J Yachandra, VK AF Yano, Junko Yachandra, Vittal K. TI Where water is oxidized to dioxygen: Structure of the photosynthetic Mn4Ca cluster from X-ray spectroscopy SO INORGANIC CHEMISTRY LA English DT Review ID OXYGEN-EVOLVING COMPLEX; ELECTRON-PARAMAGNETIC-RES; PHOTOSYSTEM-II MEMBRANES; MULTILINE EPR SIGNAL; FTIR DIFFERENCE SPECTROSCOPY; OXIDATION-STATE CHANGES; O BOND FORMATION; ABSORPTION SPECTROSCOPY; MANGANESE CLUSTER; MN-CLUSTER AB Light-driven oxidation of water to dioxygen in plants, algae, and cyanobacteria is catalyzed within photosystem II (PS II) by a Mn4Ca cluster. Although the cluster has been studied by many different methods, its structure and mechanism have remained elusive. X-ray absorption and emission spectroscopy and extended X-ray absorption fine structure studies have been particularly useful in probing the electronic and geometric structures and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn4Ca cluster geometry to a set of three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0- or 3.5-angstrom-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-ray spectroscopy and crystallography are predominantly because of damage to the Mn4Ca cluster by X-rays under conditions used for the structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn4Ca catalytic center as it cycles through the five intermediate states known as the S-i states (i = 0-4). The electronic structure of the Mn4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formal oxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms, which includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structures of the Mn4Ca cluster in the S states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of O-O bond formation during the photosynthetic watersplitting process. C1 [Yano, Junko; Yachandra, Vittal K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Yano, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jyano@lbl.gov; vkyachandra@lbl.gov FU NIGMS NIH HHS [GM 55302, R01 GM055302, R56 GM055302] NR 107 TC 111 Z9 112 U1 0 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 17 PY 2008 VL 47 IS 6 BP 1711 EP 1726 DI 10.1021/ic7016837 PG 16 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 273GI UT WOS:000253918000003 PM 18330965 ER PT J AU Muckerman, JT Polyansky, DE Wada, T Tanaka, K Fujita, E AF Muckerman, James T. Polyansky, Dmitry E. Wada, Tohru Tanaka, Koji Fujita, Etsuko TI Water oxidation by a ruthenium complex with noninnocent quinone ligands: Possible formation of an O-O bond at a low oxidation state of the metal SO INORGANIC CHEMISTRY LA English DT Article ID EFFECTIVE CORE POTENTIALS; VISIBLE-LIGHT-DRIVEN; MU-OXO DIMER; CHARGE-DISTRIBUTION; PHOTOSYSTEM-II; MOLECULAR CALCULATIONS; O-2 EVOLUTION; POLYPYRIDYL COMPLEXES; DIMANGANESE COMPLEXES; O-2-EVOLVING COMPLEX AB Tanaka and co-workers reported a novel dinuclear Ru complex, [Ru-2(OH)(2)(3,6-Bu(2)Q)(2)(btpyan)](SbF6)(2) (3,6-Bu(2)Q = 3,6-ditert-butyl-1,2-benzoquinone, btpyan = 1,8-bis(2,2':6',2"-terpyrid-4'-yl)anthracene), that contains redox active quinone ligands and has an excellent electrocatalytic activity for water oxidation when immobilized on an indium-tin-oxide electrode (Inorg. Chem., 2001, 40, 329-337). The novel features of the dinuclear and related mononuclear Ru species with quinone ligands, and comparison of their properties to those of the Ru analogues with the bpy ligand (bpy = 2,2'-bipyridine) replacing quinone, are summarized here together with new theoretical and experimental results that show striking features for both the dinuclear and mononuclear species. The identity and oxidation state of key mononuclear species, including the previously reported oxyl radical, have been reassigned. Our gas-phase theoretical calculations indicate that the Tanaka Ru-dinuclear catalyst seems to maintain predominantly Ru(II) centers while the quinone ligands and water moiety are involved in redox reactions throughout the entire catalytic cycle for water oxidation. Our theoretical study identifies [Ru-2(O-2(-))(Q(-1.5))(2)(btpyan)](0) as a key intermediate and the most reduced catalyst species that is formed by removal of all four protons before four-electron oxidation takes place. While our study toward understanding the complicated electronic and geometric structures of possible intermediates in the catalytic cycle is still in progress, the current status and new directions for kinetic and mechanistic investigations, and key issues and challenges in water oxidation with the Tanaka catalyst (and its analogues with Cl- or NO2- substituted quinones and a species with a xanthene bridge instead an antheracene) are discussed. C1 [Muckerman, James T.; Polyansky, Dmitry E.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wada, Tohru; Tanaka, Koji] Inst Mol Sci, Coordinat Chem Labs, Okazaki, Aichi 4448787, Japan. RP Muckerman, JT (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM muckerma@bnl.gov; fujita@bnl.gov RI Wada, Tohru/A-9408-2008; Polyansky, Dmitry/C-1993-2009; Fujita, Etsuko/D-8814-2013; Muckerman, James/D-8752-2013 OI Polyansky, Dmitry/0000-0002-0824-2296; NR 88 TC 143 Z9 143 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 17 PY 2008 VL 47 IS 6 BP 1787 EP 1802 DI 10.1021/ic701892v PG 16 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 273GI UT WOS:000253918000008 PM 18330970 ER PT J AU Mishra, A Pushkar, Y Yano, J Yachandra, VK Wernsdorfer, W Abboud, KA Christou, G AF Mishra, Abhudaya Pushkar, Yulia Yano, Junko Yachandra, Viftal K. Wernsdorfer, Wolfgang Abboud, Khalil A. Christou, George TI Single-molecule magnetism properties of the first strontium-manganese cluster [SrMn14O11(OMe)(3)(O2CPh)(18)(MeCN)(2)] SO INORGANIC CHEMISTRY LA English DT Article ID OXYGEN-EVOLVING COMPLEX; PHOTOSYNTHETIC WATER OXIDATION; PHOTOSYSTEM-II; CRYSTAL-STRUCTURES; CALCIUM CLUSTER; MN4CA CLUSTER; EXAFS; MN; MAGNETIZATION; TETRANUCLEAR AB The preparation and properties of the first strontium-manganese molecular complex are described. The reaction of (NBu4n)[Mn4O2(O2CPh)(9)(H2O)] (4Mn(III)) with Sr(ClO4)(2) in MeCN/MeOH led to the isolation of [SrMn14O11(OMe)(3)(O2CPh)(18)(MeCN)(2)] (1; 13Mn(III), Mn-II). The structure of 1 consists of two [Mn4O3(OMe)] cubane units attached to a central, near-planar, trinuclear [Mn3O4] unit, to which are also attached a Mn and a Sr above the plane and a [Mn2O(OMe)] rhomb below the plane. Peripheral ligation is provided by 18 bridging benzoate and two terminal MeCN groups. Variable-temperature and -field dc magnetization (M) data were collected in the 1.8-10 K and 0.1-4.0 T ranges and fit by matrix diagonalization methods to give S = 9/2, D = -0.50(5) cm(-1), and g = 1.88(10), where S is the ground-state spin and D is the axial zero-field splitting parameter. Magnetization versus dc field sweeps at various temperatures and scan rates exhibited hysteresis loops, confirming 1 to be a new single-molecule magnet. Because complex 1 is the initial molecular example of intimately associated Mn and Sr atoms, Sr EXAFS studies have been performed for the first time on a synthetic Sr-containing molecule. This has also allowed comparisons with the EXAFS data on the Sr-substituted water oxidizing complex (WOC) of Photosystern II (PS II), which contains a SrMn4 complex. C1 [Mishra, Abhudaya; Abboud, Khalil A.; Christou, George] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Pushkar, Yulia; Yano, Junko; Yachandra, Viftal K.] Lawrence Berkeley Lab, Phys Biosci Div, Melvin Calvin Lab, Berkeley, CA 94720 USA. [Wernsdorfer, Wolfgang] CNRS, UJF, Inst Neel, F-38042 Grenoble, France. RP Christou, G (reprint author), Univ Florida, Dept Chem, Gainesville, FL 32611 USA. EM christou@chem.ufl.edu RI Christou, George /A-3072-2014; Wernsdorfer, Wolfgang/M-2280-2016 OI Wernsdorfer, Wolfgang/0000-0003-4602-5257 FU NIGMS NIH HHS [GM 55302, R01 GM055302, R56 GM055302] NR 63 TC 15 Z9 15 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 17 PY 2008 VL 47 IS 6 BP 1940 EP 1948 DI 10.1021/ic701339p PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 273GI UT WOS:000253918000036 PM 18281933 ER PT J AU Goff, GS Brodnax, LF Cisneros, MR Peper, SM Field, SE Scoft, BL Runde, WH AF Goff, George S. Brodnax, Lia F. Cisneros, Michael R. Peper, Shane M. Field, Stephanie E. Scoft, Brian L. Runde, Wolfgang H. TI First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O-2)(CO3)(2)(4-), in UO2-H2O2-K2CO3 solutions SO INORGANIC CHEMISTRY LA English DT Article ID HYDROGEN-PEROXIDE DECOMPOSITION; X-RAY-DIFFRACTION; CATALYTIC DECOMPOSITION; ALKALINE-SOLUTIONS; AQUEOUS CARBONATE; CRYSTAL-STRUCTURE; URANYL CARBONATE; COMPLEXES; MEDIA; DISSOLUTION AB In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)(3)(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O-2)(CO3)(2)(4-). Orange rectangular plates of K-4[UO2(CO3)(2)(O-2)] center dot H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/n, a = 6.9670(14) angstrom, b = 9.2158(10) angstrom, c = 18.052(4) angstrom, Z = 4. Spectrophotometric titrations with H2O2 were performed in 0.5 M K2CO3, with UO2(O-2)(CO3)(2)(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M-1 cm(-1)) for UO2(CO3)(3)(4-) and UO2(O-2)(CO3)(2)(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O-2)(CO3)(2)(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex. C1 [Goff, George S.; Brodnax, Lia F.; Cisneros, Michael R.; Field, Stephanie E.; Runde, Wolfgang H.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Goff, George S.; Brodnax, Lia F.; Cisneros, Michael R.; Field, Stephanie E.; Scoft, Brian L.; Runde, Wolfgang H.] Los Alamos Natl Lab, Div Mat Phys, Los Alamos, NM 87545 USA. [Goff, George S.; Brodnax, Lia F.; Cisneros, Michael R.; Field, Stephanie E.; Scoft, Brian L.; Runde, Wolfgang H.] Los Alamos Natl Lab, Div Applicat, Los Alamos, NM 87545 USA. [Peper, Shane M.] Pacific NW Natl Lab, Chem & Phys Sci Div, Richland, WA 99352 USA. RP Runde, WH (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM runde@lanl.gov OI Scott, Brian/0000-0003-0468-5396 NR 34 TC 36 Z9 36 U1 3 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 17 PY 2008 VL 47 IS 6 BP 1984 EP 1990 DI 10.1021/ic701775g PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 273GI UT WOS:000253918000041 PM 18290613 ER PT J AU Poineau, F Sattelberger, AP Conradson, SD Czerwinski, KR AF Poineau, Frederic Sattelberger, Alfred P. Conradson, Steven D. Czerwinski, Kenneth R. TI Octachloro- and octabromoditechnetate(III) and their rhenium(III) congeners SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; RESONANCE RAMAN-SPECTRA; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; ACID-SOLUTIONS; COMPLEXES; SPECTROSCOPY; TRANSITION; ION; TC AB The compound (n-Bu4N)(2)Tc2Br8 was prepared by the metathesis of (n-Bu4N)(2)Tc2Cl8 with HBr (g) in dichloromethane and characterized by X-ray absorption fine structure spectroscopy and UV-vis spectroscopy. Analysis of the data gives a Tc-Tc distance of 2.16(1) angstrom and a Tc-Br distance of 2.48(1) angstrom. The Tc(III) oxidation state was inferred by the position of the edge absorption, which reveals a shift of 12 eV between (n-Bu4N)(2)Tc2Br8 and NH4TcO4. The analogous shift between (n-Bu4N)(2)Tc2Cl8 and NH4TcO4 is 11 eV. The UV-vis spectrum of Tc2Br82- in dichloromethane exhibits the characteristic delta - delta* transition at 13717 cm(-1). The M2X82- (M = Re, Tc; X = Cl, Br) UV-vis spectra are compared, and the position of the delta - delta* transition discussed. C1 [Poineau, Frederic; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Phys Sci Directorate, Argonne, IL 60439 USA. [Sattelberger, Alfred P.; Conradson, Steven D.] Los Alamos Natl Lab, Div Mat Phys, Los Alamos, NM 87545 USA. RP Poineau, F (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. EM freder29@unlv.nevada.edu NR 28 TC 30 Z9 30 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 17 PY 2008 VL 47 IS 6 BP 1991 EP 1999 DI 10.1021/ic701453k PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 273GI UT WOS:000253918000042 PM 18290609 ER PT J AU Fokwa, BPT Samolyuk, GD Miller, GJ Dronskowski, R AF Fokwa, Boniface P. T. Samolyuk, German D. Miller, Gordon J. Dronskowski, Richard TI Ladders of a magnetically active element in the structure of the novel complex boride Ti9Fe2Ru18B8: Synthesis, structure, bonding, and magnetism SO INORGANIC CHEMISTRY LA English DT Article ID RHODIUM BORIDES; CRYSTAL-STRUCTURE; MN; FE; ANTIFERROMAGNETISM; FERROMAGNETISM; TERNARY; ENERGY; SC; CR AB Polycrystalline samples and single crystals of the complex boride Ti9Fe2Ru18B8 were synthesized by arc-melting the elements and characterized by single-crystal X-ray diffraction and energy-dispersive X-ray analysis. Ti9Fe2Ru18B8 is a new substitutional variant of the Zn11Rh18B8 structure type, space group P4/mbm (No. 127), whose remarkable feature is that it contains one-dimensional chains of dumbbells of magnetically active Fe atoms, which form "ladders" along the c axis. The Fe-Fe distance within a dumbbell is 2.489(2) angstrom, and the Fe-2-Fe-2 distance between two dumbbells is 2.968(1) angstrom; in contrast, the chains are well-separated from each other by distances of at least 11.217(2) angstrom. According to the results of tight-binding electronic structure calculations, Ru-B and Ti-Ru contacts are responsible for the structural robustness, while Fe-Fe interactions influence the magnetic behavior. According to magnetization measurements, Ti9Fe2Ru18B8 orders ferromagnetically between 10 and 200 K. A model for ferromagnetism in this ladder-based structure identifies ferromagnetic coupling among neighboring spin-triplet Fe-2 dimers along the c axis as the origin of the magnetic behavior. C1 [Fokwa, Boniface P. T.; Dronskowski, Richard] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52056 Aachen, Germany. [Samolyuk, German D.; Miller, Gordon J.] Iowa State Univ, US Dept Energy, Ames, IA 50011 USA. RP Fokwa, BPT (reprint author), Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52056 Aachen, Germany. EM boniface.fokwa@ac.rwth-aachen.de RI Fokwa, Boniface/A-1862-2008 NR 34 TC 28 Z9 28 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD MAR 17 PY 2008 VL 47 IS 6 BP 2113 EP 2120 DI 10.1021/ic7020963 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 273GI UT WOS:000253918000057 PM 18269220 ER PT J AU Petrie, EJ Clements, CS Lin, J Sullivan, LC Johnson, D Huyton, T Heroux, A Hoare, HL Beddoe, T Reid, HH Wilce, MCJ Brooks, AG Rossjohn, J AF Petrie, Emma J. Clements, Craig S. Lin, Jie Sullivan, Lucy C. Johnson, Darryl Huyton, Trevor Heroux, Annie Hoare, Hilary L. Beddoe, Travis Reid, Hugh H. Wilce, Matthew C. J. Brooks, Andrew G. Rossjohn, Jamie TI CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence SO JOURNAL OF EXPERIMENTAL MEDICINE LA English DT Article ID T-CELL-RECEPTOR; NATURAL-KILLER-CELLS; ACTIVATING IMMUNORECEPTOR NKG2D; E-RESTRICTED RECOGNITION; HUMAN CYTOMEGALOVIRUS; INHIBITORY RECEPTOR; CRYSTAL-STRUCTURE; MEDIATED LYSIS; CUTTING EDGE; NK CELLS AB The recognition of human leukocyte antigen (HLA)-E by the heterodimeric CD94-NKG2 natural killer (NK) receptor family is a central innate mechanism by which NK cells monitor the expression of other HLA molecules, yet the structural basis of this highly specific interaction is unclear. Here, we describe the crystal structure of CD94-NKG2A in complex with HLA-E bound to a peptide derived from the leader sequence of HLA-G. The CD94 subunit dominated the interaction with HLA-E, whereas the NKG2A subunit was more peripheral to the interface. Moreover, the invariant CD94 subunit dominated the peptide-mediated contacts, albeit with poor surface and chemical complementarity. This unusual binding mode was consistent with mutagenesis data at the CD94-NKG2A-HLA-E interface. There were few conformational changes in either CD94-NKG2A or HLA-E upon ligation, and such a "lock and key" interaction is typical of innate receptor-ligand interactions. Nevertheless, the structure also provided insight into how this interaction can be modulated by subtle changes in the peptide ligand or by the pairing of CD94 with other members of the NKG2 family. Differences in the docking strategies used by the NKG2D and CD94NKG2A receptors provided a basis for understanding the promiscuous nature of ligand recognition by NKG2D compared with the fidelity of the CD94-NKG2 receptors. C1 [Petrie, Emma J.; Clements, Craig S.; Huyton, Trevor; Hoare, Hilary L.; Beddoe, Travis; Reid, Hugh H.; Wilce, Matthew C. J.; Rossjohn, Jamie] Monash Univ, Sch Biomed Sci, Dept Biochem & Mol Biol, Prot Crystallog Unit,ARC Ctr Excellence Struct &, Clayton, Vic 3800, Australia. [Lin, Jie; Sullivan, Lucy C.; Johnson, Darryl; Brooks, Andrew G.] Univ Melbourne, Dept Microbiol & Immunol, Parkville, Vic 3010, Australia. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Rossjohn, J (reprint author), Monash Univ, Sch Biomed Sci, Dept Biochem & Mol Biol, Prot Crystallog Unit,ARC Ctr Excellence Struct &, Clayton, Vic 3800, Australia. EM agbrooks@unimelb.edu.au; jamie.rossjohn@med.monash.edu.au RI Rossjohn, Jamie/F-9032-2013; Beddoe, Travis/F-3415-2014; OI Rossjohn, Jamie/0000-0002-2020-7522; Sullivan, Lucy/0000-0003-2907-4989; Beddoe, Travis/0000-0003-4550-2277; Brooks, Andrew/0000-0002-4085-9683 NR 56 TC 78 Z9 83 U1 0 U2 5 PU ROCKEFELLER UNIV PRESS PI NEW YORK PA 1114 FIRST AVE, 4TH FL, NEW YORK, NY 10021 USA SN 0022-1007 J9 J EXP MED JI J. Exp. Med. PD MAR 17 PY 2008 VL 205 IS 3 BP 725 EP 735 DI 10.1084/jem.20072525 PG 11 WC Immunology; Medicine, Research & Experimental SC Immunology; Research & Experimental Medicine GA 276VZ UT WOS:000254173100020 PM 18332182 ER PT J AU Beer, NR Wheeler, EK Lee-Houghton, L Watkins, N Nasarabadi, S Hebert, N Leung, P Arnold, DW Bailey, CG Colston, BW AF Beer, N. Reginald Wheeler, Elizabeth K. Lee-Houghton, Lorenna Watkins, Nicholas Nasarabadi, Shanavaz Hebert, Nicole Leung, Patrick Arnold, Don W. Bailey, Christopher G. Colston, Bill W. TI On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets SO ANALYTICAL CHEMISTRY LA English DT Article ID POLYMERASE-CHAIN-REACTION; AMPLIFICATION; EMULSION; VIRUS AB The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused-silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel walls and each other by the oil-phase carrier. An off-chip valving system stopped the droplets on-chip, allowing thermal cycling for reverse transcription and subsequent PCR amplification without droplet motion. This. combination of the established real-time reverse transcription-PCR assay with digital microfluidics is ideal for isolating single-copy RNA and virions from a complex environment and will be useful in viral discovery and gene-profiling applications. C1 [Beer, N. Reginald; Wheeler, Elizabeth K.; Nasarabadi, Shanavaz; Bailey, Christopher G.; Colston, Bill W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Lee-Houghton, Lorenna] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [Watkins, Nicholas] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA. [Hebert, Nicole; Leung, Patrick; Arnold, Don W.] Eksigent Technologies, Dublin, CA 94568 USA. RP Beer, NR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM beer2@llnl.gov NR 15 TC 122 Z9 125 U1 4 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAR 15 PY 2008 VL 80 IS 6 BP 1854 EP 1858 DI 10.1021/ac800048k PG 5 WC Chemistry, Analytical SC Chemistry GA 274QX UT WOS:000254017000003 PM 18278951 ER PT J AU Shen, YF Tolic, N Hixson, KK Purvine, SO Pasa-Tolic, L Qian, WJ Adkins, JN Moore, RJ Smith, RD AF Shen, Yufeng Tolic, Nikola Hixson, Kim K. Purvine, Samuel O. Pasa-Tolic, Ljiljana Qian, Wei-Jun Adkins, Joshua N. Moore, Ronald J. Smith, Richard D. TI Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates using unique sequence tags SO ANALYTICAL CHEMISTRY LA English DT Article ID TANDEM MASS-SPECTROMETRY; STATISTICAL SIGNIFICANCE; LIQUID-CHROMATOGRAPHY; DATABASE SEARCH; GLOBAL ANALYSIS; YEAST PROTEOME; PEPTIDE; PERFORMANCE; MS/MS; NEED AB Identifying proteins and their modification states and with known levels of confidence remains as a significant challenge for proteomics. Random or decoy peptide databases are increasingly being used to estimate the false discovery rate (FDR), e.g., from liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of tryptic digests. We show that this approach can significantly underestimate the FDR and describe an approach for more confident protein identifications that uses unique partial sequences derived from a combination of database searching and amino acid residue sequencing using high-accuracy MS/MS data. Applied to a Saccharomyces cerevisiae tryptic digest, the approach provided 3 132 confident peptide identifications (similar to 5% modified in some fashion), covering 575 proteins with an estimated zero FDR. The conventional approach provided 3 359 peptide identifications and 656 proteins with 0.3% FDR based upon a decoy database analysis. However, the present approach revealed similar to 5% of the 3 359 identifications to be incorrect and many more as potentially ambiguous (e.g., due to not considering certain amino acid substitutions and modifications). In addition, 677 peptides and 39 proteins were identified that had been missed by conventional analysis, including nontryptic peptides, peptides with a variety of expected/unexpected chemical modifications, known/unknown post-translational modifications, single nucleotide polymorphisms or gene encoding errors, and multiple modifications of individual peptides. C1 [Shen, Yufeng; Tolic, Nikola; Hixson, Kim K.; Purvine, Samuel O.; Pasa-Tolic, Ljiljana; Qian, Wei-Jun; Adkins, Joshua N.; Moore, Ronald J.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-05, RR18522]; NIAID NIH HHS [AGRY-AI-4894] NR 35 TC 34 Z9 34 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAR 15 PY 2008 VL 80 IS 6 BP 1871 EP 1882 DI 10.1021/ac702328x PG 12 WC Chemistry, Analytical SC Chemistry GA 274QX UT WOS:000254017000006 PM 18271604 ER PT J AU Chan, JW Taylor, DS Lane, SM Zwerdling, T Tuscano, J Huser, T AF Chan, James W. Taylor, Douglas S. Lane, Stephen M. Zwerdling, Theodore Tuscano, Joseph Huser, Thomas TI Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy SO ANALYTICAL CHEMISTRY LA English DT Article ID REAL-TIME DETECTION; BIOCHEMICAL-CHANGES; OPTICAL TWEEZERS; AQUEOUS-SOLUTION; MICROSPECTROSCOPY; MICROORGANISMS; MICROSCOPY; DIAGNOSIS; SPECTRA; SPORES AB Currently, a combination of technologies is typically required to assess the malignancy of cancer cells. These methods often lack the specificity and sensitivity necessary for early, accurate diagnosis. Here we demonstrate using clinical samples the application of laser trapping Raman spectroscopy as a novel approach that provides intrinsic biochemical markers for the noninvasive detection of individual cancer cells. The Raman spectra of live, hematopoietic cells provide reliable molecular fingerprints that reflect their biochemical composition and biology. Populations of normal T and B lymphocytes from four healthy individuals and cells from three leukemia patients were analyzed, and multiple intrinsic Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for cancer cell identification. A combination of two multivariate statistical methods, principal component analysis (PCA) and linear discriminant analysis (LDA), was used to confirm the significance of these markers for identifying cancer cells and classifying the data. The results indicate that, on average, 95% of the normal cells and 90% of the patient cells were accurately classified into their respective cell types. We also provide evidence that these markers are unique to cancer cells and not purely a function of differences in their cellular activation. C1 [Chan, James W.; Lane, Stephen M.] Lawrence Livermore Natl Lab, Appl Phys & Biophys Div, Livermore, CA 94551 USA. [Chan, James W.; Taylor, Douglas S.; Lane, Stephen M.; Zwerdling, Theodore; Huser, Thomas] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Taylor, Douglas S.; Zwerdling, Theodore] Univ Calif Davis, Dept Pediat, Hematol Oncol Sect, Sacramento, CA 95817 USA. [Tuscano, Joseph] Univ Calif Davis, Div Hematol & Oncol, Dept Internal Med, Sacramento, CA 95817 USA. [Huser, Thomas] Univ Calif Davis, Div Endocrinol Clin Nutr & Vasc Med, Dept Internal Med, Sacramento, CA 95817 USA. RP Chan, JW (reprint author), Lawrence Livermore Natl Lab, Appl Phys & Biophys Div, POB 808,L-211, Livermore, CA 94551 USA. EM chan19@llnl.gov RI Huser, Thomas/H-1195-2012; Chan, James/J-3829-2014 OI Huser, Thomas/0000-0003-2348-7416; FU NCRR NIH HHS [UL1 RR024146] NR 25 TC 102 Z9 105 U1 1 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAR 15 PY 2008 VL 80 IS 6 BP 2180 EP 2187 DI 10.1021/ac7022348 PG 8 WC Chemistry, Analytical SC Chemistry GA 274QX UT WOS:000254017000045 PM 18260656 ER PT J AU Narayanan, R Lipert, RJ Porter, MD AF Narayanan, Radha Lipert, Robert J. Porter, Marc D. TI Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays SO ANALYTICAL CHEMISTRY LA English DT Article ID BOVINE SERUM-ALBUMIN; IMMUNOGOLD COLLOIDS; SILVER ELECTRODE; SCATTERING; NANOSTRUCTURES; IDENTIFICATION; MOLECULES; PATHOGENS; SUBSTRATE; ANTIGEN AB This paper reports on the characterization and preliminary comparison of gold nanoparticles of differing surface modification and shape when used as extrinsic Raman labels (ERLs) in high-sensitivity heterogeneous immunoassays based on surface enhanced Raman scattering (SERS). ERLs are gold nanoparticles coated with an adlayer of an intrinsically strong Raman scatterer, followed by a coating of a molecular recognition element (e.g., antibody). Three types of ERLs, all with a nominal size of similar to 30 nm, were fabricated by using spherical citrate-capped gold nanoparticles (sp-cit-Au NPs), spherical CTAB-capped gold nanoparticles (sp-CFAB-Au NPs), or cube-like CTAB-capped gold nanoparticles (cu-CFAB-Au NPs) as cores. The performance of these particles was assessed via a sandwich immunoassay for human IgG in phosphate buffered saline. The ERLs fabricated with sp-CTAB-Au NPs as cores proved to be more than 50 times more sensitive than those with sp-cit-Au NPs as cores; the same comparison showed that the ERLs with cu-CTAB-Au NPs as cores were close to 200 times more sensitive. Coupled with small differences in levels of nonspecific adsorption, these sensitivities translated to a limit of detection (LOD) of 94, 2.3, and 0.28 ng/mL, respectively, for the detection of human IgG in the case of sp-cit-Au NPs, sp-CTAB-Au NPs, and cu-CTAB-Au NPs. The LOD of the cu-CTAB-Au NPs is therefore similar to 340 times below that for the sp-cit-Au NPs. Potential applications of these labels to bioassays are briefly discussed. C1 [Narayanan, Radha; Porter, Marc D.] Univ Utah, Dept Chem Chem Engn & Bioengn, Salt Lake City, UT 84112 USA. [Lipert, Robert J.] Iowa State Univ, Inst Combinatorial Discovery, Ames Lab, USDOE, Ames, IA 50014 USA. RP Porter, MD (reprint author), Univ Utah, Dept Chem Chem Engn & Bioengn, Salt Lake City, UT 84112 USA. EM marc.porter@utah.edu RI Lipert, Robert/A-8571-2009 NR 50 TC 69 Z9 69 U1 2 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAR 15 PY 2008 VL 80 IS 6 BP 2265 EP 2271 DI 10.1021/ac7026436 PG 7 WC Chemistry, Analytical SC Chemistry GA 274QX UT WOS:000254017000057 PM 18290676 ER PT J AU Fawzi, NL Kohlstedt, KL Okabe, Y Head-Gordon, T AF Fawzi, Nicolas Lux Kohlstedt, Kevin L. Okabe, Yuka Head-Gordon, Teresa TI Protofibril assemblies of the arctic, dutch, and flemish mutants of the Alzheimer's A beta(1-40) peptide SO BIOPHYSICAL JOURNAL LA English DT Article ID AMYLOID-BETA-PROTEIN; EXPERIMENTAL CONSTRAINTS; CEREBRAL-HEMORRHAGE; MISFOLDING DISEASES; HYDROPHOBIC CORE; IN-VITRO; FIBRILS; AGGREGATION; DYNAMICS; MUTATION AB Using a coarse-grained model of the A beta peptide, we analyze the Arctic (E22G), Dutch (E22Q), and Flemish (A21G) familial Alzheimer's disease (FAD) mutants for any changes in the stability of amyloid assemblies with respect to the wild-type (WT) sequence. Based on a structural reference state of two protofilaments aligned to create the "agitated" protofibril as determined by solid-state NMR, we determine free energy trends for A beta assemblies for the WT and FAD familial sequences. We find that the structural characteristics and oligomer size of the critical nucleus vary dramatically among the hereditary mutants. The Arctic mutant's disorder in the turn region introduces new stabilizing interactions that better align the two protofilaments, yielding a well-defined protofibril axis at relatively small oligomer sizes with respect to WT. By contrast, the critical nucleus for the Flemish mutant is beyond the 20 chains characterized in this study, thereby showing a strong shift in the equilibrium toward monomers with respect to larger protofibril assemblies. The Dutch mutant forms more ordered protofilaments than WT, but exhibits greater disorder in protofibril structure that includes an alternative polymorph of the WT fibril. An important conclusion of this work is that the Dutch mutant does not support the agitated protofibril assembly. We discuss the implications of the structural ensembles and free energy profiles for the FAD mutants in regards to interpretation of the kinetics of fibril assembly using chromatography and dye-binding experiments. C1 [Fawzi, Nicolas Lux; Head-Gordon, Teresa] Univ Calif Berkeley, UCSF, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. [Okabe, Yuka; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Kohlstedt, Kevin L.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Head-Gordon, Teresa] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Head-Gordon, T (reprint author), Univ Calif Berkeley, UCSF, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. EM t1head-gordon@lbl.gov RI Head-Gordon, Teresa/E-5818-2011; Fawzi, Nicolas/E-2555-2013 OI Fawzi, Nicolas/0000-0001-5483-0577 FU NIGMS NIH HHS [R01 GM 070919, R01 GM070919, R01 GM070919-02] NR 57 TC 36 Z9 36 U1 0 U2 9 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD MAR 15 PY 2008 VL 94 IS 6 BP 2007 EP 2016 DI 10.1529/biophysj.107.121467 PG 10 WC Biophysics SC Biophysics GA 269UQ UT WOS:000253676200007 PM 18032553 ER PT J AU Kent, MS Yim, H Murton, JK Satija, S Majewski, J Kuzmenko, I AF Kent, M. S. Yim, H. Murton, J. K. Satija, S. Majewski, J. Kuzmenko, I. TI Oligomerization of membrane-bound diphtheria toxin (CRM197) facilitates a transition to the open form and deep insertion SO BIOPHYSICAL JOURNAL LA English DT Article ID T-DOMAIN; BILAYER-MEMBRANES; REFINED STRUCTURE; CATALYTIC DOMAIN; PROTEIN TOXINS; A-FRAGMENT; TRANSLOCATION; CHANNEL; RECEPTOR; RESOLUTION AB Diphtheria toxin (DT) contains separate domains for receptor-specific binding, translocation, and enzymatic activity. After binding to cells, DT is taken up into endosome-like acidic compartments where the translocation domain inserts into the endosomal membrane and releases the catalytic domain into the cytosol. The process by which the catalytic domain is translocated across the endosomal membrane is known to involve pH-induced conformational changes; however, the molecular mechanisms are not yet understood, in large part due to the challenge of probing the conformation of the membrane-bound protein. In this work neutron reflection provided detailed conformational information for membrane-bound DT (CRM197) in situ. The data revealed that the bound toxin oligomerizes with increasing DT concentration and that the oligomeric form (and only the oligomeric form) undergoes a large extension into solution with decreasing pH that coincides with deep insertion of residues into the membrane. We interpret the large extension as a transition to the open form. These results thus indicate that as a function of bulk DT concentration, adsorbed DT passes from an inactive state with a monomeric dimension normal to the plane of the membrane to an active state with a dimeric dimension normal to the plane of the membrane. C1 [Kent, M. S.; Yim, H.; Murton, J. K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Satija, S.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Majewski, J.] Los Alamos Neutron Sci Ctr, Los Alamos, NM USA. [Kuzmenko, I.] Argonne Natl Labs, Adv Photon Source, Argonne, IL 60439 USA. RP Kent, MS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mskent@sandia.gov RI Lujan Center, LANL/G-4896-2012 NR 45 TC 10 Z9 11 U1 0 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD MAR 15 PY 2008 VL 94 IS 6 BP 2115 EP 2127 DI 10.1529/biophysj.107.113498 PG 13 WC Biophysics SC Biophysics GA 269UQ UT WOS:000253676200016 PM 18055530 ER PT J AU Shroff, H Sivak, D Siegel, JJ McEvoy, AL Siu, M Spakowitz, A Geissler, PL Liphardt, J AF Shroff, Hari Sivak, David Siegel, Jake J. McEvoy, A. L. Siu, Merek Spakowitz, Andrew Geissler, Phillip L. Liphardt, Jan TI Optical measurement of mechanical forces inside short DNA loops SO BIOPHYSICAL JOURNAL LA English DT Article ID SINGLE-STRANDED-DNA; DOUBLE HELIX; FLUCTUATIONS; COMPLEXES; MOLECULES; KINETICS AB Knowledge of the mechanical properties of double-stranded DNA (dsDNA) is essential to understand the role of dsDNA looping in gene regulation and the mechanochemistry of molecular machines that operate on dsDNA. Here, we use a newly developed tool, force sensors with optical readout, to measure the forces inside short, strained loops composed of both dsDNA and single-stranded DNA. By varying the length of the loops and their proportion of dsDNA, it was possible to vary their internal forces from 1 pN to >20 pN. Surprisingly, internal loop forces changed erratically as the amount of dsDNA was increased for a given loop length, with the effect most notable in the smallest loop (57 nucleotides). Monte Carlo simulations based on the helical wormlike chain model accurately predict internal forces when more than half of the loop is dsDNA but fail otherwise. Mismatches engineered into the double-stranded regions increased flexibility, suggesting that Watson-Crick basepaired dsDNA can withstand high compressive forces without recourse to multibase melts. Fluorescence correlation spectroscopy further excluded transient melting (microsecond to millisecond duration) as a mechanism for relief of compressive forces in the tested dsDNAs. DNA loops with integrated force sensors may allow the comprehensive mapping of the elasticity of short dsDNAs as a function of both sequence and salt. C1 [Liphardt, Jan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Shroff, Hari; Sivak, David; Siegel, Jake J.; McEvoy, A. L.; Siu, Merek; Geissler, Phillip L.; Liphardt, Jan] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Spakowitz, Andrew] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Shroff, Hari; Siegel, Jake J.; McEvoy, A. L.; Siu, Merek; Geissler, Phillip L.; Liphardt, Jan] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liphardt, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM Liphardt@phys.berkeley.edu RI Sivak, David/A-1605-2012; Liphardt, Jan/A-5906-2012; Shroff, Hari/E-7247-2016; OI Sivak, David/0000-0003-4815-4722; Shroff, Hari/0000-0003-3613-8215; Liphardt, Jan/0000-0003-2835-5025 NR 31 TC 14 Z9 14 U1 3 U2 8 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD MAR 15 PY 2008 VL 94 IS 6 BP 2179 EP 2186 DI 10.1529/biophysj.107.114413 PG 8 WC Biophysics SC Biophysics GA 269UQ UT WOS:000253676200022 PM 18065484 ER PT J AU Trewyn, BG Nieweg, JA Zhao, Y Lin, VSY AF Trewyn, Brian G. Nieweg, Jennifer A. Zhao, Yannan Lin, Victor S. -Y. TI Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane, penetration SO CHEMICAL ENGINEERING JOURNAL LA English DT Article DE mesoporous silica nanoparticle; endocytosis; nanosphere; nanotube; cell membrane; intracellular delivery ID RESPONSIVE CONTROLLED-RELEASE; HUMAN CANCER-CELLS; DELIVERY-SYSTEM; NANOSPHERE; EFFICIENT; MCM-41; FUNCTIONALIZATION; CONDENSATION; ENDOCYTOSIS; MOLECULES AB Two MCM-41 type, fluorescein-labeled mesoporous silica nanomaterials (MSNs) consisting of spherical and tube-shaped particles were synthesized and characterized. Both materials have hexagonally arranged mesopores with high surface area (>950 m(2)/g) and a narrow distribution of pore diameters. The cellular uptake efficiency and kinetics of both MSNs were measured in a cancer cell line (CHO) and a noncancerous cell line (fibroblasts) by flow cytometry and fluorescence confocal microscopy. The correlation between the particle morphology and aggregation of MSNs to the effectiveness of cellular uptake was investigated. We envision that our study on the morphology dependent endocytosis of MSNs would lead to future developments of efficient transmembrane nanodevices for intracellular sensing and gene/drug delivery. (C) 2007 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Lin, VSY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM vsylin@iastate.edu NR 28 TC 143 Z9 146 U1 5 U2 71 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1385-8947 J9 CHEM ENG J JI Chem. Eng. J. PD MAR 15 PY 2008 VL 137 IS 1 BP 23 EP 29 DI 10.1016/j.cej.2007.09.045 PG 7 WC Engineering, Environmental; Engineering, Chemical SC Engineering GA 274TK UT WOS:000254023900004 ER PT J AU Wan, JM Tokunaga, TK Kim, YM Wang, ZM Lanzirotti, A Saiz, E Serne, RJ AF Wan, Jiamin Tokunaga, Tetsu K. Kim, Yongman Wang, Zheming Lanzirotti, Antonio Saiz, Eduardo Serne, R. Jeffrey TI Effect of saline waste solution infiltration rates on uranium retention and spatial distribution in Hanford sediments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID VADOSE ZONE; FLUORESCENCE; CARBONATE; ALKALINE; U(VI); SITE; WASHINGTON; SPECIATION; PLUMES; URANYL AB The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 t of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes that occurred during the initial infiltration and to help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using synthesized metal waste solution. We found that, as the plume propagated through sediments, pH decreased greatly(as much as 4 units) at the moving plume front. Infiltration flow rates strongly affect U behavior. Slower flow rates resulted in higher sediment-associated U concentrations, and higher flow rates (>= 5 cm/day) permitted practically unretarded U transport. Therefore, given the very high K-sat of most of Hanford formation, the low permeability zones within the sediment could have been most important in retaining high concentrations of U during initial release into the vadose zone. Massive amount of colloids, including U-colloids, formed at the plume fronts. Total U concentrations (aqueous and colloid) within plume fronts exceeded the source concentration by up to 5-fold. Uranium colloid formation and accumulation at the neutralized plume front could be one mechanism responsible for highly heterogeneous U distribution observed in the contaminated Hanford vadose zone. C1 [Wan, Jiamin; Tokunaga, Tetsu K.; Kim, Yongman] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wang, Zheming; Serne, R. Jeffrey] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lanzirotti, Antonio] Univ Chicago, Chicago, IL 60637 USA. [Saiz, Eduardo] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wan, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jwan@lbl.gov RI Wang, Zheming/E-8244-2010; Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014; Kim, Yongman/D-1130-2015 OI Wang, Zheming/0000-0002-1986-4357; Tokunaga, Tetsu/0000-0003-0861-6128; Kim, Yongman/0000-0002-8857-1291 NR 22 TC 4 Z9 5 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2008 VL 42 IS 6 BP 1973 EP 1978 DI 10.1021/es0706841a PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 273QV UT WOS:000253947700030 PM 18409623 ER PT J AU Dong, WM Brooks, SC AF Dong, Wenming Brooks, Scott C. TI Formation of aqueous MgUO2(CO3)(3)(2-) complex and uranium anion exchange mechanism onto an exchange resin SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MIXED ELECTROLYTE-SOLUTIONS; ACTIVITY-COEFFICIENTS; URANYL AB The formation of and stability constants for aqueous Mg-UO2-CO3 complexes were determined using an anion exchange method. Magnesium concentration was varied (up to 20 mmol/L) at constant ionic strength (I = 0.101, 0.202, 0.304, 0.406, and 0.509 mol/kg NaNO3) pH 8.1, total [U(VI)] = 10.4 mu mol/L under equilibrium with atmospheric CO2. The results indicate that only the MgUO2(CO3)(3)(2-) complex is formed. The cumulative formation constant extrapolated to zero ionic strength is similar regardless of the activity correction convention used: 1001130 = 25.8 +/- 0.5 using the Davies equation and 25.02 +/- 0.08 using specific ion interaction theory (SIT). Uranium sorption onto the exchange resin decreased in the presence of Mg putatively due to the formation Of MgUO2(CO3)(3)(2-) that had a lower affinity for the resin than UO2(CO3)(3)(4-). Uranium sorption results are consistent with an equivalent anion exchange reaction between NO3- andUO(2)(CO3)(3)(4-) species to retain charge neutrality regardless of Mg concentration. No Mg was associated with the anion exchange resin indicating that the MgUO2(CO3)(3)(2-) complex did not sorb. C1 [Dong, Wenming; Brooks, Scott C.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Brooks, SC (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM Brookssc@ornl.gov RI Brooks, Scott/B-9439-2012; Dong, Wenming/G-3221-2015 OI Brooks, Scott/0000-0002-8437-9788; Dong, Wenming/0000-0003-2074-8887 NR 16 TC 25 Z9 27 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2008 VL 42 IS 6 BP 1979 EP 1983 DI 10.1021/es0711563 PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 273QV UT WOS:000253947700031 PM 18409624 ER PT J AU Agrawal, A Cronin, JP Agrawal, A Tonazzi, JCL Adams, L Ashley, K Brisson, MJ Duran, B Whitney, G Burrell, AK McCleskey, TM Robbins, J White, KT AF Agrawal, Anoop Cronin, John P. Agrawal, Akshay Tonazzi, Juan C. L. Adams, Lori Ashley, Kevin Brisson, Michael J. Duran, Brandy Whitney, Gary Burrell, Anthony K. McCleskey, T. Mark Robbins, James White, Kenneth T. TI Extraction and optical fluorescence method for the measurement of trace beryllium in soils SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SELECTIVE DETERMINATION; FLUOROMETRIC DETECTION; AMMONIUM BIFLUORIDE; REAGENT; EXPOSURE; SAMPLES; ION; AIR AB Beryllium metal and beryllium oxide are important industrial materials used in a variety of applications in the electronics, nuclear energy, and aerospace industries. These materials are highly toxic, they must be disposed of with care, and exposed workers need to be protected. Recently, a new analytical method was developed that uses dilute ammonium bifluoride for extraction of beryllium and a high quantum yield optical fluorescence reagent to determine trace amounts of beryllium in airborne and surface samples. The sample preparation and analysis procedure was published by both ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The main advantages of this method are its sensitivity, simplicity, use of lower toxicity materials, and low capital costs. Use of the technique for analyzing soils has been initiated to help meet a need at several of the U.S. Department of Energy legacy sites. So far this work has mainly concentrated on developing a dissolution protocol for effectively extracting beryllium from a variety of soils and sediments so that these can be analyzed by optical fluorescence. Certified reference materials (CRM) of crushed rock and soils were analyzed for beryllium content using fluorescence, and results agree quantitatively with reference values. C1 [Agrawal, Anoop; Cronin, John P.; Agrawal, Akshay; Tonazzi, Juan C. L.; Adams, Lori] Berylliant Inc, Tucson, AZ 85712 USA. [Ashley, Kevin] NIOSH, US Dept Hlth & Human Serv, Cincinnati, OH 45226 USA. [Brisson, Michael J.] Westinghouse Savannah River Co, Aiken, SC 29808 USA. [Duran, Brandy; Whitney, Gary; Burrell, Anthony K.; McCleskey, T. Mark] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [White, Kenneth T.] Virginia Beach, Consult Serv, Albany, OR 97321 USA. RP Agrawal, A (reprint author), Berylliant Inc, 4541 E Fort Lowell Rd, Tucson, AZ 85712 USA. EM aagrawal@qwest.net; aagrawal@qwest.net RI Ashley, Kevin/C-9005-2011; McCleskey, Thomas/J-4772-2012; OI Mccleskey, Thomas/0000-0003-3750-3245 NR 28 TC 13 Z9 14 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2008 VL 42 IS 6 BP 2066 EP 2071 DI 10.1021/es702481h PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 273QV UT WOS:000253947700045 PM 18409638 ER PT J AU Fthenakis, VM Kim, HC Alsema, E AF Fthenakis, Vasilis M. Kim, Hyung Chul Alsema, Erik TI Emissions from photovoltaic life cycles SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ENERGY PAYBACK; CO2 EMISSIONS; PV; MODULES; CADMIUM; SYSTEMS AB Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid. C1 [Fthenakis, Vasilis M.; Kim, Hyung Chul] Brookhaven Natl Lab, PV Environm Res Ctr, Upton, NY 11973 USA. [Fthenakis, Vasilis M.] Columbia Univ, Ctr Life Cycle Anal, New York, NY USA. [Alsema, Erik] Univ Utrecht, Copernicus Inst Sustainable Dev, NL-3584 CS Utrecht, Netherlands. RP Fthenakis, VM (reprint author), Brookhaven Natl Lab, PV Environm Res Ctr, Upton, NY 11973 USA. EM vmf@bnl.gov OI Alsema, Erik/0000-0002-0502-0591 NR 27 TC 184 Z9 192 U1 4 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 15 PY 2008 VL 42 IS 6 BP 2168 EP 2174 DI 10.1021/es071763q PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 273QV UT WOS:000253947700061 PM 18409654 ER PT J AU Kerisit, S Liu, CX Ilton, ES AF Kerisit, Sebastien Liu, Chongxuan Ilton, Eugene S. TI Molecular dynamics simulations of the orthoclase (001)- and (010)-water interfaces SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY REFLECTIVITY; ELECTRIC DOUBLE-LAYER; RUTILE 110 SURFACE; DISSOLUTION RATES; AQUEOUS-SOLUTIONS; MINERAL SURFACES; WATER INTERFACE; CALCITE SURFACE; HANFORD-SITE; FREE-ENERGY AB Molecular dynamics simulations of water in contact with the (0 0 1) and (0 10) surfaces of orthoclase (KAlSi(3)O(8)) were carried out to investigate the structure and dynamics of the feldspar-water interface, contrast the intrinsic structural properties of the two surfaces, and provide a basis for future work on the diffusion of ions and molecules in microscopic mineral fractures. Electron density profiles were computed from the molecular dynamics trajectories and compared with those derived experimentally from high-resolution X-ray reflectivity measurements by Fenter and co-workers [Fenter P., Cheng L., Park C., Zhang H. and Sturchio N. C. (2003a) Structure of the orthoclase (0 0 1)- and (0 1 0)-water interfaces by high-resolution Xray reflectivity. Geochim. Cosmochim. Acta 67, 4267-4275]. For each surface, three scenarios were considered whereby the interfacial species is potassium, water, or a hydronium ion. Excellent agreement was obtained for the (0 0 1) surface when potassium is the predominant interfacial species; however, some discrepancies in the position of the interfacial peaks were obtained for the (0 10) surface. The two surfaces showed similarities in the extent of water ordering at the interface, the activation energies for water and potassium desorption, and the adsorption localization of interfacial species. However, there are also important differences between the two surfaces in the coordination of a given adsorbed species, adsorption site densities, and the propensity for water molecules in surface cavities and those in the first hydration layer to coordinate to surface bridging oxygen atoms. These differences may have implications for the extent of dissolution in the low-pH regime since hydrolysis of Si(Al)-O-Si(Al) bonds is a major dissolution mechanism. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Kerisit, Sebastien; Liu, Chongxuan; Ilton, Eugene S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM sebastien.kerisit@pnl.gov RI Liu, Chongxuan/C-5580-2009; OI Liu, Chongxuan/0000-0002-2180-6770 NR 58 TC 36 Z9 37 U1 3 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 15 PY 2008 VL 72 IS 6 BP 1481 EP 1497 DI 10.1016/j.gca.2007.12.014 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 276CU UT WOS:000254119700001 ER PT J AU Peretyazhko, T Zachara, JM Heald, SM Jeon, BH Kukkadapu, RK Liu, C Moore, D Resch, CT AF Peretyazhko, T. Zachara, J. M. Heald, S. M. Jeon, B. -H. Kukkadapu, R. K. Liu, C. Moore, D. Resch, C. T. TI Heterogeneous reduction of Tc(VII) by Fe(II) at the solid-water interface SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; ELECTRON-TRANSFER; IRON-OXIDES; DISSIMILATORY REDUCTION; CONTAMINATED AQUIFER; ORGANIC CONTAMINANTS; CARBON-TETRACHLORIDE; BACTERIAL REDUCTION; CHEMICAL-REDUCTION; SURFACE CATALYSIS AB Experiments were performed herein to investigate the rates and products of heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to hematite and goethite, and by Fe(II) associated with a dithionite-citrate-bicarbonate (DCB) reduced natural phyllosilicate mixture [structural, ion-exchangeable, and edge-complexed Fe(II)] containing vermiculite, illite, and muscovite. The heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to the Fe(III) oxides increased with increasing pH and was coincident with a second event of Fe2+ ((aq)) adsorption. The reaction was almost instantaneous above pH 7. In contrast, the reduction rates of Tc(VII) by DCB-reduced phyllosilicates were not sensitive to pH or to added Fe2+ (aq) that adsorbed to the clay. The reduction kinetics were orders of magnitude slower than observed for the Fe(III) oxides, and appeared to be controlled by structural Fe(II). The following affinity series for heterogeneous Tc(VII) reduction by Fe(II) was suggested by the experimental results: aqueous Fe(II) similar to adsorbed Fe(II) in phyllosilicates [ion-exchangeable and some edge-complexed Fe(II)] < structural Fe(II) in phyllosilicates << Fe(II) adsorbed on Fe(III) oxides. Tc-EXAFS spectroscopy revealed that the reduction products were virtually identical on hematite and goethite that were comprised primarily of sorbed octahedral TcO2 monomers and dimers with significant Fe(III) in the second coordination shell. The nature of heterogeneous Fe(III) resulting from the redox reaction was ambiguous as probed by Tc-EXAFS spectroscopy, although Mossbauer spectroscopy applied to an experiment with Fe-56-goethite with adsorbed Fe-57(II) implied that redox product Fe(III) was goethite-like. The Tc(IV) reduction product formed on the DCB-reduced phyllosilicates was different from the Fe(III) oxides, and was more similar to Tc(IV) oxyhydroxide in its second coordination shell. The heterogeneous reduction of Tc(VII) to less soluble forms by Fe(III) oxide-adsorbed Fe(II) and structural Fe(II) in phyllosilicates may be an important geochemical process that will proceed at very different rates and that will yield different surface species depending on subsurface pH and mineralogy. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Peretyazhko, T.; Zachara, J. M.; Kukkadapu, R. K.; Liu, C.; Moore, D.; Resch, C. T.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Jeon, B. -H.] Yonsei Univ, Kangwon Do 220710, South Korea. [Heald, S. M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Peretyazhko, T (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99354 USA. EM tetyana.peretyazhko@pnl.gov RI Liu, Chongxuan/C-5580-2009; OI Jeon, Byong-Hun/0000-0002-5478-765X NR 79 TC 74 Z9 75 U1 8 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 15 PY 2008 VL 72 IS 6 BP 1521 EP 1539 DI 10.1016/j.gca.2008.01.004 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 276CU UT WOS:000254119700004 ER PT J AU Cheng, CH Lehmann, J Engelhard, MH AF Cheng, Chih-Hsin Lehmann, Johannes Engelhard, Mark H. TI Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ACTIVATED CARBON; FOSSIL CHARCOAL; ORGANIC-MATTER; OXYGEN; SPECTROSCOPY; ADSORPTION; AGRICULTURE; FRACTIONS; STABILITY; COMPLEXES AB The aim of this work was to investigate changes in molecular form and surface charge of black carbon (BC) due to long-term natural oxidation and to examine how climatic and soil factors affect BC oxidation. Black C was collected from 11 historical charcoal blast furnace sites with a geographic distribution from Quebec, Canada, to Georgia, USA, and compared to BC that was newly produced (new BC) using rebuilt historical kilns. The results showed that the historical BC samples were substantially oxidized after 130 years in soils as compared to new BC or BC incubated for one year. The major alterations by natural oxidation of BC included: (1) changes in elemental composition with increases in oxygen (0) from 7.2% in new BC to 24.8% in historical BC and decreases in C from 90.8% to 70.5%; (2) formation of oxygen-containing functional groups, particularly carboxylic and phenolic functional groups, and (3) disappearance of surface positive charge and evolution of surface negative charge after 12 months of incubation. Although time of exposure significantly increased natural oxidation of BC, a significant positive relationship between mean annual temperature (MAT) and BC oxidation (O/C ratio with r = 0.83; P < 0.01) explained that BC oxidation was increased by 87 mmole kg C-1 per unit Celsius increase in MAT. This long-term oxidation was more pronounced on BC surfaces than for entire particles, and responded 7-fold stronger to increases in MAT. Our results also indicated that oxidation of BC was more important than adsorption of non-BC. Thus, natural oxidation of BC may play an important role in the effects of BC on soil biogeochemistry. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Cheng, Chih-Hsin; Lehmann, Johannes] Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14853 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol & Sci Lab, Richland, WA 99352 USA. RP Lehmann, J (reprint author), Cornell Univ, Dept Crop & Soil Sci, 909 Bradfield Hall, Ithaca, NY 14853 USA. EM CL273@cornell.edu RI Engelhard, Mark/F-1317-2010; Lehmann, Johannes/H-2682-2014; OI Lehmann, Johannes/0000-0002-4701-2936; Engelhard, Mark/0000-0002-5543-0812 NR 55 TC 303 Z9 344 U1 17 U2 138 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 15 PY 2008 VL 72 IS 6 BP 1598 EP 1610 DI 10.1016/j.gca.2008.01.010 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 276CU UT WOS:000254119700009 ER PT J AU Van Ranst, E Utami, SR Verdoodt, A Qafoku, NP AF Van Ranst, E. Utami, S. R. Verdoodt, A. Qafoku, N. P. TI Mineralogy of a perudic Andosol in central Java, Indonesia SO GEODERMA LA English DT Article DE mineralogy; Tephra; aluminium interlayer; Andosol; Dieng volcanic complex; Indonesia ID VOLCANIC ASH; CLAY-MINERALS; ANDISOLS; VERMICULITES; KAOLINITE; SMECTITES; ALLOPHANE; GIBBSITE; ALUMINUM; HELENS AB We studied the mineralogy of a perudic Andosol developed on the Dieng Tephra Sequence in central Java, Indonesia. The objective was to confirm the presence and determine the origin and stability of 2:1 and interlayered 2:1 phyllosilicates in well-drained Andosols. This was and still is a debated topic in the literature. Total elemental and selective dissolution, as well as microscopic and X-ray diffraction analyses, were performed on the soil samples collected from this site. These analyses confirmed that andic properties were present in the soil samples. The allophane content determined by selective dissolution was 3-4% in the A horizons, and increased to 12-18% in the deeper subsoil horizons. In addition, the clay fraction contained dioctahedral smectite, hydroxy-Al-interlayered 2:1 minerals (HIS), Al-chlorite, kaolinite, pyrophyllite, mica, cristobalite and some gibbsite. The silt and sand fractions were rich in plagioclase and pyroxene. The 2:1 minerals (smectite and pyrophyllite), as well as chlorite and kaolinite were of hydrothermal origin and were incorporated in the tephra during volcanic eruption. Besides desilication during dissolution of unstable minerals, At interlayering of 2:1 layer silicates was most likely the most prominent pedogenic process. Although hydroxy-Al polymeric interlayers would normally stabilize the 2:1 clay phases, the strong weakening, and even disappearance of the characteristic XRD peaks, indicated instability of these minerals in the upper A horizons due to the perudic and intensive leaching conditions. (C) 2007 Elsevier B.V All rights reserved. C1 [Van Ranst, E.; Verdoodt, A.] Univ Ghent, Dept Geol & Soil Sci, Lab Soil Sci, B-9000 Ghent, Belgium. [Utami, S. R.] Brawijaya Univ, Fac Agr, Dept Soil Sci, Malang 65145, Indonesia. [Qafoku, N. P.] Battelle Pacific NW Natl Lab, Richland, WA USA. RP Van Ranst, E (reprint author), Univ Ghent, Dept Geol & Soil Sci, Lab Soil Sci, Krijgslaan 281,S8, B-9000 Ghent, Belgium. EM eric.vanranst@UGent.be OI Qafoku, Nikolla P./0000-0002-3258-5379 NR 46 TC 7 Z9 7 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 J9 GEODERMA JI Geoderma PD MAR 15 PY 2008 VL 144 IS 1-2 BP 379 EP 386 DI 10.1016/j.geoderma.2007.12.007 PG 8 WC Soil Science SC Agriculture GA 281CC UT WOS:000254473000036 ER PT J AU Borg, JP Vogler, TJ AF Borg, John P. Vogler, Tracy J. TI Mesoscale calculations of the dynamic behavior of a granular ceramic SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE shock compaction; granular materials; mesoscale simulations; ceramics; porosity ID DIRECT NUMERICAL-SIMULATION; SHOCK COMPRESSION; COPPER-POWDER; PORE-COLLAPSE; STRAIN RATES; COMPACTION; CONSOLIDATION; ALUMINUM AB Mesoscale calculations have been conducted in order to gain further insight into the dynamic compaction characteristics of granular ceramics. The primary goals of this work are to numerically determine the shock response of granular tungsten carbide and to assess the feasibility of using these results to construct the bulk material Hugoniot. Secondary goals include describing the averaged compaction wave behavior as well as characterizing wave front behavior such as the strain rate versus stress relationship and statistically describing the laterally induced velocity distribution. The mesoscale calculations were able to accurately reproduce the experimentally determined Hugoniot slope but under predicted the zero pressure shock speed by 12%. The averaged compaction wave demonstrated an initial transient stress followed by asymptotic behavior as a function of grain bed distance. The wave front dynamics demonstrate non-Gaussian compaction dynamics in the lateral velocity distribution and a power-law strain rate-stress relationship. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Borg, John P.] Marquette Univ, Dept Mech Engn, Milwaukee, WI 53233 USA. [Vogler, Tracy J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Borg, JP (reprint author), Marquette Univ, Dept Mech Engn, 1515 W Wisconsin Ave, Milwaukee, WI 53233 USA. EM john.borg@marquette.edu RI Vogler, Tracy/B-4489-2009 NR 52 TC 27 Z9 28 U1 3 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD MAR 15 PY 2008 VL 45 IS 6 BP 1676 EP 1696 DI 10.1016/j.ijsolstr.2007.10.027 PG 21 WC Mechanics SC Mechanics GA 270DO UT WOS:000253700500009 ER PT J AU Armstrong, A Caudill, J Corrion, A Poblenz, C Mishra, UK Speck, JS Ringel, SA AF Armstrong, A. Caudill, J. Corrion, A. Poblenz, C. Mishra, U. K. Speck, J. S. Ringel, S. A. TI Characterization of majority and minority carrier deep levels in p-type GaN : Mg grown by molecular beam epitaxy using deep level optical spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID VAPOR-PHASE EPITAXY; DOPED GAN; TRANSISTORS; CARBON AB Deep level defects in p-type GaN:Mg grown by molecular beam epitaxy were characterized using steady-state photocapacitance and deep level optical spectroscopy (DLOS). Low frequency capacitance measurements were used to alleviate dispersion effects stemming from the deep Mg acceptor. Use of DLOS enabled a quantitative survey of both deep acceptor and deep donor levels, the latter being particularly important due to the limited understanding of minority carrier states for p-type GaN. Simultaneous electron and hole photoemissions resulted in a convoluted deep level spectrum that was decoupled by emphasizing either majority or minority carrier optical emission through control of the thermal filling time conditions. In this manner, DLOS was able to resolve and quantify the properties of deep levels residing near both the conduction and valence bandedges in the same sample. Bandgap states through hole photoemission were observed at E(nu)+3.05 eV, E(nu)+3.22 eV and E(nu)+3.26 eV. Additionally, DLOS revealed levels at E(c)-3.24 eV and E(c)-2.97 eV through electron emission to the conduction band with the former attributed to the Mg acceptor itself. The detected deep donor concentration is less than 2% of activated [Mg] and demonstrates the excellent quality of the film. (C) 2008 American Institute of Physics. C1 [Armstrong, A.; Caudill, J.; Ringel, S. A.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Corrion, A.; Poblenz, C.; Mishra, U. K.; Speck, J. S.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Corrion, A.; Poblenz, C.; Mishra, U. K.; Speck, J. S.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. RP Armstrong, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ringel@ece.osu.edu RI Speck, James/H-5646-2011 NR 17 TC 9 Z9 9 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 063722 DI 10.1063/1.2891673 PG 6 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900067 ER PT J AU Gabrysch, M Marklund, E Hajdu, J Twitchen, DJ Rudati, J Lindenberg, AM Caleman, C Falcone, RW Tschentscher, T Moffat, K Bucksbaum, PH Als-Nielsen, J Nelson, AJ Siddons, DP Emma, PJ Krejcik, P Schlarb, H Arthur, J Brennan, S Hastings, J Isberg, J AF Gabrysch, M. Marklund, E. Hajdu, J. Twitchen, D. J. Rudati, J. Lindenberg, A. M. Caleman, C. Falcone, R. W. Tschentscher, T. Moffat, K. Bucksbaum, P. H. Als-Nielsen, J. Nelson, A. J. Siddons, D. P. Emma, P. J. Krejcik, P. Schlarb, H. Arthur, J. Brennan, S. Hastings, J. Isberg, J. TI Formation of secondary electron cascades in single-crystalline plasma-deposited diamond upon exposure to femtosecond x-ray pulses SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NUCLEAR RADIATION DETECTORS; CVD DIAMOND; SEMICONDUCTORS; DEPENDENCE; ENERGIES; MOBILITY AB Secondary electron cascades were measured in high purity single-crystalline chemical vapor deposition (CVD) diamond, following exposure to ultrashort hard x-ray pulses (140 fs full width at half maximum, 8.9 keV energy) from the Sub-Picosecond Pulse Source at the Stanford Linear Accelerator Center. We report measurements of the pair creation energy and of drift mobility of carriers in two CVD diamond crystals. This was done for the first time using femtosecond x-ray excitation. Values for the average pair creation energy were found to be 12.17 +/- 0.57 and 11.81 +/- 0.59 eV for the two crystals, respectively. These values are in good agreement with recent theoretical predictions. The average drift mobility of carriers, obtained by the best fit to device simulations, was mu(h)= 2750 cm(2)/V s for holes and was mu(e)= 2760 cm(2) / V s for electrons. These mobility values represent lower bounds for charge mobilities due to possible polarization of the samples. The results demonstrate outstanding electric properties and the enormous potential of diamond in ultrafast x-ray detectors. (C) 2008 American Institute of Physics. C1 [Gabrysch, M.; Isberg, J.] Uppsala Univ, Div Elect, S-75121 Uppsala, Sweden. [Marklund, E.; Hajdu, J.; Caleman, C.] Uppsala Univ, Biomed Ctr, ICM Mol Biophys, S-75121 Uppsala, Sweden. [Lindenberg, A. M.; Bucksbaum, P. H.] Stanford Linear Accelerator Ctr, PULSE Ctr, Menlo Pk, CA 94025 USA. [Twitchen, D. J.] Element Six Ltd, Ascot SL5 8BP, Berks, England. [Lindenberg, A. M.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Falcone, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Tschentscher, T.] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. [Moffat, K.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Als-Nielsen, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Nelson, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Siddons, D. P.] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. RP Isberg, J (reprint author), Uppsala Univ, Div Elect, Box 534, S-75121 Uppsala, Sweden. EM jan.isberg@angstrom.uu.se RI Marklund, Erik/G-7480-2012; OI Marklund, Erik/0000-0002-9804-5009; Isberg, Jan/0000-0003-2197-5352 NR 28 TC 18 Z9 18 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 064909 DI 10.1063/1.2890158 PG 6 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900143 ER PT J AU Gowrishankar, V Scully, SR Chan, AT McGehee, MD Wang, Q Branz, HM AF Gowrishankar, Vignesh Scully, Shawn R. Chan, Albert T. McGehee, Michael D. Wang, Qi Branz, Howard M. TI Exciton harvesting, charge transfer, and charge-carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID POLYMER PHOTOVOLTAIC CELLS; ENERGY-TRANSFER; CONJUGATED POLYMERS; MESOPOROUS TITANIA; DEVICES; HETEROJUNCTIONS; PHOTODETECTORS; SEMICONDUCTORS; EXCITATION; INTERFACES AB We report on the device physics of nanostructured amorphous-silicon (a-Si:H)/polymer hybrid solar cells. Using two different polymers, poly (3-hexylthiophene)(P3HT) and poly (2-methoxy-5(2'-ethyl-hexyloxy)-1,4-phenylenevinylene)(MEH-PPV), we study the exciton diffusion, charge transfer, and charge-carrier transport in bilayer and nanostructured a-Si:H/polymer systems. We find that strong energy transfer occurs in the a-Si:H/MEH-PPV system. However, inefficient hole transfer from the a-Si:H to the polymers renders negligible photocurrent contribution from the a-Si: H as well as very small currents in the a-Si:H/MEH-PPV devices. These results suggest that a-Si: H may be unsuitable for use in polymer-based hybrid cells. Nanosphere lithography and reactive ion etching were used to fabricate nanopillars in a-Si: H. The nanostructured a-Si:H/P3HT devices showed improved efficiency and almost perfect charge-carrier extraction under short-circuit conditions. By modeling these nanostructured devices, the loss mechanisms were identified and solutions for higher efficiencies are suggested. (C) 2008 American Institute of Physics. C1 [Gowrishankar, Vignesh; Scully, Shawn R.; Chan, Albert T.; McGehee, Michael D.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Wang, Qi; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gowrishankar, V (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM vigneshg@gmail.com; mmcgehee@stanford.edu NR 39 TC 33 Z9 33 U1 6 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 064511 DI 10.1063/1.2896583 PG 8 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900127 ER PT J AU He, JQ Zheng, JC Zhu, YM Chaudhuri, S Budhani, RC AF He, Jiaqing Zheng, Jin-Cheng Zhu, Yimei Chaudhuri, S. Budhani, R. C. TI Self-organization of epitaxial La(0.35)Pr(0.275)Ca(0.375)MnO(3) manganite nanorods on NdGaO(3) substrates SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS; LAALO3; SRRUO3; PHASE AB We studied the structure, morphology, and growth mechanism of self- organized La(0.35)Pr(0.275)Ca(0.375)MnO(3) manganite nanorods grown on NdGaO(3) substrates by pulsed- laser deposition. A two- layered structure was revealed: the first layer, about 120 nm thick, was formed via layer- by- layer two- dimensional ( 2D ) growth; the second layer consisted of a three- dimensional assembly of nanorods lying perpendicular to the 2D layer. The nanorods, averaging 50 nm across and 180 nm long, exhibited six crystallographic orientational domains, but only two predominated, both with their b axis lying parallel to that of substrate ( parallel to the film normal ) and with an in- plane a- and c- axis interchange to minimize local lattice mismatch. We consider that the formation of such self- assembled nanorods is related to the Stranski - Krastanov growth mode and discuss the associated energy terms of such growth based on density functional theory calculations. (C) 2008 American Institute of Physics. C1 [He, Jiaqing; Zheng, Jin-Cheng; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Chaudhuri, S.; Budhani, R. C.] Indian Inst Technol, Dept Phys, Condensed Matter Low Dimens Syst Lab, Kanpur 208016, Uttar Pradesh, India. RP He, JQ (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM jhe@bnl.gov; zhu@bnl.gov RI He, Jiaqing/A-2245-2010; Chaudhuri, Saumyadip/C-6883-2011; Zheng, JC/G-3383-2010 OI Zheng, JC/0000-0002-6292-3236 NR 23 TC 3 Z9 3 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 064304 DI 10.1063/1.2899960 PG 5 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900100 ER PT J AU Jiang, CS Yan, B Yan, Y Teplin, CW Reedy, R Moutinho, HR Al-Jassim, MM Yang, J AF Jiang, C. -S. Yan, B. Yan, Y. Teplin, C. W. Reedy, R. Moutinho, H. R. Al-Jassim, M. M. Yang, J. TI P-induced nanocrystallite dispersion in amorphous-nanocrystalline mixed-phase Si : H thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TIME SPECTROSCOPIC ELLIPSOMETRY; SILICON SOLAR-CELLS; MICROCRYSTALLINE SILICON; EVOLUTION; MICROSTRUCTURE; MICROSCOPY; MECHANISM AB The effects of P doping on the nanocrystalline formation in mixed-phase Si: H thin films were investigated using secondary-ion mass spectrometry, Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, and scanning Kelvin probe microscopy. We found that Si nanocrystallites in the intrinsic and weakly P-doped materials aggregate to form cone-shaped structures. The local workfunction of the nanocrystalline aggregation areas is larger than the surrounding amorphous areas. Increasing the P-doping level requires an increased hydrogen dilution to reach the similar Raman crystallinity. The nanocrystalline aggregation disappears in the heavily P-doped materials, but isolated nancrystallites appear. The effect of P-doping on the nanostructure is explained with the coverage of P-related radicals on the existing nanocrystalline surface during the deposition and the P segregation in grain boundaries, which prevent new nucleation on the surface of existing nanocrystallites. (c) 2008 American Institute of Physics. C1 [Jiang, C. -S.; Yan, Y.; Teplin, C. W.; Reedy, R.; Moutinho, H. R.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yan, B.; Yang, J.] United Solar Ovon LLC, Troy, MI 48084 USA. RP Jiang, CS (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM chun_sheng_jiang@nrel.gov RI jiang, chun-sheng/F-7839-2012 NR 17 TC 5 Z9 6 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 063515 DI 10.1063/1.2891451 PG 6 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900031 ER PT J AU Klein, KL Melechko, AV McKnight, TE Retterer, ST Rack, PD Fowlkes, JD Joy, DC Simpson, ML AF Klein, K. L. Melechko, A. V. McKnight, T. E. Retterer, S. T. Rack, P. D. Fowlkes, J. D. Joy, D. C. Simpson, M. L. TI Surface characterization and functionalization of carbon nanofibers SO JOURNAL OF APPLIED PHYSICS LA English DT Review ID CHEMICAL-VAPOR-DEPOSITION; SCANNING-TUNNELING-MICROSCOPY; FIELD-EMISSION; BIOCHEMICAL FUNCTIONALIZATION; HYDROGEN STORAGE; ELECTRON SOURCES; ATOM-PROBE; NANOTUBES; ARRAYS; OXIDATION AB Carbon nanofibers are high-aspect ratio graphitic materials that have been investigated for numerous applications due to their unique physical properties such as high strength, low density, metallic conductivity, tunable morphology, chemical and environmental stabilities, as well as compatibility with organochemical modification. Surface studies are extremely important for nanomaterials because not only is the surface structurally and chemically quite different from the bulk, but its properties tend to dominate at the nanoscale due to the drastically increased surface-to-volume ratio. This review surveys recent developments in surface analysis techniques used to characterize the surface structure and chemistry of carbon nanofibers and related carbon materials. These techniques include scanning probe microscopy, infrared and electron spectroscopies, electron microscopy, ion spectrometry, temperature-programed desorption, and atom probe analysis. In addition, this article evaluates the methods used to modify the surface of carbon nanofibers in order to enhance their functionality to perform across an exceedingly diverse application space. (C) 2008 American Institute of Physics. C1 [Klein, K. L.; Rack, P. D.; Joy, D. C.; Simpson, M. L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Klein, K. L.; Melechko, A. V.; Retterer, S. T.; Rack, P. D.; Fowlkes, J. D.; Joy, D. C.; Simpson, M. L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Melechko, A. V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [McKnight, T. E.] Oak Ridge Natl Lab, Engn Sci & Technol Div, Oak Ridge, TN 37831 USA. [Retterer, S. T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Klein, KL (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM SimpsonML1@ornl.gov RI Retterer, Scott/A-5256-2011; Simpson, Michael/A-8410-2011; Melechko, Anatoli/B-8820-2008; McKnight, Tim/H-3087-2011; OI Retterer, Scott/0000-0001-8534-1979; Simpson, Michael/0000-0002-3933-3457; McKnight, Tim/0000-0003-4326-9117; Rack, Philip/0000-0002-9964-3254 NR 123 TC 48 Z9 48 U1 5 U2 45 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 061301 DI 10.1063/1.2840049 PG 26 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900001 ER PT J AU Kohn, A Wang, C Petford-Long, AK Wang, SG Ward, RCC AF Kohn, A. Wang, C. Petford-Long, A. K. Wang, S. G. Ward, R. C. C. TI Magnetization reversal processes in epitaxial Co/Fe bi-layers grown on MgO(001) SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TUNNEL-JUNCTIONS; CO/CR(001); BEHAVIOR; FILMS AB We report on the mechanism of magnetization reversal in epitaxial Co/ Fe bi- layers grown by molecular beam epitaxy on MgO ( 001 ) substrates. For Co films thicker than 5 nm, the crystal structure is hexagonal. The Fe layer follows an epitaxial relation relative to the MgO substrate of ( 001 ) [ 100 ] Fe/ / ( 001 ) [ 110 ] MgO. When deposited on a cubic Fe layer, the Co layer follows a bi- crystal epitaxial relation of ( 11 (2) over bar0 ) [ 0001 ] Co/ / ( 001 ) < 100 > Fe as previously reported [ Popova et al., Appl. Phys. Lett. 81, 1035 ( 2002 ); Wang et al., J. Appl. Phys. 101, 09D103 ( 2007 ) ]. The magnetization reversal in- plane follows a cubic fourfold symmetry, which coincides with that of the underlying bcc Fe layer. In this study, we find that the area of each Co crystal domain spans 200 - 1500 nm(2) and that these two domains are approximately evenly distributed. The micromagnetic reversal mechanism is a combination of coherent rotational processes and domain wall displacement. These magnetic domains are sized tens of mu m and separated by predominately 90 degrees or occasionally 180 degrees domain walls along the Fe < 110 > and Fe < 100 > directions, respectively. The cubic anisotropy of the bi- crystalline Co layer is explained by exchange- coupling between hcp grains with perpendicular crystallographic orientation, each having in- plane uniaxial magnetic anisotropy along its respective [0001] direction. (C) 2008 American Institute of Physics. C1 [Kohn, A.; Wang, C.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wang, S. G.; Ward, R. C. C.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RP Kohn, A (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM amit.kohn@materials.oxford.ac.uk RI Kohn, Amit/F-1559-2012; Wang, Shouguo/C-3078-2014; Petford-Long, Amanda/P-6026-2014; Wang, Shouguo/D-5710-2016; wang, chao/E-2983-2016 OI Wang, Shouguo/0000-0001-6130-7071; Petford-Long, Amanda/0000-0002-3154-8090; Wang, Shouguo/0000-0002-4488-2645; NR 19 TC 3 Z9 3 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 063918 DI 10.1063/1.2894594 PG 9 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900086 ER PT J AU Liu, YF Chen, W Wang, SP Joly, AG Westcott, S Woo, BK AF Liu, Yuanfang Chen, Wei Wang, Shaopeng Joly, Alan G. Westcott, Sarah Woo, Boon Kuan TI X-ray luminescence of LaF(3): Tb(3+) and LaF(3): Ce(3+), Tb(3+) water-soluble nanoparticles SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GLASS-CERAMICS; LAF3; FLUORESCENCE; PHOTOLUMINESCENCE; SEMICONDUCTOR; NANOCRYSTALS; ENHANCEMENT; CRYSTALS; FLUORIDE; ZEOLITE AB We report x-ray luminescence from LaF(3):Ce(3+), Tb(3+) and LaF(3): Tb(3+) water-soluble nanoparticles. The x- ray luminescence is dominated by emission from Tb(3+) ions, similar to photoluminescence spectra of the nanoparticle aqueous solutions and spectra from nanoparticle powders precipitated from the aqueous samples. Coating the nanoparticles with an insulating inorganic LaF3 or organic H(2)N-(CH(2))(10)-COOH layer can enhance the x- ray luminescence from the aqueous nanoparticles. This enhancement is most likely due to the decreased energy loss due to the particle-solvent interactions. (C) 2008 American Institute of Physics. C1 [Chen, Wei; Woo, Boon Kuan] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Liu, Yuanfang; Wang, Shaopeng; Westcott, Sarah] ICx Nomad Inc, Stillwater, OK 74074 USA. [Joly, Alan G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, W (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM weichen@uta.edu NR 31 TC 42 Z9 43 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 063105 DI 10.1063/1.2890148 PG 7 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900006 ER PT J AU Quiter, BJ Prussin, SG Pohl, B Hall, J Trebes, J Stone, G Descalle, MA AF Quiter, B. J. Prussin, S. G. Pohl, B. Hall, J. Trebes, J. Stone, G. Descalle, M. -A. TI A method for high-resolution x-ray imaging of intermodal cargo containers for fissionable materials SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB The sensitivity for identification of high-Z objects in elemental form in the massive cargos of intermodal containers with continuous bremsstrahlung radiation depends critically on discriminating the weak signal from uncollided photons from the very intense flux of scattered radiations that penetrate the cargo. We propose that this might be accomplished by rejection of detected events with E <= 2 - 3 MeV that contain the majority of multiply scattered photons along with a correction for single-scattered photons at higher energies. Monte Carlo simulations of radiographs with a 9 MeV bremsstrahlung spectrum demonstrate that rejection of detected events with E <= 3 MeV removes the majority of signals from scattered photons emerging through cargos with Z <= 30 and areal densities of at least 145 g cm(-2). With analytical estimates of the single-scattered intensity at higher energies, accurate estimates of linear attenuation coefficients for shielded and unshielded uranium spheres with masses as small as 0.08 kg are found. The estimated maximum dose is generally so low that reasonable order tomography of interesting portions of a container should be possible. c 2008 American Institute of Physics. C1 [Quiter, B. J.; Prussin, S. G.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Prussin, S. G.; Pohl, B.; Hall, J.; Trebes, J.; Stone, G.; Descalle, M. -A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Quiter, BJ (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM prussin@berkeley.edu NR 12 TC 4 Z9 4 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 064910 DI 10.1063/1.2876028 PG 8 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900144 ER PT J AU Wenzel, MJ Josse, F Heinrich, SM Yaz, E Datskos, PG AF Wenzel, M. J. Josse, F. Heinrich, S. M. Yaz, E. Datskos, P. G. TI Sorption-induced static bending of microcantilevers coated with viscoelastic material SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE STRESS; INDUCED DEFLECTIONS; FORCE MICROSCOPE; SENSORS; ADSORPTION; RESONANCE; ARRAYS AB Absorption of a chemical analyte into a polymer coating results in an expansion governed by the concentration and type of analyte that has diffused into the bulk of the coating. When the coating is attached to a microcantilever, this expansion results in bending of the device. Assuming that absorption (i. e., diffusion across the surface barrier into the bulk of the coating) is Fickian, with a rate of absorption that is proportional to the difference between the absorbed concentration and the equilibrium concentration, and the coating is elastic, the bending response of the coated device should exhibit a first-order behavior. However, for polymer coatings, complex behaviors exhibiting an overshoot that slowly decays to the steady-state value have been observed. A theoretical model of absorption-induced static bending of a microcantilever coated with a viscoelastic material is presented, starting from the general stress/strain relationship for a viscoelastic material. The model accounts for viscoelastic stress relaxation and possible coating plasticization. Calculated responses show that the model is capable of reproducing the same transient behavior exhibited in the experimental data. The theory presented can also be used for extracting viscoelastic properties of the coating from the measured bending data. (C) 2008 American Institute of Physics. C1 [Wenzel, M. J.; Josse, F.; Yaz, E.] Marquette Univ, Dept Elect & Comp Engn, Milwaukee, WI 53233 USA. [Heinrich, S. M.] Marquette Univ, Dept Civil & Environm Engn, Milwaukee, WI 53233 USA. [Datskos, P. G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Josse, F (reprint author), Marquette Univ, Dept Elect & Comp Engn, Milwaukee, WI 53233 USA. EM fabien.josse@marquette.edu NR 26 TC 13 Z9 13 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 064913 DI 10.1063/1.2902500 PG 11 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900147 ER PT J AU Yang, L Zu, XT Wang, ZG Yang, HT Gao, F Heinisch, HL Kurtz, RJ AF Yang, L. Zu, X. T. Wang, Z. G. Yang, H. T. Gao, F. Heinisch, H. L. Kurtz, R. J. TI Effects of interatomic potential on He bubble creation by cascades in alpha-iron SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HELIUM-VACANCY CLUSTERS; DISPLACEMENT CASCADES; MOLECULAR-DYNAMICS; POSITRON-ANNIHILATION; STAINLESS-STEEL; MICROSTRUCTURAL EVOLUTION; THERMAL-EQUILIBRIUM; DEFECT PRODUCTION; AB-INITIO; FE AB The effects of using different interatomic potentials in molecular dynamics (MD) simulations of the formation of He-vacancy clusters within displacement cascades in alpha-Fe are investigated using two sets of potentials. Simulations of cascades produced by primary knock-on atoms of energy E(p) = 1 - 20 keV were performed in alpha-Fe containing a concentration of substitutional He atoms varying from 1 to 5 at. % at an irradiation temperature of 100 K. Although the effects of interatomic potentials on the nucleation of He-vacancy clusters induced by cascades are relatively small, the number and size of He-vacancy clusters produced are significantly different for the different potentials employed in this study. Thus, these differences may influence the microstructural evolution predicted in damage accumulation models that use the results from MD cascade simulations as input. The observed differences in postcascade configurations can be attributed mainly to the differences in the Fe-Fe and Fe-He potentials. (c) 2008 American Institute of Physics. C1 [Yang, L.; Zu, X. T.; Wang, Z. G.; Yang, H. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Yang, L.] China W Normal Univ, Sch Phys & Elect Informat, Nanchong 637002, Peoples R China. [Gao, F.; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, L (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM yanglilkd@yahoo.com.cn; xiaotaozu@yahoo.com RI Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 NR 33 TC 19 Z9 19 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 063528 DI 10.1063/1.2902503 PG 9 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900044 ER PT J AU Zaumseil, J McNeill, CR Bird, M Smith, DL Ruden, PP Roberts, M McKiernan, MJ Friend, RH Sirringhaus, H AF Zaumseil, Jana McNeill, Christopher R. Bird, Matt Smith, Darryl L. Ruden, P. Paul Roberts, Matthew McKiernan, Mary J. Friend, Richard H. Sirringhaus, Henning TI Quantum efficiency of ambipolar light-emitting polymer field-effect transistors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CHARGE-CARRIER MOBILITY; CONJUGATED POLYMERS; POLYFLUORENE; ELECTROLUMINESCENCE; PHOTOLUMINESCENCE; PERFORMANCE; COPOLYMERS AB The emission characteristics and external quantum efficiencies of ambipolar polymer light-emitting field-effect transistors are investigated as a function of applied voltage, current density, and ratio of hole to electron mobility. Green-emitting poly (9,9-di-n-octylfluorene-alt-benzothiadiazole)(F8BT) with balanced electron and hole mobilities and red-emitting poly ((9,9-dioctylfluorene)-2,7-diyl-alt- [4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2', 2 ''- diyl) (F8TBT) with strongly unbalanced hole and electron mobilities as semiconducting and emissive polymers are compared. The current-voltage and light output characteristics of the two types of light-emitting transistors were found to be fundamentally alike independent of mobility ratio. Device modeling allowing for a single (Langevin-type) charge recombination mechanism was able to reproduce the device characteristics for both cases but could not replicate the experimentally observed dependence of external quantum efficiency on current density. The increase of quantum efficiency with current density up to a saturation value could be indicative of a trap-assisted nonradiative decay mechanism at the semiconductor-dielectric interface. Optical output modeling confirmed that the maximum external quantum efficiency of F8BT light-emitting transistors of 0.8% is consistent with complete recombination of all charges and a singlet exciton fraction of 25%. (C) 2008 American Institute of Physics. C1 [Zaumseil, Jana; McNeill, Christopher R.; Bird, Matt; Friend, Richard H.; Sirringhaus, Henning] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England. [Smith, Darryl L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ruden, P. Paul] Univ Minnesota, Minneapolis, MN 55455 USA. [Roberts, Matthew] Sumation Co Ltd, Cambridge CB23 6DW, England. [McKiernan, Mary J.] Cambridge Display Technol Ltd, Cambridge CB3 6DW, England. RP Zaumseil, J (reprint author), Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England. EM hs220@cam.ac.uk RI McNeill, Christopher/B-4530-2008; Bird, Matthew/B-5832-2013; OI McNeill, Christopher/0000-0001-5221-878X; Bird, Matthew/0000-0002-6819-5380; Zaumseil, Jana /0000-0002-2048-217X; Sirringhaus, Henning/0000-0001-9827-6061 NR 34 TC 45 Z9 45 U1 4 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 15 PY 2008 VL 103 IS 6 AR 064517 DI 10.1063/1.2894723 PG 10 WC Physics, Applied SC Physics GA 281ZH UT WOS:000254536900133 ER PT J AU Pounds, JG Flora, JW Adkins, JN Lee, KM Rana, GSJB Sengupta, T Smith, RD McKinney, WJ AF Pounds, Joel G. Flora, Jason W. Adkins, Joshua N. Lee, K. Monica Rana, Gaurav S. J. B. Sengupta, Tapas Smith, Richard D. McKinney, Willie J. TI Characterization of the mouse bronchoalveolar lavage proteome by micro-capillary LC-FTICR mass spectrometry SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE BAL; BALF; bronchoalveolar; lavage; mus musculus; proteome; FTICR; cigarette smoke ID 2-DIMENSIONAL GEL-ELECTROPHORESIS; MAINSTREAM CIGARETTE-SMOKE; FLUID PROTEINS; LUNG-DISEASE; GENE ONTOLOGY; DATABASE; TOOL; NONSMOKERS; PATTERNS; PEPTIDE AB Bronchoalveolar lavage fluid (BALF) contains proteins derived from various pulmonary cell types, secretions and blood. As the characterization of the BALF proteome will be instrumental in establishing potential biomarkers of pathophysiology in the lungs, the objective of this study was to contribute to the comprehensive collection of Mus musculus BALF proteins using high resolution and highly sensitive micro-capillary liquid chromatography (mu LC) combined with state-of-the-art high resolution mass spectrometry (MS). BALF was collected from ICR and C5713L/6 male mice exposed to nose-only inhalation to either air or cigarette smoke. The tandem mass spectra were analyzed by SEQUEST for peptide identifications with the subsequent application of accurate mass and time tags resulting in the identification of 1797 peptides with high confidence by high resolution MS. These peptides covered 959 individual proteins constituting the largest collection of BALF proteins to date. High throughput monitoring profiles of this extensive collection of BALF proteins will facilitate the discovery and validation of biomarkers that would elucidate pathogenic or adaptive responses of the lungs upon toxic insults. (C) 2008 Elsevier B.V. All rights reserved. C1 [Flora, Jason W.; Rana, Gaurav S. J. B.; Sengupta, Tapas; McKinney, Willie J.] Philip Morris Inc, Richmond, VA 23261 USA. [Lee, K. Monica] Battelle Toxicol NW, Richland, WA 99354 USA. [Pounds, Joel G.; Adkins, Joshua N.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. RP McKinney, WJ (reprint author), Philip Morris Inc, POP Box 26603, Richmond, VA 23261 USA. EM Willie.J.McKinney@pmusa.com RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; Pounds, Joel/0000-0002-6616-1566 NR 37 TC 7 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-0232 J9 J CHROMATOGR B JI J. Chromatogr. B PD MAR 15 PY 2008 VL 864 IS 1-2 BP 95 EP 101 DI 10.1016/j.jchromb.2008.01.044 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 285JZ UT WOS:000254774400013 PM 18313996 ER PT J AU Weronski, P Elimelech, M AF Weronski, Pawel Elimelech, Menachem TI Novel numerical method for calculating initial flux of colloid particle adsorption through an energy barrier SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE colloid particle transport; colloid particle deposition; convection-diffusion equation; Van der Waals interaction; modified empirical formula; DLVO theory; radial stagnation point flow system ID COLLECTOR SURFACES; DEPOSITION; KINETICS; TRANSPORT; ACCUMULATION; EXPRESSIONS; FORCES; FLOW; CELL AB Using variable substitution, we present a general method for the numerical solution of stiff, ordinary, linear, homogeneous differential equations characteristic of colloid particle adsorption/deposition over an energy barrier. For the example of the radial impinging jet system, we demonstrate the application of this method of calculating the colloid concentration profile and initial particle flux in the presence of repulsive electrostatic interactions between the particle and adsorption surface. We show that our method works well in systems with energy barriers up to the order of hundreds of U, at which point the adsorption flux vanishes. The numerical results obtained with our method are in good agreement with the known limiting analytical approximations for the particle flux through an energy barrier and for a low Peclet number. The developed numerical code is very stable over a wide range of physical parameters, and its accuracy for the most challenging parameter sets is on the order of 10(-4). To achieve this stability, we have derived and employed a single formula for the van der Waals dispersion interaction, working at both a small and a large separation distance. We show that this formula converges to the known available analytical expressions for dispersion forces in the limit of small and large separation distance. We also demonstrate that the maximum deviations between our formula and the other equations appear in the intermediate range of the separation distance and do not exceed 10%. (C) 2007 Elsevier Inc. All rights reserved. C1 [Weronski, Pawel] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Weronski, Pawel] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Weronski, Pawel] Polish Acad Sci, Inst Catalysis & Surface Chem, PL-30239 Krakow, Poland. [Elimelech, Menachem] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA. RP Weronski, P (reprint author), Los Alamos Natl Lab, Div Theoret, MS B284, Los Alamos, NM 87545 USA. EM pawel@lanl.gov RI Elimelech, Menachem/E-7137-2012 OI Elimelech, Menachem/0000-0003-4186-1563 NR 37 TC 13 Z9 13 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD MAR 15 PY 2008 VL 319 IS 2 BP 406 EP 415 DI 10.1016/j.jcis.2007.10.042 PG 10 WC Chemistry, Physical SC Chemistry GA 264BB UT WOS:000253259100004 PM 18155015 ER PT J AU Creighton, JR Breiland, WG Koleske, DD Thaler, G Crawford, MH AF Creighton, J. R. Breiland, W. G. Koleske, D. D. Thaler, G. Crawford, M. H. TI Emissivity-correcting mid-infrared pyrometry for group-III nitride MOCVD temperature measurement and control SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE metalorganic chemical vapor deposition; metalorganic vapor phase epitaxy; pyrometry; organometallic vapor phase epitaxy; indium gallium nitride; gallium nitride; indium nitride ID VAPOR-PHASE EPITAXY; LIGHT-EMITTING-DIODES; SPECTROSCOPIC ELLIPSOMETRY; ADDUCT FORMATION; ALGAN ALLOYS; GROWTH; GAN; MOVPE; AMMONIA; TRIMETHYLGALLIUM AB We report a pyrometer that operates at a mid-infrared wavelength range (7-8 mu m), where sapphire substrates are opaque and the reactant gases are transparent. The pyrometer also employs a novel "self-reflectance" method of emissivity correction, whereby thermal emission from the sample serves as a radiation source to measure its emissivity. The instrument was installed on a multiwafer Veeco D-125 MOCVD system and used to measure the emissivity-corrected temperature at a variety of GaN and InGaN deposition conditions. For a series of InGaN multiquantum well growth, the pyrometer was used to control the surface temperature at the critical InGaN deposition step, resulting in improved control of the photoluminescence wavelength. (C) 2008 Elsevier B.V. All rights reserved. C1 [Creighton, J. R.; Breiland, W. G.; Koleske, D. D.; Thaler, G.; Crawford, M. H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Creighton, JR (reprint author), Sandia Natl Labs, POB 5800,MS-0601, Albuquerque, NM 87185 USA. EM jrcreig@sandia.gov NR 37 TC 8 Z9 8 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAR 15 PY 2008 VL 310 IS 6 BP 1062 EP 1068 DI 10.1016/j.jcrysgro.2007.12.063 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 285ZF UT WOS:000254814000006 ER PT J AU Amir, FZ Clark, K Maldonado, E Kirk, WP Jiang, JC Ager, JW Yu, KM Walukiewicz, W AF Amir, F. Z. Clark, K. Maldonado, E. Kirk, W. P. Jiang, J. C. Ager, J. W., III Yu, K. M. Walukiewicz, W. TI Epitaxial growth of CdSexTe1-x thin films on Si(100) by molecular beam epitaxy using lattice mismatch graded structures SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE molecular beam epitaxy; cadmium compounds; semiconducting II-VI materials ID RAY-DETECTORS; GAMMA-RAY; X-RAY; CRYSTALS; CDZNTE; CDTE AB CdSeTe epilayers were grown by molecular beam epitaxy on (100)-oriented vicinal silicon wafers. By controlling the growth conditions, either multiple-phase or single-phase epilayers could be deposited. In this paper we present a detailed investigation of the structure of a single-phase CdSeTe epilayer using X-ray diffraction, Rutherford back scattering, and transmission electron microscopy. Photoreflectance and photocurrent results are also presented. (C) 2007 Elsevier B.V. All rights reserved. C1 [Amir, F. Z.; Clark, K.; Maldonado, E.; Kirk, W. P.] Univ Texas Arlington, NanoFAB Ctr, Arlington, TX 76019 USA. [Amir, F. Z.; Clark, K.; Maldonado, E.; Kirk, W. P.] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA. [Jiang, J. C.] Univ Texas Arlington, Dept Mat Sci & Engn, Arlington, TX 76019 USA. [Ager, J. W., III; Yu, K. M.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kirk, WP (reprint author), Univ Texas Arlington, NanoFAB Ctr, 500 S Cooper St, Arlington, TX 76019 USA. EM kirk@uta.edu RI Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 NR 9 TC 11 Z9 13 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAR 15 PY 2008 VL 310 IS 6 BP 1081 EP 1087 DI 10.1016/j.jcrysgro.2007.12.055 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 285ZF UT WOS:000254814000009 ER PT J AU Erickson, DJ Mills, RT Gregg, J Blasing, TJ Hoffman, FM Andres, RJ Devries, M Zhu, Z Kawa, SR AF Erickson, D. J., III Mills, R. T. Gregg, J. Blasing, T. J. Hoffman, F. M. Andres, R. J. Devries, M. Zhu, Z. Kawa, S. R. TI An estimate of monthly global emissions of anthropogenic CO(2): Impact on the seasonal cycle of atmospheric CO(2) SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID CARBON-DIOXIDE EMISSIONS; TRANSPORT; LAND AB Monthly estimates of the global emissions of anthropogenic CO(2) are presented. Approximating the seasonal CO(2) emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO(2) flux estimates are then used to model atmospheric CO(2) concentrations using meteorological fields from the NASA GEOS-4 data assimilation system. We find that the use of monthly resolved fluxes makes a significant difference in the seasonal cycle of atmospheric CO(2) in and near those regions where anthropogenic CO(2) is released to the atmosphere. Local variations of 2-6 ppmv CO(2) in the seasonal cycle amplitude are simulated; larger variations would be expected if smaller source-receptor distances could be more precisely specified using a more refined spatial resolution. We also find that in the midlatitudes near the sources, synoptic scale atmospheric circulations are important in the winter and that boundary layer venting and diurnal rectifier effects are more important in the summer. These findings have implications for inverse-modeling efforts that attempt to estimate surface source/sink regions especially when the surface sinks are colocated with regions of strong anthropogenic CO(2) emissions. C1 [Erickson, D. J., III; Mills, R. T.; Hoffman, F. M.; Devries, M.] Oak Ridge Natl Lab, Div Math & Comp Sci, Computat Earth Sci Grp, Oak Ridge, TN 37831 USA. [Erickson, D. J., III] Duke Univ, Nicholas Sch Environm & Earth Sci, Durham, NC USA. [Gregg, J.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Blasing, T. J.; Andres, R. J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Devries, M.] Vanderbilt Univ, Sch Engn, Nashville, TN USA. [Zhu, Z.; Kawa, S. R.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Erickson, DJ (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Computat Earth Sci Grp, Oak Ridge, TN 37831 USA. RI Gregg, Jay/C-6732-2011; Blasing, T/B-9498-2012; ANDRES, ROBERT/B-9786-2012; Kawa, Stephan/E-9040-2012; Hoffman, Forrest/B-8667-2012; OI Gregg, Jay/0000-0003-3946-3099; Hoffman, Forrest/0000-0001-5802-4134; ANDRES, ROBERT/0000-0001-8781-4979 NR 23 TC 15 Z9 15 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD MAR 15 PY 2008 VL 113 IS G1 AR G01023 DI 10.1029/2007JG000435 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 276TQ UT WOS:000254166400002 ER PT J AU Park, JM Ryu, HJ Oh, SJ Lee, DB Kim, CK Kim, YS Hofman, GL AF Park, Jong Man Ryu, Ho Jin Oh, Seok Jin Lee, Don Bae Kim, Chang Kyu Kim, Yeon Soo Hofman, G. L. TI Effect of Si and Zr on the interdiffusion of U-Mo alloy and Al SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID REACTION LAYER; GROWTH; FUELS AB We investigated the effect of Zr additions to U-Mo and Si additions to Al on interdiffusion between U-Mo and Al by employing diffusion couple tests. We examined the phase stability of the gamma-heat-treated alloys by high-temperature annealing tests. Using X-ray diffraction, we observed that the gamma-phase U-7Mo-Zr alloys with more than 2 wt% Zr decomposed faster than the U-7Mo alloys. The diffusion couples showed that a Zr addition to U-7Mo and the addition of Si in Al reduced the interaction layer growth rates. However, Zr additions to U-Mo are most effective in reducing the overall interdiffusion rates when combined with Si additions to Al. The decomposition of the metastable U-Mo gamma-phase during the diffusion test appears to have a significant effect on the overall interdiffusion rates. (C) 2007 Elsevier B.V. All rights reserved. C1 [Park, Jong Man; Ryu, Ho Jin; Oh, Seok Jin; Lee, Don Bae; Kim, Chang Kyu] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Kim, Yeon Soo; Hofman, G. L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Park, JM (reprint author), Korea Atom Energy Res Inst, Daedeokdaero 1045, Taejon 305353, South Korea. EM jmpark@kaeri.re.kr RI RYU, HO JIN/J-2764-2013 OI RYU, HO JIN/0000-0002-3387-7381 NR 24 TC 44 Z9 45 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2008 VL 374 IS 3 BP 422 EP 430 DI 10.1016/j.jnucmat.2007.09.059 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280LM UT WOS:000254428300011 ER PT J AU Yang, L Zu, XT Wang, ZG Gao, F Heinisch, HL Kurtz, RJ Wang, XY Liu, KZ AF Yang, L. Zu, X. T. Wang, Z. G. Gao, F. Heinisch, H. L. Kurtz, R. J. Wang, X. Y. Liu, K. Z. TI Multiple-interactions of displacement cascades with He-vacancy clusters in alpha-iron: Computer simulations SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STAINLESS-STEEL; HELIUM; FE; DIFFUSION; STABILITY; HYDROGEN; METALS; ALLOY AB Multiple-interactions of displacement cascades with He-vacancy (He-V) clusters are investigated using molecular dynamics simulations. The effects of a single displacement cascade on the stability of a He-V cluster depend on the He-to-vacancy (He/V) ratio and the primary knock-on atom (PKA) energy. Initial He-V clusters consist of 10 and 20 vacancies with He/V ratios ranging from 0.2 to 3 and the PKA energy, E(p), varying from 2 keV to 10 keV. The size of He-V clusters was found to generally increase with increasing He/V ratios for the same PKA energy, but the stability of He-V clusters decreases with increasing PKA energy. The results are compared with those for voids impacted by collisional cascades. During multiple 5 keV, cascade events, the final size of He-V clusters depends on only the initial He/V ratios. It is of interest to notice that the number of vacancies in a He-V cluster is determined by the first cascade event, while subsequent cascade overlap has a significant effect on its stability. These results are discussed in terms of the internal pressure of He-V clusters, the mobility of He atoms, the number of vacancies produced by cascades and the He/V ratio. (C) 2007 Elsevier B.V. All rights reserved. C1 [Yang, L.; Zu, X. T.; Wang, Z. G.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Yang, L.] China W Normal Univ, Sch Phys & Elect Informat, Nanchong 637002, Peoples R China. [Gao, F.; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, X. Y.; Liu, K. Z.] China Acad Engn Phys, Natl Key Lab Surface Phys & Chem, Mianyang 621907, Peoples R China. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com RI Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 NR 24 TC 8 Z9 8 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2008 VL 374 IS 3 BP 437 EP 444 DI 10.1016/j.jnucmat.2007.09.060 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280LM UT WOS:000254428300013 ER PT J AU Hunn, JD Jellison, GE Lowden, RA AF Hunn, J. D. Jellison, G. E., Jr. Lowden, R. A. TI Increase in pyrolytic carbon optical anisotropy and density during processing of coated particle fuel due to heat treatment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PYROCARBON COATINGS; GENERALIZED ELLIPSOMETRY; DIMENSIONAL CHANGES; MICROSCOPY; GRAPHITE AB Measurements of pyrolytic carbon optical anisotropy and density have been made on a series of tri-isotropic (TRISO) coated particles prepared for the United States Department of Energy's Advanced Gas Reactor Fuel Development and Qualification (AGR) program. These measurements show the effect of varying the deposition conditions, especially the deposition temperature, on the density and optical anisotropy of the carbon layers. Additional heat treatment studies of the coated particles at various stages illustrate the strong effect of post-deposition thermal processing on these two pyrolytic carbon properties. Such post-deposition heat treatment occurs during SiC deposition and fuel compact firing, resulting in increased anisotropy and density of the pyrolytic carbon layers. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Hunn, JD (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. EM hunnjd@ornl.gov NR 22 TC 15 Z9 15 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2008 VL 374 IS 3 BP 445 EP 452 DI 10.1016/j.jnucmat.2007.10.003 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280LM UT WOS:000254428300014 ER PT J AU Fuller, MLS Klassen, RJ McIntyre, NS Gerson, AR Ramarnurthy, S King, PJ Liu, W AF Fuller, M. L. Suominen Klassen, R. J. McIntyre, N. S. Gerson, A. R. Ramarnurthy, S. King, P. J. Liu, W. TI Texture, residual strain, and plastic deformation around scratches in alloy 600 using synchrotron X-ray Laue micro-diffraction SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STRESS-CORROSION CRACKING; AL SINGLE-CRYSTALS; RESOLUTION; MECHANISM; INDENTOR; WATER AB Deformation around two scratches in Alloy 600 (A600) was studied nondestructively using synchrotron Laue differential aperture X-ray microscopy. The orientation of grains and elastic strain distribution around the scratches were measured. A complex residual deviatoric elastic strain state was found to exist around the scratches. Heavy plastic deformation was observed up to a distance of 20 gm from the scratches. In the region 20-30 mu m from the scratches the diffraction spots were heavily streaked and split indicating misoriented dislocation cell structures. (C) 2007 Elsevier B.V. All rights reserved. C1 [Fuller, M. L. Suominen; McIntyre, N. S.; Ramarnurthy, S.] Univ Western Ontario, Western Sci Ctr, London, ON N6A 5B7, Canada. [Klassen, R. J.] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada. [Gerson, A. R.] Univ S Australia, Appl Ctr Struct & Synchrotron Studies, Adelaide, SA 5095, Australia. [King, P. J.] Babcock & Wilcox Canada, Cambridge, ON N1R 5V3, Canada. [Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fuller, MLS (reprint author), Univ Western Ontario, Western Sci Ctr, Room G-1, London, ON N6A 5B7, Canada. EM mfuller@uwo.ca RI Gerson, Andrea/F-4268-2013 NR 15 TC 5 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR 15 PY 2008 VL 374 IS 3 BP 482 EP 487 DI 10.1016/j.jnucmat.2007.10.015 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280LM UT WOS:000254428300018 ER PT J AU Wang, HL Turner, JA Li, XN Teeter, G AF Wang, Heli Turner, John A. Li, Xiaonan Teeter, Glenn TI Process modification for coating SnO2 : F on stainless steels for PEM fuel cell bipolar plates SO JOURNAL OF POWER SOURCES LA English DT Article DE bipolar plate; stainless steels; ferrite; tin oxide; PEMFC ID THERMAL NITRIDATION; ALLOYS; 316L AB Our previous procedure for depositing SnO,:F on stainless steels for interfacial contact resistance (ICR) reduction and as a protective coating for metal bipolar plates was modified by pre-etchirig and coating characterization. Only ferrite stainless steels acquired a good quality SnO,:F coating. The modified SnO2:F coating decreased the ICR over our previous coating results, confirming the beneficial effect of the pre-etching; however, the corrosion resistance we obtained was significantly reduced. For the pre-etched and coated AISI444 and AISI446, both dynamic and potentiostatic polarizations revealed that the corrosion resistance of the modified coated steels is not as good as that obtained with the original coating process. The pre-etched and coated AIS1444 showed higher currents in the polymer electrolyte membrane fuel cell (PEMFC) anode environment, as compared with earlier coated (original) AIS1444 results. It took 10-50 min to reach a stabilized current for the pre-etched and coated AIS1446; moreover, the stable currents are higher than those for original coated AISI446. Inductive coupled plasma (ICP) analysis for dissolved metallic ions in the test solutions was in agreement with the polarization results. Additionally, both the polarization and ICP analysis results indicate that the PEMFC cathode environment is more corrosive to the coated steels (especially AISI444) than the PEMFC anode environment. The Auger electron spectroscopy (AES) investigation showed that the pre-etched and coated AIS1444 had heavy dissolution in the PEMFC cathode environment, confirming that for this process it has enhanced corrosion over the PEMFC anode environment. Both coated AIS1444 and coated AIS1446 showed cracks and peel-off of the modified coating after the polarization. This is apparently the source for the higher anodic currents in the polarization curves as compared to our original process for coating the steels. The conclusion is that both the corrosion resistance in PEMFC environments and the adhesion of the modified SnO,:F coating are challenges for further development. Published by Elsevier B.V. C1 [Wang, Heli; Turner, John A.; Li, Xiaonan; Teeter, Glenn] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, HL (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM heli_wang@nrel.gov NR 30 TC 20 Z9 21 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 15 PY 2008 VL 178 IS 1 BP 238 EP 247 DI 10.1016/j.jpowsour.2007.12.010 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 277LV UT WOS:000254215000031 ER PT J AU Lei, CH Bareno, J Wen, JG Petrov, I Kang, SH Abraham, DP AF Lei, C. H. Bareno, J. Wen, J. G. Petrov, I. Kang, S. -H. Abraham, D. P. TI Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy SO JOURNAL OF POWER SOURCES LA English DT Article DE electron microscopy; lithium ordering; plane stacking; composition analysis ID LITHIUM-ION BATTERIES; X-RAY-ABSORPTION; NICKEL MANGANESE OXIDES; LINI0.5MN0.5O2 CATHODE; INSERTION MATERIAL; CRYSTAL-STRUCTURE; PHASE-STABILITY; 1ST PRINCIPLES; SOLID-SOLUTION; HIGH VOLTAGES AB Positive electrodes for Li-ion batteries based on Li[Li1/3-2x/3NixMn2/3-x/3]O-2 (0 <= x <= 0.5) compounds are of significant interest because of their ability to deliver reversible capacities exceeding 200 mAh g(-1). In this article we describe the examination of Li1.2Ni0.2Mn0.6O2 (x = 0.2 in Li[Li1/3-2x/3NixMn2/3-x/3]O-2) samples by X-ray diffraction (XRD), high-resolution electron microscopy (HREM), scanning transmission electron microscopy (STEM), electron diffraction, X-ray energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy (EELS). The studies were conducted on freshly prepared oxides, and on oxide electrodes that were electrochemically activated by cycling twice between 4.8 and 2.0 V vs. Li+/Li. Rectangular and parallelogram shaped dot arrays with a spacing of 0.43 nm observed in HREM and STEM images along the [10 (1) over bar0] zone axis, as well as streaks at 1/3 n (11 (2) over bar0) (n = integer) positions in corresponding electron diffraction patterns, indicated ordering of Li-ions in the transition-metal (TM) (0001) layers following several stacking sequences, bounded by stacking faults, along the c-axis. Chemical analysis by EDS and EELS showed that Mn, Ni and O were present in all portions of the samples examined; no evidence of elemental segregation was observed either within the gains or at grain boundaries. The Li ordering on TM planes was significantly weaker but still discernable upon electrochemical activation of the oxide samples. (C) 2007 Elsevier B.V. All rights reserved. C1 [Kang, S. -H.; Abraham, D. P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lei, C. H.; Bareno, J.; Wen, J. G.; Petrov, I.] Univ Illinois, Frederick Sietz Mat Res Lab, Urbana, IL 61801 USA. RP Abraham, DP (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abrabam@cmt.anl.gov RI Kang, Sun-Ho/E-7570-2010; Petrov, Ivan/D-4910-2011; OI Petrov, Ivan/0000-0002-2955-4897; Bareno, Javier/0000-0003-1230-9278 NR 30 TC 94 Z9 99 U1 8 U2 109 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 15 PY 2008 VL 178 IS 1 BP 422 EP 433 DI 10.1016/j.jpowsour.2007.11.077 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 277LV UT WOS:000254215000051 ER PT J AU Ma, SB Nam, KW Yoon, WS Yang, XQ Ahn, KY Oh, KH Kim, KB AF Ma, Sang-Bok Nam, Kyung-Wan Yoon, Won-Sub Yang, Xiao-Qing Ahn, Kyun-Young Oh, Ki-Hwan Kim, Kwang-Bum TI Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications SO JOURNAL OF POWER SOURCES LA English DT Article DE manganese oxide; carbon nanotube; nanocomposite; electrochemical capacitor ID LITHIUM-ION BATTERIES; X-RAY-ABSORPTION; COMPOSITE ELECTRODES; SONOCHEMICAL METHOD; ACETYLENE BLACK; CAPACITORS; SUPERCAPACITOR; BEHAVIOR; DIOXIDE; PERFORMANCE AB Birnessite-type manganese dioxide (MnO2) is Coated uniformly on carbon nanotubes (CNTs) by employing a spontaneous direct redox reaction between the CNTs and permanganate ions (MnO4-). The initial specific capacitance of the MnO2/CNT nanocomposite in an organic electrolyte at a large current density of 1 A g(-1) is 250 F g(-1). This is equivalent to 139 mAh g(-1) based on the total weight of the electrode material that includes the electroactive material, conducting agent and binder. The specific capacitance of the MnO2 in the MnO2/CNT nanocomposite is as high as 580 F g(-1) (320 rnAh g(-1)), indicating excellent electrochemical utilization of the MnO2. The addition of CNTs as a conducting agent improves the high-rate capability of the MnO2/CNT nanocomposite considerably. The in situ X-ray absorption near-edge structure (XANES) shows improvement in the structural and electrochemical reversibility of the MnO2/CNT nanocomposite after heat-treatment. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ma, Sang-Bok; Kim, Kwang-Bum] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea. [Nam, Kyung-Wan; Yoon, Won-Sub; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ahn, Kyun-Young] Hyundai ECO Technol Res Inst, Yongin 446912, Gyeonggi Do, South Korea. [Oh, Ki-Hwan] Seoul Natl Univ, Next Generat Vehicle Technol, Seoul 151742, South Korea. RP Kim, KB (reprint author), Yonsei Univ, Dept Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea. EM kbkim@yonsei.ac.kr RI Nam, Kyung-Wan Nam/G-9271-2011; Yoon, Won-Sub/H-2343-2011; Nam, Kyung-Wan/B-9029-2013; Nam, Kyung-Wan/E-9063-2015 OI Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369 NR 39 TC 189 Z9 191 U1 20 U2 220 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 15 PY 2008 VL 178 IS 1 BP 483 EP 489 DI 10.1016/j.jpowsour.2007.12.027 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 277LV UT WOS:000254215000058 ER PT J AU Deng, X Quek, SY Biener, MM Biener, J Kang, DH Schalek, R Kaxiras, E Friend, CM AF Deng, Xingyi Quek, Su Ying Biener, Monika M. Biener, Juergen Kang, Dae Hyuk Schalek, Richard Kaxiras, Efthimios Friend, Cynthia M. TI Selective thermal reduction of single-layer MoO3 nanostructures on Au(111) SO SURFACE SCIENCE LA English DT Article DE X-ray photoelectron spectroscopy; scanning tunneling microscopy; defects; molybdenum oxides; density functional calculations; nano-structures; Au(111); catalysis ID SCANNING-TUNNELING-MICROSCOPY; O-COVERED MO(110); PARTIAL OXIDATION; ELECTRONIC INSTABILITY; GROWTH; STM; DEPOSITION; CATALYSTS; AG(001); METHANE AB MoO3 is an interesting oxide prototype because its catalytic activity is sensitive to the presence and nature of defects. In this work, we demonstrate that we can control the number of defects in single-layer MoO3 nanostructures grown on Au(111) by a thermal reduction treatment. X-ray photoelectron spectroscopy demonstrates the formation of Mo5+ species and oxygen vacancies during annealing at 650 K. The percentage of Mo5+ increases with the duration of annealing, until a stable composition containing 50% Mo6+ and 50% Mo5+ is obtained. Surprisingly, the formation of lower oxidation states such as Mo4+ was not observed. The reduced MoOx islands remain one layer high, based on scanning tunneling microscope (STM) images. The two-dimensional nature of the reduced oxide nanocrystals may be due to a large barrier for structural reorganization and, thus, may account for the absence of Mo oxidation states lower than +5. Based on scanning tunneling microscopy images and density functional calculations, we propose that the formation of Mo5+ ions during annealing is not associated with formation of oxygen point defects, but can be attributed to the formation of extended one-dimensional shear defects. These reduced structures are useful for studying the dependence of reactivity on defect type, and present exciting possibilities for chemical sensors and other applications. (c) 2008 Elsevier B.V. All rights reserved. C1 [Deng, Xingyi; Biener, Monika M.; Kang, Dae Hyuk; Friend, Cynthia M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Quek, Su Ying; Biener, Monika M.; Kaxiras, Efthimios; Friend, Cynthia M.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Biener, Juergen; Schalek, Richard] Harvard Univ, Ctr Nanoscale Sci, Cambridge, MA 02138 USA. [Kaxiras, Efthimios] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Biener, Monika M.; Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RP Friend, CM (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. EM cfriend@deas.harvard.edu RI Quek, Su Ying/I-2934-2014; OI Deng, Xingyi/0000-0001-9109-1443 NR 28 TC 29 Z9 29 U1 2 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 15 PY 2008 VL 602 IS 6 BP 1166 EP 1174 DI 10.1016/j.susc.2008.01.014 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 290BW UT WOS:000255098700006 ER PT J AU Mullins, DR McDonald, TS AF Mullins, D. R. McDonald, T. S. TI Adsorption and reaction of methanethiol on thin-film cerium oxide SO SURFACE SCIENCE LA English DT Article DE cerium; thermal desorption spectroscopy; soft X-ray photoelectron spectroscopy; methanethiol ID BAND-GAP SIZE; CHEMICAL-REACTIVITY; HYDROGEN-SULFIDE; SINGLE-CRYSTAL; SURFACES; H2S; PHOTOEMISSION; SO2; DECOMPOSITION; RU(0001) AB The adsorption and reaction of methanethiol, CH3SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0001). The behavior of the CH3SH was examined as a function of the Ce oxidation state. CH3SH weakly interacts with fully oxidized CeO2(111) forming both chemisorbed CH3SH and CH3S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH3SH desorbs near 150 K while the CH3S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH4 and CH3SH. A small amount of CH2O and water are also formed through reaction with the 0 in the ceria. Atomic S is left on the surface. S 2p C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH3S or S. Published by Elsevier B.V. C1 [Mullins, D. R.; McDonald, T. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6201, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov NR 33 TC 10 Z9 10 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 15 PY 2008 VL 602 IS 6 BP 1280 EP 1287 DI 10.1016/j.susc.2008.01.027 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 290BW UT WOS:000255098700020 ER PT J AU Carrico, ZM Romanini, DW Mehl, RA Francis, MB AF Carrico, Zachary M. Romanini, Dante W. Mehl, Ryan A. Francis, Matthew B. TI Oxidative coupling of peptides to a virus capsid containing unnatural amino acids SO CHEMICAL COMMUNICATIONS LA English DT Article ID PHAGE DISPLAY; GENETIC-CODE; PROTEINS; LIBRARIES; MOLECULES; CHEMISTRY; LIGATION; SCAFFOLD; SURFACE AB This Communication describes the chemo- and site-selective coupling of cell type-specific targeting peptides to a virus capsid containing aminophenylalanine residues. C1 [Carrico, Zachary M.; Romanini, Dante W.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Carrico, Zachary M.; Romanini, Dante W.; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mehl, Ryan A.] Franklin & Marshall Coll, Dept Chem, Lancaster, PA 17604 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, 724 Latimer Hall, Berkeley, CA 94720 USA. EM ryan.mehl@fandm.edu; francis@cchem.berkeley.edu FU NIGMS NIH HHS [GM072700, 1 T32 GM066698] NR 17 TC 65 Z9 65 U1 0 U2 14 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD MAR 14 PY 2008 IS 10 BP 1205 EP 1207 DI 10.1039/b717826c PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 282PK UT WOS:000254579500014 PM 18309418 ER PT J AU Shi, D Sagar, V Jin, ZM Yu, XL Caldovic, L Morizono, H Allewell, NM Tuchman, M AF Shi, Dashuang Sagar, Vatsala Jin, Zhongmin Yu, Xiaolin Caldovic, Ljubica Morizono, Hiroki Allewell, Norma M. Tuchman, Mendel TI The crystal structure of N-acetyl-L-glutamate synthase from Neisseria gonorrhoeae provides insights into mechanisms of catalysis and regulation SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ACETYLGLUTAMATE SYNTHASE; ARGININE-BIOSYNTHESIS; ESCHERICHIA-COLI; MYCOBACTERIUM-TUBERCULOSIS; HISTONE ACETYLTRANSFERASE; MACROMOLECULAR STRUCTURES; PSEUDOMONAS-AERUGINOSA; XANTHOMONAS-CAMPESTRIS; CARBAMOYL-PHOSPHATE; PYROCOCCUS-FURIOSUS AB The crystal structures of N-acetylglutamate synthase ( NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-angstrom resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase ( AAK) domain and an N-acetyltransferase ( NAT) domain connected through a 10-angstrom linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100 A, respectively, and a height of 110 A. Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg(316), Arg(425), and Ser(427), anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys(356) and Leu(314), and hydrophobic interactions to the side chains of Leu(313) and Leu(314). The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes. C1 [Shi, Dashuang; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Tuchman, Mendel] George Washington Univ, Childrens Natl Med Ctr, Childrens Res Inst, Washington, DC 20010 USA. [Sagar, Vatsala; Allewell, Norma M.] Univ Maryland, Dept Chem & Biochem, Coll Chem & Life Sci, College Pk, MD 20742 USA. [Jin, Zhongmin] Argonne Natl Lab, SE Reg Collaborat Access Team Adv Photon Source, Argonne, IL 60439 USA. RP Shi, D (reprint author), George Washington Univ, Childrens Natl Med Ctr, Childrens Res Inst, 11 Michigan Ave,NW, Washington, DC 20010 USA. EM dshi@cnmcresearch.org OI Morizono, Hiroki/0000-0002-9678-5564; Caldovic, Ljubica/0000-0002-9140-5585 FU NICHD NIH HHS [HD 32652, P01 HD032652]; NIDDK NIH HHS [DK064913, DK067935, K01 DK067935, R01 DK064913] NR 51 TC 19 Z9 20 U1 0 U2 4 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD MAR 14 PY 2008 VL 283 IS 11 BP 7176 EP 7184 DI 10.1074/jbc.M707678200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 271HN UT WOS:000253779600063 PM 18184660 ER PT J AU Grigorenko, I AF Grigorenko, Ilya TI Analytical solution for optimal squeezing of wave packet of a trapped quantum particle SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ATOMS AB Optimal control problem with a goal to squeeze wave packet of a trapped quantum particle is considered and solved analytically using adiabatic approximation. The analytical solution that drives the particle into a highly localized final state is presented for a case of an infinite well trapping potential. The presented solution may be applied to increase the resolution of atom lithography. (c) 2008 American Institute of Physics. C1 Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Grigorenko, I (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, T-11, Los Alamos, NM 87545 USA. EM ilya@lanl.gov RI Grigorenko, Ilya/B-5616-2009 NR 16 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 14 PY 2008 VL 128 IS 10 AR 104109 DI 10.1063/1.2885049 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 274TV UT WOS:000254025300011 PM 18345879 ER PT J AU Rubensson, EH Bock, N Holmstrom, E Niklasson, AMN AF Rubensson, Emanuel H. Bock, Nicolas Holmstroem, Erik Niklasson, Anders M. N. TI Recursive inverse factorization SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; CONJUGATE-GRADIENT METHOD; CONSISTENT-FIELD THEORY; DENSITY-MATRIX SEARCH; 3-DIMENSIONAL STRUCTURE; GRAPHENE NANORIBBONS; COMMUNITY STRUCTURE; EXPANSION METHODS; PURIFICATION; NETWORKS AB A recursive algorithm for the inverse factorization S-1=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules. (c) 2008 American Institute of Physics. C1 [Rubensson, Emanuel H.] Royal Inst Technol, Dept Theoret Chem, Sch Biotechnol, SE-10691 Stockholm, Sweden. [Bock, Nicolas; Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Holmstroem, Erik] Univ Austral Chile, Inst Fis, Valdivia, Chile. [Niklasson, Anders M. N.] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. RP Rubensson, EH (reprint author), Royal Inst Technol, Dept Theoret Chem, Sch Biotechnol, SE-10691 Stockholm, Sweden. EM emanuel@theochem.kth.se; nbock@lanl.gov; amn@lanl.gov RI Holmstrom, Erik/A-5308-2009 OI Holmstrom, Erik/0000-0002-1198-3861 NR 51 TC 13 Z9 13 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 14 PY 2008 VL 128 IS 10 AR 104105 DI 10.1063/1.2884921 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 274TV UT WOS:000254025300007 PM 18345875 ER PT J AU Sodt, A Head-Gordon, M AF Sodt, Alex Head-Gordon, Martin TI Hartree-Fock exchange computed using the atomic resolution of the identity approximation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AUXILIARY BASIS-SETS; ELECTRONIC-STRUCTURE CALCULATIONS; LINEAR SCALING COMPUTATION; GAUSSIAN-BASIS SETS; QUANTUM-CHEMISTRY; IMPLEMENTATION; ALGORITHMS; EFFICIENCY; MOLECULES; MATRIX AB In this work, we apply the atomic resolution of the identity (ARI) fitting approximation to the computation of Hartree-Fock exchange. The ARI approximation is a local modification of the RI approximation that produces an energy which is differentiable with respect to nuclear motion, unlike other local applications of RI. We justify empirically the use of locality and present timing comparisons of ARI, RI, and exact computation for one-, two-, and three-dimensional carbon systems. ARI is found to reduce significantly the cost of RI for large systems, while retaining accuracy. (c) 2008 American Institute of Physics. C1 [Sodt, Alex] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Sodt, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@bastille.cchem.berkeley.edu NR 38 TC 30 Z9 30 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 14 PY 2008 VL 128 IS 10 AR 104106 DI 10.1063/1.2828533 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 274TV UT WOS:000254025300008 PM 18345876 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzaez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, A Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) Decays with 2 fb(-1) of p(p)over-bar Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID LARGE TAN-BETA; PHYSICS; SUPERSYMMETRY; MODELS AB We have performed a search for B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays in p (p) over bar collisions at root s = 1.96 TeV using 2 fb(-1) of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron Collider. The observed number of B-s(0) and B-0 candidates is consistent with background expectations. The resulting upper limits on the branching fractions are B(B-s(0)->mu(+)mu(-))< 5.8x10(-8) and B(B-0 ->mu(+)mu(-)) < 1.8 x 10(-8) at 95% C.L. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Cuevas, J.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Casal, B.; Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Budagov, J.; Lovas, L.; Tokar, S.] Inst Expt Phys, Brunswick, ME 04011 USA. [Artikov, A.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Bisello, D.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Pronko, A.; Ptohos, F.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Dept Chem, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Fernandez, J. P.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tenol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Hahn, K.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Soderberg, M.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3 CNRS, UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, Siena & Scuola Normale Super, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Kim, Soo-Bong/B-7061-2014; De Cecco, Sandro/B-1016-2012; Robson, Aidan/G-1087-2011; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315 NR 16 TC 181 Z9 181 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 101802 DI 10.1103/PhysRevLett.100.101802 PG 7 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500011 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of inclusive jet cross sections in Z/gamma*(-> e(+)e(-))+jets production in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in p (p) over bar collisions at root s=1.96 TeV with the upgraded Collider Detector at Fermilab in run II, based on an integrated luminosity of 1.7 fb(-1). The measurements cover the rapidity region |y(jet)|<2.1 and the transverse momentum range p(T)(jet)>30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections. C1 [Aaltonen, T.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Loreti, M.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR 7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super, Siena, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Annovi, A.; Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Weinberger, M.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Paulini, Manfred/N-7794-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013 OI Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Paulini, Manfred/0000-0002-6714-5787; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315 NR 20 TC 56 Z9 56 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 102001 DI 10.1103/PhysRevLett.100.102001 PG 8 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500012 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clement, B Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ de Jong, P De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lazoflores, J Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Michaut, M Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Telford, P Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ van Eijk, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Vreeswijk, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clement, B. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. de Jong, P. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Michaut, M. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Telford, P. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. van Eijk, B. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for flavor-changing-neutral-current D meson decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB We study the flavor-changing-neutral-current process c -> u mu(+)mu(-) using 1.3 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We see clear indications of the charged-current mediated D-s(+) and D+->phi pi(+)->mu(+)mu(-)pi(+) final states with significance greater than 4 standard deviations above background for the D+ state. We search for the continuum neutral-current decay of D+->pi(+)mu(+)mu(-) in the dimuon invariant mass spectrum away from the phi resonance. We see no evidence of signal above background and set a limit of B(D+->pi(+)mu(+)mu(-))< 3.9 x 10(-6) at the 90% C.L. This limit places the most stringent constraint on new phenomena in the c -> u mu(+)mu(-) transition. C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.; Souza, M.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Molina, J.; Mundim, L.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.; Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Chan, K.; Coadou, Y.; Liu, Z.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Chan, K.; Coadou, Y.; Liu, Z.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Chan, K.; Coadou, Y.; Liu, Z.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Chan, K.; Coadou, Y.; Liu, Z.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. [Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Barfuss, A. -F.; Berntzon, L.; Calvet, S.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Mendes, A.; Nagy, E.; Talby, M.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Jaffre, M.; Makovec, N.; Ochando, C.; Petroff, P.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Grivaz, J. -F.; Jaffre, M.; Makovec, N.; Ochando, C.; Petroff, P.] Univ Paris 11, Orsay, France. [Andrieu, B.; Bassler, U.; Bernardi, G.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bassler, U.; Bernardi, G.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Michaut, M.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Charles, F.; Clement, B.; Geist, W.; Gele, D.; Lounis, A.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Clement, B.; Geist, W.; Gele, D.; Lounis, A.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, INPL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Autermann, C.; Hebbeker, T.; Kaefer, D.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Fox, H.; Jakobs, K.; Konrath, J. -P.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Fiedler, F.; Grohsjean, A.; Haefner, P.; Schaile, D.; Schieferdecker, P.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. [Choi, S.; Kim, H.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Bos, K.; Caron, S.; de Jong, P.; Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Eijk, B.; van Leeuwen, W. M.; Vreeswijk, M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Bos, K.; Caron, S.; de Jong, P.; Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Eijk, B.; van Leeuwen, W. M.; Vreeswijk, M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Kirby, M. H.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. [Abazov, V. M.; Gavrilov, V.; Kalinin, A. M.; Kharzheev, Y. M.; Polozov, P.; Safronov, G.; Stolin, V.; Tokmenin, V. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Khalatyan, N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Lehner, F.] Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.; Borissov, G.; Burdin, S.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Lewis, P.; Lobo, L.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Ford, M.; Harder, K.; Owen, M.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Telford, P.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Lazoflores, J.; Prosper, H. B.; Sekaric, J.; Sengupta, S.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Hanagaki, K.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Nomerotski, A.; O'Dell, V.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Shpakov, D.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.; Zhang, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Otero y Garzon, G. J.; Shabalina, E.; Stone, A.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bagby, L.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Van Kooten, R.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Cason, N. M.; Chan, K. M.; Galyaev, E.; Goussiou, A.; Hildreth, M. D.; Lam, D.; Mal, P. K.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Das, A.; Heintz, U.; Jabeen, S.; Kasper, J.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Katsanos, I.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Begel, M.; Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Kahn, S.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Kopal, M.; Pompos, A.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Klima, B.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Casey, B. C. K.; Christofek, L.; Cutts, D.; Enari, Y.; Hooper, R.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Brown, D.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Kryemadhi, A.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Gadfort, T.; Garcia-Bellido, A.; Lubatti, H. J.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alexeev, G. D.; Malyshev, V. L.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Telford, Paul/B-6253-2011; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; OI Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Bean, Alice/0000-0001-5967-8674; Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617 NR 20 TC 14 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 101801 DI 10.1103/PhysRevLett.100.101801 PG 7 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500010 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Otero y Garzon, GJ Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruwnewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Measurement of the shape of the boson-transverse momentum distribution in p(p)over-bar -> Z/gamma*-> e(+)e(-)+X events produced at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID RADIATIVE-CORRECTIONS; CROSS-SECTION; COLLISIONS; PAIRS; QCD AB We present a measurement of the shape of the Z/gamma* boson transverse momentum (q(T)) distribution in p (p) over bar -> Z/gamma(*)-> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low q(T), but above the perturbative QCD calculation in the region of q(T)> 30 GeV/c. Using events with q(T)< 30 GeV/c, we extract the value of g(2), one of the nonperturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function. C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.; Souza, M.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chandra, A.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ Prague, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Mendes, A.; Nagy, E.; Talby, M.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA Serv Phys Particules, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Autermann, C.; Hebbeker, T.; Kaefer, D.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, III Phys Inst A, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Fox, H.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Schieferdecker, P.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruwnewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. [Choi, S.; Kim, H.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.; Borissov, G.; Burdin, S.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.] Univ London Imperial Coll Sci & Technol, London, England. Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.] Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.] Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Prudue UNiv Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas Arlington, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; NR 25 TC 65 Z9 65 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 102002 DI 10.1103/PhysRevLett.100.102002 PG 7 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500013 ER PT J AU Abbasi, RU Abu-Zayyad, T Allen, M Amman, JF Archbold, G Belov, K Belz, JW Ben Zvi, SY Bergman, DR Blake, SA Brusova, OA Burt, GW Cannon, C Cao, Z Connolly, BC Deng, W Fedorova, Y Finley, CB Gray, RC Hanlon, WF Hoffman, CM Holzscheiter, MH Hughes, G Huentemeyer, P Jones, BF Jui, CCH Kim, K Kirn, MA Loh, EC Maestas, MM Manago, N Marek, LJ Martens, K Matthews, JAJ Matthews, JN Moore, SA O'Neill, A Painter, CA Perera, L Reil, K Riehle, R Roberts, M Rodriguez, D Sasaki, N Schnetzer, SR Scott, LM Sinnis, G Smith, JD Sokolsky, P Song, C Springer, RW Stokes, BT Thomas, SB Thomas, JR Thomson, GB Tupa, D Westerhoff, S Wiencke, LR Zhang, X Zech, A AF Abbasi, R. U. Abu-Zayyad, T. Allen, M. Amman, J. F. Archbold, G. Belov, K. Belz, J. W. Ben Zvi, S. Y. Bergman, D. R. Blake, S. A. Brusova, O. A. Burt, G. W. Cannon, C. Cao, Z. Connolly, B. C. Deng, W. Fedorova, Y. Finley, C. B. Gray, R. C. Hanlon, W. F. Hoffman, C. M. Holzscheiter, M. H. Hughes, G. Huentemeyer, P. Jones, B. F. Jui, C. C. H. Kim, K. Kirn, M. A. Loh, E. C. Maestas, M. M. Manago, N. Marek, L. J. Martens, K. Matthews, J. A. J. Matthews, J. N. Moore, S. A. O'Neill, A. Painter, C. A. Perera, L. Reil, K. Riehle, R. Roberts, M. Rodriguez, D. Sasaki, N. Schnetzer, S. R. Scott, L. M. Sinnis, G. Smith, J. D. Sokolsky, P. Song, C. Springer, R. W. Stokes, B. T. Thomas, S. B. Thomas, J. R. Thomson, G. B. Tupa, D. Westerhoff, S. Wiencke, L. R. Zhang, X. Zech, A. TI First observation of the Greisen-Zatsepin-Kuzmin suppression SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMIC-RAY SPECTRUM; FLUORESCENCE YIELD; AIR FLUORESCENCE; HIRES EXPERIMENT; ENERGY-SPECTRUM; FLYS EYE; DETECTOR; SIMULATION; PARTICLE; CUTOFF AB The High Resolution Fly's Eye (HiRes) experiment has observed the Greisen-Zatsepin-Kuzmin suppression (called the GZK cutoff) with a statistical significance of five standard deviations. HiRes' measurement of the flux of ultrahigh energy cosmic rays shows a sharp suppression at an energy of 6x10(19) eV, consistent with the expected cutoff energy. We observe the ankle of the cosmic-ray energy spectrum as well, at an energy of 4x10(18) eV. We describe the experiment, data collection, and analysis and estimate the systematic uncertainties. The results are presented and the calculation of the statistical significance of our observation is described. C1 [Bergman, D. R.; Hughes, G.; Schnetzer, S. R.; Scott, L. M.; Thomson, G. B.; Zech, A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Archbold, G.; Belov, K.; Belz, J. W.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Rodriguez, D.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, S. B.; Thomas, J. R.; Wiencke, L. R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Amman, J. F.; Hoffman, C. M.; Holzscheiter, M. H.; Marek, L. J.; Painter, C. A.; Sinnis, G.; Tupa, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ben Zvi, S. Y.; Connolly, B. C.; Finley, C. B.; O'Neill, A.; Song, C.; Westerhoff, S.; Zhang, X.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Ben Zvi, S. Y.; Connolly, B. C.; Finley, C. B.; O'Neill, A.; Song, C.; Westerhoff, S.; Zhang, X.] Columbia Univ, Nevis Lab, New York, NY 10027 USA. [Kirn, M. A.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Manago, N.; Sasaki, N.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Matthews, J. A. J.; Roberts, M.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Bergman, DR (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. EM bergman@physics.rutgers.edu RI Song, Chihwa/A-3455-2008; Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013; OI Tupa, Dale/0000-0002-6265-5016 NR 31 TC 410 Z9 416 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 101101 DI 10.1103/PhysRevLett.100.101101 PG 5 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500008 PM 18352170 ER PT J AU Batyrev, IG Tuttle, B Fleetwood, DM Schrimpf, RD Tsetseris, L Pantelides, ST AF Batyrev, I. G. Tuttle, B. Fleetwood, D. M. Schrimpf, R. D. Tsetseris, L. Pantelides, S. T. TI Reactions of water molecules in silica-based network glasses SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERFACE; HYDROGEN; QUARTZ AB Given that H2O dissolves minimally in quartz, the mechanism for the ubiquitous dissolution of H2O in silica glasses has been a long-standing puzzle. We report first-principles calculations in prototype silica glass networks and identify the ring topologies that allow the exothermic dissolution of H2O as geminate Si-O-H groups. The topological constraints of these reactions explain both the observed saturation of Si-O-H concentrations and the observed increase in the average Si-Si distance. In addition, calculations of H2O and Si-O-H dissociation account for the observed response to radiation by wet thermally grown SiO2. C1 [Batyrev, I. G.; Tuttle, B.; Fleetwood, D. M.; Tsetseris, L.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Fleetwood, D. M.; Schrimpf, R. D.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tuttle, B.] Penn State Behrend, Dept Phys, Erie, PA 16563 USA. [Tsetseris, L.] Aristotle Univ Thessaloniki, Dept Phys, GR-54214 Thessaloniki, Greece. RP Batyrev, IG (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 NR 24 TC 33 Z9 33 U1 3 U2 73 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 105503 DI 10.1103/PhysRevLett.100.105503 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500041 PM 18352203 ER PT J AU Boixo, S Monras, A AF Boixo, S. Monras, A. TI Operational interpretation for global multipartite entanglement SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHANNEL ESTIMATION; QUANTUM; STATES; DISTANCE; SYSTEMS AB We introduce an operational interpretation for pure-state global multipartite entanglement based on quantum estimation. We show that the estimation of the strength of low-noise locally depolarizing channels, as quantified by the regularized quantum Fisher information, is directly related to the Meyer-Wallach multipartite entanglement measure. Using channels that depolarize across different partitions, we obtain related multipartite entanglement measures. We show that this measure is the sum of expectation values of local observables on two copies of the state. C1 [Boixo, S.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Boixo, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Monras, A.] Univ Autonoma Barcelona, Fis Teor Grp, E-08193 Barcelona, Spain. RP Boixo, S (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM amonras@ifae.es RI Monras, Alex/M-3736-2014 NR 39 TC 59 Z9 61 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 100503 DI 10.1103/PhysRevLett.100.100503 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500006 PM 18352168 ER PT J AU Christianson, AD Lumsden, MD Angst, M Yamani, Z Tian, W Jin, R Payzant, EA Nagler, SE Sales, BC Mandrus, D AF Christianson, A. D. Lumsden, M. D. Angst, M. Yamani, Z. Tian, W. Jin, R. Payzant, E. A. Nagler, S. E. Sales, B. C. Mandrus, D. TI Three-dimensional magnetic correlations in multiferroic LuFe(2)O(4) SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPIN CORRELATION; FERROELECTRICITY AB We present single crystal neutron diffraction measurements on multiferroic LuFe(2)O(4). Magnetic reflections are observed below transitions at 240 and 175 K indicating that the magnetic interactions in LuFe(2)O(4) are three-dimensional in character. The magnetic structure is refined as a ferrimagnetic spin configuration below the 240 K transition. Below 175 K a significant broadening of the magnetic peaks is observed along with the buildup of a diffuse component to the magnetic scattering. C1 [Christianson, A. D.; Lumsden, M. D.; Angst, M.; Tian, W.; Jin, R.; Payzant, E. A.; Nagler, S. E.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yamani, Z.] Canadian Neutron Beam Ctr, Natl Res Council, Chalk River, ON K0J 1J0, Canada. [Tian, W.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Christianson, AD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Tian, Wei/C-8604-2013; Payzant, Edward/B-5449-2009; Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Mandrus, David/H-3090-2014; christianson, andrew/A-3277-2016; Lumsden, Mark/F-5366-2012; yamani, zahra/B-7892-2012; Angst, Manuel/I-4380-2012 OI Tian, Wei/0000-0001-7735-3187; Payzant, Edward/0000-0002-3447-2060; Nagler, Stephen/0000-0002-7234-2339; christianson, andrew/0000-0003-3369-5884; Lumsden, Mark/0000-0002-5472-9660; Angst, Manuel/0000-0001-8892-7019 NR 13 TC 94 Z9 96 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 107601 DI 10.1103/PhysRevLett.100.107601 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500068 PM 18352230 ER PT J AU De Ninno, G Allaria, E Coreno, M Chowdhury, S Curbis, F Danailov, MB Diviacco, B Ferianis, M Karantzoulis, E Longhi, EC Pinayev, IV Spezzani, C Trovo, M Litvinenko, VN AF De Ninno, G. Allaria, E. Coreno, M. Chowdhury, S. Curbis, F. Danailov, M. B. Diviacco, B. Ferianis, M. Karantzoulis, E. Longhi, E. C. Pinayev, I. V. Spezzani, C. Trovo, M. Litvinenko, V. N. TI Self-induced harmonic generation in a storage-ring free-electron laser SO PHYSICAL REVIEW LETTERS LA English DT Article ID AMPLIFIED SPONTANEOUS EMISSION; FEL; PROSPECTS; REGIME; NM AB Coherent radiation from a relativistic electron beam is a valuable way to overcome the present limitations of conventional lasers and synchrotron radiation light sources. The typical scheme has electrons, directly from a linac, in a single-pass interaction with a laser pulse in the presence of a static undulator magnetic field. We demonstrate that a storage-ring free-electron laser can also achieve harmonic generation (down to 36.5 nm), presenting both experimental and theoretical results, and offer a reliable interpretation of the peculiar underlying physical processes involved. C1 [De Ninno, G.] Univ Nova Gorica, Nova Gorica, Slovenia. [De Ninno, G.; Allaria, E.; Curbis, F.; Danailov, M. B.; Diviacco, B.; Ferianis, M.; Karantzoulis, E.; Spezzani, C.; Trovo, M.] Sincrotrone Trieste, I-34012 Trieste, Italy. [Coreno, M.] TASC INFM Natl Lab, Trieste, Italy. [Chowdhury, S.] Xerox Res Ctr, Webster, NY USA. [Curbis, F.] Univ Trieste, I-34127 Trieste, Italy. [Pinayev, I. V.; Litvinenko, V. N.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP De Ninno, G (reprint author), Univ Nova Gorica, Nova Gorica, Slovenia. EM giovanni.deninno@elettra.trieste.it RI Allaria, Enrico/H-1811-2012; OI Allaria, Enrico/0000-0001-9570-6361; Danailov, Miltcho/0000-0002-1888-1331; Coreno, Marcello/0000-0003-4376-808X NR 26 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 104801 DI 10.1103/PhysRevLett.100.104801 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500032 PM 18352194 ER PT J AU Fezzaa, K Wang, YJ AF Fezzaa, Kamel Wang, Yujie TI Ultrafast X-ray phase-contrast imaging of the initial coalescence phase of two water droplets SO PHYSICAL REVIEW LETTERS LA English DT Article ID SURFACE-TENSION; DRIVEN; DROPS; FLOWS AB We report an ultrafast x-ray phase-contrast imaging study of the early merging dynamics of two water drops in air. Owing to the edge-enhancement capability, the high penetrability, and the unprecedented temporal and spatial resolutions offered by this new x-ray technique, the coalescence singularity of two water drops was revisited. A finite initial contact radius was identified and the evolvement of the trapped toroidal air bubble was studied for the first time. Despite the existence of this finite initial contact radius, the subsequent meniscus radius followed power laws which agree with theoretical predictions for the inviscid regime. C1 [Fezzaa, Kamel; Wang, Yujie] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Fezzaa, K (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fezzaa@aps.anl.gov; yujie@aps.anl.gov RI wang, yujie/C-2582-2015 NR 13 TC 32 Z9 34 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 104501 DI 10.1103/PhysRevLett.100.104501 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500031 PM 18352193 ER PT J AU Hatcher, R Beck, M Tackett, A Pantelides, ST AF Hatcher, Ryan Beck, Matthew Tackett, Alan Pantelides, Sokrates T. TI Dynamical effects in the interaction of ion beams with solids SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; STOPPING POWER; CROSS-SECTIONS; SLOW IONS; Z1-OSCILLATIONS; TUNGSTEN; SILICON; MATTER AB Calculations of the stopping power (SP) of ion beams in solids have been based on a homogeneous electron gas scattering off a static atom and entail at least one free parameter. Here we report dynamical simulations of ions channeled in silicon. Time-dependent density-functional theory (TDDFT) is used. The calculated SPs are in excellent agreement with the observed oscillatory dependence on atomic number. TDDFT calculations for a homogeneous electron gas demonstrate that both dynamical response and nonuniformities in the electron density are essential to reproduce the data without free parameters. C1 [Hatcher, Ryan; Beck, Matthew; Tackett, Alan; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hatcher, R (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. NR 21 TC 7 Z9 7 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 103201 DI 10.1103/PhysRevLett.100.103201 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500022 PM 18352184 ER PT J AU Jones, B Deeney, C McKenney, JL Ampleford, DJ Coverdale, CA LePell, PD Shelton, KP Safronova, AS Kantsyrev, VL Osborne, G Sotnikov, VI Ivanov, VV Fedin, D Nalajala, V Yilmaz, F Shrestha, I AF Jones, B. Deeney, C. McKenney, J. L. Ampleford, D. J. Coverdale, C. A. LePell, P. D. Shelton, K. P. Safronova, A. S. Kantsyrev, V. L. Osborne, G. Sotnikov, V. I. Ivanov, V. V. Fedin, D. Nalajala, V. Yilmaz, F. Shrestha, I. TI Measurement of temperature, density, and particle transport with localized dopants in wire-array Z pinches SO PHYSICAL REVIEW LETTERS LA English DT Article ID IMPLOSION DYNAMICS; X-PINCHES; PLASMAS; SPECTROSCOPY; GENERATOR; PHYSICS AB Axially localized NaF dopants are coated onto Al cylindrical wire arrays in order to act as spectroscopic tracers in the stagnated z-pinch plasma. Non-local-thermodynamic-equilibrium kinetic models fit to Na K-shell lines provide an independent measurement of the density and temperature that is consistent with spectroscopic analysis of K-shell emissions from Al and an alloyed Mg dopant. Axial transport of the Na dopant is observed, enabling quantitative study of instabilities in dense z-pinch plasmas. C1 [Jones, B.; Deeney, C.; McKenney, J. L.; Ampleford, D. J.; Coverdale, C. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [LePell, P. D.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [Safronova, A. S.; Kantsyrev, V. L.; Osborne, G.; Sotnikov, V. I.; Ivanov, V. V.; Fedin, D.; Nalajala, V.; Yilmaz, F.; Shrestha, I.] Univ Nevada, Reno, NV 89557 USA. RP Jones, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM bmjones@sandia.gov NR 28 TC 8 Z9 8 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 105003 DI 10.1103/PhysRevLett.100.105003 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500035 PM 18352197 ER PT J AU Lopez-Martens, A Dossing, T Khoo, TL Matsuo, M Herskind, B Lauritsen, T Carpenter, MP Janssens, RVF Hackman, G Lee, IY Macchiavelli, AO Vigezzi, E Yoshida, K AF Lopez-Martens, A. Dossing, T. Khoo, T. L. Matsuo, M. Herskind, B. Lauritsen, T. Carpenter, M. P. Janssens, R. V. F. Hackman, G. Lee, I-Y. Macchiavelli, A. O. Vigezzi, E. Yoshida, K. TI Motional narrowing and ergodic bands in excited superdeformed states of (194)Hg SO PHYSICAL REVIEW LETTERS LA English DT Article ID ROTATIONAL BANDS; GAMMA-RAYS; NUCLEI; EU-143; CONTINUUM; DECAY; WELL AB The E(gamma)-E(gamma) coincidence spectra from the electromagnetic decay of excited superdeformed states in (194)Hg reveal surprisingly narrow ridges, parallel to the diagonal. A total of 100-150 excited bands are found to contribute to these ridges, which account for nearly all the unresolved E2 decay strength. Comparison with theory suggests that these excited bands have many components in their wave functions, yet they display remarkable rotational coherence. This phenomenon can be explained in terms of the combination of shell effects and motional narrowing. C1 [Lopez-Martens, A.] CSNSM, IN2P3 CNRS, F-91405 Orsay, France. [Dossing, T.; Herskind, B.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Khoo, T. L.; Lauritsen, T.; Carpenter, M. P.; Janssens, R. V. F.; Hackman, G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Matsuo, M.] Niigata Univ, Grad Sch Sci & Technol, Niigata 9502181, Japan. [Lee, I-Y.; Macchiavelli, A. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vigezzi, E.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Vigezzi, E.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Yoshida, K.] Nara Univ, Inst Nat Sci, Nara 6318502, Japan. RP Lopez-Martens, A (reprint author), CSNSM, IN2P3 CNRS, Batiment 104-108, F-91405 Orsay, France. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 27 TC 6 Z9 6 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 102501 DI 10.1103/PhysRevLett.100.102501 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500016 PM 18352178 ER PT J AU Neumayer, P Berger, RL Divol, L Froula, DH London, RA MacGowan, BJ Meezan, NB Ross, JS Sorce, C Suter, LJ Glenzer, SH AF Neumayer, P. Berger, R. L. Divol, L. Froula, D. H. London, R. A. MacGowan, B. J. Meezan, N. B. Ross, J. S. Sorce, C. Suter, L. J. Glenzer, S. H. TI Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL-IGNITION-FACILITY; ACOUSTIC-WAVES; SCALE PLASMAS; LASER-BEAMS; TARGETS; DRIVE; CONFINEMENT; PERFORMANCE; FREQUENCY; RADIATION AB We demonstrate that multiple-ion-species plasmas greatly reduce stimulated Brillouin scattering (SBS) in high-electron temperature inertial confinement fusion hohlraums. Landau damping is increased by adding hydrogen to a CO(2) gas filled hohlraum. We find that the SBS reflectivity decreases monotonically with increasing hydrogen fraction from 18% to 3% with a simultaneous increase of laser beam transmission. Detailed simulations with a 3D laser-plasma interaction code are in agreement with the experimentally observed reduction in backscattered light. C1 [Neumayer, P.; Berger, R. L.; Divol, L.; Froula, D. H.; London, R. A.; MacGowan, B. J.; Meezan, N. B.; Ross, J. S.; Sorce, C.; Suter, L. J.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Neumayer, P (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. NR 32 TC 18 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 105001 DI 10.1103/PhysRevLett.100.105001 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500033 PM 18352195 ER PT J AU Shan, ZW Knapp, JA Follstaedt, DM Stach, EA Wiezorek, JMK Mao, SX AF Shan, Zhiwei Knapp, J. A. Follstaedt, D. M. Stach, E. A. Wiezorek, J. M. K. Mao, S. X. TI Inter- and intra-agglomerate fracture in nanocrystalline nickel SO PHYSICAL REVIEW LETTERS LA English DT Article ID TENSILE PROPERTIES; DEFORMATION; COPPER; METALS; NI; ELECTRODEPOSITION; MICROSTRUCTURE; BEHAVIOR; ALLOYS AB In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials. C1 [Shan, Zhiwei; Wiezorek, J. M. K.; Mao, S. X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Knapp, J. A.; Follstaedt, D. M.] Sandia Natl Labs, Phys Chem & Nano Sci Ctr, Albuquerque, NM 87185 USA. [Stach, E. A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP Mao, SX (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. EM smao@engr.pitt.edu RI Stach, Eric/D-8545-2011; Shan, Zhiwei/B-8799-2014 OI Stach, Eric/0000-0002-3366-2153; NR 26 TC 21 Z9 21 U1 5 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 105502 DI 10.1103/PhysRevLett.100.105502 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500040 PM 18352202 ER PT J AU Zhang, WT Liu, GD Zhao, L Liu, HY Meng, JQ Dong, XL Lu, W Wen, JS Xu, ZJ Gu, GD Sasagawa, T Wang, GL Zhu, Y Zhang, HB Zhou, Y Wang, XY Zhao, ZX Chen, CT Xu, ZY Zhou, XJ AF Zhang, Wentao Liu, Guodong Zhao, Lin Liu, Haiyun Meng, Jianqiao Dong, Xiaoli Lu, Wei Wen, J. S. Xu, Z. J. Gu, G. D. Sasagawa, T. Wang, Guiling Zhu, Yong Zhang, Hongbo Zhou, Yong Wang, Xiaoyang Zhao, Zhongxian Chen, Chuangtian Xu, Zuyan Zhou, X. J. TI Identification of a new form of electron coupling in the Bi2Sr2CaCu2O8 superconductor by laser-based angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTOR; DISPERSION; EXCITATION AB Laser-based angle-resolved photoemission measurements with superhigh resolution have been carried out on an optimally doped Bi2Sr2CaCu2O8 high temperature superconductor. New high energy features at similar to 115 meV and similar to 150 meV, in addition to the prominent similar to 70 meV one, are found to develop in the nodal electron self-energy in the superconducting state. These high energy features, which cannot be attributed to electron coupling with single phonon or magnetic resonance mode, point to the existence of a new form of electron coupling in high temperature superconductors. C1 [Zhang, Wentao; Liu, Guodong; Zhao, Lin; Liu, Haiyun; Meng, Jianqiao; Dong, Xiaoli; Lu, Wei; Zhao, Zhongxian; Zhou, X. J.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Natl Lab Supercond, Beijing 100080, Peoples R China. [Wen, J. S.; Xu, Z. J.; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Sasagawa, T.] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 227, Japan. Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 227, Japan. [Wang, Guiling; Zhang, Hongbo; Xu, Zuyan] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Lab Opt, Beijing 100080, Peoples R China. [Zhu, Yong; Wang, Xiaoyang; Chen, Chuangtian] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100080, Peoples R China. RP Zhou, XJ (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Natl Lab Supercond, POB 603, Beijing 100080, Peoples R China. EM XJZhou@aphy.iphy.ac.cn RI Wen, Jinsheng/F-4209-2010; Zhou, Yong/G-2314-2011; ZHANG, Wentao/B-3626-2011; xu, zhijun/A-3264-2013; Meng, Jianqiao/D-2667-2013; Gu, Genda/D-5410-2013; Sasagawa, Takao/E-6666-2014 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015; Meng, Jianqiao/0000-0003-3168-9819; Gu, Genda/0000-0002-9886-3255; Sasagawa, Takao/0000-0003-0149-6696 NR 31 TC 63 Z9 67 U1 1 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 14 PY 2008 VL 100 IS 10 AR 107002 DI 10.1103/PhysRevLett.100.107002 PG 4 WC Physics, Multidisciplinary SC Physics GA 274TP UT WOS:000254024500062 PM 18352224 ER PT J AU Aynajian, P Keller, T Boeri, L Shapiro, SM Habicht, K Keimer, B AF Aynajian, P. Keller, T. Boeri, L. Shapiro, S. M. Habicht, K. Keimer, B. TI Energy gaps and Kohn anomalies in elemental superconductors SO SCIENCE LA English DT Article ID NEUTRON-SCATTERING; UNDERDOPED BI2212; FERMI SURFACE; DEGREES K; DISPERSION; LEAD AB The momentum and temperature dependence of the lifetimes of acoustic phonons in the elemental superconductors lead and niobium were determined by resonant spin- echo spectroscopy with neutrons. In both elements, the superconducting energy gap extracted from these measurements was found to converge with sharp anomalies originating from Fermi- surface nesting ( Kohn anomalies) at low temperatures. The results indicate electron many- body correlations beyond the standard theoretical framework for conventional superconductivity. A possible mechanism is the interplay between superconductivity and spin- or charge- density- wave fluctuations, which may induce dynamical nesting of the Fermi surface. C1 [Aynajian, P.; Keller, T.; Boeri, L.; Keimer, B.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Keller, T.] Tech Univ Munich, ZWE FRM 2, D-85748 Garching, Germany. [Shapiro, S. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Habicht, K.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. RP Keimer, B (reprint author), Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. EM b.keimer@fkf.mpg.de RI Boeri, Lilia/B-6162-2015; Habicht, Klaus/K-3636-2013 OI Boeri, Lilia/0000-0003-1186-2207; Habicht, Klaus/0000-0002-9915-7221 NR 25 TC 29 Z9 29 U1 3 U2 26 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAR 14 PY 2008 VL 319 IS 5869 BP 1509 EP 1512 DI 10.1126/science.1154115 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 273PI UT WOS:000253943800033 PM 18292306 ER PT J AU Magi, BI Fu, Q Redemann, J Schmid, B AF Magi, Brian I. Fu, Qiang Redemann, Jens Schmid, Beat TI Using aircraft measurements to estimate the magnitude and uncertainty of the shortwave direct radiative forcing of southern African biomass burning aerosol SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review ID SINGLE SCATTERING ALBEDO; OPTICAL-PROPERTIES; SAFARI 2000; TRACE GASES; SAVANNA FIRES; STABLE DISCONTINUITIES; CARBONACEOUS PARTICLES; SIZE DISTRIBUTIONS; LIGHT-ABSORPTION; EAST-COAST AB We estimate the shortwave, diurnally averaged direct radiative forcing (RF) in cloud-free conditions of the biomass burning aerosol characterized by measurements made from the University of Washington (UW) research aircraft during the Southern African Regional Science Initiative in August and September 2000 (SAFARI-2000). We describe the methodology used to arrive at the best estimates of the measurement-based RF and discuss the confidence intervals of the estimates of RF that arise from uncertainties in measurements and assumptions necessary to describe the aerosol optical properties. We apply the methodology to the UW aircraft vertical profiles and estimate that the top of the atmosphere RF (RFtoa) ranges from -1.5 +/- 3.2 to -14.4 +/- 3.5 W m(-2), while the surface RF (RFsfc) ranges from -10.5 +/- 2.4 to -81.3 +/- 7.5 W m(-2). These estimates imply that the aerosol RF of the atmosphere (RFatm) ranges from 5.0 +/- 2.3 to 73.3 +/- 11.0 W m(-2). We compare some of our estimates to RF estimated using Aerosol Robotic Network (AERONET) aerosol optical properties and show that the agreement is good for RFtoa, but poor for RFsfc. We also show that linear models accurately describe the relationship of RF with the aerosol optical depth at a wavelength of 550 nm (tau(550)). This relationship is known as the radiative forcing efficiency (RFE) and we find that RFtoa (unlike RFatm and RFsfc) depends not only on variations in tau(550), but that the linear model itself is dependent on the magnitude of tau(550). We then apply the models for RFE to daily tau(550) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite to estimate the RF over southern Africa from March 2000 to December 2006. Using the combination of UW and MODIS data, we find that the annual RFtoa, RFatm, and RFsfc over the region is -4.7 +/- 2.7 W m(-2), 11.4 +/- 5.7 W m(-2), and -18.3 +/- 5.8 W m(-2), respectively. C1 [Magi, Brian I.; Fu, Qiang] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Magi, Brian I.] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08540 USA. [Redemann, Jens] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Schmid, Beat] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Magi, BI (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. EM brian.magi@noaa.gov RI Magi, Brian/K-2000-2015 OI Magi, Brian/0000-0001-8131-0083 NR 102 TC 9 Z9 10 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 13 PY 2008 VL 113 IS D5 AR D05213 DI 10.1029/2007JD009258 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 276TL UT WOS:000254165900006 ER PT J AU Zhao, HT Hazemann, I Mitschler, A Carbone, V Joachimiak, A Ginell, S Podjarny, A El-Kabbani, O AF Zhao, Hai-Tao Hazemann, Isabelle Mitschler, Andre Carbone, Vincenzo Joachimiak, Andrzej Ginell, Steve Podjarny, Alberto El-Kabbani, Ossama TI Unusual binding mode of the 2S4R stereoisomer of the potent aldose reductase cyclic imide inhibitor fidarestat (2S4S) in the 15 K crystal structure of the ternary complex refined at 0.78 angstrom resolution: Implications for the inhibition mechanism SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID DIABETIC COMPLICATIONS; ULTRAHIGH-RESOLUTION; POLYOL PATHWAY; NITRIC-OXIDE; DRUG DESIGN; CONGENERS; ACID; ISOQUINOLINE-1,3-DIONES; SPIROSUCCINIMIDE; DEHYDROGENASE AB The structure of human aldose reductase in complex with the 2S4R stereoisomer of the potent inhibitor Fidarestat ((2S,4S)-6-fluoro-2',5'-dioxospiro-[chroman-4,4'-imidazoline]-2-carboxamide) was determined at 15 K and a resolution of 0.78 angstrom. The structure of the complex provides experimental evidence for the inhibition mechanism in which Fidarestat is initially bound neutral and then becomes negatively charged by donating the proton at the 1'-position nitrogen of the cyclic imide ring to the N epsilon 2 atom of the catalytic His 110. C1 [Zhao, Hai-Tao; Carbone, Vincenzo; El-Kabbani, Ossama] Monash Univ, Victorian Coll Pharm, Dept Med Chem, Parkville, Vic 3052, Australia. [Hazemann, Isabelle; Mitschler, Andre; Podjarny, Alberto] ULP, INSERM, CNRS, IGBMC,Dept Biol & Genom Struct, F-67404 Illkirch Graffenstaden, France. [Joachimiak, Andrzej; Ginell, Steve] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. RP El-Kabbani, O (reprint author), Monash Univ, Victorian Coll Pharm, Dept Med Chem, Parkville Campus,381 Royal Parade, Parkville, Vic 3052, Australia. EM ossama.el-kabbani@vcp.monash.edu.au NR 31 TC 2 Z9 2 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD MAR 13 PY 2008 VL 51 IS 5 BP 1478 EP 1481 DI 10.1021/jm701514k PG 4 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 271JO UT WOS:000253784900043 PM 18284183 ER PT J AU Domin, D Lester, WA Whitesides, R Frenklach, M AF Domin, Dominik Lester, William A., Jr. Whitesides, Russell Frenklach, Michael TI Isomer energy differences for the C4H3 and C4H5 isomers using diffusion Monte Carlo SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article; Proceedings Paper CT Conference in Honor of Professor William A Lester on his 70th Birthday CY MAR, 2007 CL Univ Calif, Berkeley, CA HO Univ Calif ID SOOT FORMATION; ATOMS; FLAMES; MOLECULES; CHEMISTRY; SOLIDS AB A new diffusion Monte Carlo study is performed on the isomers Of C4H3 and C4H5 emulating the methodology of a previous study (Int. J. Chem. Kinet. 2001, 33, 808). Using the same trial wave function form of the previous study, substantially different isomerization energies were found owing to the use of larger walker populations in the present work. The energy differences between the E and i isomers Of C4H3 were found to be 10.5 +/- 0.5 kcal/mol and for C4H5, 9.7 +/- 0.6 kcal/mol. These results are in reasonable accord with recent MRCI and CCSD(T) findings. C1 [Domin, Dominik; Lester, William A., Jr.] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Lester, William A., Jr.] Lawrence Berkely Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Whitesides, Russell; Frenklach, Michael] Lawrence Berkely Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Whitesides, Russell; Frenklach, Michael] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Lester, WA (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. EM walester@lbl.gov NR 24 TC 4 Z9 4 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 13 PY 2008 VL 112 IS 10 BP 2065 EP 2068 DI 10.1021/jp709940s PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 271JK UT WOS:000253784500014 PM 18201074 ER PT J AU Nguyen, MT Matus, MH Lester, WA Dixon, DA AF Nguyen, Minh Tho Matus, Myrna H. Lester, William A., Jr. Dixon, David A. TI Heats of formation of triplet ethylene, ethylidene, and acetylene SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article; Proceedings Paper CT Conference in Honor of Professor William A Lester on his 70th Birthday CY MAR, 2007 CL Univ Calif, Berkeley, CA HO Univ Calif ID MOLECULAR-ORBITAL THEORY; COUPLED-CLUSTER THEORY; BASIS-SET CONVERGENCE; EXCITED-STATES; WAVE-FUNCTIONS; CORRELATED CALCULATIONS; PERTURBATION-THEORY; ELECTRONIC STATES; GROUND-STATE; SINGLET AB Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H(f)(0)(C(2)H(4), (3)A(1)) = 80.1 at 0 K and 78.5 at 298 K, and Delta H(f)(0)(CH(3)CH, (3)A '') = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +/- 1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta E(S-T,vert) = 104.1 and Delta E(S-T,dia) = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +/- 0.3 and 66.4 +/- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta E(S-T,adia)(C(2)H(2)) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H(f)(0)(C(2)H(2),(3)B(2)) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by similar to 7 to 8 kcal/mol. For vinylidene, we predict Delta H(f)(0)(H(2)CC,(1)A(1)) = 98.8 kcal/mol at 298 K (exptl. 100.3 +/- 4.0), Delta H(f)(0),(H(2)CC, (3)B(2)) = 146.2 at 298 K, and an energy gap Delta E(S-T-adia)(H(2)CC) = 47.7 kcal/mol. C1 [Nguyen, Minh Tho; Matus, Myrna H.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Nguyen, Minh Tho] Univ Louvain, Dept Chem, B-3001 Louvain, Belgium. [Lester, William A., Jr.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lester, William A., Jr.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall, Tuscaloosa, AL 35487 USA. EM dadixon@bama.ua.edu NR 72 TC 24 Z9 24 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 13 PY 2008 VL 112 IS 10 BP 2082 EP 2087 DI 10.1021/jp074769a PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 271JK UT WOS:000253784500018 PM 18047300 ER PT J AU Dutoi, AD Head-Gordon, M AF Dutoi, Anthony D. Head-Gordon, Martin TI A study of the effect of attenuation curvature on molecular correlation energies by introducing an explicit cutoff radius into two-electron integrals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article; Proceedings Paper CT Conference in Honor of Professor William A Lester on his 70th Birthday CY MAR, 2007 CL Univ Calif, Berkeley, CA HO Univ Calif ID ELECTRON CORRELATION METHODS; DENSITY-FUNCTIONAL THEORY; MOLLER-PLESSET THEORY; LONG-RANGE; PERTURBATION-THEORY; CONFIGURATION-INTERACTION; COULOMB-ATTENUATION; QUANTUM-CHEMISTRY; TRIPLES; FORMULATION AB We present a new attenuator function that can be applied to the Coulomb operator. Similar to the popular erf(omega)r) attenuator, the function [erf(omega)(r + r(0))) + erf(omega(r - r(0)))]/2 divides the Coulomb potential into a singular short-range piece and a non-singular long-range piece. In our attenuator, omega controls the sharpness of the short-range/long-range division at r(0). With r(0) = 0, this reduces to erf(omega r), but the additional parameter allows more flexible adjustment of the potential, for physical and/or computational reasons. We present some illustrative results for a truncated MP2 method, where mean field effects are handled exactly and correlation is treated locally. This study indicates, somewhat expectedly, that the slope and curvature of the attenuated potential are more important than its value (a trivial constant may always be added to a potential). However, there are some surprising features of the data that suggest what bounds need to be put on the curvature of the attenuated potential in order to achieve reasonable physics. Conveniently, we find that our attenuator form has the ability to preserve the curvature of the Coulomb potential almost exactly at short range, allowing for the truncation of long-range interactions while preserving the local physics very well. The molecular integrals for the resultant operator can be done analytically over Gaussian basis functions, and the extensive algebraic manipulations necessary to evaluate them stably are shown. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM t_dutoi@bastille.cchem.berkeley.edu; mhg@cchem.berkeley.edu NR 61 TC 16 Z9 16 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 13 PY 2008 VL 112 IS 10 BP 2110 EP 2119 DI 10.1021/jp0775956 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 271JK UT WOS:000253784500022 PM 18260657 ER EF