FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Cawkwell, MJ Sewell, TD Zheng, LQ Thompson, DL AF Cawkwell, M. J. Sewell, Thomas D. Zheng, Lianqing Thompson, Donald L. TI Shock-induced shear bands in an energetic molecular crystal: Application of shock-front absorbing boundary conditions to molecular dynamics simulations SO PHYSICAL REVIEW B LA English DT Article ID PENTAERYTHRITOL TETRANITRATE; CYCLOTRIMETHYLENE-TRINITRAMINE; INITIATION; SENSITIVITY; ORIENTATION; EXPLOSIVES; NITRAMINES; MECHANICS; WAVES; RDX AB The response of the energetic molecular crystal cyclotrimethylene trinitramine (RDX) to the propagation of planar shock waves normal to (100) has been studied using large-scale molecular dynamics simulations that employ an accurate and transferable nonreactive potential. The propagation of the shock waves was simulated using nonequilibrium molecular dynamics. Shear bands were nucleated during shocks with a particle velocity of 1.0 km s(-1) and corresponding Rankine-Hugoniot shock pressure of 9.7 GPa. These defects propagate into the compressed material at 45 degrees to [100] in the [010] zone. The shear bands evolve slowly compared to the time scales routinely accessible to nonequilibrium molecular dynamics toward a liquidlike state as a result of viscous heating. A recently developed shock-front absorbing boundary condition [A. V. Bolesta , Phys. Rev. B 76, 224108 (2007)] was applied to the simulation cells at the moment of maximum compression to sustain the shock-compressed state. Molecular dynamics simulations were then employed to study the temporal and structural evolution of the shock-induced shear bands toward a steady-fluctuating state. Owing to the intense, viscous flow-driven heating within the shear bands, these defects can be considered to be homogeneously nucleated hot spots. C1 [Cawkwell, M. J.; Sewell, Thomas D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zheng, Lianqing; Thompson, Donald L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. RP Cawkwell, MJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cawkwell@lanl.gov; sewell@lanl.gov; thompsondon@missouri.edu RI Zheng, Lianqing/B-4171-2008; OI Cawkwell, Marc/0000-0002-8919-3368 NR 47 TC 56 Z9 58 U1 2 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 1 AR 014107 DI 10.1103/PhysRevB.78.014107 PG 13 WC Physics, Condensed Matter SC Physics GA 333YR UT WOS:000258190000040 ER PT J AU Correa, AA Benedict, LX Young, DA Schwegler, E Bonev, SA AF Correa, Alfredo A. Benedict, Lorin X. Young, David A. Schwegler, Eric Bonev, Stanimir A. TI First-principles multiphase equation of state of carbon under extreme conditions SO PHYSICAL REVIEW B LA English DT Article ID WHITE-DWARF; ELECTRONIC-PROPERTIES; HIGH-PRESSURES; PHASE-DIAGRAM; DENSE MATTER; TEMPERATURES; DIAMOND; CRYSTALLIZATION; SEMICONDUCTORS; TRANSFORMATION AB We describe the construction of a multiphase equation of state for carbon at extreme pressures based on ab initio electronic structure calculations of two solid phases (diamond and BC8) and the liquid. Solid-phase free energies are built from knowledge of the cold curves and phonon calculations, together with direct ab initio molecular-dynamics calculations of the equation of state, which are used to extract anharmonic corrections to the phonon free energy. The liquid free energy is constructed based on results from molecular-dynamics calculations and constraints determined from previously calculated melting curves, assuming a simple solidlike free-energy model. The resulting equation of state is extended to extreme densities and temperatures with a Thomas Fermi-based free-energy model. Comparisons to available experimental results are discussed. C1 [Correa, Alfredo A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Correa, Alfredo A.; Benedict, Lorin X.; Young, David A.; Schwegler, Eric] Lawrence Livermore Natl Lab, H Div, Phys Sci Directorate, Livermore, CA 94550 USA. [Bonev, Stanimir A.] Dalhousie Univ, Dept Phys, Halifax, NS B3H 3J5, Canada. RP Correa, AA (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016 OI Schwegler, Eric/0000-0003-3635-7418 NR 46 TC 37 Z9 37 U1 1 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 2 AR 024101 DI 10.1103/PhysRevB.78.024101 PG 13 WC Physics, Condensed Matter SC Physics GA 333YT UT WOS:000258190200028 ER PT J AU Cox, S Loudon, JC Williams, AJ Attfield, JP Singleton, J Midgley, PA Mathur, ND AF Cox, S. Loudon, J. C. Williams, A. J. Attfield, J. P. Singleton, J. Midgley, P. A. Mathur, N. D. TI Very weak electron-phonon coupling and strong strain coupling in manganites SO PHYSICAL REVIEW B LA English DT Article ID CHARGE-DENSITY-WAVE; LA1-XCAXMNO3; TRANSITION; LA0.5CA0.5MNO3; COMMENSURATE; PEROVSKITES; IMAGES; PHASES; FILMS AB We describe transmission electron microscopy experiments that demonstrate the validity of the charge density wave (CDW) Landau theory in describing the so-called stripe phase of the manganites and that permit quantitative estimates of some of the theoretical parameters that describe this state. In polycrystalline Pr(0.48)Ca(0.52)MnO(3) a lock-in to q/a(*)=0.5 in a sample with x>0.5 has been observed. Such a lock-in has been predicted as a key part of the Landau CDW theory of the stripe phase. Thus it is possible to constrain the size of the electron-phonon coupling in the CDW Landau theory to between 0.08% and 0.50% of the electron-electron coupling term. In the thin film samples, films of the same thickness grown on two different substrates exhibited different wave vectors. The different strains present in the films on the two substrates can be related to the wave vector observed via Landau theory. It is demonstrated that the elastic term, which favors an incommensurate modulation, has a similar size to the coupling between the strain and the wave vector, meaning that the coupling of strain to the superstructure is unexpectedly strong. C1 [Cox, S.; Singleton, J.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Cox, S.; Loudon, J. C.; Midgley, P. A.; Mathur, N. D.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Williams, A. J.; Attfield, J. P.] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Cox, S (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, Ms-E536, Los Alamos, NM 87545 USA. NR 25 TC 11 Z9 11 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 3 AR 035129 DI 10.1103/PhysRevB.78.035129 PG 7 WC Physics, Condensed Matter SC Physics GA 333YU UT WOS:000258190300058 ER PT J AU Dani, KM Cotoros, IA Wang, J Tignon, J Chemla, DS Kavousanaki, EG Perakis, IE AF Dani, K. M. Cotoros, I. A. Wang, J. Tignon, J. Chemla, D. S. Kavousanaki, E. G. Perakis, I. E. TI Observation of an inter-Landau level quantum coherence in semiconductor quantum wells SO PHYSICAL REVIEW B LA English DT Article ID HALL SYSTEM; MAGNETOEXCITONS; CONTINUUM; DYNAMICS; EXCITONS; BEATS; BAND AB Using three-pulse four-wave-mixing femtosecond spectroscopy, we excite a nonradiative coherence between the discrete Landau levels of an undoped quantum well and study its dynamics. We observe quantum beats that reflect the time evolution of the coherence between the two lowest Landau level magnetoexcitons. We interpret our observations using a many-body theory and find that the inter-Landau level coherence decays with a time constant, substantially longer than the corresponding interband magnetoexciton dephasing times. Our results indicate an intraband excitation dynamics that cannot be described in terms of uncorrelated interband excitations. C1 [Dani, K. M.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Dani, K. M.; Cotoros, I. A.; Chemla, D. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Dani, K. M.; Cotoros, I. A.; Wang, J.; Chemla, D. S.] EO Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tignon, J.] Ecole Normale Super, Lab Pierre Aigrain, F-75005 Paris, France. [Kavousanaki, E. G.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Kavousanaki, E. G.; Perakis, I. E.] Univ Crete, Inst Elect Struct & Laser, Fdn Res & Technol Hellas, GR-71003 Iraklion, Greece. [Kavousanaki, E. G.; Perakis, I. E.] Univ Crete, Dept Phys, GR-71003 Iraklion, Greece. RP Dani, KM (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST-10, Los Alamos, NM 87545 USA. RI Perakis, Ilias/G-9186-2011; Kavousanaki, Eleftheria/D-5712-2015; Dani, Keshav/B-7490-2015 OI Kavousanaki, Eleftheria/0000-0003-1805-6638; Dani, Keshav/0000-0003-3917-6305 NR 22 TC 5 Z9 5 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 4 AR 041301 DI 10.1103/PhysRevB.78.041301 PG 4 WC Physics, Condensed Matter SC Physics GA 333YV UT WOS:000258190400004 ER PT J AU Doluweera, DGSP Macridin, A Maier, TA Jarrell, M Pruschke, T AF Doluweera, D. G. S. P. Macridin, A. Maier, T. A. Jarrell, M. Pruschke, Th. TI Suppression of d-wave superconductivity in the checkerboard Hubbard model SO PHYSICAL REVIEW B LA English DT Article ID T-C; BI2SR2CACU2O8+DELTA; CA2-XNAXCUO2CL2; FLUCTUATIONS; LATTICE; STATES AB Using a dynamical cluster quantum Monte Carlo approximation, we investigate the d-wave superconducting transition temperature T(c) in the doped two-dimensional repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings t' and t in the form of a checkerboard pattern where t is the hopping within a 2x2 plaquette, and t' is the hopping between the plaquettes. We find inhomogeneity suppresses T(c). The characteristic spin excitation energy and the strength of d-wave pairing interaction decrease with decreasing T(c), suggesting a strong correlation between these quantities. C1 [Doluweera, D. G. S. P.; Macridin, A.; Jarrell, M.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Maier, T. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Doluweera, D. G. S. P.; Pruschke, Th.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. RP Doluweera, DGSP (reprint author), Univ Cincinnati, Cincinnati, OH 45221 USA. RI Pruschke, Thomas/H-5065-2011; Pruschke, Thomas/H-5046-2011; Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 36 TC 9 Z9 9 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 2 AR 020504 DI 10.1103/PhysRevB.78.020504 PG 4 WC Physics, Condensed Matter SC Physics GA 333YT UT WOS:000258190200017 ER PT J AU Gordon, RT Vannette, MD Martin, C Nakajima, Y Tamegai, T Prozorov, R AF Gordon, R. T. Vannette, M. D. Martin, C. Nakajima, Y. Tamegai, T. Prozorov, R. TI Two-gap superconductivity seen in penetration-depth measurements of Lu(2)Fe(3)Si(5) single crystals SO PHYSICAL REVIEW B LA English DT Article ID EARTH-IRON SILICIDES; HEAT; SC2FE3SI5; FIELD AB A single crystal of superconducting Lu(2)Fe(3)Si(5) was studied using the tunnel-diode resonator technique in the Meissner and mixed states. The temperature dependence of the superfluid density provides strong evidence for two-gap superconductivity and indicates that there are nearly equal contributions from each gap having magnitudes of Delta(1)/k(B)T(c)=1.86 and Delta(2)/k(B)T(c)=0.54. In the vortex state, the pinning strength shows unusually strong temperature dependence and is nonmonotonic with the magnetic field (peak effect). The irreversibility line is sharply defined and quite distant from the H(c2)(T) line, which hints at enhanced vortex fluctuations in this two-gap system. Altogether, our findings from electromagnetic measurements provide strong support for the existence of two-gap superconductivity in Lu(2)Fe(3)Si(5), as previously suggested from specific-heat measurements. C1 [Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Nakajima, Y.; Tamegai, T.] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Tamegai, Tsuyoshi /C-6656-2011; Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 NR 19 TC 24 Z9 25 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 2 AR 024514 DI 10.1103/PhysRevB.78.024514 PG 5 WC Physics, Condensed Matter SC Physics GA 333YT UT WOS:000258190200114 ER PT J AU Hood, RQ Yang, LH Moriarty, JA AF Hood, Randolph Q. Yang, L. H. Moriarty, John A. TI Quantum molecular dynamics simulations of uranium at high pressure and temperature SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; CHARGE-DENSITY-WAVE; TOTAL-ENERGY CALCULATIONS; TRANSITION-METALS; PSEUDOPOTENTIAL APPROACH; ANALYTIC REPRESENTATION; INTERATOMIC POTENTIALS; LIGHT ACTINIDES; LIQUID URANIUM; MELTING CURVE AB Constant-volume quantum molecular dynamics (QMD) simulations of uranium (U) have been carried out over a range of pressures and temperatures that span the experimentally observed solid orthorhombic alpha-U, body-centered-cubic (bcc), and liquid phases, using an ab initio plane-wave pseudopotential method within the generalized gradient approximation of density-functional theory. A robust U pseudopotential has been constructed for these simulations that treats the 14 valence and outer-core electrons per atom necessary to calculate accurate structural and thermodynamic properties up to 100 GPa. Its validity has been checked by comparing low-temperature results with experimental data and all-electron full-potential linear-muffin-tin-orbital calculations of several different uranium solid structures. Calculated QMD energies and pressures for the equation of state of uranium in the solid and liquid phases are given, along with results for the Gruneisen parameter and the specific heat. We also present results for the radial distribution function, bond-angle distribution function, electronic density of states, and liquid diffusion coefficient, as well as evidence for short-range order in the liquid. C1 [Hood, Randolph Q.; Yang, L. H.; Moriarty, John A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hood, RQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 76 TC 12 Z9 13 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 2 AR 024116 DI 10.1103/PhysRevB.78.024116 PG 9 WC Physics, Condensed Matter SC Physics GA 333YT UT WOS:000258190200043 ER PT J AU Johnson, CL Bording, JK Zhu, YM AF Johnson, Craig L. Bording, Jan K. Zhu, Yimei TI Structural inhomogeneity and twinning in YBa(2)Cu(3)O(7-delta) superconductors: High-resolution transmission electron microscopy measurements SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; TEMPERATURE OXYGEN DIFFUSION; ORTHO-II PHASE; ROOM-TEMPERATURE; SINGLE-CRYSTALS; YBA2CU3O6+X; DIAGRAM; OXIDE; DIFFRACTION; NEUTRON AB The superconducting properties of YBa(2)Cu(3)O(7-delta) (YBCO) are strongly dependent on atomic structure and composition. While the average structures of YBCO are well documented, the local oxygen concentration and ordering have received much less attention owing to the difficulty of experiments and analysis. We examined several samples of YBCO by quantitative high-resolution transmission electron microscopy and geometric phase analysis to determine their local atomic structure and symmetry. Our results reveal that adjacent domains separated by the (110) interfaces, commonly considered to be twin domains, can have different a(o)/b(o) ratios. The domains, therefore, do not retain the ideal twinned configuration commonly expected for this system. Assuming the a(o)/b(o) ratio is proportional to oxygen concentration, we suggest that these domains result from inhomogeneous oxygen distribution. Multiple measurements in both bulk and thin-film samples indicate that YBCO can consist of different phases, which may yield locally variable superconducting properties. C1 [Johnson, Craig L.; Bording, Jan K.; Zhu, Yimei] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Johnson, CL (reprint author), CNRS, CEMES, 29 Rue Jeanne Marvig, F-31055 Toulouse, France. NR 47 TC 10 Z9 10 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 1 AR 014517 DI 10.1103/PhysRevB.78.014517 PG 7 WC Physics, Condensed Matter SC Physics GA 333YR UT WOS:000258190000112 ER PT J AU Kagimura, R Suewattana, M Singh, DJ AF Kagimura, R. Suewattana, M. Singh, D. J. TI (Ba,K,La)ZrO(3) as a possible lead-free ferroelectric: Density functional calculations SO PHYSICAL REVIEW B LA English DT Article ID PEROVSKITES; OXIDES AB First-principles supercell calculations are used to investigate the lattice distortions in BaZrO(3) heavily codoped with K and La. We find that nonferroelectric BaZrO(3) can be made ferroelectric in this way. The ferroelectricity is the result of La off-centerings and can be understood using ionic size considerations. In particular, size disorder on the perovskite A site suppresses the tendency toward octahedral tilts with substitution of the small La ion. This results in A-site driven ferroelectricity. C1 [Kagimura, R.; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kagimura, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Suewattana, M.] Mahidol Univ, Dept Phys, Fac Sci, Bangkok 10400, Thailand. RP Kagimura, R (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 NR 28 TC 10 Z9 10 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 1 AR 012103 DI 10.1103/PhysRevB.78.012103 PG 4 WC Physics, Condensed Matter SC Physics GA 333YR UT WOS:000258190000003 ER PT J AU Kent, PRC Saha-Dasgupta, T Jepsen, O Andersen, OK Macridin, A Maier, TA Jarrell, M Schulthess, TC AF Kent, P. R. C. Saha-Dasgupta, T. Jepsen, O. Andersen, O. K. Macridin, A. Maier, T. A. Jarrell, M. Schulthess, T. C. TI Combined density functional and dynamical cluster quantum Monte Carlo calculations of the three-band Hubbard model for hole-doped cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; PARAMETERS; LA2CUO4; SYSTEMS AB Using a combined local density functional theory (DFT-LDA) and quantum Monte Carlo (QMC) dynamic cluster approximation approach, the parameter dependence of the superconducting transition temperature T-c of several single-layer hole-doped cuprate superconductors with experimentally very different T-c max is investigated. The parameters of two different three-band Hubbard models are obtained using the LDA and the downfolding Nth-order muffin-tin orbital technique with N=0 and 1, respectively. QMC calculations on four-site clusters show that the d-wave transition temperature T-c depends sensitively on the parameters. While the N=1 MTO basis set which reproduces all three pd sigma bands leads to a d-wave transition, the N=0 set which merely reproduces the LDA Fermi surface and velocities does not. C1 [Kent, P. R. C.; Maier, T. A.; Schulthess, T. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Saha-Dasgupta, T.] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India. [Jepsen, O.; Andersen, O. K.] Max Planck Inst Festkorperforsch, D-70506 Stuttgart, Germany. [Macridin, A.; Jarrell, M.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. RP Kent, PRC (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RI Kent, Paul/A-6756-2008; Maier, Thomas/F-6759-2012 OI Kent, Paul/0000-0001-5539-4017; Maier, Thomas/0000-0002-1424-9996 NR 29 TC 31 Z9 31 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 3 AR 035132 DI 10.1103/PhysRevB.78.035132 PG 6 WC Physics, Condensed Matter SC Physics GA 333YU UT WOS:000258190300061 ER PT J AU Kim, JS Stewart, GR Bauer, ED AF Kim, J. S. Stewart, G. R. Bauer, E. D. TI Specific heat variation as T(0.5) in Th-doped UIr(2)Zn(20): Consistent with weak coupled quantum critical behavior SO PHYSICAL REVIEW B LA English DT Article ID FERMI-LIQUID BEHAVIOR; METALS AB By partially replacing the U in single crystals of UIr(2)Zn(20) with Th, we have suppressed the 2.1 K ferromagnetic-like transition present in the pure compound. The magnetic susceptibilities of U(1-x)Th(x)Ir(2)Zn(20) show enhanced low-temperature values, with chi (2 K) for x=0.25 around 140 memu/Umole. However, unlike the parent compound, for U(1-x)Th(x)Ir(2)Zn(20) (x >= 0.25) the extrapolation of even the lowest temperature 1/chi vs T data shows an intercept on the negative temperature axis-consistent with antiferromagnetic fluctuations. The specific heat at low temperature in U(0.75)Th(0.25)Ir(2)Zn(20) shows no magnetic transition down to 0.4 K, but rather obeys C/T=gamma-aT(0.5) over more than a decade of temperature, consistent with weak-coupling three-dimensional antiferromagnetic fluctuations. Low temperature resistivity data show an unusual non-Fermi-liquid temperature dependence, where rho=rho(0)+aT(alpha) with alpha < 1. The specific-heat data for U(0.5)Th(0.5)Ir(2)Zn(20) can be fit within the normal Fermi-liquid picture by the addition of a T(3) log T/T(SF) term, where T(SF) is the spin-fluctuation temperature. C1 [Kim, J. S.; Stewart, G. R.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kim, JS (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI Bauer, Eric/D-7212-2011; OI Bauer, Eric/0000-0003-0017-1937 NR 15 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 3 AR 035121 DI 10.1103/PhysRevB.78.035121 PG 4 WC Physics, Condensed Matter SC Physics GA 333YU UT WOS:000258190300050 ER PT J AU Krishnamurthy, VV Adroja, DT Butch, NP Sinha, SK Maple, MB Osborn, R Robertson, JL Nagler, SE Aronson, MC AF Krishnamurthy, V. V. Adroja, D. T. Butch, N. P. Sinha, S. K. Maple, M. B. Osborn, R. Robertson, J. L. Nagler, S. E. Aronson, M. C. TI Magnetic short-range correlations and quantum critical scattering in the non-Fermi liquid regime of URu2-xRexSi2 (x=0.2-0.6) SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTOR URU2SI2; NEUTRON-SCATTERING; PHASE-TRANSITIONS; KONDO DISORDER; CRITICAL POINT; BEHAVIOR; HEAVY; ELECTRON; TEMPERATURE; EXCITATIONS AB The spin dynamics of uranium ions in the non-Fermi liquid compounds URu2-xRexSi2, for x=0.2 to 0.6, have been investigated using inelastic neutron scattering. The wave vector (q) dependence of the magnetic scattering provides evidence of short-range antiferromagnetic correlations at low temperatures for x=0.2,0.25, but the scattering is nearly q independent at x=0.35,0.6. The magnetic response, S(omega), obtained from the q-independent part of neutron scattering, varies as omega(-alpha) with a composition-dependent exponent alpha=0.2-0.5. The dynamic magnetic susceptibility chi(')(q,omega) of the q-independent part exhibits omega/T scaling for the energy transfer h omega between 3.5 and 17 meV in the temperature (T) range of 5-300 K at all the compositions. This scaling, which indicates local quantum criticality, breaks down in the q range, 0.6-1.1 A(-1) at x=0.2 and 0.25, that is dominated by short-range antiferromagnetic correlations. The appearance of power laws in the magnetic response measured by inelastic neutron scattering over a wide Re doping region indicates a disorder driven non-Fermi liquid mechanism for the low-temperature physical properties in these compounds. C1 [Krishnamurthy, V. V.; Robertson, J. L.; Nagler, S. E.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Adroja, D. T.] Rutherford Appleton Lab, ISIS Pulsed Neutron Facil, Didcot OX11 0QX, Oxon, England. [Butch, N. P.; Sinha, S. K.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Butch, N. P.; Sinha, S. K.; Maple, M. B.] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA. [Osborn, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aronson, M. C.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Krishnamurthy, VV (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Osborn, Raymond/E-8676-2011 OI Nagler, Stephen/0000-0002-7234-2339; Osborn, Raymond/0000-0001-9565-3140 NR 45 TC 7 Z9 7 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 2 AR 024413 DI 10.1103/PhysRevB.78.024413 PG 8 WC Physics, Condensed Matter SC Physics GA 333YT UT WOS:000258190200072 ER PT J AU Li, SL Chi, SX Zhao, J Wen, HH Stone, MB Lynn, JW Dai, PC AF Li, Shiliang Chi, Songxue Zhao, Jun Wen, H. -H. Stone, M. B. Lynn, J. W. Dai, Pengcheng TI Impact of oxygen annealing on the heat capacity and magnetic resonance of superconducting Pr(0.88)LaCe(0.12)CuO(4-delta) SO PHYSICAL REVIEW B LA English DT Article ID SPIN CORRELATIONS; CRITICAL-FIELD; COPPER OXIDES; ELECTRON; TEMPERATURE; TRANSITION; DEPENDENCE; TRANSPORT; SYSTEMS; STATE AB We use thermodynamic and neutron-scattering measurements to study the effect of oxygen annealing on the superconductivity and magnetism in Pr(0.88)LaCe(0.12)CuO(4-delta). Although the transition temperature T(c) measured by susceptibility and superconducting coherence length increases smoothly with gradual oxygen removal from the annealing process, bulk superconductivity, marked by a specific-heat anomaly at T(c) and the presence of a neutron magnetic resonance, only appears abruptly when T(c) is close to the largest value. These results suggest that the effect of oxygen annealing must first be determined in order to establish a Ce doping dependence of antiferromagnetism and superconductivity phase diagram for electron-doped copper oxides. C1 [Li, Shiliang; Chi, Songxue; Zhao, Jun; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Wen, H. -H.] Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China. [Wen, H. -H.] Chinese Acad Sci, Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Stone, M. B.; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Lynn, J. W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Zhao, Jun/A-2492-2010; Stone, Matthew/G-3275-2011; Dai, Pengcheng /C-9171-2012; Chi, Songxue/A-6713-2013 OI Zhao, Jun/0000-0002-0421-8934; Stone, Matthew/0000-0001-7884-9715; Dai, Pengcheng /0000-0002-6088-3170; Chi, Songxue/0000-0002-3851-9153 NR 34 TC 13 Z9 13 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 1 AR 014520 DI 10.1103/PhysRevB.78.014520 PG 5 WC Physics, Condensed Matter SC Physics GA 333YR UT WOS:000258190000115 ER PT J AU Lorenz, B Sasmal, K Chaudhury, RP Chen, XH Liu, RH Wu, T Chu, CW AF Lorenz, B. Sasmal, K. Chaudhury, R. P. Chen, X. H. Liu, R. H. Wu, T. Chu, C. W. TI Effect of pressure on the superconducting and spin-density-wave states of SmFeAsO(1-x)F(x) SO PHYSICAL REVIEW B LA English DT Article ID LAYERED SUPERCONDUCTOR; COMPOUND SYSTEM; CRYSTAL AB High-temperature superconductors with a T(c) above 40 K have been found to be strongly correlated electron systems and to have a layered structure. Guided by these rules, Kamihara [J. Am. Chem. Soc. 130, 3296 (2008)] discovered a T(c) up to 26 K in the layered La(O(1-x)F(x))FeAs. By replacing La with trivalence rare-earth (RE) elements of smaller ionic radii, T(c) has subsequently been raised to 41-52 K. Many theoretical models have been proposed that emphasize the important magnetic origin of superconductivity in this compound system and a possible further T(c) enhancement in RE(O(1-x)F(x))FeAs by compression. This later prediction appears to be supported by the pressure-induced T(c) increase in La(O(0.89)F(0.11))FeAs observed. Here we show that, in contrast to previous expectations, pressure can either suppress or enhance T(c), depending on the doping level, suggesting that a T(c) exceeding 50 K may be found only in the yet-to-be discovered compound systems related to but different from RE(O(1-x)F(x))FeAs and that the T(c) of La(O(1-x)F(x))FeAs and Sm(O(1-x)F(x))FeAs may be further raised to about 50 K. C1 [Lorenz, B.; Sasmal, K.; Chaudhury, R. P.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Lorenz, B.; Sasmal, K.; Chaudhury, R. P.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Chen, X. H.; Liu, R. H.; Wu, T.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Chen, X. H.; Liu, R. H.; Wu, T.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Lorenz, B (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA. RI Liu, Ronghua/A-9790-2013 OI Liu, Ronghua/0000-0002-4053-3923 NR 26 TC 63 Z9 66 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 1 AR 012505 DI 10.1103/PhysRevB.78.012505 PG 4 WC Physics, Condensed Matter SC Physics GA 333YR UT WOS:000258190000030 ER PT J AU Luo, JW Franceschetti, A Zunger, A AF Luo, Jun-Wei Franceschetti, Alberto Zunger, Alex TI Quantum-size-induced electronic transitions in quantum dots: Indirect band-gap GaAs SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; CONFINEMENT; EMISSION; GAIN AB We discuss the physical origin of the previously predicted quantum-size-induced electronic transitions in spherical GaAs quantum dots. By using atomistic pseudopotential calculations for freestanding GaAs dots and for GaAs dots embedded in an AlGaAs matrix, we are able to distinguish two types of direct/indirect transitions: (i) in freestanding GaAs dots, the conduction-band minimum changes from Gamma-like to X-like as the radius of the dot is reduced below 1.6 nm, leading to a direct/indirect transition in reciprocal space. (ii) In GaAs dots embedded in AlAs, the conduction-band minimum changes from dot localized to barrier localized as the radius of the dot is reduced below 4.2 nm, corresponding to a direct-to-indirect transition in real space. C1 [Luo, Jun-Wei; Franceschetti, Alberto; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zunger, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex_zunger@nrel.gov RI LUO, JUN-WEI/A-8491-2010; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013 NR 34 TC 22 Z9 22 U1 4 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 3 AR 035306 DI 10.1103/PhysRevB.78.035306 PG 8 WC Physics, Condensed Matter SC Physics GA 333YU UT WOS:000258190300082 ER PT J AU Maier, S Gnecco, E Baratoff, A Bennewitz, R Meyer, E AF Maier, S. Gnecco, E. Baratoff, A. Bennewitz, R. Meyer, E. TI Atomic-scale friction modulated by a buried interface: Combined atomic and friction force microscopy experiments SO PHYSICAL REVIEW B LA English DT Article ID ULTRAHIGH-VACUUM; SURFACE; RESOLUTION; DEPENDENCE AB Combined atomic and friction force microscopy reveals a significant modulation of atomic-scale friction related to the small periodic rumpling induced at the interface between heteroepitaxial films of KBr on NaCl(100). Transitions from dissipative atomic-scale stick slip to smooth sliding with ultralow friction are observed within the 6x6 surface unit cell of the underlying superstructure. Scanning across atomic-scale defects confirms the high-resolution capabilities of friction force microscopy close to the ultralow friction state. Strong variations of the tip-surface interaction energy across the superstructure demonstrate that subsurface chemical and size inhomogeneities dramatically change the frictional properties of the surface probed by the microscope tip. C1 [Maier, S.; Gnecco, E.; Baratoff, A.; Meyer, E.] Univ Basel, Dept Phys & Astron, CH-4056 Basel, Switzerland. [Bennewitz, R.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RP Maier, S (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM sbmaier@lbl.gov RI Gnecco, Enrico/H-5419-2013; Maier, Sabine/B-5917-2008; Meyer, Ernst/L-3873-2016; Bennewitz, Roland/P-9657-2016 OI Maier, Sabine/0000-0001-9589-6855; Meyer, Ernst/0000-0001-6385-3412; Bennewitz, Roland/0000-0002-5464-8190 NR 25 TC 28 Z9 28 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 4 AR 045432 DI 10.1103/PhysRevB.78.045432 PG 5 WC Physics, Condensed Matter SC Physics GA 333YV UT WOS:000258190400112 ER PT J AU Maier, TA Scalapino, DJ AF Maier, T. A. Scalapino, D. J. TI Theory of neutron scattering as a probe of the superconducting gap in the iron pnictides SO PHYSICAL REVIEW B LA English DT Article AB Inelastic neutron scattering provides a probe for studying the spin and momentum structure of the superconducting gap. Here, using a two-orbital model for the Fe-pnictide superconductors and a random-phase approximation-BCS approximation for the dynamic spin susceptibility, we explore the scattering response for various gaps that have been proposed. C1 [Maier, T. A.] Oak Ridge Natl Lab, Cr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Maier, T. A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Maier, TA (reprint author), Oak Ridge Natl Lab, Cr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM maierta@ornl.gov; djs@physics.ucsb.edu RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 16 TC 146 Z9 146 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 2 AR 020514 DI 10.1103/PhysRevB.78.020514 PG 4 WC Physics, Condensed Matter SC Physics GA 333YT UT WOS:000258190200027 ER PT J AU Malone, BD Sau, JD Cohen, ML AF Malone, Brad D. Sau, Jay D. Cohen, Marvin L. TI Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon SO PHYSICAL REVIEW B LA English DT Article ID HIGH-DENSITY PHASES; BAND-GAPS; COVALENT SEMICONDUCTORS; PRESSURE; GE; SI; GERMANIUM; 1ST-PRINCIPLES; TRANSITIONS; STABILITY AB We present an ab initio study of the electronic structure of a number of high-pressure metastable phases of silicon with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, namely, the BC8 (Si III), hexagonal diamond (Si IV), and R8 (Si XII) phases. In addition to these we have also studied the hypothetical ST12 structure that is found upon decompression from beta-Sn in germanium. We find that the local-density approximation incorrectly predicts the R8 phase to be semimetallic and that the quasiparticle spectrum exhibits a band gap. The effective masses found in R8 suggest that R8 may be useful for high-mobility applications. In addition, the ST12 phase is found to have a large density of electronic states at the band edge which could lead to interesting superconducting behavior. C1 [Malone, Brad D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Malone, BD (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. NR 38 TC 62 Z9 62 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 3 AR 035210 DI 10.1103/PhysRevB.78.035210 PG 7 WC Physics, Condensed Matter SC Physics GA 333YU UT WOS:000258190300075 ER PT J AU Mangin, S Hauet, T Fischer, P Kim, DH Kortright, JB Chesnel, K Arenholz, E Fullerton, EE AF Mangin, S. Hauet, T. Fischer, P. Kim, D. H. Kortright, J. B. Chesnel, K. Arenholz, E. Fullerton, Eric E. TI Influence of interface exchange coupling in perpendicular anisotropy [Pt/Co](50)/TbFe bilayers SO PHYSICAL REVIEW B LA English DT Article ID X-RAY MICROSCOPY; MAGNETIC-PROPERTIES; PHASE-DIAGRAM; FILMS AB We present the magnetization evolution of perpendicular anisotropy TbFe and [Co/Pt](50) thin films either in direct contact resulting in antiferromagnetic interfacial coupling or separated by a thick decoupling Pt layer. Magnetometry and x-ray magnetic circular dichroism spectroscopy determine the spatially averaged magnetic properties. Resonant magnetic x-ray small-angle scattering and magnetic soft x-ray transmission microscopy probed the domain configurations and correlations in the reversal processes. While the Co/Pt multilayer reverses by domain propagation, the TbFe magnetization reversal was dominated either by coherent magnetization reversal processes or by lateral domain formation depending on the interface exchange coupling. In the presence of lateral domains, dipolar field induced domain replication phenomena were observed. C1 [Mangin, S.; Hauet, T.] Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95120 USA. [Mangin, S.; Hauet, T.] Nancy Univ, Phys Mat Lab, F-54506 Nancy, France. [Fischer, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Kim, D. H.] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [Kortright, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chesnel, K.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Fullerton, Eric E.] Univ Calif San Diego, Ctr Magnet Recording Res, La Jolla, CA 92093 USA. RP Mangin, S (reprint author), Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95120 USA. RI Fischer, Peter/A-3020-2010; Kim, Dong-Hyun/F-7195-2012; MSD, Nanomag/F-6438-2012; Fullerton, Eric/H-8445-2013; OI Fischer, Peter/0000-0002-9824-9343; Fullerton, Eric/0000-0002-4725-9509; Mangin, stephane/0000-0001-6046-0437 NR 30 TC 13 Z9 13 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 2 AR 024424 DI 10.1103/PhysRevB.78.024424 PG 6 WC Physics, Condensed Matter SC Physics GA 333YT UT WOS:000258190200083 ER PT J AU Manley, ME Trouw, F Teter, D Hehlen, MP Papin, PA Thoma, DJ Hults, WL AF Manley, M. E. Trouw, F. Teter, D. Hehlen, M. P. Papin, P. A. Thoma, D. J. Hults, W. L. TI Phonon-confinement entropy and the formation of CeH(2.84) nanoplates by fracture SO PHYSICAL REVIEW B LA English DT Article ID NANOSTRUCTURES; MICROCRYSTALS; DYNAMICS; SYSTEMS AB Particles formed during the reaction of cerium with hydrogen fractured into stacked plates with fully separated plate thicknesses averaging 100 nm and a finer partially separated thickness of 30 nm. The phonon density of states of these particles, measured using inelastic neutron scattering, showed a low-energy feature that could not be accounted for in the phonon-dispersion curves of bulk crystals but was similar to a feature predicted for the confinement of phonons in nanoplates. The shift of modes to lower energies indicates that excess vibrational entropy is created by the fracture. We argue that this excess entropy contributes to the observed fracture pattern by introducing a characteristically weak size for fracture. C1 [Manley, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Trouw, F.; Teter, D.; Hehlen, M. P.; Papin, P. A.; Thoma, D. J.; Hults, W. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Manley, ME (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Lujan Center, LANL/G-4896-2012; Manley, Michael/N-4334-2015 NR 27 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2008 VL 78 IS 2 AR 020101 DI 10.1103/PhysRevB.78.020101 PG 4 WC Physics, Condensed Matter SC Physics GA 333YT UT WOS:000258190200001 ER PT J AU Melikyan, A Vafek, O AF Melikyan, Ashot Vafek, Oskar TI Quantum oscillations in the mixed state of d-wave superconductors SO PHYSICAL REVIEW B LA English DT Article ID QUASI-PARTICLE SPECTRUM; VORTEX-LIQUID AB We show that the low-energy density of quasiparticle states in the mixed state of ultraclean d(x)(2)-y(2)-wave superconductors exhibits quantum oscillations even in the regime where the cyclotron frequency h omega(c)249Cf to the Office of Basic Energy Sciences, U. S. Department of Energy, through the transplutonium element production facilities at Oak Ridge National Laboratory. This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 40 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 014301 DI 10.1103/PhysRevC.78.014301 PG 9 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200017 ER PT J AU McCutchan, EA Casten, RF Werner, V Winkler, R Cakirli, RB Gurdal, G Liang, X Williams, E AF McCutchan, E. A. Casten, R. F. Werner, V. Winkler, R. Cakirli, R. B. Gurdal, G. Liang, X. Williams, E. TI beta decay spectroscopy of (192)Pt and the nature of 0(+) excitations SO PHYSICAL REVIEW C LA English DT Article ID INTRUDER STATES; SHAPE COEXISTENCE; NUCLEI; ISOTOPES; REGION; MODEL AB Excited states in (192)Pt were populated in beta(+)/epsilon decay and studied through off-beam gamma-ray spectroscopy. New coincidence data give no support for several reported low-energy, low-spin states proposed in beta decay and lead to a substantially revised level scheme. The structure of (192)Pt is discussed in terms of both single-space IBA-1 calculations and two-space IBA calculations with configuration mixing. Both models together suggest that it is the perhaps the 0(4)(+) state that corresponds to an intruder excitation, resulting from the excitation of a pair of protons across the Z=82 closed shell. C1 [McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [McCutchan, E. A.; Casten, R. F.; Werner, V.; Winkler, R.; Cakirli, R. B.; Gurdal, G.; Liang, X.; Williams, E.] Yale Univ, WNSL, New Haven, CT 06520 USA. [Cakirli, R. B.] Istanbul Univ, Dept Phys, Istanbul, Turkey. [Gurdal, G.] Clark Univ, Worcester, MA 01610 USA. [Liang, X.] Univ Paisley, Paisley PA1 2BE, Renfrew, Scotland. RP McCutchan, EA (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Werner, Volker/C-1181-2017 OI Werner, Volker/0000-0003-4001-0150 FU U. S. DOE [DE-FG02-91ER-40609, DE-FG02-88ER-40417]; DOE Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by U. S. DOE Grant Nos. DE-FG02-91ER-40609 and DE-FG02-88ER-40417 and by the DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357. NR 27 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 014320 DI 10.1103/PhysRevC.78.014320 PG 19 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200036 ER PT J AU Prakhov, S Nefkens, BMK Allgower, CE Bekrenev, V Briscoe, WJ Comfort, JR Craig, K Grosnick, D Isenhower, D Knecht, N Koetke, D Koulbardis, A Kozlenko, N Kruglov, S Lolos, G Lopatin, I Manley, DM Manweiler, R Marusic, A McDonald, S Olmsted, J Papandreou, Z Peaslee, D Phaisangittisakul, N Price, JW Ramirez, AF Sadler, M Shafi, A Spinka, H Stanislaus, TDS Starostin, A Staudenmaier, HM Supek, I AF Prakhov, S. Nefkens, B. M. K. Allgower, C. E. Bekrenev, V. Briscoe, W. J. Comfort, J. R. Craig, K. Grosnick, D. Isenhower, D. Knecht, N. Koetke, D. Koulbardis, A. Kozlenko, N. Kruglov, S. Lolos, G. Lopatin, I. Manley, D. M. Manweiler, R. Marusic, A. McDonald, S. Olmsted, J. Papandreou, Z. Peaslee, D. Phaisangittisakul, N. Price, J. W. Ramirez, A. F. Sadler, M. Shafi, A. Spinka, H. Stanislaus, T. D. S. Starostin, A. Staudenmaier, H. M. Supek, I. CA Crystal Ball Collaboration AGS TI Measurement of the invariant-mass spectrum for the two photons from the eta ->pi(0)gamma gamma decay SO PHYSICAL REVIEW C LA English DT Article ID CHIRAL PERTURBATION-THEORY; ETA-MESON; SLOPE PARAMETER; BRANCHING RATIO; ETA->PI-0-GAMMA-GAMMA; ETA->PI(0)GAMMA-GAMMA; QUARK AB New results on the rare, doubly radiative decay eta ->pi(0)gamma gamma have been obtained from a revised analysis of the Crystal Ball experiment performed at the AGS. The analysis yields the first information on the dependence of the decay width, Gamma(eta ->pi(0)gamma gamma), on the two-photon invariant mass squared, m(2)(gamma gamma). A re-evaluation of the branching ratio is also made, BR(eta ->pi(0)gamma gamma)=(2.21 +/- 0.24(stat)+/- 0.47(syst))x10(-4); it implies that the decay width is Gamma(eta ->pi(0)gamma gamma)=0.285 +/- 0.031(stat)+/- 0.061(syst) eV. These results are close to predictions based on chiral perturbation theory with vector-meson dominance. C1 [Prakhov, S.; Nefkens, B. M. K.; Marusic, A.; McDonald, S.; Olmsted, J.; Phaisangittisakul, N.; Price, J. W.; Starostin, A.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Allgower, C. E.; Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bekrenev, V.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Lopatin, I.] Petersburg Nucl Phys Inst, RU-188350 Gatchina, Russia. [Briscoe, W. J.; Shafi, A.] George Washington Univ, Washington, DC 20052 USA. [Comfort, J. R.; Craig, K.; Ramirez, A. F.] Arizona State Univ, Tempe, AZ 85287 USA. [Grosnick, D.; Koetke, D.; Manweiler, R.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Isenhower, D.] Abilene Christian Univ, Abilene, TX 79699 USA. [Knecht, N.; Lolos, G.; Papandreou, Z.] Univ Regina, Regina, SK S4S 0A2, Canada. [Manley, D. M.] Kent State Univ, Kent, OH 44242 USA. [Peaslee, D.] Univ Maryland, College Pk, MD 20742 USA. [Staudenmaier, H. M.] Univ Karlsruhe, D-76128 Karlsruhe, Germany. [Supek, I.] Rudjer Boskovic Inst, Zagreb 10002, Croatia. RP Prakhov, S (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RI Marusic, Ana/E-7683-2013 OI Marusic, Ana/0000-0001-6272-0917 FU U. S., NSERC of Canada; Russian Ministry of Industry, Science and Technologies; Russian Foundation for Basic Research FX This work was supported in part by DOE and NSF of the U. S., NSERC of Canada, the Russian Ministry of Industry, Science and Technologies, and the Russian Foundation for Basic Research. We thank SLAC for the loan of the Crystal Ball. The assistance of BNL and AGS with the setup is much appreciated. NR 23 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 015206 DI 10.1103/PhysRevC.78.015206 PG 10 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200059 ER PT J AU Schiavilla, R Viviani, M Girlanda, L Kievsky, A Marcucci, LE AF Schiavilla, R. Viviani, M. Girlanda, L. Kievsky, A. Marcucci, L. E. TI Neutron spin rotation in (n)over-right-arrow-d scattering SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR PARITY-VIOLATION; SYSTEMS AB The neutron spin rotation induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in (n) over right arrow -d scattering at zero energy. Results are obtained corresponding to the Argonne v(18) two-nucleon and Urbana-IX three-nucleon strong-interaction potentials in combination with either the Desplanques-Donoghue-Holstein or pionless effective field theory models for the weak-interaction potential. We find that this observable is dominated by the contribution of the long-range part of the PV potential associated with pion exchange. Thus its measurement could provide a further constraint, complementary to that coming from measurements of the photon asymmetry in (n) over right arrow -p radiative capture, on the strength of this component of the hadronic weak interaction. C1 [Schiavilla, R.] Jefferson Lab, Newport News, VA 23606 USA. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Viviani, M.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Viviani, M.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. RP Schiavilla, R (reprint author), Jefferson Lab, Newport News, VA 23606 USA. RI kievsky, alejandro/A-7123-2011 NR 17 TC 24 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 014002 DI 10.1103/PhysRevC.78.014002 PG 8 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200011 ER PT J AU Summers, NC Nunes, FM AF Summers, N. C. Nunes, F. M. TI Extracting (n,gamma) direct capture cross sections from Coulomb dissociation: Application to (14)C(n,gamma)(15)C SO PHYSICAL REVIEW C LA English DT Article ID HALO NUCLEI; BREAKUP; NUCLEOSYNTHESIS; PHYSICS; C-14(N AB A methodology for extracting neutron direct capture rates from Coulomb dissociation data is developed and applied to the Coulomb dissociation of (15)C on (208)Pb at 68 MeV/nucleon. Full continuum discretized coupled channel calculations are performed and an asymptotic normalization coefficient is determined from a fit to the breakup data. Direct neutron capture calculations using the extracted asymptotic normalization coefficient provide (n,gamma) cross sections consistent with direct measurements. Our results show that the Coulomb dissociation data can be reliably used for extracting the cross section for (14)C(n,gamma)(15)C if the appropriate reaction theory is used. The resulting error bars are of magnitude comparable to those from the direct measurement. This procedure can be used more generally to extract capture cross sections from breakup reactions whenever the desired capture process is fully peripheral. C1 [Summers, N. C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Summers, N. C.; Nunes, F. M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Nunes, F. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Summers, NC (reprint author), Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. FU Joint Institute for Nuclear Astrophysics at Michigan State University; N. S. F. [PHY0216783]; National Science Foundation [PHY-0555893]; D.O.E [DE-FG52-03NA00143]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We acknowledge valuable discussions with M. Heil and R. Cyburt, and we acknowledge T. Nakamura for providing the RIKEN Coulomb dissociation data. This work was partially supported by the Joint Institute for Nuclear Astrophysics at Michigan State University (N. S. F. Grant PHY0216783), by National Science Foundation Grant PHY-0555893, and by D.O.E Grant DE-FG52-03NA00143 and was in part performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 28 TC 27 Z9 27 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 011601 DI 10.1103/PhysRevC.78.011601 PG 5 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200004 ER PT J AU Teal, C Lagergren, K Aguilar, A Hartley, DJ Riley, MA Simpson, J Carpenter, MP Garg, U Janssens, RVF Joss, DT Kondev, FG Lauritsen, T Lister, CJ Wang, X Zhu, S Ragnarsson, I AF Teal, C. Lagergren, K. Aguilar, A. Hartley, D. J. Riley, M. A. Simpson, J. Carpenter, M. P. Garg, U. Janssens, R. V. F. Joss, D. T. Kondev, F. G. Lauritsen, T. Lister, C. J. Wang, X. Zhu, S. Ragnarsson, I. TI Triaxial strongly deformed bands in (160,161)Tm SO PHYSICAL REVIEW C LA English DT Article AB High-spin states in (160,161)Tm were populated using the (128)Te((37)Cl, 5n and 4n) reactions at a beam energy of 170 MeV. Emitted gamma rays were detected in the Gammasphere spectrometer. Two rotational bands with high moments of inertia were discovered, one assigned to (160)Tm, while the other tentatively assigned to (161)Tm. These sequences display features similar to bands observed in neighboring Er, Tm, Yb, and Lu nuclei which have been discussed in terms of triaxial strongly deformed structures. Cranked Nilsson Strutinsky calculations have been performed that predict well-deformed triaxial shapes at high spin in (160,161)Tm. C1 [Teal, C.; Lagergren, K.; Aguilar, A.; Riley, M. A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Simpson, J.; Joss, D. T.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Wang, X.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Garg, U.; Wang, X.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden. RP Teal, C (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU National Science Foundation [PHY-0456463, PHY-0554762]; State of Florida, the U. S. Department of Energy [DE-AC02-06CH11357]; United Kingdom Engineering and Physical Sciences Research Council; Swedish Science Research Council FX This work was supported by the National Science Foundation under grants PHY-0456463 and PHY-0554762, the State of Florida, the U. S. Department of Energy under contract DE-AC02-06CH11357, the United Kingdom Engineering and Physical Sciences Research Council, and the Swedish Science Research Council. NR 13 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 017305 DI 10.1103/PhysRevC.78.017305 PG 4 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200077 ER PT J AU Wang, JG Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Li, K Luo, YX Rasmussen, JO Lee, IY Ding, HB Xu, Q Gu, L Liu, SH Goodin, CT Ma, WC AF Wang, J. G. Zhu, S. J. Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Li, K. Luo, Y. X. Rasmussen, J. O. Lee, I. Y. Ding, H. B. Xu, Q. Gu, L. Liu, S. H. Goodin, C. T. Ma, W. C. TI First identification of a collective band in the odd-odd (104)Nb nucleus SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH; OCTUPOLE CORRELATIONS; ROTATIONAL BANDS AB The higher spin levels in neutron-rich (104)Nb have been investigated from a study of the prompt gamma rays in spontaneous fission of (252)Cf with the Gammasphere detector array. A new collective band has been identified for the first time. This band is proposed as a semidecoupled band based on the configuration pi 5/2(-)[303]circle times nu 1/2(-)[541]. The other structural characteristics are discussed. C1 [Wang, J. G.; Zhu, S. J.; Ding, H. B.; Xu, Q.; Gu, L.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu, S. J.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Li, K.; Luo, Y. X.; Liu, S. H.; Goodin, C. T.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Zhu, S. J.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ma, W. C.] Mississippi State Univ, Mississippi State, MS 39762 USA. RP Zhu, SJ (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn FU National Natural Science Foundation of China [10575057, 10775078]; Major State Basic Research Development Program [2007CB815005]; Higher Education Science Foundation [20070003149]; U. S. Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098] FX The work at Tsinghua University was supported by the National Natural Science Foundation of China under Grant Nos. 10575057 and 10775078, the Major State Basic Research Development Program under Grant No. 2007CB815005, and the Special Program of Higher Education Science Foundation under Grant No. 20070003149, respectively. The work at Vanderbilt University and Lawrence Berkeley National Laboratory was supported by the U. S. Department of Energy under, respectively, Grant and Contract Nos. DE-FG05-88ER40407 and DE-AC03-76SF00098. NR 23 TC 4 Z9 8 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 014313 DI 10.1103/PhysRevC.78.014313 PG 5 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200029 ER PT J AU Wood, MH Nasseripour, R Weygand, DP Djalali, C Tur, C Mosel, U Muehlich, P Adams, G Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Battaglieri, M Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Biselli, AS Blaszczyk, L Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Carnahan, B Casey, L Chen, S Cheng, L Cole, PL Collins, P Coltharp, P Crabb, D Crannell, H Crede, V Cummings, JP Dashyan, N De Vita, R De Sanctis, E Degtyarenko, PV Denizli, H Dennis, L Deur, A Dharmawardane, KV Dickson, R Dodge, GE Doughty, D Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Feldman, G Feuerbach, RJ Fradi, A Funsten, H On, MG Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gordon, CIO Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hakobyan, RS Hanretty, C Hardie, J Hassall, N Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kalantarians, N Kellie, JD Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Klimenko, AV Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Lachniet, J Laget, JM Langheinrich, J Lawrence, D Li, J Livingston, K Lu, HY MacCormick, M Markov, N Mattione, P McAleer, S McKinnon, B McNabb, JWC Mecking, BA Mehrabyan, S Melone, JJ Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mokeev, V Moriya, K Morrow, SA Moteabbed, M Mueller, J Munevar, E Mutchler, GS Nadel-Turonski, P Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pereira, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Sabatie, F Salamanca, J Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shvedunov, NV Smith, ES Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, S Stepanyan, SS Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Tkabladze, A Tkachenko, S Todor, L Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Williams, M Wolin, E Yegneswaran, A Zana, L Zhang, B Zhang, J Zhao, B Zhao, ZW AF Wood, M. H. Nasseripour, R. Weygand, D. P. Djalali, C. Tur, C. Mosel, U. Muehlich, P. Adams, G. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Barrow, S. Battaglieri, M. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Blaszczyk, L. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Carnahan, B. Casey, L. Chen, S. Cheng, L. Cole, P. L. Collins, P. Coltharp, P. Crabb, D. Crannell, H. Crede, V. Cummings, J. P. Dashyan, N. De Vita, R. De Sanctis, E. Degtyarenko, P. V. Denizli, H. Dennis, L. Deur, A. Dharmawardane, K. V. Dickson, R. Dodge, G. E. Doughty, D. Dugger, M. Dytman, S. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Feldman, G. Feuerbach, R. J. Fradi, A. Funsten, H. On, M. Garc Gavalian, G. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gordon, C. I. O. Gothe, R. W. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hakobyan, R. S. Hanretty, C. Hardie, J. Hassall, N. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kalantarians, N. Kellie, J. D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Li, Ji Livingston, K. Lu, H. Y. MacCormick, M. Markov, N. Mattione, P. McAleer, S. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mehrabyan, S. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Minehart, R. Mirazita, M. Miskimen, R. Mokeev, V. Moriya, K. Morrow, S. A. Moteabbed, M. Mueller, J. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Pozdniakov, S. Preedom, B. M. Price, J. W. Prok, Y. Protopopescu, D. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Ronchetti, F. Rosner, G. Rossi, P. Sabatie, F. Salamanca, J. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shvedunov, N. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. Stepanyan, S. S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkabladze, A. Tkachenko, S. Todor, L. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Williams, M. Wolin, E. Yegneswaran, A. Zana, L. Zhang, B. Zhang, J. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Light vector mesons in the nuclear medium SO PHYSICAL REVIEW C LA English DT Article ID QCD SUM-RULES; RHO-MESON; SPECTRAL-FUNCTION; AU COLLISIONS; OMEGA-MESONS; MATTER; CLAS; ENHANCEMENT; SYSTEM; CEBAF AB The light vector mesons (rho,omega, and phi) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the rho meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to e(+)e(-). The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The rho-meson mass spectrum was extracted after the omega and phi signals were removed in a nearly model-independent way. Comparisons were made between the rho mass spectra from the heavy targets (A > 2) with the mass spectrum extracted from the deuterium target. With respect to the rho-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional broadening and Fermi motion. C1 [Weygand, D. P.; Djalali, C.; Tur, C.; Baltzell, N. A.; Dzyubak, O. P.; Gothe, R. W.; Langheinrich, J.; Lu, H. Y.; Park, K.; Preedom, B. M.; Tedeschi, D. J.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Weygand, D. P.; Avakian, H.; Boiarinov, S.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Elouadrhiri, L.; Guo, L.; Hardie, J.; Ito, M. M.; Kramer, L. H.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Niczyporuk, B. B.; Nozar, M.; Raue, B. A.; Santoro, J. P.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Mosel, U.; Muehlich, P.] Univ Giessen, D-35392 Giessen, Germany. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Biselli, A. S.; Bradford, R.; Dickson, R.; Feuerbach, R. J.; Krahn, Z.; Kuhn, J.; Lachniet, J.; McNabb, J. W. C.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Carnahan, B.; Casey, L.; Cheng, L.; Crannell, H.; Hakobyan, R. S.; Klein, F. J.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [On, M. Garc; Girod, F. X.; Laget, J. M.; Morrow, S. A.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Hardie, J.] Christopher Newport Univ, Newport News, VA 23606 USA. [Joo, K.; Markov, N.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Ambrozewicz, P.; Moteabbed, M.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Barrow, S.; Blaszczyk, L.; Chen, S.; Coltharp, P.; Crede, V.; Dennis, L.; Eugenio, P.; Hanretty, C.; McAleer, S.; Ostrovidov, A. I.; Riccardi, G.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Nasseripour, R.; Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Feldman, G.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Strakovsky, I. I.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Gordon, C. I. O.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Melone, J. J.; Paterson, C.; Protopopescu, D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bouchigny, S.; Fradi, A.; Guidal, M.; Hadjidakis, C.; MacCormick, M.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Prok, Y.; Zhang, B.] MIT, Cambridge, MA 02139 USA. [Lawrence, D.; Miskimen, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Fedotov, G.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Osipenko, M.; Sharov, D.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, RU-119899 Moscow, Russia. [Calarco, J. R.; Egiyan, H.; Gavalian, G.; Hersman, F. W.; Holtrop, M.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Bektasoglu, M.; Hicks, K.; Hleiqawi, I.; Mibe, T.; Niculescu, G.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Kalantarians, N.; Klein, A.; Klimenko, A. V.; Kuhn, S. E.; Lachniet, J.; Niroula, M. R.; Niyazov, R. A.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Denizli, H.; Dytman, S.; Mehrabyan, S.; Mueller, J.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Adams, G.; Biselli, A. S.; Cummings, J. P.; Khetarpal, P.; Kubarovsky, V.; Li, Ji; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Mattione, P.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA. [Gilfoyle, G. P.; Todor, L.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Jenkins, D.; Santoro, J. P.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Crabb, D.; Minehart, R.; Pierce, J.; Pocanic, D.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Baillie, N.; Butuceanu, C.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Asryan, G.; Bagdasaryan, H.; Dashyan, N.; Egiyan, K. S.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Wood, MH (reprint author), Univ S Carolina, Columbia, SC 29208 USA. RI Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Mosel, Ulrich/E-2565-2012 OI Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Mosel, Ulrich/0000-0002-1826-0797; Sapunenko, Vladimir/0000-0003-1877-9043; Hyde, Charles/0000-0001-7282-8120; Bellis, Matthew/0000-0002-6353-6043; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Ireland, David/0000-0001-7713-7011; FU U. S. Department of Energy; National Science Foundation; Research Corporation; Italian Istituto Nazionale de Fisica Nucleare; French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique; Korea Research Foundation; U. K. Engineering and Physical Science Research Council; Deutsche Forschungsgemeinschaft FX We thank the staff of the Accelerator and Physics Divisions at Jefferson Laboratory who made this experiment possible. The authors also appreciate the theoretical support provided by A. Afanasev, J. Weil, and O. Buss. This work was supported in part by the U. S. Department of Energy, the National Science Foundation, the Research Corporation, the Italian Istituto Nazionale de Fisica Nucleare, the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, the Korea Research Foundation, the U. K. Engineering and Physical Science Research Council, and Deutsche Forschungsgemeinschaft. NR 62 TC 47 Z9 47 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 015201 DI 10.1103/PhysRevC.78.015201 PG 15 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200054 ER PT J AU Yu, LL Zhang, WN Wong, CY AF Yu, Li-Li Zhang, Wei-Ning Wong, Cheuk-Yin TI Hanbury-Brown-Twiss interferometry with quantum transport of the interfering pair SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; HARTREE-FOCK APPROXIMATION; PLUS PB COLLISIONS; PION INTERFEROMETRY; NUCLEAR FLUID; INTENSITY INTERFEROMETRY; MULTIPLE-SCATTERING; COLLECTIVE FLOW; DYNAMICS; HYDRODYNAMICS AB In the late stage of the evolution of a pion system in high-energy heavy-ion collisions when pions undergo multiple scatterings, the quantum transport of the interfering pair of identical pions plays an important role in determining the characteristics of the Hanbury-Brown-Twiss (HBT) interference. We study the quantum transport of the interfering pair using the path-integral method, in which the evolution of the bulk matter is described by relativistic hydrodynamics while the paths of the two interfering pions by test particles following the fluid positions and velocity fields. We investigate in addition the effects of secondary pion sources from particle decays, for nuclear collisions at AGS and RHIC energies. We find that quantum transport of the interfering pair leads to HBT radii close to those for the chemical freeze-out configuration. Particle decays however lead to HBT radii greater than those for the chemical freeze-out configuration. As a consequence, the combined effects give rise to HBT radii between those extracted from the chemical freeze-out configuration and the thermal freeze-out configuration. Proper quantum treatments of the interfering pairs in HBT calculations at the pion multiple scattering stage are important for our understanding of the characteristics of HBT interferometry in heavy-ion collisions. C1 [Yu, Li-Li; Zhang, Wei-Ning] Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China. [Zhang, Wei-Ning; Wong, Cheuk-Yin] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Yu, LL (reprint author), Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China. OI Wong, Cheuk-Yin/0000-0001-8223-0659 FU National Natural Science Foundation of China [10575024, 10775024]; Division of Nuclear Physics; U. S. DOE [DE-AC05-00OR22725] FX This research was supported by the National Natural Science Foundation of China under Contract Nos. 10575024 and 10775024 and in part by the Division of Nuclear Physics, U. S. DOE, under Contract No. DE-AC05-00OR22725 managed by UT-Battle, LC. NR 63 TC 6 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2008 VL 78 IS 1 AR 014908 DI 10.1103/PhysRevC.78.014908 PG 11 WC Physics, Nuclear SC Physics GA 340HH UT WOS:000258636200052 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P de Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. de Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for new heavy particles decaying to Z(0)Z(0)-> eeee in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article AB We report the results of a search for the anomalous production of a massive particle decaying to four electrons via two Z(0) bosons in 1.1 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the CDF II detector at Fermilab. We employ optimized electron identification criteria to maximize acceptance and efficiency. We estimate the backgrounds in the invariant mass range 500-1000 GeV/c(2) to be 0.028 +/- 0.009(stat) +/- 0.011(syst) events. We observe zero events in this search region. Assuming a Randall-Sundrum graviton production model, we set 95% C.L. limits on sigma x BF(G -> Z(0)Z(0)) < 4-6 pb, depending on the graviton mass. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Carrillo, S.; Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [de Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community's Human Potential Programme; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 22 TC 2 Z9 2 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 012008 DI 10.1103/PhysRevD.78.012008 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400021 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mrenna, S Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mrenna, S. Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Model-independent and quasi-model-independent search for new physics at CDF SO PHYSICAL REVIEW D LA English DT Article ID PROTON-ANTIPROTON COLLIDER; TRANSVERSE ENERGY; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; HADRONIC COLLISIONS; TOP-QUARK; FERMILAB; EVENTS; MASS; TEV AB Data collected in run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (VISTA) considers the gross features of the data and is sensitive to new large cross section physics. A quasi-model-independent approach (SLEUTH) searches for a significant excess of events with large summed transverse momentum and is particularly sensitive to new electroweak scale physics that appears predominantly in one final state. This global search for new physics in over 300 exclusive final states in 927 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV reveals no such significant indication of physics beyond the standard model. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.; Roy, P.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hays, C.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hartz, M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mrenna, S.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Hara, K.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Moed, S.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heijboer, A.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Lujan, P.; Fernandez, P. Movilla; Mulmenstadt, J.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Belloni, A.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Goldstein, J.; Harr, R. F.; Heck, M.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, Siena & Scuola Normale Super, I-56127 Siena, Italy. [Boudreau, J.; Gibson, K.; Hatakeyama, K.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Handler, R.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hauser, J.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [Almenar, C. Cuenca; De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, M.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hare, D.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Harper, S.; Napier, A.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harris, R. M.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Happacher, F.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. [Cabrera, S.] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain. [Lee, S. W.] Texas Tech Univ, Lubbock, TX 79409 USA. [Cerrito, L.] Univ London, Queen Marys Coll, London E1 4NS, England. [Cuevas, J.] Univ Oviedo, Oviedo 33007, Spain. [Shimojima, M.; Yang, U. K.] Nagasaki Inst Appl Sci, Nagasaki, Japan. Univ Manchester, Manchester M13 9PL, England. [Carrillo, S.; Vazquez, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Menzemer, S.] Heidelberg Univ, D-69120 Heidelberg, Germany. [Martin, V.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [McNulty, R.] Dublin City Univ, Dublin 4, Ireland. [Ptohos, F.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Thom, J.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Taffard, A.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Whiteson, D.] Univ Calif Irvine, Irvine, CA 92697 USA. [De Lentdecker, G.] Univ Libre Brussels, B-1050 Brussels, Belgium. [Goldstein, J.; Hill, C. S.; Rademacker, J.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Zheng, Y.] Chinese Acad Sci, Beijing 100864, Peoples R China. [Giokaris, N.; Vellidis, C.] Univ Athens, Athens 15784, Greece. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Grinstein, Sebastian/N-3988-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; OI Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Goldstein, Joel/0000-0003-1591-6014; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Mrenna, Stephen/0000-0001-8731-160X; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987 NR 50 TC 19 Z9 19 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 012002 DI 10.1103/PhysRevD.78.012002 PG 42 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400015 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, M Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Vetterli, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vetterli, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Evidence for production of single top quarks SO PHYSICAL REVIEW D LA English DT Review ID BOOSTED DECISION TREES; W-GLUON FUSION; NEURAL-NETWORKS; FERMILAB-TEVATRON; PARTICLE IDENTIFICATION; BOSON PRODUCTION; ROOT-S=1.96 TEV; GAUGE BOSONS; SEARCH; COUPLINGS AB We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p (p) over bar collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top-quark partner that is always produced from strong-coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top-quark production has been searched for in ever larger data sets. In this analysis, we select events from a 0.9 fb(-1) data set that have an electron or muon and missing transverse energy from the decay of a W boson from the top-quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W + jets and t (t) over bar events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix-element calculations. A binned likelihood fit of the signal cross section plus background to the data from the combination of the results from the three analysis methods gives a cross section for single top-quark production of sigma(p (p) over bar -> tb + X, tqb + X) = 4.7 +/- 1.3 pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.014%, corresponding to a 3.6 standard deviation significance. The measured cross section value is compatible at the 10% level with the standard model prediction for electroweak top-quark production. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix element that describes the Wtb coupling and find vertical bar V(tb)f(1)(L)vertical bar = 1.31(-0.21)(+0.25), where f(1)(L) is a generic vector coupling. This model-independent measurement translates into 0.68 t (t) over bar, p (p) over bar -> W+W-, and p (p) over bar -> Z(0) -> tau(+)tau(-) at a center-of-mass energy of root s = 1.96 TeV. We perform a likelihood fit to the dilepton data in a parameter space defined by the missing transverse energy and the number of jets in the event. Our results, which use 360 pb(-1) of data recorded with the CDF II detector at the Fermilab Tevatron Collider, are sigma(t (t) over bar) = 8.5(-2.2)(+2.7) pb, sigma(W+W-) = 16.3(-4.4)(+5.2) pb, and sigma(Z(0) -> tau(+)tau(-)) = 291(-46)(+50) pb. C1 [Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Liss, T. M.; Marino, C. P.; Pitts, K.; Rogers, E.; Taffard, A.; Veramendi, G.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Tanaka, M.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cavalli-Sforza, M.; D'Onofrio, M.; Lefevre, R.; Martinez, M.; Norniella, O.; Portell, X.; Salto, O.; Sanchez, C.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Margaroli, F.; Mazzanti, P.; Moggi, N.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Dagenhart, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrester, S.; Ivanov, A.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Attal, A.; Dong, P.; Hauser, J.; Mohr, B.; Plager, C.; Saltzberg, D.; Stelzer, B.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Neubauer, M. S.; Wuerthwein, F.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Affolder, T.; Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Mills, C.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Cuevas, J.; Gomez, G.; Gomez-Ceballos, G.; Menzemer, S.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Giurgiu, G.; Jun, S. Y.; Kim, M. J.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Furic, I.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Rusu, V.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chlachidze, G.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Poukhov, O.; Semenov, A.; Sisakyan, A.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Coca, M.; Deng, J.; Goshaw, A. T.; Hidas, D.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Prakoshyn, F.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Ambrose, D.; Anikeev, K.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Chlebana, F.; Culbertson, R.; Datta, M.; Derwent, P. F.; Eusebi, R.; Foster, G. W.; Ginsburg, C.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jensen, H.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lin, C. S.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Marginean, R.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yagil, A.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carillo, S.; Field, R.; Goldschmidt, N.; Group, R. C.; Jindariani, S.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Necula, V.; Oksuzian, I.; Pinera, L.; Rossin, R.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Campanelli, M.; Clark, A.; Donega, M.; Moed, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; D'Auria, S.; Davies, T.; Martin, M.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.; Unverhau, T.; Waschke, S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Foland, A.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Holloway, A.; Rappoccio, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Mumford, R.; Pursley, J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Abulencia, A.; Doerr, C.; Feindt, M.; Heuser, J.; Hirschbuehl, D.; Kemp, Y.; Kerzel, U.; Kreps, M.; Kuhr, T.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Miyamoto, A.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Gibson, A.; Haber, C.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Griffiths, M.; Heinemann, B.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Lancaster, M.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Belloni, A.; Bolshov, A.; Choudalakis, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Kravchenko, I.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Arguin, J. -F.; Carron, S.; Hamilton, A.; Lai, S.; MacQueen, D.; Mazini, R.; Pashapour, S.; Sabik, S.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Vollrath, I.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Arguin, J. -F.; Carron, S.; Hamilton, A.; Lai, S.; MacQueen, D.; Mazini, R.; Pashapour, S.; Sabik, S.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Vollrath, I.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Jayatilaka, B.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Cooper, B.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Tsuno, S.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Cerrito, L.; Goldstein, J.; Harper, S.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Sjolin, J.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; DaRonco, S.; Paoli, F. Delli; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Heijboer, A.; Heinrich, J.; Kovalev, A.; Kraan, A. C.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Usynin, D.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Budroni, S.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciljak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Staveris-Polykalas, A.; Tonelli, D.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, Siena & Scuola Normale Super, I-56127 Siena, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Nigmanov, T.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bolla, G.; Bortoletto, D.; Canepa, A.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Convery, M. E.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [DeCecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Loverre, P.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; DiTuro, P.; Dube, S.; Halkiadakis, E.; Jang, D.; Lath, A.; Somalwar, S.; Yamaoka, J.; Zhou, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Belforte, S.; Casarsa, M.; Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Aoki, M.; Hara, K.; Ishizawa, Y.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Matsunaga, H.; Nagano, A.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Takikawa, K.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.; Tsuchiya, R.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chuang, S. H.; Chung, W. H.; Cyr, D.; Handler, R.; Herndon, M.; Pondrom, L.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Gay, C.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. [Giokaris, N.] Univ Athens, Athens 15784, Greece. [Goldstein, J.; Hill, C. S.; Rademacker, J.] Univ Bristol, Bristol B58 1TL, England. [De Lentdecker, G.] Univ Libre Brussels, B-1050 Brussels, Belgium. [Thom, J.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Ptohos, F.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [McNulty, R.] Dublin City Univ, Dublin 4, Ireland. [Martin, V.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Menzemer, S.] Heidelberg Univ, D-69120 Heidelberg, Germany. [Carillo, S.] Univ Iberoamer, Mexico City, DF, Mexico. [Yang, U. K.] Univ Manchester, Manchester M13 9PL, England. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Cuevas, J.] Univ Oviedo, E-33007 Oviedo, Spain. [Cerrito, L.] Univ London, Queen Mary & Westfield Coll, London WC1E 7HU, England. [Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Cabrera, S.] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Grinstein, Sebastian/N-3988-2014; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Lysak, Roman/H-2995-2014; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014 OI Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Goldstein, Joel/0000-0003-1591-6014; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Particle Physics and Astronomy Research Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community's Human Potential Programme [HPRN-CT-2002-00292]; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; the European Community's Human Potential Programme under contract HPRN-CT-2002-00292; and the Academy of Finland. NR 27 TC 5 Z9 5 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 012003 DI 10.1103/PhysRevD.78.012003 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400016 ER PT J AU Aguilar-Arevalo, AA Anderson, CE Bazarko, AO Brice, SJ Brown, BC Bugel, L Cao, J Coney, L Conrad, JM Cox, DC Curioni, A Djurcic, Z Finley, DA Fleming, BT Ford, R Garcia, FG Garvey, GT Green, C Green, JA Hart, TL Hawker, E Imlay, R Johnson, RA Karagiorgi, G Kasper, P Katori, T Kobilarcik, T Kourbanis, I Koutsoliotas, S Laird, EM Linden, SK Link, JM Liu, Y Louis, WC Mahn, KBM Marsh, W Martin, PS McGregor, G Metcalf, W Meyers, PD Mills, F Mills, GB Monroe, J Moore, CD Nelson, RH Nguyen, VT Nienaber, P Ouedraogo, S Patterson, RB Perevalov, D Polly, CC Prebys, E Raaf, JL Ray, H Roe, BP Russell, AD Sandberg, V Schirato, R Schmitz, D Shaevitz, MH Shoemaker, FC Smith, D Soderberg, M Sorel, M Spentzouris, P Stancu, I Stefanski, RJ Sung, M Tanaka, HA Tayloe, R Tzanov, M Van de Water, R Wascko, MO White, DH Wilking, MJ Yang, HJ Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Anderson, C. E. Bazarko, A. O. Brice, S. J. Brown, B. C. Bugel, L. Cao, J. Coney, L. Conrad, J. M. Cox, D. C. Curioni, A. Djurcic, Z. Finley, D. A. Fleming, B. T. Ford, R. Garcia, F. G. Garvey, G. T. Green, C. Green, J. A. Hart, T. L. Hawker, E. Imlay, R. Johnson, R. A. Karagiorgi, G. Kasper, P. Katori, T. Kobilarcik, T. Kourbanis, I. Koutsoliotas, S. Laird, E. M. Linden, S. K. Link, J. M. Liu, Y. Louis, W. C. Mahn, K. B. M. Marsh, W. Martin, P. S. McGregor, G. Metcalf, W. Meyers, P. D. Mills, F. Mills, G. B. Monroe, J. Moore, C. D. Nelson, R. H. Nguyen, V. T. Nienaber, P. Ouedraogo, S. Patterson, R. B. Perevalov, D. Polly, C. C. Prebys, E. Raaf, J. L. Ray, H. Roe, B. P. Russell, A. D. Sandberg, V. Schirato, R. Schmitz, D. Shaevitz, M. H. Shoemaker, F. C. Smith, D. Soderberg, M. Sorel, M. Spentzouris, P. Stancu, I. Stefanski, R. J. Sung, M. Tanaka, H. A. Tayloe, R. Tzanov, M. Van de Water, R. Wascko, M. O. White, D. H. Wilking, M. J. Yang, H. J. Zeller, G. P. Zimmerman, E. D. TI Compatibility of high-Delta m(2) nu(e) and (nu)over-bar(e) neutrino oscillation searches SO PHYSICAL REVIEW D LA English DT Article ID NUCLEAR-POWER-REACTOR; LSND EXPERIMENT AB This article presents the compatibility of experimental data from neutrino oscillation experiments with a high-Delta m(2) two-neutrino oscillation hypothesis. Data is provided by the Bugey, Karlsruhe Rutherford Medium Energy Neutrino Experiment 2 (KARMEN2), Los Alamos Liquid Scintillator Neutrino Detector (LSND), and MiniBooNE experiments. The LSND, KARMEN2, and MiniBooNE results are 25.36% compatible within a two-neutrino oscillation hypothesis. However, the point of maximal compatibility is found in a region that is excluded by the Bugey data. A joint analysis of all four experiments, performed in the sin(2)2 theta vs Delta m(2) region common to all data, finds a maximal compatibility of 3.94%. This result does not account for additions to the neutrino oscillation model from sources such as CP violation or sterile neutrinos. C1 [Aguilar-Arevalo, A. A.; Bugel, L.; Coney, L.; Conrad, J. M.; Djurcic, Z.; Karagiorgi, G.; Mahn, K. B. M.; Monroe, J.; Nguyen, V. T.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.] Columbia Univ, New York, NY 10027 USA. [Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA. [Hawker, E.; Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marsh, W.; Martin, P. S.; Mills, F.; Moore, C. D.; Prebys, E.; Russell, A. D.; Spentzouris, P.; Stefanski, R. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Cox, D. C.; Green, J. A.; Katori, T.; Polly, C. C.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Green, C.; Green, J. A.; Hawker, E.; Louis, W. C.; McGregor, G.; Mills, G. B.; Ray, H.; Sandberg, V.; Schirato, R.; Van de Water, R.; White, D. H.; Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Imlay, R.; Metcalf, W.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cao, J.; Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bazarko, A. O.; Laird, E. M.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Link, J. M.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.] Yale Univ, New Haven, CT 06520 USA. [Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. RP Aguilar-Arevalo, AA (reprint author), Columbia Univ, New York, NY 10027 USA. RI Cao, Jun/G-8701-2012; Link, Jonathan/L-2560-2013; Yang, Haijun/O-1055-2015; OI Cao, Jun/0000-0002-3586-2319; Link, Jonathan/0000-0002-1514-0650; Wascko, Morgan/0000-0002-8348-4447; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375; Van de Water, Richard/0000-0002-1573-327X; Schirato, Richard/0000-0002-4216-0235 FU Fermilab; Department of Energy; National Science Foundation FX We acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation. We thank M. Acero, C. Giunti, and M. Laveder for providing us with the Bugey data. We thank K. Eitel for providing us with the KARMEN2 data. NR 18 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 012007 DI 10.1103/PhysRevD.78.012007 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400020 ER PT J AU Almeida, LG Sterman, G Vogelsang, W AF Almeida, Leandro G. Sterman, George Vogelsang, Werner TI Threshold resummation for the top quark charge asymmetry SO PHYSICAL REVIEW D LA English DT Article ID HADRONIC COLLISIONS; CROSS-SECTION; BACKWARD ASYMMETRY; QCD CORRECTIONS; HEAVY QUARKS; HIGGS-BOSON; HADROPRODUCTION; ANNIHILATION AB We study the QCD charge asymmetry in t (t) over bar production at the Tevatron. We investigate the role of higher orders in perturbation theory by considering the resummation of potentially large logarithmic corrections that arise near partonic threshold. This requires us to employ the rapidity-dependent anomalous dimension matrices that describe color mixing due to soft-gluon emission in both quark- and gluon-initiated processes. The charge asymmetry appears directly in the resummed cross section at next-to-leading logarithm (NLL), and we find that the first-order expansion of the NLL-resummed charge asymmetry reproduces the known fixed-order result for the asymmetry well. Beyond its lowest order, the asymmetric component of the cross section is enhanced by the same leading-logarithmic threshold corrections as the total cross section. As a result, the charge asymmetry is robust with respect to the higher-order perturbative corrections generated by threshold resummation. We observe that the asymmetry increases with pair mass and with scattering angle. C1 [Almeida, Leandro G.; Sterman, George] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Almeida, LG (reprint author), SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. FU U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [PHY-0354776, PHY-0354822, PHY-0653342] FX We are grateful to E. Laenen for very helpful communications and to D. de Florian, G. Perez, G. Rodrigo, J. Smith, and M. Stratmann for useful discussions. W. V. is grateful to the U.S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of his work. This work was supported in part by the National Science Foundation, Grants No. PHY-0354776, No. PHY-0354822, and No. PHY-0653342. NR 54 TC 134 Z9 134 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014008 DI 10.1103/PhysRevD.78.014008 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400039 ER PT J AU Aoki, S Fukaya, H Hashimoto, S Ishikawa, KI Kanaya, K Kaneko, T Matsufuru, H Okamoto, M Okawa, M Onogi, T Ukawa, A Yamada, N Yoshie, T AF Aoki, S. Fukaya, H. Hashimoto, S. Ishikawa, K-I. Kanaya, K. Kaneko, T. Matsufuru, H. Okamoto, M. Okawa, M. Onogi, T. Ukawa, A. Yamada, N. Yoshie, T. CA JLQCD Collaboration TI Two-flavor QCD simulation with exact chiral symmetry SO PHYSICAL REVIEW D LA English DT Review ID HYBRID MONTE-CARLO; DYNAMICAL WILSON FERMIONS; LATTICE GAUGE-THEORY; MASSLESS QUARKS; DIRAC OPERATOR; HMC ALGORITHM; CUTOFF; MASSES; SCALE AB We perform numerical simulations of lattice QCD with two flavors of dynamical overlap quarks, which have exact chiral symmetry on the lattice. While this fermion discretization is computationally demanding, we demonstrate the feasibility to simulate reasonably large and fine lattices by a careful choice of the lattice action and algorithmic improvements. Our production runs are carried out on a 16(3)x32 lattice at a single lattice spacing around 0.12 fm. We explore the sea quark mass region down to m(s)/6, where m(s) is the physical strange quark mass, for a good control of the chiral extrapolation in future calculations of physical observables. We describe in detail our setup and algorithmic properties of the production simulations and present results for the static quark potential to fix the lattice scale and the locality of the overlap operator. C1 [Aoki, S.; Kanaya, K.; Ukawa, A.; Yoshie, T.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba 3058571, Japan. [Aoki, S.] RIKEN, BNL Res Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. [Fukaya, H.] Niels Bohr Int Acad, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hashimoto, S.; Kaneko, T.; Matsufuru, H.; Okamoto, M.; Yamada, N.] High Energy Accelerator Res Org KEK, Tsukuba 3050801, Japan. [Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba 3050801, Japan. [Ishikawa, K-I.; Okawa, M.] Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. [Onogi, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Ukawa, A.; Yoshie, T.] Univ Tsukuba, Ctr Computat Sci, Tsukuba 3058577, Japan. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba 3058571, Japan. RI Ukawa, Akira/A-6549-2011 FU Large Scale Simulation Program [06-13, 07-16]; Grant-in-Aid of the Ministry of Education [17340066, 17540259, 17740171, 18034011, 18340075, 18740167, 18840045, 19540286, 19740160]; [Nishina Memorial Foundation] FX Numerical simulations are performed on Hitachi SR11000 and IBM System Blue Gene Solution at High Energy Accelerator Research Organization (KEK) under support of its Large Scale Simulation Program (No. 06-13 and No. 07-16). We thank J. Doi, H. Samukawa, and S. Shimizu of IBM Japan Tokyo Research Laboratory for assembler coding on the Blue Gene computer. This work is supported in part by the Grant-in-Aid of the Ministry of Education (No. 17340066, No. 17540259, No. 17740171, No. 18034011, No. 18340075, No. 18740167, No. 18840045, No. 19540286, and No. 19740160). The work of H. F. is also supported by Nishina Memorial Foundation. NR 120 TC 43 Z9 43 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014508 DI 10.1103/PhysRevD.78.014508 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400072 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Study of B-meson decays to eta(c)K(*), eta(c)(2S)K(*), and eta(c)gamma K(*) SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM CHROMODYNAMICS; ANNIHILATION AB We study two-body B-meson decays to a charmonium state (eta(c), eta(c)(2S) or h(c)) and a K(+) or K(*0)(892) meson using a sample of 349 fb(-1) of data collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. We measure B(B(0) -> eta(c)K*(0)) = (5.7 +/- 0.6(stat) +/- 0.9(syst)) x 10(-4), B(B(0) -> eta(c)(2S)K*(0)) < 3.9 x 10(-4), B(B(+) -> h(c)K(+)) x B(h(c) -> eta(c)gamma) < 4.8 x 10(-5) and B(B(0) -> h(c)K*(0)) x B(h(c) -> eta(c)gamma) < 2.2 x 10(-4) at the 90% C.L., and B(eta(c)(2S) -> K (K) over bar pi) = (1.9 +/- 0.4(stat) +/- 1.1(syst))%. We also measure the mass and width of the eta(c) meson to be m(eta(c)) = (2985.8 +/- 1.5(stat) +/- 3.1(syst)) MeV/c(2) and Gamma(eta(c)) = (36.3(-3.6)(+3.7)(stat) +/- 4.4(syst)) MeV. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Kernphys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] CALTECH, Pasadena, CA 91125 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] INFN, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Chilton OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Aston, D.; Dubois-Felsmann, G. P.; Hast, C.; Kim, H.; Leith, D. W. G. S.; Lindquist, B.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Snyder, A.; Su, D.; Wagner, A. P.; West, C. A.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; OI Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Ebert, Marcus/0000-0002-3014-1512; Corwin, Luke/0000-0001-7143-3821; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955 FU U. S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungs-gemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A.P Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U. S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungs-gemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the P. Sloan FounScience and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P Sloan Foundation. NR 19 TC 12 Z9 12 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 012006 DI 10.1103/PhysRevD.78.012006 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400019 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of the mass difference m(B-0)-m(B+) SO PHYSICAL REVIEW D LA English DT Article AB Using 230 x 10(6) B (B) over bar events recorded with the BABAR detector at the e(+)e(-) storage rings PEP-II, we reconstruct approximately 4100 B-0 -> J/psi K+pi(-) and 9930 B+ -> J/psi K+ decays with J/psi -> mu(+)mu(-) and e(+)e(-). From the measured B-momentum distributions in the e(+)e(-) rest frame, we determine the mass difference m(B-0) - m(B+) = (+0.33 +/- 0.05 +/- 0.03) MeV/c(2). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Grauges, E.; Lopez, L.; Palano, A.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Altenburg, D. D.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fac Phys, D-44221 Dortmund, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Chilton OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Rizzo, Giuliana/A-8516-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Lanceri, Livio/0000-0001-8220-3095; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Barlow, Roger/0000-0002-8295-8612; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Salvatore, Fabrizio/0000-0002-3709-1554; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Ebert, Marcus/0000-0002-3014-1512 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 10 TC 3 Z9 3 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 011103 DI 10.1103/PhysRevD.78.011103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400003 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Clifton, ZC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Klose, V Lacker, HM De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Clifton, Z. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Observation of B(+)-> b(1)(+)K(0) and search for B-meson decays to b(1)(0)K(0) and b(1)pi(0) SO PHYSICAL REVIEW D LA English DT Article AB We present the results of searches for decays of B mesons to final states with a b(1) meson and a neutral pion or kaon. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 465 x 10(6) B (B) over bar pairs produced in e(+)e(-) annihilation. The results for the branching fractions are, in units of 10(-6), B(B(+) -> b(1)(+)K(0)) = 9.6 +/- 1.7 +/- 0.9, B(B(0) -> b(1)(0)K(0)) = 5.1 +/- 1.8 +/- 0.5 (< 7.8), B(B(+) -> b(1)(+)pi(0)) = 1.8 +/- 0.9 +/- 0.2 (< 3.3), and B(B(0) -> b(1)(0)pi(0)) = 0.4 +/- 0.8 +/- 0.2 (< 1.9), with the assumption that B(b(1)->omega pi) = 1. We also measure the charge asymmetry A(ch)(B(+) -> b(1)(+)K(0)) = -0.03 +/- 0.15 +/- 0.02. The first error quoted is statistical, the second systematic, and the upper limits in parentheses indicate the 90% confidence level. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Clifton, Z. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.; Cowan, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.; Emery, S.] Rutherford Appleton Lab, Chilton OX11 0QX, Oxon, England. [Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN, Sez Torino, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] INFN, Sez Trieste, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; dong, liaoyuan/A-5093-2015; OI Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Bettarini, Stefano/0000-0001-7742-2998; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 17 TC 9 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 011104 DI 10.1103/PhysRevD.78.011104 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400004 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Gilman, JD Hachtel, J Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR West, CG Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Gilman, J. D. Hachtel, J. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. West, C. G. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Observation of B+->eta rho(+) and search for B-0 decays to eta 'eta, eta pi(0), eta 'pi(0), and omega pi(0) SO PHYSICAL REVIEW D LA English DT Article ID B MESON DECAYS; QCD FACTORIZATION; ETA AB We present measurements of branching fractions for five B-meson decays to two-body charmless final states. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 459 x 10(6) B (B) over bar pairs. The results for branching fractions are, in units of 10(-6) (upper limits at 90% C.L.), B(B+ -> eta rho(+)) = 9.9 +/- 1.2 +/- 0.8, (BB0 -> eta(')eta) = 0.5 +/- 0.4 +/- 0.1(< 1.2), B(B-0 -> eta pi(0)) = 0.9 +/- 0.4 +/- 0.1( < 1.5), B(B-0 -> eta(')pi(0)) = 0.9 +/- 0.4 +/- 0.1(< 1.5), and B(B-0 -> omega pi(0)) = 0.07 +/- 0.26 +/- 0.02(< 0.5). The first error quoted is statistical and the second systematic. For the eta rho(+) mode, we measure the charge asymmetry A(ch)(B+ -> eta rho(+)) = 0.13 +/- 0.11 +/- 0.02. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Dept ECM, Fac Fis, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; West, C. G.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.] Univ Maryland, College Pk, MD 20742 USA. [Tuggle, J. M.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] INFN, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] INFN, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN, I-56127 Pisa, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Chilton OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.] Stanford Univ, Stanford, CA 94305 USA. [Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Hachtel, Jordan/R-1263-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; OI Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Hachtel, Jordan/0000-0002-9728-0920; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Raven, Gerhard/0000-0002-2897-5323 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 32 TC 17 Z9 17 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 011107 DI 10.1103/PhysRevD.78.011107 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400007 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Campagnari, C Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Robertson, AI Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M McLachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Robertson, A. I. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. McLachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. CA BABAR Collaboration TI Measurement of D-0-(D)over-bar(0) mixing using the ratio of lifetimes for the decays D-0 -> K-pi(+), K-K+, and pi(-)pi(+) SO PHYSICAL REVIEW D LA English DT Article AB We present a measurement of D-0-(D) over bar (0) mixing parameters using the ratios of lifetimes extracted from a sample of D-0 mesons produced through the process D*+ -> D-0 pi(+), which decay to K-pi(+), K-K+, or pi(-)pi(+). The lifetimes of the CP-even, Cabibbo-suppressed modes K-K+ and pi(-)pi(+) are compared with that of the CP-mixed, Cabibbo-favored mode K-pi(+) to obtain a measurement of y(CP), which in the limit of CP conservation corresponds to the mixing parameter y. The analysis is based on a data sample of 384 fb(-1) collected by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider. We obtain y(CP) = [1.24 +/- 0.39(stat) +/- 0.13(syst)]%, which is evidence for D-0-(D) over bar (0) mixing at the 3 sigma level, and Delta Y = [-0.26 +/- 0.36(stat) +/- 0.08(syst)]%, where Delta Y constrains possible CP violation. Combining this result with a previous BABAR measurement of y(CP) obtained from a separate sample of D-0 -> K-K+ events, we obtain y(CP) = [1.03 +/- 0.33(stat) +/- 0.19(syst)]%. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-4480 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Robertson, A. I.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [McLachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Biesiada, J.; Lau, Y. P.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Chilton OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163 FU U. S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U. S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 24 TC 42 Z9 43 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 011105 DI 10.1103/PhysRevD.78.011105 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400005 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, R Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G Del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, V White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, W Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. Del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Evidence for direct CP violation from Dalitz-plot analysis of B-+/--> K-+/-pi(-/+)pi(+/-) SO PHYSICAL REVIEW D LA English DT Article ID ENERGY-RANGE; ISOBAR MODEL; K-DECAYS; B-DECAYS; SCATTERING; FORMALISM; DETECTOR; STATE AB We report a Dalitz-plot analysis of the charmless hadronic decays of charged B mesons to the final state K-+/-pi(-/+)pi(+/-). Using a sample of (383.2 +/- 4.2) x 10(6) B (B) over bar pairs collected by the BABAR detector, we measure CP-averaged branching fractions and direct CP asymmetries for intermediate resonant and nonresonant contributions. We find evidence for direct CP violation in the decay B-+/- -> rho(0)(770)K-+/-, with a CP-violation parameter A(CP) = (+44 +/- 10 +/- 4(-13)(+5))%. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] INFN, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Chilton OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 FU U. S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungs-gemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U. S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungs-gemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 75 TC 45 Z9 45 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 012004 DI 10.1103/PhysRevD.78.012004 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400017 ER PT J AU Battaglia, M Hooberman, B Kelley, N AF Battaglia, Marco Hooberman, Benjamin Kelley, Nicole TI Study of e(+)e(-)-> H(0)A(0) production and the constraint on dark matter density SO PHYSICAL REVIEW D LA English DT Article ID ALGORITHM; PROGRAM; PHYSICS; DECAYS; MODEL; ILC AB This paper reports the results of a study of the supersymmetric neutral heavy Higgs boson production process e(+)e(-) -> H(0)A(0) at root s = 1 TeV performed using fully simulated and reconstructed events. The adopted parameters for the supersymmetric models are compatible with the relic dark matter density if this is due to neutralinos annihilating through the A(0) boson in the early universe. The accuracies on the heavy Higgs boson masses, widths, and decay branching fractions are estimated to be delta M(A)(0)/M(A)(0) = 0.0024 delta Gamma(0)(A)/Gamma(0)(A) = 0.19, delta BR(A(0) -> b (b) over bar)/BR(A(0) -> b<(b)over bar) = 0.07, and delta BR(A(0) -> tau(+)tau(-))/BR(A(0) -> tau(+)tau(-)) = 0.15 These results, combined with other measurements from the LHC and an e(+)e(-) collider, allow the supersymmetric dark matter density to be inferred to a relative accuracy delta Omega(chi)h(2)/Omega(chi)h(2) = 0.08. C1 [Battaglia, Marco] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Battaglia, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM MBattaglia@lbl.gov; benhooberman@berkeley.edu; kelley@berkeley.edu FU Director, Office of Science, of the U. S. Department of Energy [DE-AC02-05CH11231]; National Energy Research Scientific Computing Center [DE-AC0376SF00098] FX We are grateful to Abdel Djouadi for pointing out the sensitivity of the H decay branching fractions to the stau trilinear coupling and to Michael Peskin for discussion. This work was supported by the Director, Office of Science, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and used resources of the National Energy Research Scientific Computing Center, supported under Contract No. DE-AC0376SF00098. NR 23 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 015021 DI 10.1103/PhysRevD.78.015021 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400100 ER PT J AU Brodsky, SJ de Teramond, GF AF Brodsky, Stanley J. de Teramond, Guy F. TI Light-front dynamics and AdS/QCD correspondence: Gravitational form factors of composite hadrons SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM CHROMODYNAMICS; ADS/CFT CORRESPONDENCE; EXCLUSIVE PROCESSES; SYMMETRY-BREAKING; HOLOGRAPHIC QCD; WAVE-FUNCTION; SUPERGRAVITY; MOMENTUM; EQUATIONS; MESONS AB Light-front holography is a remarkable feature of the AdS/CFT correspondence between gravity in AdS space and conformal field theories in physical space-time; it allows string modes Phi(z) in the anti-de Sitter (AdS) fifth dimension to be precisely mapped to the light-front wave functions of hadrons in physical space-time in terms of a specific light-front impact variable zeta which measures the separation of the quark and gluonic constituents within the hadron. This mapping was originally obtained by matching the exact expression for electromagnetic current matrix elements in AdS space with the corresponding exact expression for the current matrix element using light-front theory in physical space-time. In this paper we show that one obtains the identical holographic mapping using matrix elements of the energy-momentum tensor. To prove this, we show that there exists a correspondence between the matrix elements of the energy-momentum tensor of the fundamental hadronic constituents in QCD with the transition amplitudes describing the interaction of string modes in AdS space with an external graviton field which propagates in the AdS interior. The agreement of the results for electromagnetic and gravitational hadronic transition amplitudes provides an important consistency test and verification of holographic mapping from AdS to physical observables defined on the light front. C1 [Brodsky, Stanley J.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [de Teramond, Guy F.] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France. [de Teramond, Guy F.] Univ Costa Rica, San Jose, Costa Rica. RP Brodsky, SJ (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 56 TC 80 Z9 80 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 2 AR 025032 DI 10.1103/PhysRevD.78.025032 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HM UT WOS:000258636700130 ER PT J AU Buckley, MR Murayama, H Klemm, W Rentala, V AF Buckley, Matthew R. Murayama, Hitoshi Klemm, William Rentala, Vikram TI Discriminating spin through quantum interference SO PHYSICAL REVIEW D LA English DT Article ID SYMMETRY-BREAKING; SUPERSYMMETRIC PARTICLES; DIMENSIONS; COLLIDERS; PHYSICS AB Many of the proposed solutions to the hierarchy and naturalness problems postulate new "partner" fields to the standard model particles. Determining the spins of these new particles will be critical in distinguishing among the various possible standard model extensions, yet proposed methods rely on the underlying models. We propose a new model-independent method for spin measurements which takes advantage of quantum interference among helicity states. We demonstrate that this method will be able to discriminate scalar particles from higher spin states at a linear collider. C1 [Buckley, Matthew R.; Murayama, Hitoshi; Klemm, William; Rentala, Vikram] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Buckley, Matthew R.; Murayama, Hitoshi] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Buckley, Matthew R.; Murayama, Hitoshi; Klemm, William; Rentala, Vikram] Univ Tokyo, Inst Phys & Math, Kashiwa, Chiba 2778568, Japan. RP Buckley, MR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Murayama, Hitoshi/A-4286-2011; OI Buckley, Matthew/0000-0003-1109-3460 NR 39 TC 31 Z9 31 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014028 DI 10.1103/PhysRevD.78.014028 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400059 ER PT J AU Detmold, W Savage, MJ Torok, A Beane, SR Luu, TC Orginos, K Parreno, A AF Detmold, William Savage, Martin J. Torok, Aaron Beane, Silas R. Luu, Thomas C. Orginos, Kostas Parreno, Assumpta CA NPLQCD Collaboration TI Multipion states in lattice QCD and the charged-pion condensate SO PHYSICAL REVIEW D LA English DT Article ID ROOTED STAGGERED FERMIONS; FINITE ISOSPIN DENSITY; EFFECTIVE-FIELD THEORY; CHIRAL ANOMALIES; SCATTERING; TEMPERATURE; SPECTRUM; SYSTEM; MATTER; QUARKS AB The ground-state energies of systems containing up to 12 pi(+)'s in a spatial volume V similar to(2.5 fm)(3) are computed in dynamical, mixed-action lattice QCD at a lattice spacing of similar to 0.125 fm for four different values of the light-quark masses. Clean signals are seen for each ground-state, allowing for a precise extraction of both the pi(+)pi(+) scattering length and pi(+)pi(+)pi(+) interaction from a correlated analysis of systems containing different numbers of pi(+)'s. This extraction of the pi(+)pi(+) scattering length is consistent with that from the pi(+)pi(+) system alone. The large number of systems studied here significantly strengthens the arguments presented in our earlier work and unambiguously demonstrates the presence of a low energy pi(+)pi(+)pi(+) interaction. The equation of state of a pi(+) gas is investigated using our numerical results and the density dependence of the isospin chemical potential for these systems agrees well with the theoretical expectations of leading order chiral perturbation theory. The chemical potential is found to receive a substantial contribution from the pi(+)pi(+)pi(+) interaction at the lighter pion masses. An important technical aspect of this work is the demonstration of the necessity of performing propagator contractions in greater than double precision to extract the correct results. C1 [Detmold, William; Savage, Martin J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Torok, Aaron; Beane, Silas R.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Luu, Thomas C.] Lawrence Livermore Natl Lab, N Div, Livermore, CA 94551 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. [Parreno, Assumpta] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. RP Detmold, W (reprint author), Univ Washington, Dept Phys, Box 351560, Seattle, WA 98195 USA. OI Detmold, William/0000-0002-0400-8363 NR 68 TC 38 Z9 38 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014507 DI 10.1103/PhysRevD.78.014507 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400071 ER PT J AU Giele, WT Kosower, DA Skands, PZ AF Giele, W. T. Kosower, D. A. Skands, P. Z. TI A simple shower and matching algorithm SO PHYSICAL REVIEW D LA English DT Article ID CARLO GENERATOR CASCADE; GLUON ANTENNA FUNCTIONS; JET CROSS-SECTIONS; MATRIX-ELEMENTS; PARTON SHOWERS; QCD CASCADES; CCFM; ANNIHILATION; SIMULATION; COHERENT AB We present a simple formalism for parton-shower Markov chains. As a first step towards more complete "uncertainty bands," we incorporate a comprehensive exploration of the ambiguities inherent in such calculations. To reduce this uncertainty, we then introduce a matching formalism which allows a generated event sample to simultaneously reproduce any infrared-safe distribution calculated at leading or next-to-leading order in perturbation theory, up to subleading corrections. To enable a more universal definition of perturbative calculations, we also propose a more general definition of the hadronization cutoff. Finally, we present an implementation of some of these ideas for final-state gluon showers, in a code dubbed VINCIA. C1 [Giele, W. T.; Skands, P. Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kosower, D. A.] CEA Saclay, F-91191 Gif Sur Yvette, France. RP Giele, WT (reprint author), Fermilab Natl Accelerator Lab, MS106,Box 500, Batavia, IL 60510 USA. OI Skands, Peter/0000-0003-0024-3822 FU Fermi Research Alliance; LLC [DE-AC02-07CH11359]; Agence Nationale de la Recherche of France [ANR-05-BLAN-0073-01] FX We thank Z. Bern, R. Frederix, A. Gehrmann-De Ridder, S. Mrenna, and T. Sjostrand for help and valuable comments. W. G. and P. S. are supported by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. D. A. K. is supported in part by the Agence Nationale de la Recherche of France under Grant No. ANR-05-BLAN-0073-01. The Institut de Physique Theorique is a laboratory of the Direction des Sciences de la Matiere of the Commissariat a l'Energie Atomique of France. NR 63 TC 76 Z9 76 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014026 DI 10.1103/PhysRevD.78.014026 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400057 ER PT J AU Gronau, M Pirjol, D Soni, A Zupan, J AF Gronau, Michael Pirjol, Dan Soni, Amarjit Zupan, Jure TI Constraint on (rho)over-bar, (eta)over-bar from B -> K* pi (vol 78, 17505, 2008) SO PHYSICAL REVIEW D LA English DT Correction C1 [Gronau, Michael] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Gronau, Michael] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Pirjol, Dan] Natl Inst Phys & Nucl Engn, Dept Particle Phys, Bucharest 077125, Romania. [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Zupan, Jure] CERN, Dept Phys, Div Theory, CH-1211 Geneva 23, Switzerland. [Zupan, Jure] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Zupan, Jure] Jozef Stefan Inst, Ljubljana 1001, Slovenia. RP Gronau, M (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. NR 10 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 017505 DI 10.1103/PhysRevD.78.017505 PG 2 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA V25JM UT WOS:000208474300001 ER PT J AU Ishikawa, T Aoki, S Fukugita, M Hashimoto, S Ishikawa, KI Ishizuka, N Iwasaki, Y Kanaya, K Kaneko, T Kuramashi, Y Okawa, M Taniguchi, Y Tsutsui, N Ukawa, A Yamada, N Yoshie, T AF Ishikawa, T. Aoki, S. Fukugita, M. Hashimoto, S. Ishikawa, K-I. Ishizuka, N. Iwasaki, Y. Kanaya, K. Kaneko, T. Kuramashi, Y. Okawa, M. Taniguchi, Y. Tsutsui, N. Ukawa, A. Yamada, N. Yoshie, T. CA CP-PACS & JLQCD Collaborations TI Light-quark masses from unquenched lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID HADRON SPECTRUM AB We calculate the light meson spectrum and the light quark masses by lattice QCD simulation, treating all light quarks dynamically and employing the Iwasaki gluon action and the nonperturbatively O(a)-improved Wilson quark action. The calculations are made at the squared lattice spacings at an equal distance a(2) similar or equal to 0.005, 0.01, and 0.015 fm(2), and the continuum limit is taken assuming an O(a(2)) discretization error. The light meson spectrum is consistent with experiment. The up, down, and strange quark masses in the (MS) over bar scheme at 2 GeV are (m) over bar = (m(u)+m(d))/2 = 3.55(-0.28)(+0.65) MeV and m(s) = 90.1(-6.1)(+17.2) MeV where the error includes statistical and all systematic errors added in quadrature. These values contain the previous estimates obtained with the dynamical u and d quarks within the error. C1 [Ishikawa, T.; Ishizuka, N.; Kuramashi, Y.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Ishikawa, T.; Aoki, S.] RIKEN, BNL Res Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. [Aoki, S.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kuramashi, Y.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Fukugita, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Hashimoto, S.; Kaneko, T.; Tsutsui, N.; Yamada, N.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Ishikawa, K-I.; Okawa, M.] Hiroshima Univ, Dept Phys, Higashihiroshima 7398526, Japan. RP Ishikawa, T (reprint author), Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. RI Ukawa, Akira/A-6549-2011; Kuramashi, Yoshinobu /C-8637-2016 FU Epoch Making Simulation Projects of Earth Simulator Center; Large Scale Simulation Program [132 (FY2005)]; High Energy Accelerator Research Organization (KEK); Large Scale Simulation Projects of Academic Computing and Communications Center of University of Tsukuba; Inter University Services of Super Computers of Information Technology Center of University of Tokyo; Super Sinet Projects of National Institute of Informatics; Ministry of Education [13135204, 13135216, 15540251, 16540228, 16470147, 17340066, 17540259, 18104005, 18540250, 18740130] FX This work is supported by the Epoch Making Simulation Projects of Earth Simulator Center, the Large Scale Simulation Program No. 132 (FY2005) of High Energy Accelerator Research Organization (KEK), the Large Scale Simulation Projects of Academic Computing and Communications Center of University of Tsukuba, Inter University Services of Super Computers of Information Technology Center of University of Tokyo, Super Sinet Projects of National Institute of Informatics, and also by the Grant-in-Aid of the Ministry of Education (Nos. 13135204, 13135216, 15540251, 16540228, 16470147, 17340066, 17540259, 18104005, 18540250, 18740130). NR 31 TC 34 Z9 34 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 011502 DI 10.1103/PhysRevD.78.011502 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400012 ER PT J AU Lin, HW Blum, T Ohta, S Sasaki, S Yamazaki, T AF Lin, Huey-Wen Blum, Tom Ohta, Shigemi Sasaki, Shoichi Yamazaki, Takeshi TI Nucleon structure with two flavors of dynamical domain-wall fermions SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; POLARIZED QUARK DISTRIBUTIONS; CHIRAL PERTURBATION-THEORY; LATTICE QCD; NONPERTURBATIVE RENORMALIZATION; PARTON DISTRIBUTIONS; PROTON SCATTERING; MATRIX-ELEMENTS; SPIN STRUCTURE; FORM-FACTORS AB We present a numerical lattice quantum chromodynamics calculation of isovector form factors and the first few moments of the isovector structure functions of the nucleon. The calculation employs two degenerate dynamical flavors of domain-wall fermions, resulting in good control of chiral symmetry breaking. Nonperturbative renormalization of the relevant quark currents is performed where necessary. The DBW2 gauge action is used to further improve the chiral behavior while maintaining a reasonable physical lattice volume. The inverse lattice spacing, a(-1), is approximately 1.7 GeV. Degenerate up and down dynamical quark masses of approximately 1, 3/4 and 1/2 times the strange quark mass are used. The physical volume of the lattice is about (1.9 fm)(3). The ratio of the isovector vector to axial charges, g(A)/g(V), tends to a lower value than the experimental value as the quark mass is reduced toward the physical point. Momentum-transfer dependences of the isovector vector, axial, induced-tensor and induced-pseudoscalar form factors are calculated. The Goldberger-Treiman relation holds at low momentum transfer and yields an estimation of the pion-nucleon coupling, g(pi NN)=15.5(1.4), where the quoted error is only statistical. We find that the flavor nonsinglet quark momentum fraction < x >(u-d) and quark helicity fraction < x >(Delta u-Delta d) overshoot their experimental values after linear chiral extrapolation. We discuss possible systematic errors for this discrepancy. An estimate for transversity, < 1 >(delta u-delta d)=0.93(6) in (MS) over bar at 2 GeV, is obtained and a twist-3 polarized moment, d(1), appears small, suggesting that the Wandzura-Wilczek relation holds approximately. We discuss in detail the systematic errors in the calculation, with particular attention paid to finite volume, excited-state contamination, and chiral extrapolations. C1 [Lin, Huey-Wen] Jefferson Lab, Newport News, VA 23606 USA. [Lin, Huey-Wen; Blum, Tom; Ohta, Shigemi; Yamazaki, Takeshi] RIKEN, Brookhaven Natl Lab, BNL Res Ctr, Upton, NY 11973 USA. [Blum, Tom; Yamazaki, Takeshi] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Ohta, Shigemi] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Ohta, Shigemi] Sokendai Grad U Adv Studies, Dept Phys, Kanagawa 2400193, Japan. [Sasaki, Shoichi] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 113, Japan. RP Lin, HW (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM hwlin@jlab.org; tblum@phys.uconn.edu; shigemi.ohta@kek.jp; ssasaki@phys.s.u-tokyo.ac.jp; yamazaki@phys.uconn.edu NR 100 TC 44 Z9 44 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014505 DI 10.1103/PhysRevD.78.014505 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400069 ER PT J AU Lunardini, C Muller, B Janka, HT AF Lunardini, C. Mueller, B. Janka, H. -Th. TI Neutrino oscillation signatures of oxygen-neon-magnesium supernovae SO PHYSICAL REVIEW D LA English DT Article ID ELECTRON-CAPTURE SUPERNOVAE; WATER CHERENKOV DETECTOR; R-PROCESS; MG CORES; COLLAPSE; EXPLOSIONS; MATTER; SIMULATIONS; STARS; SPECTROSCOPY AB We discuss the flavor conversion of neutrinos from core-collapse supernovae that have oxygen-neon-magnesium (ONeMg) cores. Using the numerically calculated evolution of the star up to 650 ms post bounce, we find that, for the normal mass hierarchy, the electron neutrino flux in a detector shows signatures of two typical features of an ONeMg-core supernova: a sharp step in the density profile at the base of the He shell and a faster shock wave propagation compared to iron core supernovae. Before the shock hits the density step (t less than or similar to 150 ms), the survival probability of electron neutrinos above similar to 20 MeV of energy is about similar to 0.68, in contrast to values of similar to 0.32 or less for an iron core supernova. The passage of the shock through the step and its subsequent propagation cause a decrease of the survival probability and a decrease of the amplitude of oscillations in the Earth, reflecting the transition to a more adiabatic propagation inside the star. These changes affect the lower energy neutrinos first; they are faster and more sizable for larger theta(13). They are unique of ONeMg-core supernovae, and give the possibility to test the speed of the shock wave. The time modulation of the Earth effect and its negative sign at the neutronization peak are the most robust signatures in a detector. C1 [Lunardini, C.] Arizona State Univ, Tempe, AZ 85287 USA. [Lunardini, C.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Mueller, B.; Janka, H. -Th.] Max Planck Inst Astrophys, D-85741 Garching, Germany. RP Lunardini, C (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. FU Arizona State University; RIKEN BNL Research Center (RBRC); Institute of Nuclear Theory (INT) of Seattle; Deutsche Forschungsgemeinschaft [SFB/TR 27, SFB/ TR 7, EXC 153]; Computing Center Stuttgart (HLRS) [SuperN/12758] FX C. L. acknowledges support from Arizona State University, from the RIKEN BNL Research Center (RBRC), and from the ORNL grant of the Institute of Nuclear Theory (INT) of Seattle, where this work was initiated. The INT is also thanked for hospitality during part of the time of preparation of this work. C. L. is grateful to H. Duan, A. Marrone, and A. Mirizzi for useful clarifications and discussions. B. M. and H. T. J. are grateful to K. Nomoto for providing them his stellar progenitor data and to A. Marek for his contributions to the microphysics used in the supernova runs. The project in Garching was supported by the Deutsche Forschungsgemeinschaft through the Transregional Collaborative Research Centers SFB/TR 27 "Neutrinos and Beyond'' and SFB/ TR 7 "Gravitational Wave Astronomy,'' and the Cluster of Excellence EXC 153 "Origin and Structure of the Universe'' (http://www. universe-cluster. de). The supernova computations were performed at the High Performance Computing Center Stuttgart (HLRS) under Grant No. SuperN/12758. NR 67 TC 29 Z9 29 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 2 AR 023016 DI 10.1103/PhysRevD.78.023016 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HM UT WOS:000258636700023 ER PT J AU Mao, Y Tegmark, M McQuinn, M Zaldarriaga, M Zahn, O AF Mao, Yi Tegmark, Max McQuinn, Matthew Zaldarriaga, Matias Zahn, Oliver TI How accurately can 21 cm tomography constrain cosmology? SO PHYSICAL REVIEW D LA English DT Article ID CENTIMETER FLUCTUATIONS; HIGH-REDSHIFT; REIONIZATION OBSERVATORIES; INTERGALACTIC MEDIUM; 21-CM FLUCTUATIONS; POWER SPECTRUM; HII-REGIONS; EPOCH; FOREGROUNDS; GALAXIES AB There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6 < z < 20. We cover assumptions related to modeling of the ionization power spectrum, to the experimental specifications like array layout and detector noise, to uncertainties in the reionization history, and to the level of contamination from astrophysical foregrounds. We derive simple analytic estimates for how various assumptions affect an experiment's sensitivity, and we find that the modeling of reionization is the most important, followed by the array layout. We present an accurate yet robust method for measuring cosmological parameters that exploits the fact that the ionization power spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters. We find that for future experiments, marginalizing over these nuisance parameters may provide constraints almost as tight on the cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to Delta Omega(k)approximate to 0.0002 and Delta m(nu)approximate to 0.007 eV, and give a 4 sigma detection of the spectral index running predicted by the simplest inflation models. C1 [Mao, Yi; Tegmark, Max] MIT, Ctr Theoret Phys, Dept Phys, Cambridge, MA 02139 USA. [Tegmark, Max] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zaldarriaga, Matias] Harvard Univ, Jefferson Lab Phys, Cambridge, MA 02138 USA. [Zahn, Oliver] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Zahn, Oliver] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mao, Y (reprint author), MIT, Ctr Theoret Phys, Dept Phys, Cambridge, MA 02139 USA. EM ymao@mit.edu; tegmark@mit.edu RI Mao, Yi/G-9288-2015 NR 47 TC 121 Z9 122 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 2 AR 023529 DI 10.1103/PhysRevD.78.023529 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HM UT WOS:000258636700052 ER PT J AU Oktay, MB Kronfeld, AS AF Oktay, Mehmet B. Kronfeld, Andreas S. TI New lattice action for heavy quarks SO PHYSICAL REVIEW D LA English DT Article ID YANG-MILLS THEORY; CONTINUUM-LIMIT; PERTURBATION-THEORY; GAUGE-THEORIES; QCD; FERMIONS; PHYSICS; MATRIX AB We extend the Fermilab method for heavy quarks to include interactions of dimensions 6 and 7 in the action. There are, in general, many new interactions, but we carry out the calculations needed to match the lattice action to continuum QCD at the tree level, finding six nonzero couplings. Using the heavy-quark theory of cutoff effects, we estimate how large the remaining discretization errors are. We find that our tree-level matching, augmented with one-loop matching of the dimension-5 interactions, can bring these errors below 1%, at currently available lattice spacings. C1 [Oktay, Mehmet B.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kronfeld, Andreas S.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Oktay, MB (reprint author), Trinity Coll Dublin, Sch Math, Dublin 2, Ireland. NR 57 TC 32 Z9 32 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014504 DI 10.1103/PhysRevD.78.014504 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400068 ER PT J AU Passera, M Marciano, WJ Sirlin, A AF Passera, M. Marciano, W. J. Sirlin, A. TI The muon g-2 and the bounds on the Higgs boson mass SO PHYSICAL REVIEW D LA English DT Article ID ANOMALOUS MAGNETIC-MOMENT; TOTAL CROSS-SECTION; STANDARD MODEL PREDICTION; HADRONIC CONTRIBUTIONS; ENERGY-RANGE; E(+)E(-) ANNIHILATION; E&E ANNIHILATION; TAU-DECAYS; M-W; ELECTRON AB After a brief review of the muon g - 2 status, we analyze the possibility that the present discrepancy between experiment and the standard model (SM) prediction may be due to hypothetical errors in the determination of the hadronic leading-order contribution to the latter. In particular, we show how an increase of the hadroproduction cross section in low-energy e(+)e(-) collisions could bridge the muon g - 2 discrepancy, leading however to a decrease on the electroweak upper bound on M-H, the SM Higgs boson mass. That bound is currently M-H less than or similar to 150 GeV (95% C.L.) based on the preliminary top quark mass M-t = 172.6(1.4) GeV and the recent determination Delta alpha((5))(had)(M-Z) = 0.027 68(22), while the direct-search lower bound is M-H > 114.4 GeV (95% C.L.). By means of a detailed analysis we conclude that this solution of the muon g - 2 discrepancy is unlikely in view of current experimental error estimates. However, if this turns out to be the solution, the 95% C.L. upper bound on M-H is reduced to about 130 GeV which, in conjunction with the experimental lower bound, leaves a narrow window for the mass of this fundamental particle. C1 [Passera, M.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Marciano, W. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sirlin, A.] NYU, Dept Phys, New York, NY 10003 USA. RP Passera, M (reprint author), Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. EM massimo.passera@pd.infn.it; marciano@bnl.gov; alberto.sirlin@nyu.edu OI Passera, Massimo/0000-0002-7471-4124 FU E. C. Research Training Networks [MRTN-CT-2004-503369, MRTN-CT-2006035505]; U.S. DOE [DE-AC02-76CH00016]; U.S. NSF [PHY-0245068] FX We would like to thank G. Colangelo, G. Degrassi, S. Eidelman, A. Ferroglia, and T. Teubner for very useful discussions, and S. Eidelman, S. Muller, F. Nguyen, and G. Venanzoni for precious help with the experimental data of the hadronic cross sections. M. P. also thanks the Department of Physics of the University of Padova for its support. The work of M. P. was supported in part by the E. C. Research Training Networks under Contracts No. MRTN-CT-2004-503369 and No. MRTN-CT-2006035505. The work of W.J.M. was supported by U.S. DOE Grant No. DE-AC02-76CH00016. The work of A. S. was supported in part by the U.S. NSF Grant No. PHY-0245068. NR 95 TC 49 Z9 49 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 013009 DI 10.1103/PhysRevD.78.013009 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400030 ER PT J AU Shintani, E Aoki, S Kuramashi, Y AF Shintani, E. Aoki, S. Kuramashi, Y. TI Full QCD calculation of neutron electric dipole moment with the external electric field method SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; IMPROVED LATTICE ACTION; STRONG CP-VIOLATION; YANG-MILLS THEORY; SUM-RULES; CONSERVATION; LIMIT; PHYSICS; QUARK AB We have calculated the neutron electric dipole moment (EDM) in the presence of the CP violating theta term in lattice QCD with two-flavor dynamical clover quarks, using the external electric field method. Accumulating a large number of statistics by the averages over 16 different source points and over forward and backward nucleon propagators, we have obtained nonzero signals of neutron and proton EDM beyond 1 standard deviation at each quark mass in full QCD. We have investigated the quark mass dependence of nucleon EDM in full QCD, and have found that nucleon EDM in full QCD does not decrease toward the chiral limit, as opposed to the theoretical expectation. We briefly discuss possible reasons for this behavior. C1 [Shintani, E.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Aoki, S.; Kuramashi, Y.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] RIKEN, BNL Res Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. [Kuramashi, Y.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. RP Shintani, E (reprint author), High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. RI Kuramashi, Yoshinobu /C-8637-2016; Shintani, Eigo/C-8623-2016 FU Grant-in-Aid of the Ministry of Education [13135204, 15540251, 18540250, 70447225] FX This work is supported in part by Grant-in-Aid of the Ministry of Education (No. 13135204, No. 15540251, No. 18540250, No. 70447225). Numerical simulations are performed on Hitachi SR11000 at the High Energy Accelerator Research Organization (KEK). At KEK this simulation is under support of the Large Scale Simulation Program (No. 06-04). We use the two-flavor full QCD configurations generated by the CP-PACS Collaboration [14]. NR 45 TC 34 Z9 34 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014503 DI 10.1103/PhysRevD.78.014503 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400067 ER PT J AU Yuan, F AF Yuan, Feng TI Heavy-quarkonium production in single-transverse-polarized high-energy scattering SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; SPIN ASYMMETRIES; PARTON DISTRIBUTIONS; DRELL-YAN; MOMENTUM; GAUGE; J/PSI AB We formulate the single transverse spin asymmetry in heavy quarkonium production in lepton-nucleon and nucleon-nucleon collisions in the nonrelativistic limit. We find that the asymmetry is very sensitive to the production mechanism. The final state interactions with the heavy quark and antiquark cancel out among themselves when the pair are produced in a color-singlet configuration, or cancel out with the initial state interaction in pp scattering when they are in color-octet. As a consequence, the asymmetry is nonzero in ep collisions only in the color-octet model, whereas in pp collisions only in the color-singlet model. C1 [Yuan, Feng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] RIKEN, Brookhaven Natl Lab, BNL Res Ctr, Upton, NY 11973 USA. RP Yuan, F (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM fyuan@lbl.gov RI Yuan, Feng/N-4175-2013 FU U. S. Department of Energy [DE-AC02-05CH11231]; [DE-AC02-98CH10886] FX We thank Xiangdong Ji, Min Liu, Jen-Chiel Peng, Ernst Sichtermann, and Werner Vogelsang for useful discussions and encouragements. We especially thank Jian-Ping Ma and Jianwei Qiu for their valuable comments and discussions. This work was supported in part by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to RIKEN, Brookhaven National Laboratory and the U. S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. NR 44 TC 25 Z9 25 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 1 AR 014024 DI 10.1103/PhysRevD.78.014024 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HJ UT WOS:000258636400055 ER PT J AU Zaharijas, G AF Zaharijas, Gabrijela TI Implications of the intermediate mass black hole in globular cluster G1 on dark matter detection SO PHYSICAL REVIEW D LA English DT Article ID GAMMA-RAYS; CONSTRAINTS; ORIGIN; GALAXY; HALOS; MODEL AB Recently there has been growing evidence in favor of the presence of an intermediate mass black hole in the globular cluster G1, in Andromeda Galaxy. Under the assumption that formation of this globular cluster occurred within a dark matter halo, we explore whether the presence of a black hole could result in an observable gamma ray signal due to dark matter annihilation in this globular cluster. Starting from an initial Navarro-Frenk-White matter profile, with density parameters consistent with G1 observations, we find that indeed, if the spike in the density has been formed and has survived until the present, the signal could be observed by GLAST and current atmospheric Cerenkov telescope detectors. C1 Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Zaharijas, G (reprint author), Argonne Natl Lab, HEP Div, 9700 Cass Ave, Argonne, IL 60439 USA. OI Zaharijas, Gabrijela/0000-0001-8484-7791 FU U. S. Department of Energy; Division of High Energy Physics [DE-AC02-06CH11357] FX The author would like to kindly thank Dan Hooper and Robyn Levine, with whom the idea for the paper emerged, and to Pasquale Serpico and Emiliano Sefusatti for many helpful comments. This work was supported in part by the U. S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. NR 27 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2008 VL 78 IS 2 AR 027301 DI 10.1103/PhysRevD.78.027301 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 340HM UT WOS:000258636700137 ER PT J AU Borzsonyi, T Halsey, TC Ecke, RE AF Borzsonyi, Tamas Halsey, Thomas C. Ecke, Robert E. TI Avalanche dynamics on a rough inclined plane SO PHYSICAL REVIEW E LA English DT Article ID DENSE GRANULAR FLOWS; SURFACE FLOWS; SCALING LAWS; MOTION; TRANSITION; MASS AB The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u(p) that exceed the front speed u(f) as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta(r) where theta(r) is the bulk angle of repose, or with increasing beta(P), the slope of the depth averaged flow rule, where both theta(r) and beta(P) reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion. C1 [Borzsonyi, Tamas; Ecke, Robert E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Borzsonyi, Tamas] HIHIRes Inst Solid State Phys & Opt, H-1525 Budapest, Hungary. [Halsey, Thomas C.] ExxonMobil Upstream Res Co, Houston, TX 77098 USA. RP Borzsonyi, T (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. EM btamas@szfki.hu OI Ecke, Robert/0000-0001-7772-5876 NR 52 TC 26 Z9 26 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2008 VL 78 IS 1 AR 011306 DI 10.1103/PhysRevE.78.011306 PN 1 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 333UR UT WOS:000258178600041 PM 18763947 ER PT J AU Cormier-Michel, E Shadwick, BA Geddes, CGR Esarey, E Schroeder, CB Leemans, WP AF Cormier-Michel, Estelle Shadwick, B. A. Geddes, C. G. R. Esarey, E. Schroeder, C. B. Leemans, W. P. TI Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators SO PHYSICAL REVIEW E LA English DT Article ID ELECTRON-BEAMS; CHARGE CONSERVATION; PLASMA INTERACTIONS; PULSES; SIMULATION; INJECTION; CODE; WAVES AB Unphysical heating and macroparticle trapping that arise in the numerical modeling of laser wakefield accelerators using particle-in-cell codes are investigated. A dark current free laser wakefield accelerator stage, in which no trapping of background plasma electrons into the plasma wave should occur, and a highly nonlinear cavitated wake with self-trapping, are modeled. Numerical errors can lead to errors in the macroparticle orbits in both phase and momentum. These errors grow as a function of distance behind the drive laser and can be large enough to result in unphysical trapping in the plasma wake. The resulting numerical heating in intense short-pulse laser-plasma interactions grows much faster and to a higher level than the known numerical grid heating of an initially warm plasma in an undriven system. The amount of heating, at least in the region immediately behind the laser pulse, can, in general, be decreased by decreasing the grid size, increasing the number of particles per cell, or using smoother interpolation methods. The effect of numerical heating on macroparticle trapping is less severe in a highly nonlinear cavitated wake, since trapping occurs in the first plasma wave period immediately behind the laser pulse. C1 [Cormier-Michel, Estelle; Geddes, C. G. R.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cormier-Michel, Estelle; Esarey, E.; Leemans, W. P.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Shadwick, B. A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. RP Cormier-Michel, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. OI Schroeder, Carl/0000-0002-9610-0166 NR 45 TC 30 Z9 30 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2008 VL 78 IS 1 AR 016404 DI 10.1103/PhysRevE.78.016404 PN 2 PG 17 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 333UV UT WOS:000258179000059 PM 18764064 ER PT J AU Grava, J Purvis, MA Filevich, J Marconi, MC Rocca, JJ Dunn, J Moon, SJ Shlyaptsev, VN AF Grava, Jonathan Purvis, Michael A. Filevich, Jorge Marconi, Mario C. Rocca, Jorge J. Dunn, James Moon, Stephen J. Shlyaptsev, Vyacheslav N. TI Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry SO PHYSICAL REVIEW E LA English DT Article ID ASTROPHYSICAL JETS; HYDRA SIMULATIONS; COLLIDING PLASMA; DIAGNOSTICS; TARGETS; EVOLUTION; RELEVANT; GRATINGS; MIRROR; NM AB The formation and evolution of a collisional aluminum plasma jet created by optical laser irradiation of triangular grooves with pulses of 120 ps duration at an intensity of 1x10(12) W cm(-2) were studied with experiments and simulations. Series of high-contrast soft x-ray laser interferograms obtained with a 46.9 nm laser mapped the plasma density evolution of an initially narrow plasma jet that expands along the symmetry plane and evolves into a broader plasma plume with significant side lobes. Two-dimensional simulations performed using the radiation hydrodynamic code HYDRA reveal that the jet formation is initiated by accelerated material ablated from the vertex and is augmented by the continual sequential arrival of wall material along the symmetry plane, where it collides and is redirected outward. Radiative cooling is identified as an important process in maintaining the collimation of the jet. These results demonstrate that well collimated collisional plasma jets with parameters in a range of interest can be generated with low-energy laser pulses (< 1 J), opening the possibility of studying relevant plasma phenomena in a small laboratory setting. C1 [Grava, Jonathan; Purvis, Michael A.; Filevich, Jorge; Marconi, Mario C.; Rocca, Jorge J.] Colorado State Univ, NSF ERC Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. [Grava, Jonathan; Purvis, Michael A.; Filevich, Jorge; Marconi, Mario C.; Rocca, Jorge J.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Rocca, Jorge J.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Dunn, James; Moon, Stephen J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Shlyaptsev, Vyacheslav N.] Univ Calif Davis, Dept Appl Sci, Livermore, CA 94551 USA. RP Grava, J (reprint author), Colorado State Univ, NSF ERC Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. NR 40 TC 21 Z9 21 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2008 VL 78 IS 1 AR 016403 DI 10.1103/PhysRevE.78.016403 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 333UV UT WOS:000258179000058 PM 18764063 ER PT J AU Kim, KS Chou, T Rudnick, J AF Kim, K. S. Chou, Tom Rudnick, Joseph TI Degenerate ground-state lattices of membrane inclusions SO PHYSICAL REVIEW E LA English DT Article ID MEDIATED INTERACTIONS; PROTEINS; SHAPE AB Particles that are embedded in fluid membranes or plates can induce bending if they impose a nonzero angle of contact. This bending mediates complicated effective particle-particle interactions. In the absence of tension, these interactions are nonpairwise additive and can result in clusters of particles with specific configurations that give rise to zero total membrane bending energy. Here, we consider an infinite periodic lattice of such membrane inclusions. Upon summing the nonpairwise interactions within a regular lattice, we find an unexpected infinite number of periodic lattices that preserve zero membrane bending energy. Elliptically shaped membrane inclusions further increase the phase space of this degeneracy. C1 [Kim, K. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chou, Tom] Univ Calif Los Angeles, Dept Biomath & Math, Los Angeles, CA 90095 USA. [Rudnick, Joseph] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Chou, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tomchou@ucla.edu FU NIAID NIH HHS [K25 AI41935] NR 19 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2008 VL 78 IS 1 AR 011401 DI 10.1103/PhysRevE.78.011401 PN 1 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 333UR UT WOS:000258178600044 PM 18763950 ER PT J AU Mikaelian, KO AF Mikaelian, Karnig O. TI Limitations and failures of the Layzer model for hydrodynamic instabilities SO PHYSICAL REVIEW E LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; RAYLEIGH-TAYLOR; DENSITY RATIO; ACCELERATION; DEPENDENCE; FLUIDS; LAWS AB We report several limitations and failure modes of the recently expanded Layzer model for hydrodynamic instabilities. The failures occur for large initial amplitudes, for stable accelerations, and for spikes in two-fluid systems. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mikaelian, KO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 20 TC 18 Z9 18 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2008 VL 78 IS 1 AR 015303 DI 10.1103/PhysRevE.78.015303 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 333UV UT WOS:000258179000006 PM 18764011 ER PT J AU Reichhardt, CJO Reichhardt, C AF Reichhardt, C. J. Olson Reichhardt, C. TI Viscous decoupling transitions for individually dragged particles in systems with quenched disorder SO PHYSICAL REVIEW E LA English DT Article ID COLLOIDAL DISPERSIONS; MICRORHEOLOGY; MOTION AB We show that when an individual particle is dragged through an assembly of other particles in the presence of quenched disorder, a viscous decoupling transition occurs between the dragged particle and the surrounding particles which is controlled by the quenched disorder. A counterintuitive consequence of this transition is that the velocity of the dragged particle can be increased by increasing the strength or density of the quenched disorder. The decoupling transition can also occur when the external drive on the dragged particle is increased and is observable as a clear signature in the velocity-force response. C1 [Reichhardt, C. J. Olson; Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 NR 22 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2008 VL 78 IS 1 AR 011402 DI 10.1103/PhysRevE.78.011402 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 333UR UT WOS:000258178600045 ER PT J AU Xu, XQ AF Xu, X. Q. TI Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST SO PHYSICAL REVIEW E LA English DT Article ID GEODESIC ACOUSTIC MODES; PARTICLE SIMULATION; EDGE PLASMAS; TRANSPORT; EQUATIONS; TURBULENCE; SYSTEMS; FLOWS AB We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,epsilon,mu) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 38 TC 10 Z9 10 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2008 VL 78 IS 1 AR 016406 DI 10.1103/PhysRevE.78.016406 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 333UV UT WOS:000258179000061 PM 18764066 ER PT J AU Sefkow, AB Davidson, RC Gilson, EP AF Sefkow, Adam B. Davidson, Ronald C. Gilson, Erik P. TI Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID FUSION CHAMBER TRANSPORT; CHARGE NEUTRALIZATION; ION; TRANSVERSE; FIELD AB Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX). The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and partially fill the high-field region of the solenoid. Because of the magnetic mirroring effect, the on-axis plasma density in the solenoid depends on the injection velocity and magnetic field strength. C1 [Sefkow, Adam B.; Davidson, Ronald C.; Gilson, Erik P.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sefkow, AB (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U. S. Department of Energy under the auspices of the Heavy Ion Fusion Science Virtual National Laboratory FX This research was supported by the U. S. Department of Energy under the auspices of the Heavy Ion Fusion Science Virtual National Laboratory. The authors would like to acknowledge useful discussions with Dr. P. C. Efthimion, Dr. A. Friedman, Dr. J.- Y. Jung, Dr. I. D. Kaganovich, Dr. M. Leitner, Dr. P. K. Roy, Dr. P. A. Seidl, Dr. E. A. Startsev, Dr. D. R. Welch, and Dr.. S. Yu with special thanks to A. Carpe for technical assistance. NR 41 TC 1 Z9 1 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2008 VL 11 IS 7 AR 070101 DI 10.1103/PhysRevSTAB.11.070101 PG 27 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 350LA UT WOS:000259352700001 ER PT J AU Sereno, NS Borland, M Lill, R AF Sereno, N. S. Borland, M. Lill, R. TI Automated correction of phase errors in the Advanced Photon Source linac SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Maintaining stable phasing in a linear accelerator is crucial for maintaining optimal performance. If phasing is incorrect, the beam will in general have an energy error and increased energy spread. While an energy error can be readily detected and corrected using position readings from beam position monitors at dispersion locations, this method is not useful for correcting energy spread in a system with many possible phase errors. While energy spread can be corrected by looking at beam size at a dispersive location, this typically involves a beam-intercepting diagnostic and is not compatible with top-up operation. Uncorrected energy spread results in poor capture efficiency in downstream accelerators, such as the Advanced Photon Source (APS) particle accumulator ring or booster synchrotron. To address this issue, APS has implemented beam-to-rf phase detectors in the linac, along with software for automatic correction of phase errors. We discuss the design, implementation, and performance of these detectors, as well as their use in feedback to automatically correct linac phase errors during top-up operation. C1 [Sereno, N. S.; Borland, M.; Lill, R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Sereno, NS (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sereno@aps.anl.gov; borland@aps.anl.gov; blill@aps.anl.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, [DE-AC0206CH11357] FX Much appreciation goes to Lester Erwin, Adam Brill, and Chuck Gold for installing and maintaining the phase detector electronics. Thanks to Stan Pasky who assisted with all aspects of phase detector commissioning. Gratitude goes to Eric Norum and Mariana Varotto who designed the EPICS controls and medm display screens. Thanks to Louis Emery and Glenn Decker for many useful comments and suggestions. This work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357. NR 7 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2008 VL 11 IS 7 AR 072801 DI 10.1103/PhysRevSTAB.11.072801 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 350LA UT WOS:000259352700008 ER PT J AU Fedotov, GV Burkert, VD Golovach, EN Elouadrhiri, L Isupov, EL Ishkhanov, BS Mokeev, VI Shvedunov, NV AF Fedotov, G. V. Burkert, V. D. Golovach, E. N. Elouadrhiri, L. Isupov, E. L. Ishkhanov, B. S. Mokeev, V. I. Shvedunov, N. V. TI Isobar channels and nucleon resonances in pi(+)pi(-) electroproduction on protons SO PHYSICS OF ATOMIC NUCLEI LA English DT Article ID MESON PRODUCTION; REGION; EXCITATION; MODEL AB Acomprehensive set of differential cross sections for the reaction gamma(nu)p -> pi(-)pi(+) p at the square of the photon 4-momentum in the range 0.2 < Q (2) < 0.6 GeV(2) and the invariant mass of final-state hadrons in the range 1.3 < W < 1.6 GeV was first obtained with the CLAS detector at the Thomas Jefferson Laboratory. An analysis of these data on the basis of the phenomenological model developed by physicists from the Institute of Nuclear Physics at Moscow State University (INP MSU) and Thomas Jefferson Laboratory (INP MSU-Hall B at Jefferson Lab Collaboration) made it possible to determine, for the first time, the contributions of all isobar channels to the differential cross sections in question. The possibility of extracting the Q(2) dependences of the electromagnetic form factors for the P(11)(1440) and D(13)(1520) resonances in a kinematical region that is the most sensitive to the contribution of the meson-baryon cloud to the structure of nucleon resonances is demonstrated. C1 [Fedotov, G. V.; Golovach, E. N.; Isupov, E. L.; Ishkhanov, B. S.; Mokeev, V. I.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Burkert, V. D.; Elouadrhiri, L.; Mokeev, V. I.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Fedotov, GV (reprint author), Moscow MV Lomonosov State Univ, Moscow 119992, Russia. EM fedotov@depni.sinp.msu.ru RI Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012 NR 12 TC 1 Z9 1 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD JUL PY 2008 VL 71 IS 7 BP 1309 EP 1315 DI 10.1134/S1063778808070272 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 328EJ UT WOS:000257780300027 ER PT J AU Burton, GC AF Burton, Gregory C. TI Scalar-energy spectra in simulations of Sc >> 1 mixing by turbulent jets using the nonlinear large-eddy simulation method SO PHYSICS OF FLUIDS LA English DT Article ID FLOWS; FIELD AB The nonlinear large-eddy simulation (nLES) method is applied to the first numerical study of passive-scalar mixing by a turbulent shear flow at a high Schmidt number (Sc > 1). The work is intended to address inconsistencies between previous studies concerning the formation of power-law scaling in the scalar-energy spectra at viscous-convective scales. Results are reported for LES of a round turbulent jet at Sc=1024 and Re(D)=2000. The nLES method is first shown to recover the large-scale jet structure, including the self-similarity of far-field scalar moments. Scalar timeseries and spatial data produce the first power spectra from a LES shear-flow study that exhibits k(-1) scaling at viscous-convective scales, consistent with the analysis of Batchelor [J. Fluid Mech. 5, 113 (1959)] and recent direct numerical studies of simpler Sc > 1 flows. (c) 2008 American Institute of Physics. C1 [Burton, Gregory C.] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Burton, Gregory C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Burton, GC (reprint author), Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. NR 23 TC 3 Z9 3 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JUL PY 2008 VL 20 IS 7 AR 071701 DI 10.1063/1.2921017 PG 4 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 333TP UT WOS:000258175600001 ER PT J AU Carlsten, BE Bishofberger, KA Faehl, RJ AF Carlsten, Bruce E. Bishofberger, Kip A. Faehl, Rickey J. TI Compact two-stream generator of millimeter- and submillimeter-wave radiation SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON-BEAMS; AMPLIFIER; INSTABILITY AB A novel approach to producing short-wavelength radiation is proposed, where two offset electron beams of slightly different energies are merged within a dipole magnet and interact. With proper modulation of the two beams, the two-stream instability can be exploited to efficiently generate narrow-band millimeter-wave radiation. This type of source dispenses with the problematic structure required in other generation mechanisms and eliminates complex machining, delicate alignment, expensive parts, and catastrophic failures. Preliminary simulations have shown promise for a 100-GHz design, which is also scalable to 1 THz. This concept requires only low-voltage, low-current electron beams and could lead to a device capable of generating up to 100 W at 1 THz, while remaining simple and compact. (C) 2008 American Institute of Physics. C1 [Carlsten, Bruce E.; Bishofberger, Kip A.; Faehl, Rickey J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Carlsten, BE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Carlsten, Bruce/0000-0001-5619-907X NR 13 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2008 VL 15 IS 7 AR 073101 DI 10.1063/1.2938385 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 333TR UT WOS:000258175800055 ER PT J AU Dewald, EL Rosen, M Glenzer, SH Suter, LJ Girard, F Jadaud, JP Schein, J Constantin, C Wagon, F Huser, G Neumayer, P Landen, OL AF Dewald, E. L. Rosen, M. Glenzer, S. H. Suter, L. J. Girard, F. Jadaud, J. P. Schein, J. Constantin, C. Wagon, F. Huser, G. Neumayer, P. Landen, O. L. TI X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; PHYSICS BASIS; FACILITY; PLASMAS; LASER; SYSTEM AB The conversion efficiency of 351 nm laser light to soft x rays (0.1-5 keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 10(14) and 10(15) W/cm(2) over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After similar to 0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10(14) W/cm(2) laser intensity and of 80% at 10(15) W/cm(2). The M-band flux (2-5 keV) is negligible at 10(14) W/cm(2) reaching similar to 1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10(15) W/cm(2) laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux. (c) 2008 American Institute of Physics. C1 [Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Neumayer, P.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Girard, F.; Jadaud, J. P.; Wagon, F.; Huser, G.] Commissariat Energie Atom, Bruyeres Le Chatel, France. [Constantin, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Schein, J.] Univ German Armed Forces Munich, D-85577 Neubiberg, Germany. RP Dewald, EL (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 22 TC 35 Z9 43 U1 4 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2008 VL 15 IS 7 AR 072706 DI 10.1063/1.2943700 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 333TR UT WOS:000258175800049 ER PT J AU Jaeger, EF Berry, LA D'Azevedo, EF Barrett, RF Ahern, SD Swain, DW Batchelor, DB Harvey, RW Myra, JR D'Ippolito, DA Phillips, CK Valeo, E Smithe, DN Bonoli, PT Wright, JC Choi, M AF Jaeger, E. F. Berry, L. A. D'Azevedo, E. F. Barrett, R. F. Ahern, S. D. Swain, D. W. Batchelor, D. B. Harvey, R. W. Myra, J. R. D'Ippolito, D. A. Phillips, C. K. Valeo, E. Smithe, D. N. Bonoli, P. T. Wright, J. C. Choi, M. TI Simulation of high-power electromagnetic wave heating in the ITER burning plasma SO PHYSICS OF PLASMAS LA English DT Article ID ION-CYCLOTRON; TOKAMAK PLASMAS; DISTRIBUTIONS AB The next step toward fusion as a practical energy source is the design and construction of ITER [R. Aymar , Nucl. Fusion 41, 1301 (2001)], a device capable of producing and controlling the high-performance plasma required for self-sustaining fusion reactions, i.e., "burning plasma." ITER relies in part on ion-cyclotron radio frequency power to heat the deuterium and tritium fuel to fusion temperatures. In order to heat effectively, the radio frequency wave fields must couple efficiently to the dense core plasma. Calculations in this paper support the argument that this will be the case. Three-dimensional full-wave simulations show that fast magnetosonic waves in ITER propagate radially inward with strong central focusing and little toroidal spreading. Energy deposition, current drive, and plasma flow are all highly localized near the plasma center. Very high resolution, two-dimensional calculations reveal the presence of mode conversion layers, where fast waves can be converted to slow ion cyclotron waves. When minority ions such as deuterium or helium-3 are used to damp the launched waves, these ions can be accelerated to high energies, forming suprathermal tails that significantly affect the wave propagation and absorption. By neglecting the toroidal localization of the waves and the finite radial excursion of the energetic particle orbits, the quasilinear evolution of these suprathermal ion tails can be simulated self-consistently in one spatial dimension and two velocity dimensions. (c) 2008 American Institute of Physics. C1 [Jaeger, E. F.; Berry, L. A.; D'Azevedo, E. F.; Barrett, R. F.; Ahern, S. D.; Swain, D. W.; Batchelor, D. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Myra, J. R.; D'Ippolito, D. A.] Lodestar Res Corp, Boulder, CO 80301 USA. [Phillips, C. K.; Valeo, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Smithe, D. N.] Tech X Corp, Boulder, CO 80303 USA. [Bonoli, P. T.; Wright, J. C.] MIT, Ctr Plasma Fus, Cambridge, MA 02139 USA. [Choi, M.] Gen Atom Co, San Diego, CA 92186 USA. RP Jaeger, EF (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. NR 24 TC 32 Z9 32 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2008 VL 15 IS 7 AR 072513 DI 10.1063/1.2959128 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 333TR UT WOS:000258175800040 ER PT J AU Liu, W Hsu, SC Li, H Li, ST Lynn, AG AF Liu, Wei Hsu, Scott C. Li, Hui Li, Shengtai Lynn, Alan G. TI Ideal magnetohydrodynamic simulation of magnetic bubble expansion as a model for extragalactic radio lobes SO PHYSICS OF PLASMAS LA English DT Article ID X-RAY; RELATIVISTIC JETS; KINK INSTABILITY; CORONAL LOOPS; TOWER JETS; CLUSTER; EQUILIBRIUM; ATMOSPHERES; RELAXATION; STABILITY AB Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic "bubble" plasma into a lower density, weakly magnetized background plasma, are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Am. Phys. Soc. 52, 53 (2007)], which is studying magnetic bubble expansion as a model for extragalactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidal to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection facilitated by numerical resistivity and to inhomogeneous angular momentum transport mainly due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX. (C) 2008 American Institute of Physics. C1 [Liu, Wei; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hsu, Scott C.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Lynn, Alan G.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. RP Liu, W (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM wliu@lanl.gov OI Li, Shengtai/0000-0002-4142-3080; Hsu, Scott/0000-0002-6737-4934; Liu, Wei/0000-0003-0935-3999 NR 35 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2008 VL 15 IS 7 AR 072905 DI 10.1063/1.2948347 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 333TR UT WOS:000258175800054 ER PT J AU Logan, BG Perkins, LJ Barnard, JJ AF Logan, B. G. Perkins, L. J. Barnard, J. J. TI Direct drive heavy-ion-beam inertial fusion at high coupling efficiency SO PHYSICS OF PLASMAS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; CONFINEMENT FUSION; IMPLOSION; TARGETS; ICF; IGNITION; PHYSICS; FUELS AB Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work. (c) 2008 American Institute of Physics. C1 [Logan, B. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Perkins, L. J.; Barnard, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Logan, BG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 24 TC 48 Z9 48 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2008 VL 15 IS 7 AR 072701 DI 10.1063/1.2950303 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 333TR UT WOS:000258175800044 ER PT J AU Park, HS Maddox, BR Giraldez, E Hatchett, SP Hudson, LT Izumi, N Key, MH Le Pape, S MacKinnon, AJ MacPhee, AG Patel, PK Phillips, TW Remington, BA Seely, JF Tommasini, R Town, R Workman, J Brambrink, E AF Park, H. -S. Maddox, B. R. Giraldez, E. Hatchett, S. P. Hudson, L. T. Izumi, N. Key, M. H. Le Pape, S. MacKinnon, A. J. MacPhee, A. G. Patel, P. K. Phillips, T. W. Remington, B. A. Seely, J. F. Tommasini, R. Town, R. Workman, J. Brambrink, E. TI High-resolution 17-75 keV backlighters for high energy density experiments SO PHYSICS OF PLASMAS LA English DT Article ID LASER-SOLID INTERACTIONS; X-RAY SOURCE; EXTREME CONDITIONS; STRAIN-RATE; PRESSURE AB 17-75 keV one- and two-dimensional high-resolution (< 10 mu m) radiography has been developed using high-intensity short pulse lasers. High energy K alpha sources are created by fluorescence from hot electrons interacting in the target material after irradiation by lasers with intensity I-L > 10(17) W/cm(2). High-resolution point projection one- and two-dimensional radiography has been achieved using microfoil and microwire targets attached to low-Z substrate materials. The microwire size was 10 mu mx10 mu mx300 mu m on a 300 mu mx300 mu mx5 mu m polystyrene substrate. The radiography experiments were performed using the Titan laser at Lawrence Livermore National Laboratory. The results show that the resolution is dominated by the microwire target size and there is very little degradation from the plasma plume, implying that the high-energy x-ray photons are generated mostly within the microwire volume. There are enough K alpha photons created with a 300 J, 1-omega, 40 ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density experiments at many new high-power laser facilities. (c) 2008 American Institute of Physics. C1 [Park, H. -S.; Maddox, B. R.; Hatchett, S. P.; Izumi, N.; Key, M. H.; Le Pape, S.; MacKinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Phillips, T. W.; Remington, B. A.; Tommasini, R.; Town, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Giraldez, E.] Gen Atom Co, San Diego, CA 92121 USA. [Hudson, L. T.] NIST, Gaithersburg, MD 20899 USA. [Seely, J. F.] USN, Res Lab, Washington, DC 20375 USA. [Workman, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Brambrink, E.] Ecole Polytech, Lab Utilisat Lasers Intenses, F-91128 Palaiseau, France. RP Park, HS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI MacKinnon, Andrew/0000-0002-4380-2906; IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 NR 31 TC 54 Z9 58 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2008 VL 15 IS 7 AR 072705 DI 10.1063/1.2957918 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 333TR UT WOS:000258175800048 ER PT J AU Tang, XZ Boozer, AH AF Tang, X. Z. Boozer, A. H. TI Reactor prospect of spheromak concept by electrostatic helicity injection SO PHYSICS OF PLASMAS LA English DT Article ID CURRENT DRIVE; STEADY-STATE; ENERGY CONFINEMENT; FUSION-REACTORS; PLASMA; RELAXATION; PHYSICS; TOKAMAK; DENSITY; FIELDS AB The highest performing spheromaks in the laboratory are formed by electrostatic helicity injection. Discharges with up to 1 MA plasma current and core electron temperature as high as 500 eV have been recently obtained. For such a scheme to scale-up to a reactor, however, a much higher current multiplication factor (plasma current over injector current) must be achieved. It is shown here that spheromak current multiplication is linearly proportional to flux amplification (ratio of poloidal fluxes inside and outside the separatrix of the mean field). Hence, spheromak optimization is centered around achieving high flux amplification, which is provided by linear or nonlinear resonant coupling between helicity injector and the spheromak force-free eigenmode. The nonlinear resonant field amplification is the most promising route to high flux amplification in a realistic plasma that often significantly deviates from the Taylor state. Accessing such nonlinear resonant field amplification can be facilitated by auxiliary current drive around the magnetic axis and auxiliary heating to break the electron temperature constraint on flux amplification. (c) 2008 American Institute of Physics. C1 [Tang, X. Z.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Tang, XZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 44 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2008 VL 15 IS 7 AR 072510 DI 10.1063/1.2952294 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 333TR UT WOS:000258175800037 ER PT J AU Welser-Sherrill, L Cooley, JH Haynes, DA Wilson, DC Sherrill, ME Mancini, RC Tommasini, R AF Welser-Sherrill, L. Cooley, J. H. Haynes, D. A. Wilson, D. C. Sherrill, M. E. Mancini, R. C. Tommasini, R. TI Application of fall-line mix models to understand degraded yield SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; NATIONAL-IGNITION-FACILITY; OMEGA AB Mixing between fuel and shell material is an important topic in the inertial confinement fusion community, and is commonly accepted as the primary mechanism for neutron yield degradation. Typically, radiation hydrodynamic simulations that lack mixing (clean simulations) tend to considerably overestimate the neutron yield. This paper presents a series of yield calculations based on a variety of fall-line inspired mix models. The results are compared to a series of OMEGA experiments which provide total neutron yields and time-dependent yield rates. (c) 2008 American Institute of Physics. C1 [Welser-Sherrill, L.; Cooley, J. H.; Haynes, D. A.; Wilson, D. C.; Sherrill, M. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mancini, R. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Tommasini, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Welser-Sherrill, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Tommasini, Riccardo/A-8214-2009 OI Tommasini, Riccardo/0000-0002-1070-3565 NR 21 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2008 VL 15 IS 7 AR 072702 DI 10.1063/1.2953215 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 333TR UT WOS:000258175800045 ER PT J AU Crease, RP AF Crease, Robert P. TI A gathering for Gardner SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUL PY 2008 VL 21 IS 7 BP 20 EP 20 PG 1 WC Physics, Multidisciplinary SC Physics GA 323CE UT WOS:000257420800026 ER PT J AU Cowee, MM AF Cowee, Misa M. TI Mass-loading of the Jovian magnetosphere by Io SO PLANETARY AND SPACE SCIENCE LA English DT Editorial Material ID PLASMA TORUS; MODEL C1 [Cowee, Misa M.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Cowee, MM (reprint author), Los Alamos Natl Lab, Mail Stop D466,Grp ISR-1, Los Alamos, NM 87544 USA. EM mcowee@lanl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUL PY 2008 VL 56 IS 9 BP 1314 EP 1315 DI 10.1016/j.pss.2008.05.003 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 332CE UT WOS:000258058600015 ER PT J AU Cha, SW Zhang, H Ilarslan, HI Wurtele, ES Brachova, L Nikolau, BJ Yeung, ES AF Cha, Sangwon Zhang, Hui Ilarslan, Hilal I. Wurtele, Eve Syrkin Brachova, Libuse Nikolau, Basil J. Yeung, Edward S. TI Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry SO PLANT JOURNAL LA English DT Article DE graphite; laser desorption/ionization; mass spectrometry; Arabidopsis; flavonoids; cuticular wax ID ARABIDOPSIS-THALIANA; ELECTROSPRAY-IONIZATION; FUNCTIONAL GENOMICS; ECERIFERUM MUTANTS; EPICUTICULAR WAXES; SMALL MOLECULES; TOF-SIMS; FLAVONOID BIOSYNTHESIS; FLOWER DEVELOPMENT; CONDENSED TANNINS AB Laser desorption/ionization (LDI)-based imaging mass spectrometry (MS) has been applied to several biological systems to obtain information about both the identities of the major chemical species and their localization. Colloidal graphite-assisted LDI (GALDI) MS imaging was introduced for the imaging of small molecules such as phospholipids, cerebrosides, oligosaccharides, flavonoids, and other secondary metabolites with high spatial homogeneity due to finely dispersed particles. Mass profiles and images of Arabidopsis thaliana have been recorded directly from various plant surfaces and cross sections. The main targeted metabolites were flavonoids and cuticular waxes, both of which are important in many aspects of functional genomics, proteomics, and metabolomics. The mass spectral profiles revealed tissue-specific accumulation of flavonoids in flowers and petals. In addition, many other location-specific ions were observed. The location and the degree of light-induced accumulation of flavonoids in stem sections were successfully probed by GALDI MS. C1 [Cha, Sangwon; Zhang, Hui; Yeung, Edward S.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Cha, Sangwon; Zhang, Hui; Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Ilarslan, Hilal I.; Wurtele, Eve Syrkin] Iowa State Univ, Dept Genet Dev & Cell Biol, Ames, IA 50011 USA. [Brachova, Libuse; Nikolau, Basil J.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. RP Yeung, ES (reprint author), Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. EM yeung@ameslab.gov RI Cha, Sangwon/C-6917-2008; OI Cha, Sangwon/0000-0003-2819-3417; Wurtele, Eve/0000-0003-1552-9495 NR 73 TC 74 Z9 75 U1 1 U2 31 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD JUL PY 2008 VL 55 IS 2 BP 348 EP 360 DI 10.1111/j.1365-313X.2008.03507.x PG 13 WC Plant Sciences SC Plant Sciences GA 327AA UT WOS:000257699800015 PM 18397372 ER PT J AU Presto, AA Granite, EJ AF Presto, Albert A. Granite, Evan J. TI Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas GOLD, PALLADIUM AND PLATINUM FORMULATIONS SO PLATINUM METALS REVIEW LA English DT Article ID ATOMIC-ABSORPTION SPECTROMETRY; FIRED POWER-PLANTS; CONTROL OPTIONS; COAL; KINETICS; COMBUSTION; REMOVAL; SURFACE; OXIDES; CARBON AB The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process. C1 [Presto, Albert A.; Granite, Evan J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Granite, EJ (reprint author), US DOE, Natl Energy Technol Lab, POB 10940,MS 58-106, Pittsburgh, PA 15236 USA. EM evan.granite@netl.doe.gov RI Presto, Albert/C-3193-2008 OI Presto, Albert/0000-0002-9156-1094 FU Oak Ridge Institute for Science and Education (ORISE); DOE Innovations for Existing Power Plants (IEP) Program FX The authors thank Johnson Matthey PLC for providing the catalyst samples. Hugh Hamilton of the Johnson Matthey Technology Centre, U. K., provided excellent insight into the catalyst preparation and properties. The comments of the reviewers are greatly appreciated. Albert Presto acknowledges the support of a postdoctoral fellowship at the U. S. Department of Energy (DOE) administered by the Oak Ridge Institute for Science and Education (ORISE). Funding support from the DOE Innovations for Existing Power Plants (IEP) Program is greatly appreciated. We thank Gregson Vaux, Power/Energy Engineer for the Science Applications International Corporation (SAIC), for his kind help in understanding the regulatory status for mercury emissions as of April 2008. NR 42 TC 60 Z9 62 U1 4 U2 25 PU JOHNSON MATTHEY PUBL LTD CO PI LONDON PA HATTON GARDEN, LONDON EC1N 8EE, ENGLAND SN 1471-0676 J9 PLATIN MET REV JI Platin. Met. Rev. PD JUL PY 2008 VL 52 IS 3 BP 144 EP 154 DI 10.1595/147106708X319256 PG 11 WC Chemistry, Physical SC Chemistry GA 452MY UT WOS:000266545600003 ER PT J AU Ohriner, EK AF Ohriner, E. K. TI Processing of Iridium and Iridium Alloys METHODS FROM PURIFICATION TO FABRICATION SO PLATINUM METALS REVIEW LA English DT Article ID MECHANICAL-PROPERTIES; HOT-CRACKING; HEAT-SOURCE; GTA WELDS; DEPOSITION; COATINGS; WELDABILITY; RHENIUM; SHEET; LASER AB Iridium and its alloys have been considered to be difficult to fabricate due to their high melting temperatures, limited ductility, sensitivity to impurity content and particular chemical properties. The variety of processing methods used for iridium and its alloys are reviewed, including purification, melting, forming, joining and powder metallurgy techniques. Also included are coating and forming by the methods of electroplating, chemical and physical vapour deposition and melt particle deposition. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ohriner, EK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM ohrinerek@ornl.gov FU Office of Radioisotope Power Systems (NE-34) of the United States Department of Energy [DE-AC0500OR22725] FX The author acknowledges the assistance of George B. Ulrich and Stan A. David, both of the Oak Ridge National Laboratory, in providing some of the illustrations and in reviewing the manuscript. This work was sponsored by the Office of Radioisotope Power Systems (NE-34) of the United States Department of Energy and performed at the Oak Ridge National Laboratory, managed by UT- Battelle, LLC, under contract DE-AC0500OR22725. NR 79 TC 25 Z9 31 U1 4 U2 19 PU JOHNSON MATTHEY PUBL LTD CO PI ROYSTON PA ORCHARD RD, ROYSTON SG8 5HE, HERTFORDSHIRE, ENGLAND SN 0032-1400 EI 1471-0676 J9 PLATIN MET REV JI Platin. Met. Rev. PD JUL PY 2008 VL 52 IS 3 BP 186 EP 197 DI 10.1595/147106708X333827 PG 12 WC Chemistry, Physical SC Chemistry GA 452MY UT WOS:000266545600007 ER PT J AU Simmons, SL DiBartolo, G Denef, VJ Goltsman, DSA Thelen, MP Banfield, JF AF Simmons, Sheri L. DiBartolo, Genevieve Denef, Vincent J. Goltsman, Daniela S. Aliaga Thelen, Michael P. Banfield, Jillian F. TI Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation SO PLOS BIOLOGY LA English DT Article ID PROVIDES ACQUIRED-RESISTANCE; ESCHERICHIA-COLI CHROMOSOME; METAGENOMIC ANALYSIS; RECOMBINATION PATTERNS; MOLECULAR EVOLUTION; COMMUNITY GENOMICS; DIVERSITY; SEQUENCE; PROKARYOTES; DIVERGENCE AB Deeply sampled community genomic (metagenomic) datasets enable comprehensive analysis of heterogeneity in natural microbial populations. In this study, we used sequence data obtained from the dominant member of a low-diversity natural chemoautotrophic microbial community to determine how coexisting closely related individuals differ from each other in terms of gene sequence and gene content, and to uncover evidence of evolutionary processes that occur over short timescales. DNA sequence obtained from an acid mine drainage biofilm was reconstructed, taking into account the effects of strain variation, to generate a nearly complete genome tiling path for a Leptospirillum group II species closely related to L. ferriphilum (sampling depth similar to 20x). The population is dominated by one sequence type, yet we detected evidence for relatively abundant variants (>99.5% sequence identity to the dominant type) at multiple loci, and a few rare variants. Blocks of other Leptospirillum group II types (similar to 94% sequence identity) have recombined into one or more variants. Variant blocks of both types are more numerous near the origin of replication. Heterogeneity in genetic potential within the population arises from localized variation in gene content, typically focused in integrated plasmid/phage-like regions. Some laterally transferred gene blocks encode physiologically important genes, including quorum-sensing genes of the LuxIR system. Overall, results suggest inter-and intrapopulation genetic exchange involving distinct parental genome types and implicate gain and loss of phage and plasmid genes in recent evolution of this Leptospirillum group II population. Population genetic analyses of single nucleotide polymorphisms indicate variation between closely related strains is not maintained by positive selection, suggesting that these regions do not represent adaptive differences between strains. Thus, the most likely explanation for the observed patterns of polymorphism is divergence of ancestral strains due to geographic isolation, followed by mixing and subsequent recombination. C1 [Simmons, Sheri L.; DiBartolo, Genevieve; Denef, Vincent J.; Goltsman, Daniela S. Aliaga; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Thelen, Michael P.] Lawrence Livermore Natl Lab, Chem Directorate, Livermore, CA USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Thelen, Michael/C-6834-2008; Thelen, Michael/G-2032-2014 OI Thelen, Michael/0000-0002-2479-5480; Thelen, Michael/0000-0002-2479-5480 NR 70 TC 74 Z9 74 U1 2 U2 14 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD JUL PY 2008 VL 6 IS 7 BP 1427 EP 1442 AR e177 DI 10.1371/journal.pbio.0060177 PG 16 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 330VO UT WOS:000257971100015 PM 18651792 ER PT J AU Dietrich, KA Sindelar, CV Brewer, PD Downing, KH Cremo, CR Rice, SE AF Dietrich, Kristen A. Sindelar, Charles V. Brewer, Paul D. Downing, Kenneth H. Cremo, Christine R. Rice, Sarah E. TI The kinesin-1 motor protein is regulated by a direct interaction of its head and tail SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cross-linking; electron microscopy; regulation; switch ID EPR SPECTROSCOPY; CARGO-BINDING; DOMAIN; RESOLUTION; INHIBITION; MECHANISM; MOTILITY; RELEASE; MYOSIN; NECK AB Kinesin-1 is a molecular motor protein that transports cargo along microtubules. Inside cells, the vast majority of kinesin-1 is regulated to conserve ATP and to ensure its proper intracellular distribution and coordination with other molecular motors. Regulated kinesin-1 folds in half at a hinge in its coiled-coil stalk. Interactions between coiled-coil regions near the enzymatically active heads at the IN terminus and the regulatory tails at the C terminus bring these globular elements in proximity and stabilize the folded conformation. However, it has remained a mystery how kinesin-l's microtubule-stimulated ATPase activity is regulated in this folded conformation. Here, we present evidence for a direct interaction between the kinesin-1 head and tail. We photochemically cross-linked heads and tails and produced an 8-angstrom cryoEM reconstruction of the cross-linked head-tail complex on microtubules. These data demonstrate that a conserved essential regulatory element in the kinesin-1 tail interacts directly and specifically with the enzymatically critical Switch I region of the head. This interaction suggests a mechanism for tail-mediated regulation of the ATPase activity of kinesin-1. In our structure, the tail makes simultaneous contacts with the kinesin-1 head and the microtubule, suggesting the tail may both regulate kinesin-1 in solution and hold it in a paused state with high ADP affinity on microtubules. The interaction of the Switch I region of the kinesin-1 head with the tail is strikingly similar to the interactions of small GTPases with their regulators, indicating that other kinesin motors may share similar regulatory mechanisms. C1 [Dietrich, Kristen A.; Rice, Sarah E.] Northwestern Univ, Dept Cell & Mol Biol, Chicago, IL 60611 USA. [Sindelar, Charles V.; Downing, Kenneth H.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Cremo, Christine R.] Univ Nevada, Sch Med, Dept Biochem & Mol Biol, Reno, NV 89557 USA. RP Rice, SE (reprint author), Northwestern Univ, Dept Cell & Mol Biol, Chicago, IL 60611 USA. EM s-rice@northwestern.edu FU NCRR NIH HHS [1P20RR018751, P20 RR-0164-05, P20 RR018751, P51 RR000164]; NIAMS NIH HHS [R01 AR040917, 5 RO1 AR040917-18]; NIGMS NIH HHS [5 R01 GM072656-02, GM46033, GM51487, P01 GM051487, R01 GM046033, R01 GM072656, T32 GM008382] NR 27 TC 63 Z9 63 U1 1 U2 14 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 1 PY 2008 VL 105 IS 26 BP 8938 EP 8943 DI 10.1073/pnas.0803575105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 322DC UT WOS:000257354400026 PM 18579780 ER PT J AU Dai, M Temirov, J Pesavento, E Kiss, C Velappan, N Pavlik, P Werner, JH Bradbury, ARM AF Dai, M. Temirov, J. Pesavento, E. Kiss, C. Velappan, N. Pavlik, P. Werner, J. H. Bradbury, A. R. M. TI Using T7 phage display to select GFP-based binders SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE affinity reagents; GFP; phage display; T7 phage ID GREEN FLUORESCENT PROTEIN; RANDOM PEPTIDE LIBRARIES; MYC ANTIBODY 9E10; FILAMENTOUS PHAGE; HELPER PHAGE; MONOCLONAL-ANTIBODY; EPITOPE LIBRARY; BINDING-PROTEIN; RAPID ISOLATION; ZINC FINGERS AB Filamentous phage do not display cytoplasmic proteins very effectively. As T7 is a cytoplasmic phage, released by cell lysis, it has been prospected as being more efficient for the display of such proteins. Here we investigate this proposition, using a family of GFP-based cytoplasmic proteins that are poorly expressed by traditional phage display. Using two single-molecule detection techniques, fluorescence correlation spectroscopy and anti-bunching, we show that the number of displayed fluorescent proteins ranges from one to three. The GFP derivatives displayed on T7 contain binding loops able to recognize specific targets. By mixing these in a large background of non-binders, these derivatives were used to optimize selection conditions. Using the optimal selection conditions determined in these experiments, we then demonstrated the selection of specific binders from a library of GFP clones containing heavy chain CDR3 antibody binding loops derived from normal donors inserted at a single site. The selected GFP-based binders were successfully used to detect binding without the use of secondary reagents in flow cytometry, fluorescence-linked immunosorbant assays and immunoblotting. These results demonstrate that specific GFP-based affinity reagents, selected from T7-based libraries, can be used in applications in which only the intrinsic fluorescence is used for detection. C1 [Dai, M.; Kiss, C.; Velappan, N.; Pavlik, P.; Werner, J. H.; Bradbury, A. R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Temirov, J.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM USA. [Dai, M.] 3M Drug Delivery Syst, St Paul, MN USA. [Pesavento, E.] Univ Catholique Louvain, Biochem Unit, B-1348 Louvain, Belgium. RP Dai, M (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM amb@lanl.gov OI Velappan, Nileena/0000-0002-4488-9126; Bradbury, Andrew/0000-0002-5567-8172; Werner, James/0000-0002-7616-8913 NR 83 TC 23 Z9 28 U1 1 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD JUL PY 2008 VL 21 IS 7 BP 413 EP 424 DI 10.1093/protein/gzn016 PG 12 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 316WB UT WOS:000256979300001 PM 18469345 ER PT J AU Chi, EY Ege, C Winans, A Majewski, J Wu, GH Kjaer, K Lee, KYC AF Chi, Eva Y. Ege, Canay Winans, Amy Majewski, Jaroslaw Wu, Guohui Kjaer, Kristian Lee, Ka Yee C. TI Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-beta peptide SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE protein aggregation; fibril formation; protein-lipid interactions; protein conformation; lipid vesicles; lipid monolayer; Alzheimer's disease; grazing-incidence X-ray diffraction; X-ray reflectivity ID X-RAY-DIFFRACTION; SOLID-STATE NMR; PHOSPHOLIPID MONOLAYERS; NEUTRON REFLECTION; BILAYER-MEMBRANES; CORTICAL-NEURONS; PROTEIN; FIBRILS; CONFORMATIONS; AGGREGATION AB The lipid membrane has been shown to mediate the fibrillogenesis and toxicity of Alzheimer's disease (AD) amyloid-P (A beta) peptide. Electrostatic interactions between A beta 40 and the phospholipid headgroup have been found to control the association and insertion of monomeric A beta into lipid monolayers, where A beta exhibited enhanced interactions with charged lipids compared with zwitterionic lipids. To elucidate the molecular-scale structural details of A beta-membrane association, we have used complementary X-ray and neutron scattering techniques (grazing-incidence X-ray diffraction, Xray reflectivity, and neutron reflectivity) in this study to investigate in situ the association of A beta with lipid monolayers composed of either the anionic lipid 1,2-dipalmitoylsn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or the cationic lipid 1,2-dipaimitoyl 3-trimethylammonium propane (DPTAP) at the air-buffer interface. We found that the anionic lipid DPPG uniquely induced crystalline ordering of A beta at the membrane surface that closely mimicked the beta-sheet structure in fibrils, revealing an intriguing templated ordering effect of DPPG on A beta. Furthermore, incubating A beta with lipid vesicles containing the anionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphorac-(1-glycerol)] (POPG) induced the formation of amyloid fibrils, confirming that the templated ordering of A beta at the membrane surface seeded fibril formation. This study provides a detailed molecular-scale characterization of the early structural fluctuation and assembly events that may trigger the misfolding and aggregation of A beta in vivo. Our results implicate that the adsorption of A beta to anionic lipids, which could become exposed to the outer membrane leaflet by cell injury, may serve as an in vivo mechanism of templated-aggregation and drive the pathogenesis of AD. C1 [Chi, Eva Y.; Ege, Canay; Winans, Amy; Wu, Guohui; Lee, Ka Yee C.] Univ Chicago, Dept Chem, Inst Biophys Dynam, Chicago, IL 60637 USA. [Chi, Eva Y.; Ege, Canay; Winans, Amy; Wu, Guohui; Lee, Ka Yee C.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Majewski, Jaroslaw] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Kjaer, Kristian] Max Planck Inst Colloids & Interfaces, Am Muhlenberg, Germany. [Kjaer, Kristian] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. RP Lee, KYC (reprint author), Univ Chicago, Dept Chem, Inst Biophys Dynam, 929 E 57th St, Chicago, IL 60637 USA. EM kayeelee@uchicago.edu RI Lujan Center, LANL/G-4896-2012 FU NIA NIH HHS [AG025649] NR 69 TC 70 Z9 72 U1 9 U2 47 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUL PY 2008 VL 72 IS 1 BP 1 EP 24 DI 10.1002/prot.21887 PG 24 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 311OP UT WOS:000256609800001 PM 18186465 ER PT J AU Moy, CM Dunbar, RB Moreno, PI Francois, JP Villa-Martinez, R Mucciarone, DM Guilderson, TP Garreaud, RD AF Moy, Christopher M. Dunbar, Robert B. Moreno, Patricio I. Francois, Jean-Pierre Villa-Martinez, Rodrigo Mucciarone, David M. Guilderson, Thomas P. Garreaud, Rene D. TI Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium SO QUATERNARY SCIENCE REVIEWS LA English DT Article ID SOUTHERN-HEMISPHERE; CARBON ISOTOPES; ORGANIC-MATTER; MARINE-SEDIMENTS; CLIMATE-CHANGE; ICE-AGE; LAKE; GROWTH; PALEOCLIMATE; AMERICA AB The Southern Hemisphere westerly winds influence the spatial distribution of precipitation in southern South America and play a significant role in the global carbon cycle, yet little is known about how this important atmospheric circulation feature has varied in the past. Here, we present a sediment core record of late Holocene variability from Lago Guanaco, a small closed-basin lake located in Torres del Paine National Park, Chilean Patagonia. The park is located in the core of the modern wind field and variations in the intensity of the atmospheric circulation directly influence the hydrology of this region. We combine stable isotopic measurements of biogenic carbonate and bulk organic matter to identify two periods of increased evaporation between 900-550 and similar to 400-50 calendar years before present (cal yr BP). The first interval is coincident with the Medieval Climate Anomaly (MCA) while the more recent period is broadly coincident with the timing of the Little Ice Age (LIA). During the LIA interval, we observe simultaneous monotonic increases in the delta O-18 of biogenic carbonate and Nothofagus dombeyi-type pollen, which we interpret as indicative of significant changes in the intensity of the southern westerlies during the last millennium. The isotopic and palynological variations in the Guanaco record are coincident with geochemical variations found in an Antarctic ice core record from Siple Dome, suggesting that the signal preserved in Lago Guanaco is regional rather than local, and that the LIA intensification was accompanied by a poleward shift in the southern margin of the westerlies. In addition, we interpret four periods of increased lake productivity centered on 900, 650, 500, and 200 cal yr BP from simultaneous increases in the delta C-13 of bulk organic material and biogenic carbonate. These increases in lake productivity are most likely tied to increases in summer temperatures. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Moy, Christopher M.; Dunbar, Robert B.; Mucciarone, David M.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Moreno, Patricio I.; Francois, Jean-Pierre] Univ Chile, Dept Ecol Sci, Santiago, Chile. [Moreno, Patricio I.; Francois, Jean-Pierre] Univ Chile, Inst Ecol & Biodivers, Santiago, Chile. [Villa-Martinez, Rodrigo] Ctr Estudios Cuaternario CEQUA, Punta Arenas 01890, Chile. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Garreaud, Rene D.] Univ Chile, Dept Geophys, Santiago, Chile. RP Moy, CM (reprint author), Stanford Univ, Dept Geol & Environm Sci, 450 Serra Mail,Braun Hall,Bldg 320, Stanford, CA 94305 USA. EM moyc@stanford.edu; dunbar@stanford.edu; pimoreno@uchile.cl; geofrancois@gmail.com; rodrigo.villa@umag.cl; tguilderson@llnl.gov; rgarreau@dgf.uchile.cl RI Moreno, Patricio/D-2317-2012; Villa, Rodrigo/F-5737-2014; Garreaud, Rene/I-6298-2016; OI Moreno, Patricio/0000-0002-1333-6238; Villa, Rodrigo/0000-0001-6041-4393; Garreaud, Rene/0000-0002-7875-2443 NR 56 TC 59 Z9 61 U1 8 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD JUL PY 2008 VL 27 IS 13-14 BP 1335 EP 1349 DI 10.1016/j.quascirev.2008.03.006 PG 15 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 325QS UT WOS:000257604000004 ER PT J AU Espinosa, G Golzarri, JI Bogard, J Gaso, I Ponciano, G Mena, M Segovia, N AF Espinosa, G. Golzarri, J. I. Bogard, J. Gaso, I. Ponciano, G. Mena, M. Segovia, N. TI Indoor radon measurements in Mexico City SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 23rd International Conference on Nuclear Tracks in Solids CY SEP 11-15, 2006 CL Shanxi Normal Univ, Inst Modern Phys, Beijing, PEOPLES R CHINA SP Nat Sci Fdn China, China Ctr Adv Sci & Technol, Commiss Sci & Technol Sustainable Dev S, Third World Acad Sci, Int Ctr Theoret Ctr, Bureau Higher Educ Shanxi Province HO Shanxi Normal Univ, Inst Modern Phys DE indoor radon; Nuclear Track Methodology; LR-115; CR-39 ID SYSTEM AB Mexico City is one of the most populated cities in the world with almost 22 million inhabitants, located at an altitude of 2200 m. The old city was founded on an ancient lake and the zone is known by its high seismicity; indoor radon determination is an important public health issue. In this paper the data of indoor radon levels in Mexico City, measured independently by two research groups, both using Nuclear Track Detector systems but different methodologies, are correlated. The measurements were done during similar exposure periods of time, at family houses from the political administrative regions of the city. The results indicate a correlation coefficient between the two sets of data of R = 0.886. Most of the differences between the two sets of data are inherent to houses having extreme (very high or very low indoor radon) included in the statistics of each group. The total average indoor radon found in Mexico City considering the two methods was 87 Bq m(-3). (C) 2008 Elsevier Ltd. All rights reserved. C1 [Espinosa, G.; Golzarri, J. I.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Bogard, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gaso, I.] Inst Nacl Invest Nucl, Mexico City 11801, DF, Mexico. [Ponciano, G.] Univ Nacl Autonoma Mexico, Fac Med, Mexico City 04510, DF, Mexico. [Mena, M.; Segovia, N.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. RP Espinosa, G (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20364, Mexico City 01000, DF, Mexico. EM espinosa@fisica.unam.mx NR 12 TC 12 Z9 12 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD JUL PY 2008 VL 43 SU 1 BP S431 EP S434 DI 10.1016/j.radmeas.2008.03.039 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 344UV UT WOS:000258953700093 ER PT J AU Espinosa, G Golzarri, JI Gammage, RB Sajo-Bohus, L Viccon-Pale, J Signoret-Poillon, A AF Espinosa, G. Golzarri, J. I. Gammage, R. B. Sajo-Bohus, L. Viccon-Pale, J. Signoret-Poillon, A. TI Seasonal variation measurements of radon levels in caves using SSNTD method SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 23rd International Conference on Nuclear Tracks in Solids CY SEP 11-15, 2006 CL Shanxi Normal Univ, Inst Modern Phys, Beijing, PEOPLES R CHINA SP Nat Sci Fdn China, China Ctr Adv Sci & Technol, Commiss Sci & Technol Sustainable Dev S, Third World Acad Sci, Int Ctr Theoret Ctr, Bureau Higher Educ Shanxi Province HO Shanxi Normal Univ, Inst Modern Phys DE radon in caves; CR-39; caves; radon exposure ID INDOOR RADON AB The results of radon concentration measurements inside of the Gabriel caves of Mexico, during three consecutive two-month periods covering almost three seasons, are reported in the present work. The radio-ecological importance of this site is related to the radon and its concentration-dynamic behavior in the cave. Further interest in radiation safety motivated this initiative since routine biological field work is done, with people spending long periods of time there. CR-39 passive nuclear track detector was chosen for this survey. Radon concentration levels decrease during the rainy season and show different values depending on the ventilation and geometeorological structure. Measured values range between 956 and 4931 Bq m(-3), an indication that radon doses may exceed the allowed values for workers. This project is part of a larger study of indoor radon alpha emitters in Mexican caves. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Espinosa, G.; Golzarri, J. I.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Gammage, R. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sajo-Bohus, L.] Univ Simon Bolivar, Dept Fis, Caracas 1080, Venezuela. [Viccon-Pale, J.; Signoret-Poillon, A.] UAM Xochimilco, Mexico City, DF, Mexico. RP Espinosa, G (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico. EM espinosa@fisica.unam.mx RI VICCON-PALE, JOSE/C-2804-2009 NR 17 TC 5 Z9 5 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD JUL PY 2008 VL 43 SU 1 BP S364 EP S368 DI 10.1016/j.radmeas.2008.04.033 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 344UV UT WOS:000258953700078 ER PT J AU Miller, G Bertelli, L Guilmette, R McNaughton, MW Eisele, WF AF Miller, G. Bertelli, L. Guilmette, R. McNaughton, M. W. Eisele, W. F. TI A STUDY OF EARLY LOS ALAMOS INTERNAL EXPOSURES TO PLUTONIUM SO RADIATION PROTECTION DOSIMETRY LA English DT Article ID FOLLOW-UP; WORKERS; DOSIMETRY AB Internal dose caused by exposure to (239)Pu/(240)Pu is calculated for a group of 210 former Los Alamos workers who participated in the urine bioassay programme during the years 1944-45. An iterative Bayesian procedure is employed, where the distribution of intake amounts resulting from an initial calculation is used to define a prior probability distribution of inhalation intakes for an iterated second calculation. The urine bioassay data from this time period were not of high quality, and the more accurate intake prior tempers the effect of spurious high samples, which were probably caused by sample contamination. C1 [Miller, G.; Bertelli, L.; Guilmette, R.; McNaughton, M. W.; Eisele, W. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP McNaughton, MW (reprint author), Los Alamos Natl Lab, MS-M992, Los Alamos, NM 87545 USA. EM mcnaughton@lanl.gov FU United States Department of Energy; Los Alamos National Laboratory FX This work was funded under the United States Department of Energy contract for the management and operation of Los Alamos National Laboratory. NR 19 TC 0 Z9 0 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD JUL PY 2008 VL 130 IS 4 BP 503 EP 509 DI 10.1093/rpd/ncn094 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 361VV UT WOS:000260156400016 PM 18375946 ER PT J AU Olsher, RH McLean, TD AF Olsher, Richard H. McLean, Thomas D. TI HIGH-ENERGY RESPONSE OF THE PRESCILA AND WENDI-II NEUTRON REM METERS SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB WENDI-II was designed at the Los Alamos National Laboratory (LANL) specifically as a wide-range rem meter, suitable for applications at particle accelerators, with response extension to 5 GeV. PRESCILA was also designed at LANL, mainly as a lightweight alternative to traditional rem meters, but has shown excellent response characteristics above 20 MeV. This Note summarises measurements performed over a span of 4 y to characterise the high-energy neutron response (> 20 MeV) of these meters to several hundred million electron volts. High-energy quasi-monoenergetic beams utilised as part of this study were produced by the cyclotron facilities at the Universite Catholique de Louvain (33 and 60 MeV) and the T. Svedberg Laboratory ( 46, 95, 143 and 173 MeV). In addition, measurements were also conducted at the Los Alamos Neutron Science Center, 800 MeV spallation neutron source, in broad energy fields with an average energy of 345 MeV. For the sake of completeness, data collected between 2.5 and 19 MeV in monoenergetic neutron fields at the German Physikalisch-Technische Bundesanstalt (PTB) facility are also included in this study. C1 [Olsher, Richard H.; McLean, Thomas D.] Los Alamos Natl Lab, Hlth Phys Measurements Grp RP 2, Los Alamos, NM 87545 USA. RP Olsher, RH (reprint author), Los Alamos Natl Lab, Hlth Phys Measurements Grp RP 2, MS J573, Los Alamos, NM 87545 USA. EM dick@lanl.gov NR 13 TC 12 Z9 12 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD JUL PY 2008 VL 130 IS 4 BP 510 EP 513 DI 10.1093/rpd/ncn092 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 361VV UT WOS:000260156400017 PM 18381335 ER PT J AU Sudo, H Garbe, J Stampfer, MR Barcellos-Hoff, MH Kronenberg, A AF Sudo, Hiroko Garbe, James Stampfer, Martha R. Barcellos-Hoff, Mary Helen Kronenberg, Amy TI Karyotypic instability and centrosome aberrations in the progeny of finite life-span human mammary epithelial cells exposed to sparsely or densely ionizing radiation SO RADIATION RESEARCH LA English DT Article ID INDUCED GENOMIC INSTABILITY; ATOMIC-BOMB SURVIVORS; BONE-MARROW-CELLS; CHROMOSOMAL INSTABILITY; IN-VIVO; X-RAYS; GENETIC INSTABILITY; OXIDATIVE STRESS; MAMMALIAN-CELLS; ALPHA-PARTICLES AB The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer. (C) 2008 by Radiation Research Society. C1 [Sudo, Hiroko; Garbe, James; Stampfer, Martha R.; Barcellos-Hoff, Mary Helen; Kronenberg, Amy] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Kronenberg, A (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,Bldg 70A-1118, Berkeley, CA 94720 USA. EM a_kronenberg@lbl.gov NR 63 TC 18 Z9 19 U1 0 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2008 VL 170 IS 1 BP 23 EP 32 DI 10.1667/RR1317.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 321IN UT WOS:000257298100003 PM 18582160 ER PT J AU North, DW Abdo, KM Benson, JM Dahl, AR Morris, JB Renne, R Witschi, H AF North, D. Warner Abdo, Kamal M. Benson, Janet M. Dahl, Alan R. Morris, John B. Renne, Roger Witschi, Hanspeter TI A review of whole animal bioassays of the carcinogenic potential of naphthalene SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Review DE naphthalene; animal bioassay; National Toxicology Program (NTP); cancer; carcinogenesis; tumorigenesis; cytotoxicity; maximum tolerated dose (MTD); inhalation studies ID SPRAGUE-DAWLEY RATS; INHALATION EXPOSURE; BUTADIENE DIEPOXIDE; SPECIES-DIFFERENCES; F344 RATS; MICE; 1,3-BUTADIENE; METABOLISM; DISPOSITION; MONOEPOXIDE AB This report provides a summary of deliberations conducted under the charge for members of Module A participating in the Naphthalene State-of-the-Science Symposium (NS3), Monterey, CA, October 9-12, 2006. Whole animal bioassays have been performed by the National Toxicology Program in mice and rats to ascertain the carcinogenic potential of naphthalene by inhalation exposure. A statistically significant increased incidence of pulmonary alveolar/bronchiolar adenoma (a benign lesion), was observed among female mice; an observed increase among the males did not reach statistical significance. No nasal tumors were observed in either sex. A tumorigenic response was observed in both sexes of rats, in males an increased incidence of nasal respiratory epithelium adenoma (a benign rather than malignant lesion) and in females, olfactory epithelial neuroblastoma. Interpretations of these studies vary. On the one hand, evidence of extensive non-neoplastic response in both sexes of both species indicates cytotoxicity occurred at all doses, and strongly suggests that cytotoxicity played a significant role in the tumor responses observed in the target tissues. On the other hand, olfactory epithelial neuroblastoma has rarely been observed in NTP bioassays. This review seeks to develop a consensus understanding of the scientific evidence provided by these studies, taking into account that they have been used as the basis for quantitative human cancer risk assessment, and suggests scientific studies that, if performed, could resolve scientific uncertainties. (C) 2007 Elsevier Inc. All rights reserved. C1 [North, D. Warner] N Works Inc, Belmont, MA USA. [North, D. Warner] Stanford Univ, Dept Management Sci & Engn, Terman Engn Ctr, Stanford, CA 94305 USA. [Abdo, Kamal M.] NIEHS, Natl Toxicol Program, NIH, Res Triangle Pk, NC 27709 USA. [Benson, Janet M.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. [Dahl, Alan R.] Ohio State Univ, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Morris, John B.] Univ Connecticut, Coll Pharm, Dept Pharmaceut Sci, Storrs, CT 06269 USA. [Renne, Roger] Battelle Pacific NW Labs, Richland, WA 99352 USA. [Witschi, Hanspeter] Univ Calif Davis, Sch Vet Med, Dept Pharmacol & Toxicol, Davis, CA 95616 USA. RP North, DW (reprint author), N Works Inc, 1002 Misty Lane, Belmont, MA USA. EM northworks@mindspring.com NR 33 TC 13 Z9 14 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD JUL PY 2008 VL 51 IS 2 SU 1 BP S6 EP S14 DI 10.1016/j.yrtph.2007.09.022 PG 9 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 320RW UT WOS:000257253700002 PM 18364246 ER PT J AU Sallaberry, CJ Helton, JC Hora, SC AF Sallaberry, C. J. Helton, J. C. Hora, S. C. TI Extension of Latin hypercube samples with correlated variables SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE experimental design; Latin hypercube sample; Monte Carlo analysis; rank correlation; sample size extension; sensitivity analysis; uncertainty analysis ID PROBABILISTIC RISK-ASSESSMENT; SENSITIVITY ANALYSIS TECHNIQUES; RESPONSE-SURFACE METHODOLOGY; CONSEQUENCE UNCERTAINTY ANALYSIS; 1996 PERFORMANCE ASSESSMENT; ISOLATION PILOT-PLANT; LARGE-SCALE SYSTEMS; INPUT VARIABLES; COMPUTER-MODELS; EXPERT JUDGMENT AB A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and constructs a new LHS of size 2m that contains the elements of the original LHS and has a rank correlation matrix that is close to the original rank correlation matrix C. The procedure is intended for use in conjunction with uncertainty and sensitivity analysis of computationally demanding models in which it is important to make efficient use of a necessarily limited number of model evaluations. Published by Elsevier Ltd. C1 [Sallaberry, C. J.] Sandia Natl Labs, Dept 6784, Albuquerque, NM 87185 USA. [Helton, J. C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. [Hora, S. C.] Univ Hawaii, Hilo, HI 96720 USA. RP Helton, JC (reprint author), Sandia Natl Labs, Dept 1544, MS 0776, Albuquerque, NM 87185 USA. EM jchelto@sandia.gov RI ming-jui, chang/F-9294-2015; Barley, Kamal/F-9579-2011 OI Barley, Kamal/0000-0003-1874-9813 NR 89 TC 27 Z9 28 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD JUL PY 2008 VL 93 IS 7 BP 1047 EP 1059 DI 10.1016/j.ress.2007.04.005 PG 13 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 282AY UT WOS:000254541200013 ER PT J AU Jang, ZH Suh, BJ Corti, M Cattaneo, L Hajny, D Borsa, F Luban, M AF Jang, Z. H. Suh, B. J. Corti, M. Cattaneo, L. Hajny, D. Borsa, F. Luban, M. TI Broadband electron spin resonance at low frequency without resonance cavity (vol 79, artn no 046101, 2008) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction C1 [Jang, Z. H.] Kookmin Univ, Dept Phys, Seoul 136702, South Korea. [Suh, B. J.] Catholic Univ Korea, Dept Phys, Puchon 420743, South Korea. [Corti, M.; Cattaneo, L.; Hajny, D.; Borsa, F.] CNISM INFM Pavia, Dipartimento Fis A Volta & Unita, I-27100 Pavia, Italy. [Borsa, F.; Luban, M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Borsa, F.; Luban, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Jang, ZH (reprint author), Kookmin Univ, Dept Phys, Seoul 136702, South Korea. EM zeehoonj@kookmin.ac.kr NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2008 VL 79 IS 7 AR 079901 DI 10.1063/1.2952507 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 333UY UT WOS:000258179400062 ER PT J AU Li, GS Hu, DH Xia, GG White, JM Zhang, C AF Li, Guosheng Hu, Dehong Xia, Guanguang White, J. M. Zhang, Conrad TI High throughput operando studies using Fourier transform infrared imaging and Raman spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID METAL-OXIDE CATALYSTS; SUPPORTED MOLYBDENUM OXIDE; MOLECULAR-STRUCTURES; PARALLEL ANALYSIS; OXIDATION; METHANOL; SYSTEMS; SPECTROMETER; DISCOVERY; LIBRARIES AB A prototype high throughput operando (HTO) reactor designed and built for catalyst screening and characterization combines Fourier transform infrared (FT-IR) imaging and Raman spectroscopy in operando conditions. Using a focal plane array detector (HgCdTe focal plane array, 128x128 pixels, and 1610 Hz frame rate) for the FT-IR imaging system, the catalyst activity and selectivity of all parallel reaction channels can be simultaneously followed. Each image data set possesses 16 384 IR spectra with a spectral range of 800-4000 cm(-1) and with an 8 cm(-1) resolution. Depending on the signal-to-noise ratio, 2-20 s are needed to generate a full image of all reaction channels for a data set. Results on reactant conversion and product selectivity are obtained from FT-IR spectral analysis. Six novel Raman probes, one for each reaction channel, were specially designed and house built at Pacific Northwest National Laboratory, to simultaneously collect Raman spectra of the catalysts and possible reaction intermediates on the catalyst surface under operando conditions. As a model system, methanol partial oxidation reaction on silica-supported molybdenum oxide (MoO(3)/SiO(2)) catalysts has been studied under different reaction conditions to demonstrate the performance of the HTO reactor. (C) 2008 American Institute of Physics. C1 [Li, Guosheng; Hu, Dehong; Xia, Guanguang; White, J. M.; Zhang, Conrad] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [White, J. M.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78731 USA. RP Zhang, C (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM conrad.zhang@pnl.gov RI Hu, Dehong/B-4650-2010 OI Hu, Dehong/0000-0002-3974-2963 NR 44 TC 7 Z9 7 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2008 VL 79 IS 7 AR 074101 DI 10.1063/1.2949389 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 333UY UT WOS:000258179400036 PM 18681719 ER PT J AU Loh, ZH Khalil, M Correa, RE Leone, SR AF Loh, Zhi-Heng Khalil, Munira Correa, Raoul E. Leone, Stephen R. TI A tabletop femtosecond time-resolved soft x-ray transient absorption spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID INTENSE LASER FIELDS; HIGH-HARMONIC-GENERATION; EXTREME-ULTRAVIOLET; HIGH-RESOLUTION; 4D ELECTRONS; INNER-SHELL; OSCILLATOR-STRENGTHS; NONLINEAR OPTICS; SMALL MOLECULES; FINE-STRUCTURE AB A laser-based, tabletop instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a homebuilt soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray charge coupled device camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterizations of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented. (C) 2008 American Institute of Physics. C1 [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Loh, Zhi-Heng/B-6952-2011 OI Loh, Zhi-Heng/0000-0001-9729-9632 NR 69 TC 22 Z9 22 U1 3 U2 40 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2008 VL 79 IS 7 AR 073101 DI 10.1063/1.2947737 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 333UY UT WOS:000258179400002 PM 18681685 ER PT J AU Wang, XB Wang, LS AF Wang, Xue-Bin Wang, Lai-Sheng TI Development of a low-temperature photoelectron spectroscopy instrument using an electrospray ion source and a cryogenically controlled ion trap SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DOUBLY-CHARGED ANIONS; FLIGHT MASS-SPECTROMETER; INTRINSIC ELECTRONIC-STRUCTURE; GAS-PHASE; HYDROGEN-BOND; BIS(DITHIOLENE) ANIONS; HELIUM CLUSTERS; AB-INITIO; PHOTODETACHMENT; IONIZATION AB The ability to control ion temperatures is critical for gas phase spectroscopy and has been a challenge in chemical physics. A low-temperature photoelectron spectroscopy instrument has been developed for the investigation of complex anions in the gas phase, including multiply charged anions, solvated species, and biological molecules. The new apparatus consists of an electrospray ionization source, a three dimensional (3D) Paul trap for ion accumulation and cooling, a time-of-flight mass spectrometer, and a magnetic-bottle photoelectron analyzer. A key feature of the new instrument is the capability to cool and tune ion temperatures from 10 to 350 K in the 3D Paul trap, which is attached to the cold head of a closed cycle helium refrigerator. Ion cooling is accomplished in the Paul trap via collisions with a background gas and has been demonstrated by observation of complete elimination of vibrational hot bands in photoelectron spectra of various anions ranging from small molecules to complex species. Further evidence of ion cooling is shown by the observation of H-2-physisorbed anions at low temperatures. Cold anions result in better resolved photoelectron spectra due to the elimination of vibrational hot bands and yield more accurate energetic and spectroscopic information. Temperature-dependent studies are made possible for weakly bonded molecular and solvated clusters, allowing thermodynamic information to be obtained. (C) 2008 American Institute of Physics. C1 [Wang, Xue-Bin] Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Wang, XB (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov NR 67 TC 115 Z9 115 U1 6 U2 74 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2008 VL 79 IS 7 AR 073108 DI 10.1063/1.2957610 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 333UY UT WOS:000258179400009 ER PT J AU Eichten, E Godfrey, S Mahlke, H Rosner, JL AF Eichten, Estia Godfrey, Stephen Mahlke, Hanna Rosner, Jonathan L. TI Quarkonia and their transitions SO REVIEWS OF MODERN PHYSICS LA English DT Review ID MAGNETIC DIPOLE TRANSITIONS; INVERSE SCATTERING PROBLEM; RADIATIVE M1 TRANSITIONS; SHORT-DISTANCE ANALYSIS; ANTIQUARK BOUND-STATES; HADRON DECAY PROCESSES; D-WAVE QUARKONIUM; HEAVY QUARKONIA; RESONANCE PARAMETERS; QUANTUM CHROMODYNAMICS AB Valuable data on quarkonia (the bound states of a heavy quark Q=c,b and the corresponding antiquark) have recently been provided by a variety of sources, mainly e(+)e(-) collisions, but also hadronic interactions. This permits a thorough updating of the experimental and theoretical status of electromagnetic and strong transitions in quarkonia. The Q (Q) over bar transitions to other Q (Q) over bar states are discussed, with some reference to processes involving Q (Q) over bar annihilation. C1 [Eichten, Estia] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Godfrey, Stephen] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. [Mahlke, Hanna] Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Rosner, Jonathan L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Rosner, Jonathan L.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Eichten, E (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU United States Department of Energy [DE FG02 90ER40560]; Natural Sciences and Engineering Research Council of Canada; U. S. National Science Foundation under cooperative agreement [PHY-0202078] FX Input from Frank Close, Richard Galik, Brian Heltsley, and Kamal Seth is gratefully acknowledged. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. This work was supported in part by the United States Department of Energy under Grant No. DE FG02 90ER40560, the Natural Sciences and Engineering Research Council of Canada, and the U. S. National Science Foundation under cooperative agreement PHY-0202078. J. L. R. thanks the Laboratory for Elementary-Particle Physics (Cornell) and the Aspen Center for Physics for hospitality during part of this research. NR 265 TC 135 Z9 136 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL-SEP PY 2008 VL 80 IS 3 BP 1161 EP 1193 DI 10.1103/RevModPhys.80.1161 PG 33 WC Physics, Multidisciplinary SC Physics GA 350UE UT WOS:000259377800009 ER PT J AU Yacobi, BG Joy, DC AF Yacobi, B. G. Joy, D. C. TI Special issue in honor of professor D.B. Holt SO SCANNING LA English DT Editorial Material C1 [Yacobi, B. G.] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada. [Joy, D. C.] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN USA. [Joy, D. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Yacobi, BG (reprint author), Univ Toronto, Dept Mat Sci & Engn, 184 Coll St, Toronto, ON M5S 3E4, Canada. EM b.yacobi@utoronto.ca NR 5 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0161-0457 EI 1932-8745 J9 SCANNING JI Scanning PD JUL-AUG PY 2008 VL 30 IS 4 BP 285 EP 286 DI 10.1002/sca.20107 PG 2 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 339FK UT WOS:000258563300001 PM 18570325 ER PT J AU Pennycook, SJ AF Pennycook, S. J. TI Investigating the optical properties of dislocations by scanning transmission electron microscopy SO SCANNING LA English DT Review DE cathodoluminescence; dislocations; core structures; scanning transmission electron microscopy; electron energy loss spectroscopy; optical properties ID TILT GRAIN-BOUNDARIES; Z-CONTRAST STEM; LATTICE-RESOLUTION CONTRAST; V-COMPOUND SEMICONDUCTORS; VAPOR-PHASE EPITAXY; DARK-FIELD IMAGES; GAN THIN-FILMS; ATOMIC-RESOLUTION; SCATTERED ELECTRONS; CORE STRUCTURES AB The scanning transmission electron microscope (STEM) allows collection of a number Of simultaneous signals, such as cathodoluminescence (CL), transmitted electron intensity and spectroscopic information from individual localized defects. This review traces the development of CL and atomic resolution imaging from their early inception through to the possibilities that exist today for achieving a true atomic-scale understanding of the optical properties of individual dislocations cores. This review is dedicated to Professor David Holt, a pioneer in this field. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pennycook, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM pennycooksj@ornl.gov FU Division of Materials Sciences and Engineering US Department of Energy FX S. J. P. acknowledges his collaborators for the work reviewed here L. M. Brown A. J. Craven H. J. Gao G. Duscher M. Kim D. Kumar K. G. Cho R. K. Singh A. R. Lupini M. Kim N. D. Browning K. Sohlberg S. T. Pantelides S. Rujirawat S. Sivananthan Y. P. Chen and P. D. Nellist and acknowledges support from the Division of Materials Sciences and Engineering US Department of Energy. NR 138 TC 15 Z9 15 U1 2 U2 24 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0161-0457 J9 SCANNING JI Scanning PD JUL-AUG PY 2008 VL 30 IS 4 BP 287 EP 298 DI 10.1002/sca.20114 PG 12 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 339FK UT WOS:000258563300002 PM 18613065 ER PT J AU Zhang, Y Babu, SS Zhang, P Kenik, EA Daehn, GS AF Zhang, Y. Babu, S. S. Zhang, P. Kenik, E. A. Daehn, G. S. TI Microstructure characterisation of magnetic pulse welded AA6061-T6 by electron backscattered diffraction SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Magnetic pulse welding; Electron backscattered diffraction; Misorientations; Spalling ID ALUMINUM; TEMPERATURES AB The grain boundary crystallographic misorientations of magnetic pulse welded (MPW) AA6061-T6 in linear and tubular configurations were examined using the electron backscattered diffraction (EBSD) technique. A refined structure of heavily deformed grains with higher grain boundary angles was observed in linear welds. Significant spalling was observed away from the welded region, in the interior of tubular welds. The results show the complex interaction of shock waves with the materials during this impact welding process. C1 [Zhang, Y.; Daehn, G. S.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Babu, S. S.] Ohio State Univ, Dept Ind Welding & Syst Engn, Columbus, OH 43221 USA. [Zhang, P.] Edison Welding Inst, Dept Engn & Mat, Columbus, OH 43221 USA. [Kenik, E. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhang, Y (reprint author), Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. EM zhang.561@osu.edu RI Babu, Sudarsanam/D-1694-2010; OI Babu, Sudarsanam/0000-0002-3531-2579; Daehn, Glenn/0000-0002-5493-7902 FU Edison Welding Institute; Department of Development and Thomas Edison Program; American Welding Society; US Department of Energy FX The authors thank Edison Welding Institute and the contribution of the State of Ohio, Department of Development and Thomas Edison Program, which provided funding in support of Edison Technology and Industry Center Services. Thanks to American Welding Society for supporting of this work in the form of fellowship to Ms Y. Zhang. Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors also thank the valuable discussion and experiment support from T. Geer, M. K. Miller and K. Russell at the Oak Ridge National Laboratory. NR 11 TC 17 Z9 17 U1 1 U2 19 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD JUL PY 2008 VL 13 IS 5 BP 467 EP 471 DI 10.1179/174329308X341915 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 372FK UT WOS:000260887300009 ER PT J AU Cances, B Juillot, F Morin, G Laperche, V Polya, D Vaughan, DJ Hazemann, JL Proux, O Brown, GE Calas, G AF Cances, B. Juillot, F. Morin, G. Laperche, V. Polya, D. Vaughan, D. J. Hazemann, J. -L. Proux, O. Brown, G. E., Jr. Calas, G. TI Changes in arsenic speciation through a contaminated soil profile: A XAS based study SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE arsenic; speciation; soil; pollution; X-ray absorption spectroscopy ID SEQUENTIAL EXTRACTION; MINE TAILINGS; IRON; OXYHYDROXIDES; SOLUBILITIES; MOBILITY; FRANCE; SITES; EXAFS; LEAD AB An impacted soil located near an industrial waste site in the Massif Central near Auzon, France, where arsenical pesticides were manufactured, has been studied in order to determine the speciation (chemical forms) of arsenic as a function of soil depth. Bulk As concentrations range from 8780 mg kg(-1) in the topsoil horizon to 150 mg kg(-1) at 60 cm depth. As ores (orpiment As2S3, realgar AsS, arsenopyrite FeAsS) and former Pb- and Al-arsenate pesticides have been identified by XRD at the site and are suspected to be the sources of As contamination for this soil. As speciation was found to vary with depth, based on XRD, SEM-EDS, EPMA measurements and selective chemical extractions. Based on oxalate extraction, As is mainly associated with amorphous Fe oxides through the soil profile, except in the topsoil horizons where As is hosted by another phase. SEM-EDS and EPMA analyses led to the identification of arseniosiderite (Ca2Fe33+((AsO4)-O-V)(3)O-2 center dot 3H(2)O), a secondary mineral that forms upon oxidation of primary As-bearing minerals like arsenopyrite, in these topsoil horizons. These mineralogical and chemical results were confirmed by synchrotron-based X-ray absorption spectroscopy. XANES spectra of soil samples indicate that As occurs exclusively as As(V), and EXAFS results yield direct evidence of changes in As speciation with depth. Linear combination fits of EXAFS spectra of soil samples with those of various model compounds indicate that As occurs mainly As-bearing Fe(III)-(hydr)oxides (65%) and arseniosiderite (35%) in the topsoil horizon (0-5 cm depth). Similar analyses also revealed that there is very little arseniosiderite below 15 cm depth and that AsM is associated primarily with amorphous Fe oxides below this depth. This vertical change of As speciation likely reflects a series of chemical reactions downward in the soil profile. Arseniosiderite, formed most likely by oxidation of arsenopyrite, is progressively dissolved and replaced by less soluble As-bearing poorly ordered Fe oxides, which are the main hosts for As in well aerated soils. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cances, B.] Univ Reims, Grp Etude Geomat & Environm Nat & Anthrop, EA 3795, CREA, F-51100 Reims, France. [Cances, B.; Juillot, F.; Morin, G.; Calas, G.] Univ Paris 07, Univ Paris 06, Inst Mineral & Phys Milieux Condenses, UMR CNRS 7590,IPGP, F-75015 Paris, France. [Laperche, V.] EPI ECO, Bur Rech Geol & Minieres, F-45050 Orleans, France. [Polya, D.; Vaughan, D. J.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Polya, D.; Vaughan, D. J.] Univ Manchester, Williamson Res Ctr Mol Environm Sci, Manchester M13 9PL, Lancs, England. [Hazemann, J. -L.; Proux, O.] FAME Beamline, European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Hazemann, J. -L.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Proux, O.] Univ Grenoble 1, Lab Geophys Interne & Tectonophys, UMR CNRS, F-38400 St Martin Dheres, France. [Brown, G. E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Brown, G. E., Jr.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Cances, B (reprint author), Univ Reims, Grp Etude Geomat & Environm Nat & Anthrop, EA 3795, CREA, 2 Esplanade Roland Garros, F-51100 Reims, France. EM benjamin.cances@univ-reims.fr RI Calas, Georges/B-2445-2012; Proux, Olivier/F-7344-2012; Beamline, FAME/G-9313-2012; JUILLOT, Farid/G-7943-2016; OI Calas, Georges/0000-0003-0525-5734; Polya, David/0000-0002-7484-6696 NR 36 TC 49 Z9 50 U1 8 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUL 1 PY 2008 VL 397 IS 1-3 BP 178 EP 189 DI 10.1016/j.scitotenv.2008.02.023 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA 316BD UT WOS:000256923000018 PM 18406447 ER PT J AU Hsueh, CH Bei, H Liu, CT Becher, PF George, EP AF Hsueh, C. H. Bei, H. Liu, C. T. Becher, P. F. George, E. P. TI Shear fracture of bulk metallic glasses with controlled applied normal stresses SO SCRIPTA MATERIALIA LA English DT Article DE metallic glasses; shear bands; fracture; Mohr-Coulomb criterion ID AMORPHOUS-ALLOYS; BEHAVIOR; FLOW; PRESSURE AB The Mohr-Coulomb criterion has been invoked to characterize the dependence of shear fracture of bulk metallic glasses on the stress normal to the shear plane. However, systematic verification of its applicability is lacking. We use a unique test fixture that is capable of controlling (i) the location of shear fracture and (ii) the ratio of the normal to shear stress on the fracture plane to perform tests on bulk metallic glasses to examine the applicability of the Mohr-Coulomb criterion. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Hsueh, C. H.; Bei, H.; Liu, C. T.; Becher, P. F.; George, E. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bei, H.; Liu, C. T.; George, E. P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Hsueh, CH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM hsuehc@ornl.gov RI Hsueh, Chun-Hway/G-1345-2011; George, Easo/L-5434-2014; OI Bei, Hongbin/0000-0003-0283-7990 NR 12 TC 12 Z9 14 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2008 VL 59 IS 1 BP 111 EP 114 DI 10.1016/j.scriptamat.2008.02.042 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 304PK UT WOS:000256121200028 ER PT J AU Schneibel, JH Felderman, EJ Ohriner, EK AF Schneibel, Joachim H. Felderman, E. J. Ohriner, E. K. TI Mechanical properties of ternary molybdenum-rhenium alloys at room temperature and 1700 K SO SCRIPTA MATERIALIA LA English DT Article DE refractory alloys; mechanical strength; fracture; high temperature AB Molybdenum-rhenium alloys have a lower ductile-to-brittle transition temperature than molybdenum, which is advantageous in applications requiring improved room temperature ductility or impact toughness. However, at high temperatures rhenium strengthens molybdenum only slightly. This work screens the effect of alloying additions of Ti, Nb, Ta, and Hf on the room temperature ductility and high temperature strength of Mo-26 at.% Re (Mo-40.5 wt.% Re). Hafnium is found to be a particularly effective high temperature strengthener. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Schneibel, Joachim H.; Ohriner, E. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Felderman, E. J.] ARES Corp, Tullahoma, TN 37388 USA. RP Schneibel, JH (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM schneibeljh@ornl.gov NR 17 TC 4 Z9 5 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2008 VL 59 IS 2 BP 131 EP 134 DI 10.1016/j.scriptamat.2008.02.057 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 317RK UT WOS:000257037100001 ER PT J AU Hodge, AM Wang, YM Barbee, TW AF Hodge, A. M. Wang, Y. M. Barbee, T. W., Jr. TI Mechanical deformation of high-purity sputter-deposited nano-twinned copper SO SCRIPTA MATERIALIA LA English DT Article DE yield point; nano-twinned; sputtering; multilayer thin films ID NANOCRYSTALLINE COPPER; PLASTIC-DEFORMATION; ULTRAHIGH-STRENGTH; TENSILE PROPERTIES; RATE SENSITIVITY; SCALE TWINS; DUCTILITY; CU; METALS; FLOW AB Near classical yield points were reproducibly observed at room and liquid nitrogen temperatures during tensile deformation of 170 gm thick, high-purity copper foils synthesized by magnetron sputter deposition. Uniformly distributed mobile dislocations introduced by rolling to similar to 20% reduction in thickness eliminated the yield point at both temperatures. The experimental observations clearly demonstrate that the observed yield-point behavior is a direct result of the very low initial dislocation density in these sputtered films as expected for "ideal" nanoscale microstructural materials. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Hodge, A. M.] Univ So Calif, Aerosp & Mech Engn Dept, Los Angeles, CA 90089 USA. [Wang, Y. M.; Barbee, T. W., Jr.] Lawrence Livermore Natl Lab, Mat Sci & Technol Div, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RP Hodge, AM (reprint author), Univ So Calif, Aerosp & Mech Engn Dept, Los Angeles, CA 90089 USA. EM ahodge@usc.edu RI Wang, Yinmin (Morris)/F-2249-2010 OI Wang, Yinmin (Morris)/0000-0002-7161-2034 NR 24 TC 62 Z9 63 U1 2 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2008 VL 59 IS 2 BP 163 EP 166 DI 10.1016/j.scriptamat.2008.02.048 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 317RK UT WOS:000257037100009 ER PT J AU Olsson, RH El-Kady, IF Su, MF Tuck, MR Fleming, JG AF Olsson, Roy H., III El-Kady, Ihab F. Su, Mehmet F. Tuck, Melanie R. Fleming, James G. TI Microfabricated VHF acoustic crystals and waveguides SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article; Proceedings Paper CT 14th International Conference on Solid-State Sensors, Actuators and Microsystems CY JUN 10-14, 2007 CL Lyon, FRANCE SP CEA, Leti, Minatec, IEEE, IEEE Electron Devices Soc, Elsevier DE acoustic bandgap; acoustic crystal; aluminum nitrides; phononic bandgap; phononic crystal; waveguide ID BAND-GAPS AB Microfabricated acoustic crystals have been designed and experimentally verified. The acoustic crystals are realized by including tungsten (W) scatterers in a SiO2 matrix. Wide frequency ranges where acoustic waves are forbidden to exist (acoustic bandgaps, ABG) are formed due to the large acoustic impedance and mass density mismatch between W and SiO2. The acoustic crystal structures are fabricated in a 7-mask process that features integrated aluminum nitride piezoelectric couplers for interrogating the devices. Acoustic crystals in a square lattice have been measured at 67 MHz with greater than 30dB of acoustic rejection and bandwidths exceeding 25% of the midgap. Single and multimode acoustic waveguides have been realized by defecting the acoustic crystals through removal of a subset of the W scatterers. These waveguides achieve relative transmission of up to 100% for the propagating modes. (c) 2007 Elsevier B.V. All rights reserved. C1 [Olsson, Roy H., III; El-Kady, Ihab F.; Tuck, Melanie R.; Fleming, James G.] Sandia Natl Labs, Adv MEMS Dept, Albuquerque, NM 87185 USA. [El-Kady, Ihab F.; Su, Mehmet F.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. RP Olsson, RH (reprint author), Sandia Natl Labs, Adv MEMS Dept, POB 5800, Albuquerque, NM 87185 USA. EM rholsso@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 NR 21 TC 54 Z9 54 U1 0 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD JUL-AUG PY 2008 VL 145 SI SI BP 87 EP 93 DI 10.1016/j.sna.2007.10.081 PG 7 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 324LC UT WOS:000257519100014 ER PT J AU Krishnamoorthy, U Olsson, RH Bogart, GR Baker, MS Carr, DW Swiler, TP Clews, PJ AF Krishnamoorthy, U. Olsson, R. H., III Bogart, G. R. Baker, M. S. Carr, D. W. Swiler, T. P. Clews, P. J. TI In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article; Proceedings Paper CT 14th International Conference on Solid-State Sensors, Actuators and Microsystems CY JUN 10-14, 2007 CL Lyon, FRANCE SP CEA, Leti, Minatec, IEEE, IEEE Electron Devices Soc, Elsevier DE nano-grating; MEMS optical accelerometer; optical resonant detection; in-plane accelerometer; optical sensing; low-g accelerations AB We have successfully demonstrated a series of results that push the limits of optical sensing, acceleration sensing and lithography. Previously, we built some of the most sensitive displacement sensors with displacement sensitivities as low as 12 fm/root Hz at 1 kHz. Using reference detection circuitry in conjunction with correlated double sampling methods, we lowered the 1/f noise floor to 10 mHz, hence improving the detection limit at low frequencies (10 mHz) by 77 dB to 50 fm/root Hz. We converted these highly sensitive displacement sensors to highly sensitive acceleration sensors through a direct mass integration processes. Our accelerometers have resonant frequencies as low as 36 Hz and thermal noise floors as low as 8 nG/root Hz (where 1G = 9.8 m/s(2)). We have pushed the limits of shaker table experiments to independently verify acceleration measurements as low as 10 mu G/root Hz. Direct measurements with our integrated sub-wavelength optical nano-grating accelerometers have shown device sensitivities of 590 V/G and noise floors corresponding to 17 nG/root Hz (at 1 Hz). (C) 2008 Elsevier B.V. All rights reserved. C1 [Krishnamoorthy, U.; Olsson, R. H., III; Baker, M. S.; Swiler, T. P.; Clews, P. J.] Sandia Natl Labs, Adv MEMS Technol, Albuquerque, NM 87185 USA. [Bogart, G. R.; Carr, D. W.] Symphony Acoust, Rio Rancho, NM 87124 USA. RP Krishnamoorthy, U (reprint author), Sandia Natl Labs, Adv MEMS Technol, POB 5800, Albuquerque, NM 87185 USA. EM ukrishn@sandia.gov NR 8 TC 54 Z9 57 U1 4 U2 43 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD JUL-AUG PY 2008 VL 145 SI SI BP 283 EP 290 DI 10.1016/j.sna.2008.03.017 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 324LC UT WOS:000257519100039 ER PT J AU Lowrie, RB Edwards, JD AF Lowrie, Robert B. Edwards, Jarrod D. TI Radiative shock solutions with grey nonequilibrium diffusion SO SHOCK WAVES LA English DT Article DE radiative shocks; radiation hydrodynamics; code verification ID QUASI-STATIONARY STRUCTURE; WAVES; HYDRODYNAMICS; FLUID AB This study describes a semi-analytic solution of planar radiative shock waves with a grey nonequilibrium diffusion radiation model. The solution may be used to verify radiation-hydrodynamics codes. Comparisons are made with the equilibrium diffusion solutions of Lowrie and Rauenzahn (Shock Waves 16(6):445-453, 2007). The solution also gives additional insight into the structure of radiative shocks. Previous work has assumed that the material temperature reaches its maximum at the post-shock state of the embedded hydrodynamic shock (Zel'dovich spike). We show that in many cases, the temperature may continue to increase after the hydrodynamic shock and reaches its maximum at the isothermal sonic point. Also, a temperature spike may exist even in the absence of an embedded hydrodynamic shock. We also derive an improved estimate for the maximum temperature. C1 [Lowrie, Robert B.] Los Alamos Natl Lab, Computat Phys Grp CCS 2, Los Alamos, NM 87545 USA. [Edwards, Jarrod D.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Lowrie, RB (reprint author), Los Alamos Natl Lab, Computat Phys Grp CCS 2, Mail Stop D413,POB 1663, Los Alamos, NM 87545 USA. EM lowrie@lanl.gov OI Lowrie, Robert/0000-0001-5537-9183 NR 21 TC 36 Z9 37 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-1287 EI 1432-2153 J9 SHOCK WAVES JI Shock Waves PD JUL PY 2008 VL 18 IS 2 BP 129 EP 143 DI 10.1007/s00193-008-0143-0 PG 15 WC Mechanics SC Mechanics GA 322NW UT WOS:000257383600006 ER PT J AU Pang, JB Stuecker, JN Jiang, YB Bhakta, AJ Branson, ED Li, P Cesarano, J Sutton, D Calvert, P Brinker, CJ AF Pang, Jiebin Stuecker, John N. Jiang, Yingbing Bhakta, Ajay J. Branson, Eric D. Li, Peng Cesarano, Joseph, III Sutton, David Calvert, Paul Brinker, C. Jeffrey TI Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks SO SMALL LA English DT Article DE aerosols; mesostructures; micropatterns; roboprinting; self-assembly ID INORGANIC COMPOSITE FILMS; VACUUM-ULTRAVIOLET LIGHT; MESOPOROUS THIN-FILMS; FUNCTIONAL NANOSTRUCTURES; SOFT LITHOGRAPHY; PATTERN TRANSFER; PHOTOCALCINATION; NANOCOMPOSITES; MESOPHASES; SUBSTRATE AB This paper reports the fabrication of micro- and macropatterns of ordered mesostructured silica on arbitrary flat and curved surfaces using a facile robot-directed aerosol printing process. Starting with a homogenous solution of soluble silica, ethanol, water, and surfactant as a self-assembling ink, a columnated stream of aerosol droplets is directed to the substrate surface. For deposition at room temperature droplet coalescence on the substrates and attendant solvent evaporation result in continuous, highly ordered mesophases. The pattern profiles are varied by changing any number of printing parameters such as material deposition rate, printing speed, and aerosol-head temperature. Increasing the aerosol temperature results in a decrease of the mesostructure ordering, since faster solvent evaporation and enhanced silica condensation at higher temperatures kinetically impede the molecular assembly process. This facile technique provides powerful control of the printed materials at both the nanoscale and microscale through chemical self-assembly and robotic engineering, respectively. C1 [Pang, Jiebin; Bhakta, Ajay J.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, NSF UNM Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Pang, Jiebin; Stuecker, John N.; Jiang, Yingbing; Branson, Eric D.; Cesarano, Joseph, III; Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Li, Peng] Univ New Mexico, Transmiss Elect Microscopy Labs, Albuquerque, NM 87131 USA. [Sutton, David] Imperial Chem Ind, Strateg Technol Grp, Wilton Ctr, Wilton TS10 4RF, England. [Calvert, Paul] Univ Massachusetts Dartmouth, Dept Mat & Text, N Dartmouth, MA 02747 USA. RP Brinker, CJ (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, NSF UNM Ctr Microengineered Mat, Albuquerque, NM 87131 USA. EM cjbrink@sandia.gov NR 38 TC 17 Z9 17 U1 3 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD JUL PY 2008 VL 4 IS 7 BP 982 EP 989 DI 10.1002/smll.200700206 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 328PT UT WOS:000257811000020 PM 18581410 ER PT J AU Reese, MO Morfa, AJ White, MS Kopidakis, N Shaheen, SE Rumbles, G Ginley, DS AF Reese, Matthew O. Morfa, Anthony J. White, Matthew S. Kopidakis, Nikos Shaheen, Sean E. Rumbles, Garry Ginley, David S. TI Pathways for the degradation of organic photovoltaic P3HT : PCBM based devices SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE stability; organic photovoltaic; degradation; electrode; metal organic surface ID SOLAR-CELLS; RELIABILITY; ATMOSPHERE; POLYMERS AB We report on studies of device degradation in organic photovoltaic devices based on blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Since delamination, oxidation, and chemical interactions at the metal electrode/ organic interface have long been posited as degradation pathways in organic electronic devices, we first investigated the stability of a variety of electrodes for devices stored in an inert, dark environment. Second, a set of experiments was designed to separate the effects at the metal/organic interface from the degradation of the active layer or the hole extraction interface. To do this, Ca/Al electrodes were deposited to complete half of a substrate's devices, and samples were left both under constant illumination and 10% illumination (10% duty cycle of I sun illumination) in a glovebox environment. After more than 200 h of measurement, additional electrodes were deposited and device performance of each set was compared. Third, to assess the degree of degradation caused by photo-induced processes, device stability in an inert atmosphere under constant illumination, and 10% illumination conditions was also investigated. Last, various degradation mitigation strategies in air under constant illumination were explored. The results showed that the active layer itself is not inherently unstable on the timescales studied here. Choosing the appropriate electrode (Ca/Al) reduced interfacial degradation, storing the active layer in an inert, dark environment did not cause significant degradation, and storing the active layer under constant illumination caused only a limited reduction in performance. Our results indicate that the metal/organic interface can be a significant source of degradation in the devices, and we discuss approaches that could reduce this instability. (c) 2008 Elsevier B.V. All rights reserved. C1 [Reese, Matthew O.; Morfa, Anthony J.; White, Matthew S.; Kopidakis, Nikos; Rumbles, Garry; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shaheen, Sean E.] Univ Denver, Denver, CO 80208 USA. RP Reese, MO (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM matthew_reese@nrel.gov RI Morfa, Anthony/D-2153-2011; White, Matthew/B-3405-2013; Shaheen, Sean/M-7893-2013; Kopidakis, Nikos/N-4777-2015; OI White, Matthew/0000-0001-6719-790X; Rumbles, Garry/0000-0003-0776-1462 NR 21 TC 146 Z9 146 U1 5 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2008 VL 92 IS 7 BP 746 EP 752 DI 10.1016/j.solmat.2008.01.020 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 304PL UT WOS:000256121300007 ER PT J AU Bielejec, E Reno, JL Lyo, SK Lilly, MP AF Bielejec, E. Reno, J. L. Lyo, S. K. Lilly, M. P. TI Tunneling spectroscopy in vertically coupled quantum wires SO SOLID STATE COMMUNICATIONS LA English DT Article DE quantum wires; semiconductors; spectroscopy; tunneling ID ONE-DIMENSIONAL WIRE; COULOMB DRAG; ELECTRON-SYSTEMS AB Tunneling between independently contacted weakly coupled quantum wires provides insight into the nature of interactions in one-dimensional systems. The double quantum wires used here are defined using a combination of gates both above and below an electron bilayer to create and make separate contact with the wires. This split-gate technique has the advantage of independent control over the density of each of the quantum wires. Tunneling measurements are performed as a function of both a voltage bias between the wires as well as an in-plane magnetic field. These external parameters alter the energy and momentum of the tunneling electron, and therefore provide complete spectroscopic information about tunneling events in 1D. Evidence for tunneling between wires with multiple subbands is presented. Our results can be well described using a model of non-interacting tunneling in 1D. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Bielejec, E.; Reno, J. L.; Lyo, S. K.; Lilly, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lilly, MP (reprint author), Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87185 USA. EM mplilly@sandia.gov NR 16 TC 2 Z9 2 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD JUL PY 2008 VL 147 IS 3-4 BP 79 EP 82 DI 10.1016/j.ssc.2008.05.011 PG 4 WC Physics, Condensed Matter SC Physics GA 328II UT WOS:000257791300001 ER PT J AU Li, DF Xiao, HY Zu, XT Gao, F AF Li, D. F. Xiao, H. Y. Zu, X. T. Gao, F. TI First-principles study of sulfur passivation of GaP(001) surfaces at one-monolayer coverage SO SOLID STATE COMMUNICATIONS LA English DT Article DE density functional theory; surface adsorption; GaP; sulfur passivation ID SCANNING-TUNNELING-MICROSCOPY; ENERGY-ELECTRON-DIFFRACTION; GAAS(001) SURFACES; INP(001) SURFACES; XPS; H2S; PHOTOEMISSION; SPECTROSCOPY; ADSORPTION; EXCHANGE AB Using first-principles total energy method, we have studied the structural and electronic properties of Ga- and P-terminated GaP(001)(1 x 2) surfaces adsorbed with one monolayer of sulfur. It was found that the sulfur atoms prefer to occupy bridge sites and the periodicity becomes (1 x 1) on both Ga- and P-terminated surfaces. The S-Ga bond was confirmed to be stronger than the S-P bond. The electronic analysis showed that the surface state within the energy gap on the Ga-terminated Gal? surface was noticeably reduced by the sulfur adsorption, while such reduction does not occur on the P-terminated surface due to the S-P antibonding state. The nearly filled S dangling bonds on the Ga-terminated surface make this surface resistant to contamination. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Li, D. F.] Chongqing Univ Posts & Telecommun, Inst Appl Phys, Chongqing 400065, Peoples R China. [Li, D. F.] Chongqing Univ Posts & Telecommun, Coll Math & Phys, Chongqing 400065, Peoples R China. [Li, D. F.; Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, DF (reprint author), Chongqing Univ Posts & Telecommun, Inst Appl Phys, Chongqing 400065, Peoples R China. EM dengfenglicn@yahoo.com.cn RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 NR 30 TC 6 Z9 6 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD JUL PY 2008 VL 147 IS 3-4 BP 141 EP 145 DI 10.1016/j.ssc.2008.04.039 PG 5 WC Physics, Condensed Matter SC Physics GA 328II UT WOS:000257791300017 ER PT J AU Gapud, AA Christen, DK Feenstra, R List, FA Khan, A AF Gapud, A. A. Christen, D. K. Feenstra, R. List, F. A., III Khan, A. TI On narrowing coated conductor film: the emergence of granularity-induced field hysteresis of transport critical current SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT DENSITY; HIGH-TEMPERATURE SUPERCONDUCTORS; ANGLE GRAIN-BOUNDARIES; THICK-FILMS; SELF-FIELD; YBA2CU3O7-X; PERCOLATION; TAPES; DEPOSITION; STRIPS AB The critical current density J(c) in polycrystalline or granular superconducting material is known to be hysteretic with applied field H due to the focusing of the field within the boundary between adjacent grains. This is of concern in the so-called coated conductors, wherein a superconducting film is grown on a granular, but textured, surface of a metal substrate. While previous work has mainly been on J(c) determined using induced or magnetization currents, the present work utilizes transport current via an applied potential in strip geometry. It is observed that the effect is not as pronounced using transport current, probably due to a large difference in criterion voltage between the two types of measurements. However, when the films are narrowed by patterning into 200, 100, or 80 mu m, the hysteresis is clearly seen, because of the forcing of percolation across higher-angle grain boundaries. This effect is manifested in ex situ films grown on ion-beam-assisted-deposited (IBAD) yttria stabilized zirconia (YSZ) substrate and those grown on rolling-assisted biaxially textured substrates (RABiTS) which have grains that are 100-1000 times larger. The hysteresis is more pronounced for the latter, which is more likely to have a weak grain boundary spanning the width of the microbridge. This is also of concern to applications in which coated conductors will be striated in order to reduce the AC losses. C1 [Gapud, A. A.; Khan, A.] Univ S Alabama, Mobile, AL 36688 USA. [Christen, D. K.; Feenstra, R.; List, F. A., III] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gapud, AA (reprint author), Univ S Alabama, 307 Univ Blvd, Mobile, AL 36688 USA. OI Gapud, Albert/0000-0001-9048-9230 NR 37 TC 7 Z9 7 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2008 VL 21 IS 7 AR 075016 DI 10.1088/0953-2048/21/7/075016 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 310QF UT WOS:000256544400017 ER PT J AU Wolsky, AM Campbell, AM AF Wolsky, A. M. Campbell, A. M. TI A new method for determining the critical state of three-dimensional superconductors: explanation and examples SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CURRENT-VOLTAGE CHARACTERISTICS; FINITE-ELEMENT-METHOD; FLUX-PENETRATION; MAGNETIC-FIELD; AC-LOSSES; MODEL; WIRE AB A new numerical method for solving the critical state is explained and examples of its use are given. The relation describes three-dimensional superconductors interacting with three-dimensional magnetic fields. The method is based on a constitutive relation between current density and local magnetic flux density. No gauge ambiguities arise. A free energy is constructed that is concomitant with the constitutive relation and it is shown that this model describes both reversible behavior and current saturation. The numerical examples, describing several magnetization experiments, confirm that the currents screen the interior of the superconductor from applied fields in the way suggested by the critical state model. Our experience shows that our approach is simple enough to be implemented with relatively inexpensive, commercial software on desktop computers. C1 [Wolsky, A. M.; Campbell, A. M.] IRC Superconductiv, Cambridge CB3 0HE, England. RP Wolsky, AM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM awolsky@ANL.gov NR 29 TC 10 Z9 10 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2008 VL 21 IS 7 AR 075021 DI 10.1088/0953-2048/21/7/075021 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 310QF UT WOS:000256544400022 ER PT J AU Zehr, RT Henderson, MA AF Zehr, R. T. Henderson, M. A. TI Acetaldehyde photochemistry on TiO2(110) SO SURFACE SCIENCE LA English DT Article DE photon stimulated desorption; thermal desorption spectroscopy; photocatalysis; titanium dioxide; acetaldehyde ID PHOTOCATALYTIC OXIDATION; ACID DECOMPOSITION; SINGLE-CRYSTAL; TIO2 SURFACES; MASS-SPECTRA; PT(111); CH3BR; ADSORPTION; ALDEHYDES; DYNAMICS AB The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(110) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(110) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(110) undergoes a facile thermal reaction to form a photoactive acetaldehyde-oxygen complex. UV irradiation of the acetaldehyde-oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate. Published by Elsevier B.V. C1 [Zehr, R. T.; Henderson, M. A.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnl.gov NR 64 TC 63 Z9 64 U1 3 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2008 VL 602 IS 13 BP 2238 EP 2249 DI 10.1016/j.susc.2008.04.045 PG 12 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 328ZU UT WOS:000257837500019 ER PT J AU Han, Y Lu, GH Lee, BJ Liu, F AF Han, Yong Lu, Guang-Hong Lee, Byeong-Joo Liu, Feng TI Flat-surface, step-edge, facet-facet, and facet-step diffusion barriers in growth of a Pb mesa SO SURFACE SCIENCE LA English DT Article DE Pb mesa growth; surface diffusion barrier; surface free energy; modified embedded atom method ID EMBEDDED-ATOM-METHOD; SELF-DIFFUSION; SADDLE-POINTS; RELAXATIONS; TEMPERATURE; IMPURITIES; POTENTIALS; PB/SI(111); MECHANISM; KINETICS AB We obtain important energy parameters for understanding growth kinetics of a faceted Pb mesa. Specifically, extensive calculations of diffusion barriers are performed for a Pb adatom: (i) on a flat Pb(111) or Pb(001) surface; (ii) crossing a single A- or B-step edge on Pb(111) surface; (iii) crossing a facet-facet edge between Pb(111) facet and Pb(001) facet, or between Pb(111) facet and Pb(11 (1) over bar) facet; (iv) crossing a facet-step joint between Pb(001) facet and A-step, or between Pb(11 (1) over bar) facet and B-step, using a modified embedded atom method. We investigate two different diffusion modes: direct hopping of an adatom, and exchange mechanism between an adatom and substrate atom(s). Direct hopping diffusion is more favorable over exchange mechanism for an adatom on a flat (111) or (001) surface. Diffusion crossing A-step edge favors direct hopping, while diffusion crossing B-step edge favors exchange mechanism. For facet-facet or facet-step diffusion, the exchange mechanism is always favorable over direct hopping. The diffusion barriers obtained here have been used to reasonably explain the intriguing kinetic growth of a Pb mesa in recent experiments. In addition, we also discuss low-index planes of Pb((1) over bar 10) crystallographic zone related to the choices of sidewalls in the formation of a Pb mesa by calculating corresponding surface free energies. (c) 2008 Elsevier B.V. All rights reserved. C1 [Han, Yong; Liu, Feng] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Lu, Guang-Hong] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100083, Peoples R China. [Lee, Byeong-Joo] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea. RP Han, Y (reprint author), IPRT & Ames Lab, US Dept Energy, 307D Wilhelm Hall, Ames, IA 50011 USA. EM octavian2009@gmail.com RI Han, Yong/F-5701-2012 OI Han, Yong/0000-0001-5404-0911 NR 52 TC 11 Z9 11 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2008 VL 602 IS 13 BP 2284 EP 2294 DI 10.1016/j.susc.2008.05.009 PG 11 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 328ZU UT WOS:000257837500025 ER PT J AU Feller, L Bearinger, JP Wu, L Hubbell, JA Textor, M Tosatti, S AF Feller, L. Bearinger, J. P. Wu, L. Hubbell, J. A. Textor, M. Tosatti, S. TI Micropatterning of gold substrates based on poly(propylene sulfide-bl-ethylene glycol), (PPS-PEG) background passivation and the molecular-assembly patterning by lift-off (MAPL) technique SO SURFACE SCIENCE LA English DT Article DE biosensing; photolithography; ToF-SIMS; surface plasmon techniques; adsorption; patterning; self-assembly; gold ID ION MASS-SPECTROMETRY; PROTEIN ADSORPTION; OXIDE SURFACES; MONOLAYERS; LITHOGRAPHY; SILVER; CELLS; ARCHITECTURE; MICROARRAYS; ATTACHMENT AB Poly(propylene sulfide-bl-ethylene glycol) (PPS-PEG) is an amphiphilic block copolymer that spontaneously adsorbs onto gold from solution. This results in the formation of a stable polymeric layer that renders the surface protein-resistant when an appropriate architecture is chosen. The established molecular-assembly patterning by lift-off (MAPL) technique can convert a prestructured resist film into a pattern of biointeractive chemistry and a non-interactive background. Employing the MAPL technique, we produced a micron-scale PPS-PEG pattern on a gold substrate, and then characterized the patterned structure with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Subsequent exposure of the PPS-PEG/gold pattern to protein adsorption (full human serum) was monitored in situ; SPR-imaging (i-SPR) shows a selective adsorption of proteins on gold, but not on PPS-PEG areas. Analysis shows a reduction of serum adsorption up to 93% on the PPS-PEG areas as compared to gold, in good agreement with previous analysis of homogenously adsorbed PPS-PEG on gold. MAPL patterning of PPS-PEG block copolymers is straightforward, versatile and reproducible, and may be incorporated into biosensor-based surface analysis methods. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bearinger, J. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Feller, L.; Textor, M.; Tosatti, S.] Swiss Fed Inst Technol ETH, BioInterface Grp, Lab Surface Sci & Technol, Zurich, Switzerland. [Hubbell, J. A.] Ecole Polytech Fed Lausanne, Integrat Biosci Inst, Lausanne, Switzerland. [Hubbell, J. A.] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lausanne, Switzerland. RP Bearinger, JP (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave,L-211, Livermore, CA 94550 USA. EM bearinger1@llnl.gov RI yu, yu/C-7781-2009; Wu, Ligang/C-7770-2009; Hubbell, Jeffrey/A-9266-2008; Textor, Marcus/A-6200-2012 OI Hubbell, Jeffrey/0000-0003-0276-5456; Textor, Marcus/0000-0002-0178-1801 FU NIBIB NIH HHS [R21 EB003991, R21 EB003991-01] NR 35 TC 7 Z9 7 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2008 VL 602 IS 13 BP 2305 EP 2310 DI 10.1016/j.susc.2008.05.010 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 328ZU UT WOS:000257837500028 PM 19578480 ER PT J AU Thanos, PK Michaelides, M Umegaki, H Volkow, ND AF Thanos, Panayotis K. Michaelides, Michael Umegaki, Hiroyuki Volkow, Nora D. TI D2R DNA transfer into the nucleus accumbens attenuates cocaine self-administration in rats SO SYNAPSE LA English DT Article DE drug abuse; addiction; gene therapy; psychostimulant ID CONDITIONED PLACE PREFERENCE; DOPAMINE-RECEPTOR GENE; KNOCKOUT MICE; ALCOHOL-DRINKING; SEEKING BEHAVIOR; D-2 RECEPTOR; A1 ALLELE; ANTAGONISTS; RELEASE; D1 AB Dopamine (DA) D2 receptor (D2R) agonists and antagonists can modulate self-administration behavior, conditioned place preference, and locomotor responses to cocaine. Low levels of D2R have also been observed in cocaine addicted subjects and in non human primates after chronic cocaine exposures. Prior studies had shown that D2R upregulation in the nucleus accumbens (NAc) in rodents trained to self-administer alcohol markedly attenuated alcohol preference and intake. Here we assess the effects of D2R upregulation in the NAc on cocaine intake in rats trained to self-administer cocaine. Following 2 weeks of i.v. cocaine self-administration (CSA), rats were stereotaxically treated with an adenovirus that carried the D2R gene to upregulate D2R in the NAc. D2R vector treatment resulted in a significant decrease (75%) in cocaine infusions and lever presses (70%) for cocaine. This effect lasted 6 days before cocaine consumption returned to baseline levels, which corresponds roughly to the time it takes D2R to return to baseline levels. These findings show that CSA and D2R in the NAc are negatively correlated and suggest that cocaine intake is modulated in part by D2R levels in NAc. Thus strategies aimed at increasing D2R expression in NAc may be beneficial in treating cocaine abuse and addiction. C1 [Thanos, Panayotis K.; Michaelides, Michael] Brookhaven Natl Lab, Behav Neuropharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA. [Thanos, Panayotis K.; Michaelides, Michael; Volkow, Nora D.] NIAAA, Lab Neuroimaging, NIH, Dept Hlth & Human Serv, Bethesda, MD 20892 USA. [Umegaki, Hiroyuki] Nagoya Univ, Sch Med, Dept Geriatr, Aichi 4668550, Japan. RP Thanos, PK (reprint author), Brookhaven Natl Lab, Behav Neuropharmacol & Neuroimaging Lab, Dept Med, Bldg 490, Upton, NY 11973 USA. EM thanos@bnl.gov RI Michaelides, Michael/K-4736-2013 OI Michaelides, Michael/0000-0003-0398-4917 FU Intramural NIH HHS [Z01 AA000551-04]; NIAAA NIH HHS [AA07611, AA 11034, P50 AA007611, R01 AA011034, T32 AA007574, AA07574] NR 42 TC 59 Z9 59 U1 0 U2 6 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-4476 J9 SYNAPSE JI Synapse PD JUL PY 2008 VL 62 IS 7 BP 481 EP 486 DI 10.1002/syn.20523 PG 6 WC Neurosciences SC Neurosciences & Neurology GA 311LB UT WOS:000256600600001 PM 18418874 ER PT J AU Hosono, H Ginley, D Shigesato, Y Kamiya, T AF Hosono, Hideo Ginley, David Shigesato, Yuzo Kamiya, Toshio TI 5th International Symposium on Transparent Oxide thin films for electronics and optics - Preface SO THIN SOLID FILMS LA English DT Editorial Material C1 [Ginley, David] NREL, Golden, CO 80401 USA. [Shigesato, Yuzo] Aoyama Gakuin Univ, Tokyo 150, Japan. [Hosono, Hideo; Kamiya, Toshio] Tokyo Tech, Tokyo, Japan. RP Hosono, H (reprint author), Tokyo Tech, Tokyo, Japan. EM hosono@msl.titech.ac.jp RI Kamiya, Toshio/E-8615-2014 OI Kamiya, Toshio/0000-0002-8358-240X NR 0 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 1 PY 2008 VL 516 IS 17 BP 5749 EP 5749 DI 10.1016/j.tsf.2007.10.026 PG 1 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 322PZ UT WOS:000257389100001 ER PT J AU Roh, HS Wang, Y King, DL AF Roh, Hyun-Seog Wang, Yong King, David L. TI Selective production of H(2) from ethanol at low temperatures over Rh/ZrO(2)-CeO(2) catalysts SO TOPICS IN CATALYSIS LA English DT Article DE H(2) production; ethanol steam reforming; low temperature; Rh; ZrO(2)-CeO2 ID BIOMASS-DERIVED HYDROCARBONS; MIXED-OXIDE CATALYSTS; HYDROGEN-PRODUCTION; FUEL-CELL; THERMODYNAMIC ANALYSIS; NI-CE-ZRO2 CATALYSTS; STEAM; CO; METHANE; CERIA AB A series of Rh catalysts on various supports (Al(2)O(3), MgAl(2)O(4), ZrO(2), and ZrO(2)-CeO(2)) have been applied to H(2) production from the ethanol steam reforming reaction. In terms of ethanol conversion at low temperatures (below 450 ) with 1wt% Rh catalysts, the activity decreases in the order: Rh/ZrO(2)-CeO(2) > Rh/Al(2)O(3) > Rh/MgAl(2)O(4) > Rh/ZrO(2). Support plays a very important role on product selectivity at low temperatures (below 450 C). Acidic or basic supports favor ethanol dehydration, while ethanol dehydrogenation is favored over neutral supports at low temperatures. The Rh/ZrO(2)-CeO(2) catalyst exhibits the highest CO(2) selectivity up to 550 C, which is due to the highest water gas shift (WGS) activity at low temperatures. Among the catalysts evaluated in this study, the 2wt% Rh/ZrO(2)-CeO(2) catalyst exhibited the highest H(2) yield at 450 C, which is possibly due to the high oxygen storage capacity of ZrO(2)-CeO(2) resulting in efficient transfer of mobile oxygen species from the H(2)O molecule to the reaction intermediate. C1 [Roh, Hyun-Seog; Wang, Yong; King, David L.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99354 USA. EM yongwang@pnl.gov RI Wang, Yong/C-2344-2013 NR 32 TC 39 Z9 40 U1 0 U2 12 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD JUL PY 2008 VL 49 IS 1-2 BP 32 EP 37 DI 10.1007/s11244-008-9066-3 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 324CY UT WOS:000257496500005 ER PT J AU Wang, X Rodriguez, JA Hanson, JC Gamarra, D Martinez-Arias, A Fernandez-Garcia, M AF Wang, Xianqin Rodriguez, Jose A. Hanson, Jonathan C. Gamarra, Daniel Martinez-Arias, Arturo Fernandez-Garcia, Marcos TI Ceria-based catalysts for the production of H-2 through the water-gas-shift reaction: Time-resolved XRD and XAFS studies SO TOPICS IN CATALYSIS LA English DT Article DE hydrogen; water-gas shift reaction; ceria catalysts; copper catalysts; gold catalysts; in situ characterization; X-ray diffraction; X-ray absorption fine structure ID OXYGEN HANDLING PROPERTIES; TEMPERATURE CO OXIDATION; CARBON-MONOXIDE; IN-SITU; ABSORPTION-SPECTROSCOPY; MIXED OXIDES; COPPER; AU; HYDROGEN; BEHAVIOR AB Hydrogen is a potential alternate energy source for satisfying many of our energy needs. In this work, we studied H-2 production from the water-gas-shift (WGS) reaction over Ce1-xCuxO2 catalysts, prepared with a novel microemulsion method, using two synchrotron-based techniques: time-resolved X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results are compared with those reported for conventional CuOx/CeO2 and AuOx/CeO2 catalysts obtained through impregnation of ceria. For the fresh Ce1-xCuxO2 catalysts, the results of XAFS measurements at the Cu K-edge indicate that Cu is in an oxidation state higher than in CuO. Nevertheless, under WGS reaction conditions the Ce1-xCuxO2 catalysts undergo reduction and the active phase contains very small particles of metallic Cu and CeO2-x . Time-resolved XRD and XAFS results also indicate that Cu delta+ and Au delta+ species present in fresh CuOx/CeO2 and AuOx/CeO2 catalysts do not survive above 200 C under the WGS conditions. In all these systems, the ceria lattice displayed a significant increase after exposure to CO and a decrease in H2O, indicating that CO reduced ceria while H2O oxidized it. Our data suggest that H2O dissociation occurred on the O-vacancy sites or the Cu-O-vacancy and Au-O-vacancy interfaces. The rate of H-2 generation by a Ce0.95Cu0.05O2 catalyst was comparable to that of a 5 wt% CuOx/CeO2 catalyst and much bigger than those of pure ceria or CuO. C1 [Wang, Xianqin; Rodriguez, Jose A.; Hanson, Jonathan C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Gamarra, Daniel; Martinez-Arias, Arturo; Fernandez-Garcia, Marcos] CSIC, Inst Catalisis & Petroleoquim, E-28049 Madrid, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Hanson, jonathan/E-3517-2010; Fernandez-Garcia, Marcos/A-8122-2014 NR 42 TC 24 Z9 24 U1 1 U2 39 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD JUL PY 2008 VL 49 IS 1-2 BP 81 EP 88 DI 10.1007/s11244-008-9071-6 PG 8 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 324CY UT WOS:000257496500011 ER PT J AU Iyoha, O Howard, B Morreale, B Killmeyer, R Enick, R AF Iyoha, Osemwengie Howard, Bret Morreale, Bryan Killmeyer, Richard Enick, Robert TI The effects of H(2)O, CO and CO(2) on the H(2) permeance and surface characteristics of 1 mm thick Pd(80wt%)Cu membranes SO TOPICS IN CATALYSIS LA English DT Article DE hydrogen; palladium-copper; water-gas shift; membrane reactor; surface changes ID GAS SHIFT REACTION; HYDROGEN PERMEATION; PALLADIUM MEMBRANE; CARBON-MONOXIDE; ELEVATED-TEMPERATURES; ALLOY MEMBRANES; SULFUR; PERMEABILITY; ADSORPTION; PRESSURES AB The hydrogen permeance of 1 mm-thick Pd(80wt%)Cu foils was measured in the presence of equimolar mixtures of H(2) with CO, CO(2) or H(2)O over the temperature and total pressure ranges of 623-1,173 K and 0.62-2.86 MPa, respectively. In all cases, permeance losses at 623 and 738 K were very modest. At higher temperatures, more significant decreases in membrane permeance were observed with the highest reduction of about 50% occurring when macroscopic carbon deposition occurred on the membrane surface during H(2)-CO exposure at 908 K. The more worrisome effects of exposure to these gases, however, were the micron-scale surface defects observed at 908 and 1,038 K. Although the 1 mm thick disk membranes retained their mechanical integrity, such defects could cause catastrophic failure of ultra-thin, Pd-Cu membranes (1-5 mu m thick) deposited on porous substrates. C1 [Howard, Bret; Morreale, Bryan; Killmeyer, Richard] US DOE, NETL, Pittsburgh, PA 15236 USA. [Iyoha, Osemwengie] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Killmeyer, R (reprint author), US DOE, NETL, Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM Osemwengie.Iyoha@NETL.DOE.GOV; richard.killmeyer@netl.doe.gov NR 28 TC 15 Z9 16 U1 0 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD JUL PY 2008 VL 49 IS 1-2 BP 97 EP 107 DI 10.1007/s11244-008-9073-4 PG 11 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 324CY UT WOS:000257496500013 ER PT J AU Wang, J Lin, YH AF Wang, Jun Lin, Yuehe TI Functionalized carbon nanotubes and nanofibers for biosensing applications SO TRAC-TRENDS IN ANALYTICAL CHEMISTRY LA English DT Article DE biosensing; carbon nanofiber; carbon nanotube; disease biomarker; DNA detection; electrochemical biosensor; environmental pollutant; functionalization; immunosensing; small biological molecule ID ELECTROCHEMICAL DETECTION; AMPEROMETRIC DETECTION; BIOCHEMICAL FUNCTIONALIZATION; ORGANOPHOSPHATE PESTICIDES; GLUCOSE BIOSENSOR; NERVE AGENTS; IMMUNOSENSOR; ELECTRODES; DNA; CHEMISTRY AB This review summarizes recent advances in electrochemical biosensors based on carbon nanotubes (CNTs) and carbon nanofibers (CNFs) with an emphasis on applications of CNTs. CNTs and CNFs have unique electric, electrocatalytic and mechanical properties, which make them efficient materials for developing electrochemical biosensors. We discuss functionalizing CNTs for biosensors. We review electrochemical biosensors based on CNTs and their various applications (e.g., measurement of small biological molecules and environmental pollutants, detection of DNA, and immunosensing of disease biomarkers). Moreover, we outline the development of electrochemical biosensors based on CNFs and their applications. Finally, we discuss some future applications of CNTs. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Wang, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU National Institutes of Health CounterACT Program [NS058161-01]; CDC/NIOSH [R01 OH008173-01]; DOE [DE-AC05-76RL01830] FX This work was supported by the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke (Award # NS058161-01) and partially by CDC/NIOSH Grant R01 OH008173-01. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the US Federal Government. This research was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 60 TC 159 Z9 166 U1 5 U2 62 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0165-9936 J9 TRAC-TREND ANAL CHEM JI Trac-Trends Anal. Chem. PD JUL-AUG PY 2008 VL 27 IS 7 BP 619 EP 626 DI 10.1016/j.trac.2008.05.009 PG 8 WC Chemistry, Analytical SC Chemistry GA 341WX UT WOS:000258747400018 PM 19122842 ER PT J AU Mueller, RP Southard, SS May, CW Pearson, WH Cullinan, VI AF Mueller, Robert P. Southard, Susan S. May, Christopher W. Pearson, Walter H. Cullinan, Valerie I. TI Juvenile coho salmon leaping ability and behavior in an experimental culvert test bed SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID TROUT JUMPING PERFORMANCE; ONCORHYNCHUS-KISUTCH; SALAR; FISH; WILD AB As part of a research program aimed at identifying the culvert configurations and associated hydraulic conditions that foster the successful upstream movement of juvenile salmon, we investigated the ability of hatchery-raised juvenile coho salmon Oncorhynchus kisutch to leap into an experimental culvert under varying hydraulic conditions. Five outfall drops ranging from 0 to 32 cm were tested to represent differing degrees of culvert outfall drop. Trials were run at a culvert discharge of 0.028 m(3)/s and a tailwater pool depth of 30 cm. The median success rate was highest (85%) for the 0-cm drop, followed by 34% at 12 cm, 20% at 20 cm, 2% at 26 cm, and 0% at 32 cm. When overcoming the 0-cm (streaming flow) and 12-cm drops, fish predominantly used swimming behavior. For the outfall drops of 20 and 26 cm, leaping behavior predominated. In a typical leaping event, fish initiated the leap near the floor of the tailwater tank and used burst swimming to propel their bodies from near the standing wave (produced by the fall of water exiting the culvert) into the culvert entrance. Both high- and low-trajectory leaps were observed; some fish attained a height up to 5.2 times their body length. The average fork length of fish that were successful at culvert entry was 103 mm (SD, 1.4), compared with 101 mm (1.3) for those that remained in the tailwater pool. Within the size range of the test population, 60-135 mm (mean, 103 mm), fish size did not affect ability to enter the culvert under the test conditions. These results indicate that juvenile coho salmon are capable of overcoming some degree of culvert perch to move upstream if tailwater pool water depth and pool size,are sufficient and hydraulic passage conditions inside the culvert are favorable. C1 [Mueller, Robert P.; Southard, Susan S.; May, Christopher W.; Pearson, Walter H.; Cullinan, Valerie I.] Battelle Pacific NW Div, Richland, WA 99354 USA. RP Mueller, RP (reprint author), Battelle Pacific NW Div, POB 999, Richland, WA 99354 USA. EM robert.mueller@pnl.gov NR 22 TC 10 Z9 11 U1 2 U2 10 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA SN 0002-8487 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD JUL PY 2008 VL 137 IS 4 BP 941 EP 950 DI 10.1577/T06-244.1 PG 10 WC Fisheries SC Fisheries GA 333PD UT WOS:000258163500001 ER PT J AU Wang, QD Huo, H He, K Yao, ZL Zhang, Q AF Wang, Qidong Huo, Hong He, Kebin Yao, Zhiliang Zhang, Qiang TI Characterization of vehicle driving patterns and development of driving cycles in Chinese cities SO TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT LA English DT Article DE driving cycle; driving characteristics; traffic adjustment factors ID AIR-POLLUTION AB Current driving cycles used in China are not able to accurately assess vehicle emissions due to their inadequate representation of real-world driving. We in this study analyzed the driving characteristics and developed the driving cycles in Chinese cities, then compared them to the European test cycle and the American Federal Test Procedure. Eleven cities were selected, covering different city sizes and geographical locations. Car chasing technique was employed in each city to collect speed-time data on freeways, arterials, and residential roads during traffic peak and non-peak periods. The data collected were adjusted by the traffic adjustment factors to reflect the overall traffic. Eleven driving parameters were used to characterize driving characteristics and develop driving cycles. The results indicate that city size, local road infrastructure, and driving behavior are the most important factors that lead to the significant differences in vehicle driving patterns among the cities. The comparison with the European and US cycles suggests that the emission factors produced from the European or US cycles-based tests could be significantly different than those from the driving cycles in China. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Wang, Qidong; Huo, Hong; He, Kebin; Yao, Zhiliang] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Huo, Hong] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Zhang, Qiang] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP He, K (reprint author), Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. EM hekb@tsinghua.edu.cn RI Zhang, Qiang/D-9034-2012 NR 28 TC 62 Z9 71 U1 2 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1361-9209 J9 TRANSPORT RES D-TR E JI Transport. Res. Part D-Transport. Environ. PD JUL PY 2008 VL 13 IS 5 BP 289 EP 297 DI 10.1016/j.trd.2008.03.003 PG 9 WC Environmental Studies; Transportation; Transportation Science & Technology SC Environmental Sciences & Ecology; Transportation GA 329XH UT WOS:000257903400001 ER PT J AU Fortman, JL Chhabra, S Mukhopadhyay, A Chou, H Lee, TS Steen, E Keasling, JD AF Fortman, J. L. Chhabra, Swapnil Mukhopadhyay, Aindrila Chou, Howard Lee, Taek Soon Steen, Eric Keasling, Jay D. TI Biofuel alternatives to ethanol: pumping the microbial well SO TRENDS IN BIOTECHNOLOGY LA English DT Review ID HIGH-LEVEL PRODUCTION; VIBRIO-FURNISSII M1; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; BOTRYOCOCCUS-BRAUNII; FUEL PRODUCTION; TRANSCRIPTION MACHINERY; LYCOPENE BIOSYNTHESIS; BUTANOL FERMENTATION; GASOLINE COMPOSITION AB Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways. C1 [Fortman, J. L.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 95608 USA. [Chhabra, Swapnil; Mukhopadhyay, Aindrila; Lee, Taek Soon; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chou, Howard; Steen, Eric; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Dept Chem Engn, 717 Potter St,Bldg 977,Mail Code 3224, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 NR 87 TC 200 Z9 205 U1 6 U2 104 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD JUL PY 2008 VL 26 IS 7 BP 375 EP 381 DI 10.1016/j.tibtech.2008.03.008 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 325VZ UT WOS:000257617900008 PM 18471913 ER PT J AU Volkov, VV Wall, J Zhu, Y AF Volkov, V. V. Wall, J. Zhu, Y. TI Position-sensitive diffractive imaging in STEM by an automated chaining diffraction algorithm SO ULTRAMICROSCOPY LA English DT Article DE diffractive imaging; exit-wave retrieval; sub-angstrom resolution; high-resolution imaging; non-periodic and disordered objects; magnetic imaging ID PHASE RETRIEVAL; RECONSTRUCTION; RESOLUTION; MICROSCOPY; SUPPORT; IMAGES; OBJECT AB The diffractive imaging process used for retrieval of an aberration-free exit-wave function of a complex-valued object is optimized with a newly developed automated chaining diffraction (ACD) algorithm. Our algorithm enables automatic recovery of the amplitude and phase of the complex-valued objects with diffraction-limited resolution, starting from selected-area electron diffraction (SAED) patterns recorded from partially overlapping regions in STEM/CTEM. Based on a 'differential map' (DM) approach, the ACD algorithm meets very general requirements and, similar to 'hybrid input-output' (HIO) algorithm, can be applied to non-periodic, real or complex structures. In contrast to many other algorithms, it is not limited by the object's finite size or tight object support. Wide-field-of-view reconstructions for the complex-object-wave amplitude and phase made with ACD algorithm from SAED patterns down to sub-Angstrom resolution show the potential of diffractive imaging for quantitative analysis of functional materials at different length scales in terms of absorption and scattering mechanisms. The method can be applied also for imaging magnetic properties of samples by the electron or neutron microscopy and/or imaging of non-periodic objects with X-ray microscopy. (C) 2007 Elsevier B.V. All rights reserved. C1 [Volkov, V. V.; Wall, J.; Zhu, Y.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Volkov, VV (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM volkov@bnl.gov RI Volkov, Vyacheslav/D-9786-2016 NR 28 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2008 VL 108 IS 8 BP 741 EP 749 DI 10.1016/j.ultramic.2007.11.007 PG 9 WC Microscopy SC Microscopy GA 334SQ UT WOS:000258241900006 PM 18261854 ER PT J AU Dagle, RA Platon, A Palo, DR Datye, AK Vohs, JM Wang, Y AF Dagle, R. A. Platon, A. Palo, D. R. Datye, A. K. Vohs, J. M. Wang, Y. TI PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE PdZnAl catalyst; water-gas-shift (WGS); methanol steam reforming; reverse-water-gas-shift; fuel processing ID SUPPORTED PD CATALYSTS; HYDROGEN-PRODUCTION; PD/ZNO CATALYST; ALLOY CATALYSTS; DEACTIVATION; DEHYDROGENATION; DECOMPOSITION; SIZE AB Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 h time-on-stream at a temperature of 360 degrees C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be E-a = 58.3 kJ mol(-1) and k(o) = 6.1 X 10(7) mol(-1). During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming. (c) 2008 Elsevier B.V. All rights reserved. C1 [Dagle, R. A.; Platon, A.; Palo, D. R.; Wang, Y.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Datye, A. K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Vohs, J. M.] Univ Penn, Dept Chem & Bimol Engn, Philadelphia, PA 19104 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM yongwang@pnl.gov RI Wang, Yong/C-2344-2013; OI Datye, Abhaya/0000-0002-7126-8659 NR 30 TC 40 Z9 40 U1 7 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD JUN 30 PY 2008 VL 342 IS 1-2 BP 63 EP 68 DI 10.1016/j.apcata.2008.03.005 PG 6 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 314ZE UT WOS:000256846900008 ER PT J AU Ferrandon, M Mawdsley, J Krause, T AF Ferrandon, Magali Mawdsley, Jennifer Krause, Theodore TI Effect of temperature, steam-to-carbon ratio, and alkali metal additives on improving the sulfur tolerance of a Rh/La-Al2O3 catalyst reforming gasoline for fuel cell applications SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Rh; reforming; gasoline; sulfur; poisoning; deactivation; coke; SEM ID PARTIAL OXIDATION; DIESEL FUEL; HYDROGEN GENERATION; RH/AL2O3 CATALYSTS; NICKEL-CATALYSTS; METHANE; ADSORPTION; RHODIUM; CO AB 2 wt% Rh/La-Al2O3 Was tested for autothermal reforming (ATR) of S-free and 34 ppm-S-gasoline and characterized by scanning electron microscopy, elemental analyses, surface area, CO chemisorption, DRIFTS and X-ray absorption spectroscopy. The poisoning effect of S was more pronounced during ATR at 700 degrees C than at 800 degrees C. Complete recovery of the initial activity could be achieved when switching from S-containing gasoline to S-free gasoline at 800 degrees C, while only 50% of the activity could be recovered at 700 degrees C. Sulfur increased Rh sintering due to an increase in the catalyst temperature caused by a greater inhibition of steam reforming than partial oxidation. An increase in the H2O:C from 2.0 to 3.0, or the addition of K to Rh significantly enhanced the sulfur tolerance of the catalysts. The beneficial effect of temperature, steam, and alkali metal was attributed to the inhibition of coke, which was the major cause of catalyst deactivation. Published by Elsevier B.V. C1 [Ferrandon, Magali; Mawdsley, Jennifer; Krause, Theodore] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60430 USA. RP Krause, T (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60430 USA. EM krauset@anl.gov NR 24 TC 40 Z9 40 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD JUN 30 PY 2008 VL 342 IS 1-2 BP 69 EP 77 DI 10.1016/j.apcata.2008.03.001 PG 9 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 314ZE UT WOS:000256846900009 ER PT J AU Chang, CL Engelhard, MH Ramanathan, S AF Chang, Chia-Lin Engelhard, Mark H. Ramanathan, Shriram TI Superior nanoscale passive oxide layers synthesized under photon irradiation for environmental protection SO APPLIED PHYSICS LETTERS LA English DT Article ID ALUMINUM; FILMS; OXIDATION; OZONE; JUNCTIONS; ALLOYS AB We report on synthesis and functional properties of ultrathin oxide layers synthesized on metal surfaces by room temperature photon irradiation. We show that the impedance of a passive aluminum oxide film synthesized under ultraviolet photon irradiation is an order of magnitude larger than that of native oxide in a 0.5M NaCl solution. Further, the structure and impedance of existing native oxide layers can be dramatically improved by minutes-long exposure to photon irradiation. Depth profiling studies with x-ray photoelectron spectroscopy shows that chlorine uptake in UV-synthesized oxides, compared to that of native oxides, is reduced which can contribute to the improvement in corrosion resistance. The results are of significance to synthesis of ultrathin passive layers on metal and alloy structures for environmental protection. (c) 2008 American Institute of Physics. C1 [Chang, Chia-Lin; Ramanathan, Shriram] Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Chang, CL (reprint author), Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM clchang@fas.harvard.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 NR 18 TC 9 Z9 9 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 30 PY 2008 VL 92 IS 26 AR 263103 DI 10.1063/1.2952282 PG 3 WC Physics, Applied SC Physics GA 323DP UT WOS:000257424500057 ER PT J AU Cole, GD Groblacher, S Gugler, K Gigan, S Aspelmeyer, M AF Cole, Garrett D. Groeblacher, Simon Gugler, Katharina Gigan, Sylvain Aspelmeyer, Markus TI Monocrystalline Al(x)Ga(1-x)As heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime SO APPLIED PHYSICS LETTERS LA English DT Article ID GRAVITATIONAL-WAVE DETECTORS; RADIATION-PRESSURE; OPTICAL COATINGS; THERMAL NOISE; INTERFEROMETER; MICROMIRROR AB We present high-performance megahertz micromechanical oscillators based on freestanding epitaxial Al(x)Ga(1-x)As distributed Bragg reflectors. Compared with dielectric reflectors, the low mechanical loss of the monocrystalline heterostructure gives rise to significant improvements in the achievable mechanical quality factor Q while simultaneously exhibiting near unity reflectivity. Experimental characterization yields an optical reflectivity exceeding 99.98% and mechanical quality factors up to 20 000 at 4 K. This materials system is not only an interesting candidate for optical coatings with ultralow thermal noise, but also provides a promising path toward quantum optical control of massive micromechanical mirrors. (c) 2008 American Institute of Physics. C1 [Cole, Garrett D.] Lawrence Livermore Natl Lab, Ctr Micro & Nanotechnol, Livermore, CA 94550 USA. [Groeblacher, Simon; Gugler, Katharina; Gigan, Sylvain; Aspelmeyer, Markus] Austrian Acad Sci, IQOQI, A-1090 Vienna, Austria. RP Cole, GD (reprint author), Lawrence Livermore Natl Lab, Ctr Micro & Nanotechnol, 7000 E Ave, Livermore, CA 94550 USA. EM cole35@llnl.gov RI Cole, Garrett/B-9383-2011; Groeblacher, Simon/O-2455-2014; Aspelmeyer, Markus/C-4098-2017; OI Aspelmeyer, Markus/0000-0003-4499-7335; Gigan, Sylvain/0000-0002-9914-6231 NR 34 TC 42 Z9 43 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 30 PY 2008 VL 92 IS 26 AR 261108 DI 10.1063/1.2952512 PG 3 WC Physics, Applied SC Physics GA 323DP UT WOS:000257424500008 ER PT J AU Endrino, JL Marco, JF Allen, M Poolcharuansin, P Phani, AR Albella, JM Anders, A AF Endrino, J. L. Marco, J. F. Allen, M. Poolcharuansin, P. Phani, A. R. Albella, J. M. Anders, A. TI Functionalization of hydrogen-free diamond-like carbon films using open-air dielectric barrier discharge atmospheric plasma treatments SO APPLIED SURFACE SCIENCE LA English DT Article DE ion implantation and deposition; DLC; XPS; wettability; cell viability ID AMORPHOUS-CARBON; DLC-COATINGS; NITRIDE FILMS; SURFACE; WETTABILITY; PRESSURE; DEPOSITION; ACTIVATION; SILICON AB A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N(2) gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N(2) DBD plasma-treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N(2) atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC-coated devices. (c) 2008 Elsevier B.V. All rights reserved. C1 [Endrino, J. L.; Poolcharuansin, P.; Anders, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Endrino, J. L.; Albella, J. M.] CSIC, Inst Mat Madrid, E-28049 Madrid, Spain. [Marco, J. F.] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain. [Allen, M.] SUNY Upstate Med Univ, Syracuse, NY 13210 USA. [Poolcharuansin, P.] Mahasarakham Univ, Mahasarakham 44150, Thailand. [Phani, A. R.] CNR INFM, Reg Lab, CASTI, I-67100 Laquila, Italy. RP Endrino, JL (reprint author), CSIC, Inst Ciencia Mat, Surface Phys & Engn Dept, Madrid 28049, Spain. EM jlendrino@icmm.csic.es RI Endrino, Jose/G-1103-2011; Marco, Jose/N-3176-2014; Anders, Andre/B-8580-2009; OI Marco, Jose/0000-0002-5147-1449; Anders, Andre/0000-0002-5313-6505; POOLCHARUANSIN, PHITSANU/0000-0001-9650-9888; Endrino, Jose/0000-0002-3084-7910 NR 30 TC 14 Z9 15 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUN 30 PY 2008 VL 254 IS 17 BP 5323 EP 5328 DI 10.1016/j.apsusc.2008.02.065 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 304HB UT WOS:000256099500005 ER PT J AU Jiang, HQ Sun, YG Rogers, JA Huang, YG AF Jiang, Hanqing Sun, Yugang Rogers, John A. Huang, Yonggang TI Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates (Reprinted from In. J. Solids Struct., vol 45, pg 2014-2023, 2008) SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Reprint DE stretchable electronics; buckling; mechanics ID ELASTIC-MODULI; POLYMER; INTERCONNECTS; PERFORMANCE; ELECTRONICS; METROLOGY; SURFACES; SKIN AB The precisely controlled buckling of stiff thin films (e.g., Si or GaAs nano ribbons) on the patterned surface of elastomeric substrate (e.g., poly(dimethylsiloxane) (PDMS)) with periodic inactivated and activated regions was designed by Sun et al. [Sun, Y., Choi, W.M., Jiang, H., Huang, Y.Y., Rogers, J.A., 2006. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nature Nanotechnology 1, 201-207] for important applications of stretchable electronics. We have developed a post-buckling model based on the energy method for the precisely controlled buckling to study the system stretchability. The results agree with Sun et al.'s (2006) experiments without any parameter fitting, and the system can reach 120% stretchability. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Jiang, Hanqing] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Rogers, John A.] Univ Illinois, Beckman Inst, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Rogers, John A.] Univ Illinois, Seitz Mat Res Lab, Urbana, IL 61801 USA. [Rogers, John A.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Huang, Yonggang] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA. [Huang, Yonggang] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. RP Jiang, HQ (reprint author), Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. EM hanqing.jiang@asu.edu RI Huang, Yonggang/B-6998-2009; Rogers, John /L-2798-2016 NR 30 TC 2 Z9 2 U1 5 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD JUN 30 PY 2008 VL 45 IS 13 BP 3858 EP 3867 DI 10.1016/S0020-7683(08)00168-6 PG 10 WC Mechanics SC Mechanics GA 306NJ UT WOS:000256254800018 ER PT J AU King, WD Wilmarth, WR Hobbs, DT Edwards, TB AF King, William D. Wilmarth, William R. Hobbs, David T. Edwards, Thomas B. TI Recent studies of uranium and plutonium chemistry in alkaline radioactive waste solutions SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE actinide alloys and compounds; precipitation; X-ray diffraction ID SOLUBILITY AB Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions. (c) 2007 Elsevier B.V. All rights reserved. C1 [King, William D.; Wilmarth, William R.; Hobbs, David T.; Edwards, Thomas B.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP King, WD (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM william02.king@srnl.doe.gov NR 5 TC 5 Z9 5 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUN 30 PY 2008 VL 458 IS 1-2 BP 158 EP 160 DI 10.1016/j.jallcom.2007.09.039 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 312AJ UT WOS:000256641200029 ER PT J AU Huang, YZ Yuan, WX Qiao, ZY Semenova, O Bester, G Ipser, H AF Huang, Yongzhang Yuan, Wenxia Qiao, Zhiyu Semenova, Olga Bester, Gabriel Ipser, Herbert TI A thermodynamic study of the D0(3)-ordered intermetallic compound Fe3Al SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE metals and alloys; intermetallics; electromotive force; EMF; thermodynamic properties; thermodynamic modeling ID IRON-ALUMINUM ALLOYS; EFFECTIVE FORMATION ENERGIES; ROOM-TEMPERATURE DUCTILITY; ATOMIC DEFECTS; AB-INITIO; FE-AL; NONSTOICHIOMETRY; PHASES; METALS AB Thermodynamic activities of aluminum in the iron-aluminum system were determined between about 720 and 850 K for the composition range between 23 and 33 at.% Al which includes the D0(3)-ordered nonstoichiometric intermetallic compound Fe3Al For this purpose an electromotive force method with a single-crystal CaF2 electrolyte was used, and the following cell arrangement was employed: (-)Pt vertical bar Ir vertical bar Al0.85Sn0.15, Na3AlF(6)vertical bar CaF2 vertical bar Al1 +/- xFe3 +/- x, Na3AlF6 vertical bar Ir vertical bar Pt(+). Activities of iron were obtained by means of a Gibbs-Duhem integration for the same composition range. The results of the activity measurements were interpreted in terms of a statistical-thermodynamic model for nonstoichiometric phases with the D0(3)-superstructure based on defect formation energies from the literature. It was found that non-stoichiometry in Fe3Al is caused by anti-structure atoms on two of the three possible sublattices. (c) 2007 Elsevier B.V. All rights reserved. C1 [Semenova, Olga; Ipser, Herbert] Univ Vienna, Dept Inorgan Chem Mat Chem, A-1090 Vienna, Austria. [Yuan, Wenxia] Beijing Univ Sci & Technol, Dept Chem, Sch Appl Sci, Beijing 100083, Peoples R China. [Huang, Yongzhang; Qiao, Zhiyu] Beijing Univ Sci & Technol, Sch Met & Ecol Engn, Beijing 100083, Peoples R China. [Bester, Gabriel] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ipser, H (reprint author), Univ Vienna, Dept Inorgan Chem Mat Chem, Wahringerstr 42, A-1090 Vienna, Austria. EM herbert.ipser@univie.ac.at RI Bester, Gabriel/I-4414-2012 OI Bester, Gabriel/0000-0003-2304-0817 NR 32 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUN 30 PY 2008 VL 458 IS 1-2 BP 277 EP 281 DI 10.1016/j.jallcom.2007.04.208 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 312AJ UT WOS:000256641200048 ER PT J AU McManamy, T Crabtree, A Lousteau, D DeVore, J Jacobs, L Rennich, M AF McManamy, T. Crabtree, A. Lousteau, D. DeVore, J. Jacobs, L. Rennich, M. TI Overview of the SNS target system testing and initial beam operation experience SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM AB The Spallation Neutron Source (SNS) construction project has been completed including initial beam operation with the mercury target, moderators and associated systems. The project was initiated in 1999, with groundbreaking in December of 1999. Final integrated system testing for the mercury target, cryogenic moderators, shutter systems, water and other utility systems and all control and safety systems were completed in April 2006 and first beam on target was delivered April 28, 2006. This paper will give an overview of the system testing conducted in preparation for beam operation and initial operating experience with low power beams. One area of testing was extensive remote handling testing in the target service bay to demonstrate all key operations associated with the target and mercury loop. Many improvements were implemented as a result of this experience. Another set of tests involved bringing the supercritical cryogenic moderator systems on line. Again, lessons learned here resulted in system changes. Testing of the four water loops was very time consuming because of the complexity of the systems and many instrumentation issues had to be resolved. A temporary phosphor view-screen was installed on the front of the target which has been extremely useful in evaluating the beam profile on the target. Initial profile results will be presented. Target system performance for initial beam operation will be discussed. In general, all systems performed well with excellent availability. There were some unexpected findings. For example, xenon spallation gas products are believed to have deposited on a downstream gold amalgamation bed designed to remove mercury vapor and this disposition increased the local dose rate. A summary of findings and plans for ramping up in power will be given. (c) 2008 Elsevier B.V. All rights reserved. C1 [McManamy, T.; Crabtree, A.; Lousteau, D.; DeVore, J.; Jacobs, L.; Rennich, M.] Spallat Neutron Source ORNL, Oak Ridge, TN 37831 USA. RP McManamy, T (reprint author), Spallat Neutron Source ORNL, POB 2008,Bldg 8600,MS6473, Oak Ridge, TN 37831 USA. EM mcmanamytj@ornl.gov OI Rennich, Mark/0000-0001-6945-0075 NR 5 TC 11 Z9 13 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 1 EP 11 DI 10.1016/j.jnucmat.2008.02.024 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500002 ER PT J AU Maloy, SA AF Maloy, S. A. TI Proceedings of the Eighth International Workshop on Spallation Materials Technology (IWSMT-8) - Preface SO JOURNAL OF NUCLEAR MATERIALS LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Maloy, SA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM maloy@lanl.gov RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 NR 9 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP IX EP X DI 10.1016/j.jnucmat.2008.02.023 PG 2 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500001 ER PT J AU Pitcher, EJ AF Pitcher, Eric J. TI The materials test station: A fast-spectrum irradiation facility SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM AB The United States Department of Energy is developing technologies needed to reduce the quantity of high-level nuclear waste bound for deep geologic disposal. Central to this mission is the development of high burn-up fuel with significant inclusion of plutonium and minor actinides. Different fuel forms (e.g., nitrides, oxides, and metal matrix) and composition are under study. The success of these cannot be judged until they have been irradiated and tested in a prototypic fast neutron spectrum environment. In 2005, the US Congress authorized funding for the design of the materials test station (MTS) to perform candidate fuels and materials irradiations in a neutron spectrum similar to a fast reactor spectrum. The MTS will use a 1-MW proton beam to generate neutrons through spallation reactions. The peak neutron flux in the irradiation region will exceed 1.2 x 10(19) n m(-2) s(-1) and the fast neutron fluence will reach 2 x 10(26) n m(-2) per year of operation. Site preparation and test station fabrication are expected to take four years. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pitcher, EJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM J.Pitcherpitcher@lanl.gov NR 4 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 17 EP 20 DI 10.1016/j.jnucmat.2008.02.084 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500004 ER PT J AU Simos, N Kirk, HG Thieberger, P Ludewig, H Conor, JO Mausner, L Trung, PT McDonald, KT Yoshimura, K Bennett, JRJ AF Simos, N. Kirk, H. G. Thieberger, P. Ludewig, H. Conor, J. O. Mausner, L. Trung, P. -T. McDonald, K. T. Yoshimura, K. Bennett, J. R. J. TI Irradiation damage studies of high power accelerator materials SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM AB High-performance production targets and other critical accelerator components intercepting intense, energetic proton beams are essential as the accelerator community envisions the next generation, multi-MW accelerators. Materials that have served the nuclear sector well may not be suitable to play such a role which demands that the material comprising the beam-intercepting element must, in addition to the long exposure which leads to accumulated irradiation damage, also endure short exposure that manifests itself as thermo-mechanical shock. The ability of materials to resist irradiation-induced degradation of its properties that control shock and fatigue is of primary interest. The need for such materials that extend beyond resistance to the neutron-driven irradiation damage of reactor components has led to an extensive search and experimentation with new alloys and composites. These new high-performance materials, which appear to possess the right combination of mechanical and physical properties, are explored through a multi-phased experimental study at Brookhaven National Laboratory (BNL). This study, which brings together the interest in accelerator targets of different facilities around the world, seeks to simulate conditions of both short and long exposure to proton beams to assess the survivability potential of these new alloys and composite materials. While thermo-mechanical shock effects have been studied in the early stages of this comprehensive effort, it is irradiation damage that is currently the focus of the study and results to-date are presented in this paper along with the status and objectives of ongoing studies. Of special interest are results depicting damage reversal through post-irradiation annealing in some of the materials. High fluences of 200 and/or 117 MeV protons provided by the BNL Linac beam that serves the isotope Production Facility were used to assess irradiation damage in these new composites and alloys. (c) 2008 Elsevier B.V. All rights reserved. C1 [Simos, N.; Kirk, H. G.; Thieberger, P.; Ludewig, H.; Conor, J. O.; Mausner, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Trung, P. -T.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [McDonald, K. T.] Princeton Univ, Princeton, NJ 08544 USA. [Yoshimura, K.] KEK, Tsukuba, Ibaraki 3050801, Japan. [Bennett, J. R. J.] CCLRC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Simos, N (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM simos@bnl.gov NR 8 TC 6 Z9 6 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 41 EP 51 DI 10.1016/j.jnucmat.2008.02.074 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500008 ER PT J AU Byun, TS Maloy, SA AF Byun, Thak Sang Maloy, Stuart A. TI Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID PLASTIC INSTABILITY; METALS AB The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the high flux isotope reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60-100 degrees C. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50-160 degrees C. Tensile tests were performed at room temperature and at 250 degrees C at nominal strain rates of about 10(-3) s(-1). All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be due to high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high (>= 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield. Published by Elsevier B.V. C1 [Byun, Thak Sang] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Maloy, Stuart A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Byun, TS (reprint author), Oak Ridge Natl Lab, POB 2008,MS-6151, Oak Ridge, TN 37831 USA. EM byunts@ornl.gov RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 NR 14 TC 16 Z9 16 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 72 EP 79 DI 10.1016/j.jnucmat.2008.02.034 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500012 ER PT J AU Maloy, S Rogers, B Ren, W Rittenhouse, P AF Maloy, Stuart Rogers, Berylene Ren, Weiju Rittenhouse, Philip TI Status of materials handbooks for particle accelerator and nuclear reactor applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM AB In support of research and development for accelerator applications, a materials handbook was developed in August of 1998 funded by the Accelerator Production of Tritium Project. This handbook, presently called Advanced Fuel Cycle Initiative (AFCI) Materials Handbook, Materials Data for Particle Accelerator Applications, has just issued Revision 5 and contains detailed information showing the effects of irradiation on many properties for a wide variety of materials. Development of a web-accessible materials database for Generation IV Reactor Programs has been ongoing for about three years. This handbook provides a single authoritative source for qualified materials data applicable to all Generation IV reactor concepts. A beta version of this Gen IV Materials Handbook has been completed and is presently under evaluation. (c) 2008 Elsevier B.V. All rights reserved. C1 [Maloy, Stuart; Rogers, Berylene] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ren, Weiju] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Maloy, S (reprint author), Los Alamos Natl Lab, MS H816, Los Alamos, NM 87545 USA. EM maloy@lanl.gov OI Maloy, Stuart/0000-0001-8037-1319 NR 3 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 94 EP 96 DI 10.1016/j.jnucmat.2008.02.056 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500014 ER PT J AU Deo, C Tom, C Lebensohn, R Maloy, S AF Deo, Chaitanya Tom, Carlos Lebensohn, Ricardo Maloy, Stuart TI Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID CASCADE DAMAGE CONDITIONS; NEUTRON-IRRADIATION; MECHANICAL-PROPERTIES; DISLOCATION LOOPS; STAINLESS-STEELS; BCC IRON; MICROSTRUCTURE; METALS; COPPER; CRYSTALS AB Hardening and embrittlement are controlled by interactions between dislocations and irradiation induced defect clusters. In this work we employ the visco plastic self consistent (VPSC) polycrystalline code in order to model the yield stress dependence in ferritic steels on the irradiation dose. We implement the dispersed barrier hardening model in the VPSC code by introducing a hardening law, function of the strain, to describe the threshold resolved shear stress required to activate dislocations. The size and number density of the defect clusters varies with the irradiation dose in the model. We find that VPSC calculations show excellent agreement with the experimental data set. Such modeling efforts can both reproduce experimental data and also guide future experiments of irradiation hardening. Published by Elsevier B.V. C1 [Deo, Chaitanya] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. [Tom, Carlos; Lebensohn, Ricardo; Maloy, Stuart] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Deo, C (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. EM chaitanya.deo@me.gatech.edu RI Lebensohn, Ricardo/A-2494-2008; OI Lebensohn, Ricardo/0000-0002-3152-9105; Maloy, Stuart/0000-0001-8037-1319 NR 31 TC 17 Z9 17 U1 4 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 136 EP 140 DI 10.1016/j.jnucmat.2008.02.064 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500021 ER PT J AU Felde, D Riemer, B Wendel, M AF Felde, David Riemer, Bernard Wendel, Mark TI Development of a gas layer to mitigate cavitation damage in liquid mercury spallation targets SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM AB Establishment of a gas layer between the flowing liquid and container wall is proposed for mitigating the effects of cavitation in mercury spallation targets. Previous work has shown an order of magnitude decrease in damage for a gas layer developed in a stagnant mercury target for an in-beam experiment. This work is aimed at extending these results to the more complex conditions introduced by a flowing mercury target system. A water-loop has been fabricated to provide initial insights on potential gas injection methods into a flowing liquid. An existing full-scale flow loop designed to simulate the Spallation Neutron Source target system will be used to extend these studies to mercury. A parallel analytical effort is being conducted using computational fluid dynamics (CFD) modeling to provide direction to the experimental effort. Some preliminary simulations of gas injection through a single hole have been completed and show behavior of the models that is qualitatively meaningful. Published by Elsevier B.V. C1 [Felde, David; Riemer, Bernard; Wendel, Mark] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Felde, D (reprint author), Oak Ridge Natl Lab, POB 2008,MS6167, Oak Ridge, TN 37831 USA. EM feldedk@ornl.gov OI Riemer, Bernard/0000-0002-6922-3056 NR 5 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 155 EP 161 DI 10.1016/j.jnucmat.2008.02.065 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500024 ER PT J AU Riemer, B Haines, J Wendel, M Bauer, G Futakawa, M Hasegawa, S Kogawa, H AF Riemer, B. Haines, J. Wendel, M. Bauer, G. Futakawa, M. Hasegawa, S. Kogawa, H. TI Cavitation damage experiments for mercury spallation targets at the LANSCE-WNR in 2005 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID SNS; TESTS AB In-beam experiments investigating cavitation damage in short pulse mercury spallation targets were performed at the Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) facility in 2005. Two main areas were investigated. First, damage dependence on three mercury conditions - stagnant, flowing, and flowing with bubble injection - was investigated by employing a small mercury target loop with replaceable damage test specimens. One hundred beam pulses were passed through the loop mercury and specimen pair for each test condition. Damage with flowing mercury (V = 0.4 m/s) was less than half that which was incurred with stagnant mercury. Gas bubble injection added into the flow further reduced damage to about one-fourth that of stagnant mercury. Acoustic emissions from cavitation bubble collapse were concurrently measured on the exterior of the loop using a laser Doppler vibrometer and were correlated to the observed damage. The second area of experimentation was erosion rate dependence on proton beam intensity. Prior research had indicated that incubation-phase cavitation erosion rate is strongly dependent on beam intensity, by a power law with the exponent perhaps as large as 4. The 2005 results are inconsistent with earlier in-beam test results and do not support the power law dependence. This paper will provide a detailed description of the experiment, present results and discuss the findings. Published by Elsevier B.V. C1 [Riemer, B.; Haines, J.; Wendel, M.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Bauer, G.] Forschungszentrum Julich, D-52425 Julich, N Rhine Westpha, Germany. [Futakawa, M.; Hasegawa, S.; Kogawa, H.] JAEA, Ctr Proton Accelerator Facil, Tokai, Ibaraki 3191195, Japan. RP Riemer, B (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008,Bldg 8600,MS 6466, Oak Ridge, TN 37831 USA. EM riemerbw@ornl.gov OI Riemer, Bernard/0000-0002-6922-3056 NR 17 TC 18 Z9 18 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 162 EP 173 DI 10.1016/j.jnucmat.2008.02.028 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500025 ER PT J AU Pawel, SJ Mansur, LK AF Pawel, S. J. Mansur, L. K. TI Cavitation-erosion resistance of 316LN stainless steel in mercury containing metallic solutes SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID SNS TARGET TESTS; LANSCE-WNR AB Room temperature cavitation tests of vacuum annealed type 316LN stainless steel were performed in pure mercury and in mercury with various amounts of metallic solute to evaluate potential mitigation of erosion/wastage. Tests were performed using an ultrasonic vibratory horn with specimens attached at the tip. All of the solutes examined, which included 5 wt% In, 10 wt% In, 4.4 wt% Cd, 2 wt% Ga, and a mixture that included I wt% each of Pb, Sn, and Zn, were found to increase cavitation-erosion as measured by increased weight loss and/or surface profile development compared to exposures for the same conditions in pure mercury. Qualitatively, each solute appeared to increase the tenacity of the post-test wetting of the Hg solutions and render the Hg mixture susceptible to manipulation of droplet shape. (c) Published by Elsevier B.V. C1 [Pawel, S. J.; Mansur, L. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Pawel, SJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM pawelsj@ornl.gov NR 18 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 174 EP 181 DI 10.1016/j.jnucmat.2008.02.048 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500026 ER PT J AU Futakawa, M Kogawa, H Hasegawa, S Ikeda, Y Riemer, B Wendel, M Haines, J Bauer, G Naoe, T Okita, K Fujiwara, A Matsumoto, Y Tanaka, N AF Futakawa, Masatoshi Kogawa, Hiroyuki Hasegawa, Shoichi Ikeda, Yujiro Riemer, Bernie Wendel, Mark Haines, John Bauer, Guenter Naoe, Takashi Okita, Kohei Fujiwara, Akiko Matsumoto, Yoichiro Tanaka, Nobuatsu TI Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID MERCURY TARGET; PRESSURE; EROSION; WAVE AB Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall, In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalent pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown. (c) 2008 Elsevier B.V. All rights reserved. C1 [Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi; Ikeda, Yujiro; Naoe, Takashi] J PARC Ctr JAEA, Ibaraki 3191195, Japan. [Riemer, Bernie; Wendel, Mark; Haines, John] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bauer, Guenter] Forschungszentrum Julich, D-52425 Julich, Germany. [Okita, Kohei] RIKEN, Wako, Saitama 3510198, Japan. [Fujiwara, Akiko; Matsumoto, Yoichiro] Univ Tokyo, Hongou, Bunkyou Ku, Tokyo 1138656, Japan. [Tanaka, Nobuatsu] Ibaraki Univ, Ibaraki 3168511, Japan. RP Futakawa, M (reprint author), J PARC Ctr JAEA, Ibaraki 3191195, Japan. EM futakawa.masatoshi@jaea.go.jp OI Riemer, Bernard/0000-0002-6922-3056 NR 20 TC 21 Z9 21 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 182 EP 188 DI 10.1016/j.jnucmat.2008.02.058 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500027 ER PT J AU Kogawa, H Hasegawa, S Futakawa, M Riemer, B Wendel, M Haines, J AF Kogawa, H. Hasegawa, S. Futakawa, M. Riemer, B. Wendel, M. Haines, J. TI Numerical study on pressure wave propagation in a mercury loop SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID DYNAMIC-RESPONSE; PITTING DAMAGE; EROSION; TARGET AB On-beam tests were carried out at the Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE-WNR) facility in June 2005 to investigate pressure wave mitigation in mercury targets for the MW-class spallation neutron sources under international collaboration between US Spallation Neutron Source (SNS) and Japanese Spallation Neutron Source (JSNS). A mercury loop was used for the target, a so-called In-Beam Bubbling Test Loop (IBBTL). The loop consists of the rectangular pipe of 25 mm x 50 mm(2) in cross section, 1.5 mm in wall thickness and 2 m in total length approximately. The SNS team set 8 strain sensors on the pipe wall to measure the strain propagation caused by the pressure wave. The maximum strain appeared at 350 mm apart from the proton-bombarded point at 5.5 ms after the proton bombardment. It is known that the propagation velocity of the pressure wave in mercury is ca. 1500 m/s and that of the stress wave in stainless steel is ca. 5000 m/s. However, the apparent wave propagation velocity in the IBBTL was lower than those velocities and was observed to be 65 m/s. Numerical analysis was carried out to understand the strain propagation in the pipe wall of the IBBTL. Numerical results showed that the maximum strain at 350 mm apart from the beam spot appeared at 5.5 ms after proton bombardment in good agreement with experimental results. (c) 2008 Elsevier B.V. All rights reserved. C1 [Kogawa, H.; Hasegawa, S.; Futakawa, M.] Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan. [Riemer, B.; Wendel, M.; Haines, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Kogawa, H (reprint author), Japan Atom Energy Agcy, 2-4 Shirokata Shirane, Naka, Ibaraki 3191195, Japan. EM kogawa.hiroyuki@jaea.go.jp OI Riemer, Bernard/0000-0002-6922-3056 NR 17 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 195 EP 200 DI 10.1016/j.jnucmat.2008.02.078 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500029 ER PT J AU Hosemann, P Swadener, JG Welch, J Li, N AF Hosemann, P. Swadener, J. G. Welch, J. Li, N. TI Nano-indentation measurement of oxide layers formed in LBE on F/M steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID FLOWING LEAD-BISMUTH; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; 550-DEGREES-C; SCALES; BI AB Ferritic/martensitic (F/M) steels (T91, HT-9, EP 823) are candidate materials for future liquid lead or lead bismuth eutectic (LBE) cooled nuclear reactors. To understand the corrosion of these materials in LBE, samples of each material were exposed at 535 degrees C for 600 h and 200 h at an oxygen content of 10(-6) wt%. After the corrosion tests, the samples were analyzed using SEM, WDX and nano-indentation in cross section. Multi-layered oxide scales were found on the sample surfaces. The compositions of these oxide layers are not entirely in agreement with the literature. The nano-indentation results showed that the E-modulus and hardness of the oxide layers are significantly lower than the values for dense bulk oxide materials. It is assumed that the low values stem from high porosity in the oxide layers. Comparison with in-air oxidized steels show that the E-modulus decreases with increasing oxide layer thickness. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hosemann, P.; Swadener, J. G.; Li, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hosemann, P.] Montanunive Leoben, A-8700 Leoben, Austria. [Welch, J.] Univ Nevada, Las Vegas, NV 89154 USA. RP Hosemann, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM peterh@lanl.gov OI Hosemann, Peter/0000-0003-2281-2213; Swadener, John G/0000-0001-5493-3461 NR 15 TC 16 Z9 16 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 201 EP 205 DI 10.1016/j.jnucmat.2008.02.073 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500030 ER PT J AU Lu, W Ferguson, PD Iverson, EB Gallmeier, FX Popova, I AF Lu, W. Ferguson, P. D. Iverson, E. B. Gallmeier, F. X. Popova, I. TI Moderator poison design and burn-up calculations at the SNS SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM AB The spallation neutron source (SNS) at Oak Ridge National Laboratory was commissioned in April 2006. At the nominal operating power (1.4 MW), it will have thermal neutron fluxes approximately an order of magnitude greater than any existing pulsed spallation source. It thus brings a serious challenge to the lifetime of the moderator poison sheets. The SNS moderators are integrated with the inner reflector plug (IRP) at a cost of similar to$2 million a piece. A replacement of the inner reflector plug presents a significant drawback to the facility due to the activation and the operation cost. Although there are a lot of factors limiting the lifetime of the inner reflector plug, like radiation damage to the structural material and helium production of beryllium, the bottle-neck is the lifetime of the moderator poison sheets. Increasing the thickness of the poison sheet extends the lifetime but would sacrifice the neutronic performance of the moderators. A compromise is accepted at the current SNS target system which uses thick Gd poison sheets at a projected lifetime of 6 MW-years of operation. The calculations in this paper reveal that Cd may be a better poison material from the perspective of lifetime and neutronic performance. In replacing Gd, the inner reflector plug could reach a lifetime of 8 MW-years with similar to 5% higher peak neutron fluxes at almost no loss of energy resolution. (c) Published by Elsevier B.V. C1 [Lu, W.; Ferguson, P. D.; Iverson, E. B.; Gallmeier, F. X.; Popova, I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lu, W (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM luw2@ornl.gov OI Popova, Irina/0000-0001-9965-9902; Ferguson, Phillip/0000-0002-7661-4223; Iverson, Erik /0000-0002-7920-705X NR 9 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 268 EP 274 DI 10.1016/j.jnucmat.2008.02.087 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500039 ER PT J AU Wechsler, MS Lu, W AF Wechsler, M. S. Lu, W. TI Radiation flux and damage at accelerator-driven spallation neutron sources SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID HIGH-ENERGY PROTONS; CROSS-SECTION; PURE METALS; HELIUM; SIMULATION; ISOTOPES; ALUMINUM; DATABASE; LANSCE; WINDOW AB Radiation damage (displacement, helium, and hydrogen production) at proton-driven spallation neutron sources is analyzed and compared for SNS 513 (316SS at the nose of the Hg-container vessel), SINS PEW (A16061 at a hypothetical proton entrance window), and SINQ EW (Al-3 wt% Mg entrance window at Target 5). Spallation neutrons at the three components exhibit differential fluxes, phi', that increase monotonically with decreasing energy E. For SINQ EW, phi' is roughly proportional to 1/E, which is attributed to the moderating effect of the D2O coolant and moderator tank. For 316SS at SNS SB, the calculated total displacement production rate due to protons and neutrons is 34 dpa/yr at full power, with about 37% due to protons. For the Al at SNS PEW and SINQ EW, however, the total rate is 4-5 dpa/yr, with about 90% due to protons. He and H production in all three components is dominated by the incident protons. For He, comparison of experimental and calculated production cross sections for protons on 316SS and Al indicates the need to employ the non-default Julich ILVDEN option in running LAHET. The resulting total production rates for SNS SB, SINS PEW, and SINQ EW are about 3000, 2400, and 1900 appmHe/yr, respectively. These rates are 1.5-2 times the rates previously calculated using the default GCCI ILVDEN option. The high mobility of H atoms promotes H escape from thin targets of 316SS and Al. For 0.1 cm-thick samples, we tallied the H where it comes to rest using IOPT 14, and obtained production rates at SNS SB, SNS PEW, and SINQ EW of 11500, 4300, and 3500 appmH/yr, respectively. (c) 2008 Elsevier B.V. All rights reserved. C1 [Wechsler, M. S.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Lu, W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wechsler, MS (reprint author), N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. EM wechsler@ncsu.edu NR 35 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 275 EP 284 DI 10.1016/j.jnucmat.2008.02.089 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500040 ER PT J AU Bennett, JRJ Skoro, GP Booth, C Brooks, SJ Brownsword, RA Edgecock, TR Densham, CJ Gray, SA McFarland, AJ Simos, N Wilkins, D AF Bennett, J. R. J. Skoro, G. P. Booth, C. Brooks, S. J. Brownsword, R. A. Edgecock, T. R. Densham, C. J. Gray, S. A. McFarland, A. J. Simos, N. Wilkins, D. TI Thermal shock measurements and modelling for solid high-power targets at high temperatures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Workshop on Spallation Materials Technology (IWSMT-8) CY OCT 16-20, 2006 CL Taos, NM ID ROTATING TOROIDAL TARGET; NEUTRINO PRODUCTION AB A description of lifetime shock tests on tantalum and tungsten is given and of modelling studies as part of the research into solid targets for a Neutrino Factory. A fast high current pulse is applied to a thin wire of the sample material and the number of pulses measured before the wire visibly deteriorates. These measurements are made at temperatures up to similar to 2000 K. The stress on the wire is calculated and compared to the stress expected in the target using the computer code LS-DYNA. It has been found that tantalum is too weak to sustain prolonged stress at these temperatures but a tungsten wire has reached over 13 million pulses (equivalent to 10 years of operation) at the stress expected in the target. Further work is in progress to study graphite and other materials. Measurement of the surface acceleration of the wire using a VISAR are to be made, which, combined with LS-DYNA modelling, will allow the evaluation of the constitutive equations of state of the materials at high temperature and provide a more accurate model of the stresses in a number of target geometries. (c) 2008 Elsevier B.V. All rights reserved. C1 [Bennett, J. R. J.; Brooks, S. J.; Brownsword, R. A.; Edgecock, T. R.; Densham, C. J.; Gray, S. A.; McFarland, A. J.; Wilkins, D.] Rutherford Appleton Lab, CCLRC, Didcot OX11 0QX, Oxon, England. [Skoro, G. P.; Booth, C.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Simos, N.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bennett, JRJ (reprint author), Rutherford Appleton Lab, CCLRC, Didcot OX11 0QX, Oxon, England. EM roger.bennett@rl.ac.uk RI Skoro, Goran/F-3642-2010; Skoro, Goran/P-1229-2014; Booth, Christopher/B-5263-2016 OI Skoro, Goran/0000-0001-7745-9045; Booth, Christopher/0000-0002-6051-2847 NR 14 TC 7 Z9 7 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2008 VL 377 IS 1 BP 285 EP 289 DI 10.1016/j.jnucmat.2008.02.044 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 324KM UT WOS:000257517500041 ER PT J AU Graeve, OA Kanakala, R Kaufman, L Sinha, K Wang, E Pearson, B Rojas-George, G Farmer, JC AF Graeve, Olivia A. Kanakala, Raghunath Kaufman, Larry Sinha, Kaustav Wang, Enhai Pearson, Brett Rojas-George, Gabriel Farmer, Joseph C. TI Spark plasma sintering of Fe-based structural amorphous metals (SAM) with Y2O3 nanoparticle additions SO MATERIALS LETTERS LA English DT Article DE glasses; metals and alloys; powder technology; spark plasma sintering; nanopowders; yttria AB Interest in amorphous metal alloys has grown dramatically in the last few years. Recently, a novel composition known as structurally amorphous metal 7 (SAM7) with a composition of Fe48Mo14Cr15Y2C15B6 was developed. Determination of its density and sintering behavior, with and without Y2O3 nanoparticle additions, was undertaken in this study using spark plasma sintering. It was found that the pure SAW material has a theoretical density of 7.75 g/cm(3) and can be sintered to full density (rho(experimental)=7.76 g/cm(3)) at 600 degrees C for 10 min without loss of amorphous character. The SAM7 powder with the addition of similar to 2.5 wt.% of Y2O3 nanoparticles has a theoretical density of 7.67 g/cm(3) and can be sintered to full density (rho(experimental)=7.30 g/cm(3)) at the same temperature and time as for pure SAM7. (C) 2008 Elsevier B.V. All rights reserved. C1 [Graeve, Olivia A.; Kanakala, Raghunath; Sinha, Kaustav; Wang, Enhai; Pearson, Brett; Rojas-George, Gabriel] Univ Nevada, Dept Chem & Met Engn, Reno, NV 89557 USA. [Kaufman, Larry] CALPHAD Inc, Brookline, MA 02445 USA. [Farmer, Joseph C.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP Graeve, OA (reprint author), Univ Nevada, Dept Chem & Met Engn, Reno, NV 89557 USA. EM oagraeve@unr.edu NR 8 TC 14 Z9 15 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD JUN 30 PY 2008 VL 62 IS 17-18 BP 2988 EP 2991 DI 10.1016/j.matlet.2008.01.092 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 314AI UT WOS:000256780700125 ER PT J AU Spirig, JV Routbort, JL Singh, D King, G Woodward, PM Dutta, PK AF Spirig, John V. Routbort, Jules L. Singh, Dileep King, Graham Woodward, Patrick M. Dutta, Prabir K. TI Joining of highly aluminum-doped lanthanum strontium manganese oxide with tetragonal zirconia by plastic deformation SO SOLID STATE IONICS LA English DT Article DE lanthanum strontium aluminum manganese oxide; LSAM; LSM; ceramic conductor; fuel cell; sensor; Raman microscopy ID CONDUCTIVITY; SOFC; CATHODE; CREEP AB Aluminum-doped lanthanum strontium manganese oxide, La0.77Sr0.20Al0.9Mn0.1O3 (LSAM), was joined to stabilized tetragonal zirconia polymorph YTZP (ZrO2)(0.97)(Y2O3)(0.03) by a uniaxial stress (3-6 MPa) and high-temperature (1250-1350 degrees C) bonding method that initiates grain-boundary sliding between the ceramic components. The flow stress of LSAM was larger than that of La0.8Sr0.2Mn0.3 under the same test conditions. Electron microscopy confirmed that intergranular penetration occurred at the joining plane, leading to effective bonding between the two dissimilar ceramics. Raman spectral maps of the joining planes obtained with 2-D Raman microscopy demonstrated the absence of any new phases at the interface. (C) 2008 Elsevier B.V. All rights reserved. C1 [Routbort, Jules L.; Singh, Dileep] Argonne Natl Lab, Argonne, IL 60439 USA. [Spirig, John V.; King, Graham; Woodward, Patrick M.; Dutta, Prabir K.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Spirig, John V.; Dutta, Prabir K.] Ctr Ind Sensors & Measurement, Columbus, OH 43210 USA. RP Singh, D (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dsingh@anl.gov; dutta.I@osu.edu RI King, Graham/E-3632-2010 OI King, Graham/0000-0003-1886-7254 NR 22 TC 3 Z9 3 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD JUN 30 PY 2008 VL 179 IS 15-16 BP 550 EP 557 DI 10.1016/j.ssi.2008.03.043 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 316YD UT WOS:000256984900005 ER PT J AU Ricciuto, DM Davis, KJ Keller, K AF Ricciuto, Daniel M. Davis, Kenneth J. Keller, Klaus TI A Bayesian calibration of a simple carbon cycle model: The role of observations in estimating and reducing uncertainty SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID TERRESTRIAL BIOSPHERE; SOIL RESPIRATION; ATMOSPHERIC CO2; LAND-USE; SPATIAL VARIABILITY; ANTHROPOGENIC CO2; ECOSYSTEM MODELS; CLIMATE-CHANGE; FEEDBACK; DIOXIDE AB The strengths of future carbon dioxide ( CO2) sinks are highly uncertain. A sound methodology to characterize current and predictive uncertainties in carbon cycle models is crucial for the design of efficient carbon management strategies. We demonstrate such a methodology, Markov Chain Monte Carlo ( MCMC), by performing a Bayesian calibration of a simple global-scale carbon cycle model with historical carbon cycle observations to ( 1) estimate probability density functions ( PDFs) of key carbon cycle parameters, ( 2) derive statistically sound probabilistic predictions of future CO2 sinks, and ( 3) assess the utility of hypothetical observation systems to reduce prediction uncertainties. We find that the PDFs of model parameter estimates are not normally distributed, and the residuals show statistically significant temporal autocorrelation. The assumption of normally distributed PDFs likely causes biased results, and the neglect of autocorrelation in the residual of the annual CO2 time series causes overconfidence in parameter estimates and predictions. Using interannually varying global temperature observations as forcing provides important information: terrestrial parameter PDFs are shifted and are more sharply constrained when compared to PDFs estimated when forcing the carbon cycle with a simple energy-balance model. Although CO2 observations provide a strong constraint on the total carbon sink, adding independent observations of terrestrial and oceanic fluxes has the potential to reduce uncertainty in predictions of this total sink more rapidly. Assimilating hypothetical annual observations of terrestrial and oceanic CO2 fluxes with realistic uncertainties reduces predictive uncertainties about CO2 sinks in the year 2050 by as much as a factor of 2 compared to assimilating CO2 concentrations alone. C1 [Ricciuto, Daniel M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Davis, Kenneth J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Keller, Klaus] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. RP Ricciuto, DM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM ricciutodm@ornl.gov RI Keller, Klaus/A-6742-2013; Ricciuto, Daniel/I-3659-2016 OI Ricciuto, Daniel/0000-0002-3668-3021 NR 54 TC 31 Z9 32 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD JUN 28 PY 2008 VL 22 IS 2 AR GB2030 DI 10.1029/2006GB002908 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 321MO UT WOS:000257309500001 ER PT J AU Yu, HG Francisco, JS AF Yu, Hua-Gen Francisco, Joseph S. TI Energetics and kinetics of the reaction of HOCO with hydrogen atoms SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACE; CLASSICAL TRAJECTORY CALCULATIONS; AB-INITIO DYNAMICS; FORMIC-ACID; UNIMOLECULAR DECOMPOSITION; RATE CONSTANTS; GAS-PHASE; CO; OH; RADICALS AB The potential energy surface for the reaction of HOCO radicals with hydrogen atoms has been explored using the CCSD(T)/aug-cc-pVQZ ab initio method. Results show that the reaction occurs via a formic acid (HOC(O)H) intermediate, and produces two types of products: H2O+CO and H-2+CO2. Reaction enthalpies (0 K) are obtained as -102.0 kcal/mol for the H-2+CO2 products, and -92.7 kcal/mol for H2O+CO. Along the reaction pathways, there exists a nearly late transition state for each product channel. However, the transition states locate noticeably below the reactant asymptote. Direct ab initio dynamics calculations are also carried out for studying the kinetics of the H+HOCO reaction. At room temperature, the rate coefficient is predicted to be 1.07x10(-10)cm(3) molec(-1) s(-1) with a negligible activation energy E-a=0.06 kcal/mol, and the branching ratios are estimated to be 0.87 for H-2+CO2, and 0.13 for H2O+CO. In contrast, the product branching ratios have a strong T dependence. The branching ratio for H2O+CO could increase to 0.72 at T=1000 K. (c) 2008 American Institute of Physics. C1 [Yu, Hua-Gen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. RP Yu, HG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hgy@bnl.gov RI Yu, Hua-Gen/N-7339-2015 NR 47 TC 14 Z9 14 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2008 VL 128 IS 24 AR 244315 DI 10.1063/1.2946696 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 321DD UT WOS:000257284000033 PM 18601340 ER PT J AU Scudder, J Daughton, W AF Scudder, Jack Daughton, William TI "Illuminating'' electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS MAGNETOPAUSE; FIELD; SIMULATIONS AB Agyrotropy is a scalar measure of the departure of the pressure tensor from cylindrical symmetry about the local magnetic field direction. Ordinarily electrons are well modeled as gyrotropic with very small agyrotropy. Intensified layers of electron agyrotropy are demonstrated to highlight the thin electron gyroradius scale boundary regions adjoining separatrices, X and O lines of full particle simulations of collisionless magnetic reconnection. Examples are presented to show these effects in antiparallel and guide field geometries, pair plasmas, and simulations at a variety of mass ratios, including a hydrogen plasma. Agyrotropy has been determined from the PIC pressure tensor using a new, fast algorithm developed to correct discreteness contributions to the apparent agyrotropy. As a local scalar diagnostic, agyrotropy is shown to be potentially useful with single spacecraft data to identify the crossing or proximity of electron scale current layers, thus providing a kinetic level diagnosis of a given layer's ability to be a possible site of the collisionless reconnection process. Such kinetic tools are certainly complimentary to the other macroscopic signatures of reconnection. Because of the extreme circumstances required for electron agyrotropy, detection of these signatures with framing macroscopic signatures might prove useful for the discovery of new reconnection sites in nature and 3-D codes of collisionless reconnection. The agyrotropy in the 2-D PIC codes reflect long-lived bulges on the distribution function that appear to be organized by the direction and size of slowly evolving perpendicular electric fields in these layers and are not consistent with gyrophase bunching. C1 [Scudder, Jack; Daughton, William] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52240 USA. [Daughton, William] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Scudder, J (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52240 USA. EM jack-scudder@uiowa.edu RI Daughton, William/L-9661-2013 NR 37 TC 39 Z9 39 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 28 PY 2008 VL 113 IS A6 AR A06222 DI 10.1029/2008JA013035 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 321OF UT WOS:000257314900002 ER PT J AU Colgan, J Pindzola, MS Robicheaux, F AF Colgan, J. Pindzola, M. S. Robicheaux, F. TI Two-photon double ionization of the hydrogen molecule SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; ELECTRON CORRELATION; HE; PHOTOIONIZATION; HELIUM; PULSES; H-2 AB Cross sections for the removal of both electrons of the hydrogen molecule by two photons are presented at 30 eV photon energy using the time-dependent close-coupling method. Our approach allows detailed information about the dynamics of the ionization process to be extracted, including angular distributions for the outgoing electrons. Analysis of our calculations reveals some similarities to the analogous process of two-photon double ionization of helium, but also uncovers some purely molecular effects. For example, we find that the differential cross sections vary with the kinetic energy released to the outgoing protons if the molecule is parallel to the polarization direction, but do not vary if the molecule is perpendicular to the polarization direction. C1 [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Robicheaux, Francis/F-4343-2014; OI Robicheaux, Francis/0000-0002-8054-6040; Colgan, James/0000-0003-1045-3858 NR 27 TC 28 Z9 28 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUN 28 PY 2008 VL 41 IS 12 AR 121002 DI 10.1088/0953-4075/41/12/121002 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 319QB UT WOS:000257177700002 ER PT J AU Nam, J Gorham, PW Barwick, SW Beatty, JJ Besson, DZ Binns, WR Chen, C Chen, P Clem, JM Connolly, A Dowkontt, PF DuVernois, MA Field, RC Goldstein, DJ Goodhue, A Hast, C Hebert, CL Hoover, S Israel, MH Javaid, A Kowalski, J Learned, JG Liewer, KM Link, JT Lusczek, E Matsuno, S Mercurio, BC Miki, C Miocinovic, P Naudet, CJ Ng, J Nichol, RJ Palladino, KJ Reil, K Romero-Wolf, A Rosen, M Saltzberg, D Seckel, D Varner, GS Walz, D Wu, F AF Nam, Jiwoo Gorham, P. W. Barwick, S. W. Beatty, J. J. Besson, D. Z. Binns, W. R. Chen, C. Chen, P. Clem, J. M. Connolly, A. Dowkontt, P. F. DuVernois, M. A. Field, R. C. Goldstein, D. J. Goodhue, A. Hast, C. Hebert, C. L. Hoover, S. Israel, M. H. Javaid, A. Kowalski, J. Learned, J. G. Liewer, K. M. Link, J. T. Lusczek, E. Matsuno, S. Mercurio, B. C. Miki, C. Miocinovic, P. Naudet, C. J. Ng, J. Nichol, R. J. Palladino, K. J. Reil, K. Romero-Wolf, A. Rosen, M. Saltzberg, D. Seckel, D. Varner, G. S. Walz, D. Wu, F. CA ANITA Collaboration TI Preliminary result from ANITA experiment SO MODERN PHYSICS LETTERS A LA English DT Article; Proceedings Paper CT Internatonal Symposium on Cosmology and Particle Astrophysics CY NOV 13-15, 2007 CL Taipei, TAIWAN DE UHE neutrino; GZK process; Askaryan effect ID COHERENT RADIO EMISSION; CHARGE AB The ANITA (ANtarctic Impulsive Transient Antenna) experiment is a balloon-borne neutrino telescope which consists of an array of 32 broad-band horn antennas. It successfully completed a 35 day flight over Antarctica during the 2006-2007 austral summer. The primary goal of ANITA is to search for astrophysical neutrinos with energies E > 10(19)eV by detecting radio Cherenkov signals from neutrino induced showers in the Antarctic ice. We present preliminary results from ongoing analyses of ANITA data. C1 [Nam, Jiwoo] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. [Nam, Jiwoo] Natl Taiwan Univ, Inst Astrophys, Taipei 106, Taiwan. [Nam, Jiwoo] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 106, Taiwan. [Gorham, P. W.; Connolly, A.; Hebert, C. L.; Kowalski, J.; Learned, J. G.; Link, J. T.; Matsuno, S.; Miki, C.; Miocinovic, P.; Romero-Wolf, A.; Rosen, M.; Varner, G. S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Liewer, K. M.; Naudet, C. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Beatty, J. J.; Mercurio, B. C.; Palladino, K. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Chen, P.; Field, R. C.; Hast, C.; Ng, J.; Reil, K.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Barwick, S. W.; Goldstein, D. J.; Wu, F.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Connolly, A.; Goodhue, A.; Hoover, S.; Saltzberg, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Connolly, A.; Nichol, R. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Clem, J. M.; Javaid, A.; Seckel, D.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [DuVernois, M. A.; Lusczek, E.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Binns, W. R.; Dowkontt, P. F.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Chen, C.; Chen, P.] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. RP Nam, J (reprint author), Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. EM jwnam@phys.ntu.edu.tw RI Vieregg, Abigail/D-2287-2012; Beatty, James/D-9310-2011; OI Beatty, James/0000-0003-0481-4952; Lusczek, Elizabeth/0000-0003-4680-965X NR 18 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD JUN 28 PY 2008 VL 23 IS 17-20 BP 1419 EP 1430 DI 10.1142/S0217732308027795 PG 12 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 335NK UT WOS:000258297100028 ER PT J AU Lai, KC Chen, P AF Lai, Kwang-Chang Chen, Pisin TI Influence of plasma collective effects on cosmological evolution SO MODERN PHYSICS LETTERS A LA English DT Article; Proceedings Paper CT Internatonal Symposium on Cosmology and Particle Astrophysics CY NOV 13-15, 2007 CL Taipei, TAIWAN DE structure formation ID PROBE WMAP OBSERVATIONS; EXPANDING UNIVERSE; ANALYTIC APPROACH; PERTURBATIONS; TEMPERATURE; Z-SIMILAR-TO-6; ANISOTROPIES; FLUCTUATIONS; REIONIZATION AB It is well-known that the universe was in a plasma state both before decoupling and after reionization. However, the conventional wisdom has been that the plasma effects are largely Debye-shielded and can thus be safely ignored when considering large scale evolutions. Recently we showed that large scale structure formation in the universe may actually be suppressed by the plasma collective effect. Indeed, observational data indicate that the conventional theoretical formula tends to overestimate the matter power spectrum at scales k > 1hMpc(-1). In this paper, we further develop our theory through a more thorough and general derivation of the Maxwell-Einstein-Boltzmann equation. In addition to baryon density perturbation post reionization, we apply this general formulation to investigate the possible plasma effect on CMB anisotropy. As expected, while the plasma effect does render an observable effect to the former, its impact on the latter is totally negligible. C1 [Lai, Kwang-Chang] Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan. [Lai, Kwang-Chang; Chen, Pisin] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 106, Taiwan. [Chen, Pisin] Stanford Univ, Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Chen, Pisin] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. [Chen, Pisin] Natl Taiwan Univ, Grad Inst Astrophys, Taipei 106, Taiwan. RP Lai, KC (reprint author), Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan. EM kclai@mail.nctu.edu.tw NR 24 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD JUN 28 PY 2008 VL 23 IS 17-20 BP 1707 EP 1714 DI 10.1142/S0217732308028119 PG 8 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 335NK UT WOS:000258297100060 ER PT J AU Lyatsky, W Khazanov, GV AF Lyatsky, Wladislaw Khazanov, George V. TI A new polar magnetic index of geomagnetic activity SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SOLAR-WIND; CAP INDEX; MAGNETOSPHERE; IONOSPHERE AB We developed a new polar magnetic (PM) index of geomagnetic activity which, similarly to the existing polar cap index, was computed from magnetic field data from near-pole geomagnetic observatories. However, we used a different method for its calculation, which provided the high correlation of this index with both solar wind data and many events in geospace environment. This improves significantly the reliability of forecasting geomagnetic disturbances and such key parameters as cross-polar-cap voltage and Joule heating in high-latitude ionosphere, which play an important role in the development of global geomagnetic, ionospheric, and thermospheric disturbances. In this paper, we examined PM index in the Northern Hemisphere only. We tested the PM index for 10-year period. The correlation between PM index and upstream solar wind data for all these years is very high (the squared correlation coefficient R(2) approximate to 0.74 which corresponds to the linear correlation coefficients R approximate to 0.86). The PM index also shows the high correlation with the cross-polar-cap voltage and hemispheric Joule heating (the squared correlation coefficient R 2 between the actual and predicted values of these parameters reaches similar to 0.81 which corresponds to the linear correlation coefficients R approximate to 0.9), which results in significant increasing the prediction reliability of these parameters. Thus, the polar magnetic (PM) index of geomagnetic activity provides a significant increase in the forecasting reliability of geomagnetic disturbances and related events in geospace environment, and it may be used as an important input parameter in modeling ionospheric, magnetospheric, and thermospheric processes. C1 [Lyatsky, Wladislaw; Khazanov, George V.] NASA, George C Marshall Space Flight Ctr, Space Plasma Grp, Huntsville, AL 35805 USA. [Lyatsky, Wladislaw] Oak Ridge Associated Univ, Oak Ridge, TN USA. RP Lyatsky, W (reprint author), NASA, George C Marshall Space Flight Ctr, Space Plasma Grp, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM lyatsky@cspar.uah.edu NR 25 TC 5 Z9 5 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD JUN 28 PY 2008 VL 6 IS 6 AR S06002 DI 10.1029/2007SW000382 PG 10 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 321OO UT WOS:000257316400001 ER PT J AU Tartakovsky, AM Redden, G Lichtner, PC Scheibe, TD Meakin, P AF Tartakovsky, A. M. Redden, G. Lichtner, P. C. Scheibe, T. D. Meakin, P. TI Mixing-induced precipitation: Experimental study and multiscale numerical analysis SO WATER RESOURCES RESEARCH LA English DT Article ID SMOOTHED PARTICLE HYDRODYNAMICS; POROUS-MEDIA; REACTIVE TRANSPORT; MODEL; DIFFUSION; FLOW; FRACTURES AB Laboratory experiments, pore-scale simulations, and continuum (Darcy) -scale simulations were used to study mixing-induced precipitation in porous media. In the experimental investigation, solutions containing Na(2)CO(3) and CaCl(2) were each injected in different halves of a quasi two-dimensional flow cell filled with quartz sand. As a result of the in situ mixing between the two solutions, a narrow calcite precipitate layer (less than 5 mm wide) of more or less uniform width was formed between the individual solutions. Pore-scale simulations were conducted to help understand the mechanism of precipitation layer formation. The effect of the Peclet number, Pe, and the Damkohler number, Da, on mixing induced precipitation was also investigated. Pore-scale simulations revealed the presence of large pore-scale concentration gradients. This, and the presence of features, such as the precipitation layer, with characteristic lengths on the order of the average sand grain diameter, indicate the absence of a clear scale separation required for the strict derivation of Darcy-scale advection-dispersion equations. Nevertheless, we found that an adaptive high-resolution model based on advection-dispersion equations with grid sizes in the mixing zone smaller than the size of the sand grains can qualitatively reproduce the essential features of the experiment. As an alternative to computationally expensive high-resolution simulations, we proposed new forms for the homogeneous and heterogeneous reaction terms in Darcy-scale advection dispersion equations. These terms involve transport and mixing indices that account for highly nonuniform pore-scale concentration distributions and highly localized reactions. The proposed model accurately estimates the changes in solute concentrations due to homogenous and heterogeneous reactions during precipitation of minerals, observed in the pore-scale simulations, while conventional low-resolution advective-dispersion equations produced erroneous results. C1 [Tartakovsky, A. M.; Scheibe, T. D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Redden, G.; Meakin, P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Lichtner, P. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM alexandre.tartakovsky@pnl.gov RI Scheibe, Timothy/A-8788-2008 OI Scheibe, Timothy/0000-0002-8864-5772 NR 24 TC 89 Z9 89 U1 3 U2 41 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 28 PY 2008 VL 44 IS 6 AR W06S04 DI 10.1029/2006WR005725 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 321OV UT WOS:000257317200001 ER PT J AU Shankaran, H Zhang, Y Opresko, L Resat, H AF Shankaran, Harish Zhang, Yi Opresko, Lee Resat, Haluk TI Quantifying the effects of co-expressing EGFR and HER2 on HER activation and trafficking SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE EGFR; HER; ErbB; receptor pathways; signal transduction; endocytosis; quantitative network analysis; systems biology; bootstrap confidence intervals ID GROWTH-FACTOR RECEPTOR; OVEREXPRESSION; BIOLOGY; CANCER; CELLS AB The human epidermal growth factor receptor (HER) system is an intricately regulated system that plays critical roles in development and tumorigenesis. Here, we apply integrated experimentation and modeling to analyze HER receptor activation in a panel of cell lines expressing endogenous levels of EGFR/HER1 and different levels of HER2. A mathematical model that includes the fundamental processes involved in receptor activation and trafficking was used to fit the experimental data, and values of the independent parameters for active receptor dimer formation affinities, trafficking rates and relative phosphorylation levels were estimated. Obtained parameter values quantitatively support the existing ideas on the effect of HER2 on EGFR dynamics, and enable us to predict the abundances of various phosphorylated receptor dimers in the cell lines. (C) 2008 Published by Elsevier Inc. C1 [Shankaran, Harish; Zhang, Yi; Resat, Haluk] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. [Opresko, Lee] Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99352 USA. RP Resat, H (reprint author), Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, POB 999,MS K7-90, Richland, WA 99352 USA. EM haluk.resat@pnl.gov FU NIGMS NIH HHS [5R01GM072821-03, R01 GM072821, R01 GM072821-03] NR 16 TC 12 Z9 12 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD JUN 27 PY 2008 VL 371 IS 2 BP 220 EP 224 DI 10.1016/j.bbrc.2008.04.043 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 303OL UT WOS:000256049700009 PM 18424261 ER PT J AU Hess, NJ Hartman, MR Brown, CM Mamontov, E Karkamkar, A Heldebrant, DJ Daemen, LL Autrey, T AF Hess, Nancy J. Hartman, Michael R. Brown, Craig M. Mamontov, Eugene Karkamkar, Abhijeet Heldebrant, David J. Daemen, Luc L. Autrey, Tom TI Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane SO CHEMICAL PHYSICS LETTERS LA English DT Article ID HYDROGEN STORAGE; THERMAL-DECOMPOSITION; SOLID-STATE; NMR; BH3NH3; RELEASE; NH3BH3; PHASE AB Energy barriers for rotation of -NH3 and -BH3 in the orthorhombic phase of ammonia borane, NH3BH3, were determined using quasielastic neutron scattering (QENS). QENS confirms the 3-site jump model of rotational diffusion and yields barrier heights of 23.6 +/- 1.0 kJ/mol and 14.8 +/- 0.4 kJ/mol for the borane and amine groups, respectively, which are comparable to barrier heights determined by recent H-2 and N-15 NMR studies suggesting no significant isotope effect on rotational motion in the orthorhombic phase of ammonia borane. Published by Elsevier B.V. C1 [Hess, Nancy J.; Karkamkar, Abhijeet; Heldebrant, David J.; Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99354 USA. [Hartman, Michael R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brown, Craig M.; Mamontov, Eugene] NIST, Ctr Neutron Res, Gaithersburg, MD USA. [Mamontov, Eugene] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Daemen, Luc L.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Hess, NJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM nancy.hess@pnl.gov RI Lujan Center, LANL/G-4896-2012; Brown, Craig/B-5430-2009; Mamontov, Eugene/Q-1003-2015; OI Brown, Craig/0000-0002-9637-9355; Mamontov, Eugene/0000-0002-5684-2675; Hess, Nancy/0000-0002-8930-9500 NR 27 TC 21 Z9 22 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 27 PY 2008 VL 459 IS 1-6 BP 85 EP 88 DI 10.1016/j.cplett.2008.04.130 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 316FE UT WOS:000256933700016 ER PT J AU Moffet, RC Qin, XY Rebotier, T Furutani, H Prather, KA AF Moffet, Ryan C. Qin, Xueying Rebotier, Thomas Furutani, Hiroshi Prather, Kimberly A. TI Chemically segregated optical and microphysical properties of ambient aerosols measured in a single-particle mass spectrometer SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID EFFECTIVE DENSITY; LIGHT-SCATTERING; REFRACTIVE-INDEX; CLIMATE; ATMOSPHERE; DESIGN; MODELS; ATOFMS; EVOLUTION; AREA AB This paper describes results from the first direct measurements of the size- resolved optical properties as a function of chemical mixing states for atmospheric particle types sampled in Mexico City and Riverside, California. The coupled size, chemistry, and optical measurements were used to derive refractive indices and effective densities for chemically distinct particle mixing states. On the basis of the measured dependence of scattering intensity as a function of relative humidity and size, the Riverside particles contained detectable amounts of liquid water, whereas the Mexico City particles were relatively dry. Aerosol particles in Mexico City were observed to exhibit a wide range of densities ( 1.1-3.4 g/cm(3)), suggesting a dynamic, externally mixed aerosol population. Daily variations were observed as the particles in Mexico City underwent photochemical aging processes leading to a diurnal variation in particle morphology. In contrast, the optical properties of the Riverside aerosol, sampled during the fall season, were strongly impacted by the condensation of water and ammonium nitrate during periods of intense pollution buildup, resulting in microphysical properties that were similar across mixing states for a specific relative humidity. C1 [Moffet, Ryan C.; Qin, Xueying; Furutani, Hiroshi] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Prather, Kimberly A.] Univ Calif San Diego, Dept Chem & Biochem, Scripps Inst Oceanog, La Jolla, CA 92093 USA. RP Moffet, RC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM kprather@ucsd.edu RI Prather, Kimberly/A-3892-2008 OI Prather, Kimberly/0000-0003-3048-9890 NR 44 TC 23 Z9 23 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2008 VL 113 IS D12 AR D12213 DI 10.1029/2007JD009393 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 321MS UT WOS:000257309900001 ER PT J AU Boettcher, S Goncalves, B Guclu, H AF Boettcher, Stefan Goncalves, Bruno Guclu, Hasan TI Hierarchical regular small-world networks SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID COMPLEX NETWORKS; DYNAMICS; RENORMALIZATION; DIFFUSION AB Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as root N with system size N, and leads to super-diffusion with an exact, anomalous exponent d(w) = 1.306..., but possesses only a trivial fixed point T(c) = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as similar to 2 root log(2)N(2), exhibits 'ballistic' diffusion (d(w) = 1), and a non-trivial ferromagnetic transition, T(c) > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. C1 [Boettcher, Stefan; Goncalves, Bruno] Emory Univ, Dept Phys, Atlanta, GA 30322 USA. [Guclu, Hasan] Ctr Nonlinear Studies, Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Boettcher, S (reprint author), Emory Univ, Dept Phys, Atlanta, GA 30322 USA. RI Goncalves, Bruno/A-8541-2009; Boettcher, Stefan/G-2640-2010 OI Goncalves, Bruno/0000-0001-5644-3749; Boettcher, Stefan/0000-0003-1273-6771 NR 27 TC 31 Z9 32 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUN 27 PY 2008 VL 41 IS 25 AR 252001 DI 10.1088/1751-8113/41/25/252001 PG 7 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 312TO UT WOS:000256693900001 ER PT J AU Bergk, B Petzold, V Rosner, H Drechsler, SL Bartkowiak, M Ignatchik, O Bianchi, AD Sheikin, I Canfield, PC Wosnitza, J AF Bergk, B. Petzold, V. Rosner, H. Drechsler, S. -L. Bartkowiak, M. Ignatchik, O. Bianchi, A. D. Sheikin, I. Canfield, P. C. Wosnitza, J. TI Anisotropic multiband many-body interactions in LuNi(2)B(2)C SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITION-METAL BOROCARBIDES; SUPERCONDUCTING ENERGY-GAP; VAN-ALPHEN OSCILLATIONS; SINGLE-CRYSTAL YNI2B2C; ELECTRONIC-STRUCTURE; FERMI-SURFACE; HEAT; SPECTROSCOPY AB We present a comprehensive de Haas-van Alphen study on the nonmagnetic borocarbide superconductor LuNi(2)B(2)C. The analysis of the angular-dependent effective masses for different bands in combination with full-potential density functional calculations allowed us to determine the mass-enhancement factors, lambda, for the different electronic bands and their wave-vector dependences. Our data clearly show the anisotropic multiband character of the superconductivity in LuNi(2)B(2)C. C1 [Bergk, B.; Bartkowiak, M.; Ignatchik, O.; Bianchi, A. D.; Sheikin, I.; Wosnitza, J.] Forschungszentrum Dresden Rossendorf, Hochfeld Magnetlabor Dresden HLD, D-01314 Dresden, Germany. [Petzold, V.; Rosner, H.] Max Planck Inst Chem Phys fester Stoffe, D-01187 Dresden, Germany. [Drechsler, S. -L.] IFW Dresden, Leibniz Inst Solid State & Mat Res, D-01171 Dresden, Germany. [Sheikin, I.] CNRS, Grenoble High Magnet Field Lab, F-38042 Grenoble 09, France. [Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Bergk, B (reprint author), Forschungszentrum Dresden Rossendorf, Hochfeld Magnetlabor Dresden HLD, D-01314 Dresden, Germany. RI Canfield, Paul/H-2698-2014; Bianchi, Andrea/E-9779-2010 OI Bianchi, Andrea/0000-0001-9340-6971 NR 40 TC 28 Z9 28 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2008 VL 100 IS 25 AR 257004 DI 10.1103/PhysRevLett.100.257004 PG 4 WC Physics, Multidisciplinary SC Physics GA 320JW UT WOS:000257230500058 PM 18643696 ER PT J AU Bhattacharya, A May, SJ Velthuis, SGET Warusawithana, M Zhai, X Jiang, B Zuo, JM Fitzsimmons, MR Bader, SD Eckstein, JN AF Bhattacharya, A. May, S. J. Velthuis, S. G. E. te Warusawithana, M. Zhai, X. Jiang, Bin Zuo, J. -M. Fitzsimmons, M. R. Bader, S. D. Eckstein, J. N. TI Metal-insulator transition and its relation to magnetic structure in (LaMnO(3))(2n)/(SrMnO(3))(n) superlattices SO PHYSICAL REVIEW LETTERS LA English DT Article ID MANGANITES AB Superlattices of (LaMnO(3))(2n)/(SrMnO(3))(n) (1 <= n <= 5), composed of the gapped insulators LaMnO(3) and SrMnO(3), undergo a metal-insulator transition as a function of n, being metallic for n <= 2 and insulating for n >= 3. Measurements of transport, magnetization, and polarized neutron reflectivity reveal that the ferromagnetism is relatively uniform in the metallic state, and is strongly modulated in the insulating state, being high in LaMnO(3) and suppressed in SrMnO(3). The modulation is consistent with a Mott transition driven by the proximity between the (LaMnO(3))/(SrMnO(3)) interfaces. The insulating state for n >= 3 obeys variable range hopping at low temperatures. We suggest that this is due to states at the Fermi level that emerge at the (LaMnO(3))/(SrMnO(3)) interfaces and are localized by disorder. C1 [Bhattacharya, A.; May, S. J.; Velthuis, S. G. E. te; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bhattacharya, A.; Bader, S. D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Warusawithana, M.; Zhai, X.; Eckstein, J. N.] Univ Illinois, Dept Phys, Urbana, IL 60801 USA. [Jiang, Bin; Zuo, J. -M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 60801 USA. [Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP May, SJ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anand@anl.gov RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011; Lujan Center, LANL/G-4896-2012; Bader, Samuel/A-2995-2013; te Velthuis, Suzanne/I-6735-2013 OI May, Steven/0000-0002-8097-1549; Bhattacharya, Anand/0000-0002-6839-6860; te Velthuis, Suzanne/0000-0002-1023-8384 NR 25 TC 117 Z9 119 U1 6 U2 71 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2008 VL 100 IS 25 AR 257203 DI 10.1103/PhysRevLett.100.257203 PG 4 WC Physics, Multidisciplinary SC Physics GA 320JW UT WOS:000257230500061 PM 18643699 ER PT J AU Da Silva, JLF Yan, YF Wei, SH AF Da Silva, Juarez L. F. Yan, Yanfa Wei, Su-Huai TI Rules of structure formation for the homologous InMO(3)(ZnO)(n) compounds SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSPARENT OXIDE SEMICONDUCTOR; CRYSTAL-STRUCTURE; PHASE-RELATIONS; SYSTEM; FILMS; 1350-DEGREES-C; ZNO-IN2O3; INTEGER; LAYER AB The formation mechanisms that lead to the layered M-modulated InMO(3)(ZnO)(n) structures (M = In, Ga, and Al; n = integer) are revealed and confirmed by first-principles calculations based on density functional theory. We show that all ground state structures of InMO(3)(ZnO)(n) satisfy the octahedron rule for the InO(2) layers; they contain an inversion domain boundary located at the M and Zn fivefold trigonal bipyramid sites and maximize the hexagonality in the (MZn(n))O(n+1) layers. They also obey the electronic octet rule. This understanding provides a solid basis for studying and understanding the physical properties of this group of homologous materials. C1 [Da Silva, Juarez L. F.; Yan, Yanfa; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Da Silva, JLF (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RI Da Silva, Juarez L. F./D-1779-2011 OI Da Silva, Juarez L. F./0000-0003-0645-8760 NR 30 TC 34 Z9 34 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2008 VL 100 IS 25 AR 255501 DI 10.1103/PhysRevLett.100.255501 PG 4 WC Physics, Multidisciplinary SC Physics GA 320JW UT WOS:000257230500036 PM 18643674 ER PT J AU Divol, L Berger, RL Meezan, NB Froula, DH Dixit, S Suter, LJ Glenzer, SH AF Divol, L. Berger, R. L. Meezan, N. B. Froula, D. H. Dixit, S. Suter, L. J. Glenzer, S. H. TI Three-dimensional modeling of stimulated Brillouin scattering in ignition-scale experiments SO PHYSICAL REVIEW LETTERS LA English DT Article ID LASER-BEAMS; PLASMAS; FILAMENTATION; FACILITY; WAVES AB The first three-dimensional simulations of a high power 0.351 mu m laser beam propagating through a high temperature hohlraum plasma are reported. We show that 3D fluid-based modeling of stimulated Brillouin scattering, including linear kinetic corrections, reproduces quantitatively the experimental measurements, provided it is coupled to detailed hydrodynamics simulation and a realistic description of the laser beam from its millimeter-size envelope down to the micron scale speckles. These simulations accurately predict the strong reduction of stimulated Brillouin scattering measured when polarization smoothing is used. C1 [Divol, L.; Berger, R. L.; Meezan, N. B.; Froula, D. H.; Dixit, S.; Suter, L. J.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Divol, L (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. NR 20 TC 8 Z9 8 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2008 VL 100 IS 25 AR 255001 DI 10.1103/PhysRevLett.100.255001 PG 4 WC Physics, Multidisciplinary SC Physics GA 320JW UT WOS:000257230500029 PM 18643667 ER PT J AU Kortright, JB Lincoln, DM Edelstein, RS Epstein, AJ AF Kortright, J. B. Lincoln, D. M. Edelstein, R. Shima Epstein, A. J. TI Bonding, backbonding, and spin-polarized molecular orbitals: Basis for magnetism and semiconducting transport in V[TCNE](x similar to 2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID CIRCULAR-DICHROISM; TETRACYANOETHYLENE; DENSITY AB X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) at the V L-2,L-3 and C and N K edges reveal bonding and backbonding interactions in films of the 400 K magnetic semiconductor V[TCNE](x similar to 2). In V spectra, d(xy)-like orbitals are modeled assuming V2+ in an octahedral ligand field, while d(z)(2) and d(x)(2)-y(2) orbitals involved in strong covalent sigma bonding cannot be modeled by atomic calculations. C and N MCD, and differences in XAS from neutral TCNE molecules, reveal spin-polarized molecular orbitals in V[TCNE](x similar to 2) associated with weaker pi bonding interactions that yield its novel properties. C1 [Kortright, J. B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Edelstein, R. Shima; Epstein, A. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Lincoln, D. M.; Epstein, A. J.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. RP Kortright, JB (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI MSD, Nanomag/F-6438-2012 NR 24 TC 16 Z9 16 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2008 VL 100 IS 25 AR 257204 DI 10.1103/PhysRevLett.100.257204 PG 4 WC Physics, Multidisciplinary SC Physics GA 320JW UT WOS:000257230500062 PM 18643700 ER PT J AU Schroeder, L Meldrum, T Smith, M Lowery, TJ Wemmer, DE Pines, A AF Schroeder, Leif Meldrum, Tyler Smith, Monica Lowery, Thomas J. Wemmer, David E. Pines, Alexander TI Temperature response of (129)Xe depolarization transfer and its application for ultrasensitive NMR detection SO PHYSICAL REVIEW LETTERS LA English DT Article ID FUNCTIONALIZED XENON; BIOSENSORS AB Trapping xenon in functionalized cryptophane cages makes the sensitivity of hyperpolarized (HP) (129)Xe available for specific NMR detection of biomolecules. Here, we study the signal transfer onto a reservoir of unbound HP xenon by gating the residence time of the nuclei in the cage through the temperature-dependant exchange rate. Temperature changes larger than similar to 0.6 K are detectable as an altered reservoir signal. The temperature response is adjustable with lower concentrations of caged xenon providing more sensitivity at higher temperatures. Ultrasensitive detection of functionalized cryptophane at 310 K is demonstrated with a concentration of 10 nM, corresponding to a similar to 4000-fold sensitivity enhancement compared to conventional detection. This makes HPNMR capable of detecting such constructs in concentrations far below the detection limit of benchtop uv-visible light absorbance. C1 [Schroeder, Leif; Meldrum, Tyler; Lowery, Thomas J.; Wemmer, David E.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schroeder, Leif; Meldrum, Tyler; Pines, Alexander] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Smith, Monica] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Smith, Monica; Lowery, Thomas J.; Wemmer, David E.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Schroeder, L (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM LSchroeder@lbl.gov RI Schroder, Leif/H-6036-2011; Meldrum, Tyler/P-7420-2015 OI Schroder, Leif/0000-0003-4901-0325; Meldrum, Tyler/0000-0002-5954-0795 NR 8 TC 30 Z9 30 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2008 VL 100 IS 25 AR 257603 DI 10.1103/PhysRevLett.100.257603 PG 4 WC Physics, Multidisciplinary SC Physics GA 320JW UT WOS:000257230500066 PM 18643704 ER PT J AU Walsh, A Da Silva, JLF Wei, SH AF Walsh, Aron Da Silva, Juarez L. F. Wei, Su-Huai TI Theoretical description of carrier mediated magnetism in cobalt doped ZnO SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEMICONDUCTOR SPINTRONICS; ELECTRONIC-STRUCTURE; FERROMAGNETISM; ORIGINS; MODEL; MN AB Substitutional cobalt in ZnO has a weak preference for antiferromagnetic ordering. Stabilization of ferromagnetism is achieved through n-type doping, which can be understood through a band coupling model. However, the description of the transition to a ferromagnetic ground state varies within different levels of band theory; issues arise due to the density functional theory underestimation of the band gap of ZnO, and the relative position of the nominally unfilled Co t(2d) states. We examine these limitations, including approaches to overcome them, and explain the contradictions in previous studies, which drastically overestimate the doping threshold for magnetic ordering. C1 [Walsh, Aron; Da Silva, Juarez L. F.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Walsh, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Walsh, Aron/A-7843-2008; Da Silva, Juarez L. F./D-1779-2011 OI Walsh, Aron/0000-0001-5460-7033; Da Silva, Juarez L. F./0000-0003-0645-8760 NR 28 TC 191 Z9 196 U1 3 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2008 VL 100 IS 25 AR 256401 DI 10.1103/PhysRevLett.100.256401 PG 4 WC Physics, Multidisciplinary SC Physics GA 320JW UT WOS:000257230500043 PM 18643681 ER PT J AU Valero, R Truhlar, DG Jasper, AW AF Valero, Rosendo Truhlar, Donald G. Jasper, Ahren W. TI Adiabatic states derived from a spin-coupled diabatic transformation: Semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+ SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Review ID CONFIGURATION-INTERACTION CALCULATIONS; CORRELATED MOLECULAR CALCULATIONS; FORBIDDEN ELECTRONIC-TRANSITIONS; BORN-OPPENHEIMER TRAJECTORIES; ALIGNED DOPPLER SPECTROSCOPY; DEPENDENT WAVE-PACKET; GAUSSIAN-BASIS SETS; HYDROGEN IODIDE; ULTRAVIOLET PHOTODISSOCIATION; NONADIABATIC TRANSITIONS AB The development of spin-coupled diabatic representations for theoretical semiclassical treatments of photodissociation dynamics is an important practical goal, and some of the assumptions required to carry this out may be validated by applications to simple systems. With this objective, we report here a study of the photodissociation dynamics of the prototypical HBr system using semiclassical trajectory methods. The valence (spin-free) potential energy curves and the permanent and transition dipole moments were computed using high-level ab initio methods and were transformed to a spin-coupled diabatic representation. The spin-orbit coupling used in the transformation was taken as that of atomic bromine at all internuclear distances. Adiabatic potential energy curves, nonadiabatic couplings and transition dipole moments were then obtained from the diabatic ones and were used in all the dynamics calculations. Nonadiabatic photodissociation probabilities were computed using three semiclassical trajectory methods, namely, coherent switching with decay of mixing (CSDM), fewest switches with time uncertainty (FSTU), and its recently developed variant with stochastic decoherence (FTSU/SD), each combined with semiclassical sampling of the initial vibrational state. The calculated branching fraction to the higher fine-structure level of the bromine atom is in good agreement with experiment and with more complete theoretical treatments. The present study, by comparing our new calculations to wave packet calculations with distance-dependent ab initio spin-orbit coupling, validates the semiclassical trajectory methods, the semiclassical initial state sample scheme, and the use of a distance-independent spin-orbit coupling for future applications to polyatomic photodissociation. Finally, using LiBr+ as a model system, it is shown that accurate spin-coupled potential curves can also be constructed for odd-electron systems using the same strategy as for HBr. C1 Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Truhlar, DG (reprint author), Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. EM truhlar@umn.edu; ajasper@sandia.gov RI Jasper, Ahren/A-5292-2011; Valero, Rosendo/J-3724-2013; Truhlar, Donald/G-7076-2015 OI Valero, Rosendo/0000-0002-4617-0721; Truhlar, Donald/0000-0002-7742-7294 NR 104 TC 21 Z9 21 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 26 PY 2008 VL 112 IS 25 BP 5756 EP 5769 DI 10.1021/jp800738b PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 315ZU UT WOS:000256919500026 PM 18529041 ER PT J AU Wang, W Howe, JY Gu, BH AF Wang, Wei Howe, Jane Y. Gu, Baohua TI Structure and morphology evolution of hematite (alpha-Fe2O3) nanoparticles in forced hydrolysis of ferric chloride SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FECL3 SOLUTIONS; IRON-OXIDES; AQUEOUS-SOLUTIONS; PARTICLES; PRECIPITATION; MECHANISM; COLLOIDS; SALTS; IONS; SIZE AB Hematite (alpha-Fe2O3) nanoparticles were prepared by forced hydrolysis of ferric chloride under acidic pH conditions. Without introduction of any additives, hematite nanoparticles with varying sizes and morphologies were obtained by controlling the nucleation rate, Fe3+ concentration, and aging time. Synthesized primary nanocrystals show such morphologies as cubic, spherical, sheetlike, and hexagonal structures and unusual disklike and tetrahedral aggregates. In addition to previous findings that phase transformation usually occurs from akaganeite (beta-FeOOH) to hematite during forced hydrolysis, direct transformation of amorphous iron oxides to crystalline hematite at an early stage of hydrolysis were also observed and confirmed by X-ray diffraction and Raman spectroscopic analysis. C1 [Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Howe, Jane Y.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wang, W (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM wangw@ornl.gov RI Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012 OI Gu, Baohua/0000-0002-7299-2956 NR 33 TC 55 Z9 55 U1 7 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 26 PY 2008 VL 112 IS 25 BP 9203 EP 9208 DI 10.1021/jp800683j PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 315ZZ UT WOS:000256920000014 ER PT J AU Zhou, J Baddorf, AP Mullins, DR Overbury, SH AF Zhou, Jing Baddorf, A. P. Mullins, D. R. Overbury, S. H. TI Growth and characterization of Rh and Pd nanoparticles on oxidized and reduced CeOx(111) thin films by scanning tunneling microscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-SUPPORT INTERACTION; CERIUM OXIDE; SURFACE-STRUCTURE; CEO2(111) SURFACES; DESORPTION SPECTROSCOPY; ELECTRON-DIFFRACTION; THERMAL-DESORPTION; TIO2(110)-(1 X-2); DEFECT STRUCTURE; CO DISSOCIATION AB The growth and structure of Rh and Pd nanoparticles on vapor-deposited ceria thin films grown epitaxially on Ru(0001) were investigated by scanning tunneling microscopy as a function of coverage, postdeposition annealing temperatures, as well as ceria oxidation states. Both metals grow as three-dimensional nanoparticles on the fully oxidized CeO2(111) thin films at room temperature. At low coverage, Rh particles preferentially decorate step edges on ceria, forming particles with smaller average size than those on the terraces. With increasing coverage, the number of Rh particles increases until near 2.3 monolayers, where the Rh particles cover most of the ceria surface and the particle size becomes relatively uniform. Larger Rh or Pd particles can be prepared by annealing the surface after deposition at 300 K; however, the particle size distribution becomes broader during this process. Similar growth behavior was observed on the reduced ceria surfaces. It is concluded that metal particle size or morphology is not responsible for previously reported differences in surface chemistry observed when Rh is deposited on reduced CeOx compared to fully oxidized CeO2. Instead, it is proposed that the enhanced dissociation occurs at the interface between the metal and the reduced support, which, coupled with rapid O diffusion, may lead to high dissociation fractions. C1 [Zhou, Jing; Baddorf, A. P.; Mullins, D. R.; Overbury, S. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Overbury, SH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM overburysh@ornl.gov RI Overbury, Steven/C-5108-2016; Baddorf, Arthur/I-1308-2016 OI Overbury, Steven/0000-0002-5137-3961; Baddorf, Arthur/0000-0001-7023-2382 NR 74 TC 49 Z9 49 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 26 PY 2008 VL 112 IS 25 BP 9336 EP 9345 DI 10.1021/jp711198c PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 315ZZ UT WOS:000256920000035 ER PT J AU Ma, Z Brown, S Howe, JY Overbury, SH Dai, S AF Ma, Zhen Brown, Suree Howe, Jane Y. Overbury, Steven H. Dai, Sheng TI Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE CO OXIDATION; GOLD NANOPARTICLES; MESOPOROUS SILICA; AU NANOPARTICLES; METAL-CATALYSTS; TIO2; OXIDE; CHEMISTRY; ALUMINA; PALLADIUM AB Atomic layer deposition (ALD) was utilized for the surface engineering of metallic nanoparticles to tame their sintering problems and catalytic activities. We chose the surface modification of gold nanocatalysts as an example to demonstrate the concept of this ALD-based approach. Herein, an active Au/TiO2 catalyst was modified by amorphous SiO2 via ALD, and the samples were characterized by inductively coupled plasmaoptical emission spectrometry (ICP-OES), scanning (SEM-EDX) and transmission electron microscope-energy-dispersive X-ray spectrometry (TEM-EDX), X-ray diffraction (XRD), and thermogravimetry/differential thermogravimetry (TG/DTG), and the catalytic activities in CO oxidation and H-2 oxidation were tested with respect to the pretreatment temperature and SiO2 content. A significant sintering resistance and changes in catalytic activities were observed. The difference between the SiO2/Au/TiO2 samples prepared by gas-phase ALD and solution-phase chemical grafting was discussed. C1 [Ma, Zhen; Brown, Suree; Overbury, Steven H.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Howe, Jane Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Ma, Zhen/F-1348-2010; Howe, Jane/G-2890-2011; Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 NR 56 TC 66 Z9 69 U1 5 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 26 PY 2008 VL 112 IS 25 BP 9448 EP 9457 DI 10.1021/jp801484h PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 315ZZ UT WOS:000256920000049 ER PT J AU Kwak, JH Hu, JZ Lukaski, A Kim, DH Szanyi, J Peden, CHF AF Kwak, Ja Hun Hu, Jianzhi Lukaski, Adrienne Kim, Do Heui Szanyi, Janos Peden, Charles H. F. TI Role of pentacoordinated Al3+ ions in the high temperature phase transformation of gamma-Al2O3 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AL-27 MAS NMR; ANGLE-SPINNING NMR; GAMMA-ALUMINA; THERMAL EVOLUTION; SURFACE-AREA; SITES; IDENTIFICATION; BAO/AL2O3 AB In this work, the structural stability of gamma-alumina (gamma-Al2O3) was investigated by a combination of XRD and high-resolution solid-state Al-27 MAS NMR at an ultrahigh magnetic field of 21.1 T. XRD measurements show that gamma-Al2O3 undergoes a phase transition to theta-Al2O3 during calcination at 1000 degrees C for 10 h. The formation of the theta-Al2O3 phase is further confirmed by Al-27 MAS NMR; additional Al-27 peaks centered at 10.5 and similar to 78 ppm were observed in samples calcined at this high temperature. Both the XRD and NMR results indicate that, after calcination at 1000 degrees C for 10 h, the ratio of the theta-Al2O3 phase to the total alumina in samples modified by either BaO or La2O3 is significantly reduced in comparison with gamma-Al2O3. Al-27 MAS NMR spectra revealed that the reduction in the extent of theta-Al2O3 formation was highly correlated with the reduction in the amount of pentacoordinated aluminum ions, measured after 500 degrees C calcination, in both BaO- and La2O3-modified gamma-Al2O3 samples. These results strongly suggest that the pentacoordinated aluminum ions, present exclusively on the surface of gamma-Al2O3, play a critical role in the phase transformation of gamma-Al2O3 to theta-Al2O3. The role of the modifiers, in our case BaO or La2O3, is to convert the pentacoordinated aluminum ions into octahedral ones, thereby improving the thermal stabilities of the samples. Oxide additives, however, seem to have little, if any beneficial effect on preventing reductions in specific surface areas that occurred during high-temperature (<= 1000 degrees C) calcination. C1 [Kwak, Ja Hun; Hu, Jianzhi; Kim, Do Heui; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Lukaski, Adrienne] Univ Delaware, Dept Chem, Newark, DE 19716 USA. RP Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99352 USA. EM chuck.peden@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 NR 25 TC 42 Z9 42 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 26 PY 2008 VL 112 IS 25 BP 9486 EP 9492 DI 10.1021/jp802631u PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 315ZZ UT WOS:000256920000053 ER PT J AU Joh, NH Min, A Faham, S Whitelegge, JP Yang, D Woods, VL Bowie, JU AF Joh, Nathan HyunJoong Min, Andrew Faham, Salem Whitelegge, Julian P. Yang, Duan Woods, Virgil L., Jr. Bowie, James U. TI Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins SO NATURE LA English DT Article ID EXCHANGE MASS-SPECTROMETRY; TRANSMEMBRANE HELICES; CRYSTAL-STRUCTURE; POLAR RESIDUES; STABILITY; MUTATIONS; NMR; BACTERIORHODOPSIN; ASSOCIATION; RESOLUTION AB Understanding the energetics of molecular interactions is fundamental to all of the central quests of structural biology including structure prediction and design, mapping evolutionary pathways, learning how mutations cause disease, drug design, and relating structure to function. Hydrogen- bonding is widely regarded as an important force in a membrane environment because of the low dielectric constant of membranes and a lack of competition from water(1-6). Indeed, polar residue substitutions are the most common disease- causing mutations in membrane proteins(6,7). Because of limited structural information and technical challenges, however, there have been few quantitative tests of hydrogen- bond strength in the context of large membrane proteins. Here we show, by using a double- mutant cycle analysis, that the average contribution of eight interhelical side- chain hydrogen- bonding interactions throughout bacteriorhodopsin is only 0.6 kcal mol(-1). In agreement with these experiments, we find that 4% of polar atoms in the non- polar core regions of membrane proteins have no hydrogen- bond partner and the lengths of buried hydrogen bonds in soluble proteins and membrane protein transmembrane regions are statistically identical. Our results indicate that most hydrogen- bond interactions in membrane proteins are only modestly stabilizing. Weak hydrogen-bonding should be reflected in considerations of membrane protein folding, dynamics, design, evolution and function. C1 [Joh, Nathan HyunJoong; Min, Andrew; Yang, Duan; Bowie, James U.] Univ Calif Los Angeles, Inst Mol Biol, Dept Chem & Biochem, UCLA DOE Ctr Genom & Proteom, Los Angeles, CA 90095 USA. [Faham, Salem] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90095 USA. [Whitelegge, Julian P.] Univ Calif Los Angeles, NPI Semel Inst, Pasarow Mass Spec Lab, Los Angeles, CA 90095 USA. [Woods, Virgil L., Jr.] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA. [Woods, Virgil L., Jr.] Univ Calif San Diego, Biomed Sci Grad Program, La Jolla, CA 92093 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Inst Mol Biol, Dept Chem & Biochem, UCLA DOE Ctr Genom & Proteom, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu OI , /0000-0003-3221-9325 FU NCI NIH HHS [R01 CA081000, R01 CA081000-07, R01 CA081000-08, R01 CA081000-09]; NIGMS NIH HHS [R01 GM063919-08, R01 GM063919, R01 GM063919-06, R01 GM063919-07] NR 40 TC 150 Z9 152 U1 3 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 26 PY 2008 VL 453 IS 7199 BP 1266 EP U73 DI 10.1038/nature06977 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 318FA UT WOS:000257075800049 PM 18500332 ER PT J AU Benczer-Koller, N Kumbartzki, GJ Guerdal, G Gross, CJ Stuchbery, AE Krieger, B Hatarik, R O'Malley, P Pain, S Segen, L Baktash, C Beene, J Radford, DC Yu, CH Stone, NJ Stone, JR Bingham, CR Danchev, M Grzywacz, R Mazzocchi, C AF Benczer-Koller, N. Kumbartzki, G. J. Guerdal, G. Gross, C. J. Stuchbery, A. E. Krieger, B. Hatarik, R. O'Malley, P. Pain, S. Segen, L. Baktash, C. Beene, J. Radford, D. C. Yu, C. H. Stone, N. J. Stone, J. R. Bingham, C. R. Danchev, M. Grzywacz, R. Mazzocchi, C. TI Measurement of g factors of excited states in radioactive beams by the transient field technique: Te-132 SO PHYSICS LETTERS B LA English DT Article DE radioactive beam; Coulomb excitation; inverse kinematics; magnetic moment; transient field ID EVEN TE ISOTOPES; MAGNETIC-MOMENTS AB The g factor of the 2(1)(+) state in Te-132(52), E(2(1)(+)) = 0.9739 MeV, tau = 2.6 ps, was measured by the transient field technique applied to a radioactive beam. The development of an experimental approach necessary for work in radioactive beam environments is described. The result g = 0.28(15) agrees with the previous measurement by the recoil-in-vacuum technique, but here the sign of the g factor is measured as well. (c) 2008 Elsevier B.V. All rights reserved. C1 [Benczer-Koller, N.; Kumbartzki, G. J.; Guerdal, G.; Krieger, B.; Hatarik, R.; O'Malley, P.; Pain, S.; Segen, L.] Rutgers State Univ, Dept Phys & Astron, Brunswick, NJ 08903 USA. [Gross, C. J.; Baktash, C.; Beene, J.; Radford, D. C.; Yu, C. H.] ORNL, Div Phys, Oak Ridge, TN 37831 USA. [Stuchbery, A. E.] Australian Natl Univ, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Stone, N. J.; Stone, J. R.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Stone, N. J.; Bingham, C. R.; Danchev, M.; Grzywacz, R.; Mazzocchi, C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stone, J. R.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Benczer-Koller, N (reprint author), Rutgers State Univ, Dept Phys & Astron, Brunswick, NJ 08903 USA. EM nkoller@physics.rutgers.edu RI Pain, Steven/E-1188-2011; radford, David/A-3928-2015 OI Pain, Steven/0000-0003-3081-688X; NR 26 TC 23 Z9 23 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 26 PY 2008 VL 664 IS 4-5 BP 241 EP 245 DI 10.1016/j.physletb.2008.05.048 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 323AH UT WOS:000257415900004 ER PT J AU McGlynn, SE Shepard, EM Winslow, MA Naumov, AV Duschene, KS Posewitz, MC Broderick, WE Broderick, JB Peters, JW AF McGlynn, Shawn E. Shepard, Eric M. Winslow, Mark A. Naumov, Anatoll V. Duschene, Kaitlin S. Posewitz, Matthew C. Broderick, William E. Broderick, Joan B. Peters, John W. TI HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis SO FEBS LETTERS LA English DT Article DE hydrogenase; metalloenzyme; iron-sulfur cluster maturation; H-cluster; scaffold ID IRON-MOLYBDENUM COFACTOR; ESCHERICHIA-COLI; SULFUR CLUSTERS; MATURATION; NITROGENASE; INSERTION; TURNOVER; MARITIMA AB In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all three maturation proteins is sufficient to confer hydrogenase activity to purified inactive heterologously expressed HydA (expressed in the absence of HydE, HydF, and HydG). These results represent the first in vitro maturation of [FeFe] hydrogenase with purified proteins, and suggest that HydF functions as a scaffold upon which an H-cluster intermediate is synthesized. (C) 2008 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 [McGlynn, Shawn E.; Shepard, Eric M.; Winslow, Mark A.; Naumov, Anatoll V.; Duschene, Kaitlin S.; Broderick, William E.; Broderick, Joan B.; Peters, John W.] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Posewitz, Matthew C.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Posewitz, Matthew C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Broderick, JB (reprint author), Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Dept Chem & Biochem, Bozeman, MT 59717 USA. EM jbroderick@chemistry.montana.edu; john.peters@chemistry.montana.edu OI Broderick, Joan/0000-0001-7057-9124; Peters, John/0000-0001-9117-9568 NR 17 TC 76 Z9 76 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 EI 1873-3468 J9 FEBS LETT JI FEBS Lett. PD JUN 25 PY 2008 VL 582 IS 15 BP 2183 EP 2187 DI 10.1016/j.febslet.2008.04.063 PG 5 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 326PI UT WOS:000257671000007 PM 18501709 ER PT J AU Ally, MR AF Ally, Moonis R. TI Predicting phase diagram of the CaCl2 center dot H2O binary system from the BET adsorption isotherm SO FLUID PHASE EQUILIBRIA LA English DT Article DE BET model; aqueous electrolytes; multilayer adsorption; solution thermodynamics; phase equilibria ID SALT HYDRATE MIXTURES; VAPOR-PRESSURES; CONCENTRATED-SOLUTIONS; ELECTROLYTE-SOLUTIONS; AQUEOUS-SOLUTIONS; EQUATION; WATER; MODEL; CACL2(AQ); NITRATE AB The statistical mechanical description of multilayer adsorption culminating in the Brunauer-Emmet-Teller (BET) adsorption isotherm for aqueous electrolytes as developed by Ally and Braunstein [M.R. Ally and J. Braunstein, Fluid Phase Equilibria. 87 (2) (1993) 213-236] is used to predict the liquidus behaviorOf CaCl2-H2O across the entire composition range (from the melting point of pure water to the melting point of anhydrous calcium chloride), including possible metastable crystalline phases. The method requires as input the two BET parameters r, the statistically averaged number of adsorption sites and epsilon, the energy of adsorption of water in excess of the energy of condensation of pure water. Usually it suffices to keep r and 8 constant, typically evaluated at 298.15 K, but in the case of CaCl2-H2O, it is found that both r and e Must be considered temperature dependent in order to predict the liquidus curve, eutectic and peritectic points with reasonable accuracy over the large temperature and compositional range for this binary system. The theory and methodology in this paper enables detailed predictions of liquidus curves over much wider temperature and composition ranges than that reported by an alternate method. (C) 2008 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Engn Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Ally, MR (reprint author), Oak Ridge Natl Lab, Engn Sci & Technol Div, POB 2008,Bldg 3147,MS 6070, Oak Ridge, TN 37830 USA. EM allymr@ornl.gov NR 26 TC 4 Z9 4 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3812 J9 FLUID PHASE EQUILIBR JI Fluid Phase Equilib. PD JUN 25 PY 2008 VL 268 IS 1-2 BP 45 EP 50 DI 10.1016/j.fluid.2008.03.017 PG 6 WC Thermodynamics; Chemistry, Physical; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA 324PZ UT WOS:000257531800007 ER PT J AU Livescu, D Ristorcelli, JR AF Livescu, D. Ristorcelli, J. R. TI Variable-density mixing in buoyancy-driven turbulence SO JOURNAL OF FLUID MECHANICS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; NUMERICAL-SIMULATION; GENERATED TURBULENCE; REACTIVE FLOWS; NUMBER AB The homogenization of a heterogeneous mixture of two pure fluids with different densities by molecular diffusion and stirring induced by buoyancy-generated motions, as occurs in the Rayleigh-Taylor (RT) instability, is studied using direct numerical simulations. The Schmidt number, Sc, is varied by a factor of 20, 0.1 <= Sc <= 2.0, and the Atwood number, A, by a factor of 10, 0.05 <= A <= 0.5. Initial-density intensities are as high as 50% of the mean density. As a consequence of differential accelerations experienced by the two fluids, substantial and important differences between the mixing in a variable-density flow, as compared to the Boussinesq approximation, are observed. In short, the pure heavy fluid mixes more slowly than the pure light fluid: an initially symmetric double delta density probability density function (PDF) is rapidly skewed and, only at long times and low density fluctuations, does it relax to a Gaussian-like PDE The heavy-light fluid mixing process asymmetry is relevant to the nature of molecular mixing on different sides of a high-Atwood-number RT layer. Diverse mix metrics are used to examine the homogenization of the two fluids. The conventional mix parameter, theta, is mathematically related to the variance of the excess reactant of a hypothetical fast chemical reaction. Bounds relating theta and the normalized product, Xi, are derived. It is shown that theta underpredicts the mixing, as compared to Xi, in the central regions of an RT layer; in the edge regions, theta is larger than Xi. The shape of the density PDF cannot be inferred from the usual mix metrics popular in applications. For example, when theta, Xi >= 0.6, characteristic of the interior of a fully developed RT layer, the PDFs can have vastly different shapes. Bounds on the fluid composition using two low-order moments of the density PDF are derived. The bounds can be used as realizability conditions for low-dimensional models. For the measures studied, the tightest bounds are obtained using Xi and mean density. The structure of the flow is also examined. It is found that, at early times, the buoyancy production term in the spectral kinetic energy equation is important at all wavenumbers and leads to anisotropy at all scales of motion. At later times, the anisotropy is confined to the largest and smallest scales: the intermediate scales are more isotropic than the small scales. In the viscous range, there is a cancellation between the viscous and nonlinear effects, and the buoyancy production leads to a persistent small-scale anisotropy. C1 [Livescu, D.; Ristorcelli, J. R.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Livescu, D (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM livescu@lanl.gov OI Livescu, Daniel/0000-0003-2367-1547 NR 31 TC 39 Z9 39 U1 1 U2 12 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JUN 25 PY 2008 VL 605 BP 145 EP 180 DI 10.1017/S0022112008001481 PG 36 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 317CG UT WOS:000256996300007 ER PT J AU Hayes, JA Schubert, DM Amonette, JE Nachimuthu, P Disselkamp, RS AF Hayes, J. A. Schubert, D. M. Amonette, J. E. Nachimuthu, P. Disselkamp, R. S. TI Ultraviolet stimulation of hydrogen peroxide production using aminoindazole, diaminopyridine, and phenylenediamine solid polymer complexes of Zn(II) SO JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY LA English DT Article DE Zn-inorganic polymers; photochemical; photocatalytic; hydrogen peroxide; alternative energy; fuel; solar energy AB Hydrogen peroxide (H2O2) is a valuable chemical commodity whose production relies on expensive and energy intensive methods. If an efficient, sustainable, and inexpensive solar-mediated production method could be developed from the reaction between dioxygen and water then the use of H2O2 as a fuel may be possible and gain acceptance. When concentrated at greater than 10M, H2O2 possesses a high specific energy, is environmentally clean, and is easily stored. However, the current method of manufacturing H2O2 via the anthraquinone process is environmentally unfriendly making the unexplored nature of its photochemical production at high concentration from solar irradiation of interest. Towards this end, we studied the concentration and quantum yield of hydrogen peroxide produced in an ultraviolet (UV-B) irradiated environment using solid, Zn(II)centered, complexes of amino-substituted isomers of indazole, pyridine, and phenylenediamine to catalyze the reaction. Aqueous suspensions in contact with air were exposed to 280-360-nm light from a low-power lamp. Of the ten complexes studied, Zn-5-aminoindazole had the greatest first-day production of 63 mM/day with a 37% quantum yield and p-phenylenediamine (PPAM) showed the greatest long-term stability. Isomeric forms of the catalysts' organic components (e.g., amino groups) affected H2O2 production. For example, irradiation of diaminopyridine isomers indicated 2,3-diamino and 3,4-diamino structures were the most productive, each generating 32 mM/day H2O2, whereas the 2,5-diamino isomer generated no H2O2. A significant decrease in H2O2 production with time was observed for all but PPAM, suggesting the possibility of a catalyst-poisoning mechanism. We propose a reaction mechanism for H2O2 production based on the stability of the resonance structures of the different isomers. Published by Elsevier B.V. C1 [Hayes, J. A.; Amonette, J. E.; Nachimuthu, P.; Disselkamp, R. S.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Schubert, D. M.] Rio Tinto Minerals, Greenwood, CO 80111 USA. RP Disselkamp, RS (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, 3335 Q Ave,POB 999,MS K8-93, Richland, WA 99352 USA. EM robert.disselkamp@pnl.gov OI Schubert, David/0000-0003-2142-4825 NR 20 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1010-6030 J9 J PHOTOCH PHOTOBIO A JI J. Photochem. Photobiol. A-Chem. PD JUN 25 PY 2008 VL 197 IS 2-3 BP 245 EP 252 DI 10.1016/j.jphotochem.2007.12.031 PG 8 WC Chemistry, Physical SC Chemistry GA 314AC UT WOS:000256780100016 ER PT J AU Clausen, HF Overgaard, J Chen, YS Lversen, BB AF Clausen, H. F. Overgaard, J. Chen, Y. S. Lversen, B. B. TI Synchrotron X-ray charge density study of coordination polymer Co-3(C8H4O4)(4)(C4H12N)(2)(C5H11NO)(3) at 16 K SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-ORGANIC FRAMEWORK; SOLVOTHERMAL SYNTHESIS; PHYSICAL-PROPERTIES; CRYSTAL-STRUCTURES; HYDROGEN STORAGE; WAVE-FUNCTIONS; DESIGN; ADSORPTION; LIGANDS; CO(II) AB The charge density (CD) of coordination polymer Co-3(C8H4O4)(4)(C4H12N)(2)(C5H11NO)(3) (1) has been determined from multipole modeling of structure factors obtained from single-crystal synchrotron X-ray diffraction measurements at 16 K The crystal structure formally contains a negatively charged framework with cations and neutral molecules in the voids. However, the CD suggests that the framework is close to neutral, and therefore qualitative conclusions based on formal charge counting, e.g., about guest inclusion properties, will be incorrect. There are considerable differences in the charge distributions of the three unique benzenedicarboxylic acid linkers, which are widely used in coordination polymers. This suggests that the electrostatic properties of coordination polymer cavities, and thereby their inclusion properties, are highly tunable. The electron density topology shows that the tetrahedrally coordinated Co atom has an atomic volume which is 15% larger than that of the octahedrally coordinated Co atom. The crystal structure has both ferromagnetic and antiferromagnetic interactions, but no direct metal-metal bonding is evidenced in the CD. The magnetic ordering therefore takes place through superexchange in the oxygen bridges and the aromatic linkers. Bonding analysis of the experimental CD reveals that two oxygen atoms, 0(l) and O(11), have significant covalent contributions to the metal-ligand bonding, whereas all other oxygen atoms have closed-shell interactions with the metals. This indicates that these two oxygen atoms are the key mediators of the magnetic ordering. C1 [Chen, Y. S.] Univ Chicago, Adv Photon Source, ChemMatCARS, Argonne, IL 60439 USA. [Clausen, H. F.; Overgaard, J.; Lversen, B. B.] Univ Aarhus, Dept Chem, Ctr Energy Mat, DK-8000 Aarhus C, Denmark. [Clausen, H. F.; Overgaard, J.; Lversen, B. B.] Univ Aarhus, iNANO, DK-8000 Aarhus C, Denmark. RP Lversen, BB (reprint author), Univ Aarhus, Dept Chem, Ctr Energy Mat, DK-8000 Aarhus C, Denmark. EM bo@chem.au.dk RI Overgaard, Jacob/C-3519-2008; OI Overgaard, Jacob/0000-0001-6492-7962 NR 49 TC 28 Z9 28 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 25 PY 2008 VL 130 IS 25 BP 7988 EP 7996 DI 10.1021/ja8007215 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 316PK UT WOS:000256962000052 PM 18512920 ER PT J AU Sun, J Wang, LW Buhro, WE AF Sun, Jianwei Wang, Lin-Wang Buhro, William E. TI Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SOLUTION-BASED STRAIGHT; LIQUID-SOLID SYNTHESIS; SEMICONDUCTOR NANOWIRES; NANOCRYSTALS; CONFINEMENT; CDTE; GROWTH; CDSE; RODS; TRANSITION AB High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure and grow along the [002] direction (parallel to the c axis). The size dependence of the effective band gaps in the wires is determined from the absorption spectra and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effectivemass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the effective band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire effective band gaps converge. The origin and magnitude of this threshold diameter are discussed. C1 [Sun, Jianwei; Buhro, William E.] Washington Univ, Ctr Mat Innovat, St Louis, MO 63130 USA. [Sun, Jianwei; Buhro, William E.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Wang, Lin-Wang] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Buhro, WE (reprint author), Washington Univ, Dept Chem, St Louis, MO 63130 USA. EM buhro@wustl.edu RI Buhro, William/A-7682-2009 NR 40 TC 73 Z9 74 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 25 PY 2008 VL 130 IS 25 BP 7997 EP 8005 DI 10.1021/ja800837v PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 316PK UT WOS:000256962000053 PM 18507463 ER PT J AU Huntz, AM Hou, PY Molins, R AF Huntz, A. M. Hou, P. Y. Molins, R. TI Study by deflection of the influence of alloy composition on the development of stresses during alumina scale growth SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE alumina films; alpha alumina; transition aluminas; deflection tests; alumina former iron-based alloys ID HIGH-TEMPERATURE; OXIDATION BEHAVIOR; MICROSTRUCTURE; RESISTANCE; EVOLUTION; FORMERS; FE3AL; OXIDE AB According to the nature and amount of their impurities or doping elements and to their fabrication mode, the creep properties and the oxidation behavior of alumina forming iron-based alloys, can largely vary. The objective of this work was to study, by means of deflection tests based on the curvature of a dissymmetrical sample, the stress development during alumina growth with an attempt to determine the parameters which are responsible for the observed curvature during oxidation. Three different FeCrAl alloys were chosen and subjected to oxidation cycles in argon or air, in most cases at 1000 degrees C. The results were compared to those obtained on a previously studied Fe3Al intermetallic alloy, and analysed on the basis of literature data and microstructural observations. (C) 2007 Elsevier B.V. All rights reserved. C1 [Hou, P. Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94530 USA. [Huntz, A. M.] Univ Paris 11, Ctr Orsay, CNRS UMR 8182, LEMHE ICMMO, F-91405 Orsay, France. [Molins, R.] CNRS, UMR 7633, Ctr Mat, ENSMP, F-91003 Evry, France. RP Hou, PY (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 62-203, Berkeley, CA 94530 USA. EM pyhou@lbl.gov NR 25 TC 3 Z9 4 U1 3 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 25 PY 2008 VL 485 IS 1-2 BP 99 EP 107 DI 10.1016/j.msea.2007.08.012 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 305RA UT WOS:000256194300015 ER PT J AU Chen, H Lucas, JA Priyantha, W Kopczyk, M Smith, RJ Lund, K Key, C Finsterbusch, M Gannon, PE Deibert, M Gorokhovsky, VI Shutthanandan, V Nachimuthu, R AF Chen, H. Lucas, J. A. Priyantha, W. Kopczyk, M. Smith, R. J. Lund, K. Key, C. Finsterbusch, M. Gannon, P. E. Deibert, M. Gorokhovsky, V. I. Shutthanandan, V. Nachimuthu, R. TI Thermal stability and oxidation resistance of TiCrAlYO coatings on SS430 for solid oxide fuel cell interconnect applications SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE RBS; PIXE; FAD; SOFC; chromium vaporization ID STAINLESS-STEEL INTERCONNECT; CHROMIUM-CONTAINING ALLOY; DEPOSITION TECHNOLOGY; SEALING GLASSES; SOFC CATHODE; CONDUCTIVITY; VAPORIZATION; DEGRADATION; TEMPERATURE; AIR AB Chromia-forming ferritic stainless steels are being considered for interconnect applications in planar solid oxide fuel cell (SOFC) stacks because of their low cost and physical properties. At high temperatures, ferritic steels lack environmental stability in the SOFC operating environment, and gradually degrade the cell stack performance. In this study, an effective, dense and well adherent TiCrAlYO coating was deposited on an SS430 alloy using the filtered arc deposition technique. High-energy ion backscattering was used to characterize the composition and the thermal stability of the coatings. The chromium volatility of the coated steel plates at 800 degrees C was also measured using ion beam analysis. Significant reductions in oxidation rates as well as reduced Cr volatility were observed for the coated alloys. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chen, H.; Lucas, J. A.; Priyantha, W.; Kopczyk, M.; Smith, R. J.; Lund, K.; Key, C.; Finsterbusch, M.; Gannon, P. E.; Deibert, M.] Montana State Univ, Bozeman, MT 59717 USA. [Gorokhovsky, V. I.] Arcomac Surface Engn, Bozeman, MT 59715 USA. [Shutthanandan, V.; Nachimuthu, R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Smith, RJ (reprint author), Montana State Univ, Bozeman, MT 59717 USA. EM smith@physics.montana.edu NR 32 TC 5 Z9 8 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JUN 25 PY 2008 VL 202 IS 19 BP 4820 EP 4824 DI 10.1016/j.surfcoat.2008.04.059 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 322EG UT WOS:000257357400030 ER PT J AU Eryilmaz, OL Erdemir, A AF Eryilmaz, O. L. Erdemir, A. TI TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments SO WEAR LA English DT Article DE DLC; TOF-SIMS; XPS; friction and wear; mechanism ID TRIBOLOGICAL BEHAVIOR; FRICTIONAL BEHAVIOR; SUPERLOW-FRICTION; AMORPHOUS-CARBON; RECENT PROGRESS; COATINGS; PERFORMANCE; HYDROGEN; MECHANISM; PRESSURE AB In this study, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy techniques to ascertain the chemical nature of the sliding surfaces and wear debris particles of acetylene-grown diamond-like carbon (DLC) films after tests in dry nitrogen and oxygen. Between these two gasses, nitrogen is relatively inert and hence is not expected to enter into significant tribochemical reactions with sliding DLC surfaces, but oxygen is highly reactive toward carbon and hydrogen (which make up these DLC films) and hence may trigger some tribochemical reactions. The tribological tests were performed in a ball-on-disk tribometer at room temperature (22 C) and under a 5N load. The sliding velocity and distance were 0.25 m/s and 500 m, respectively. Disk material was made of AISI M2 steel, while balls were made of 9.5-mm-diameter AISI 440C steel. They were both coated with DLC, hence the sliding occurred between DLC coated surfaces of the balls and the disks. The friction coefficient of DLC against itself in dry nitrogen was rather high- and un-steady (i.e., fluctuating between 0.1 and 0.6) and the wear life was very short (i.e., less than 100 m). Raman spectroscopy of wear debris particles generated during tests in dry nitrogen suggested that some graphitization had taken place, but the XPS and TOF-SIMS of the sliding surfaces did not reveal much tribochemical interactions on their sliding surfaces. The friction coefficient of DLC against itself in dry oxygen was much lower (i.e., 0.06-0.12). The Raman spectroscopy of wear debris particles also suggested some graphitization after tests in dry oxygen. TOF-SIMS and XPS revealed high levels of oxidation for these debris particles suggesting that tribo-oxidation was perhaps a major mechanism controlling the friction and wear behavior of DLC in oxygen. Based on the combined results of Raman, TOF-SIMS and XPS, we concluded that the chemical nature of test environments plays a major role in the friction and wear of acetylene-grown DLC films. Much lower friction and wear of these films in dry oxygen is most likely due to graphitization as well as tribo-oxidation of their sliding surfaces. Published by Elsevier B.V. C1 [Eryilmaz, O. L.; Erdemir, A.] Argonne Natl Lab, Div Energy Syst, Tribol Sect, Argonne, IL 60439 USA. RP Erdemir, A (reprint author), Argonne Natl Lab, Div Energy Syst, Tribol Sect, Bldg 212,Room D-222,9700 S Cass Ave, Argonne, IL 60439 USA. EM erdemir@anl.gov NR 41 TC 29 Z9 31 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 25 PY 2008 VL 265 IS 1-2 BP 244 EP 254 DI 10.1016/j.wear.2007.10.012 PG 11 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 298XP UT WOS:000255720700028 ER PT J AU Morana, M Wegscheider, M Bonanni, A Kopidakis, N Shaheen, S Scharber, M Zhu, Z Waller, D Gaudiana, R Brabec, C AF Morana, Mauro Wegscheider, Matthias Bonanni, Alberta Kopidakis, Nikos Shaheen, Sean Scharber, Markus Zhu, Zhengguo Waller, David Gaudiana, Russell Brabec, Christoph TI Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LOW-BANDGAP POLYMER; MEYER-NELDEL RULE; SOLAR-CELLS; CONJUGATED POLYMERS; OPTICAL-PROPERTIES; TRANSISTORS; ORIGIN AB An experimental study of the transport properties of a low-bandgap conjugated polymer giving high photovoltaic quantum efficiencies in the near infrared spectral region (Eg-opt similar to 1.35 eV) is presented. Using a organic thin film transistor geometry, we demonstrate a relatively high in-plane hole mobility, up to 1.5. x 10(-2) cm(2) V-1 s(-1) and quantify the electron mobility at 3 x .10(-5) cm(2) V-1 s(-1) on a SiO2 dielectric. In addition, singular contact behavior results in bipolar quasi-Ohmic injection both from low and high workfunction metals like LiF/Al and An. X-ray investigations revealed a degree of interchain pi-stacking that is probably embedded in a disordered matrix. Disorder also manifests itself in a strong positive field dependence of the hole mobility from the electric field. In blends made with the electron acceptor methanofullerene [6,6]-phenyl C-61 butyric acid methyl ester (PCBM), the transistor characteristics suggest a relatively unfavorable intermixing of the two components for the application to photovoltaic devices. We attribute this to a too fine dispersion of [C60]-PCBM in the polymer matrix, that is also confirmed by the quenching of the photoluminescence signal measured in PCPDTBT [C60]-PCBM films with various composition. We show that a higher degree of phase separation can be induced during the film formation by using 1,8-octanedithiol (ODT), which leads to a more efficient electron percolation in the [C60]-PCBM. In addition, the experimental results, in combination with those of solar cells seem to support the correlation between the blend morphology and charge recombination. We tentatively propose that the drift length, and similarly the electrical fill factor, can be limited by the recombination of holes with electrons trapped on isolated [C60]-PCBM clusters. Ionized and isolated [C60]-PCBM molecules can modify the local electric field in the solar cell by build-up of a space-charge. The results also suggest that further improvements of the fill factor may also be limited by a strong electrical-field dependence of the hole transport. C1 [Morana, Mauro; Scharber, Markus; Brabec, Christoph] Konarka Austria GmbH, A-4040 Linz, Austria. [Morana, Mauro] Univ Cagliari, Dipartimento Ingn Elettr & Elettron, I-09123 Cagliari, Italy. [Zhu, Zhengguo; Waller, David; Gaudiana, Russell] Konarka Technol Inc, Lowell, MA 01852 USA. [Wegscheider, Matthias; Bonanni, Alberta] Johannes Kepler Univ Linz, Inst Solid State Phys, A-4040 Linz, Austria. [Kopidakis, Nikos; Shaheen, Sean] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Morana, M (reprint author), Konarka Austria GmbH, Altenbergerstr 69, A-4040 Linz, Austria. EM mmorana@konarka.com RI Zhu, Zhengguo/A-7870-2011; Shaheen, Sean/M-7893-2013; Brabec, Christoph/N-1897-2013; Bonanni, Alberta/C-1411-2008; Kopidakis, Nikos/N-4777-2015; Scharber, Markus Clark/N-4450-2016; OI Bonanni, Alberta/0000-0003-4425-0346; Brabec, Christoph J./0000-0002-9440-0253 NR 38 TC 123 Z9 125 U1 8 U2 106 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 24 PY 2008 VL 18 IS 12 BP 1757 EP 1766 DI 10.1002/adfm.200701428 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 324MT UT WOS:000257523400006 ER PT J AU Buchko, GW Litvinova, O Robinson, H Yakunin, AF Kennedy, MA AF Buchko, Garry W. Litvinova, Olga Robinson, Howard Yakunin, Alexander F. Kennedy, Michael A. TI Functional and structural characterization of DR_0079 from Deinococcus radiodurans, a novel Nudix hydrolase with a preference for cytosine (deoxy)ribonucleoside 5 '-di- and triphosphates SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; MUTT PROTEIN; ENZYME; NMR; PYROPHOSPHATASE; MECHANISM; RADIATION; FAMILY; PYROPHOSPHOHYDROLASE AB The genome of the extremely radiation resistant bacterium Deinococcus radiodurans encodes 21 Nudix hydrolases, of which only two have been characterized in detail. Here we report the activity and crystal structure for DR_0079, the first Nudix hydrolase observed to have a marked preference for cytosine ribonucleoside 5'-diphosphate (CDP) and cytosine ribonucleoside 5'-triphosphate (CTP). After CDP and CTP, the next most preferred substrates for DR_0079, with a relative activity of <50%, were the corresponding deoxyribose nucleotides, dCDP and dCTP. Hydrolase activity at the site of the phosphodiester bond was corroborated using (31)P NMR spectroscopy to follow the phosphorus resonances for three substrates, CDP, IDP, and CTP, and their hydrolysis products, CMP + P(i), IMP + P(i), and CMP + PP(i), respectively. Nucleophilic substitution at the beta-phosphorus of CDP and CTP was established, using (31)P NMR spectroscopy, by the appearance of an upfield-shifted P(i) resonance and line-broadened PP(i) resonance, respectively, when the hydrolysis was performed in 40% H(2)(18)O-enriched water. The optimal activity for CDP was at pH 9.0-9.5 with the reaction requiring divalent metal cation (Mg(2+) > Mn(2+) > Co(2+)). The biochemical data are discussed with reference to the crystal structure for DR_0079 that was determined in the metal-free form at 1.9 angstrom resolution. The protein contains nine beta-strands, three alpha-helices, and two 3(10)-helices organized into three subdomains: an N-terminal beta-sheet, a central Nudix core, and a C-terminal helix-turn-helix motif. As observed for all known structures of Nudix hydrolases, the cc-helix of the "Nudix box" is one of two helices that sandwich a "four-strand" mixed beta-sheet. To identify residues potentially involved in metal and substrate binding, NMR chemical shift mapping experiments were performed on (15)N-labeled DR_0079 with the paramagnetic divalent cation Co(2+) and the nonhydrolyzable substrate thymidine 5'-O-(alpha,beta-methylenediphosphate) and the results mapped onto the crystal structure. C1 [Buchko, Garry W.; Kennedy, Michael A.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Litvinova, Olga; Yakunin, Alexander F.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Buchko, GW (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM garry.buchko@pnl.gov RI Yakunin, Alexander/J-1519-2014; Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Yakunin, Alexander/0000-0003-0813-6490 FU NIGMS NIH HHS [GM 62414, P50 GM062414, U54 GM074942-030005] NR 67 TC 6 Z9 7 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUN 24 PY 2008 VL 47 IS 25 BP 6571 EP 6582 DI 10.1021/bi800099d PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 315BM UT WOS:000256852900006 PM 18512963 ER PT J AU Xiao, YM Tan, ML Ichiye, T Wang, HX Guo, YS Smith, MC Meyer, J Sturhahn, W Alp, EE Zhao, JY Yoda, Y Cramer, SP AF Xiao, Yuming Tan, Ming-Liang Ichiye, Toshiko Wang, Hongxin Guo, Yisong Smith, Matt C. Meyer, Jacques Sturhahn, Wolfgang Alp, Ercan E. Zhao, Jiyong Yoda, Yoshitaka Cramer, Stephen P. TI Dynamics of Rhodobacter capsulatus [2Fe-2S] ferredoxin VI and Aquifex aeolicus ferredoxin 5 via nuclear resonance vibrational spectroscopy (NRVS) and resonance Raman spectroscopy SO BIOCHEMISTRY LA English DT Article ID NORMAL-MODE ANALYSIS; INELASTIC NEUTRON-SCATTERING; TRUNCATED BOVINE ADRENODOXIN; CHARGE-TRANSFER DYNAMICS; PLANT-TYPE FERREDOXINS; ULTRAFAST PUMP-PROBE; X-RAY-SCATTERING; CRYSTAL-STRUCTURE; MOLECULAR-DYNAMICS; CONFORMATIONAL-CHANGES AB We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(2)S(2)(Cys)(4) sites in oxidized and reduced [2Fe-2S] ferredoxins from Rhodobacter capsulatus (Rc FdVI) and Aquifex aeolicus (Aa Fd5). In the oxidized forms, nearly identical NRVS patterns are observed, with strong bands from Fe-S stretching modes peaking around 335 cm(-1), and additional features observed as high as the B(2u) mode at similar to 421 cm(-1). Both forms of Rc FdVI have also been investigated by resonance Raman (RR) spectroscopy. There is good correspondence between NRVS and Raman frequencies, but because of different selection rules, intensities vary dramatically between the two kinds of spectra. For example, the B(3u) mode at similar to 288 cm(-1), attributed to an asymmetric combination of the two FeS(4) breathing modes, is often the strongest resonance Raman feature. In contrast, it is nearly invisible in the NRVS, as there is almost no Fe motion in such FeS(4) breathing. NRVS and RR analysis of isotope shifts with (36)S-substituted into bridging S(2-) ions in Rc FdVI allowed quantitation of S(2-) motion in different normal modes. We observed the symmetric Fe-Fe stretching mode at similar to 190 cm(-1) in both NRVS and RR spectra. At still lower energies, the NRVS presents a complex envelope of bending, torsion, and protein modes, with a maximum at 78 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields. Progressively more complex D(2h) Fe(2)S(2)S'(4), C(2h) Fe(2)S(2)(SCC)(4), and C(1) Fe(2)S(2)(Cys)(4) models were optimized by comparison with the experimental spectra. After modification of the CHARMM22 all-atom force field by the addition of refined Fe-S force constants, a simulation employing the complete protein structure was used to reproduce the PVDOS, with better results in the low frequency protein mode region. This process was then repeated for analysis of data on the reduced FdVI. Finally, the degree of collectivity was used to quantitate the delocalization of the dynamic properties of the redox-active Fe site. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins. C1 [Xiao, Yuming; Guo, Yisong; Smith, Matt C.; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Wang, Hongxin; Cramer, Stephen P.] Lawrence Berkeley Lab, Div Phys Biochem, Berkeley, CA 94720 USA. [Tan, Ming-Liang; Ichiye, Toshiko] Georgetown Univ, Dept Chem, Washington, DC 20057 USA. [Meyer, Jacques] CEA Grenoble, CEA CNRS UJF, UMR 5090, Dept Reponse & Dynam Cellulaires, F-38054 Grenoble, France. [Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yoda, Yoshitaka] JASRI, SPring 8, Sayo, Hyogo 6795198, Japan. RP Cramer, SP (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. EM spjcramer@ucdavis.edu RI Guo, Yisong/C-7785-2009 OI Guo, Yisong/0000-0002-4132-3565 FU NIBIB NIH HHS [EB-001962]; NIGMS NIH HHS [GM-45303, GM-65440] NR 77 TC 20 Z9 20 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUN 24 PY 2008 VL 47 IS 25 BP 6612 EP 6627 DI 10.1021/bi701433m PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 315BM UT WOS:000256852900010 PM 18512953 ER PT J AU Glenn, JLW Chen, CF Lewandowski, A Cheng, CH Ramsdell, CM Bullard-Dillard, R Chen, JG Dewey, MJ Glenn, TC AF Glenn, Julie L. Weston Chen, Chin-Fu Lewandowski, Adrienne Cheng, Chun-Huai Ramsdell, Clifton M. Bullard-Dillard, Rebecca Chen, Jianguo Dewey, Michael J. Glenn, Travis C. TI Expressed sequence tags from Peromyscus testis and placenta tissue: Analysis, annotation, and utility for mapping SO BMC GENOMICS LA English DT Article ID WHITE-FOOTED MICE; MOUSE; GENES; ORGANIZATION; AMPLIFICATION; CHROMOSOMES; MANICULATUS; POLIONOTUS; EVOLUTION; SELECTION AB Background: Mice of the genus Peromyscus are found in nearly every habitat from Alaska to Central America and from the Atlantic to the Pacific. They provide an evolutionary outgroup to the Mus/Rattus lineage and serve as an intermediary between that lineage and humans. Although Peromyscus has been studied extensively under both field and laboratory conditions, research has been limited by the lack of molecular resources. Genes associated with reproduction typically evolve rapidly and thus are excellent sources of evolutionary information. In this study we describe the generation of two cDNA libraries, one from placenta and one from testis, characterize the resulting ESTs, and describe their utility for mapping the Peromyscus genome. Results: The 5' ends of 1,510 placenta and 4,798 testis clones were sequenced. Low quality sequences were removed and after clustering and contig assembly, 904 unique placenta and 2,002 unique testis sequences remained. Average lengths of placenta and testis ESTs were 711 bp and 826 bp, respectively. Approximately 82% of all ESTs were identified using the BLASTX algorithm to Mus and Rattus, and 34 - 54% of all ESTs could be assigned to a biological process gene ontology category in either Mus or Rattus. Because the Peromyscus genome organization resembles the Rattus genome more closely than Mus we examined the distribution of the Peromyscus ESTs across the rat genome finding markers on all rat chromosomes except the Y. Approximately 40% of all ESTs were specific to only one location in the Mus genome and spanned introns of an appropriate size for sequencing and SNP detection. Of the primers that were tried 54% provided useful assays for genotyping on interspecific backcross and whole-genome radiation hybrid cell panels. Conclusion: The 2,906 Peromyscus placenta and testis ESTs described here significantly expands the molecular resources available for the genus. These ESTs allow for specific PCR amplification and broad coverage across the genome, creating an excellent genetic marker resource for the generation of a medium-density genomic map. Thus, this resource will significantly aid research of a genus that is uniquely well-suited to both laboratory and field research. C1 [Glenn, Julie L. Weston; Lewandowski, Adrienne; Ramsdell, Clifton M.; Dewey, Michael J.] Univ S Carolina, Dept Biol Sci, Peromyscus Genet Stock Ctr, Columbia, SC 29208 USA. [Chen, Chin-Fu; Cheng, Chun-Huai] Clemson Univ, Dept Biochem & Genet, Clemson, SC 29634 USA. [Chen, Chin-Fu; Cheng, Chun-Huai] Clemson Univ, Genom Inst, Clemson, SC 29634 USA. [Ramsdell, Clifton M.] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA. [Ramsdell, Clifton M.] Univ N Carolina, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA. [Bullard-Dillard, Rebecca; Chen, Jianguo] Claflin Univ, Dept Biol, Orangeburg, SC 29115 USA. [Glenn, Travis C.] Savannah River Ecol Lab, Aiken, SC 29803 USA. [Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. RP Glenn, JLW (reprint author), Univ S Carolina, Dept Biol Sci, Peromyscus Genet Stock Ctr, Columbia, SC 29208 USA. EM mammalogist@yahoo.com; ccheng@clemson.edu; adriennel@biol.sc.edu; ccheng@clemson.edu; clifton.ramsdell@gmail.com; rdillard@claflin.edu; jchen@claflin.edu; dewey@biol.sc.edu; travisg@uga.edu RI Glenn, Travis/A-2390-2008 FU NCRR NIH HHS [P40 RR014279, P40-RR14279]; PHS HHS [R01-M069601] NR 35 TC 5 Z9 5 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUN 24 PY 2008 VL 9 AR 300 DI 10.1186/1471-2164-9-300 PG 11 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 322FM UT WOS:000257360600001 PM 18577228 ER PT J AU Baek, J Sefat, AS Mandrus, D Halasyamani, PS AF Baek, Jaewook Sefat, Athena S. Mandrus, David Halasyamani, P. Shiv TI A new magnetically ordered polymorph of CUMoO4: Synthesis and characterization of epsilon-CuMoO4 SO CHEMISTRY OF MATERIALS LA English DT Article ID BOND-VALENCE PARAMETERS; CRYSTAL-STRUCTURE; MAGNETORESISTANCE; TEMPERATURE; MOLECULES; SOLIDS; STATES; PHASE C1 [Baek, Jaewook; Halasyamani, P. Shiv] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Sefat, Athena S.; Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Halasyamani, PS (reprint author), Univ Houston, Dept Chem, 136 Fleming Bldg, Houston, TX 77204 USA. EM psh@uh.edu RI Halasyamani, P. Shiv/A-8620-2009; Mandrus, David/H-3090-2014; Halasyamani, Shiv/J-3438-2014; Sefat, Athena/R-5457-2016 OI Halasyamani, Shiv/0000-0003-1787-1040; Sefat, Athena/0000-0002-5596-3504 NR 25 TC 5 Z9 5 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 24 PY 2008 VL 20 IS 12 BP 3785 EP 3787 DI 10.1021/cm801162j PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 315CF UT WOS:000256854800001 ER PT J AU Tang, CB Bang, J Stein, GE Fredrickson, GH Hawker, CJ Kramer, EJ Sprung, M Wang, J AF Tang, Chuanbing Bang, Joona Stein, Gila E. Fredrickson, Glenn H. Hawker, Craig J. Kramer, Edward J. Sprung, Michael Wang, Jin TI Square packing and structural arrangement of ABC triblock copolymer spheres in thin films SO MACROMOLECULES LA English DT Article ID DOMAIN BLOCK-COPOLYMERS; DIBLOCK COPOLYMERS; SPHERICAL DOMAINS; BREATH FIGURES; BOTTOM-UP; POLYSTYRENE; POLYMER; SURFACE; LITHOGRAPHY; ARRAYS AB Nanoporous thin films were prepared from poly(ethylene oxide)-b-poly(methyl methacrylate)-b-polystyrene (PEO-b-PMMA-b-PS) ABC triblock copolymer by solvent annealing under high relative humidity followed by UV degradation and acid washing. Ordered half-spheres at the surface that template ordering of spheres below the surface in thin films were formed as a result of the interaction between the hydrophilic PEO segments and water vapor during processing. The spherical block copolymer domains exhibit complex packing behavior on the surface and in the interior. A half-sphere "monolayer" and a half-sphere plus whole sphere "bilayer" were formed in thin films with thicknesses of 43 and 71 nm, respectively, and have hexagonal lattice symmetry. For half-sphere plus two whole sphere "trilayers" with a nominal thickness of 117 nm, coexistence, of regions of hexagonal and square packing was observed by transmission electron microscopy, scanning force microscopy, scanning electron microscopy, and grazing-incidence small-angle X-ray scattering. Square packing was consistent with a surface-truncated unit cell of a body-centered cubic lattice with the (100) plane parallel to the surface. C1 [Tang, Chuanbing; Fredrickson, Glenn H.; Hawker, Craig J.; Kramer, Edward J.] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Bang, Joona] Korea Univ, Dept Biol & Chem Engn, Seoul 136701, South Korea. [Hawker, Craig J.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Stein, Gila E.; Fredrickson, Glenn H.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Hawker, Craig J.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Sprung, Michael; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Hawker, CJ (reprint author), Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. EM hawker@mrl.ucsb.edu; edkramer@mrl.ucsb.edu RI Hawker, Craig/G-4971-2011; Bang, Joona/F-6589-2013; Stein, Gila/P-1927-2016 OI Hawker, Craig/0000-0001-9951-851X; Stein, Gila/0000-0002-3973-4496 NR 71 TC 58 Z9 58 U1 4 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 24 PY 2008 VL 41 IS 12 BP 4328 EP 4339 DI 10.1021/ma800207n PG 12 WC Polymer Science SC Polymer Science GA 314XS UT WOS:000256843100038 ER PT J AU Mang, JT Hjelm, RP Orler, EB Wrobleski, DA AF Mang, Joseph T. Hjelm, Rex P. Orler, E. Bruce Wrobleski, Debra A. TI Small-angle neutron scattering of a solvent-swollen segmented polyurethane as a probe of solvent distribution and polymer domain composition SO MACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; BLOCK-COPOLYMERS; URETHANE ELASTOMERS; CONTRAST VARIATION; MICROPHASE SEPARATION; LENGTH DISTRIBUTION; SOLUBILITY PARAMETERS; MICRODOMAIN STRUCTURE; MORPHOLOGY; NETWORKS AB Segmented polyurethanes consist of alternating rigid aromatic (hard) and flexible (soft) segments that chase separate into hard and soft segment-rich nanodomains. The domain structure results in what has been presumed to be an extended, cross-linked network, giving these materials unique mechanical properties. Because of poor contrast and volume fractions of the discontinuous phase, previous scattering studies have focused on polyurethanes with hard segment contents greater that 30 wt%. This study focused on a commercial poly(ester urethane), Estane 5703, containing only 23 wt% hard segment content. To probe the domain structure and composition, we used small-angle neutron scattering (SANS) with contrast variation methods on bulk samples swollen with deuterated/protonated mixtures of benzene, toluene, or o-, m-, or p-xylene isomers. We used the fluid model and Pedersen's micelle model to describe the SANS data as a function of contrast. Both the fluid and micelle models consider Estane as a fluid of spherical, discrete domains in a soft segment-rich matrix. The discrete domains have a closest center-to-center approach defined by the Percus-Yevick hard-sphere potential. The micelle model divides the discontinuous domain into a core and a surrounding corona. We find that the micelle model completely described the data, whereas the fluid model required the ad hoc addition of an additional length scale. The models, which were in good agreement with each other, show that in Estane the discrete domains comprised a small fraction, 0.05-0.06, of the sample volume and have a radius of about 5 nm, giving a number density of the order 10(17) cm(-3). Furthermore, the discrete domains contain a higher hard segment concentration than the matrix, but incorporated only 0.06-0.13 of the hard segment volume. The results also show there is considerable mixing of the hard and soft segments, and there is a significant amount of soft segment in the discrete domains. Using these results, we were able to determine some important factors behind the thermomechanical properties of Estane. Furthermore, we,make a critical assessment of the view that the discrete domains are cross-links for a continuous network and forward the hypothesis that the domains are more like filler particles coupled to the matrix by polymer entanglements. C1 [Mang, Joseph T.] Los Alamos Natl Lab, Dynam Experimentat Div, Los Alamos, NM 87545 USA. [Hjelm, Rex P.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Orler, E. Bruce; Wrobleski, Debra A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Hjelm, RP (reprint author), Los Alamos Natl Lab, Dynam Experimentat Div, POB 1663, Los Alamos, NM 87545 USA. EM hjelm@lanl.gov RI Lujan Center, LANL/G-4896-2012 NR 61 TC 14 Z9 14 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 24 PY 2008 VL 41 IS 12 BP 4358 EP 4370 DI 10.1021/ma800015g PG 13 WC Polymer Science SC Polymer Science GA 314XS UT WOS:000256843100042 ER PT J AU Wilbur, JD Fang, ZX Garetz, BA Newstein, MC Balsara, NP AF Wilbur, Jeffrey D. Fang, Zhuangxi Garetz, Bruce A. Newstein, Maurice C. Balsara, Nitash P. TI Order-disorder transitions in block copolymer thin films studied by guided wave depolarized light scattering with grating couplers SO MACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; OXIDE) TRIBLOCK COPOLYMERS; BIREFRINGENCE; NANOSTRUCTURES; LITHOGRAPHY; MICROSCOPY; PATTERNS AB We demonstrate the use of guided wave depolarized light scattering (GWDLS) with diffraction gratings for studying the properties of soft block copolymer films in the vicinity of order-disorder transitions. The order-disorder transition temperature (T-ODT) of 500 nm thick poly(alpha-methylstyrene-block-isoprene) films is determined by this technique. Atomic force microscopy on quenched samples is used to verify our conclusion. Disordering and ordering dynamics of these films were examined in real time as the films were heated and cooled across the T-ODT. Our work opens the door for using depolarized light scattering for locating transitions between optically isotropic and optically anisotropic block copolymer phases in thin films. C1 [Fang, Zhuangxi; Garetz, Bruce A.] Polytech Univ, Dept Chem & Biol Sci, Brooklyn, NY 11201 USA. [Fang, Zhuangxi; Garetz, Bruce A.] Polytech Univ, Othmer Jacobs Dept Chem & Biol Engn, Brooklyn, NY 11201 USA. [Wilbur, Jeffrey D.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Newstein, Maurice C.] Polytech Inst New York, Dept Elect Engn, Brooklyn, NY 11201 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Garetz, BA (reprint author), Polytech Univ, Dept Chem & Biol Sci, 6 Metrotech Ctr, Brooklyn, NY 11201 USA. NR 33 TC 2 Z9 2 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 24 PY 2008 VL 41 IS 12 BP 4464 EP 4470 DI 10.1021/ma702587u PG 7 WC Polymer Science SC Polymer Science GA 314XS UT WOS:000256843100055 ER PT J AU Bae, JU Lin, TY Yoon, Y Kim, SJ Imre, A Porod, W Reno, JL Bird, JP AF Bae, J. -U. Lin, T. -Y. Yoon, Y. Kim, S. J. Imre, A. Porod, W. Reno, J. L. Bird, J. P. TI Large tunneling magnetoresistance in a field-effect transistor with a nanoscale ferromagnetic gate SO APPLIED PHYSICS LETTERS LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; MAGNETIC BARRIERS; TRANSMISSION AB We demonstrate large, and hysteretic, tunneling magnetoresistance (MR) in field-effect transistors (FETs), when their usual nonmagnetic gate is replaced with a nanoscale ferromagnet. Our analysis indicates that the enhanced MR in the tunneling regime results from the ability of the fringing magnetic fields, which emanate from the nanomagnet into the FET channel, to provide an additional modulation of the electrostatic barrier induced by the applied gate voltage. The ability of this device to detect changes in magnetization may eventually allow the implementation of reprogrammable devices for universal logic and memory applications. (C) 2008 American Institute of Physics. C1 [Bae, J. -U.; Lin, T. -Y.; Yoon, Y.; Kim, S. J.; Bird, J. P.] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA. [Imre, A.; Porod, W.] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA. [Reno, J. L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Bird, JP (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA. EM jbird@buffalo.edu RI Bird, Jonathan/G-4068-2010; Joshi-Imre, Alexandra/A-2912-2010 OI Bird, Jonathan/0000-0002-6966-9007; Joshi-Imre, Alexandra/0000-0002-4271-1623 NR 17 TC 15 Z9 15 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 23 PY 2008 VL 92 IS 25 AR 253101 DI 10.1063/1.2951901 PG 3 WC Physics, Applied SC Physics GA 320KC UT WOS:000257231200052 ER PT J AU Narayanan, M Kwon, DK Ma, B Balachandran, U AF Narayanan, M. Kwon, D. -K. Ma, B. Balachandran, U. TI Deposition of sol-gel derived lead lanthanum zirconate titanate thin films on copper substrates SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRODES AB Lead lanthanum zirconate titanate (PLZT) thin films were directly deposited on copper substrates by chemical solution deposition and crystallized at temperatures of >= 650 degrees C under low pO(2) conditions. Although the crystallization conditions used are conducive for copper oxidation, a thin layer (similar to 115 nm) of PLZT was sufficient to protect the underlying copper from oxidation. Films exhibited well saturated hysteresis loops with remanent polarization similar to 24 mu C/cm(2) and dielectric constants similar to 730. Indirect evidence suggests that the oxygen vacancies created during the high temperature processing are responsible for the degradation of the electrical properties of these thin films. Techniques for avoiding this problem are proposed. (c) 2008 American Institute of Physics. C1 [Narayanan, M.; Kwon, D. -K.; Ma, B.; Balachandran, U.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Narayanan, M (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mnarayanan@anl.gov RI Narayanan, Manoj/A-4622-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 NR 11 TC 14 Z9 14 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 23 PY 2008 VL 92 IS 25 AR 252905 DI 10.1063/1.2945887 PG 3 WC Physics, Applied SC Physics GA 320KC UT WOS:000257231200046 ER PT J AU Nunez, M Nardelli, MB AF Nunez, Matias Nardelli, M. Buongiorno TI Interface phase and tuning of polarization in metal-ferroelectric junctions: A theoretical study SO APPLIED PHYSICS LETTERS LA English DT Article ID BAND OFFSETS AB Using first principles calculations, we have studied how the control of the interface structure in metal-ferroelectric junctions can be used to tune the polarization of the ferroelectric film. Using a Pt/BaTiO3/Pt as a prototypical system, we show that the polarization of the oxide can be tuned by the introduction of an interface layer of a different metal and that this interface effect varies with the thickness of the ferroelectric film. These results can be easily interpreted in terms of the local electronic structure of the interface and provide a phenomenological criterion for choosing the metal intralayer in order to obtain the desired polarization. (c) 2008 American Institute of Physics. C1 [Nunez, Matias; Nardelli, M. Buongiorno] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Nunez, Matias; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, M. Buongiorno] Oak Ridge Natl Lab, CCS CSM, Oak Ridge, TN 37831 USA. RP Nunez, M (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. EM matias.nunez@gmail.com RI Buongiorno Nardelli, Marco/C-9089-2009 NR 16 TC 7 Z9 7 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 23 PY 2008 VL 92 IS 25 AR 252903 DI 10.1063/1.2948899 PG 3 WC Physics, Applied SC Physics GA 320KC UT WOS:000257231200044 ER PT J AU Pan, W Kotula, PG Carroll, MS Monson, T Wang, YQ AF Pan, W. Kotula, P. G. Carroll, M. S. Monson, T. Wang, Y. Q. TI Hysteretic magnetophotoluminescence in Mn ion implanted silicon rich oxide thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRICAL SPIN-INJECTION; MAGNETIC SEMICONDUCTORS; SI NANOCRYSTALS; FERROMAGNETISM; SPINTRONICS AB We present our recent results of magnetophotoluminescence (PL) in Mn ion implanted silicon rich oxide thin films. A hysteretic behavior was observed when the PL peak intensity is plotted against the applied magnetic field. It disappeared when the measurement temperature was higher than 60 K. In a controlled thin film sample without Mn-ion implantation no hysteresis was observed down to the lowest temperature of 1.3 K. We propose that the origin of this hysteretic behavior is probably due to a ferromagnetic order in the Mn ion implanted thin films. (C) 2008 American Institute of Physics. C1 [Pan, W.; Kotula, P. G.; Carroll, M. S.; Monson, T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pan, W (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wpan@sandia.gov RI Kotula, Paul/A-7657-2011; OI Kotula, Paul/0000-0002-7521-2759; Monson, Todd/0000-0002-9782-7084 NR 19 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 23 PY 2008 VL 92 IS 25 AR 253107 DI 10.1063/1.2952277 PG 3 WC Physics, Applied SC Physics GA 320KC UT WOS:000257231200058 ER PT J AU Yamamoto, A Jiang, J Tarantini, C Craig, N Polyanskii, AA Kametani, F Hunte, F Jaroszynski, J Hellstrom, EE Larbalestier, DC Jin, R Sefat, AS McGuire, MA Sales, BC Christen, DK Mandrus, D AF Yamamoto, A. Jiang, J. Tarantini, C. Craig, N. Polyanskii, A. A. Kametani, F. Hunte, F. Jaroszynski, J. Hellstrom, E. E. Larbalestier, D. C. Jin, R. Sefat, A. S. McGuire, M. A. Sales, B. C. Christen, D. K. Mandrus, D. TI Evidence for electromagnetic granularity in the polycrystalline iron-based superconductor LaO(0.89)F(0.11)FeAs SO APPLIED PHYSICS LETTERS LA English DT Article ID CRITICAL CURRENTS; COMPOUND AB The recently discovered oxypnictide superconductors are layered, low carrier density compounds with many similarities to the high-T(c) cuprates. An important question is whether they also exhibit weak-coupling across randomly oriented grain boundaries. In this work we show considerable evidence for such weak coupling by study of the dependence of magnetization in bulk and powdered samples. Bulk sample magnetization curves show very little hysteresis while remanent magnetization shows almost no sample size dependence, even after powdering. We conclude that these samples exhibit substantial electromagnetic granularity on a scale approximating the grain size, though we cannot yet determine whether this is intrinsic or extrinsic. (c) 2008 American Institute of Physics. C1 [Yamamoto, A.; Jiang, J.; Tarantini, C.; Craig, N.; Polyanskii, A. A.; Kametani, F.; Hunte, F.; Jaroszynski, J.; Hellstrom, E. E.; Larbalestier, D. C.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yamamoto, A (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. EM yamamoto@asc.magnet.fsu.edu RI Sefat, Athena/R-5457-2016; Jiang, Jianyi/F-2549-2017; Yamamoto, Akiyasu/A-6630-2009; McGuire, Michael/B-5453-2009; Larbalestier, David/B-2277-2008; Yamamoto, Akiyasu/A-5119-2012; Mandrus, David/H-3090-2014 OI Sefat, Athena/0000-0002-5596-3504; Jiang, Jianyi/0000-0002-1094-2013; McGuire, Michael/0000-0003-1762-9406; Larbalestier, David/0000-0001-7098-7208; NR 19 TC 47 Z9 48 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 23 PY 2008 VL 92 IS 25 AR 252501 DI 10.1063/1.2952195 PG 3 WC Physics, Applied SC Physics GA 320KC UT WOS:000257231200040 ER PT J AU Yang, SM Jo, JY Kim, DJ Sung, H Noh, TW Lee, HN Yoon, JG Song, TK AF Yang, S. M. Jo, J. Y. Kim, D. J. Sung, H. Noh, T. W. Lee, H. N. Yoon, J. -G. Song, T. K. TI Domain wall motion in epitaxial Pb(Zr,Ti)O-3 capacitors investigated by modified piezoresponse force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article AB We investigated the time-dependent domain wall motion of epitaxial PbZr0.2Ti0.8O3 capacitors 100 nm thick using modified piezoresponse force microscopy (PFM). We obtained successive domain evolution images reliably by combining the PFM with switching current measurements. We observed that domain wall speed (upsilon) decreases with increases in domain size. We also observed that the average value of v, obtained under applied electric field (E-app), showed creep behavior, i.e., similar to exp[-(E-0/E-app)(mu)] with an exponent mu of 0.9 +/- 0.1 and an activation field E-0 of about 700 kV/cm. (c) 2008 American Institute of Physics. C1 [Yang, S. M.; Jo, J. Y.; Kim, D. J.; Sung, H.; Noh, T. W.] Seoul Natl Univ, Dept Phys & Astron, ReCOE, Seoul 151747, South Korea. [Yang, S. M.; Jo, J. Y.; Kim, D. J.; Sung, H.; Noh, T. W.] Seoul Natl Univ, Dept Phys & Astron, FPRD, Seoul 151747, South Korea. [Lee, H. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yoon, J. -G.] Univ Suwon, Dept Phys, Suwon 445743, Gyunggi Do, South Korea. [Song, T. K.] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Chang Won 641773, Gyeongnam, South Korea. RP Yang, SM (reprint author), Seoul Natl Univ, Dept Phys & Astron, ReCOE, Seoul 151747, South Korea. EM twnoh@snu.ac.kr; hnlee@ornl.gov RI Kim, Dong Jik/C-4602-2011; Noh, Tae Won /K-9405-2013; Lee, Ho Nyung/K-2820-2012; Yang, Sang Mo/Q-2455-2015 OI Kim, Dong Jik/0000-0003-1900-4629; Lee, Ho Nyung/0000-0002-2180-3975; Yang, Sang Mo/0000-0003-1809-2938 NR 18 TC 44 Z9 45 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 23 PY 2008 VL 92 IS 25 AR 252901 DI 10.1063/1.2949078 PG 3 WC Physics, Applied SC Physics GA 320KC UT WOS:000257231200042 ER PT J AU Loh, ZH Greene, CH Leone, SR AF Loh, Zhi-Heng Greene, Chris H. Leone, Stephen R. TI Femtosecond induced transparency and absorption in the extreme ultraviolet by coherent coupling of the He 2s2p (P-1(o)) and 2p(2) (S-1(e)) double excitation states with 800 nm light SO CHEMICAL PHYSICS LA English DT Article; Proceedings Paper CT 8th International Conference on Femtochemistry and Femtobiology CY JUL 22-27, 2007 CL Magdalen Coll, Oxford, ENGLAND HO Magdalen Coll DE femtosecond; high-order harmonic; transient absorption; Autler-Townes; helium double excitation ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; AUTOIONIZING STATES; NONLINEAR OPTICS; LASER FIELDS; X-RAYS; SPECTROSCOPY; HELIUM; SUPPRESSION; IONIZATION AB Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p (P-1(o)) and 2p(2) (S-1(e)) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s(2) -> 2s2p transition at 60.15 eV reveals the formation of an Autler-Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively. (C) 2007 Elsevier B.V. All rights reserved. C1 [Loh, Zhi-Heng; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA. [Loh, Zhi-Heng; Leone, Stephen R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Greene, Chris H.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Greene, Chris H.] Univ Colorado, JILA, Boulder, CO 80309 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Loh, Zhi-Heng/B-6952-2011; Greene, Chris/C-3821-2011 OI Loh, Zhi-Heng/0000-0001-9729-9632; Greene, Chris/0000-0002-2096-6385 NR 36 TC 52 Z9 52 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD JUN 23 PY 2008 VL 350 IS 1-3 BP 7 EP 13 DI 10.1016/j.chemphys.2007.11.005 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 324ST UT WOS:000257539500003 ER PT J AU Griffin, GB Kammrath, A Ehrler, OT Young, RM Cheshnovsky, O Neumark, DM AF Griffin, Graham B. Kammrath, Aster Ehrler, Oli T. Young, Ryan M. Cheshnovsky, Ori Neumark, Daniel M. TI Auger recombination dynamics in Hg-13(-) clusters SO CHEMICAL PHYSICS LA English DT Article; Proceedings Paper CT 8th International Conference on Femtochemistry and Femtobiology CY JUL 22-27, 2007 CL Magdalen Coll, Oxford, ENGLAND HO Magdalen Coll DE mercury; clusters; time-resolved photoelectron imaging; photoelectron imaging; Auger; Auger dynamics; Auger recombination; electron relaxation dynamics; excited state relaxation dynamics; electronic excited state relaxation ID HOT-ELECTRON DYNAMICS; MERCURY CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; RELAXATION DYNAMICS; TRANSITION; STATES; DETACHMENT; EVOLUTION; BEHAVIOR; ANIONS AB Electronic relaxation dynamics following interband excitation from the 6s to the 6p band in mass selected Hg-13(-) clusters are measured through femtosecond time-resolved photoelectron imaging (TRPEI). This interband transition is pumped at 4.65 eV and probed at 1.55 eV. Auger decay of occurs on a timescale of 490 +/- 100 fs, and a similar time constant is seen for the transient excited state population created by the pump pulse. These time constants are an order of magnitude faster than those seen in previous experiments in which the lone p-electron in Hg-13(-) was excited within the p-band. The results presented here imply that substantial relaxation of either electrons in the p-band or the hole in the s-band takes place prior to Auger emission, with electron-electron scattering playing a key role in the fast observed dynamics. (C) 2007 Elsevier B.V. All rights reserved. C1 [Griffin, Graham B.; Kammrath, Aster; Ehrler, Oli T.; Young, Ryan M.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cheshnovsky, Ori] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. [Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; Ehrler, Oli/B-6215-2008 OI Neumark, Daniel/0000-0002-3762-9473; NR 35 TC 5 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD JUN 23 PY 2008 VL 350 IS 1-3 BP 69 EP 74 DI 10.1016/j.chemphys.2007.12.005 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 324ST UT WOS:000257539500009 ER PT J AU Groenewold, GS Van Stipdonk, MJ de Jong, WA Oomens, J Gresham, GL Mcllwain, ME Gao, D Siboulet, B Visscher, L Kullman, M Polfer, N AF Groenewold, Gary S. Van Stipdonk, Michael J. de Jong, Wibe A. Oomens, Jos Gresham, Garold L. Mcllwain, Michael E. Gao, Da Siboulet, Bertrand Visscher, Lucas Kullman, Michael Polfer, Nick TI Infrared spectroscopy of dioxouranium(V) complexes with solvent molecules: Effect of reduction SO CHEMPHYSCHEM LA English DT Article DE density functional calculations; infrared multiple photon dissociation spectroscopy; mass spectroscopy; uranium; uranyl coordination complex ID RESONANCE MASS-SPECTROMETRY; PHOTON DISSOCIATION SPECTROSCOPY; DENSITY-FUNCTIONAL CALCULATIONS; GAS-PHASE; URANYL-ION; AB-INITIO; VIBRATIONAL SPECTROSCOPY; ELECTRONIC-STRUCTURE; ACTINIDE CHEMISTRY; WATER EXCHANGE AB UO2+-solvent complexes having the general formula [UO2-(ROH)](+) (R=H, CH3 C2H5, and n-C3H7) are formed using electrospray ionization and stored in a Fourier transform ion cyclotron resonance mass spectrometer, where they are isolated by mass-to-charge ratio, and then photofragmented using a free-electron loser scanning through the 10 mu m region of the infrared spectrum. Asymmetric O=U=O stretching frequencies (v) are measured over a very small range [from similar to 953cm(-1) for H2O to similar to 944 cm(-1) for n-propanol (n-PrOH)] for all four complexes, indicating that the nature of the alkyl group does not greatly affect the metal centre. The v(3) values generally decrease with increasing nucleophilicity of the solvent, except for the methanol (MeOH)-containing complex, which has a measured v(3) value equal to that of the n-PrOH-containing complex. The v, frequency values for these U(V) complexes are about 20 cm(-1) lower than those measured for isoelectronic U(VI) ion-pair species containing analogous alkoxides. v(3) values for the U(V) complexes are comparable to those for the anionic [UO2(NO3)(3)](-) complex, and 40-70 cm(-1) lower than previously reported values for ligated uranyl(VI) dication complexes. The lower frequency is attributed to weakening of the O=U=O bonds by repulsion related to reduction of the U metal centre, which increases electron density in the antibonding pi* orbitals of the uranyl moiety. Computational modelling of the v(3) frequencies using the B3LYP and PBE functionals is in good agreement with the IRMPD measurements, in that the calculated values fall in a very small range and are within a few cm(-1) of measurements. The values generated using the LDA functional are slightly higher and substantially overestimate the trends. Subtleties in the trend in v(3) frequencies for the H2O-MeOH-EtOH-n-PrOH series are not reproduced by the calculations, specifically for the MeOH complex, which has a lower than expected value. C1 [Groenewold, Gary S.; Gresham, Garold L.; Mcllwain, Michael E.; Gao, Da] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Van Stipdonk, Michael J.; Kullman, Michael] Wichita State Univ, Dept Chem, Wichita, KS 67208 USA. [de Jong, Wibe A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA USA. [Oomens, Jos; Polfer, Nick] FOM, Inst Plasmafys Rijnhuizen, Nieuwegein, Netherlands. [Siboulet, Bertrand] CEA Marcoule, DEN DRCP SCPS, F-30207 Bagnols Sur Ceze, France. [Visscher, Lucas] Vrije Univ Amsterdam, Amsterdam, Netherlands. RP Groenewold, GS (reprint author), Idaho Natl Lab, 2151 North Blvd, Idaho Falls, ID 83415 USA. EM gary.groenewold@inl.gov; mike.vanstipdonk@chemistry.wichita.edu; wibe.dejong@pnl.gov RI DE JONG, WIBE/A-5443-2008; Visscher, Lucas/A-3523-2010; Gao, Da/C-2823-2011; Oomens, Jos/F-9691-2015 OI DE JONG, WIBE/0000-0002-7114-8315; Visscher, Lucas/0000-0002-7748-6243; NR 73 TC 25 Z9 25 U1 1 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUN 23 PY 2008 VL 9 IS 9 BP 1278 EP 1285 DI 10.1002/cphc.200800034 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 324SF UT WOS:000257537800010 PM 18478514 ER PT J AU Mann, CJ Bingham, PR Paquit, VC Tobin, KW AF Mann, Christopher J. Bingham, Philip R. Paquit, Vincent C. Tobin, Kenneth W. TI Quantitative phase imaging by three-wavelength digital holography SO OPTICS EXPRESS LA English DT Article ID REAL-TIME; WAVELENGTH; INTERFEROMETRY; MICROSCOPY; LASER; RECONSTRUCTION AB Three-wavelength digital holography is applied to obtain surface height measurements over several microns of range, while simultaneously maintaining the low noise precision of the single wavelength phase measurement. The precision is preserved by the use of intermediate synthetic wavelength steps generated from the three wavelengths and the use of hierarchical optical phase unwrapping. As the complex wave-front of each wavelength can be captured simultaneously in one digital image, real-time performance is achievable. (c) 2008 Optical Society of America. C1 [Mann, Christopher J.; Bingham, Philip R.; Paquit, Vincent C.; Tobin, Kenneth W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mann, CJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM manncj@ornl.gov RI Paquit, Vincent/K-9541-2013; OI Paquit, Vincent/0000-0003-0331-2598; Bingham, Philip/0000-0003-4616-6084 NR 24 TC 78 Z9 80 U1 2 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 23 PY 2008 VL 16 IS 13 BP 9753 EP 9764 DI 10.1364/OE.16.009753 PG 12 WC Optics SC Optics GA 325BT UT WOS:000257563900056 PM 18575544 ER PT J AU Nimlos, MR Chang, CH Curtis, CJ Miedaner, A Pilath, HM DuBois, DL AF Nimlos, Mark R. Chang, Christopher H. Curtis, Calvin J. Miedaner, Alex Pilath, Heidi M. DuBois, Daniel L. TI Calculated hydride donor abilities of five-coordinate transition metal hydrides [HM(diphosphine)(2)](+) (M = Ni, Pd, Pt) as a function of the bite angle and twist angle of diphosphine ligands SO ORGANOMETALLICS LA English DT Article ID MOLECULAR-ORBITAL METHODS; FE-ONLY HYDROGENASE; C BOND FORMATION; CARBONYL HYDRIDES; ACTIVE-SITE; ANGSTROM RESOLUTION; COMPLEXES M; REDUCTION; ACETONITRILE; MECHANISM AB Density functional theory (BLYP and B3LYP) and the polarized continuum model (PCM-UA0) for solvation have been used to investigate the effect of bite angle (P-M-P) of diphosphine ligands and the dihedral or twist angle between diphosphine ligands on the hydride donor abilities of Ni, Pd, and Pt [HM(diphosphine)(2)](+) complexes. It is found that an increased bite angle for a given transition metal atom results in poorer hydride donor abilities. However, hydride donor abilities for these complexes also decrease as the size of the alkyl side groups on the phosphor-us atom increase (Et > Me > H) and with the length of the metal phosphorus bond (Ni > Pd congruent to Pt). These trends correlate with an increase in the twist angle between the two diphosphine ligands, which increases from 0 degrees for a square-planar configuration to 90 degrees for a tetrahedral geometry. Shorter M-P bonds, larger substituents on the diphosphine ligands, and larger bite angles all result in increased steric interactions between diphosphine ligands and larger dihedral or twist angles between the diphosphine ligands. The twist angle correlates much more strongly with hydride donor abilities than do bite angles alone. As the twist angle increases, the hydride donor ability decreases in a linear fashion. A frontier orbital analysis has been carried out, and it is shown that the hydride donor ability of [HM(diphosphine)(2)](+) complexes is largely determined by the energy of the lowest unoccupied molecular orbital of the corresponding [M(diphosphine)(2)](2+) complex. C1 [Nimlos, Mark R.; Chang, Christopher H.; Curtis, Calvin J.; Miedaner, Alex; Pilath, Heidi M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [DuBois, Daniel L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Nimlos, MR (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM mark_nimlos@nrel.gov RI Chang, Christopher/A-1404-2012 OI Chang, Christopher/0000-0003-3800-6021 NR 49 TC 42 Z9 42 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUN 23 PY 2008 VL 27 IS 12 BP 2715 EP 2722 DI 10.1021/om701218x PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 312BH UT WOS:000256643600007 ER PT J AU Chacon-Golcher, E Neri, F AF Chacon-Golcher, Edwin Neri, Filippo TI A symplectic integrator with arbitrary vector and scalar potentials SO PHYSICS LETTERS A LA English DT Article AB We study a new class of symplectic integrators for particles in arbitrary, time-dependent vector and scalar potentials. The methods were introduced in [Y.K. Wu, E. Forest, D.S. Robin, Phys. Rev. E 68 (2003) 046502] and are based on the ability to integrate Hamiltonians of the form (p(i) - a(i)(q))(2) exactly for a finite time-step. We show that the integrators are symplectic in the non-relativistic case but not symplectic in the full six-dimensional phase space for relativistic Hamiltonians. (C) 2008 Elsevier BLV. All rights reserved. C1 [Chacon-Golcher, Edwin; Neri, Filippo] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chacon-Golcher, E (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM edcg@lanl.gov NR 11 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUN 23 PY 2008 VL 372 IS 26 BP 4661 EP 4666 DI 10.1016/j.physleta.2008.04.058 PG 6 WC Physics, Multidisciplinary SC Physics GA 320VF UT WOS:000257262500001 ER PT J AU Mark, PR Murthy, NS Weigand, S Breitenkamp, K Kade, M Emrick, T AF Mark, P. R. Murthy, N. S. Weigand, S. Breitenkamp, K. Kade, M. Emrick, T. TI Microphase separated structures in the solid and molten states of double-crystal graft copolymers of polyethylene and poly(ethylene oxide) SO POLYMER LA English DT Article DE microphase separation; graft copolymers; crystallization ID X-RAY-SCATTERING; DIBLOCK COPOLYMER; CRYSTALLIZATION BEHAVIOR; SEMICRYSTALLINE POLYMERS; BLOCK-COPOLYMERS; ETHYLENE-GLYCOL; PHASE-BEHAVIOR; TRANSITION; CHAIN; MELT AB Transitions from one microphase separated structure in the solid state to a different one in the molten state in polyethylene-graft-poly(ethylene oxide) copolymers, PE-g-PEO, were investigated by variable temperature X-ray scattering measurements and thermal analyses. Small-angle X-ray scattering patterns from polymers with PEO grafts with 25, 50 and 100 ethylene oxide (EO) units show that the polymer passes through three distinct structures at similar to 10 nm length scales with increase in temperature (T): lamellar structures of PE and PEO at T < T-m(PEO), PE lamellae surrounded by molten PEO at T-m(PEo) < T < T-m(PE), and microphase separated structures at T > T-m(PE) when both PE and PEO are molten (T-m refers to the melting temperature). These phase transformations also occur during cooling but with hysteresis. Crystalline phases of PEO side chains and PE main chains could be identified in the wide-angle X-ray diffraction profiles indicating that the PE backbone and PEO grafts crystallize into separate domains, especially with longer grafted chains (50 and 100 units). At EO segment lengths > 50, PEO shows the expected increase in melting and crystallization temperatures with the increase in the grafted chain length. PE does not affect T-m(PEO) but does decrease the onset of crystallization upon cooling. PEO grafts result in fractionation of PE, decrease the melting point of PE and increase the undercooling for the onset of crystallization of PE. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Mark, P. R.; Murthy, N. S.] Univ Vermont, Dept Phys, Burlington, VT 05405 USA. [Murthy, N. S.] Rutgers State Univ, New Jersey Ctr Biomat, Piscataway, NJ 08854 USA. [Weigand, S.] Northwestern Univ, Adv Photon Source, Argonne Natl Lab, DND CAT Synchrotron Res Ctr, Argonne, IL 60439 USA. [Breitenkamp, K.; Kade, M.; Emrick, T.] Univ Massachusetts, Dept Polymer Sci & Engn, Conte Centerfor Polymer Res, Amherst, MA 01003 USA. RP Murthy, NS (reprint author), Univ Vermont, Dept Phys, Burlington, VT 05405 USA. EM murthy@biology.rutgers.edu NR 35 TC 6 Z9 6 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD JUN 23 PY 2008 VL 49 IS 13-14 BP 3116 EP 3124 DI 10.1016/j.polymer.2008.05.012 PG 9 WC Polymer Science SC Polymer Science GA 327FL UT WOS:000257714900018 ER PT J AU Park, JY Qi, YB Ratera, I Salmeron, M AF Park, Jeong Young Qi, Yabing Ratera, Imma Salmeron, M. TI Noncontact to contact tunneling microscopy in self-assembled monolayers of alkylthiols on gold SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; ELECTRICAL-PROPERTIES; ORGANIC-MOLECULES; AU(111); ALKANETHIOLS; FILMS; TRANSPORT; JUNCTIONS; SURFACE; PHASES AB The mechanical interaction between a scanning tunneling microscopy (STM) probe and hexadecane (C16) alkylthiol molecules in a self-assembled monolayer was investigated by sensing the force during constant current mode STM imaging. The force regime changed from attractive to repulsive over the insulating molecule islands under feedback control of the current. The repulsive force on the molecule was strongly dependent on the setpoint value of the current during STM operation. In our experiments, the threshold for contact was found at a tunneling current of 1 pA when the sample bias is 2 V. At higher current, the apparent height of molecular islands changed logarithmically with current. In addition, the current as a function of applied load revealed a stepwise increase, indicative of discrete molecular tilting events. A tunneling decay constant beta of =0.53 +/- 0.02 A(-1) was obtained based on the measurement of the height of molecules and the tunneling current. (C) 2008 American Institute of Physics. C1 [Park, Jeong Young; Qi, Yabing; Ratera, Imma; Salmeron, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Qi, Yabing] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Salmeron, M.] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. RP Park, JY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jypark@lbl.gov; mbsalmeron@lbl.gov RI Qi, Yabing/A-9243-2010; Park, Jeong Young/A-2999-2008; Ratera, Imma/E-2353-2014; Qi, Yabing/O-7807-2014 OI Ratera, Imma/0000-0002-1464-9789; Qi, Yabing/0000-0002-4876-8049 NR 22 TC 6 Z9 6 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2008 VL 128 IS 23 AR 234701 DI 10.1063/1.2938085 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 316GF UT WOS:000256936700028 PM 18570513 ER PT J AU Cachorro, VE Toledano, C Berjon, A de Frutos, AM Torres, B Sorribas, M Laulainen, NS AF Cachorro, V. E. Toledano, C. Berjon, A. de Frutos, A. M. Torres, B. Sorribas, M. Laulainen, N. S. TI An "in situ" calibration correction procedure (KCICLO) based on AOD diurnal cycle: Application to AERONET - El Arenosillo (Spain) AOD data series SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL OPTICAL DEPTH; ULTRAVIOLET-RADIATION CAMPAIGN; LANGLEY PLOT METHOD; SUN PHOTOMETERS; PHOTOCHEMICAL ACTIVITY; FILTER RADIOMETERS; OZONE MEASUREMENTS; NETWORK; SPECTROPHOTOMETER; CLIMATOLOGY AB [1] Aerosol optical depth (AOD) very often shows a distinct diurnal cycle pattern, which seems to be an artifact resulting from an incorrect calibration ( or an equivalent effect, such as filter degradation). The shape of this fictitious AOD diurnal cycle varies as the inverse of the solar air mass (m) and the magnitude of the effect is greatest at midday. The observation of this effect is not easy at many field stations, and only those stations with good weather conditions permit an easier detection and the possibility of its correction. By taking advantage of this dependence on the air mass, we propose an improved "in situ'' correction-calibration procedure to AOD measured data series. The method is named KCICLO because the determination of a constant K and the behavior of AOD as a cycle (ciclo, in Spanish). We estimate it has an accuracy of 0.2-0.5% for the calibration ratio constant K, or 0.002-0.005 in AOD at field stations. Although the KCICLO is an "in situ'' calibration method, we recommend it to be used as an AOD correction method for field stations. At high-altitude sites, it may be used independently of the classical Langley method (CLM). However, we also recommend it to be used as a complement to CLM, improving it considerably. The application of this calibration correction method to the nearly 5 year AOD data series at El Arenosillo (Huelva, southwestern Spain) station belonging to Aerosol Robotic Network (AERONET)PHOTONS shows that 8 (50%) of 16 filters of the four analyzed Sun photometers were outside of the 0.02 uncertainty of AERONET specification. The largest departures reached values of 0.06. The results show the efficiency of the method and a significant improvement over other "in situ'' methods, with no other information required beyond the same AOD data. C1 [Cachorro, V. E.; Toledano, C.; Berjon, A.; de Frutos, A. M.; Torres, B.] Univ Valladolid, Grp Opt Atmosfer, E-47071 Valladolid, Spain. [Sorribas, M.] INTA Div Ciencias Espacio, Estac Sondeos Atmosfer El Arenosillo, E-21130 Huelva, Spain. [Laulainen, N. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cachorro, VE (reprint author), Univ Valladolid, Grp Opt Atmosfer, E-47071 Valladolid, Spain. EM chiqui@baraja.opt.cie.uva.es RI Sorribas, Mar/B-8059-2012; Toledano, Carlos/J-3672-2012; Berjon, Alberto/M-4203-2015; OI Sorribas, Mar/0000-0003-2131-9021; Toledano, Carlos/0000-0002-6890-6648; Berjon, Alberto/0000-0002-4508-7037; Cachorro, Victoria/0000-0002-4627-9444 NR 55 TC 8 Z9 8 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 21 PY 2008 VL 113 IS D12 AR D12205 DI 10.1029/2007JD009673 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 317YH UT WOS:000257055800007 ER PT J AU Szlufarska, I Chandross, M Carpick, RW AF Szlufarska, Izabela Chandross, Michael Carpick, Robert W. TI Recent advances in single-asperity nanotribology SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Review ID ATOMIC-FORCE MICROSCOPY; SELF-ASSEMBLED MONOLAYERS; MOLECULAR-DYNAMICS SIMULATIONS; STICK-SLIP MOTION; ORDERED ORGANIC MONOLAYERS; THERMALLY ACTIVATED FRICTION; INTERFACIAL SHEAR-STRENGTH; TIP SUBSTRATE INTERACTIONS; SCANNING PROBE MICROSCOPY; NANOMETER-SCALE CONTACTS AB As the size of electronic and mechanical devices shrinks to the nanometre regime, performance begins to be dominated by surface forces. For example, friction, wear and adhesion are known to be central challenges in the design of reliable micro- and nano-electromechanical systems (MEMS/NEMS). Because of the complexity of the physical and chemical mechanisms underlying atomic-level tribology, it is still not possible to accurately and reliably predict the response when two surfaces come into contact at the nanoscale. Fundamental scientific studies are the means by which these insights may be gained. We review recent advances in the experimental, theoretical and computational studies of nanotribology. In particular, we focus on the latest developments in atomic force microscopy and molecular dynamics simulations and their application to the study of single-asperity contact. C1 [Szlufarska, Izabela] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Chandross, Michael] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Carpick, Robert W.] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. RP Szlufarska, I (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. NR 335 TC 220 Z9 225 U1 22 U2 180 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUN 21 PY 2008 VL 41 IS 12 AR 123001 DI 10.1088/0022-3727/41/12/123001 PG 39 WC Physics, Applied SC Physics GA 310YW UT WOS:000256568000004 ER PT J AU Panaitescu, A Vestrand, WT AF Panaitescu, A. Vestrand, W. T. TI Taxonomy of gamma-ray burst optical light curves: identification of a salient class of early afterglows SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms : non-thermal; shock waves; gamma-rays : bursts ID SWIFT OBSERVATIONS; PROMPT EMISSION; MULTIWAVELENGTH OBSERVATIONS; XMM-NEWTON; GRB; GRB-050401; ENERGY; ENVIRONMENT; PARAMETERS; GRB-060124 AB The temporal behaviour of the early optical emission from gamma-ray burst afterglows can be divided into four classes: fast-rising with an early peak, slow-rising with a late peak, flat plateaus and rapid decays since first measurement. The fast-rising optical afterglows display correlations among peak flux, peak epoch and post-peak power-law decay index that can be explained with a structured outflow seen off-axis, but the shock origin (reverse or forward) of the optical emission cannot be determined. The afterglows with plateaus and slow rises may be accommodated by the same model, if observer location offsets are larger than for the fast-rising afterglows, or could be due to a long-lived injection of energy and/or ejecta in the blast wave. If better calibrated with more afterglows, the peak flux-peak epoch relation exhibited by the fast- and slow-rising optical light curves could provide a way to use this type of afterglows as standard candles. C1 [Panaitescu, A.; Vestrand, W. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Panaitescu, A (reprint author), Los Alamos Natl Lab, MS D466, Los Alamos, NM 87545 USA. EM alin@lanl.gov NR 78 TC 70 Z9 71 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2008 VL 387 IS 2 BP 497 EP 504 DI 10.1111/j.1365-2966.2008.13231.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 312RO UT WOS:000256688700002 ER PT J AU Diehl, S Statler, TS AF Diehl, Steven Statler, Thomas S. TI The hot interstellar medium of normal elliptical galaxies. II. Morphological evidence for active galactic nucleus feedback SO ASTROPHYSICAL JOURNAL LA English DT Article DE cooling flows; galaxies : elliptical and lenticular, cD; galaxies : ISM; X-rays : galaxies; X-rays : ISM ID X-RAY OBSERVATIONS; DARK-MATTER; CHANDRA OBSERVATION; CENTAURUS-A; VORONOI TESSELLATIONS; STAR-FORMATION; VIRGO CLUSTER; RADIO-SOURCES; XMM-NEWTON; NEARBY AB We report on the discovery of a new quantitative relationship between X-ray gas morphology and radio and X-ray AGN luminosities in normal elliptical galaxies. This is the second paper in a series using data on 54 objects from the Chandra public archive and builds on the findings of Paper I, which demonstrated that hydrostatic equilibrium in elliptical galaxies holds, at best, only approximately and that the shape of the X-ray isophotes is unrelated to the shape of the gravitational potential. Instead, the gas is almost always asymmetrically disturbed. In this paper we quantify the amount of asymmetry and study its correlation with other galaxy properties. We also determine radio powers and derive X-ray AGN luminosities for our galaxy sample. We find that the amount of asymmetry in the gas is correlated with both measures of AGN activity, in the sense that the hot gas is more disturbed in galaxies with higher radio and X-ray AGN luminosities. We find no evidence that galaxy density has significant effects on gasmorphology. We do, however, find evidence for a correlation between gas asymmetry and the presence of hot ambient gas, which we interpret as a signature of hydrodynamic interactions with an external ambient medium. Surprisingly, the AGN-morphology connection persists all the way down to the weakest AGN luminosities in rather X-ray-faint galaxies. This is strong morphological evidence that supports the general importance of AGN feedback, even in normal elliptical galaxies. C1 [Diehl, Steven; Statler, Thomas S.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Clippinger Res Labs 251B, Athens, OH 45701 USA. RP Diehl, S (reprint author), Los Alamos Natl Lab, Theoret Astrophys Grp T6, Los Alamos, NM 87545 USA. EM diehl@lanl.gov; statler@ohio.edu OI Statler, Thomas/0000-0003-4909-9542 NR 46 TC 32 Z9 32 U1 1 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2008 VL 680 IS 2 BP 897 EP 910 DI 10.1086/587481 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 313PL UT WOS:000256752400006 ER PT J AU Lidz, A Zahn, O McQuinn, M Zaldarriaga, M Hernquist, L AF Lidz, Adam Zahn, Oliver McQuinn, Matthew Zaldarriaga, Matias Hernquist, Lars TI Detecting the rise and fall of 21 cm fluctuations with the Murchison Widefield Array SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : theory; intergalactic medium; large-scale structure of universe ID PROBE WMAP OBSERVATIONS; QUASAR NEAR-ZONES; LY-ALPHA EMITTERS; COSMIC REIONIZATION; HIGH-REDSHIFT; INTERGALACTIC MEDIUM; HII-REGIONS; PATCHY REIONIZATION; RADIATIVE-TRANSFER; 21-CM OBSERVATIONS AB We forecast the sensitivity with which the Murchison Widefield Array (MWA) can measure the 21 cm power spectrum of cosmic hydrogen. The MWA is sensitive to roughly a decade in scale (wavenumbers of k similar to 0.1-1 h Mpc(-1)). This amounts primarily to constraints on two numbers: the amplitude and the slope of the 21 cm power spectrum on the scales probed. We find, however, that the redshift evolution in these quantities can yield important information about reionization. We examine a range of theoretical models, spanning uncertainties in the nature of the ionizing sources and the abundance of minihalos during reionization. Although the power spectrum differs substantially among these models, a generic prediction is that the amplitude of the 21 cm power spectrum on MWA scales (k similar to 0.4 hMpc(-1)) peaks near the epoch when the intergalactic medium (IGM) is approximate to 50% ionized. Moreover, the slope of the 21 cm power spectrum flattens as the ionization fraction increases and the sizes of the H II regions grow. With regards to detection sensitivity, we show that the optimal MWA antenna configuration for power spectrum measurements would pack all 500 antenna tiles as closely as possible in a compact core. Detecting the characteristic redshift evolution of our models will help to confirm that observed 21 cm fluctuations originate from the IGM, and not from foregrounds, and will provide an indirect constraint on the evolution of the volume-filling factor of H II regions during reionization. After two years of observations, the MWA can constrain the filling factor at an epoch when < x(i)> similar to 0.5 to within roughly +/- delta < x(i)> similar to 0.1 at 2 sigma confidence. C1 [Lidz, Adam; Zahn, Oliver; McQuinn, Matthew; Zaldarriaga, Matias; Hernquist, Lars] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zahn, Oliver] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Zahn, Oliver] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zaldarriaga, Matias] Harvard Univ, Jefferson Lab Phys, Cambridge, MA 02138 USA. RP Lidz, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. NR 57 TC 94 Z9 94 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2008 VL 680 IS 2 BP 962 EP 974 DI 10.1086/587618 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 313PL UT WOS:000256752400010 ER PT J AU Rest, A Matheson, T Blondin, S Bergmann, M Welch, DL Suntzeff, NB Smith, RC Olsen, K Prieto, JL Garg, A Challis, P Stubbs, C Hicken, M Modjaz, M Wood-Vasey, WM Zenteno, A Damke, G Newman, A Huber, M Cook, KH Nikolaev, S Becker, AC Miceli, A Covarrubias, R Morelli, L Pignata, G Clocchiatti, A Minniti, D Foley, RJ AF Rest, A. Matheson, T. Blondin, S. Bergmann, M. Welch, D. L. Suntzeff, N. B. Smith, R. C. Olsen, K. Prieto, J. L. Garg, A. Challis, P. Stubbs, C. Hicken, M. Modjaz, M. Wood-Vasey, W. M. Zenteno, A. Damke, G. Newman, A. Huber, M. Cook, K. H. Nikolaev, S. Becker, A. C. Miceli, A. Covarrubias, R. Morelli, L. Pignata, G. Clocchiatti, A. Minniti, D. Foley, R. J. TI Spectral identification of an ancient supernova using light echoes in the Large Magellanic Cloud SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM : individual (SNR 0509-67.5); Magellanic Clouds; supernovae : general; supernova remnants ID SOUTHERN SPECTROPHOTOMETRIC STANDARDS; HIGH-REDSHIFT SUPERNOVAE; IA SUPERNOVAE; NOVA-PERSEI; MILKY-WAY; SN 1991T; DUST; SPECTROSCOPY; REFLECTIONS; EXTINCTION AB We report the successful identification of the type of the supernova (SN) responsible for the supernova remnant SNR 0509-675 in the Large Magellanic Cloud (LMC) using Gemini spectra of surrounding light echoes. The ability to classify outbursts associated with centuries-old remnants provides a new window into several aspects of SN research and is likely to be successful in providing new constraints on additional LMC SNe, as well as their historical counterparts in the Milky Way (MW). The combined spectrum of echo light from SNR 0509-675 shows broad emission and absorption lines consistent with a SN spectrum. We create a spectral library consisting of 28 SNe Ia and 6 SNe Ib/c that are time-integrated, dust-scattered by LMC dust, and reddened by the LMC and MW. We fit these SN templates to the observed light echo spectrum using chi(2) minimization, as well as correlation techniques, and we find that overluminous 1991T-like SNe Ia with Delta m(15) < 0.9 match the observed spectrum best. C1 [Rest, A.; Smith, R. C.; Olsen, K.; Zenteno, A.; Damke, G.] CTIO, La Serena, Chile. [Rest, A.; Garg, A.; Stubbs, C.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Matheson, T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Blondin, S.; Challis, P.; Stubbs, C.; Hicken, M.; Modjaz, M.; Wood-Vasey, W. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bergmann, M.] Gemini Observ, La Serena, Chile. [Welch, D. L.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Suntzeff, N. B.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Prieto, J. L.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Newman, A.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Huber, M.; Cook, K. H.; Nikolaev, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Becker, A. C.; Miceli, A.; Covarrubias, R.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Covarrubias, R.] Las Campanas Observ OCIW, La Serena, Chile. [Morelli, L.; Pignata, G.; Clocchiatti, A.; Minniti, D.] Pontificia Univ Catolica Chile, Dept Astron, Santiago 22, Chile. [Pignata, G.] Univ Chile, Dept Astron, Santiago, Chile. [Foley, R. J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Rest, A (reprint author), CTIO, Colina Pino S-N, La Serena, Chile. RI Stubbs, Christopher/C-2829-2012 OI Stubbs, Christopher/0000-0003-0347-1724 NR 69 TC 59 Z9 59 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2008 VL 680 IS 2 BP 1137 EP 1148 DI 10.1086/587158 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 313PL UT WOS:000256752400024 ER PT J AU Hong, J Wang, YR Ye, XH Zhang, YHP AF Hong, Jiong Wang, Yiran Ye, Xinhao Zhang, Y. -H. Percival TI Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE affinity adsorption; cellulose-binding module; intein protein purification; regenerated amorphous cellulose ID CLOSTRIDIUM-THERMOCELLUM; ENZYMATIC-HYDROLYSIS; CELLOBIOSE PHOSPHORYLASE; ESCHERICHIA-COLI; BINDING DOMAIN; FUSION; LIGNOCELLULOSE; CELLODEXTRINS; TAGS; EXPRESSION AB A simple, low-cost, and scalable protein purification method was developed by using a biodegradable regenerated amorphous cellulose (RAC) with a binding capacity of up to 365 mg protein per gram of RAC. The recombinant protein with a cellulose-binding module (CBM) tag can be specifically adsorbed by RAC. In order to avoid using costly protease and simplify purification process, a self-cleavage intein was introduced between CBM and target protein. The cleaved target protein can be liberated from the surface of RAC by intein self-cleavage occurring through a pH change from 8.0 to 6.5. Four recombinant proteins (green fluorescence protein, phosphoglucomutase, cellobiose phosphorylase, and glucan phosphorylase) have been purified successfully. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hong, Jiong; Wang, Yiran; Ye, Xinhao; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Hong, Jiong] Univ Sci & Technol China, Sch Life Sci, Hefei 230027, Anhui, Peoples R China. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI Wang, Yi-Ran/C-4643-2013; Ye, Xinhao/J-7591-2013; HONG, Jiong/N-1996-2013 OI Wang, Yi-Ran/0000-0002-4171-868X; HONG, Jiong/0000-0002-4592-7083 NR 29 TC 51 Z9 52 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUN 20 PY 2008 VL 1194 IS 2 BP 150 EP 154 DI 10.1016/j.chroma.2008.04.048 PG 5 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 318IA UT WOS:000257083600002 PM 18468611 ER PT J AU Wu, ZQ Wentzcovitch, RM Umemoto, K Li, BS Hirose, K Zheng, JC AF Wu, Zhongqing Wentzcovitch, Renata M. Umemoto, Koichiro Li, Baosheng Hirose, Kei Zheng, Jin-Cheng TI Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID EQUATION-OF-STATE; POST-PEROVSKITE PHASE; LOWER MANTLE CONDITIONS; X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS; MELTING TEMPERATURE; SHOCK TEMPERATURES; MGSIO3 PEROVSKITE; LOWERMOST MANTLE; THERMAL PRESSURE AB In situ crystallography based on diamond anvil cells have been extended to the multimegabar regime. Temperatures in these experiments have crossed the 2500 K mark. Yet, current high pressure-temperature (PT) standards of calibration produce uncertainties that inhibit clear conclusions about phenomena of importance to planetary processes, e. g., the postperovskite transition in Earth's mantle. We introduce a new thermal equation of state (EOS) of MgO which appears to be predictive up to the multimegabar and thousands of kelvin range. It is obtained by combining first principles local density approximation quasi-harmonic (QHA) calculations with experimental low-pressure data. This EOS agrees exceptionally well with shock compression data. The postspinel and postperovskite phase boundaries recalculated using our EOS match seismic observations. The latter, in particular, supports the idea that postperovskite transforms back to perovskite before the core-mantle boundary. The recalculated experimental Clapeyron slope of the postperovskite transition is also more consistent with those obtained by first principles calculations. C1 [Wu, Zhongqing; Wentzcovitch, Renata M.; Umemoto, Koichiro] Univ Minnesota Twin Cities, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Wu, Zhongqing; Wentzcovitch, Renata M.; Umemoto, Koichiro] Univ Minnesota Twin Cities, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA. [Li, Baosheng] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Hirose, Kei] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan. [Zheng, Jin-Cheng] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wu, ZQ (reprint author), Univ Minnesota Twin Cities, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. EM wuzq@cems.umn.edu RI Yoshioka, Yuko/C-4847-2009; Zheng, JC/G-3383-2010; Wu, Zhongqing/O-6022-2015; Wentzcovitch, Renata/J-8768-2015; Hirose, Kei/C-2165-2009; Li, Baosheng/C-1813-2013 OI Yoshioka, Yuko/0000-0001-8974-0934; Zheng, JC/0000-0002-6292-3236; Hirose, Kei/0000-0003-4366-7721; NR 81 TC 61 Z9 63 U1 2 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUN 20 PY 2008 VL 113 IS B6 AR B06204 DI 10.1029/2007JB005275 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 317ZO UT WOS:000257059400002 ER PT J AU Ghosh, SS Pickett, JS Lakhina, GS Winningham, JD Lavraud, B Decreau, PME AF Ghosh, S. S. Pickett, J. S. Lakhina, G. S. Winningham, J. D. Lavraud, B. Decreau, P. M. E. TI Parametric analysis of positive amplitude electron acoustic solitary waves in a magnetized plasma and its application to boundary layers SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID AURORAL ACCELERATION REGION; SATELLITE-OBSERVATIONS; INSTABILITIES DRIVEN; POLAR OBSERVATIONS; FIELD STRUCTURES; SHEET BOUNDARY; NOISE; SOLITONS; HOLES; CUSP AB The existence domain of a fully nonlinear positive amplitude electron acoustic solitary wave has been studied in a four-component plasma composed of warm magnetized electrons, warm electron beam, and energetic multi-ion species with ions hotter than the electrons (T(i)> T(e)). A Sagdeev pseudopotential technique has been used to obtain the nonlinear evolution equation for the wave propagating obliquely with the ambient magnetic field. It is observed that the ion temperatures and concentrations play a crucial role in determining the characteristics and the existence domain of the electron acoustic solitary wave. With a large cold ion population and/or a large cold to hot ion temperature ratio, the plasma tends to behave like a single ion-dominated one. The corresponding Sagdeev pseudopotential shows an extremely narrow and deep profile producing small-amplitude, narrow width, spiky solitary waves. Such solutions are found to be applicable in the bow shock, magnetosheath,and cusp regions. Comparison with CLUSTER observations agrees well with the analytical model. It has been shown that in the magnetosheath, cooler He(2+) ions are necessary to produce a positive polarity solution while a hotter species may produce a compressive (negative polarity) solution. C1 [Ghosh, S. S.; Lakhina, G. S.] Indian Inst Geomagnetism, Navi Mumbai 410218, India. [Pickett, J. S.] Univ Iowa, Iowa City, IA 52242 USA. [Winningham, J. D.] SW Res Inst, San Antonio, TX 78228 USA. [Lavraud, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Decreau, P. M. E.] Univ Orleans, F-45071 Orleans 2, France. [Decreau, P. M. E.] LPCE, F-45071 Orleans 2, France. RP Ghosh, SS (reprint author), Indian Inst Geomagnetism, Plot 5,Sector 18, Navi Mumbai 410218, India. EM sukti@iigp.iigm.res.in RI Lakhina, Gurbax /C-9295-2012; Ghosh, Suktisama/J-8494-2013; OI Lakhina, Gurbax /0000-0002-8956-486X NR 71 TC 20 Z9 20 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 20 PY 2008 VL 113 IS A6 AR A06218 DI 10.1029/2007JA012768 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 317ZU UT WOS:000257060200001 ER PT J AU Bender, CM Feinberg, J AF Bender, Carl M. Feinberg, Joshua TI Does the complex deformation of the Riemann equation exhibit shocks? SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article; Proceedings Paper CT 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics CY JUL 16-18, 2007 CL City Univ London, London, ENGLAND SP London Math Soc, Inst Phys, Doppler Inst, City Univ London, Sch Engn & Math Sci HO City Univ London ID HERMITIAN HAMILTONIAN-SYSTEMS; SYMMETRIC QUANTUM-MECHANICS; CLASSICAL TRAJECTORIES AB The Riemann equation u(t) + uu(x) = 0, which describes a one-dimensional accelerationless perfect fluid, possesses solutions that typically develop shocks in a finite time. This equation is PT symmetric. A one-parameter PT-invariant complex deformation of this equation, u(t) - iu(iu(x))(epsilon) = 0 (epsilon real), is solved exactly using the method of characteristic strips, and it is shown that for real initial conditions, shocks cannot develop unless epsilon is an odd integer. When epsilon is an odd integer, the shock-formation time is calculated explicitly. C1 [Bender, Carl M.; Feinberg, Joshua] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bender, Carl M.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Feinberg, Joshua] Univ Haifa, Dept Phys, IL-36006 Tivon, Israel. [Feinberg, Joshua] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RP Bender, CM (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM cmb@wustl.edu; joshua@physics.technion.ac.il NR 25 TC 15 Z9 15 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUN 20 PY 2008 VL 41 IS 24 AR 244004 DI 10.1088/1751-8113/41/24/244004 PG 8 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 308KI UT WOS:000256388200005 ER PT J AU Bender, CM Jones, HF AF Bender, Carl M. Jones, Hugh F. TI Interactions of Hermitian and non-Hermitian Hamiltonians SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article; Proceedings Paper CT 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics CY JUL 16-18, 2007 CL City Univ London, London, ENGLAND SP London Math Soc, Inst Phys, Doppler Inst, City Univ London, Sch Engn & Math Sci HO City Univ London ID SYMMETRY AB The coupling of non-Hermitian PT-symmetric Hamiltonians to standard Hermitian Hamiltonians, each of which individually has a real energy spectrum, is explored by means of a number of soluble models. It is found that in all cases the energy remains real for small values of the coupling constant, but becomes complex if the coupling becomes stronger than some critical value. For a quadratic non-Hermitian PT-symmetric Hamiltonian coupled to an arbitrary real Hermitian PT-symmetric Hamiltonian, the reality of the ground-state energy for small enough coupling constant is established up to second order in perturbation theory. C1 [Bender, Carl M.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Jones, Hugh F.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. [Bender, Carl M.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. RP Bender, CM (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM cmb@wustl.edu; h.f.jones@imperial.ac.uk RI Jones, Hugh/G-4010-2012 NR 22 TC 23 Z9 23 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUN 20 PY 2008 VL 41 IS 24 AR 244006 DI 10.1088/1751-8113/41/24/244006 PG 8 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 308KI UT WOS:000256388200007 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACS Atramentov, O Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI First study of the radiation-amplitude zero in W gamma production and limits on anomalous WW gamma couplings at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAUGE-THEORY; COLLISIONS; PP AB We present results from a study of p (p) over bar -> W gamma+X events utilizing data corresponding to 0.7 fb(-1) of integrated luminosity at root s = 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We set limits on anomalous WW gamma couplings at the 95% C.L. The one-dimensional 95% C.L. limits are 0.49 l(+)nu decays, where l is a muon or tau, is larger than the standard model prediction, which relies on lattice QCD, at the 3.8 sigma level. We discuss how robust the theoretical prediction is, and we show that the discrepancy with experiment may be explained by a charged Higgs boson or a leptoquark. C1 [Dobrescu, Bogdan A.; Kronfeld, Andreas S.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Dobrescu, BA (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. NR 27 TC 68 Z9 68 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 241802 DI 10.1103/PhysRevLett.100.241802 PG 4 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400018 PM 18643571 ER PT J AU Fuchs, O Zharnikov, M Weinhardt, L Blum, M Weigand, M Zubavichus, Y Baer, M Maier, F Denlinger, JD Heske, C Grunze, M Umbach, E AF Fuchs, O. Zharnikov, M. Weinhardt, L. Blum, M. Weigand, M. Zubavichus, Y. Baer, M. Maier, F. Denlinger, J. D. Heske, C. Grunze, M. Umbach, E. TI Comment on "Isotope and Temperature Effects in Liquid Water Probed by X-ray Absorption and Resonant X-ray Emission Spectroscopy" - Fuchs et al. reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID DISSOCIATION AB A Reply to the Comment by L. G. M. Pettersson et al. C1 [Fuchs, O.; Blum, M.; Weigand, M.; Maier, F.; Umbach, E.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Zharnikov, M.; Zubavichus, Y.; Grunze, M.] Univ Heidelberg, D-69120 Heidelberg, Germany. [Weinhardt, L.; Blum, M.; Baer, M.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Denlinger, J. D.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Fuchs, O (reprint author), Univ Wurzburg, D-97074 Wurzburg, Germany. RI Weinhardt, Lothar/G-1689-2013; Grunze, Michael/H-1600-2013; Zubavichus, Yan/A-3418-2014 OI Zubavichus, Yan/0000-0003-2266-8944 NR 8 TC 29 Z9 29 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 249802 DI 10.1103/PhysRevLett.100.249802 PG 1 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400085 ER PT J AU Kim, KJ Shvyd'ko, Y Reiche, S AF Kim, Kwang-Je Shvyd'ko, Yuri Reiche, Sven TI A proposal for an x-ray free-electron laser oscillator with an energy-recovery linac SO PHYSICAL REVIEW LETTERS LA English DT Article ID FEL; POLARIZATION; GAIN AB We show that a free-electron laser oscillator generating x rays with wavelengths of about 1 A is feasible using ultralow emittance electron beams of a multi-GeV energy-recovery linac, combined with a low-loss crystal cavity. The device will produce x-ray pulses with 10(9) photons at a repetition rate of 1-100 MHz. The pulses are temporarily and transversely coherent, with a rms bandwidth of about 2 meV, and rms pulse length of about 1 ps. C1 [Kim, Kwang-Je; Shvyd'ko, Yuri] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Reiche, Sven] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Kim, KJ (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. NR 31 TC 94 Z9 97 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 244802 DI 10.1103/PhysRevLett.100.244802 PG 4 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400038 PM 18643591 ER PT J AU Mestayer, JJ Wyker, B Lancaster, JC Dunning, FB Reinhold, CO Yoshida, S Burgdorfer, J AF Mestayer, J. J. Wyker, B. Lancaster, J. C. Dunning, F. B. Reinhold, C. O. Yoshida, S. Burgdoerfer, J. TI Realization of localized Bohr-like wave packets SO PHYSICAL REVIEW LETTERS LA English DT Article ID CIRCULAR RYDBERG STATES; CELESTIAL MECHANICS; CLASSICAL-LIMIT; ATOMS; HYDROGEN; SYSTEMS; CAVITY; FIELDS AB We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed. C1 [Mestayer, J. J.; Wyker, B.; Lancaster, J. C.; Dunning, F. B.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Mestayer, J. J.; Wyker, B.; Lancaster, J. C.; Dunning, F. B.] Rice Univ, Rice Quantum Inst, Houston, TX 77005 USA. [Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Reinhold, C. O.; Burgdoerfer, J.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Yoshida, S.; Burgdoerfer, J.] Vienna Univ Technol, Inst Theoret Phys, Vienna, Austria. RP Mestayer, JJ (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. OI Reinhold, Carlos/0000-0003-0100-4962 NR 30 TC 25 Z9 25 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 243004 DI 10.1103/PhysRevLett.100.243004 PG 4 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400029 PM 18643582 ER PT J AU Pettersson, LGM Tokushima, T Harada, Y Takahashi, O Shin, S Nilsson, A AF Pettersson, L. G. M. Tokushima, T. Harada, Y. Takahashi, O. Shin, S. Nilsson, A. TI Comment on "Isotope and Temperature Effects in Liquid Water Probed by X-ray Absorption and Resonant X-ray Emission Spectroscopy" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Comment on the Letter by O. Fuchs et al. [Phys. Rev. Lett. 100, 027801 (2008)]. The authors of the Letter offer a Reply. C1 [Pettersson, L. G. M.; Nilsson, A.] Stockholm Univ, FYSIKUM, S-10691 Stockholm, Sweden. [Tokushima, T.; Harada, Y.; Shin, S.] RIKEN, SPring 8, Sayo, Hyogo 6795148, Japan. [Takahashi, O.] Hiroshima Univ, Dept Chem, Higashihiroshima 7398526, Japan. [Shin, S.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Nilsson, A.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Pettersson, LGM (reprint author), Stockholm Univ, FYSIKUM, S-10691 Stockholm, Sweden. RI Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Pettersson, Lars/J-4925-2013; Tokushima, Takashi/B-9127-2009 OI Nilsson, Anders/0000-0003-1968-8696; Pettersson, Lars/0000-0003-1133-9934; Tokushima, Takashi/0000-0003-2586-0712 NR 4 TC 29 Z9 29 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 249801 DI 10.1103/PhysRevLett.100.249801 PG 1 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400084 PM 18643637 ER PT J AU Sarkar, D Sullivan, S Joudaki, S Amblard, A Holz, DE Cooray, A AF Sarkar, Devdeep Sullivan, Scott Joudaki, Shahab Amblard, Alexandre Holz, Daniel E. Cooray, Asantha TI Beyond two dark energy parameters SO PHYSICAL REVIEW LETTERS LA English DT Article ID HUBBLE-SPACE-TELESCOPE; DIGITAL SKY SURVEY; COSMOLOGICAL CONSTANT; SUPERNOVA DATA; CONSTRAINTS; QUINTESSENCE; DISCOVERIES; GALAXIES; PROBE AB Our ignorance of dark energy is generally described by a two-parameter equation of state. In these approaches, a particular ad hoc functional form is assumed, and only two independent parameters are incorporated. We propose a model-independent, multiparameter approach to fitting dark energy and show that next-generation surveys will constrain the equation of state in three or more independent redshift bins to better than 10%. Future knowledge of dark energy will surpass two numbers (e.g., [w(0),w(1)] or [w(0),w(a)]), and we propose a more flexible approach to the analysis of present and future data. C1 [Sarkar, Devdeep; Sullivan, Scott; Joudaki, Shahab; Amblard, Alexandre; Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Holz, Daniel E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Holz, Daniel E.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Sarkar, D (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RI amblard, alexandre/L-7694-2014 OI amblard, alexandre/0000-0002-2212-5395 NR 37 TC 25 Z9 25 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 241302 DI 10.1103/PhysRevLett.100.241302 PG 4 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400015 PM 18643568 ER PT J AU Strachan, JP Chembrolu, V Acremann, Y Yu, XW Tulapurkar, AA Tyliszczak, T Katine, JA Carey, MJ Scheinfein, MR Siegmann, HC Stahr, J AF Strachan, J. P. Chembrolu, V. Acremann, Y. Yu, X. W. Tulapurkar, A. A. Tyliszczak, T. Katine, J. A. Carey, M. J. Scheinfein, M. R. Siegmann, H. C. Stoehr, J. TI Direct observation of spin-torque driven magnetization reversal through nonuniform modes SO PHYSICAL REVIEW LETTERS LA English DT Article ID MULTILAYER; EXCITATION; WAVES; FIELD AB We present time-resolved x-ray images with 30 nm spatial and 70 ps temporal resolution, which reveal details of the spatially resolved magnetization evolution in nanoscale samples of various dimensions during reversible spin-torque switching processes. Our data in conjunction with micromagnetic simulations suggest a simple unified picture of magnetic switching based on the motion of a magnetic vortex. With decreasing size of the magnetic element the path of the vortex core moves from inside to outside of the nanoelement, and the switching process evolves from a curled nonuniform to an increasingly uniform mode. C1 [Strachan, J. P.; Chembrolu, V.; Yu, X. W.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Acremann, Y.; Siegmann, H. C.] Stanford Linear Accelerator Ctr, PULSE Ctr, Menlo Pk, CA 94025 USA. [Tulapurkar, A. A.; Stoehr, J.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Tyliszczak, T.] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Katine, J. A.; Carey, M. J.] Hitachi Global Storage Technol, San Jose, CA 95135 USA. [Scheinfein, M. R.] Simon Fraser Univ, Dept Phys, Burnaby, BC U5A 156, Canada. RP Strachan, JP (reprint author), Hewlett Packard Labs, Informat & Quantum Syst Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA. NR 24 TC 28 Z9 28 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 247201 DI 10.1103/PhysRevLett.100.247201 PG 4 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400068 PM 18643621 ER PT J AU Ward, TZ Liang, S Fuchigami, K Yin, LF Dagotto, E Plummer, EW Shen, J AF Ward, T. Z. Liang, S. Fuchigami, K. Yin, L. F. Dagotto, E. Plummer, E. W. Shen, J. TI Reemergent metal-insulator transitions in manganites exposed with spatial confinement SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSPORT-PROPERTIES; PHASE-SEPARATION; MAGNETORESISTANCE; COEXISTENCE; PHYSICS; PR; LA; ND AB The metal-insulator transition is characterized as a single peak in the temperature-dependent resistivity measurements; exceptions to this have never been seen in any single crystal material system. We show that by reducing a single crystal manganite thin film to a wire with a width comparable to the mesoscopic phase-separated domains inherent in the material, a second and robust metal-insulator transition peak appears in the resistivity versus temperature measurement. This new observation suggests that spatial confinement is a promising route for the discovery of emergent physical phenomena in complex oxides. C1 [Ward, T. Z.; Liang, S.; Fuchigami, K.; Yin, L. F.; Dagotto, E.; Shen, J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ward, T. Z.; Liang, S.; Fuchigami, K.; Dagotto, E.; Plummer, E. W.; Shen, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Fuchigami, K.] IHI Corp, Res Lab, Kanagawa 2358501, Japan. RP Shen, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM shenj@ornl.gov RI Ward, Thomas/I-6636-2016 OI Ward, Thomas/0000-0002-1027-9186 NR 33 TC 60 Z9 61 U1 5 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 247204 DI 10.1103/PhysRevLett.100.247204 PG 4 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400071 PM 18643624 ER PT J AU Widhalm, L Adachi, I Aihara, H Aushev, T Bakich, AM Balagura, V Barberio, E Bay, A Bedny, I Bhardwaj, V Bitenc, U Blyth, S Bozek, A Bracko, M Brodzicka, J Browder, TE Chao, Y Chen, A Chen, WT Cheon, BG Chistov, R Cho, IS Choi, Y Dalseno, J Dash, M Drutskoy, A Eidelman, S Goldenzweig, P Golob, B Ha, H Haba, J Hayasaka, K Hayashii, H Hazumi, M Heffernan, D Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Inami, K Ishikawa, A Ishino, H Itoh, R Iwasaki, M Iwasaki, Y Kah, DH Kang, JH Kapusta, P Katayama, N Kawai, H Kawasaki, T Kichimi, H Kim, SK Kim, YJ Kinoshita, K Korpar, S Krizan, P Krokovny, P Kumar, R Kuo, CC Kuroki, Y Kuzmin, A Kwon, YJ Lee, J Lee, JS Lee, MJ Lee, SE Lesiak, T Lin, SW Liu, C Liventsev, D Mandl, F Matyja, A McOnie, S Mitaroff, W Miyake, H Miyata, H Miyazaki, Y Mizuk, R Moloney, GR Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Noguchi, S Ogawa, S Ohshima, T Okuno, S Ozaki, H Pakhlov, P Pakhlova, G Palka, H Park, CW Park, H Park, KS Peak, LS Pestotnik, R Piilonen, LE Sahoo, H Sakai, Y Schneider, O Seidl, R Sekiya, A Senyo, K Shapkin, M Shibuya, H Shiu, JG Singh, JB Somov, A Stanic, S Staric, M Sumiyoshi, T Suzuki, SY Takasaki, F Tamura, N Tanaka, M Taylor, GN Teramoto, Y Tikhomirov, I Trabelsi, K Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Varner, G Vervink, K Wang, CH Wang, MZ Wang, P Watanabe, Y Wedd, R Won, E Yabsley, BD Yamamoto, H Yamashita, Y Zhang, ZP Zhilich, V Zupanc, A Zyukova, O AF Widhalm, L. Adachi, I. Aihara, H. Aushev, T. Bakich, A. M. Balagura, V. Barberio, E. Bay, A. Bedny, I. Bhardwaj, V. Bitenc, U. Blyth, S. Bozek, A. Bracko, M. Brodzicka, J. Browder, T. E. Chao, Y. Chen, A. Chen, W. T. Cheon, B. G. Chistov, R. Cho, I. -S. Choi, Y. Dalseno, J. Dash, M. Drutskoy, A. Eidelman, S. Goldenzweig, P. Golob, B. Ha, H. Haba, J. Hayasaka, K. Hayashii, H. Hazumi, M. Heffernan, D. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Inami, K. Ishikawa, A. Ishino, H. Itoh, R. Iwasaki, M. Iwasaki, Y. Kah, D. H. Kang, J. H. Kapusta, P. Katayama, N. Kawai, H. Kawasaki, T. Kichimi, H. Kim, S. K. Kim, Y. J. Kinoshita, K. Korpar, S. Krizan, P. Krokovny, P. Kumar, R. Kuo, C. C. Kuroki, Y. Kuzmin, A. Kwon, Y. -J. Lee, J. Lee, J. S. Lee, M. J. Lee, S. E. Lesiak, T. Lin, S. -W. Liu, C. Liventsev, D. Mandl, F. Matyja, A. McOnie, S. Mitaroff, W. Miyake, H. Miyata, H. Miyazaki, Y. Mizuk, R. Moloney, G. R. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Noguchi, S. Ogawa, S. Ohshima, T. Okuno, S. Ozaki, H. Pakhlov, P. Pakhlova, G. Palka, H. Park, C. W. Park, H. Park, K. S. Peak, L. S. Pestotnik, R. Piilonen, L. E. Sahoo, H. Sakai, Y. Schneider, O. Seidl, R. Sekiya, A. Senyo, K. Shapkin, M. Shibuya, H. Shiu, J. -G. Singh, J. B. Somov, A. Stanic, S. Staric, M. Sumiyoshi, T. Suzuki, S. Y. Takasaki, F. Tamura, N. Tanaka, M. Taylor, G. N. Teramoto, Y. Tikhomirov, I. Trabelsi, K. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Varner, G. Vervink, K. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, Y. Wedd, R. Won, E. Yabsley, B. D. Yamamoto, H. Yamashita, Y. Zhang, Z. P. Zhilich, V. Zupanc, A. Zyukova, O. TI Measurement of B(D-s(+)->mu(+)nu(mu)) SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR AB We present a measurement of the branching fraction B(D-s(+)->mu(+)nu(mu)) using a 548 fb(-1) data sample collected by the Belle experiment at the KEKB e(+)e(-) collider. The D-s momentum is determined by reconstruction of the system recoiling against DK gamma X in events of the type e(+)e(-)->(DsDKX)-D-*, D-s(*)-> D-s gamma, where X represents additional pions or photons from fragmentation. This full-reconstruction method provides high resolution in the neutrino momentum and thus good background separation, equivalent to that achieved by experiments at the tau-charm factories. We obtain the branching fraction B(D-s(+)->mu(+)nu(mu))=[6.44 +/- 0.76(stat)+/- 0.57(syst)]x10(-3), implying a D-s decay constant of f(Ds)=[275 +/- 16(stat)+/- 12(syst)] MeV. C1 [Widhalm, L.; Mandl, F.; Mitaroff, W.] Inst High Energy Phys, Vienna, Austria. [Bedny, I.; Eidelman, S.; Kuzmin, A.; Usov, Y.; Zhilich, V.; Zyukova, O.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Kawai, H.] Chiba Univ, Chiba, Japan. [Drutskoy, A.; Goldenzweig, P.; Kinoshita, K.; Somov, A.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Kim, Y. J.] Grad Univ Adv Studies, Hayama, Japan. [Cheon, B. G.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Brodzicka, J.; Haba, J.; Hazumi, M.; Itoh, R.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Krokovny, P.; Nakao, M.; Nishida, S.; Ozaki, H.; Sakai, Y.; Suzuki, S. Y.; Takasaki, F.; Tanaka, M.; Trabelsi, K.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Seidl, R.] Univ Illinois, Urbana, IL 61801 USA. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Shapkin, M.] Inst High Energy Phys, Protvino, Russia. [Aushev, T.; Balagura, V.; Chistov, R.; Liventsev, D.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Tikhomirov, I.; Uglov, T.] Inst Theoret & Expt Phys, Moscow, Russia. [Bitenc, U.; Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Pestotnik, R.; Staric, M.; Zupanc, A.] Jozef Stefan Inst, Ljubljana 61000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa, Japan. [Ha, H.; Won, E.] Korea Univ, Seoul, South Korea. [Hyun, H. J.; Kah, D. H.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Aushev, T.; Bay, A.; Schneider, O.; Vervink, K.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Barberio, E.; Dalseno, J.; Moloney, G. R.; Taylor, G. N.; Urquijo, P.; Wedd, R.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Hayasaka, K.; Iijima, T.; Inami, K.; Miyazaki, Y.; Ohshima, T.; Senyo, K.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Hayashii, H.; Noguchi, S.; Sekiya, A.] Nara Womens Univ, Nara 630, Japan. [Chen, A.; Chen, W. T.; Kuo, C. C.] Natl Cent Univ, Chungli 32054, Taiwan. [Chao, Y.; Hou, W. -S.; Hsiung, Y. B.; Lin, S. -W.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Bozek, A.; Kapusta, P.; Lesiak, T.; Matyja, A.; Natkaniec, Z.; Palka, H.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata, Japan. [Kawasaki, T.; Miyata, H.; Tamura, N.] Niigata Univ, Niigata, Japan. [Stanic, S.] Univ Nova Gorica, Nova Gorica, Slovenia. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 558, Japan. [Heffernan, D.; Kuroki, Y.; Miyake, H.] Osaka Univ, Osaka, Japan. [Bhardwaj, V.; Kumar, R.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Seidl, R.] Assoc Univ Inc, Brookhaven Natl Lab, Res Ctr, RIKEN, Upton, NY 11973 USA. [Ishikawa, A.] Saga Univ, Saga 840, Japan. [Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Kim, S. K.; Lee, J.; Lee, M. J.; Lee, S. E.] Seoul Natl Univ, Seoul, South Korea. [Choi, Y.; Lee, J. S.; Park, C. W.; Park, K. S.] Sungkyunkwan Univ, Suwon, South Korea. [Bakich, A. M.; McOnie, S.; Peak, L. S.; Yabsley, B. D.] Univ Sydney, Sydney, NSW 2006, Australia. [Ogawa, S.; Shibuya, H.] Toho Univ, Funabashi, Chiba 274, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. [Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Aihara, H.; Iwasaki, M.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Ishino, H.] Tokyo Inst Technol, Tokyo 152, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 158, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo, Japan. [Dash, M.; Piilonen, L. E.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Cho, I. -S.; Kang, J. H.; Kwon, Y. -J.] Yonsei Univ, Seoul 120749, South Korea. RP Widhalm, L (reprint author), Inst High Energy Phys, Vienna, Austria. RI Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Ishino, Hirokazu/C-1994-2015; Kim, Sun Kee/G-2042-2015; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014 OI Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Aihara, Hiroaki/0000-0002-1907-5964; Ishino, Hirokazu/0000-0002-8623-4080; Kim, Sun Kee/0000-0002-0013-0775; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830 NR 12 TC 25 Z9 25 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 241801 DI 10.1103/PhysRevLett.100.241801 PG 6 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400017 PM 18643570 ER PT J AU Wu, ZG Neaton, JB Grossman, JC AF Wu, Zhigang Neaton, J. B. Grossman, Jeffrey C. TI Quantum confinement and electronic properties of tapered silicon nanowires SO PHYSICAL REVIEW LETTERS LA English DT Article ID OPTICAL-PROPERTIES; BUILDING-BLOCKS; DEVICES; STATES AB Using ab initio calculations, structural tapering of silicon nanowires is shown to have a profound effect on their electronic properties. In particular, the electronic structure of small-diameter tapered silicon nanowires is found to have a strong axial dependence, with unoccupied eigenstates being substantially more sensitive to diameter. Moreover, the states corresponding to the highest occupied and the lowest unoccupied states are spatially separated along the wire axis by the tapering-induced charge transfer and a strong electrostatic potential gradient, due to an appreciable variation in quantum confinement strength with diameter. C1 [Wu, Zhigang; Grossman, Jeffrey C.] Univ Calif Berkeley, Berkeley Nanotechnol & Nanosci Inst, Berkeley, CA 94720 USA. [Wu, Zhigang; Neaton, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wu, ZG (reprint author), Univ Calif Berkeley, Berkeley Nanotechnol & Nanosci Inst, Berkeley, CA 94720 USA. EM jbneaton@lbl.gov; jgrossman@berkeley.edu RI Wu, Zhigang/K-2554-2014; Neaton, Jeffrey/F-8578-2015 OI Wu, Zhigang/0000-0001-8959-2345; Neaton, Jeffrey/0000-0001-7585-6135 NR 33 TC 50 Z9 51 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 20 PY 2008 VL 100 IS 24 AR 246804 DI 10.1103/PhysRevLett.100.246804 PG 4 WC Physics, Multidisciplinary SC Physics GA 316II UT WOS:000256942400057 PM 18643610 ER PT J AU Goulielmakis, E Schultze, M Hofstetter, M Yakovlev, VS Gagnon, J Uiberacker, M Aquila, AL Gullikson, EM Attwood, DT Kienberger, R Krausz, F Kleineberg, U AF Goulielmakis, E. Schultze, M. Hofstetter, M. Yakovlev, V. S. Gagnon, J. Uiberacker, M. Aquila, A. L. Gullikson, E. M. Attwood, D. T. Kienberger, R. Krausz, F. Kleineberg, U. TI Single-cycle nonlinear optics SO SCIENCE LA English DT Article ID ATTOSECOND CONTROL; PHASE RETRIEVAL; IONIZATION; PULSES; SPECTRA; ATOMS AB Nonlinear optics plays a central role in the advancement of optical science and laser- based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time- resolved and strong- field science. The electric field of 3.3- femtosecond, 0.72- micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub- 100- attosecond pulses of extreme ultraviolet light ( photon energy similar to 80 electron volts), containing similar to 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of similar to 10(-6). These tools enable the study of the precision control of electron motion with light fields and electron- electron interactions with a resolution approaching the atomic unit of time (similar to 24 attoseconds). C1 [Goulielmakis, E.; Schultze, M.; Gagnon, J.; Kienberger, R.; Krausz, F.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Hofstetter, M.; Yakovlev, V. S.; Uiberacker, M.; Krausz, F.; Kleineberg, U.] Univ Munich, Dept Phys, D-85748 Garching, Germany. [Aquila, A. L.; Gullikson, E. M.; Attwood, D. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Goulielmakis, E (reprint author), Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany. EM elgo@mpq.mpg.de; krausz@lmu.de; ulf.kleineberg@physik.uni-muenchen.de RI Goulielmakis, Eleftherios/F-1693-2011; Yakovlev, Vladislav/C-4091-2015 OI Goulielmakis, Eleftherios/0000-0003-3386-0245; Yakovlev, Vladislav/0000-0002-0648-9375 NR 28 TC 919 Z9 956 U1 18 U2 155 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 20 PY 2008 VL 320 IS 5883 BP 1614 EP 1617 DI 10.1126/science.1157846 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 315NM UT WOS:000256886700041 PM 18566281 ER PT J AU Smolentsev, G Soldatov, AV Chen, LX AF Smolentsev, Grigory Soldatov, Alexander V. Chen, Lin X. TI Three-dimensional local structure of photoexcited cu diimine complex refined by quantitative XANES analysis SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; EXCITED ELECTRONIC STATES; CHARGE-TRANSFER STATES; PULSED X-RAYS; SYNCHROTRON-RADIATION; COPPER(II) COMPLEXES; DFT CALCULATIONS; FINE-STRUCTURE; LASER; SPECTRA AB The structural details of [Cu(dMP)(2)](+) (dmp = 2,9-dimethyl- 1,10-phenanthroline) at its metal-to-ligand charge-transfer (MLCT) excited-state in acetonitrile were extracted using quantitative analysis of Cu K-edge X-ray adsorption near edge structure (XANES). The study combines two techniques: fitting experimental XANES spectra with a multidimensional interpolation approximation, and calculating theoretical XANES spectra with molecular potentials beyond the muffin-tin approximation. The results of the study show that the best fit of the experimental XANES data must include a solvent molecule binding to the Cu with a short Cu-N distance of 2.00 angstrom. This confirms that the formation of an exciplex is responsible for the excited-state quenching in coordinating solvents, such as acetonitrile. Moreover, the calculations suggest that the formation of this exciplex state is accompanied by significant rocking distortions of the dmp ligands resulting in a 108 degrees angle between the N(solvent)-Cu bond and the C-2 symmetry axis of the dmp ligand. This combined approach allows us to extract molecular configurations that would otherwise be missed in a conventional qualitative XANES analysis. C1 [Smolentsev, Grigory; Soldatov, Alexander V.] So Fed Univ, Fac Phys, Rostov Na Donu 344090, Russia. [Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Smolentsev, G (reprint author), So Fed Univ, Fac Phys, Sorge 5, Rostov Na Donu 344090, Russia. EM smolentsev@yandex.ru RI Smolentsev, Grigory/C-6438-2008; Soldatov, Alexander/E-9323-2012 OI Soldatov, Alexander/0000-0001-8411-0546 NR 54 TC 29 Z9 31 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 19 PY 2008 VL 112 IS 24 BP 5363 EP 5367 DI 10.1021/jp801410a PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 313KF UT WOS:000256738800007 PM 18505241 ER PT J AU Garrison, SL Becnel, JM AF Garrison, Stephen L. Becnel, James M. TI Transition state for the gas-phase reaction of uranium hexafluoride with water SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL INVESTIGATIONS; OXIDE TETRAFLUORIDE; BASIS-SETS; AB-INITIO; COMPLEXES; HYDROLYSIS; URANYL; THERMOCHEMISTRY; THERMODYNAMICS; CHEMISTRY AB Density functional theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transition states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF6, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F-5, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structures and relative energies of the reacting complex and transition state. However, a significant change in the structure of the product complex was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBEO and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF4, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF6 with water. C1 [Garrison, Stephen L.; Becnel, James M.] Washington Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Garrison, SL (reprint author), Washington Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. EM Stephen.Garrison@SRNL.doe.gov NR 40 TC 8 Z9 8 U1 3 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 19 PY 2008 VL 112 IS 24 BP 5453 EP 5457 DI 10.1021/jp801524v PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 313KF UT WOS:000256738800019 PM 18500792 ER PT J AU Zhang, M Harding, LB Gray, SK Rice, SA AF Zhang, Ming Harding, Lawrence B. Gray, Stephen K. Rice, Stuart A. TI Quantum states of the endohedral fullerene Li@C(60) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ANDERSONS MODEL; RANDOM LATTICES; C-60; ATOMS; EIGENVALUES; COMPUTATION; HYDROGEN AB We present a theoretical study of the eigenstates of the endohedral fullerene Li@C(60) for the case that the C(60) cage is assumed to be stationary. These eigenstates represent the three-dimensional nuclear dynamics of a Li atom confined to the interior of the carbon cage. The potential function employed, based on density functional theory calculations that we performed, has a variety of minima corresponding to complex hindered rotations of the Li atom in a shell about 1.5 angstrom from the cage center. The energies and wave functions of the lowest 1200 states have been calculated, and the characteristic features of selected states and the far-IR spectrum are discussed. An interesting result of the calculations is the finding that the ground-state eigenfunction can become strongly localized when the cage atoms are just slightly perturbed from icosahedral symmetry. C1 [Harding, Lawrence B.; Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Zhang, Ming; Rice, Stuart A.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Zhang, Ming; Rice, Stuart A.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Gray, SK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gray@tcg.anl.gov; s-rice@uchicago.edu NR 31 TC 18 Z9 19 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 19 PY 2008 VL 112 IS 24 BP 5478 EP 5485 DI 10.1021/jp801083m PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 313KF UT WOS:000256738800022 PM 18491877 ER PT J AU Kowalski, K Valiev, M AF Kowalski, Karol Valiev, M. TI Application of high-level iterative coupled-cluster methods to the cytosine molecule SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EXCITED ELECTRONIC STATES; SINGLE-REFERENCE FORMALISM; RADIATIONLESS DECAY; ABSORPTION SPECTRA; FULL EOMCCSDT; BASIS-SETS; IMPLEMENTATION; DOUBLES; URACIL AB The need for inclusion higher-order correlation effects for adequate description of the excitation energies of the DNA bases became clear in the past few years. In particular, we demonstrated that the inclusion of triply excited configurations may play an important role in a proper description of the excitation energies of the cytosine molecule in realistic environment. In this paper we discuss the accuracies of excitation energies for the cystosine molecule in the gas phase and in the aqueous solution calculated with noniterative and iterative coupled-cluster methods that include the effect of triply excited configurations. C1 Pacific NW Natl Lab, Battelle, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kowalski, K (reprint author), Pacific NW Natl Lab, Battelle, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM karol.kowalski@pnl.gov NR 43 TC 13 Z9 14 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 19 PY 2008 VL 112 IS 24 BP 5538 EP 5541 DI 10.1021/jp801494q PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 313KF UT WOS:000256738800029 PM 18505240 ER PT J AU Zhao, XC AF Zhao, Xiongce TI Interaction of C-60 derivatives and ssDNA from simulations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FULLERENE DERIVATIVES; MOLECULAR-DYNAMICS; HIV-1 PROTEASE; IN-VIVO; WATER; CHEMISTRY; DNA; INHIBITION; ADDUCT; ACID AB We report atomistic modeling studies on the interaction of water-soluble C-60 derivatives and single-stranded DNA (ssDNA) segments in phosphate-buffered solutions. Stable hybrids are formed by C-60 derivatives and ssDNA segments, with binding energies in the range of -23 to -47 kcal/mol. By contrast, the typical binding energy between two C-60 derivative molecules is -11 to -15 kcal/mol. The binding pattern of C-60 derivatives with ssDNA molecules depends on the size and shape of the C-60 functional groups. For C-60 derivatives with functional groups that contain aromatic rings, strong pi stacking was observed between the ssDNA base rings and the functional benzene rings. For C-60 derivatives with a long hydrophilic chain, the binding is greatly enhanced by the hydrophilic interaction from the entanglement between the chain and the ssDNA backbone. Stable hydrogen bonds were observed between the hydroxyl hydrogen on the functional chain and the phosphate oxygen on the ssDNA backbone. For C-60 derivative with short hydrophilic groups, at least two binding patterns were observed, one of which is dominated by the hydrophobic interaction between the C-60 surface and bases on ssDNA, and the other involves multiple weak hydrogen bonds between the functional carboxylic groups and ssDNA. C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhao, XC (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM zhaox@oml.gov NR 43 TC 15 Z9 15 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 19 PY 2008 VL 112 IS 24 BP 8898 EP 8906 DI 10.1021/jp801180w PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 313KG UT WOS:000256738900026 ER PT J AU Sun, YG Yan, HF Wiederrecht, GP AF Sun, Yugang Yan, Hanfei Wiederrecht, Gary P. TI Comparative study on the growth of silver nanoplates on GaAs substrates by electron microscopy, synchrotron X-ray diffraction, and optical spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LARGE-SCALE SYNTHESIS; ONE-DIMENSIONAL NANOSTRUCTURES; GALVANIC REPLACEMENT REACTION; SHAPE-CONTROLLED SYNTHESIS; THIN-FILM GROWTH; GOLD NANORODS; POLYOL SYNTHESIS; SINGLE-CRYSTAL; POLY(VINYL PYRROLIDONE); SEMICONDUCTOR SURFACES AB We have recently developed a simple and efficient approach involving the galvanic reaction between a pure aqueous solution of AgNO3 and GaAs wafers to directly grow high-quality Ag nanoplates with chemical clean surfaces on the GaAs wafers [Chem. Mater. 2007, 19, 5845; Small 2007, 3, 1964]. The capability to finely control the dimensions (i.e., size and thickness) of the Ag nanoplates and the time-dependent characterizations have not been explored yet. In this article, time-dependent evolutions of the Ag nanostructures grown on highly doped n-type GaAs wafers through the reactions with AgNO3 solutions, which have concentrations varying in the range of 1 - 10 M, for different times have been systematically investigated by employing various powerful techniques including electron microscopy, synchrotron X-ray diffraction, and optical microscopy. The results indicate that the sizes of Ag nanoplates can be tuned in the range from tens of nanometers to half a micrometer and their thicknesses can be varied from similar to 20 to similar to 160 nm by simultaneously controlling the concentration of AgNO3 Solution and the growth time. The as-grown Ag nanoplates exhibit tunable strong extinction peaks in the ultraviolet-visible-near-infrared spectral regimes, where the GaAs substrates intensively interact with the light. C1 [Sun, Yugang; Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Yan, Hanfei] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010; Yan, Hanfei/F-7993-2011 OI Sun, Yugang /0000-0001-6351-6977; Yan, Hanfei/0000-0001-6824-0367 NR 90 TC 14 Z9 14 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 19 PY 2008 VL 112 IS 24 BP 8928 EP 8938 DI 10.1021/jp801647k PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 313KG UT WOS:000256738900031 ER PT J AU Clarke, J Wilhelm, FK AF Clarke, John Wilhelm, Frank K. TI Superconducting quantum bits SO NATURE LA English DT Review ID SINGLE-ELECTRON TRANSISTOR; BIASED JOSEPHSON JUNCTION; ZERO-VOLTAGE STATE; CHARGE QUBITS; COOPER-PAIR; CAVITY; ELECTRODYNAMICS; SUPERPOSITION; CIRCUIT; DEVICES AB Superconducting circuits are macroscopic in size but have generic quantum properties such as quantized energy levels, superposition of states, and entanglement, all of which are more commonly associated with atoms. Superconducting quantum bits (qubits) form the key component of these circuits. Their quantum state is manipulated by using electromagnetic pulses to control the magnetic flux, the electric charge or the phase difference across a Josephson junction (a device with nonlinear inductance and no energy dissipation). As such, superconducting qubits are not only of considerable fundamental interest but also might ultimately form the primitive building blocks of quantum computers. C1 [Clarke, John] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Clarke, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wilhelm, Frank K.] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. RP Clarke, J (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall, Berkeley, CA 94720 USA. EM jclarke@berkeley.edu; fwilhelm@iqc.ca RI Wilhelm, Frank/G-2162-2010 NR 78 TC 800 Z9 812 U1 34 U2 168 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 19 PY 2008 VL 453 IS 7198 BP 1031 EP 1042 DI 10.1038/nature07128 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 314WM UT WOS:000256839900045 PM 18563154 ER PT J AU Putnam, NH Butts, T Ferrier, DEK Furlong, RF Hellsten, U Kawashima, T Robinson-Rechavi, M Shoguchi, E Terry, A Yu, JK Benito-Gutierrez, E Dubchak, I Garcia-Fernandez, J Gibson-Brown, JJ Grigoriev, IV Horton, AC de Jong, PJ Jurka, J Kapitonov, VV Kohara, Y Kuroki, Y Lindquist, E Lucas, S Osoegawa, K Pennacchio, LA Salamov, AA Satou, Y Sauka-Spengler, T Schmutz, J Shin-I, T Toyoda, A Bronner-Fraser, M Fujiyama, A Holland, LZ Holland, PWH Satoh, N Rokhsar, DS AF Putnam, Nicholas H. Butts, Thomas Ferrier, David E. K. Furlong, Rebecca F. Hellsten, Uffe Kawashima, Takeshi Robinson-Rechavi, Marc Shoguchi, Eiichi Terry, Astrid Yu, Jr-Kai Benito-Gutierrez, Elia Dubchak, Inna Garcia-Fernandez, Jordi Gibson-Brown, Jeremy J. Grigoriev, Igor V. Horton, Amy C. de Jong, Pieter J. Jurka, Jerzy Kapitonov, Vladimir V. Kohara, Yuji Kuroki, Yoko Lindquist, Erika Lucas, Susan Osoegawa, Kazutoyo Pennacchio, Len A. Salamov, Asaf A. Satou, Yutaka Sauka-Spengler, Tatjana Schmutz, Jeremy Shin-I, Tadasu Toyoda, Atsushi Bronner-Fraser, Marianne Fujiyama, Asao Holland, Linda Z. Holland, Peter W. H. Satoh, Nori Rokhsar, Daniel S. TI The amphioxus genome and the evolution of the chordate karyotype SO NATURE LA English DT Article ID ANCESTRAL VERTEBRATE; GENE DUPLICATIONS; CIONA-INTESTINALIS; NERVOUS-SYSTEM; TELEOST FISH; CHROMOSOMES; REVEALS; ORIGINS; RECONSTRUCTION; INSIGHTS AB Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic similar to 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution. C1 [Putnam, Nicholas H.; Hellsten, Uffe; Terry, Astrid; Dubchak, Inna; Grigoriev, Igor V.; Lindquist, Erika; Lucas, Susan; Pennacchio, Len A.; Salamov, Asaf A.; Rokhsar, Daniel S.] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Putnam, Nicholas H.; Kawashima, Takeshi; Rokhsar, Daniel S.] Univ Calif Berkeley, Ctr Integrat Genom, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Butts, Thomas; Furlong, Rebecca F.; Holland, Linda Z.] Univ Oxford, Dept Zool, Oxford OX1 3PS, England. [Ferrier, David E. K.] Univ St Andrews, Gatty Marine Lab, St Andrews KY16 8LB, Fife, Scotland. [Robinson-Rechavi, Marc] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. [Robinson-Rechavi, Marc] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland. [Shoguchi, Eiichi; Satou, Yutaka; Satoh, Nori] Kyoto Univ, Dept Zool, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan. [Yu, Jr-Kai; Sauka-Spengler, Tatjana; Bronner-Fraser, Marianne] CALTECH, Div Biol, Pasadena, CA 91125 USA. [Benito-Gutierrez, Elia] Natl Inst Med Res, London NW7 1AA, England. [Garcia-Fernandez, Jordi] Univ Barcelona, Dept Genet, Fac Biol, E-08028 Barcelona, Spain. [Gibson-Brown, Jeremy J.; Horton, Amy C.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [de Jong, Pieter J.; Osoegawa, Kazutoyo] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA. [Jurka, Jerzy; Kapitonov, Vladimir V.] Genet Informat Res Inst, Mountain View, CA 94043 USA. [Kohara, Yuji; Shin-I, Tadasu] Natl Inst Genet, Mishima, Shizuoka 4118540, Japan. [Kuroki, Yoko; Toyoda, Atsushi; Fujiyama, Asao] RIKEN, Genom Sci Ctr, Tsurumi Ku, Kanagawa 2300045, Japan. [Schmutz, Jeremy] JGI Stanford Human Genome Ctr, Palo Alto, CA 94304 USA. [Fujiyama, Asao] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan. [Holland, Peter W. H.] Univ Calif San Diego, Scripps Inst Oceanog, Marine Biol Res Div, La Jolla, CA 92093 USA. RP Rokhsar, DS (reprint author), Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. EM satoh@ascidian.zool.kyoto-u.ac.jp; dsrokhsar@yahoo.com RI Satoh, Nori/C-4123-2009; Putnam, Nicholas/B-9968-2008; Robinson-Rechavi, Marc/E-9727-2011; Ferrier, David/D-7595-2013; Schmutz, Jeremy/N-3173-2013; Garcia-Fernandez, Jordi/B-3839-2013; Kawashima, Takeshi/M-4510-2015; Satou, Yutaka/K-7131-2012 OI Furlong, Rebecca/0000-0002-8451-6471; Horton, Amy/0000-0003-2148-5636; Holland, Peter/0000-0003-1533-9376; Putnam, Nicholas/0000-0002-1315-782X; Robinson-Rechavi, Marc/0000-0002-3437-3329; Ferrier, David/0000-0003-3247-6233; Schmutz, Jeremy/0000-0001-8062-9172; Garcia-Fernandez, Jordi/0000-0001-5677-5970; Satou, Yutaka/0000-0001-5193-0708 FU Biotechnology and Biological Sciences Research Council [, BBS/B/12067, BBS/B/12067/2]; Wellcome Trust NR 80 TC 830 Z9 894 U1 10 U2 118 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 19 PY 2008 VL 453 IS 7198 BP 1064 EP U3 DI 10.1038/nature06967 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 314WM UT WOS:000256839900049 PM 18563158 ER PT J AU Domingues, CM Church, JA White, NJ Gleckler, PJ Wijffels, SE Barker, PM Dunn, JR AF Domingues, Catia M. Church, John A. White, Neil J. Gleckler, Peter J. Wijffels, Susan E. Barker, Paul M. Dunn, Jeff R. TI Improved estimates of upper-ocean warming and multi-decadal sea-level rise SO NATURE LA English DT Article ID HEAT-CONTENT; TEMPERATURE; PRESSURE; IMPACT AB Changes in the climate system's energy budget are predominantly revealed in ocean temperatures(1,2) and the associated thermal expansion contribution to sea-level rise(2). Climate models, however, do not reproduce the large decadal variability in globally averaged ocean heat content inferred from the sparse observational database(3,4), even when volcanic and other variable climate forcings are included. The sum of the observed contributions has also not adequately explained the overall multi-decadal rise(2). Here we report improved estimates of near-global ocean heat content and thermal expansion for the upper 300 m and 700 m of the ocean for 1950-2003, using statistical techniques that allow for sparse data coverage(5-7) and applying recent corrections(8) to reduce systematic biases in the most common ocean temperature observations(9). Our ocean warming and thermal expansion trends for 1961-2003 are about 50 per cent larger than earlier estimates but about 40 per cent smaller for 1993-2003, which is consistent with the recognition that previously estimated rates for the 1990s had a positive bias as a result of instrumental errors(8-10). On average, the decadal variability of the climate models with volcanic forcing now agrees approximately with the observations, but the modelled multi-decadal trends are smaller than observed. We add our observational estimate of upper-ocean thermal expansion to other contributions to sea-level rise and find that the sum of contributions from 1961 to 2003 is about 1.5 +/- 0.4 mm yr(-1), in good agreement with our updated estimate of near-global mean sea-level rise (using techniques established in earlier studies(6,7)) of 1.6 +/- 0.2 mm yr(-1). C1 [Domingues, Catia M.; Church, John A.; White, Neil J.; Wijffels, Susan E.; Barker, Paul M.; Dunn, Jeff R.] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Hobart, Tas 7001, Australia. [Church, John A.; White, Neil J.] Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas 7001, Australia. [Gleckler, Peter J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP Domingues, CM (reprint author), CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, GPO Box 1538, Hobart, Tas 7001, Australia. EM catia.domingues@csiro.au RI White, Nicholas/I-4629-2012; Wijffels, Susan/I-8215-2012; White, Neil/B-2077-2013; Church, John/A-1541-2012; Jiao, Liqing/A-8821-2011; Domingues, Catia /A-2901-2015 OI Church, John/0000-0002-7037-8194; Domingues, Catia /0000-0001-5100-4595 NR 33 TC 357 Z9 370 U1 10 U2 110 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 19 PY 2008 VL 453 IS 7198 BP 1090 EP U6 DI 10.1038/nature07080 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 314WM UT WOS:000256839900054 PM 18563162 ER PT J AU Chiang, CW Gronau, M Rosner, JL AF Chiang, Cheng-Wei Gronau, Michael Rosner, Jonathan L. TI Examination of flavor SU(3) in B, B(s) -> K pi decays SO PHYSICS LETTERS B LA English DT Article ID WEAK PHASE-GAMMA; CP VIOLATION; ANGLE-GAMMA; K-PI; MATRIX AB We study a relation between the weak phase gamma and the rates and CP asymmetries of several K pi decays of B(+), B(0), and B(s), emphasizing the impact of the latter measurements. Current data indicate large SU(3) breaking in the strong phases or failure of factorization (including its application to penguin amplitudes) in K pi modes of B(0) and Bs. SU(3) and factorization only remain approximately valid if the branching ratio for Bs -> K(-)pi(+) exceeds its current value of (5.27 +/- 1.17) x 10(-6) by at least 42%, or if a parameter describing ratios of form factors and decay constants is shifted from its nominal value by more than twice its estimated error. (c) 2008 Elsevier B.V. All rights reserved. C1 [Rosner, Jonathan L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Rosner, Jonathan L.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Chiang, Cheng-Wei] Natl Cent Univ, Dept Phys, Chungli 320, Taiwan. [Chiang, Cheng-Wei] Natl Cent Univ, Ctr Math & Theoret Phys, Chungli 320, Taiwan. [Chiang, Cheng-Wei] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Gronau, Michael] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Rosner, JL (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM rosner@bquark.uchicago.edu OI Chiang, Cheng-Wei/0000-0003-1716-0169 NR 29 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 19 PY 2008 VL 664 IS 3 BP 169 EP 173 DI 10.1016/j.physletb.2008.05.017 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 320GP UT WOS:000257222000005 ER PT J AU Zhang, H Meyer, FW Meyer, HM Lance, MJ AF Zhang, H. Meyer, F. W. Meyer, H. M., III Lance, M. J. TI Surface modification and chemical sputtering of graphite induced by low-energy atomic and molecular deuterium ions SO VACUUM LA English DT Article DE graphite; chemical sputtering; surface modification; surface damage ID AUGER-ELECTRON-SPECTROSCOPY; ATJ GRAPHITE; AMORPHOUS-CARBON; RAMAN-SPECTROSCOPY; EROSION; FILMS; BOMBARDMENT; IMPACT AB The surface morphology, and chemical/structural modifications induced during chemical sputtering of ATJ graphite by low-energy (< 200 eV/D) deuterium atomic and molecular ions are explored by Scanning Electron Microscopy (SEM), Raman and Auger Electron Spectroscopy (AES) diagnostics. At the lowest impact energies, the ion range may become less than the probe depth of Raman and AES spectroscopy diagnostics. We show that such diagnostics are still useful probes at these energies. As demonstration, we used these surface diagnostics to confirm the characteristic changes of surface texture, increased amorphization, enhanced Surface reactivity to impurity species, and increased sp(3) content that low-energy deuterium ion bombardment to steady-state chemical sputtering conditions produces. To put these Studies into proper context, we also present new chemical Sputtering yields for methane production of ATJ graphite at room temperature by impact of DJ in the energy range 10-250 eV/D, and by impact of D+ and D-3(+) at 30 eV/D and 125 eV/D, obtained using a Quadrupole Mass Spectroscopy (QMS) approach. Below 100 eV/D, the methane production in ATJ graphite is larger than that in HOPG by a factor of similar to 2. In the energy range 10-60 eV/D, the methane production yield is almost independent of energy and then decreases with increasing ion energies. The results are in good agreement with recent molecular dynamics simulations. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Zhang, H.; Meyer, F. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Meyer, H. M., III; Lance, M. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM meyerfw@ornl.gov RI Lance, Michael/I-8417-2016 OI Lance, Michael/0000-0001-5167-5452 NR 30 TC 11 Z9 11 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD JUN 19 PY 2008 VL 82 IS 11 BP 1285 EP 1290 DI 10.1016/j.vacuum.2008.03.003 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 326BH UT WOS:000257632400029 ER PT J AU Cortis, A Birkholzer, J AF Cortis, Andrea Birkholzer, Jens TI Continuous time random walk analysis of solute transport in fractured porous media SO WATER RESOURCES RESEARCH LA English DT Article ID FINITE-ELEMENT TECHNIQUE; DUAL-POROSITY MODEL; MASS-TRANSFER; PERMEABLE FORMATION; CONTAMINANT ADVECTION; FLOW; WATER; TERM; SIMULATION; DISPERSION AB The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable inter-connected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e. g., granites) to somewhat permeable (e. g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the "correct" transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains. C1 [Cortis, Andrea; Birkholzer, Jens] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Cortis, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM acortis@lbl.gov RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 NR 49 TC 17 Z9 17 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 19 PY 2008 VL 44 IS 6 AR W06414 DI 10.1029/2007WR006596 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 318AG UT WOS:000257061600001 ER PT J AU Burin, AL Kozub, VI Galperin, YM Vinokur, V AF Burin, A. L. Kozub, V. I. Galperin, Y. M. Vinokur, V. TI Slow relaxation of conductance of amorphous hopping insulators SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Mechanical Behavior of Glassy Materials CY JUL 21-23, 2007 CL Pacific Inst Theoret Phys, Vancouver, CANADA HO Pacific Inst Theoret Phys ID COULOMB GAP; DISORDERED-SYSTEMS; GRANULAR ALUMINUM; ELECTRON GLASSES; ULTRATHIN FILMS; CONDUCTIVITY; EXCITATIONS; DEPENDENCE; TRANSITION; TRANSPORT AB We discuss memory effects in the conductance of hopping insulators due to slow rearrangements of structural defects leading to the formation of polarons close to the electron hopping states. An abrupt change in the gate voltage and corresponding shift of the chemical potential change the populations of the hopping sites, which then slowly relax due to rearrangements of structural defects reducing the density of states. As a result, the density of the hopping states becomes time dependent on a scale relevant to the rearrangement of the structural defects, leading to excess time-dependent conductivity. C1 [Burin, A. L.] Tulane Univ, Dept Chem, New Orleans, LA 70118 USA. [Burin, A. L.] Univ British Columbia, Pacific Inst Theoret Phys, Vancouver, BC V6T 1Z1, Canada. [Kozub, V. I.; Galperin, Y. M.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg, Russia. [Kozub, V. I.; Galperin, Y. M.; Vinokur, V.] Argonne Natl Lab, Argonne, IL 60439 USA. [Galperin, Y. M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Galperin, Y. M.] Univ Oslo, Ctr Adv Mat & Nanotechnol, N-0316 Oslo, Norway. RP Burin, AL (reprint author), Tulane Univ, Dept Chem, New Orleans, LA 70118 USA. RI Galperin, Yuri/A-1851-2008; Kozub, Veniamin/E-4017-2014 OI Galperin, Yuri/0000-0001-7281-9902; NR 36 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 18 PY 2008 VL 20 IS 24 AR 244135 DI 10.1088/0953-8984/20/24/244135 PG 6 WC Physics, Condensed Matter SC Physics GA 310UQ UT WOS:000256556400037 ER PT J AU Mei, Q Benmore, CJ Weber, JKR Wilding, M Kim, J Rix, J AF Mei, Q. Benmore, C. J. Weber, J. K. R. Wilding, M. Kim, J. Rix, J. TI Diffraction study of calcium aluminate glasses and melts: II. High energy x-ray diffraction on melts SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Mechanical Behavior of Glassy Materials CY JUL 21-23, 2007 CL Pacific Inst Theoret Phys, Vancouver, CANADA HO Pacific Inst Theoret Phys ID HIGH-TEMPERATURE LIQUIDS; MOLECULAR-DYNAMICS; NEUTRON-DIFFRACTION; NMR; RADIATION; SILICA AB High energy x-ray diffraction measurements have been performed on CaO-Al(2)O(3) liquids suspended in a flow of pure argon for six compositions containing 50-67 mol% CaO. The results indicate that AlO(4) tetrahedra dominate the liquid structure. The radial distribution functions show a significant broadening of the Ca-O peak occurs in the liquid compared to the corresponding glass and, on average, each Ca is surrounded by approximately five oxygen atoms in the melt at a distance of 2.3 angstrom. It is also found that the structure for the eutectic (64% CaO) liquid does not change measurably with temperature between 1600 and 1970 degrees C. C1 [Mei, Q.; Benmore, C. J.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Benmore, C. J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Weber, J. K. R.; Kim, J.; Rix, J.] Containerless Res Inc, Evanston, IL 60202 USA. [Wilding, M.] Univ Wales, Inst Math & Phys Sci, Aberystwyth SY23 3BZ, Cerdigion, Wales. RP Mei, Q (reprint author), Argonne Natl Lab, Adv Photon Source, HP CAT, Argonne, IL 60439 USA. OI Benmore, Chris/0000-0001-7007-7749 NR 30 TC 15 Z9 15 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 18 PY 2008 VL 20 IS 24 AR 245107 DI 10.1088/0953-8984/20/24/245107 PG 7 WC Physics, Condensed Matter SC Physics GA 310UQ UT WOS:000256556400045 ER PT J AU Mei, Q Benmore, CJ Siewenie, J Weber, JKR Wilding, M AF Mei, Q. Benmore, C. J. Siewenie, J. Weber, J. K. R. Wilding, M. TI Diffraction study of calcium aluminate glasses and melts: I. High energy x-ray and neutron diffraction on glasses around the eutectic composition SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Mechanical Behavior of Glassy Materials CY JUL 21-23, 2007 CL Pacific Inst Theoret Phys, Vancouver, CANADA HO Pacific Inst Theoret Phys ID ALUMINOSILICATE GLASSES; MOLECULAR-DYNAMICS; HIGH-TEMPERATURE; SILICA; NMR; SPECTROSCOPY; SCATTERING; CRYSTAL; SYSTEM; MAS AB A series of four (CaO)(x)center dot(Al(2)O(3))((1-x)) glasses over the narrow compositional range x = 57.1-66.7 have been studied using high energy x-ray and neutron diffraction. The coordination number of oxygen around aluminum was determined as 4 at all compositions. The coordination number of oxygen around calcium was extracted using a first-order difference method and found to be in the range of 5.2-5.5 up to a distance of 2.75 angstrom for all compositions, with the possibility of additional correlations at higher distances. The results are in good agreement with two recent molecular dynamics simulations and confirm an asymmetric distribution of CaO correlations in the glass structure. C1 [Mei, Q.; Benmore, C. J.; Siewenie, J.; Weber, J. K. R.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Benmore, C. J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Weber, J. K. R.] Mat Dev Inc, Arlington Hts, IL 60004 USA. [Wilding, M.] Univ Wales, Inst Math & Phys Sci, Aberystwyth SY23 3BZ, Cerdigion, Wales. RP Mei, Q (reprint author), Argonne Natl Lab, Adv Photon Source, HP CAT, Argonne, IL 60439 USA. OI Benmore, Chris/0000-0001-7007-7749 NR 40 TC 16 Z9 16 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 18 PY 2008 VL 20 IS 24 AR 245106 DI 10.1088/0953-8984/20/24/245106 PG 8 WC Physics, Condensed Matter SC Physics GA 310UQ UT WOS:000256556400044 ER PT J AU Maksymovych, P Yates, JT AF Maksymovych, Peter Yates, John T., Jr. TI Au adatoms in self-assembly of benzenethiol on the Au(111) surface SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MONOLAYERS; ADSORPTION; GOLD; INTERFACES; CLUSTERS; HYDROGEN; MOLECULE AB Self-assembly of benzenethiol at low coverage on Au(111) was studied using low-temperature scanning tunneling microscopy. Phenylthiolate species (PhS), formed by thermal dehydrogenation of the parent PhSH molecule, was found to self-assemble into surface-bonded complexes with gold adatom. Each complex involves two PhS species and one gold adatom. The PhS species form either cis- or trans-geometry relative to each other. At a higher coverage, the complexes coalesce, most likely due to the formation of weak C-H center dot center dot center dot S hydrogen bonds facilitated by the spatial arrangement of the PhS groups. Our findings thus establish that the self-assembly of arenethiols on the Au(111) surface is driven by gold adatom chemistry, which has recently been found to be the key ingredient in the self-assembly of alkanethiols on gold. C1 [Yates, John T., Jr.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Maksymovych, Peter] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Maksymovych, Peter] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. RP Yates, JT (reprint author), Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. EM johnt@virginia.edu RI Maksymovych, Petro/C-3922-2016 OI Maksymovych, Petro/0000-0003-0822-8459 NR 19 TC 79 Z9 79 U1 5 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 18 PY 2008 VL 130 IS 24 BP 7518 EP + DI 10.1021/ja800577w PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 312KX UT WOS:000256671400001 PM 18491902 ER PT J AU McFarland, JM Joshi, NS Francis, MB AF McFarland, Jesse M. Joshi, Neel S. Francis, Matthew B. TI Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article AB A three-component Mannich-type electrophilic aromatic substitution reaction was previously developed to target the phenolic side chain of tyrosine residues on proteins. This reaction proceeds under mild conditions and provides a convenient alternative to lysine-targeting strategies. However, the use of reactive aldehydes, such as formaldehyde, warrants careful inspection of the reaction products to ensure that other modifications have not occurred. Through the use of isotopically enriched reagents, nuclear magnetic resonance (NMR)-based studies were used to obtain structural confirmation of the tyrosine-modification products. These experiments also revealed the formation of a reaction byproduct arising from the indole ring of tryptophan residues. Cysteine residues were shown to not participate in the reaction, except in the case of a reduced disulfide, which formed a dithioacetal. We anticipate that this analysis method will prove useful for the detailed study of a number of bioconjugation reactions. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu OI Joshi, Neel/0000-0001-8236-3566 FU NIGMS NIH HHS [GM072700] NR 19 TC 44 Z9 45 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 18 PY 2008 VL 130 IS 24 BP 7639 EP 7644 DI 10.1021/ja710927q PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 312KX UT WOS:000256671400034 PM 18498164 ER PT J AU Zhang, L Tian, C Waychunas, GA Shen, YR AF Zhang, Luning Tian, Chuanshan Waychunas, Glenn A. Shen, Y. Ron TI Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OPTICAL 2ND-HARMONIC GENERATION; ATOMIC-FORCE MICROSCOPY; ZERO CHARGE; WATER-MOLECULES; OXIDE SURFACES; IN-SITU; AQUEOUS-SOLUTIONS; NONLINEAR OPTICS; VARIABLE CHARGE; LIQUID WATER AB Sum-frequency vibrational spectroscopy in the OH stretch region was employed to study structures of water/alpha-Al(2)O(3) (0001) interfaces at different pH values. Observed spectra indicate that protonation and deprotonation of the alumina surface dominate at low and high pH, respectively, with the interface positively and negatively charged accordingly. The point of zero charge (pzc) appears at pH approximate to 6.3, which is close to the values obtained from streaming potential and second-harmonic generation studies. It is significantly lower than the pzc of alumina powder. The result can be understood from the pK values of protonation and deprotonation at the water/alpha-Al(2)O(3) (0001) interface. The pzc of amorphous alumina was found to be similar to that of powder alumina. C1 [Zhang, Luning; Tian, Chuanshan; Shen, Y. Ron] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Waychunas, Glenn A.] Univ Calif Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Shen, YR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM yrshen@berkeley.edu NR 57 TC 96 Z9 96 U1 6 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 18 PY 2008 VL 130 IS 24 BP 7686 EP 7694 DI 10.1021/ja8011116 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 312KX UT WOS:000256671400039 PM 18491896 ER PT J AU Wang, P Shim, E Cravatt, B Jacobsen, R Schoeniger, J Kim, AC Paetzel, M Dalbey, RE AF Wang, Peng Shim, Eunjung Cravatt, Benjamin Jacobsen, Richard Schoeniger, Joe Kim, Apollos C. Paetzel, Mark Dalbey, Ross E. TI Escherichia coli signal peptide peptidase a is a serine-lysine protease with a lysine recruited to the nonconserved amino-terminal domain in the s49 protease family SO BIOCHEMISTRY LA English DT Article ID MEMBRANE-PROTEIN; CRYSTAL-STRUCTURE; PYROCOCCUS-HORIKOSHII; STOMATIN HOMOLOG; IDENTIFICATION; MECHANISM; TOPOLOGY; GENE; IV; PURIFICATION AB Escherichia coli signal peptide peptidase A (SppA) is a serine protease which cleaves signal peptides after they have been proteolytically removed from exported proteins by signal peptidase processing. We present here results of site-directed mutagenesis studies of all the conserved serines of SppA in the carboxyl-terminal domain showing that only Ser 409 is essential for enzymatic activity. Also, we show that the serine hydrolase inhibitor FP-biotin inhibits SppA and modifies the protein but does not label the S409A mutant with an alanine substituted for the essential serine. These results are consistent with Ser 409 being directly involved in the proteolytic mechanism. Remarkably, additional site-directed mutagenesis studies showed that none of the lysines or histidine residues in the carboxyl-terminal protease domain (residues 326-549) is critical for activity, suggesting this domain lacks the general base residue required for proteolysis. In contrast, we found that E. coli SppA has a conserved lysine (K209) in the N-terminal domain (residues 56-316) that is essential for activity and important for activation of S409 for reactivity toward the FP-biotin inhibitor and is conserved in those other bacterial SppA proteins that have an N-terminal domain. We also performed alkaline phosphatase fusion experiments that establish that SppA has only one transmembrane segment (residues 29-45) with the C-terminal domain (residues 46-618) protruding into the periplasmic space. These results support the idea that E. coli SppA is a Ser-Lys dyad protease, with the Lys recruited to the amino-terminal domain that is itself not present in most known SppA sequences. C1 [Wang, Peng; Shim, Eunjung; Dalbey, Ross E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Kim, Apollos C.; Paetzel, Mark] Simon Fraser Univ, Dept Mol Biol & Biochem, Burnaby, BC V5A 1S6, Canada. [Cravatt, Benjamin] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Cell Biol & Chem, La Jolla, CA 92037 USA. [Jacobsen, Richard; Schoeniger, Joe] Sandia Natl Labs, Livermore, CA 94551 USA. RP Dalbey, RE (reprint author), Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. EM dalbey@chemistry.ohio-state.edu FU NCI NIH HHS [R01 CA087660, R01 CA087660-08] NR 29 TC 13 Z9 14 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUN 17 PY 2008 VL 47 IS 24 BP 6361 EP 6369 DI 10.1021/bi800657p PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 312GA UT WOS:000256655900009 PM 18476724 ER PT J AU Brand, HV AF Brand, Holmann V. TI Gaussian-2 theory as a linear system SO CHEMICAL PHYSICS LETTERS LA English DT Article ID MOLECULAR-ENERGIES; 2ND-ROW COMPOUNDS; PREDICTION; CORRECTORS AB We present a procedure for scaling the additive energy terms in the Gaussian- 2 (G2) theory by solving a linear system of equations Ax = b using matrix algebra. Our procedure reduces the average absolute deviation (AAD) from 1.20 kcal/mol of the original G2 theory to 0.94 kcal/mol with respect to the G2/91 test set of 125 energies of first-and second-row compounds. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Brand, HV (reprint author), Los Alamos Natl Lab, Div Appl Phys, MS T085, Los Alamos, NM 87545 USA. EM brand@lanl.gov NR 17 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 17 PY 2008 VL 458 IS 4-6 BP 272 EP 275 DI 10.1016/j.cplett.2008.04.119 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 309GT UT WOS:000256449400004 ER PT J AU Jackson, BL Nye, JA Groves, JT AF Jackson, Bryan L. Nye, Jeffrey A. Groves, Jay T. TI Electrical manipulation of supported lipid membranes by embedded electrodes SO LANGMUIR LA English DT Article ID BILAYER-MEMBRANES; IMMUNOLOGICAL SYNAPSE; FLUORESCENCE; MONOLAYERS; PROTEIN; SURFACE; FIELD; LITHOGRAPHY; ACTIVATION; DESORPTION AB Alkanethiol modified gold electrodes patterned over a silica surface provided a dual hydrophobic/hydrophilic surface suitable for phospholipid monolayer and bilayer formation over the alkylated gold and glass surfaces, respectively. The phospholipid monolayer and bilayer were connected, allowing free diffusion of lipids within both leaflets of the glass-supported bilayer over the alkanethiol/gold-to-glass interface. Application of large alternating current fields to these electrodes irreversibly switched the gold electrodes to diffusion barriers. Enclosure of the electrode devices within protein barriers revealed a resting state surface potential driven reorganization of the charged fluorescent probes. Application of lower magnitude direct current fields resulted in electrophoretic redistribution of the membrane probes and electro-osmotic reorganization of membrane associated proteins. C1 [Jackson, Bryan L.; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Nye, Jeffrey A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov FU NIGMS NIH HHS [GM08295] NR 35 TC 11 Z9 11 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 17 PY 2008 VL 24 IS 12 BP 6189 EP 6193 DI 10.1021/la800040w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 312GG UT WOS:000256656500033 PM 18491927 ER PT J AU Newcomb, M Halgrimson, JA Horner, JH Wasinger, EC Chen, LX Sligar, SG AF Newcomb, Martin Halgrimson, James A. Horner, John H. Wasinger, Erik C. Chen, Lin X. Sligar, Stephen G. TI X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE EXAFS; ferryl-oxo; XANES ID SULFOLOBUS-SOLFATARICUS; HORSERADISH-PEROXIDASE; HIGH-RESOLUTION; KINETIC CHARACTERIZATION; FERRYL PROTONATION; HYDROGEN-PEROXIDE; RESONANCE RAMAN; P450 CHEMISTRY; HEME-PROTEINS; C PEROXIDASE AB The cytochrome P450 enzyme CYP119, its compound II derivative, and its nitrosyl complex were studied by iron K-edge x-ray absorption spectroscopy. The compound II derivative was prepared by reaction of the resting enzyme with peroxynitrite and had a lifetime of approximate to 10 s at 23 degrees C. The CYP119 nitrosyl complex was prepared by reaction of the enzyme with nitrogen monoxide gas or with a nitrosyl donor and was stable at 23 degrees C for hours. Samples of CYP119 and its derivatives were studied by x-ray absorption spectroscopy at temperatures below 140 (K) at the Advanced Photon Source of Argonne National Laboratory. The x-ray absorption near-edge structure spectra displayed shifts in edge and pre-edge energies consistent with increasing effective positive charge on iron in the series native CYP119 < CYP119 nitrosyl complex < CYP119 compound II derivative. Extended x-ray absorption fine structure spectra were simulated with good fits for k = 12 angstrom(-1) for native CYP119 and k = 13 angstrom(-1) for both the nitrosyl complex and the compound II derivative. The important structural features for the compound II derivative were an iron-oxygen bond length of 1.82 angstrom and an iron-sulfur bond length of 2.24 angstrom, both of which indicate an iron-oxygen single bond in a ferryl-hydroxide, Fe(IV)OH, moiety. C1 [Newcomb, Martin; Halgrimson, James A.; Horner, John H.] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Wasinger, Erik C.; Chen, Lin X.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Sligar, Stephen G.] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. [Sligar, Stephen G.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. RP Newcomb, M (reprint author), Univ Illinois, Dept Chem, 845 W Taylor St, Chicago, IL 60607 USA. EM men@uic.edu FU NIGMS NIH HHS [R01 GM048722-14, GM-48722, R01 GM048722] NR 55 TC 40 Z9 40 U1 2 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 17 PY 2008 VL 105 IS 24 BP 8179 EP 8184 DI 10.1073/pnas.0708299105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 317HR UT WOS:000257011200005 PM 18174331 ER PT J AU Bertin, A McMurray, MA Grob, P Park, SS Garcia, G Patanwala, I Ng, HL Alber, T Thorner, J Nogales, E AF Bertin, Aurelie McMurray, Michael A. Grob, Patricia Park, Sang-Shin Garcia, Galo, III Patanwala, Insiyyah Ng, Ho-leung Alber, Tom Thorner, Jeremy Nogales, Eva TI Saccharomyces cerevisiae septins: Supramolecular organization of heterooligomers and the mechanism of filament assembly SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electron microscopy; yeast; complexes; GTP ID PROTEIN-PROTEIN INTERACTIONS; YEAST SEPTIN; CELL-CYCLE; BINDING; COMPARTMENTALIZATION; PHOSPHORYLATION; CYTOKINESIS; TRANSPORT; COMPLEX; MUTANT AB Mitotic yeast cells express five septins (Cdc3, Cdc10, Cdc1l, Cdc12, and Shs1/Sep7). Only Shs1 is nonessential. The four essential septins form a complex containing two copies of each, but their arrangement was not known. Single-particle analysis by EM confirmed that the heterooligomer is octameric and revealed that the subunits are arrayed in a linear rod. Identity of each subunit was determined by examining complexes lacking a given septin, by antibody decoration, and by fusion to marker proteins (GFP or maltose binding protein). The rod has the order Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and, hence, lacks polarity. At low ionic strength, rods assemble end-to-end to form filaments but not when Cdc11 is absent or its N terminus is altered. Filaments invariably pair into long parallel "railroad tracks." Lateral association seems to be mediated by heterotetrameric coiled coils between the paired C-terminal extensions of Cdc3 and Cdc12 projecting orthogonally from each filament. Shs1 may be able to replace Cdc11 at the end of the rod. Our findings provide insights into the molecular mechanisms underlying the function and regulation of cellular septin structures. C1 [Bertin, Aurelie; McMurray, Michael A.; Park, Sang-Shin; Garcia, Galo, III; Patanwala, Insiyyah; Ng, Ho-leung; Alber, Tom; Thorner, Jeremy; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Grob, Patricia; Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Thorner, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jthorner@berkeley.edu; enogales@lbl.gov RI Ng, Ho Leung/E-3419-2010; Ng , Ho Leung/B-5650-2016 OI Ng, Ho Leung/0000-0002-6415-1938; Ng , Ho Leung/0000-0002-6415-1938 FU NIGMS NIH HHS [GM48958, F32 GM069165, GM07232, GM21841, GM69165, R01 GM021841, R01 GM048958, T32 GM007232] NR 28 TC 138 Z9 140 U1 1 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 17 PY 2008 VL 105 IS 24 BP 8274 EP 8279 DI 10.1073/pnas.0803330105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 317HR UT WOS:000257011200021 PM 18550837 ER PT J AU Kugland, NL Constantin, CG Neumayer, P Chung, HK Collette, A Dewald, EL Froula, DH Glenzer, SH Kemp, A Kritcher, AL Ross, JS Niemann, C AF Kugland, N. L. Constantin, C. G. Neumayer, P. Chung, H. -K. Collette, A. Dewald, E. L. Froula, D. H. Glenzer, S. H. Kemp, A. Kritcher, A. L. Ross, J. S. Niemann, C. TI High K alpha x-ray conversion efficiency from extended source gas jet targets irradiated by ultra short laser pulses SO APPLIED PHYSICS LETTERS LA English DT Article ID PLASMAS; CLUSTERS AB The absolute laser conversion efficiency to K alpha-like inner shell x-rays (integrated from K alpha to K beta) is observed to be an order of magnitude higher in argon gas jets than in solid targets due to enhanced emission from higher ionization stages following ultrashort pulse laser irradiation. Particle-in-cell and spectral simulations indicate that these observations are consistent with K alpha emission from a warm Ar plasma subject to hot electron inner-shell ionization. These results demonstrate that gas jet targets are bright, high conversion efficiency, high repetition rate, debris-free multi-keV x-ray sources for spectrally resolved scattering and backlighting of rapidly evolving dense matter. C1 [Kugland, N. L.; Constantin, C. G.; Collette, A.; Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Neumayer, P.; Chung, H. -K.; Dewald, E. L.; Froula, D. H.; Glenzer, S. H.; Kemp, A.; Kritcher, A. L.; Ross, J. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kugland, NL (reprint author), Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. EM kugland@ucla.edu NR 21 TC 23 Z9 23 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 16 PY 2008 VL 92 IS 24 AR 241504 DI 10.1063/1.2945795 PG 3 WC Physics, Applied SC Physics GA 316FO UT WOS:000256934900024 ER PT J AU Liu, Z Sun, Y Peterson, S Pianetta, P AF Liu, Zhi Sun, Yun Peterson, Samuel Pianetta, Piero TI Photoemission study of Cs-NF(3) activated GaAs(100) negative electron affinity photocathodes SO APPLIED PHYSICS LETTERS LA English DT Article ID NF3; CS AB GaAs based negative electron affinity photocathodes activated with Cs and NF(3) are used as polarized electron sources for linear accelerators. It is generally believed that the activation layer consists of CsF. The activation layers of Cs-NF(3) on GaAs photocathodes are herein investigated using synchrotron radiation photoelectron spectroscopy. F1s, N1s, and other core levels are recorded at photon energies ranging from 70 to 820 eV. Surprisingly, a significant amount of nitrogen is observed in the activation layers. Two distinct species of nitrogen are observed, one of which decreases along with the fluorine signal as the yield of the photocathode decays with time. C1 [Liu, Zhi; Sun, Yun; Peterson, Samuel; Pianetta, Piero] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Liu, Z (reprint author), Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. EM zhiliu@stanford.edu; ssun@slac.stanford.edu RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 NR 20 TC 55 Z9 59 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 16 PY 2008 VL 92 IS 24 AR 241107 DI 10.1063/1.2945276 PG 3 WC Physics, Applied SC Physics GA 316FO UT WOS:000256934900007 ER PT J AU Progl, CL Parish, CM Vitarelli, JP Russell, PE AF Progl, C. L. Parish, C. M. Vitarelli, J. P. Russell, P. E. TI Analysis of V defects in GaN-based light emitting diodes by scanning transmission electron microscopy and electron beam induced current SO APPLIED PHYSICS LETTERS LA English DT Article ID MULTIPLE-QUANTUM WELLS; INGAN/GAN; SAPPHIRE; PROFILES AB In the fabrication of InGaN/GaN multiple quantum well light emitting diodes so-called V defects are common, but little is known about their electrical activity. Scanning transmission electron microscopy is capable of directly observing these defects, while electron beam induced current (EBIC) techniques can be used to probe electronic behavior of semiconductor defects. These techniques were combined to obtain localized measurements and our results indicate that V defects suppress the EBIC signal near the core of the defect and produce a displacement in the p-n junction location. Furthermore, the EBIC profile suggests that minority carrier diffusion lengths are longer inside the defect. (C) 2008 American Institute of Physics. C1 [Progl, C. L.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Progl, C. L.] N Carolina State Univ, Analyt Instrumentat Facil, Raleigh, NC 27695 USA. [Parish, C. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Vitarelli, J. P.] Evans Analyt Grp, Raleigh, NC 27606 USA. [Russell, P. E.] Appalachian State Univ, Boone, NC 28608 USA. RP Progl, CL (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7531, Raleigh, NC 27695 USA. EM cprogl@gmail.com RI Parish, Chad/J-8381-2013; OI Parish, Chad/0000-0003-1209-7439 NR 15 TC 9 Z9 9 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 16 PY 2008 VL 92 IS 24 AR 242103 DI 10.1063/1.2945232 PG 3 WC Physics, Applied SC Physics GA 316FO UT WOS:000256934900052 ER PT J AU Reilly, TH van de Lagemaat, J Tenent, RC Morfa, AJ Rowlen, KL AF Reilly, Thomas H., III van de Lagemaat, Jao Tenent, Robert C. Morfa, Anthony J. Rowlen, Kathy L. TI Surface-plasmon enhanced transparent electrodes in organic photovoltaics SO APPLIED PHYSICS LETTERS LA English DT Article ID POLYMER SOLAR-CELLS; THIN GOLD-FILMS; HOLE ARRAYS; TRANSMISSION; POLY(3-HEXYLTHIOPHENE); ABSORPTION; EFFICIENCY; DEVICE AB Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with 92 nm diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silver films demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics. (c) 2008 American Institute of Physics. C1 [Reilly, Thomas H., III; van de Lagemaat, Jao] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Tenent, Robert C.; Morfa, Anthony J.; Rowlen, Kathy L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP van de Lagemaat, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jao_vandelagemaat@nrel.gov RI Tenent, Robert/B-3711-2009; Morfa, Anthony/D-2153-2011; van de Lagemaat, Jao/J-9431-2012 NR 24 TC 89 Z9 89 U1 4 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 16 PY 2008 VL 92 IS 24 AR 243304 DI 10.1063/1.2938089 PG 3 WC Physics, Applied SC Physics GA 316FO UT WOS:000256934900104 ER PT J AU Wall, JJ Liu, CT Rhim, WK Li, JJZ Liaw, PK Choo, H Johnson, WL AF Wall, J. J. Liu, C. T. Rhim, W. -K. Li, J. J. Z. Liaw, P. K. Choo, H. Johnson, W. L. TI Heterogeneous nucleation in a glass-forming alloy SO APPLIED PHYSICS LETTERS LA English DT Article ID METALLIC GLASSES; THERMAL-STABILITY; OXYGEN IMPURITY; CRYSTALLIZATION AB Nucleation in the undercooled liquid state in the bulk metallic glass-forming composition Zr(52.5)Cu(17.9)Ni(14.6)Al(10)Ti(5) (VIT-105), produced using high purity (PA) and commercial purity (CA) raw materials was investigated using electrostatic levitation and ex situ neutron diffraction. The CA material was observed to have a lower density than the PA sample and crystallized at relatively shallow undercooling. The densities of the samples at temperatures above the solidus showed an oxygen-dependent hysteresis associated with the state change, indicating the presence of oxygen-stabilized intermetallics. The PA alloy exhibited three distinct crystallization modes dependent on the thermal history of the melt, one of which showed a net volume expansion. C1 [Wall, J. J.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. [Liu, C. T.; Liaw, P. K.; Choo, H.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Rhim, W. -K.; Li, J. J. Z.; Johnson, W. L.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Wall, JJ (reprint author), Elect Power Res Inst, Charlotte, NC 28262 USA. EM jwall@epri.com RI Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 NR 14 TC 9 Z9 10 U1 0 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 16 PY 2008 VL 92 IS 24 AR 244106 DI 10.1063/1.2948861 PG 3 WC Physics, Applied SC Physics GA 316FO UT WOS:000256934900128 ER PT J AU Xiao, HY Gao, F Wang, LM Zu, XT Zhang, Y Weber, WJ AF Xiao, H. Y. Gao, F. Wang, L. M. Zu, X. T. Zhang, Y. Weber, W. J. TI Structural phase transitions in high-pressure wurtzite to rocksalt phase in GaN and SiC SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSFORMATION; SIMULATION; STABILITY; CRYSTALS; ZNO AB Ab initio molecular dynamics simulations are employed to study the atomistic mechanisms and pathways of high-pressure phase transformation in GaN and SiC. Our simulations bring a fundamental level of understanding of the wurtzite to rocksalt phase transformation that undergoes inhomogeneous displacements via a tetragonal atomic configuration, and suggest that the transition path may be independent of the presence of d electrons on the cation in GaN. The discrepancies between experimental and theoretical studies of transition paths are discussed. (C) 2008 American Institute of Physics. C1 [Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, F.; Zhang, Y.; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, L. M.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM fei.gao@pnl.gov RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; NR 26 TC 10 Z9 10 U1 2 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 16 PY 2008 VL 92 IS 24 AR 241909 DI 10.1063/1.2938724 PG 3 WC Physics, Applied SC Physics GA 316FO UT WOS:000256934900033 ER PT J AU Shepard, R Kedziora, GS Lischka, H Shavitt, I Muller, T Szalay, PG Kallay, M Seth, M AF Shepard, Ron Kedziora, Gary S. Lischka, Hans Shavitt, Isaiah Mueller, Thomas Szalay, Peter G. Kallay, Mihaly Seth, Michael TI The accuracy of molecular bond lengths computed by multireference electronic structure methods SO CHEMICAL PHYSICS LA English DT Article DE bond length; multiconfiguration self-consistent field; multiference; configuration interaction; complete basis set limit; MCSCF; MR-SDCI; MR-AQCC; R(e); CBS; GVB ID ANHARMONIC-FORCE FIELD; CONFIGURATION-INTERACTION MODELS; GENERAL COUPLED-CLUSTER; AB-INITIO DETERMINATION; EQUILIBRIUM STRUCTURE; EXCITED-STATES; BASIS-SETS; ROTATIONAL-CONSTANTS; POTENTIAL FUNCTION; ENERGY SURFACES AB We compare experimental R(e) values with computed R(e) values for 20 molecules using three multireference electronic structure methods, MCSCF, MR-SDCI, and MR-AQCC. Three correlation-consistent orbital basis sets are used, along with complete basis set extrapolations, for all of the molecules. These data complement those computed previously with single-reference methods. Several trends are observed. The SCF R(e) values tend to be shorter than the experimental values, and the MCSCF values tend to be longer than the experimental values. We attribute these trends to the ionic contamination of the SCF wave function and to the corresponding systematic distortion of the potential energy curve. For the individual bonds, the MR-SDCI R(e) values tend to be shorter than the MR-AQCC values, which in turn tend to be shorter than the MCSCF values. Compared to the previous single-reference results, the MCSCF values are roughly comparable to the MP4 and CCSD methods, which are more accurate than might be expected due to the fact that these MCSCF wave functions include no extra-valence electron correlation effects. This suggests that static valence correlation effects, such as near-degeneracies and the ability to dissociate correctly to neutral fragments, play an important role in determining the shape of the potential energy surface, even near equilibrium structures. The MR-SDCI and MR-AQCC methods predict R(e) values with an accuracy comparable to, or better than, the best single-reference methods (MP4, CCSD, and CCSD(T)), despite the fact that triple and higher excitations into the extra-valence orbital space are included in the single-reference methods but are absent in the multireference wave functions. The computed R(e) values using the multireference methods tend to be smooth and monotonic with basis set improvement. The molecular structures are optimized using analytic energy gradients, and the timings for these calculations show the practical advantage of using variational wave functions for which the Hellmann-Feynman theorem can be exploited. (c) 2008 Elsevier B.V. All rights reserved. C1 [Shepard, Ron] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Kedziora, Gary S.] High Performance Technol Inc, Wright Patterson AFB, OH 45433 USA. [Lischka, Hans] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria. [Shavitt, Isaiah] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Mueller, Thomas] Res Ctr Julich, Juelich Supercomp Ctr, D-52425 Julich, Germany. [Szalay, Peter G.] Eotvos Lorand Univ, Inst Chem, Lab Theoret Chem, H-1518 Budapest, Hungary. [Kallay, Mihaly] Budapest Univ Technol & Econ, Dept Phys Chem & Mat Sci, H-1521 Budapest, Hungary. [Seth, Michael] Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada. RP Shepard, R (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shepard@tcg.anl.gov RI Kallay, Mihaly/H-2813-2012; Lischka, Hans/A-8802-2015; Szalay, Peter/C-8879-2015 OI Kallay, Mihaly/0000-0003-1080-6625; Szalay, Peter/0000-0003-1885-3557 NR 62 TC 20 Z9 20 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD JUN 16 PY 2008 VL 349 IS 1-3 BP 37 EP 57 DI 10.1016/j.chemphys.2008.03.009 PG 21 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 324SK UT WOS:000257538300005 ER PT J AU Beck, EV Stahlberg, EA Burggraf, LW Blaudeau, JP AF Beck, Eric V. Stahlberg, Eric A. Burggraf, Larry W. Blaudeau, Jean-Philippe TI A graphical unitary group approach-based hybrid density functional theory multireference configuration interaction method SO CHEMICAL PHYSICS LA English DT Article DE density functional theory; configuration interaction; GUGA ID EXCITED-STATES; CHEMISTRY AB A hybrid density functional theory multireference configuration interaction hybrid model (DFT/MRCI) method for computing electronic excitation energies in heavy-element atomic and molecular systems has been developed within a graphical unitary group approach (GUGA) based configuration interaction framework. Implemented in the COLUMBUS suite of programs, the method advances several new capabilities for evaluating systems involving several electronic spin states, relativistic effects and spin-orbit coupling. The method has been evaluated on several types of systems including carbon monoxide, bromine, bromine fluoride, and uranium +4, uranium +5 and uranyl 2+ ions. The method delivers a high level of experimental consistency with absolute accuracies ranging from 11% to 22%. A reduction in relative error ranging from 11% to 42% is observed for the new method when compared with time dependent density functional theory (TDDFT). The new approach provides a significant improvement in computational effort for comparable MRCI calculations with an observed reduction of expansion size by factors up to 64. (c) 2008 Elsevier B.V. All rights reserved. C1 [Beck, Eric V.] Lawrence Livermore Natl Lab, Def Threat Reduct Agcy, Livermore, CA 94551 USA. [Stahlberg, Eric A.] Ohio Supercomp Ctr, Columbus, OH 43212 USA. [Blaudeau, Jean-Philippe] USA, High Performance Technol Inc, Res Lab, Aberdeen Proving Ground, MD 21005 USA. [Burggraf, Larry W.] USAF, Dept Engn Phys, Inst Technol, ENP, Wright Patterson AFB, OH 45433 USA. RP Beck, EV (reprint author), Lawrence Livermore Natl Lab, Def Threat Reduct Agcy, L-159,7000 East Ave, Livermore, CA 94551 USA. EM beck27@llnl.gov; eas@osc.edu; larry.burggraf@afit.edu; blaudejp@asc.hpc.mil NR 28 TC 8 Z9 8 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD JUN 16 PY 2008 VL 349 IS 1-3 BP 158 EP 169 DI 10.1016/j.chemphys.2008.01.018 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 324SK UT WOS:000257538300018 ER PT J AU Lipton, AS Morlok, MM Parkin, G Ellis, PD AF Lipton, Andrew S. Morlok, Melissa M. Parkin, Gerard Ellis, Paul D. TI Zn-67 solid-state NMR spectroscopy of {[Tp(But,Me)]Zn(OH2)}[HOB(C6F5)(3)]. The importance of the anion [HOB(C6F5)(3)](-) SO INORGANIC CHEMISTRY LA English DT Article ID HUMAN CARBONIC-ANHYDRASE; SYNTHETIC ANALOGS; ZINC-COMPLEXES; PROTONATION; REACTIVITY; CHEMISTRY; LIGAND AB One of the paradigms of Zn2+ metallobiochemistry is that coordination of water to Zn2+ provides a mechanism of activation that involves lowering the pK(a) by approximately 7 pH units. This idea has become central to the development of mechanisms of action for zinc metalloproteins. However, the direct measurement of the pK(a) of water bound to Zn2+ in a metalloprotein has yet to be accomplished. Developing models for Zn2+-OH2 species has been a significant challenge, but we have utilized solid-state Zn-67 NMR spectroscopy as a means to characterize one of the few examples of water bound to mononuclear tetrahedral Zn2+: {[Tp(But,me)]Zn(OH2)}[HOB(C6F5)(3)]. The measured quadrupole coupling (C-q) constant is 4.3 MHz with an asymmetry parameter of eta(q) of 0.6. Likewise, due to the small value of C-q, anisotropic shielding also contributed to the observed Zn-67 NMR lineshape. As expected, the computed values of the magnetic resonance parameters depend critically on the nature of the anion. The predicted value of C-q for {[Tp(But,Me)]Zn(OH2)}[HOB(C6F5)(3)] is -4.88 MHz. We discuss the results of these calculations in terms of the nature of the anion, the local electrostatics, and its subsequent hydrogen bonding to [Tp(But,me)]Zn(OH2)(+). C1 [Lipton, Andrew S.; Ellis, Paul D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Parkin, Gerard] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Ellis, PD (reprint author), Pacific NW Natl Lab, Div Biol Sci, 902 Battle Blvd, Richland, WA 99352 USA. EM parkin@columbia.edu; paul.ellis@pnl.gov FU NIBIB NIH HHS [EB002050]; NIGMS NIH HHS [GM046502] NR 31 TC 8 Z9 8 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 16 PY 2008 VL 47 IS 12 BP 5184 EP 5189 DI 10.1021/ic800009b PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 311HN UT WOS:000256591400023 PM 18470984 ER PT J AU Kozimor, SA Yang, P Batista, ER Boland, KS Burns, CJ Christensen, CN Clark, DL Conradson, SD Hay, PJ Lezama, JS Martin, RL Schwarz, DE Wilkerson, MP Wolfsberg, LE AF Kozimor, Stosh A. Yang, Ping Batista, Enrique R. Boland, Kevin S. Burns, Carol J. Christensen, Christin N. Clark, David L. Conradson, Steven D. Hay, P. Jeffrey Lezama, Juan S. Martin, Richard L. Schwarz, Daniel E. Wilkerson, Marianne P. Wolfsberg, Laura E. TI Covalency trends in group IV metallocene dichlorides. Chlorine K-edge X-ray absorption spectroscopy and time dependent-density functional theory SO INORGANIC CHEMISTRY LA English DT Article ID ELEMENT ORGANOMETALLIC COMPLEXES; METAL-LIGAND COVALENCY; PHOTOELECTRON-SPECTRA; ELECTRONIC-STRUCTURE; ORGANOTITANIUM COMPLEXES; DINITROGEN COMPLEXES; EXCITATION-ENERGIES; EXPERIMENTAL PROBE; OPEN-SHELL; SULFUR-K AB For 3-5d transition-metal ions, the (C(5)R(5))(2)MCl(2) (R = H, Me for M = Ti, Zr, Hf) bent metallocenes represent a series of compounds that have been central in the development of organometallic chemistry and homogeneous catalysis. Here, we evaluate how changes in the principal quantum number for the group IV (C(5)H(5))(2)MCl(2) (M = Ti, Zr, Hf; 1-3, respectively) complexes affects the covalency of M-Cl bonds through application of Cl K-edge X-ray Absorption Spectroscopy (XAS). Spectra were recorded on solid samples dispersed as a thin film and encapsulated in polystyrene matrices to reliably minimize problems associated with X-ray self-absorption. The data show that XAS pre-edge intensities can be quantitatively reproduced when analytes are encapsulated in polystyrene. Cl K-edge XAS data show that covalency in M-Cl bonding changes in the order Ti > Zr > Hf and demonstrates that covalency slightly decreases with increasing principal quantum number in 1-3. The percent Cl 3p character was experimentally determined to be 26, 23, and 18% per M-Cl bond in the thin-film samples for 1-3 respectively and was indistinguishable from the polystyrene samples, which analyzed as 25, 25, and 19% for 1-3, respectively. To aid in interpretation of Cl K-edge XAS, 1-3 were also analyzed by ground-state and time-dependent density functional theory (TD-DFT) calculations. The calculated spectra and percent chlorine character are in close agreement with the experimental observations, and show 20, 18, and 17% Cl 3p character per M-Cl bond for 1-3, respectively. Polystyrene matrix encapsulation affords a convenient method to safely contain radioactive samples to extend our studies to include actinide elements, where both 5f and 6d orbitals are expected to play a role in M-Cl bonding and where transition assignments must rely on accurate theoretical calculations. C1 [Kozimor, Stosh A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Christensen, Christin N.; Clark, David L.; Conradson, Steven D.; Hay, P. Jeffrey; Lezama, Juan S.; Martin, Richard L.; Schwarz, Daniel E.; Wilkerson, Marianne P.; Wolfsberg, Laura E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Clark, DL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dlclark@lanl.gov RI Clark, David/A-9729-2011; Yang, Ping/E-5355-2011; OI Yang, Ping/0000-0003-4726-2860 NR 62 TC 29 Z9 29 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 16 PY 2008 VL 47 IS 12 BP 5365 EP 5371 DI 10.1021/ic8004932 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 311HN UT WOS:000256591400044 PM 18470982 ER PT J AU Patel, KD Bartsch, MS McCrink, MH Olsen, JS Mosier, BP Crocker, RW AF Patel, Kamlesh D. Bartsch, Michael S. McCrink, Matthew H. Olsen, Jennifer S. Mosier, Bruce P. Crocker, Robert W. TI Electrokinetic pumping of liquid propellants for small satellite microthruster applications SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE monopropellant; electrokinetic micropump; micronozzle; hydrazine; hydrogen peroxide; iridium catalyst; microfluidic; nanosatellite; picosatellite ID HYDROGEN-PEROXIDE; THRUST STAND; HYDRAZINE DECOMPOSITION; CAPILLARY; CATALYSTS; PRESSURE; COLUMNS; CHROMATOGRAPHY; PERFORMANCE; MICROPUMPS AB For most orbital maneuvers, small satellites weighing less than 10 kg require propulsion systems capable of producing thrust in the micro-Newton to milli-Newton force range. At this scale, electrokinetic (EK) pumping offers a method to precisely meter liquid propellants under purely electrical control at pressures and flow rates well-suited for microthruster applications. After exploring a variety of materials and surface treatments for the electrokinetic pumping media, we have demonstrated EK pumping of anhydrous hydrazine using both packed-capillary and larger sintered-monolith pump designs. Hydrogen peroxide has proven difficult to directly pump electrokinetically, but we have shown the utility of delivering peroxide and other electrokinetically incompatible liquids indirectly using in-line reservoirs with fluidic isolation to separate the pump working fluid from the propellant. Directly-and indirectly-pumped propellants have been delivered to novel capillary microthrusters with integrated catalyst beds and plasma-formed micronozzle structures. Specific impulses up to 190 s have been shown for hydrazine in non-optimized capillary thrusters at a mass flow rate of 1.5 mg/s. Controlled thrust pulses with a maximum continuous thrust of 1.5 mN, minimum impulse bit of 7 mu N-s, and average specific impulse of I 10 s have been demonstrated with the electrokinetically pumped microthruster assembly. Published by Elsevier B.V. C1 [Patel, Kamlesh D.; Bartsch, Michael S.; McCrink, Matthew H.; Olsen, Jennifer S.; Mosier, Bruce P.; Crocker, Robert W.] Sandia Natl Labs, Livermore, CA USA. RP Patel, KD (reprint author), Sandia Natl Labs, Livermore, CA USA. EM kdpatel@sandia.gov RI Patel, Kamlesh/A-9728-2009 NR 40 TC 11 Z9 12 U1 4 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUN 16 PY 2008 VL 132 IS 2 SI SI BP 461 EP 470 DI 10.1016/j.snb.2007.10.071 PG 10 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 322EC UT WOS:000257357000015 ER PT J AU Li, Q Han, R Meng, XX Gai, HW Yeung, ES AF Li, Qun Han, Rui Meng, Xianxin Gai, Hongwei Yeung, Edward S. TI Tracking single quantum dot and its spectrum in free solution with controllable thermal diffusion suppression SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE single quantum dot spectrum; thermal diffusion control; dehydrated agarose ID SEMICONDUCTOR NANOCRYSTALS; FLUORESCENCE SPECTROSCOPY; MOLECULE SPECTROSCOPY; PROTEIN MOLECULES; FORCE MICROSCOPY; AQUEOUS-SOLUTION; FIELD; SURFACTANTS AB Thermal motions of semiconductor quantum dots (QDs) are suppressed on a dehydrated agarose-modified surface. The diffusion coefficients (D) of particles can be controlled by modifying the surface with an appropriate agarose concentration. The value of D is more than 100 times lower than the theoretical value when the dried agarose surface is made with an 8% agarose solution. This makes it possible to real-time record the diffusion process of single particles and single molecules in low-viscosity solution. A transmission grating installed in front of the charge-coupled device separates the QD fluorescence into the zeroth-order and first-order spectrum. Therefore, the spectrum of dynamic QDs is tracked on the modified surface. Tracking the dynamic QD spectral image is a promising method to explore the process of the molecular interactions in the physiological buffer. (c) 2008 Elsevier Inc. All rights reserved. C1 [Li, Qun; Han, Rui; Gai, Hongwei; Yeung, Edward S.] Hunan Univ, Ctr Biomed Engn, Changsha 410082, Hunan, Peoples R China. [Meng, Xianxin] Shanghai Biochip Co Ltd, Shanghai 201203, Peoples R China. [Gai, Hongwei] Hunan Univ, State Key Lab Chem Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China. [Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Yeung, Edward S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Gai, HW (reprint author), Hunan Univ, Ctr Biomed Engn, Changsha 410082, Hunan, Peoples R China. EM gaihw@hnu.cn NR 34 TC 14 Z9 14 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD JUN 15 PY 2008 VL 377 IS 2 BP 176 EP 181 DI 10.1016/j.ab.2008.03.017 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 301TH UT WOS:000255918000010 PM 18394419 ER PT J AU Dorman, FL Overton, EB Whiting, JJ Cochran, JW Gardea-Torresdey, J AF Dorman, Frank L. Overton, Edward B. Whiting, Joshua J. Cochran, Jack W. Gardea-Torresdey, Jorge TI Gas chromatography SO ANALYTICAL CHEMISTRY LA English DT Review ID FLIGHT MASS-SPECTROMETRY; OPEN-TUBULAR COLUMNS; COMPREHENSIVE 2-DIMENSIONAL SEPARATIONS; SILICON MICROFABRICATED COLUMNS; PERSISTENT ORGANIC POLLUTANTS; FLAME IONIZATION DETECTION; DIBENZO-P-DIOXINS; PESTICIDE-RESIDUES; STATIONARY PHASES; ELECTRON-CAPTURE C1 [Dorman, Frank L.; Cochran, Jack W.] Restek Corp, Bellefonte, PA 16823 USA. [Dorman, Frank L.] Juniata Coll, Dept Chem, Huntingdon, PA 16652 USA. [Overton, Edward B.] Louisiana State Univ, Dept Environm Sci, Baton Rouge, LA 70803 USA. [Whiting, Joshua J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gardea-Torresdey, Jorge] Univ Texas El Paso, Dept Chem, El Paso, TX 79968 USA. RP Dorman, FL (reprint author), Restek Corp, Bellefonte, PA 16823 USA. EM frank.dorman@restek.com RI Dorman, Frank/G-8349-2012 NR 84 TC 21 Z9 25 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2008 VL 80 IS 12 BP 4487 EP 4497 DI 10.1021/ac800714x PG 11 WC Chemistry, Analytical SC Chemistry GA 313TR UT WOS:000256763400013 PM 18484737 ER PT J AU Lowry, M Fakayode, SO Geng, ML Baker, GA Wang, L McCarroll, ME Patonay, G Warner, IM AF Lowry, Mark Fakayode, Sayo O. Geng, Maxwell L. Baker, Gary A. Wang, Lin McCarroll, Matthew E. Patonay, Gabor Warner, Isiah M. TI Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry SO ANALYTICAL CHEMISTRY LA English DT Review ID EMISSION MATRIX FLUORESCENCE; METAL-ENHANCED FLUORESCENCE; FREQUENCY-DOMAIN FLUORESCENCE; RESONANCE ENERGY-TRANSFER; PARTIAL LEAST-SQUARES; PLASMON-COUPLED CHEMILUMINESCENCE; ROOM-TEMPERATURE PHOSPHORESCENCE; LASER-INDUCED FLUORESCENCE; PARALLEL FACTOR-ANALYSIS; LIGHT-EMITTING-DIODES C1 [Lowry, Mark; Warner, Isiah M.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Fakayode, Sayo O.] Winston Salem State Univ, Dept Chem, Winston Salem, NC 27110 USA. [Geng, Maxwell L.] Univ Iowa, Dept Chem, Nanosci & Nanotechnol Inst, Iowa City, IA 52242 USA. [Geng, Maxwell L.] Univ Iowa, Opt Sci & Technol Ctr, Iowa City, IA 52242 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wang, Lin; McCarroll, Matthew E.] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. [Patonay, Gabor] Georgia State Univ, Dept Chem, Atlanta, GA 30302 USA. RP Warner, IM (reprint author), Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. RI kistner, kharol/E-6849-2010; Lowry, Mark/E-6102-2010; Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 NR 398 TC 28 Z9 30 U1 2 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2008 VL 80 IS 12 BP 4551 EP 4574 DI 10.1021/ac800749v PG 24 WC Chemistry, Analytical SC Chemistry GA 313TR UT WOS:000256763400017 PM 18494505 ER PT J AU Steele, PT Farquar, GR Martin, AN Coffee, KR Riot, VJ Martin, SI Fergenson, DP Gard, EE Frank, M AF Steele, Paul T. Farquar, George R. Martin, Audrey N. Coffee, Keith R. Riot, Vincent J. Martin, Sue I. Fergenson, David P. Gard, Eric E. Frank, Matthias TI Autonomous, broad-spectrum detection of hazardous aerosols in seconds SO ANALYTICAL CHEMISTRY LA English DT Article ID BIOAEROSOL MASS-SPECTROMETRY; PARTICLES; DESORPTION/IONIZATION; IDENTIFICATION AB Actual or surrogate chemical, biological, radiological, nuclear, and explosive materials and illicit drug precursors can be rapidly detected and identified when in aerosol form by a Single-Particle Aerosol Mass Spectrometry (SPAMS) system. This entails not only the sampling of such particles but also the physical analysis and subsequent data analysis leading to a highly reliable alarm state. SPAMS hardware is briefly reviewed. SPAMS software algorithms are discussed in greater detail. A laboratory experiment involving actual threat and surrogate releases mixed with ambient background aerosols demonstrates broad-spectrum detection within seconds. Data from a field test at the San Francisco International Airport demonstrate extended field operation with an ultralow false alarm rate. Together these data sets demonstrate a significant and important advance in rapid aerosol threat detection. C1 [Steele, Paul T.; Farquar, George R.; Martin, Audrey N.; Coffee, Keith R.; Riot, Vincent J.; Martin, Sue I.; Fergenson, David P.; Gard, Eric E.; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Martin, Audrey N.] Michigan State Univ, E Lansing, MI 48824 USA. RP Frank, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM frank1@llnl.gov RI Frank, Matthias/O-9055-2014 NR 23 TC 18 Z9 18 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2008 VL 80 IS 12 BP 4583 EP 4589 DI 10.1021/ac8004428 PG 7 WC Chemistry, Analytical SC Chemistry GA 313TR UT WOS:000256763400019 PM 18491923 ER PT J AU Henn, FA AF Henn, Fritz A. TI Pharmacogenetic studies of depression SO BIOLOGICAL PSYCHIATRY LA English DT Editorial Material ID ANTIDEPRESSANT TREATMENT; SEROTONIN TRANSPORTER; CITALOPRAM TREATMENT; MAJOR DEPRESSION; ASSOCIATION C1 Brookhaven Natl Lab, Upton, NY 11793 USA. RP Henn, FA (reprint author), Brookhaven Natl Lab, Bldg 490,Bell Ave, Upton, NY 11793 USA. EM fhenn@bnl.gov NR 10 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD JUN 15 PY 2008 VL 63 IS 12 BP 1101 EP 1102 DI 10.1016/j.biopsych.2008.04.008 PG 2 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 309WU UT WOS:000256491700001 PM 18514642 ER PT J AU Christian, SL Brune, CW Sudi, J Kumar, RA Liu, S Karamohamed, S Badner, JA Matsui, S Conroy, J McQuaid, D Gergel, J Hatchwell, E Gilliam, TC Gershon, ES Nowak, NJ Dobyns, WB Cook, EH AF Christian, Susan L. Brune, Camille W. Sudi, Jyotsna Kumar, Ravinesh A. Liu, Shaung Karamohamed, Samer Badner, Judith A. Matsui, Seiichi Conroy, Jeffrey McQuaid, Devin Gergel, James Hatchwell, Eli Gilliam, T. Conrad Gershon, Elliot S. Nowak, Norma J. Dobyns, William B. Cook, Edwin H., Jr. TI Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder SO BIOLOGICAL PSYCHIATRY LA English DT Article DE array comparative genomic hybridization; autism; microdeletions; microduplications ID PERVASIVE DEVELOPMENTAL DISORDERS; 22Q11.2 DUPLICATION; ARRAY-CGH; MICRODELETIONS; FEATURES AB Background: One genetic mechanism known to be associated with autism spectrum disorders (ASD) is chromosomal abnormalities. The identification of copy number variants (CNV), i.e., microdeletions and microduplications that are undetectable at the level of traditional cytogenetic analysis, allows the potential association of submicroscopic chromosomal imbalances and human disease. Methods: We performed array comparative genomic hybridization (aCGH) utilizing a 19K whole genome tiling path bacterial artificial chromosome (BAC) microarray on 397 unrelated subjects with autism spectrum disorder. Common CNV were excluded using a control group comprised of 372 individuals from the National Institute of Mental Health (NIMH) Genetics Initiative Control samples. Confirmation studies were performed on all remaining CNV using fluorescence in situ hybridization (FISH), microsatellite analysis, and/or quantitative polymerase chain reaction (PCR) analysis. Results: A total of 51 CNV were confirmed in 46 ASD subjects. Three maternal interstitial duplications of 15q11-q13 known to be associated with AS D were identified. The other 48 CNV ranged in size from 189 kilobase (kb) to 5.5 megabase (Mb) and contained from 0 to similar to 40 National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) genes. Seven CNV were de novo and 44 were inherited. Conclusions: Fifty-one autism-specific CNV were identified in 46 of 397 ASD patients using a 19K BAC microarray for an overall rate of 11.6% . These microdeletions and microduplications cause gene dosage imbalance in 272 genes, many of which could be considered as candidate genes for autism. C1 [Christian, Susan L.; Sudi, Jyotsna; Kumar, Ravinesh A.; Karamohamed, Samer; Gilliam, T. Conrad; Dobyns, William B.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Brune, Camille W.; Cook, Edwin H., Jr.] Univ Illinois, Dept Psychiat, Inst Juvenile Res, Chicago, IL 60680 USA. [Liu, Shaung; Badner, Judith A.; Gershon, Elliot S.] Univ Chicago, Dept Psychiat, Chicago, IL 60637 USA. [Gergel, James] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Matsui, Seiichi; Conroy, Jeffrey; McQuaid, Devin; Nowak, Norma J.] Roswell Pk Canc Inst, Dept Canc Genet, Buffalo, NY 14263 USA. [Nowak, Norma J.] Roswell Pk Canc Inst, Dept Canc Prevent & Populat Sci, Buffalo, NY 14263 USA. [Hatchwell, Eli] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Nowak, Norma J.] SUNY Buffalo, Dept Biochem, Buffalo, NY 14214 USA. RP Christian, SL (reprint author), Univ Chicago, Dept Human Genet, 920 E 58th St,CLSC 319,MC0077, Chicago, IL 60637 USA. EM schrist@bsd.uchicago.edu OI Cook, Edwin/0000-0002-5848-5114; Dobyns, William/0000-0002-7681-2844 FU NCI NIH HHS [P30 CA016056]; NIMH NIH HHS [R01 MH064547]; NINDS NIH HHS [R01 NS51812, R01 NS051812, R01 NS051812-01] NR 22 TC 180 Z9 187 U1 1 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD JUN 15 PY 2008 VL 63 IS 12 BP 1111 EP 1117 DI 10.1016/j.biopsych.2008.01.009 PG 7 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 309WU UT WOS:000256491700003 PM 18374305 ER PT J AU Harland, CW Rabuka, D Bertozzi, CR Parthasarathy, R AF Harland, Christopher W. Rabuka, David Bertozzi, Carolyn R. Parthasarathy, Raghuveer TI The Mycobacterium tuberculosis virulence factor trehalose dimycolate imparts desiccation resistance to model mycobacterial membranes SO BIOPHYSICAL JOURNAL LA English DT Article ID INTERFERENCE-CONTRAST MICROSCOPY; CORD FACTOR; OXIDIZED SILICON; LIPID MONOLAYERS; CELL-WALL; 6,6'-DIMYCOLATE; BILAYERS; SURFACE; PRESERVATION; SYNTHETASE AB Mycobacteria, including persistent pathogens like Mycobacterium tuberculosis, have an unusual membrane structure in which, outside the plasma membrane, a nonfluid hydrophobic fatty acid layer supports a fluid monolayer rich in glycolipids such as trehalose 6,6'-dimycolate (TDM; cord factor). Given the abilities of mycobacteria to survive desiccation and trehalose in solution to protect biomolecules and whole organisms during freezing, drying, and other stresses, we hypothesized that TDM alone may suffice to confer dehydration resistance to the membranes of which it is a constituent. We devised an experimental model that mimics the structure of mycobacterial envelopes in which an immobile hydrophobic layer supports a TDM-rich, two-dimensionally fluid leaflet. We have found that TDM monolayers, in stark contrast to phospholipid membranes, can be dehydrated and rehydrated without loss of integrity, as assessed by fluidity and protein binding. Strikingly, this protection from dehydration extends to TDM-phospholipid mixtures with as little as 25 mol % TDM. The dependence of the recovery of membrane mobility upon rehydration on TDM traction shows a functional form indicative of spatial percolation, implying that the connectivity of TDM plays a crucial role in membrane preservation. Our observations are the first reported instance of dehydration resistance provided by a membrane glycolipid. C1 [Harland, Christopher W.; Parthasarathy, Raghuveer] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Harland, Christopher W.; Parthasarathy, Raghuveer] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. [Rabuka, David; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Parthasarathy, R (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. EM raghu@uoregon.edu RI Parthasarathy, Raghuveer/A-5958-2008 OI Parthasarathy, Raghuveer/0000-0002-6006-4749 FU Howard Hughes Medical Institute; NIAID NIH HHS [R01 AI051622, R01-AI51622] NR 59 TC 20 Z9 20 U1 0 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 15 PY 2008 VL 94 IS 12 BP 4718 EP 4724 DI 10.1529/biophysj.107.125542 PG 7 WC Biophysics SC Biophysics GA 306ES UT WOS:000256231700017 PM 18326657 ER PT J AU Meinhold, L Clement, D Tehei, M Daniel, R Finney, JL Smith, JC AF Meinhold, Lars Clement, David Tehei, Moeava Daniel, Roy Finney, John L. Smith, Jeremy C. TI Protein dynamics and stability: The distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering SO BIOPHYSICAL JOURNAL LA English DT Article ID CONFORMATIONAL FLEXIBILITY; SIMULATION ANALYSIS; ALPHA-AMYLASE; TEMPERATURE; HYDRATION; EVOLUTION; POWDER AB The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermophilic enzyme has a significantly broader distribution than its mesophilic counterpart. Furthermore, although the rate of increase with temperature of the atomic mean-square displacements extracted from the dynamic structure factor is found to be comparable for both enzymes, the amplitudes are found to be slightly larger for the thermophilic enzyme. Therefore, these results imply that the thermophilic enzyme is the more flexible of the two. C1 [Meinhold, Lars; Smith, Jeremy C.] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany. [Clement, David; Tehei, Moeava] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Finney, John L.] UCL, Dept Phys & Astron, London, England. [Clement, David; Tehei, Moeava; Daniel, Roy] Univ Waikato, Dept Biol Sci, Hamilton, New Zealand. [Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. RP Meinhold, L (reprint author), CALTECH, Phys Biol Ctr Ultrafast Sci & Technol, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM lars.meinhold@caltech.edu RI smith, jeremy/B-7287-2012; OI smith, jeremy/0000-0002-2978-3227; Tehei, Moeava/0000-0003-3654-6833 NR 43 TC 38 Z9 38 U1 0 U2 15 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 15 PY 2008 VL 94 IS 12 BP 4812 EP 4818 DI 10.1529/biophysj.107.121418 PG 7 WC Biophysics SC Biophysics GA 306ES UT WOS:000256231700026 PM 18310248 ER PT J AU Pitera, JW Swope, WC Abraham, FF AF Pitera, Jed W. Swope, William C. Abraham, Farid F. TI Observation of noncooperative folding thermodynamics in simulations of 1BBL SO BIOPHYSICAL JOURNAL LA English DT Article ID SUBUNIT-BINDING DOMAIN; DEHYDROGENASE MULTIENZYME COMPLEX; C-13' CHEMICAL-SHIFTS; MOLECULAR-DYNAMICS; ENERGY LANDSCAPE; PROTEIN; DOWNHILL; KINETICS; TEMPERATURE; TRANSITION AB One of the predictions of the energy landscape theory of protein folding is the possibility of barrierless, "downhill" folding under certain conditions. The protein 1BBL has been proposed to fold by such a downhill mechanism, though this is a matter of some dispute. We carried out extensive replica exchange molecular dynamics simulations on 1 BBL in explicit solvent to address this controversy and provide a microscopic picture of its folding thermodynamics. Our simulations show two distinct structural transitions in the folding of 1BBL. A low-temperature transition involves a disordering of the protein's tertiary structure without loss of secondary structure. A distinct, higher temperature transition involves the complete loss of secondary structure and dissolution of the hydrophobic core. In contrast, control simulations of the 1BBL homolog E3BD show a single high temperature unfolding transition. Further simulations of 1BBL at high ionic strength show a significant destabilization of helix 11 but not helix 1, suggesting that the apparent folding cooperativity of 1BBL may be highly dependent on experimental conditions. Although our simulations cannot provide definitive evidence of downhill folding in 1 BBL, they clearly show evidence of a complex, non-two-state folding process. C1 [Pitera, Jed W.; Swope, William C.] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA. [Abraham, Farid F.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. RP Pitera, JW (reprint author), IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA. EM pitera@us.ibm.com NR 41 TC 23 Z9 23 U1 0 U2 1 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 15 PY 2008 VL 94 IS 12 BP 4837 EP 4846 DI 10.1529/biophysj.107.123265 PG 10 WC Biophysics SC Biophysics GA 306ES UT WOS:000256231700029 PM 18326644 ER PT J AU Williamson, TE Craig, BA Kondrashkina, E Bailey-Kellogg, C Friedman, AM AF Williamson, Tim E. Craig, Bruce A. Kondrashkina, Elena Bailey-Kellogg, Chris Friedman, Alan M. TI Analysis of self-associating proteins by singular value decomposition of solution scattering data SO BIOPHYSICAL JOURNAL LA English DT Article ID X-RAY-SCATTERING; STATIC LIGHT-SCATTERING; BIOLOGICAL MACROMOLECULES; QUANTITATIVE CHARACTERIZATION; CRYSTAL-STRUCTURE; VISUAL ARRESTIN; PERSPECTIVE; TITRATION AB We describe a method by which a single experiment can reveal both association model (pathway and constants) and low-resolution structures of a self-associating system. Small-angle scattering data are collected from solutions at a range of concentrations. These scattering data curves are mass-weighted linear combinations of the scattering from each oligomer. Singular value decomposition of the data yields a set of basis vectors from which the scattering curve for each oligomer is reconstructed using coefficients that depend on the association model. A search identifies the association pathway and constants that provide the best agreement between reconstructed and observed data. Using simulated data with realistic noise, our method finds the correct pathway and association constants. Depending on the simulation parameters, reconstructed curves for each oligomer differ from the ideal by 0.05-0.99% in median absolute relative deviation. The reconstructed scattering curves are fundamental to further analysis, including interatomic distance distribution calculation and low-resolution ab initio shape reconstruction of each oligomer in solution. This method can be applied to x-ray or neutron scattering data from small angles to moderate (or higher) resolution. Data can be taken under physiological conditions, or particular conditions (e.g., temperature) can be varied to extract fundamental association parameters (Delta(Hass), Delta(ass)). C1 [Craig, Bruce A.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Williamson, Tim E.; Friedman, Alan M.] Purdue Univ, Purdue Canc Ctr, Markey Ctr Struct Biol, Dept Biol Sci, W Lafayette, IN 47907 USA. [Williamson, Tim E.; Friedman, Alan M.] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA. [Kondrashkina, Elena] Argonne Natl Lab, BioCAT, Argonne, IL USA. [Bailey-Kellogg, Chris] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA. RP Craig, BA (reprint author), Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. EM bacraig@purdue.edu; cbk@cs.dartmouth.edu; afried@purdue.edu RI Friedman, Alan/J-2696-2012; ID, BioCAT/D-2459-2012; Craig, Bruce/D-5797-2017 OI Craig, Bruce/0000-0001-9346-467X FU Howard Hughes Medical Institute; NCRR NIH HHS [P41 RR008630] NR 37 TC 19 Z9 20 U1 0 U2 3 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 15 PY 2008 VL 94 IS 12 BP 4906 EP 4923 DI 10.1529/biophysj.107.113167 PG 18 WC Biophysics SC Biophysics GA 306ES UT WOS:000256231700034 PM 18212017 ER PT J AU Shao, L Isaac, B Uzawa, S Agard, DA Sedat, JW Gustafsson, MGL AF Shao, Lin Isaac, Berith Uzawa, Satoru Agard, David A. Sedat, John W. Gustafsson, Mats G. L. TI I(5)S: Wide-field light microscopy with 100-nm-scale resolution in three dimensions SO BIOPHYSICAL JOURNAL LA English DT Article ID STRUCTURED-ILLUMINATION MICROSCOPY; FLUORESCENCE MICROSCOPY; OPTICAL RESOLUTION; AXIAL RESOLUTION; SUPERRESOLUTION; EXCITATION; LIMIT; 4PI-MICROSCOPY; LOCALIZATION; ENHANCEMENT AB Anew type of wide-field fluorescence microscopy is described, which produces 100-nm-scale spatial resolution in all three dimensions, by using structured illumination in a microscope that has two opposing objective lenses. Illumination light is split by a grating and a beam splitter into six mutually coherent beams, three of which enter the specimen through each objective lens. The resulting illumination intensity pattern contains high spatial frequency components both axially and laterally. In addition, the emission is collected by both objective lenses coherently, and combined interferometrically on a single camera, resulting in a detection transfer function with axially extended support. These two effects combine to produce near-isotropic resolution. Experimental images of test samples and biological specimens confirm the theoretical predictions. C1 [Gustafsson, Mats G. L.] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94143 USA. [Gustafsson, Mats G. L.] Univ Calif San Francisco, Bioengn Program, San Francisco, CA 94143 USA. [Shao, Lin; Uzawa, Satoru; Agard, David A.; Sedat, John W.] Univ Calif San Francisco, Dept Biochem & Biophys, Keck Adv Microscopy Lab, San Francisco, CA 94143 USA. [Isaac, Berith] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Isaac, Berith] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel. [Agard, David A.] Howard Hughes Med Inst, Chevy Chase, MD USA. RP Gustafsson, MGL (reprint author), Univ Calif San Francisco, Dept Physiol, Box 0444, San Francisco, CA 94143 USA. EM mats@msg.ucsf.edu FU Howard Hughes Medical Institute; NIGMS NIH HHS [GM31627, R01 GM031627, R01 GM025101] NR 35 TC 68 Z9 73 U1 2 U2 28 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 15 PY 2008 VL 94 IS 12 BP 4971 EP 4983 DI 10.1529/biophysj.107.120352 PG 13 WC Biophysics SC Biophysics GA 306ES UT WOS:000256231700039 PM 18326649 ER PT J AU Roca-Cusachs, P Alcaraz, J Sunyer, R Samitier, J Farre, R Navajas, D AF Roca-Cusachs, Pere Alcaraz, Jordi Sunyer, Raimon Samitier, Josep Farre, Ramon Navajas, Daniel TI Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation SO BIOPHYSICAL JOURNAL LA English DT Article ID ATOMIC-FORCE MICROSCOPY; GENE-EXPRESSION; CYTOSKELETAL MECHANICS; EXTRACELLULAR-MATRIX; PROTEIN-SYNTHESIS; GEOMETRIC CONTROL; GROWTH; STIFFNESS; DIFFERENTIATION; ANGIOGENESIS AB Shape-dependent local differentials in cell proliferation are considered to be amajor driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclearvolume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery. C1 [Roca-Cusachs, Pere; Sunyer, Raimon; Farre, Ramon; Navajas, Daniel] Univ Barcelona, Fac Med, Unitat Biofis & Bioenginyeria, IDIBAPS, E-08036 Barcelona, Spain. [Roca-Cusachs, Pere; Samitier, Josep; Navajas, Daniel] IBEC, Barcelona, Spain. [Alcaraz, Jordi] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Samitier, Josep] Univ Barcelona, Dept Elect, E-08036 Barcelona, Spain. [Farre, Ramon; Navajas, Daniel] CIBER Enfermedades Resp, Bunyola, Spain. RP Navajas, D (reprint author), Univ Barcelona, Fac Med, Unitat Biofis & Bioenginyeria, IDIBAPS, Casanova 143, E-08036 Barcelona, Spain. EM dnavajas@ub.edu RI Sunyer, Raimon/G-8605-2013; Alcaraz, Jordi/F-5513-2016; Navajas, Daniel/E-4233-2010; Roca-Cusachs, Pere/D-4309-2009 OI Alcaraz, Jordi/0000-0001-7898-1599; Navajas, Daniel/0000-0001-7150-9363; Roca-Cusachs, Pere/0000-0001-6947-961X NR 71 TC 98 Z9 99 U1 1 U2 14 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 15 PY 2008 VL 94 IS 12 BP 4984 EP 4995 DI 10.1529/biophysj.107.116863 PG 12 WC Biophysics SC Biophysics GA 306ES UT WOS:000256231700040 PM 18326659 ER PT J AU Lin, YY Wang, J Liu, GD Wu, H Wai, CM Lin, YH AF Lin, Ying-Ying Wang, Jun Liu, Guodong Wu, Hong Wai, C. M. Lin, Yuehe TI A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE nanoparticles; electrochemical immunosensor; test strip; prostate-specific antigen ID IMMUNOCHROMATOGRAPHIC ASSAY; ELECTRICAL DETECTION; CANCER; IMMUNOASSAY; LABELS; PROTEINS; SERUM; PSA; QUANTIFICATION; IMMUNOSENSOR AB We present a nanoparticle (NP) label/immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. This IEB integrates the immunochromatographic strip with the electrochemical detector for transducing quantitative signals. The NP label, made of CdSe@ZnS, serves as a signal-amplifier vehicle. A sandwich immunoreaction was performed on the immunochromatographic strip. The captured NP labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane of the test zone. Several experimental parameters (e.g., immunoreaction time, the amount of anti-PSA-NP conjugations applied) and electrochemical detection conditions (e.g., preconcentration potential and time) were optimized using this biosensor for PSA detection. The analytical performance of this biosensor was evaluated with serum PSA samples according to the "figure-of-merits" (e.g., dynamic range, reproducibility, and detection limit). The results were validated with enzyme-linked immunosorbent assay (ELISA) and showed high consistency. It is found that this biosensor is very sensitive with the detection limit of 0.02 ng mL(-1) PSA and is quite reproducible (with a relative standard deviation (R.S.D.) of 6.4%). This method is rapid, clinically practical, and less expensive than other diagnostic tools for PSA; therefore, this IEB coupled with a portable electrochemical analyzer shows great promise for simple, sensitive, quantitative point-of-care testing of disease-related protein biomarkers. (c) 2008 Published by Elsevier B.V. C1 [Lin, Ying-Ying; Wang, Jun; Liu, Guodong; Wu, Hong; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lin, Ying-Ying; Wai, C. M.] Univ Idaho, Dept Chem, Moscow, ID 83843 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 NR 37 TC 85 Z9 88 U1 3 U2 49 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD JUN 15 PY 2008 VL 23 IS 11 BP 1659 EP 1665 DI 10.1016/j.bios.2008.01.037 PG 7 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 309WV UT WOS:000256491800012 PM 18406127 ER PT J AU Pisanti, O Cirillo, A Esposito, S Iocco, F Mangano, G Miele, G Serpico, PD AF Pisanti, O. Cirillo, A. Esposito, S. Iocco, F. Mangano, G. Miele, G. Serpico, P. D. TI PArthENoPE: Public algorithm evaluating the nucleosynthesis of primordial elements SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE big bang nucleosynthesis; primordial universe ID BIG-BANG NUCLEOSYNTHESIS; NEUTRINO DEGENERACY; FLAVOR OSCILLATIONS; STANDARD MODEL; EARLY UNIVERSE; COSMOLOGY; COMPILATION; ABUNDANCE; SPECTRA; PHYSICS AB We describe a program for computing the abundances of light elements produced during Big Bang Nucleosynthesis which is publicly available at http://parthenope.na.infn.it/. Starting from nuclear statistical equilibrium conditions the program solves the set of coupled ordinary differential equations, follows the departure from chemical equilibrium of nuclear species, and determines their asymptotic abundances as function of several input cosmological parameters as the baryon density, the number of effective neutrino, the value of cosmological constant and the neutrino chemical potential. The program requires commercial NAG library routines. Program summary Program title: PArthENoPE Catalogue identifier: AEAV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEAV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 033 No. of bytes in distributed program, including test data, etc.: 46 002 Distribution format: tar.gz Programming language: Fortran 77 Computer: PC-compatible running Fortran on Unix, MS Windows or Linux Operating system: Windows 2000, Windows XP, Linux Classification: 1.2, 1.9, 17.8 External routines: NAG Libraries Nature of problem: Computation of yields of light elements synthesized in the primordial universe. Solution method: BDF method for the integration of the ODEs, implemented in a NAG routine. Running time: 90 see with default parameters on a Dual Xeon Processor 2.4 GHz with 2 GB RAM. (C) 2008 Elsevier B.V. All rights reserved. C1 [Pisanti, O.; Cirillo, A.; Esposito, S.; Iocco, F.; Mangano, G.; Miele, G.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Pisanti, O.; Cirillo, A.; Esposito, S.; Iocco, F.; Mangano, G.; Miele, G.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Iocco, F.] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Serpico, P. D.] Ctr Particle Astrophys, Fermi Natl Accelerator Lab, Batavia, IL 60510 USA. RP Pisanti, O (reprint author), Univ Naples Federico 2, Dipartimento Sci Fis, Via Cintia, I-80126 Naples, Italy. EM pisanti@na.infn.it RI Miele, Gennaro/F-3628-2010; OI Miele, Gennaro/0000-0002-2028-0578; Mangano, Gianpiero/0000-0002-6901-4633; Esposito, Salvatore/0000-0003-3099-5574 NR 44 TC 86 Z9 86 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUN 15 PY 2008 VL 178 IS 12 BP 956 EP 971 DI 10.1016/j.cpc.2008.02.015 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 317WS UT WOS:000257051700007 ER PT J AU Mohanty, SR Kollah, B Hedrick, DB Peacock, AD Kukkadapu, RK Roden, EE AF Mohanty, Santosh R. Kollah, Bharati Hedrick, David B. Peacock, Aaron D. Kukkadapu, Ravi K. Roden, Eric E. TI Biogeochemical processes in ethanol stimulated uranium-contaminated suhsurface sediments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; IN-SITU BIOSTIMULATION; SOLID-WATER INTERFACE; MICROBIAL REDUCTION; GEOBACTER-METALLIREDUCENS; FE(III) OXIDES; FATTY-ACIDS; U(VI); AQUIFER; IRON AB A laboratory incubation experiment was conducted with uranium contaminated subsurface sedimentto assess the geochemical and microbial community response to ethanol amendment A classical sequence of terminal electron-accepting processes (TEAPs) was observed in ethanol-amended slurries, with NO(3)(-) reduction, Fe(Ill) reduction, SO(4)(2-) reduction, and CH(4) production proceeding in sequence until all of the added (13)C- ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(Ill) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment. Only gradual reduction of NO(3)(-), and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III)) or SO(4)(2-) reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Herbaspirillum in the ethanol-amended slurries. Phospholipid fatty acids (PLFAs) indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA (13)C/(12)C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of (13)C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfo vibrio took place during the brief period of sulfate reduction that followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations. C1 [Mohanty, Santosh R.; Kollah, Bharati; Roden, Eric E.] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Hedrick, David B.] Microbial Insights Inc, Rockford, TN 37830 USA. [Peacock, Aaron D.] Haley & Aldrich, Oak Ridge, TN 37830 USA. [Kukkadapu, Ravi K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Roden, EE (reprint author), Univ Wisconsin, Dept Geol & Geophys, 1215 W Dayton St, Madison, WI 53706 USA. EM eroden@geology.wisc.edu NR 51 TC 34 Z9 35 U1 5 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2008 VL 42 IS 12 BP 4384 EP 4390 DI 10.1021/es703082v PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 312XL UT WOS:000256705600026 PM 18605559 ER PT J AU Icenhower, JP McGrail, BP Shaw, WJ Pierce, EM Nachimuthu, P Shuh, DK Rodriguez, EA Steele, JL AF Icenhower, Jonathan P. McGrail, B. Peter Shaw, Wendy J. Pierce, Eric M. Nachimuthu, P. Shuh, David K. Rodriguez, Elsa A. Steele, Jackie L. TI Experimentally determined dissolution kinetics of Na-rich borosilicate glass at far from equilibrium conditions: Implications for Transition State Theory SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NUCLEAR MAGNETIC-RESONANCE; LOW-ACTIVITY WASTE; SILICATE DISSOLUTION; HIGH-RESOLUTION; ALTERATION MECHANISMS; CHEMICAL-REACTIONS; ACTIVATED COMPLEX; BASALTIC GLASS; RATES; ALBITE AB The dissolution kinetics of five chemically complex and five chemically simple sodium silicate glass compositions (Na-Si +/- Al +/- B) were determined over a range of solution saturation values by varying the flow-through rates (1-100 mL/d) in a dynamic single-pass flow-through (SPFT) apparatus. The chemically complex borosilicate glasses are representative of prospective hosts for radioactive waste disposal and are characterized by relatively high molar Si/(Si + Al) and Na/(Al + B) ratios (> 0.7 and > 1.0, respectively). Analysis by X-ray absorption spectroscopy (XAS) indicates that the fraction of B-iv to B-iii (N-4) varies from 0.66 to 0.70. Despite large differences in bulk chemistry, values of delta Si-29 peak shift determined by MAS-NMR varies only by about 7 PPM (delta Si-29 = -94 to -87 ppm), indicating small differences in polymerization state for the glasses. Forward rates of reaction measured in dynamic experiments converge (average log(10) rate [40 degrees C, pH 9] = -1.87 +/- 0.79 [g/(m(2) d)]) at high values of flow-rate (q) to sample surface area (S). Dissolution rates are independent of total Free Energy of Hydration (FEH) and this model appears to overestimate the impact of excess Na on chemical durability. For borosilicate glass compositions in which molar Na > A1 + B, further addition of Na appears to stabilize the glass structure with respect to hydrolysis and dissolution. Compared to other borosilicate and aluminosilicate glasses, the glass specimens from this study dissolve at nearly the same rate (0-similar to 56 x) as the more polymerized glasses, such as vitreous reedmergnerite (NaBSi3O8), albite, and silica. Dissolution of glass follows the order: boroaluminosilicate glass > vitreous reedmergnerite > vitreous albite > silica glass, which is roughly the same order of increasingly negative Si-29 chemical shifts. The chemical shift of 29Si is a measure of the extent of bond overlap between Si and O and correlates with the forward rate of reaction. Thus, dissolution appears to be rate-limited by rupture of the Si-O bond, which is consistent with the tenants of Transition State Theory (TST). Therefore, dissolution at far from equilibrium conditions is dependent upon the speed of the rate-controlling elementary reaction and not on the sum of the free energies of hydration of the constituents of boroaluminosilicate glass. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Icenhower, Jonathan P.; McGrail, B. Peter; Shaw, Wendy J.; Pierce, Eric M.; Rodriguez, Elsa A.; Steele, Jackie L.] Pacific NW Natl Lab, Appl Geol & Geochem Grp, Richland, WA 99352 USA. [Nachimuthu, P.; Shuh, David K.] Lawrence Berkeley Natl Lab, Actinide Chem Grp, Berkeley, CA 94720 USA. [Nachimuthu, P.] Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA. RP Icenhower, JP (reprint author), Pacific NW Natl Lab, Appl Geol & Geochem Grp, 902 Battelle Blvd,MSIN K6-81, Richland, WA 99352 USA. EM jonathan.icenhower@pnl.gov RI Icenhower, Jonathan/E-8523-2011; Pierce, Eric/G-1615-2011 OI Pierce, Eric/0000-0002-4951-1931 NR 88 TC 26 Z9 26 U1 0 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 15 PY 2008 VL 72 IS 12 BP 2767 EP 2788 DI 10.1016/j.gca.2008.02.026 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 312MF UT WOS:000256674800004 ER PT J AU Grossman, L Simon, SB Rai, VK Thiemens, MH Hutcheon, ID Williams, RW Galy, A Ding, T Fedkin, AV Clayton, RN Mayeda, TK AF Grossman, L. Simon, S. B. Rai, V. K. Thiemens, M. H. Hutcheon, I. D. Williams, R. W. Galy, A. Ding, T. Fedkin, A. V. Clayton, R. N. Mayeda, T. K. TI Primordial compositions of refractory inclusions SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CARBONACEOUS CHONDRITES; ALLENDE METEORITE; SOLAR NEBULA; CAO-MGO-AL2O3-SIO2 LIQUIDS; CONDENSATION; EVAPORATION; SILICON; EVOLUTION; ISOTOPES; FRACTIONATION AB Bulk chemical and O-, Mg- and Si-isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg- and Si-isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates, but only if different inclusions condensed from nebular regions that ranged in total pressure from 10(-6) to 10(-1) bar, regardless of whether they formed in a system of solar composition or in one enriched in dust of ordinary chondrite composition relative to gas by a factor of 10 compared to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al2O3 relative to more volatile MgO + SiO2 is due to initial condensation and 20% due to subsequent evaporation for both Types A and B inclusions. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Grossman, L.; Simon, S. B.; Fedkin, A. V.; Clayton, R. N.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Rai, V. K.; Thiemens, M. H.] Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92093 USA. [Hutcheon, I. D.; Williams, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Galy, A.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Ding, T.] Chinese Acad Geol Sci, Inst Mineral Resources, Beijing 100037, Peoples R China. [Grossman, L.; Clayton, R. N.; Mayeda, T. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Grossman, L (reprint author), Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. EM yosi@uchicago.edu RI Galy, Albert/A-8518-2011 OI Galy, Albert/0000-0001-9978-4287 NR 48 TC 37 Z9 37 U1 4 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 15 PY 2008 VL 72 IS 12 BP 3001 EP 3021 DI 10.1016/j.gca.2008.04.002 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 312MF UT WOS:000256674800018 ER PT J AU Chen, H Wang, G Dudley, M Zhang, L Wu, L Zhu, Y Xu, Z Edgar, JH Kuball, M AF Chen, H. Wang, G. Dudley, M. Zhang, L. Wu, L. Zhu, Y. Xu, Z. Edgar, J. H. Kuball, M. TI Defect structures in B(12)As(2) epitaxial layers grown on (0001) 6H-SiC SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BORON-RICH SOLIDS; CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; HETEROEPITAXIAL GROWTH; VARIANTS AB A detailed analysis of the microstructure in B(12)As(2) epitaxial layers grown by chemical-vapor deposition on (0001) 6H-SiC substrates is presented. Synchrotron white beam x-ray topography enabled macroscopic characterization of the substrate/epilayer ensembles and revealed the presence of a quite homogeneous solid solution of twin and matrix epilayer domains forming a submicron mosaic structure. The basic epitaxial relationship was found to be (0001)(B12As2) < 1120 >(B12As2) parallel to(0001)(6H-SiC) < 1120 >(6H-SiC) and the twin relationship comprised a 180 degrees (or equivalently 60 degrees) rotation about [0001](B12As2) in agreement with previous reports. Cross-sectional high resolution transmission electron microscopy revealed the presence of a similar to 200 nm thick disordered transition layer which was shown to be created by the coalescence of a mosaic of translationally and rotationally variant domains nucleated at various types of nucleation sites available on the (0001) 6H-SiC surface. In this transition layer, competition between the growth of the various domains is mediated in part by the energy of the boundaries created between them as they coalesce. Boundaries between translationally variant domains are shown to have unfavorable bonding configurations and hence high-energy. These high-energy boundaries can be eliminated during mutual overgrowth by the generation of a 1/3[0001](B12As2) Frank partial dislocation which effectively eliminates the translational variants. This leads to an overall improvement in film quality beyond thicknesses of similar to 200 nm as the translational variants grow out leaving only the twin variants. (0003) twin boundaries in the regions beyond 200 nm are shown to possess fault vectors such as 1/6[1100](B12As2), which are shown to originate from the mutual shift between the nucleation sites of the respective domains. (c) 2008 American Institute of Physics. C1 [Chen, H.; Wang, G.; Dudley, M.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Zhang, L.; Wu, L.; Zhu, Y.] Brookhaven Natl Lab, Ctr Funct Mat, Upton, NY 11973 USA. [Xu, Z.; Edgar, J. H.] Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA. [Kuball, M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. RP Chen, H (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM huichen@ic.sunysb.edu RI Zhang, Lihua/F-4502-2014 NR 13 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 123508 DI 10.1063/1.2940132 PG 9 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100026 ER PT J AU Deng, HX Jiang, XW Luo, JW Li, SS Xia, JB Wang, LW AF Deng, Hui-Xiong Jiang, Xiang-Wei Luo, Jun-Wei Li, Shu-Shen Xia, Jian-Bai Wang, Lin-Wang TI Multiple valley couplings in nanometer Si metal-oxide-semiconductor field-effect transistors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SIMULATION; MOSFETS; SUPERLATTICES; REGIME; LIMIT AB We investigate the couplings between different energy band valleys in a metal-oxide-semiconductor field-effect transistor (MOSFET) device using self-consistent calculations of million-atom Schrodinger-Poisson equations. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. The MOSFET device is under nonequilibrium condition with a source-drain bias up to 2 V and a gate potential close to the threshold potential. We find that all the intervalley couplings are small, with the coupling constants less than 3 meV. As a result, the system eigenstates derived from different bulk valleys can be calculated separately. This will significantly reduce the simulation time because the diagonalization of the Hamiltonian matrix scales as the third power of the total number of basis functions. (C) 2008 American Institute of Physics. C1 [Deng, Hui-Xiong; Jiang, Xiang-Wei; Luo, Jun-Wei; Li, Shu-Shen; Xia, Jian-Bai] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Wang, Lin-Wang] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Deng, HX (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. EM lwwang@lbl.gov RI LUO, JUN-WEI/A-8491-2010; LUO, JUNWEI/B-6545-2013 NR 16 TC 4 Z9 4 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 124507 DI 10.1063/1.2943277 PG 5 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100110 ER PT J AU Kim, S Lorente, S Bejan, A Miller, W Morse, J AF Kim, S. Lorente, S. Bejan, A. Miller, W. Morse, J. TI The emergence of vascular design in three dimensions SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BRANCHING CHANNEL NETWORKS; MICROCHANNEL HEAT SINKS; ELECTROLYTE FUEL-CELLS; CONSTRUCTAL THEORY; PRESSURE-DROP; FLOW SYSTEMS; NETS; EXCHANGERS AB Nature shows that fluids bathe the animal body as trees matched canopy to canopy. The entering streams invade the body as river deltas and the reconstituted streams sweep and exit the body as river basins. Why should this be so? Why is animal vascularization not based on arrays of parallel channels, as in modern heat exchangers? In this paper, we rely on constructal theory to show that the flow architecture that provides greatest access from point to volume and from volume to point is the three-dimensional compounding of trees matched canopy to canopy. This three-dimensional tree architecture is deduced, not assumed. Its flow performance is evaluated at every step relative to the performance of equivalent architectures with parallel channels. This paper also shows that the dendritic design must become more complex (with more levels of branching) as the volume inhabited by the flow design increases. The transition from designs with p branching levels to p+1 levels occurs abruptly as the available flow volume increases. This fundamental development has implications not only in evolutionary animal design but also in animal tissue modeling and the design of new vascular (smart) materials with volumetric functionalities such as self-cooling and self-healing. (c) 2008 American Institute of Physics. C1 [Kim, S.; Bejan, A.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Lorente, S.] Inst Natl Sci Appl, Dept Genie Civil, Lab Mat & Durabil Construct, F-31077 Toulouse, France. [Miller, W.; Morse, J.] Lawrence Livermore Natl Lab, Engineering Technol Div, Livermore, CA 94551 USA. RP Kim, S (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. EM dalford@duke.edu RI Bejan, Adrian/D-3909-2012 NR 24 TC 22 Z9 22 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 123511 DI 10.1063/1.2936919 PG 8 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100029 ER PT J AU Lu, CH Raitano, JM Khalid, S Zhang, LH Chan, SW AF Lu, Chih-Hsin Raitano, Joan M. Khalid, Syed Zhang, Lihua Chan, Siu-Wai TI Cubic phase stabilization in nanoparticles of hafnia-zirconia oxides: Particle-size and annealing environment effects SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BEAM-ASSISTED DEPOSITION; NANOCRYSTALLINE ZIRCONIA; FILMS; HFO2; ZRO2; ENERGY; CRYSTALLIZATION; STABILITY; RIETVELD; SYSTEMS AB Amorphous hafnia (HfO(2-y)), zirconia (ZrO(2-y)), and hafnia-zirconia (xHfO(2-y)-(1-x)ZrO(2-y))) nanoparticles were prepared by combining aqueous solutions of hexamethylenetetramine (HMT) with hafnium dichloride oxide (HfOCl(2)center dot 8H(2)O), zirconium dichloride oxide (ZrOCl(2)center dot 8H(2)O), or a mixture of these two salts at room temperature. For pure hafnia, transmission electron microscopy showed that the lower cation concentration (0.01M) resulted in the precipitation of smaller amorphous nanoparticles relative to higher concentrations (0.015M-0.04M). Consequently, the lower concentration preparation route coupled with a reducing environment (H(2):N(2)=9:91) during annealing at temperatures between 650 and 850 degrees C allowed for nanoparticles with a cubic structure to be prepared as determined by x-ray diffraction. The structurally cubic hafnia nanoparticles were 6 nm or less in diameter and equiaxed. Using the same method (0.01M total metal cation concentration and reducing environment during annealing), nanoparticles of cubic structure were prepared across the entire hafnia-zirconia compositional spectrum, with a critical particle size for the cubic structure of about 6 nm. Nanoparticles of tetragonal and monoclinic structure were prepared by increasing the annealing temperature and/or using a less reducing environment. The unique role of HMT in sample preparation is discussed as well. (C) 2008 American Institute of Physics. C1 [Lu, Chih-Hsin; Raitano, Joan M.; Chan, Siu-Wai] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Lu, Chih-Hsin; Raitano, Joan M.; Chan, Siu-Wai] Columbia Univ, Mat Res Sci & Engn Ctr, New York, NY 10027 USA. [Khalid, Syed] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Lu, CH (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sc174@columbia.edu RI Zhang, Lihua/F-4502-2014 NR 57 TC 12 Z9 12 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 124303 DI 10.1063/1.2936983 PG 7 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100093 ER PT J AU Miller, DC Boyce, BL Kotula, PG Stoldt, CR AF Miller, David C. Boyce, Brad L. Kotula, Paul G. Stoldt, Conrad R. TI Connections between morphological and mechanical evolution during galvanic corrosion of micromachined polycrystalline and monocrystalline silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID POROUS SILICON; FRACTURE STRENGTH; CRYSTALLINE SILICON; YOUNGS MODULUS; THIN-FILMS; POLYSILICON; MEMS; MICROELECTRONICS; MICROSTRUCTURE; CONTACTS AB Many microsystems fabrication technologies currently employ a metallic overlayer, such as gold, in electrical contact with silicon structural layers. During postprocessing in hydrofluoric-based acid solutions, a galvanic cell is created between the silicon and the metallic layer. Micromachined tensile specimens reveal that such etching in the presence of a galvanic cell can cause a catastrophic reduction in the tensile strength and apparent modulus of silicon. Detailed failure analysis was also used to compare fractured corroded Si to otherwise identical reference specimens via surface based (electron and scanning probe) microscopy as well as cross-section based structural- and composition-characterization techniques. For both polycrystalline and single-crystal silicon, galvanic corrosion can result in a thick corroded surface layer created via porous silicon formation, and/or generalized material removal depending on the etch chemistry and conditions. Under certain etching conditions, the porous silicon formation process results in cavity formation as well as preferential grain-boundary attack leading to intergranular fracture. The nature and severity of corrosion damage are shown to be influenced by the surface wetting characteristics of the etch chemistry, with poor wetting resulting in localized attack facilitated by the microstructure and good wetting resulting in generalized attack. The measured stiffness of the tensile specimens can be used to determine the effective modulus and porosity of the corroded surface layer. Extending beyond previous investigations, the present work examines the quantitative connection between the choice of chemical etchant, the corresponding damage morphology, and the resulting degradation in strength and apparent modulus. The present work also uniquely identifies important differences in polycrystalline and single-crystal Si based on their disparate damage evolution and related mechanical performance. (c) 2008 American Institute of Physics. C1 [Miller, David C.; Stoldt, Conrad R.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Boyce, Brad L.] Univ Colorado, DARPA Ctr Integrated Micro Nano Electromech Trans, Boulder, CO 80309 USA. [Kotula, Paul G.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87123 USA. [Boyce, Brad L.] Sandia Natl Labs, Microsyst Mat Grp, Albuquerque, NM 87123 USA. RP Miller, DC (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM dcm@colorado.edu RI Boyce, Brad/H-5045-2012; Kotula, Paul/A-7657-2011 OI Boyce, Brad/0000-0001-5994-1743; Kotula, Paul/0000-0002-7521-2759 NR 70 TC 11 Z9 11 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 123518 DI 10.1063/1.2926083 PG 18 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100036 ER PT J AU Morozovska, AN Eliseev, EA Svechnikov, GS Gopalan, V Kalinin, SV AF Morozovska, Anna N. Eliseev, Eugene A. Svechnikov, George S. Gopalan, Venkatraman Kalinin, Sergei V. TI Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SCALE; SURFACE; FILMS AB Intrinsic domain wall width is a fundamental parameter that reflects bulk ferroelectric properties and governs the performance of ferroelectric memory devices. We present closed-form analytical expressions for vertical and lateral piezoelectric force microscopy (PFM) profiles of a single ferroelectric domain wall for the conical and disk models of the tip, beyond point charge and sphere approximations. The analysis takes into account the finite intrinsic width of the domain wall and dielectric anisotropy of the material. These analytical expressions provide insight into the mechanisms of PFM image formation and can be used for a quantitative analysis of the PFM domain wall profiles. The PFM profile of a realistic domain wall is shown to be the convolution of its intrinsic profile and the resolution function of PFM. (C) 2008 American Institute of Physics. C1 [Morozovska, Anna N.; Svechnikov, George S.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, Eugene A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 41 Prospekt Nauki, UA-03028 Kiev, Ukraine. EM morozo@i.com.ua; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 35 TC 11 Z9 11 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 124110 DI 10.1063/1.2939369 PG 8 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100088 ER PT J AU Scarpulla, MA Stone, PR Sharp, ID Haller, EE Dubon, OD Beeman, JW Yu, KM AF Scarpulla, M. A. Stone, P. R. Sharp, I. D. Haller, E. E. Dubon, O. D. Beeman, J. W. Yu, K. M. TI Nonmagnetic compensation in ferromagnetic Ga1-xMnxAs and Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTORS; METAL-INSULATOR-TRANSITION; CURIE-TEMPERATURE; TRANSPORT-PROPERTIES; GAAS; MAGNETOTRANSPORT; EXCHANGE; SILICON AB The electronic and magnetic effects of intentional compensation with nonmagnetic donors are investigated in the ferromagnetic semiconductors Ga1-xMnxAs and Ga1-xMnxP synthesized using ion implantation and pulsed-laser melting. It is demonstrated that compensation with nonmagnetic donors and Mn-I have similar qualitative effects on materials properties. With compensation T-C decreases, resistivity increases, and stronger magnetoresistance and anomalous Hall effect attributed to skew scattering are observed. Ga1-xMnxAs can be controllably compensated with Te through a metal-insulator transition through which the magnetic and electrical properties vary continuously. The resistivity of insulating Ga1-xMnxAs:Te can be described by thermal activation to the mobility edge and simply activated hopping transport. Ga1-xMnxP doped with S is insulating at all compositions but shows decreasing T-C with compensation. The existence of a ferromagnetic insulating state in Ga1-xMnxAs:Te and Ga1-xMnxP:S having T-C's of the same order as the uncompensated materials demonstrates that localized holes are effective at mediating global ferromagnetism in ferromagnetic semiconductors through the percolation of ferromagnetic "puddles" at low temperatures. (C) 2008 American Institute of Physics. C1 [Scarpulla, M. A.; Stone, P. R.; Sharp, I. D.; Haller, E. E.; Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Scarpulla, M. A.; Stone, P. R.; Sharp, I. D.; Haller, E. E.; Dubon, O. D.; Beeman, J. W.; Yu, K. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Scarpulla, MA (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM mikes@engr.ucsb.edu; oddubon@berkeley.edu RI Scarpulla, Michael/C-7941-2009; Yu, Kin Man/J-1399-2012; Sharp, Ian/I-6163-2015; OI Yu, Kin Man/0000-0003-1350-9642; Sharp, Ian/0000-0001-5238-7487; Scarpulla, Michael/0000-0002-6084-6839 NR 56 TC 9 Z9 9 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 123906 DI 10.1063/1.2940361 PG 7 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100073 ER PT J AU Wixom, RR Browning, JF Snow, CS Schultz, PA Jennison, DR AF Wixom, R. R. Browning, J. F. Snow, C. S. Schultz, P. A. Jennison, D. R. TI First principles site occupation and migration of hydrogen, helium, and oxygen in beta-phase erbium hydride SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; PSEUDOPOTENTIALS; POINTS; METALS AB First principles density functional methods were used to investigate the atomistic behavior of hydrogen, helium, and oxygen in beta-phase ErH(2). The ground state for hydrogen was indeed determined to be the tetrahedral position as commonly assumed, but if the surrounding tetrahedral sites are filled, any additional hydrogen will occupy the octahedral site. Only a small amount of thermally generated tetrahedral-vacancy octahedral-occupancy pairs are predicted at equilibrium since the formation energy is 1.21 eV. Other possible scenarios that result in octahedral hydrogen occupation include a H/Er ratio >2.0 and the presence of oxygen in the lattice. Our calculations indicate that oxygen impurities will reside in tetrahedral sites, even if that site is already occupied and hydrogen must be displaced into a neighboring octahedral site. Oxygen will migrate at moderate temperatures by jumping between tetrahedral and octahedral sites. The extent of hydrogen self-diffusion will depend on the concentration of tetrahedral vacancies and/or octahedral hydrogen and therefore can be modified by changing the H/Er ratio or by impurities (such as oxygen) that create octahedral hydrogen occupation. In samples where some of the hydrogen is replaced with tritium, helium generated by tritium decay will favor a tetrahedral site left vacant by a transmuted tritium. The barrier to helium migration between two unoccupied neighboring tetrahedral sites is 0.49 eV, where the path maximum corresponds to the octahedral site. If an extended network of neighboring vacancies exists, the relatively small barrier provides that helium may move throughout that network at room temperature. Given enough energy to escape the tetrahedral site(s), 1.31 eV, helium may continue to migrate by a 0.88 eV concerted-motion mechanism-temporarily displacing hydrogen as it moves between empty octahedral sites and filled tetrahedral sites. (C) 2008 American Institute of Physics. C1 [Wixom, R. R.; Snow, C. S.; Schultz, P. A.; Jennison, D. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Browning, J. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wixom, RR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rrwixom@sandia.gov OI Browning, James/0000-0001-8379-259X NR 21 TC 16 Z9 18 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 123708 DI 10.1063/1.2940134 PG 8 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100060 ER PT J AU Xiao, HY Zu, XT Gao, F Weber, WJ AF Xiao, H. Y. Zu, X. T. Gao, Fei Weber, W. J. TI Ab initio calculations of structural and energetic properties of defects in gallium nitride SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; NATIVE DEFECTS; POINT-DEFECTS; GAN; PSEUDOPOTENTIALS; INXGA1-XN; ALXGA1-XN; INXAL1-XN; VACANCIES; MODEL AB Ab initio total energy calculations have been performed to investigate the properties of intrinsic defects in GaN. It is found that the nitrogen defects are more stable than the Ga defects under nitrogen-rich conditions, and the results are generally consistent with those obtained by recent first-principles calculations. For the four types of nitrogen interstitials investigated, relaxation of all configurations leads to a N-N < 1120 > split configuration. The most stable configuration for Ga interstitials is the Ga octahedral interstitial, but the energy difference between the octahedral and tetrahedral configurations is small (< 0.35 eV) and depends on the basis set employed. While the < N-N > bond distance in the N-N split interstitial is very close to that of a free N(2) molecule, the Mulliken charge analysis indicates that the N atoms are partially charged, which is in contrast with previous theoretical suggestions. Based on the calculated results, the relative stabilities of various defects in GaN are determined. (c) 2008 American Institute of Physics. C1 [Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM hyxiao@uestc.edu.cn RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; NR 21 TC 8 Z9 8 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 123529 DI 10.1063/1.2947604 PG 5 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100047 ER PT J AU Zellner, MB McNeil, WV Hammerberg, JE Hixson, RS Obst, AW Olson, RT Payton, JR Rigg, PA Routley, N Stevens, GD Turley, WD Veeser, L Buttler, WT AF Zellner, M. B. McNeil, W. Vogan Hammerberg, J. E. Hixson, R. S. Obst, A. W. Olson, R. T. Payton, J. R. Rigg, P. A. Routley, N. Stevens, G. D. Turley, W. D. Veeser, L. Buttler, W. T. TI Probing the underlying physics of ejecta production from shocked Sn samples SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID VELOCITY-MEASUREMENT; INTERFEROMETER; TIN; INSTABILITY; SURFACES; WAVE AB This effort investigates the underlying physics of ejecta production for high explosive (HE) shocked Sn surfaces prepared with finishes typical to those roughened by tool marks left from machining processes. To investigate the physical mechanisms of ejecta production, we compiled and re-examined ejecta data from two experimental campaigns [W. S. Vogan , J. Appl. Phys. 98, 113508 (1998); M. B. Zellner , ibid. 102, 013522 (2007)] to form a self-consistent data set spanning a large parameter space. In the first campaign, ejecta created upon shock release at the back side of HE shocked Sn samples were characterized for samples with varying surface finishes but at similar shock-breakout pressures P(SB). In the second campaign, ejecta were characterized for HE shocked Sn samples with a constant surface finish but at varying P(SB). (C) 2008 American Institute of Physics. C1 [Zellner, M. B.; Hixson, R. S.] Los Alamos Natl Lab, DE DO, Los Alamos, NM 87545 USA. [Routley, N.] Aldermaston, Atom Weap Establishment, Reading RG7 4PR, Berks, England. [Stevens, G. D.; Turley, W. D.; Veeser, L.] Special Technol Lab, Goleta, CA 93117 USA. RP Zellner, MB (reprint author), Los Alamos Natl Lab, DE DO, P-23,POB 1663, Los Alamos, NM 87545 USA. EM mzellner@lanl.gov NR 39 TC 54 Z9 59 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2008 VL 103 IS 12 AR 123502 DI 10.1063/1.2939253 PG 7 WC Physics, Applied SC Physics GA 321DE UT WOS:000257284100020 ER PT J AU Thomas, JE Kelley, MJ AF Thomas, Joan E. Kelley, Michael J. TI Interaction of mineral surfaces with simple organic molecules by diffuse reflectance IR spectroscopy (DRIFT) SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE infrared spectroscopy; DRIFTS; oxide minerals; adsorption; carboxylic acids; surface water ID IN-SITU; ATR-FTIR; INFRARED-SPECTROSCOPY; CARBOXYLIC-ACIDS; AQUEOUS-SOLUTION; SALICYLIC-ACID; GAMMA-ALUMINA; ADSORPTION; TIO2; KAOLINITE AB The adsorption of simple organic molecules to mineral surfaces was investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and by solution chemical analysis. Salicylic acid, myristic acid or octacosane were deposited from water or hexane onto gamma-alumina and kaolinite, and examined without evacuation or blending with KBr. The DRIFTS results replicated those from ATR-IR, where available, supporting the validity of DRIFTS as a versatile and convenient alternative to ATR. Results were obtained for coverage as low as 0.02 molecules/nm(2). Monolayer coverage on gamma-alumina was determined from spectra as 0.7 molecules/nm(2) for salicylic acid, confirmed by solution analysis, and 2 molecules/nm(2) for myristic acid. Spectral features of salicylic acid deposited on gamma-alumina from hexane were not distinguishable from those deposited from water. In almost all cases, spectral features associated with the carboxyl moiety were substantially altered, indicating a significant role in the adsorption mechanism. Adsorption of salicylic acid from hexane onto kaolinite was also as carboxylate, but myristic acid showed both carboxylate and carbonyl. The results from using hexane as solvent compared to water suggest that surface-adsorbed hydroxyl and molecular water, present on mineral oxides under ambient conditions, may be a key determinant of the adsorbate architecture. (C) 2008 Elsevier Inc. All rights reserved. C1 [Kelley, Michael J.] Jefferson Lab, FEL Div, Newport News, VA 23606 USA. Coll William & Mary, Appl Res Ctr 601, Dept Appl Sci, Newport News, VA 23606 USA. RP Kelley, MJ (reprint author), Jefferson Lab, FEL Div, 12050 Jefferson Ave, Newport News, VA 23606 USA. EM mkelley@jlab.org NR 27 TC 22 Z9 22 U1 3 U2 27 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD JUN 15 PY 2008 VL 322 IS 2 BP 516 EP 526 DI 10.1016/j.jcis.2008.03.024 PG 11 WC Chemistry, Physical SC Chemistry GA 305EV UT WOS:000256161500019 PM 18430432 ER PT J AU Dang, Q Goeken, RM Brown, CR Plishka, RJ Buckler-White, A Byrum, R Foley, BT Hirsch, VM AF Dang, Que Goeken, Robert M. Brown, Charles R. Plishka, Ronald J. Buckler-White, Alicia Byrum, Russell Foley, Brian T. Hirsch, Vanessa M. TI Adaptive evolution of simian immunodeficiency viruses isolated from 2 conventional-progressor macaques with encephalitis SO JOURNAL OF INFECTIOUS DISEASES LA English DT Article ID IN-VITRO; BRAIN; REPLICATION; INFECTION; CELLS; VIVO AB Simian immunodeficiency virus-infected macaques may develop encephalitis, a feature more commonly observed in macaques with rapid progressive disease than in those with conventional disease. In this report, an analysis of 2 conventional progressors with encephalitis is described. Phylogenetic analyses of viruses isolated from the cerebrospinal fluid and plasma of both macaques demonstrated compartmentalization. Furthermore, these viruses appear to have undergone adaptive evolution to preferentially replicate in their respective cell targets of monocyte-derived macrophages and peripheral blood mononuclear cells. A statistically significant loss of potential N-linked glycosylation sites in glycoprotein 160 was observed in viruses isolated from the central nervous system. C1 [Dang, Que; Goeken, Robert M.; Brown, Charles R.; Plishka, Ronald J.; Buckler-White, Alicia; Hirsch, Vanessa M.] NIAID, Mol Microbiol Lab, Natl Inst Hlth, Bethesda, MD 20892 USA. [Byrum, Russell] Bioqual Inc, Rockville, MD USA. [Foley, Brian T.] Los Alamos Natl Lab, Grp T10, Los Alamos, NM USA. RP Hirsch, VM (reprint author), NIAID, Mol Microbiol Lab, Natl Inst Hlth, Bldg 4,Rm B1-41,4 Ctr Dr, Bethesda, MD 20892 USA. EM vhirsch@niaid.nih.gov OI Foley, Brian/0000-0002-1086-0296 FU Intramural NIH HHS [Z01 AI000370-25, Z99 AI999999] NR 20 TC 6 Z9 6 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0022-1899 J9 J INFECT DIS JI J. Infect. Dis. PD JUN 15 PY 2008 VL 197 IS 12 BP 1695 EP 1700 DI 10.1086/588671 PG 6 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 307JN UT WOS:000256315300009 PM 18454679 ER PT J AU Fabian, M Svab, E Proffen, T Veress, E AF Fabian, M. Svab, E. Proffen, Th. Veress, E. TI Structure study of multi-component borosilicate glasses from high-Q neutron diffraction measurement and RMC modeling SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE neutron diffraction/scattering; Monte Carlo simulations; borosilicates; short-range order ID X-RAY-ABSORPTION; MOLECULAR-DYNAMICS; BORATE GLASSES; NMR; BORON; ENVIRONMENT; SCATTERING; SI-29; OXIDE AB A neutron diffraction structure study has been performed on multi-component borosilicate glasses with compositions (65 - x)SiO2 center dot xB(2)O(3) center dot 25Na(2)O center dot 5BaO center dot 5ZrO(2), x = 5-15 mol%. The structure factor has been measured up to a rather high momentum transfer value of 30 angstrom(-1), which made high r-space resolution available for real space analyses. Reverse Monte Carlo simulation was applied to calculate the partial atomic pair correlation functions, nearest neighbor atomic distances and coordination number distributions. The Si-O network consists of tetrahedral SiO4 units with characteristic first neighbor distances at r(Si-O) = 1.60 angstrom and r(Si-Si) = 3.0 angstrom. The boron environment contains two well-resolved B-O distances at 1.40 and 1.60 angstrom and both 3- and 4-fold coordinated B atoms are present. A chemically mixed network structure is proposed including B-[4]-O-Si-[4] and B-[3]-O-Si-[4] chain segments. The O-O and Na-O distributions suggest partial segregation of silicon and boron rich regions. The highly effective ability of Zr to stabilize glassy and hydrolytic properties of sodium-borosilicate materials is interpreted by the network-forming role of Zr ions. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fabian, M.; Svab, E.] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary. [Proffen, Th.] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Veress, E.] Univ Babes Bolyai, Fac Chem, RO-3400 Cluj Napoca, Romania. RP Fabian, M (reprint author), Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary. EM fabian@szfki.hu RI Fabian, Margit/C-7210-2011; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 NR 33 TC 16 Z9 19 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUN 15 PY 2008 VL 354 IS 28 BP 3299 EP 3307 DI 10.1016/j.jnoncrysol.2008.01.024 PG 9 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 317RW UT WOS:000257038300010 ER PT J AU Smith, CF Halsey, WG Brown, NW Sienicki, JJ Moisseytsev, A Wade, DC AF Smith, Craig F. Halsey, William G. Brown, Neil W. Sienicki, James J. Moisseytsev, Anton Wade, David C. TI SSTAR: the US lead-cooled fast reactor (LFR) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT International Workshop on Materials for Heavy Liquid Metal Cooled Reactors and Related Technologies CY MAY 21-23, 2007 CL Rome, ITALY AB It is widely recognized that the developing world is the next area for major energy demand growth, including demand for new and advanced nuclear energy systems. With limited existing industrial and grid infrastructures, there will be an important need for future nuclear energy systems that can provide small or moderate increments of electric power (10-700 MWe) on small or immature grids in developing nations. Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. It is a system designed to provide energy security to developing nations while incorporating features to achieve nonproliferation goals, anticipating GNEP objectives. This paper presents the motivation for development of internationally deployable nuclear energy systems as well as a summary of one such system, SSTAR, which is the US Generation IV lead-cooled fast reactor system. (C) 2008 Elsevier B.V. All rights reserved. C1 [Smith, Craig F.] Lawrence Livermore Natl Lab, Monterey, CA 93943 USA. [Smith, Craig F.] USN, Postgrad Sch, Monterey, CA 93943 USA. [Halsey, William G.; Brown, Neil W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sienicki, James J.; Moisseytsev, Anton; Wade, David C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Smith, CF (reprint author), Lawrence Livermore Natl Lab, 1 Univ Circle, Monterey, CA 93943 USA. EM cfsmith@nps.edu NR 7 TC 31 Z9 35 U1 5 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2008 VL 376 IS 3 BP 255 EP 259 DI 10.1016/j.jnucmat.2008.02.049 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 322YY UT WOS:000257412400002 ER PT J AU Hosemann, P Hawley, M Mori, G Li, N Maloy, SA AF Hosemann, P. Hawley, M. Mori, G. Li, N. Maloy, S. A. TI AFM and MFM characterization of oxide layers grown on stainless steels in lead bismuth eutectic SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT International Workshop on Materials for Heavy Liquid Metal Cooled Reactors and Related Technologies CY MAY 21-23, 2007 CL Rome, ITALY ID ATOMIC-FORCE MICROSCOPE AB Fast reactors and spallation neutron sources may use lead bismuth eutectic (LBE) as a coolant. Its thermal physical and neutronic properties make it a high performance nuclear coolant and spallation target. The main disadvantage of LBE is that it is corrosive to most steels and container materials. Active control of oxygen in LBE will allow the growth of protective oxides on steels to mitigate corrosion. To understand corrosion and oxidation of candidate materials in this environment and to establish a solid scientific basis the surface structure, composition, and properties should be investigated carefully at the smallest scale., Atomic force microscopy (AFM) is a powerful tool to map out properties and structure on surfaces of virtually any material. This paper is a summary of the results from AFM measurements on ferritic/martensitic (HT-9) and austenitic (139) steels that are candidates for liquid metal cooled reactors. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hosemann, P.; Mori, G.] Univ Min & Met Leoben, CD Lab Localized Corros, A-8700 Leoben, Austria. [Hosemann, P.; Hawley, M.; Li, N.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hosemann, P (reprint author), Univ Min & Met Leoben, CD Lab Localized Corros, Franz Josef Str 18, A-8700 Leoben, Austria. EM peterh@lanl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 NR 7 TC 11 Z9 11 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2008 VL 376 IS 3 BP 289 EP 292 DI 10.1016/j.jnucmat.2008.02.013 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 322YY UT WOS:000257412400008 ER PT J AU Hosemann, P Greco, RR Usov, I Wang, Y Maloy, SA Li, N AF Hosemann, P. Greco, R. R. Usov, I. Wang, Y. Maloy, S. A. Li, N. TI The design, setup and operational testing of the irradiation and corrosion experiment (ICE) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT International Workshop on Materials for Heavy Liquid Metal Cooled Reactors and Related Technologies CY MAY 21-23, 2007 CL Rome, ITALY AB Developing and qualifying nuclear materials have traditionally been a very costly enterprise that often takes a decade or longer. The bottleneck has been the need to test materials under extreme conditions, where long irradiations times have been required. A irradiation and corrosion experiment (ICE) facility is introduced which uses low energy proton irradiation and enables testing of materials under a wide range of different conditions and environments with the benefit of relatively quick tests, low sample activation, efficiency and low cost, and the ability to obtain a wide range of data from one sample. These data can be compared to data gained from neutron irradiation experiments. Supplement to extreme conditions in nuclear reactors, this dedicated experiment will allow fast materials testing and basic studies in order to get a quicker and better understanding of the materials behavior in different environments under irradiation. We present the basic experimental design, experimental testing, and first operational experience. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hosemann, P.; Greco, R. R.; Usov, I.; Wang, Y.; Maloy, S. A.; Li, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hosemann, P.] Univ Leoben, Leoben, Austria. RP Hosemann, P (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM peterh@lanl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 NR 7 TC 5 Z9 5 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2008 VL 376 IS 3 BP 392 EP 395 DI 10.1016/j.jnucmat.2008.02.021 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 322YY UT WOS:000257412400028 ER PT J AU Hu, JZ Kwak, JH Yang, Z Osborn, W Markmaitree, T Shaw, LL AF Hu, Jian Zhi Kwak, Ja Hun Yang, Zhenguo Osborn, William Markmaitree, Tippawan Shaw, Leon L. TI Probing the reaction pathway of dehydrogenation of the LiNH2+LiHmixture using in situ H-1 NMR spectroscopy SO JOURNAL OF POWER SOURCES LA English DT Article; Proceedings Paper CT 1st Polish Forum on Fuel Cells and Hydrogen CY SEP 05-07, 2007 CL Zakopane, POLAND DE NMR; mechanical activation; LiNH2; LiH; hydrogen storage ID HYDROGEN STORAGE PROPERTIES; N-H SYSTEMS; MECHANICAL ACTIVATION; LITHIUM HYDRIDE; H-2 STORAGE; AMIDE; LINH2; LIH; TEMPERATURE; IMIDE AB Using variable temperature in situ H-1 NMR spectroscopy on a mixture of LiNH2 + LiH that was mechanically activated using high-energy ball milling, the dehydrogenation of the LiNH2 + LiH to Li2NH + H-2 Was investigated. The analysis indicates NH3 release at a temperature as low as 30 degrees C and rapid reaction between NH3 and LiH at similar to 150 degrees C. The transition from NH3 release to H-2 appearance accompanied by disappearance of NH3 confirms unambiguously the two-step elementary reaction pathway proposed by other workers. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo] Pacific NW Natl Lab, Richland, WA 99352 USA. [Osborn, William; Markmaitree, Tippawan; Shaw, Leon L.] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM jianzhi.Hu@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Osborn, Will/G-4526-2012; Kwak, Ja Hun/J-4894-2014 NR 21 TC 19 Z9 19 U1 0 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUN 15 PY 2008 VL 181 IS 1 BP 116 EP 119 DI 10.1016/j.jpowsour.2008.03.034 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 317FE UT WOS:000257004500017 ER PT J AU Jain, A Duygulu, O Brown, DW Tome, CN Agnew, SR AF Jain, A. Duygulu, O. Brown, D. W. Tome, C. N. Agnew, S. R. TI Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Hall-Petch; neutron diffraction; twinning; crystal plasticity; polycrystal modeling ID STRUCTURAL INTERPRETATION; NEUTRON-DIFFRACTION; PLASTIC-DEFORMATION; TEXTURE DEVELOPMENT; MG ALLOYS; TWINS; POLYCRYSTALS; TEMPERATURE; BEHAVIOR; FRACTURE AB The grain size dependence of the tensile properties and the deformation mechanisms responsible for those properties are examined for Mg alloy, AZ31B, sheet. Specifically, the Hall-Petch effect and strain anisotropy (r-value) are characterized experimentally, and interpreted using polycrystal plasticity modeling. {10 . 2} extension twins, {10 . 1} contraction twins, and so-called "double-twins" are observed via microscopy and diffraction-based techniques, and the amount of twinning is found to increase with increasing grain size. For the sheet texture and tensile loading condition examined, {10. 2} extension twinning is not expected, yet the polycrystal plasticity model predicts the observed behavior, including this,anomalous' tensile twinning. The analysis shows that the Hall-Petch strength dependence, of the polycrystal as a whole, is primarily determined by the grain size dependence of the strength of the prismatic slip systems. (c) 2007 Elsevier B.V. All rights reserved. C1 [Jain, A.; Duygulu, O.; Agnew, S. R.] Univ Virginia, Charlottesville, VA 22904 USA. [Brown, D. W.; Tome, C. N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Agnew, SR (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM agnew@virginia.edu RI Tome, Carlos/D-5058-2013; Duygulu, Ozgur/A-9076-2015 OI Duygulu, Ozgur/0000-0001-8646-0363 NR 34 TC 168 Z9 174 U1 3 U2 45 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 15 PY 2008 VL 486 IS 1-2 BP 545 EP 555 DI 10.1016/j.msea.2007.09.069 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 306RX UT WOS:000256266600077 ER PT J AU Bei, H George, EP Pharr, GM AF Bei, H. George, E. P. Pharr, G. M. TI Small-scale mechanical behavior of intermetallics and their composites SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 14th International Conference on the Strength of Materials (ICSMA 14) CY JUN 04-09, 2006 CL Xian Jiaotong Univ, Xian, PEOPLES R CHINA SP Inst Met Res, CAS HO Xian Jiaotong Univ DE intermetallics; composite; mechanical behavior; nanoindentation; neutron diffraction ID EUTECTIC CR-CR3SI ALLOYS; SOLIDIFIED NIAL-MO; ELASTIC-MODULUS; MICROSTRUCTURES; NANOINDENTATION; DEFORMATION; INDENTATION; HARDNESS; LOAD; CR AB To model and predict the mechanical behavior of composite materials, knowledge of the properties of their constituent phases as well as how they interact with each other is required. Although these mechanical properties can sometimes be deduced from measurements on bulk specimens, it is not always possible due to difficulties in producing bulk materials with compositions and structures similar to those of the individual phases in the composite. In such cases, in situ measurements of mechanical properties are needed. We review here our recent work on the application of nanoindentation and neutron diffraction to investigate the in situ mechanical responses of Cr-Cr(3)Si and NiAl-Mo, two model eutectic composites that were chosen because they can be processed by directional solidification to yield well-aligned lamellar and fibrous microstructures. Phase-specific mechanical properties were measured and correlated with bulk behavior. We will discuss recently developed techniques that improve the accuracy of mechanical property measurements at small microstructural length scales. (C) 2007 Elsevier B.V. All rights reserved. C1 [Bei, H.; George, E. P.; Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bei, H.; George, E. P.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP George, EP (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM georgeep@ornl.gov RI George, Easo/L-5434-2014; OI Bei, Hongbin/0000-0003-0283-7990 NR 24 TC 11 Z9 11 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 15 PY 2008 VL 483-84 SI SI BP 218 EP 222 DI 10.1016/j.msea.2006.12.185 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 303WH UT WOS:000256071100054 ER PT J AU Jakobsen, B Lienert, U Almer, J Poulsen, HF Pantleon, W AF Jakobsen, B. Lienert, U. Almer, J. Poulsen, H. F. Pantleon, W. TI Direct observation of strain in bulk subgrains and dislocation walls by high angular resolution three-dimensional X-ray diffraction SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 14th International Conference on the Strength of Materials (ICSMA 14) CY JUN 04-09, 2006 CL Xian Jiaotong Univ, Xian, PEOPLES R CHINA SP Inst Met Res, CAS HO Xian Jiaotong Univ DE plastic deformation; dislocation structure; dislocation walls; X-ray diffraction; peak profile analysis; composite model ID COPPER SINGLE-CRYSTALS; RANGE INTERNAL-STRESSES; DEFORMATION STRUCTURES; CELL STRUCTURE; ARRANGEMENT; ORIENTATION AB The X-ray diffraction (XRD) method "high angular resolution 3DXRD" is briefly introduced, and results are presented for a single bulk grain in a polycrystalline copper sample deformed in tension. It is found that the three-dimensional reciprocal-space intensity distribution of a 400 reflection associated with the grain, shows a distinct structure consisting of sharp bright peaks superimposed on a cloud of enhanced intensity. The bright peaks (which arise from individual subgrains) are found to be subjected to backward strain (on average) while the fraction of the material giving rise to the cloud of enhanced intensity is subjected to forward strain. Based on the latter observation the, originally tentative, interpretation of the cloud as arising from dislocation walls is substantiated. (C) 2007 Elsevier B.V. All rights reserved. C1 [Jakobsen, B.; Poulsen, H. F.; Pantleon, W.] Riso Natl Lab, Dept Mat Res, Ctr Fundamental Res Met Struct Dimens 4, DK-4000 Roskilde, Denmark. [Lienert, U.; Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jakobsen, B (reprint author), Riso Natl Lab, Dept Mat Res, Ctr Fundamental Res Met Struct Dimens 4, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. EM boj@ruc.dk RI Poulsen, Henning/A-4131-2012; Pantleon, Wolfgang/L-9657-2014; OI Pantleon, Wolfgang/0000-0001-6418-6260; Jakobsen, Bo/0000-0002-4018-6431 NR 10 TC 14 Z9 15 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 15 PY 2008 VL 483-84 SI SI BP 641 EP 643 DI 10.1016/j.msea.2006.12.168 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 303WH UT WOS:000256071100161 ER PT J AU Avrigeanu, M Chuvaev, SV Filatenkov, AA Forrest, RA Herman, M Koning, AJ Plompen, AJM Roman, FL Avrigeanu, V AF Avrigeanu, M. Chuvaev, S. V. Filatenkov, A. A. Forrest, R. A. Herman, M. Koning, A. J. Plompen, A. J. M. Roman, F. L. Avrigeanu, V. TI Fast-neutron induced pre-equilibrium reactions on Mn-55 and Cu-63,Cu-65 at energies up to 40 MeV SO NUCLEAR PHYSICS A LA English DT Review DE nuclear reactions Mn-55,Cu-63,Cu-65(n, X), (n, gamma), E=0.001-50 MeV; Cr-52,Cr-53,Cr-54, Mn-55, Fe-54,Fe-56,Fe-57,Fe-58, Co-59, Ni-58,Ni-60,Ni-61,Ni-62,Ni-64, Cu-63,Cu-65, Zn-64,Zn-66,Zn-68(p, X), (p, n), (p, gamma), E=1-20 MeV; analyzed total, activation and capture cross sections and particle emission spectra using an optical model with emphasis on pre-equilibrium emission, Comparison with all available data ID REACTION CROSS-SECTIONS; HOLE STATE DENSITIES; NUCLEAR-DATA EVALUATIONS; EXCITON MODEL; LEVEL DENSITY; PARTICLE EMISSION; ALPHA-PARTICLES; DECAY MODELS; FINITE DEPTH; EN=14.1 MEV AB The experimental cross sections for all neutron-induced reactions on the stable isotopes of Mn and Cu at incident energies up to 40 MeV are compared with results of pre-equilibrium (PE) and statistical model calculations. Taking advantage of the large sensitivity of statistical model analysis to residual nuclei parameters, for energies up to 20 MeV, our work was then focused on assessing PE model assumptions by data analysis in the energy range 20-40 MeV. The PE model reliance on the nuclear potential finite-depth correction for description of particle-hole state densities (PSD), nuclear-shell effects within the PSD formula, and single-particle level density is thus discussed with regard to the whole data basis. The related variance of the model results has been found as large as the differences between the global and local model calculations, while the data basis available between 20 and 40 MeV for the Mn and Cu isotopes is however too scarce in this respect. (c) 2008 Elsevier B.V. All rights reserved. C1 [Avrigeanu, M.; Roman, F. L.; Avrigeanu, V.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Chuvaev, S. V.; Filatenkov, A. A.] VG Khlopin Radium Inst, St Petersburg 194021, Russia. [Herman, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Koning, A. J.] Nucl Reseb & Consultancy Grp NRG, NL-1755 ZG Petten, Netherlands. [Plompen, A. J. M.] Commiss European Communities, Joint Res Ctr, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Forrest, R. A.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Avrigeanu, V (reprint author), Horia Hulubei Natl Inst Phys & Nucl Engn, POB MG-6, Bucharest 077125, Romania. EM vavrig@ifin.nipne.ro RI Avrigeanu, Vlad/B-6061-2011; Avrigeanu, Marilena/B-6068-2011 OI Avrigeanu, Vlad/0000-0002-5778-1376; Avrigeanu, Marilena/0000-0002-0881-3466 NR 137 TC 19 Z9 19 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 15 PY 2008 VL 806 BP 15 EP 39 DI 10.1016/j.nuclphysa.2008.03.010 PG 25 WC Physics, Nuclear SC Physics GA 310YD UT WOS:000256566000002 ER PT J AU Musgraves, JD Potter, BG Boyle, TJ AF Musgraves, J. David Potter, B. G., Jr. Boyle, Timothy J. TI Direct fabrication of physical relief structures via patterned photodeposition of a titanium alkoxide solution SO OPTICS LETTERS LA English DT Article ID FILMS AB Ultraviolet (lambda = 248 nm) excitation of a photosensitive Ti alkoxide solution was found to generate a metaloxide-based insoluble film on substrates in contact with the solution during illumination. Patterned deposition of 100 am wide lines of material was demonstrated using a slit-shaped aluminum shadow mask during exposure. Stylus profilometry confirmed that the average thickness of the photodeposited film monotonically varied with accumulated UV fluence, exhibiting thicknesses of 10 to 310nm for fluences of 12 and 192 J/cm(2), respectively. Moreover, the surface profile of the film surface at fluences greater than 12 J/cm(2) was found to reproduce the near-field Fresnel diffraction pattern anticipated from the slit mask used. (C) 2008 Optical Society of America. C1 [Musgraves, J. David; Potter, B. G., Jr.] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Boyle, Timothy J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Musgraves, JD (reprint author), Univ Arizona, Dept Mat Sci & Engn, 1235 E James E Rogers Way, Tucson, AZ 85721 USA. EM jdm047@email.arizona.edu RI Musgraves, J David/D-9260-2011 OI Musgraves, J David/0000-0003-4575-5119 NR 7 TC 6 Z9 6 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 15 PY 2008 VL 33 IS 12 BP 1306 EP 1308 DI 10.1364/OL.33.001306 PG 3 WC Optics SC Optics GA 323ED UT WOS:000257425900008 PM 18552940 ER PT J AU Maksymovych, P Dougherty, DB AF Maksymovych, Peter Dougherty, Daniel B. TI Molecular self-assembly guided by surface reconstruction: CH(3)SH monolayer on the Au(111) surface SO SURFACE SCIENCE LA English DT Article DE self-assembly; methanethiol; CH(3)SH; gold; scanning tunneling microscopy; real-time; surface diffusion ID SUPRAMOLECULAR CLUSTERS; SYSTEMS; ORGANIZATION; SUBSTRATE; NETWORKS; DOMAINS; STM AB Self-assembly of methanethiol (CH(3)SH) on Au(111) was studied using scanning tunneling microscopy at T < 150 K when the S-H bond is intact. The CH3SH monolayer assumes a commensurate structure with a [GRAPHICS] unit-cell. Only one of three possible azimuthal domains of the monolayer was observed with domain walls pinned at the rotational boundaries of the herringbone reconstruction. From a real-time observation of monolayer formation at T = 60 K we propose a phenomenological model for the growth of preferential domains, which is based on the interplay between molecular detachment from domain boundaries and anisotropic mass transport on the Au(111) surface due to its herringbone reconstruction. Published by Elsevier B.V. C1 [Maksymovych, Peter] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Maksymovych, Peter; Dougherty, Daniel B.] Univ Pittsburgh, Dept Chem, Ctr Surface Sci, Pittsburgh, PA 15260 USA. [Dougherty, Daniel B.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Maksymovych, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM maksymovychp@ornl.gov RI Maksymovych, Petro/C-3922-2016 OI Maksymovych, Petro/0000-0003-0822-8459 NR 26 TC 14 Z9 14 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 15 PY 2008 VL 602 IS 12 BP 2017 EP 2024 DI 10.1016/j.susc.2008.03.047 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 324LE UT WOS:000257519300003 ER PT J AU Fleming, GJ Adib, K Rodriguez, JA Barteau, MA White, JM Idriss, H AF Fleming, G. J. Adib, K. Rodriguez, J. A. Barteau, M. A. White, J. M. Idriss, H. TI The adsorption and reactions of the amino acid proline on rutile TiO2(010) surfaces SO SURFACE SCIENCE LA English DT Article DE TiO2(110) single crystal; proline; XPS; binding energy; zwitterion ID SINGLE-CRYSTAL SURFACES; TEMPERATURE-PROGRAMMED DESORPTION; GAS-PHASE; PHOTOELECTRON-SPECTROSCOPY; INFRARED-SPECTROSCOPY; FORMIC-ACID; GLYCINE ADSORPTION; L-ALANINE; TIO2(110); CU(110) AB The reaction of the amino acid DL-proline is studied over stoichiometric and Ar-ions sputtered (reduced) TiO2(110) single crystal surfaces by synchrotron High Resolution X-ray Photorelectron Spectroscopy (HRXPS). On the stoichiometric surface proline gives two different species at 300 K: dissociated and zwitterionic. Upon heating the zwitterionic structure is removed first from the surface followed by the dissociated form. The C1s signal for the COO function is found close to 288.5 eV for both forms while the N1s for the dissociated form is found at 400.0 eV and that of the zwitterionic from close to 401.8 eV. From the attenuation of the Ti2p signal the surface coverage was estimated less than 1/2 (about 0.35). This smaller coverage than dissociatively adsorbed carboxylic acids on this surface (usually close to 1/2), is attributed to lateral repulsion caused by the ring of adjacent proline molecules adsorbed on five-fold coordinated Ti cations along the [001] direction. On the reduced surface the amount of zwitterion structure is found two times higher than that on the stoichiometric surface, at 300 K, most likely due to the considerable decrease of the amount of surface oxygen available. The stability of the zwitterionic structure on this surface is however found similar to that found on the stoichiometric surface. In addition, evidence of oxidation of reduced Ti cations upon adsorption at 300 K is noticed and explained as breaking of the carbon-oxygen bond of a fraction of adsorbed proline. Variable temperature HRXPS has been collected and results indicated that proline is more stable on the reduced surface compared to the stoichiometric surface. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fleming, G. J.; Idriss, H.] Univ Auckland, Dept Chem, Auckland, New Zealand. [Adib, K.; Rodriguez, J. A.] Brookhaven Natl Labs, Dept Chem, Upton, NY 11973 USA. [Barteau, M. A.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [White, J. M.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. RP Idriss, H (reprint author), Univ Auckland, Dept Chem, Private Bag 92019, Auckland, New Zealand. EM h.idriss@auckland.ac.nz NR 56 TC 42 Z9 42 U1 4 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 15 PY 2008 VL 602 IS 12 BP 2029 EP 2038 DI 10.1016/j.susc.2008.04.010 PG 10 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 324LE UT WOS:000257519300005 ER PT J AU Riffe, DM Franckowiak, RT Shinn, ND Kim, B Kim, KJ Kang, TH AF Riffe, D. M. Franckowiak, R. T. Shinn, N. D. Kim, B. Kim, K. J. Kang, T. -H. TI Core-level spectroscopy of the Ni/W(110) interface: Correlation of W interfacial core-level shifts with first-layer Ni phases SO SURFACE SCIENCE LA English DT Article DE bimetallic surfaces; nickel; soft X-ray photoelectron spectroscopy; surface electronic structure; tungsten ID SURFACE SEGREGATION ENERGIES; EPITAXIAL NI(111)/W(110) LAYERS; SPIN-REORIENTATION TRANSITION; MAGNETIZED ULTRATHIN FILMS; PHOTOELECTRON-SPECTROSCOPY; THICKNESS DEPENDENCE; W(110) SURFACE; METAL ALLOYS; NICKEL FILMS; THIN-FILMS AB We have measured W 4f(7/2) core-level photoemission spectra from W(110) in the presence of Ni overlayers, from similar to 0.2 to similar to 3 monolayers. Interfacial core-level shifts associated with first-layer Ni phases have been identified: -230 +/- 15 meV for the 1 x 1 pseudomorphic phase and -70 +/- 7 meV for the 7 x 1 close-packed commensurate phase. At higher Ni coverages the interfacial core-level shift is -100 +/- 10 meV. These shifts are analyzed using the partial-shift model of Nilsson et al. [Phys. Rev. B 38 (1988) 10357]; the analysis indicates that the difference in binding energies between the 1 x 1 and 7 x 1 phases has a large contribution from structural differences between the two phases. (C) 2008 Elsevier B.V. All rights reserved. C1 [Riffe, D. M.; Franckowiak, R. T.] Utah State Univ, Dept Phys, Logan, UT 84322 USA. [Shinn, N. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kim, B.] POSTECH, Dept Phys, Pohang 790784, Kyungbuk, South Korea. [Kim, B.; Kang, T. -H.] Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, Kyungbuk, South Korea. [Kim, K. J.] Konkuk Univ, Dept Phys, Seoul 143701, South Korea. RP Riffe, DM (reprint author), Utah State Univ, Dept Phys, Logan, UT 84322 USA. EM riffe@cc.usu.edu NR 87 TC 5 Z9 5 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 15 PY 2008 VL 602 IS 12 BP 2039 EP 2046 DI 10.1016/j.susc.2008.04.022 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 324LE UT WOS:000257519300006 ER PT J AU Garcia, RM Song, YJ Dorin, RM Wang, HR Li, P Qiu, Y van Swol, F Shelnutt, JA AF Garcia, Robert M. Song, Yujiang Dorin, Rachel M. Wang, Haorong Li, Peng Qiu, Yan van Swol, Frank Shelnutt, John A. TI Light-driven synthesis of hollow platinum nanospheres SO CHEMICAL COMMUNICATIONS LA English DT Article ID NANOSTRUCTURES; NANOPARTICLES; NANOCAGES; LIPOSOMES; CATALYST; SPHERES; GOLD AB Hollow platinum nanospheres that are porous and have uniform shell thickness are prepared by templating platinum growth on polystyrene beads with an adsorbed porphyrin photocatalyst irradiated by visible light. C1 [Garcia, Robert M.; Song, Yujiang; Dorin, Rachel M.; Wang, Haorong; Qiu, Yan; van Swol, Frank; Shelnutt, John A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Garcia, Robert M.; Dorin, Rachel M.; Wang, Haorong; Li, Peng; Qiu, Yan; van Swol, Frank] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. [Garcia, Robert M.; Dorin, Rachel M.; Wang, Haorong; Li, Peng; Qiu, Yan; van Swol, Frank] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Garcia, Robert M.; Dorin, Rachel M.; Wang, Haorong; Li, Peng; Qiu, Yan; van Swol, Frank] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Song, YJ (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM ysong@sandia.gov; jasheln@unm.edu RI Song, Yujiang/A-8700-2009; Shelnutt, John/A-9987-2009 OI Shelnutt, John/0000-0001-7368-582X NR 17 TC 22 Z9 22 U1 3 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD JUN 14 PY 2008 IS 22 BP 2535 EP 2537 DI 10.1039/b801695j PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 305XZ UT WOS:000256212400010 PM 18506235 ER PT J AU Frischknecht, AL AF Frischknecht, Amalie L. TI Forces between nanorods with end-adsorbed chains in a homopolymer melt SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; INTEGRAL-EQUATION THEORY; POLYMER NANOCOMPOSITES; BLOCK-COPOLYMER; SLITLIKE PORES; BRUSHES; SURFACE; NANOPARTICLES; PARTICLES; INTERFACE AB Adsorbed or grafted polymers are often used to provide steric stabilization of colloidal particles. When the particle size approaches the nanoscale, the curvature of the particles becomes relevant. To investigate this effect for the case of cylindrical symmetry, I use a classical fluids density functional theory applied to a coarse-grained model to study the polymer-mediated interactions between two nanorods. The rods are coated with end-adsorbing chains and immersed in a polymer melt of chemically identical, nonadsorbing chains. The force between the nanorods is found to be nonmonotonic, with an attractive well when the two brushes come into contact with each other, followed by a steep repulsion at shorter distances. The attraction is due to the entropic phenomenon of autophobic dewetting, in which there is a surface tension between the brush and the matrix chains. These results are similar to previous results for planar and spherical polymer brushes in melts of the same polymer. The depth of the attractive well increases with matrix chain molecular weight and with the surface coverage. The attraction is very weak when the matrix chain molecular weight is similar to or smaller than the brush molecular weight, but for longer matrix chains the magnitude of the attraction can become large enough to cause aggregation of the nanorods. (C) 2008 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Frischknecht, AL (reprint author), Sandia Natl Labs, POB 5800,MS 1411, Albuquerque, NM 87185 USA. EM alfrisc@sandia.gov RI Frischknecht, Amalie/N-1020-2014 OI Frischknecht, Amalie/0000-0003-2112-2587 NR 63 TC 28 Z9 28 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2008 VL 128 IS 22 AR 224902 DI 10.1063/1.2929831 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 312XS UT WOS:000256706300051 PM 18554048 ER PT J AU Hammond, JR de Jong, WA Kowalski, K AF Hammond, Jeff R. de Jong, Wibe A. Kowalski, Karol TI Coupled-cluster dynamic polarizabilities including triple excitations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FREQUENCY-DEPENDENT POLARIZABILITIES; CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; STATIC DIPOLE POLARIZABILITIES; FULL CONFIGURATION-INTERACTION; LINEAR-RESPONSE CALCULATION; AB-INITIO CALCULATIONS; EQUILIBRIUM STRUCTURES; ELECTRON CORRELATION; WAVE-FUNCTIONS AB Dynamic polarizabilities for open- and closed-shell molecules were obtained by using coupled-cluster (CC) linear response theory with full treatment of singles, doubles, and triples (CCSDT-LR) with large basis sets utilizing the NWChem software suite. By using four approximate CC methods in conjunction with augmented cc-pVNZ basis sets, we are able to evaluate the convergence in both many-electron and one-electron spaces. For systems with primarily dynamic correlation, the results for CC3 and CCSDT are almost indistinguishable. For systems with significant static correlation, the CC3 tends to overestimate the triples contribution, while the PS(T) approximation [J. Chem. Phys. 127, 164105 (2007)] produces mixed results that are heavily dependent on the accuracies provided by noniterative approaches used to correct the equation-of-motion CCSD excitation energies. Our results for open- shell systems show that the choice of reference ( restricted open- shell Hartree-Fock versus unrestricted Hartree-Fock) can have a significant impact on the accuracy of polarizabilities. A simple extrapolation based on pentuple-zeta CCSD calculations and triple-zeta CCSDT calculations reproduces experimental results with good precision in most cases. (C) 2008 American Institute of Physics. C1 [Hammond, Jeff R.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Hammond, Jeff R.; de Jong, Wibe A.; Kowalski, Karol] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Hammond, JR (reprint author), Univ Chicago, Dept Chem, Chicago, IL 60637 USA. EM jhammond@uchicago.edu; karol.kowalski@pnl.gov RI DE JONG, WIBE/A-5443-2008; Hammond, Jeff/G-8607-2013 OI DE JONG, WIBE/0000-0002-7114-8315; Hammond, Jeff/0000-0003-3181-8190 NR 59 TC 14 Z9 14 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2008 VL 128 IS 22 AR 224102 DI 10.1063/1.2929840 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 312XS UT WOS:000256706300004 PM 18554001 ER PT J AU Foster, M Colgan, J Pindzola, MS AF Foster, M. Colgan, J. Pindzola, M. S. TI Doubly differential cross sections for the proton-impact double ionization of helium SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID ELECTRON CORRELATIONS; SELECTION-RULES; COLLISIONS; DYNAMICS; SINGLE; STATES AB A time-dependent close-coupling approach is used to investigate 6 MeV proton-impact double ionization of helium. We extract doubly differential (in the emission angles of both outgoing electrons) cross sections for comparison with recent experimental measurements. Good qualitative agreement is found between our calculations and the measurements. We also present differential cross sections for cases where the energy available to the outgoing electrons is unrestricted, which allows further information about the double escape process to be inferred. C1 [Foster, M.; Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Foster, M (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM foster@lanl.gov; jcolgan@lanl.gov; pindzola@physics.auburn.edu OI Colgan, James/0000-0003-1045-3858 NR 23 TC 14 Z9 14 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUN 14 PY 2008 VL 41 IS 11 AR 111002 DI 10.1088/0953-4075/41/11/111002 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 304ZQ UT WOS:000256148000002 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstaedt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Saltoo, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for resonant t(t)over-bar production in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOP-QUARK PRODUCTION; COLLIDER DETECTOR; LIKELIHOOD METHOD; MISSING MOMENTUM; PHYSICS; RECONSTRUCTION; TECHNICOLOR; FERMILAB; EVENTS AB We report on a search for narrow-width particles decaying to a top and antitop quark pair. The data set used in the analysis corresponds to an integrated luminosity of 680 pb(-1) collected with the Collider Detector at Fermilab in run II. We present 95% confidence level upper limits on the cross section times branching ratio. Assuming a specific top-color-assisted technicolor production model, the leptophobic Z(') with width Gamma(Z)' =0.012M(Z)', we exclude the mass range M-Z' < 725 GeV/c(2) at the 95% confidence level. C1 Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. Chonnam Natl Univ, Kwangju 500757, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. Siena & Scuola Normale Super, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015 OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678 NR 27 TC 31 Z9 31 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 231801 DI 10.1103/PhysRevLett.100.231801 PG 7 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100011 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Brandin, AV Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCDLB Callner, J Catu, O Cebra, D Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YN Gos, H Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Horner, MJ Huang, HZ Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Kislov, EM Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kurnadi, P Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Olson, D Pachr, M Pal, SK Panebratsev, Y Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Qattan, IA Raniwala, R Raniwala, S Ray, RL Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tarnowsky, T Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Wu, Y Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yue, Q Yurevich, VI Zawisza, M Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S-L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gos, H. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Horner, M. J. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kurnadi, P. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Qattan, I. A. Raniwala, R. Raniwala, S. Ray, R. L. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tarnowsky, T. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, Y. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I-K. Yue, Q. Yurevich, V. I. Zawisza, M. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. TI Longitudinal double-spin asymmetry for inclusive jet production in (p)over-right-arrow + (p)over-right-arrow collisions at root s=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLARIZED PROTONS; NUCLEON; PHOTOPRODUCTION; PAIR AB We report a new STAR measurement of the longitudinal double-spin asymmetry A(LL) for inclusive jet production at midrapidity in polarized p+p collisions at a center-of-mass energy of root s = 200 GeV. The data, which cover jet transverse momenta 5 < p(T) < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements. C1 Univ Illinois, Chicago, IL 60607 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Birmingham, Birmingham, W Midlands, England. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. Nucl Phys Inst AS CR, CR-25068 Prague, Czech Republic. Lab High Energy JINR, Dubna, Russia. Particle Phys Lab JINR, Dubna, Russia. Goethe Univ Frankfurt, Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Univ Kentucky, Lexington, KY 40506 USA. Acad Sinica, Inst Modern Phys, Lanzhou, Peoples R China. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF, Amsterdam, Netherlands. Univ Utrecht, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Anhua 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas Austin, Austin, TX 78712 USA. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. Hua Zhong Normal Univ, Inst Particle Phys, CCNU, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Mischke, Andre/D-3614-2011; Chaloupka, Petr/E-5965-2012; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Sumbera, Michal/O-7497-2014; Nattrass, Christine/J-6752-2016; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017 OI Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Sumbera, Michal/0000-0002-0639-7323; Nattrass, Christine/0000-0002-8768-6468; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345 NR 29 TC 79 Z9 79 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 232003 DI 10.1103/PhysRevLett.100.232003 PG 7 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100016 PM 18643488 ER PT J AU Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Averbeck, R Awes, TC Azmoun, B Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Campbell, S Chai, JS Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Chung, P Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Enokizono, A En'yo, H Espagnon, B Esumi, S Fields, DE Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fukao, Y Fung, SY Gadrat, S Gastineau, F Germain, M Glenn, A Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haggerty, JS Hagiwara, MN Hamagaki, H Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hur, MG Ichihara, T Imai, K Inaba, M Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kaneta, M Kang, JH Kawagishi, T Kazantsev, AV Kelly, S Khanzadeev, A Kim, DJ Kim, E Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kroon, PJ Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lajoie, JG Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, MK Leitch, MJ Leite, MAL Lim, H Litvinenko, A Liu, MX Li, XH Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Masui, H Matathias, F McCain, MC McGaughey, PL Miake, Y Miller, TE Milov, A Mioduszewski, S Mishra, GC Mitchell, JT Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakamura, T Newby, J Nguyen, M Norman, BE Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Omiwade, OO Oskarsson, A Otterlund, I Ozawa, K Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Samsonov, V Sato, HD Sato, S Sawada, S Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Sim, KS Singh, CP Singh, V Skutnik, S Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Tojo, J Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjoe, H Tyurin, N Vale, C Valle, H Van Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Vznuzdaev, E Wagner, M Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yanovich, A Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zimanyi, J Zolin, L AF Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Campbell, S. Chai, J. -S. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Chung, P. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Das, K. David, G. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Fields, D. E. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fung, S. -Y. Gadrat, S. Gastineau, F. Germain, M. Glenn, A. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hur, M. G. Ichihara, T. Imai, K. Inaba, M. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kaneta, M. Kang, J. H. Kawagishi, T. Kazantsev, A. V. Kelly, S. Khanzadeev, A. Kim, D. J. Kim, E. Kim, Y. -S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Leitch, M. J. Leite, M. A. L. Lim, H. Litvinenko, A. Liu, M. X. Li, X. H. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Masui, H. Matathias, F. McCain, M. C. McGaughey, P. L. Miake, Y. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mitchell, J. T. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakamura, T. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ozawa, K. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Samsonov, V. Sato, H. D. Sato, S. Sawada, S. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Tojo, J. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjoe, H. Tyurin, N. Vale, C. Valle, H. Van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Vznuzdaev, E. Wagner, M. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yanovich, A. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zimanyi, J. Zolin, L. TI Source breakup dynamics in Au+Au collisions at root s(NN)=200 GeV via three-dimensional two-pion source imaging SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION REACTIONS; FEMTOSCOPY AB A three-dimensional correlation function obtained from midrapidity, low p(T), pion pairs in central Au+Au collisions at root s(NN) = 200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). A proper breakup time tau(0) similar to 9 fm/c and a mean proper emission duration Delta tau similar to 2 fm/c, leading to sizable emission time differences ( approximate to 12 fm/c), are required to allow models to be successfully matched to these tails. The model comparisons also suggest an outside-in "burning" of the emission source reminiscent of many hydrodynamical models. C1 Joint Inst Nucl Res, Dubna 141980, Russia. Abilene Christian Univ, Abilene, TX 79699 USA. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. Univ Colorado, Boulder, CO 80309 USA. Nevis Labs, New York, NY 10533 USA. Columbia Univ, New York, NY 10027 USA. CEA Saclay, F-91191 Gif Sur Yvette, France. Univ Debrecen, H-4010 Debrecen, Hungary. Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. State Res Ctr Russian Fed, Inst High Energy Phys, Protvino 142281, Russia. Univ Illinois, Urbana, IL 61801 USA. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Russia. KAERI, Cyclotron Applicat Lab, Seoul, South Korea. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. Korea Univ, Seoul 136701, South Korea. Russian Res Ctr, Kurchatov Inst, Moscow, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. St Petersburg State Polytech Univ, St Petersburg, Russia. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, SUBATECH, CNRS IN2P3, Ecole Mines Nantes, Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Sci & Technol Res Inst, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Afanasiev, S (reprint author), Joint Inst Nucl Res, Dubna 141980, Russia. RI Taketani, Atsushi/E-1803-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Semenov, Vitaliy/E-9584-2017 OI Taketani, Atsushi/0000-0002-4776-2315; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; NR 17 TC 21 Z9 21 U1 4 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 232301 DI 10.1103/PhysRevLett.100.232301 PG 6 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100017 PM 18643489 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Campagnari, C Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Robertson, AI Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Beequilleux, J D'Orazio, A Davier, M Da Costa, JF Grosdidier, G Cker, AH Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cotee, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissieere, C Hamon, O Leruste, P Malcleees, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schrooeder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Robertson, A. I. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Measurement of the decay B(-)-> D(*0)e(-)(nu)over-bar(e) SO PHYSICAL REVIEW LETTERS LA English DT Article AB Using 226x10(6) B (B) over bar events recorded on the Gamma(4S) resonance with the BABAR detector at the SLAC e(+)e(-) PEP-II storage rings, we reconstruct B(-)-> D(*0)e(-)(nu) over bar (e) decays using the decay chain D(*0)-> D(0)pi(0) and D(0)-> K(-)pi(+). From the dependence of their differential rate on w, the dot product of the four velocities of B(-) and D(*0), and using the form factor description by Caprini et al. with the parameters F(1) and rho(2)(A1), we obtain the results rho(2)(A1)=1.16 +/- 0.06 +/- 0.08, F(1)vertical bar V(cb)vertical bar=(35.9 +/- 0.6 +/- 1.4) x 10(-3), and B(B(-)-> D(*0)e(-)(nu) over bar (e)) = (5.56 +/- 0.08 +/- 0.41)%. C1 CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 3, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Imperial Coll London, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas Austin, Austin, TX 78712 USA. Univ Texas Dallas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Lista, Luca/C-5719-2008; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195 NR 15 TC 12 Z9 12 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 231803 DI 10.1103/PhysRevLett.100.231803 PG 7 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100013 ER PT J AU Bettencourt, LMA Gintautas, V Ham, MI AF Bettencourt, Luis M. A. Gintautas, Vadas Ham, Michael I. TI Identification of functional information subgraphs in complex networks SO PHYSICAL REVIEW LETTERS LA English DT Article ID POPULATION; ENTROPY; MOTIFS AB We present a general information theoretic approach for identifying functional subgraphs in complex networks. We show that the uncertainty in a variable can be written as a sum of information quantities, where each term is generated by successively conditioning mutual informations on new measured variables in a way analogous to a discrete differential calculus. The analogy to a Taylor series suggests efficient optimization algorithms for determining the state of a target variable in terms of functional groups of other nodes. We apply this methodology to electrophysiological recordings of cortical neuronal networks grown in vitro. Each cell's firing is generally explained by the activity of a few neurons. We identify these neuronal subgraphs in terms of their redundant or synergetic character and reconstruct neuronal circuits that account for the state of target cells. C1 [Gintautas, Vadas] Los Alamos Natl Lab, T7, Los Alamos, NM 87545 USA. [Gintautas, Vadas] Univ Illinois, Ctr Complex Syst Res, Urbana, IL 61801 USA. [Bettencourt, Luis M. A.; Gintautas, Vadas; Ham, Michael I.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Ham, Michael I.] Univ N Texas, Ctr Network Neurosci, Denton, TX 76203 USA. [Bettencourt, Luis M. A.; Gintautas, Vadas; Ham, Michael I.] Los Alamos Natl Lab, CNLS, Div Theoret, Los Alamos, NM 87545 USA. RP Gintautas, V (reprint author), Los Alamos Natl Lab, T7, MS B284, Los Alamos, NM 87545 USA. EM vgintau2@uiuc.edu NR 20 TC 24 Z9 24 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 238701 DI 10.1103/PhysRevLett.100.238701 PG 4 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100078 PM 18643550 ER PT J AU Chen, XS Lu, XF Sun, WM Wang, F Goldman, T AF Chen, Xiang-Song Lue, Xiao-Fu Sun, Wei-Min Wang, Fan Goldman, T. TI Spin and orbital angular momentum in gauge theories: Nucleon spin structure and multipole radiation revisited SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROTON; SCATTERING; FIELDS; LIGHT AB We address and solve the long-standing gauge-invariance problem of the nucleon spin structure. Explicitly gauge-invariant spin and orbital angular momentum operators of quarks and gluons are obtained. This was previously thought to be an impossible task and opens a more promising avenue towards the understanding of the nucleon spin. Our research also justifies the traditional use of the canonical, gauge-dependent angular momentum operators of photons and electrons in the multipole-radiation analysis and labeling of atomic states and sheds much light on the related energy-momentum problem in gauge theories, especially in connection with the nucleon momentum. C1 [Chen, Xiang-Song; Lue, Xiao-Fu] Sichuan Univ, Dept Phys, Chengdu 610064, Peoples R China. [Chen, Xiang-Song; Sun, Wei-Min; Wang, Fan] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Goldman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Chen, XS (reprint author), Sichuan Univ, Dept Phys, Chengdu 610064, Peoples R China. EM cxs@scu.edu.cn NR 29 TC 99 Z9 100 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 232002 DI 10.1103/PhysRevLett.100.232002 PG 4 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100015 PM 18643487 ER PT J AU Devetak, I Yard, J AF Devetak, Igor Yard, Jon TI Exact cost of redistributing multipartite quantum states SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRONG SUBADDITIVITY; CLASSICAL CAPACITY; SIDE INFORMATION; ENTANGLEMENT; CHANNELS; COMMUNICATION; ENTROPY AB How correlated are two quantum systems from the perspective of a third? We answer this by providing an optimal "quantum state redistribution" protocol for multipartite product sources. Specifically, given an arbitrary quantum state of three systems, where Alice holds two and Bob holds one, we identify the cost, in terms of quantum communication and entanglement, for Alice to give one of her parts to Bob. The communication cost gives the first known operational interpretation to quantum conditional mutual information. The optimal procedure is self-dual under time reversal and is perfectly composable. This generalizes known protocols such as the state merging and fully quantum Slepian-Wolf protocols, from which almost every known protocol in quantum Shannon theory can be derived. C1 [Devetak, Igor] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Yard, Jon] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA. [Yard, Jon] Los Alamos Natl Lab, Quantum Inst, CNLS, Los Alamos, NM 87545 USA. RP Devetak, I (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. NR 33 TC 38 Z9 38 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 230501 DI 10.1103/PhysRevLett.100.230501 PG 4 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100005 PM 18643477 ER PT J AU Konicek, AR Grierson, DS Gilbert, PUPA Sawyer, WG Sumant, AV Carpick, RW AF Konicek, A. R. Grierson, D. S. Gilbert, P. U. P. A. Sawyer, W. G. Sumant, A. V. Carpick, R. W. TI Origin of ultralow friction and wear in ultrananocrystalline diamond SO PHYSICAL REVIEW LETTERS LA English DT Article ID CARBON-FILMS; X-RAY; POLYCRYSTALLINE DIAMOND; TRIBOLOGICAL PROPERTIES; SURFACE-CHEMISTRY; SUPERLOW FRICTION; HIGH-VACUUM; INTERFACE; ENVIRONMENT; PRESSURE AB The impressively low friction and wear of diamond in humid environments is debated to originate from either the stability of the passivated diamond surface or sliding-induced graphitization/rehybridization of carbon. We find ultralow friction and wear for ultrananocrystalline diamond surfaces even in dry environments, and observe negligible rehybridization except for a modest, submonolayer amount under the most severe conditions (high load, low humidity). This supports the passivation hypothesis, and establishes a new regime of exceptionally low friction and wear for diamond. C1 [Konicek, A. R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Grierson, D. S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Gilbert, P. U. P. A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Sawyer, W. G.] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Sumant, A. V.] Ctr Nanoscale Mat, Argonne Natl Lab, Argonne, IL 60439 USA. [Carpick, R. W.] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. RP Konicek, AR (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. RI Sawyer, Wallace/A-7983-2008; Gilbert, Pupa/A-6299-2010 OI Sawyer, Wallace/0000-0002-4461-7227; Gilbert, Pupa/0000-0002-0139-2099 NR 31 TC 111 Z9 113 U1 1 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 235502 DI 10.1103/PhysRevLett.100.235502 PG 4 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100043 PM 18643515 ER PT J AU Maier, TA Poilblanc, D Scalapino, DJ AF Maier, T. A. Poilblanc, D. Scalapino, D. J. TI Dynamics of the pairing interaction in the Hubbard and t-J models of high-temperature superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID CORRELATED ELECTRON-SYSTEMS; CUPRATE SUPERCONDUCTORS; BI2SR2CACU2O8+DELTA; APPROXIMATION AB The question of whether one should speak of a "pairing glue" in the Hubbard and t-J models is basically a question about the dynamics of the pairing interaction. If the dynamics of the pairing interaction arises from virtual states, whose energies correspond to the Mott gap, and give rise to the exchange coupling J, the interaction is instantaneous on the relative time scales of interest. In this case, while one might speak of an "instantaneous glue," this interaction differs from the traditional picture of a retarded pairing interaction. However, as we will show, the dominant contribution to the pairing interaction for both of these models arises from energies reflecting the spectrum seen in the dynamic spin susceptibility. In this case, the basic interaction is retarded, and one speaks of a spin-fluctuation glue which mediates the d-wave pairing. C1 [Maier, T. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Maier, T. A.] Oak Ridge Natl Lab, Div Mat, Oak Ridge, TN 37831 USA. [Poilblanc, D.] CNRS, Phys Theor Lab, F-31062 Toulouse, France. [Poilblanc, D.] Univ Toulouse, F-31062 Toulouse, France. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Maier, TA (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. EM maierta@ornl.gov; Didier.Poilblanc@irsamc.ups-tlse.fr; djs@vulcan2.physics.ucsb.edu RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 26 TC 84 Z9 84 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 237001 DI 10.1103/PhysRevLett.100.237001 PG 4 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100063 PM 18643535 ER PT J AU Singh, DJ Du, MH AF Singh, D. J. Du, M. -H. TI Density functional study of LaFeAsO(1-x)F(x): A low carrier density superconductor near itinerant magnetism SO PHYSICAL REVIEW LETTERS LA English DT Article AB Density functional studies of 26 K superconducting LaFeAs(O,F) are reported. We find a low carrier density, high density of states, N(E(F)), and modest phonon frequencies relative to T(c). The high N(E(F)) leads to proximity to itinerant magnetism, with competing ferromagnetic and antiferromagnetic fluctuations and the balance between these controlled by the doping level. Thus LaFeAs(O,F) is in a unique class of high T(c) superconductors: high N(E(F)) ionic metals near magnetism. C1 [Singh, D. J.; Du, M. -H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; NR 20 TC 877 Z9 897 U1 14 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 237003 DI 10.1103/PhysRevLett.100.237003 PG 4 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100065 PM 18643537 ER PT J AU Stone, MB Lumsden, MD Chang, S Samulon, EC Batista, CD Fisher, IR AF Stone, M. B. Lumsden, M. D. Chang, S. Samulon, E. C. Batista, C. D. Fisher, I. R. TI Singlet-triplet dispersion reveals additional frustration in the triangular-lattice dimer compound Ba3Mn2O8 SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; BA3CR2O8; TLCUCL3; FIELD AB We present single crystal inelastic neutron scattering measurements of the S=1 dimerized quasi-two-dimensional antiferromagnet Ba3Mn2O8. The singlet-triplet dispersion reveals nearest-neighbor and next-nearest-neighbor ferromagnetic interactions between adjacent bilayers that compete against each other. Although the interbilayer exchange is comparable to the intrabilayer exchange, this additional frustration reduces the effective coupling along the c axis and leads to a quasi-two-dimensional behavior. In addition, the obtained exchange values are able to reproduce the four critical fields in the phase diagram. C1 [Stone, M. B.; Lumsden, M. D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Chang, S.] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Samulon, E. C.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford University, CA 94305 USA. [Samulon, E. C.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford University, CA 94305 USA. [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Stone, MB (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Stone, Matthew/G-3275-2011; Batista, Cristian/J-8008-2016; Lumsden, Mark/F-5366-2012 OI Stone, Matthew/0000-0001-7884-9715; Lumsden, Mark/0000-0002-5472-9660 NR 27 TC 29 Z9 29 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 237201 DI 10.1103/PhysRevLett.100.237201 PG 4 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100066 PM 18643538 ER PT J AU Zhu, JX Martin, I Bishop, AR AF Zhu, Jian-Xin Martin, I. Bishop, A. R. TI Kondo stripes in an Anderson-Heisenberg model of heavy fermion systems SO PHYSICAL REVIEW LETTERS LA English DT Article ID MEAN-FIELD-THEORY; MAGNETIC INSTABILITY; LIQUID BEHAVIOR; MIXED-VALENCE; SUPERCONDUCTIVITY; TEMPERATURE; ELECTRON; METALS; STATE AB We study the interplay between the spin-liquid and Kondo physics, as related to the nonmagnetic part of the phase diagram of heavy fermion materials. Within the unrestricted mean-field treatment of the infinite-U 2D Anderson-Heisenberg model, we find that there are two topologically distinct nondegenerate uniform heavy Fermi liquid states that may form as a consequence of the Kondo coupling between spinons and conduction electrons. For certain carrier concentrations, the uniform Fermi liquid becomes unstable with respect to the formation of a new kind of anharmonic "Kondo stripe" state with inhomogeneous Kondo screening strength and the charge density modulation. These features are experimentally measurable and thus may help to establish the relevance of the spin-liquid correlations to heavy fermion materials. C1 [Zhu, Jian-Xin; Martin, I.; Bishop, A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zhu, JX (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM jxzhu@lanl.gov OI Zhu, Jianxin/0000-0001-7991-3918 NR 33 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 13 PY 2008 VL 100 IS 23 AR 236403 DI 10.1103/PhysRevLett.100.236403 PG 4 WC Physics, Multidisciplinary SC Physics GA 312YK UT WOS:000256708100054 PM 18643526 ER PT J AU Arvizu, D AF Arvizu, Dan TI Biofuels: Too soon to give up SO SCIENCE LA English DT Letter C1 US DOE, Natl Renewable Energy Lab, Washington, DC 20585 USA. Natl Sci Board, Task Force Sustainable Energy, Arlington, VA 22230 USA. RP Arvizu, D (reprint author), US DOE, Natl Renewable Energy Lab, Washington, DC 20585 USA. NR 2 TC 2 Z9 2 U1 1 U2 3 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 13 PY 2008 VL 320 IS 5882 BP 1418 EP 1419 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 312MV UT WOS:000256676400013 ER PT J AU Subedi, R Shneor, R Monaghan, P Anderson, BD Aniol, K Annand, J Arrington, J Benaoum, H Benmokhtar, F Boeglin, W Chen, JP Choi, S Cisbani, E Craver, B Frullani, S Garibaldi, F Gilad, S Gilman, R Glamazdin, O Hansen, JO Higinbotham, DW Holmstrom, T Ibrahim, H Igarashi, R de Jager, CW Jans, E Jiang, X Kaufman, LJ Kelleher, A Kolarkar, A Kumbartzki, G LeRose, JJ Lindgren, R Liyanage, N Margaziotis, DJ Markowitz, P Marrone, S Mazouz, M Meekins, D Michaels, R Moffit, B Perdrisat, CF Piasetzky, E Potokar, M Punjabi, V Qiang, Y Reinhold, J Ron, G Rosner, G Saha, A Sawatzky, B Shahinyan, A Sirca, S Slifer, K Solvignon, P Sulkosky, V Urciuoli, GM Voutier, E Watson, JW Weinstein, LB Wojtsekhowski, B Wood, S Zheng, XC Zhu, L AF Subedi, R. Shneor, R. Monaghan, P. Anderson, B. D. Aniol, K. Annand, J. Arrington, J. Benaoum, H. Benmokhtar, F. Boeglin, W. Chen, J. -P. Choi, Seonho Cisbani, E. Craver, B. Frullani, S. Garibaldi, F. Gilad, S. Gilman, R. Glamazdin, O. Hansen, J. -O. Higinbotham, D. W. Holmstrom, T. Ibrahim, H. Igarashi, R. de Jager, C. W. Jans, E. Jiang, X. Kaufman, L. J. Kelleher, A. Kolarkar, A. Kumbartzki, G. LeRose, J. J. Lindgren, R. Liyanage, N. Margaziotis, D. J. Markowitz, P. Marrone, S. Mazouz, M. Meekins, D. Michaels, R. Moffit, B. Perdrisat, C. F. Piasetzky, E. Potokar, M. Punjabi, V. Qiang, Y. Reinhold, J. Ron, G. Rosner, G. Saha, A. Sawatzky, B. Shahinyan, A. Sirca, S. Slifer, K. Solvignon, P. Sulkosky, V. Urciuoli, G. M. Voutier, E. Watson, J. W. Weinstein, L. B. Wojtsekhowski, B. Wood, S. Zheng, X. -C. Zhu, L. TI Probing cold dense nuclear matter SO SCIENCE LA English DT Article ID SHORT-RANGE CORRELATIONS AB The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. C1 [Chen, J. -P.; Gilman, R.; Hansen, J. -O.; Higinbotham, D. W.; de Jager, C. W.; LeRose, J. J.; Meekins, D.; Michaels, R.; Saha, A.; Wojtsekhowski, B.; Wood, S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Subedi, R.; Anderson, B. D.; Watson, J. W.] Kent State Univ, Kent, OH 44242 USA. [Shneor, R.; Piasetzky, E.; Ron, G.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Monaghan, P.; Gilad, S.; Qiang, Y.; Zheng, X. -C.] MIT, Cambridge, MA 02139 USA. [Aniol, K.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Annand, J.; Rosner, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Arrington, J.; Zheng, X. -C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Benaoum, H.] Syracuse Univ, Syracuse, NY 13244 USA. [Benaoum, H.] Prince Mohammad Univ, Al Khobar 31952, Saudi Arabia. [Benmokhtar, F.; Kaufman, L. J.] Univ Maryland, College Pk, MD 20742 USA. [Boeglin, W.; Markowitz, P.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Choi, Seonho] Seoul Natl Univ, Seoul 151747, South Korea. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Craver, B.; Lindgren, R.; Liyanage, N.; Sawatzky, B.; Slifer, K.; Zheng, X. -C.] Univ Virginia, Charlottesville, VA 22904 USA. [Gilman, R.; Jiang, X.; Kumbartzki, G.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Glamazdin, O.] Kharkov Phys & Technol Inst, UA-310108 Kharkov, Ukraine. [Holmstrom, T.; Kelleher, A.; Moffit, B.; Perdrisat, C. F.; Sulkosky, V.] Coll William & Mary, Williamsburg, VA 23187 USA. [Ibrahim, H.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23508 USA. [Igarashi, R.] Univ Saskatchewan, Saskatoon, SK S7N 5E2, Canada. [Jans, E.] Natl Inst Subatomaire Fys, Amsterdam, Netherlands. [Kaufman, L. J.] Univ Massachusetts, Amherst, MA 01003 USA. [Kolarkar, A.] Univ Kentucky, Lexington, KY 40506 USA. [Marrone, S.] Dipartimento Fis, Bari, Italy. [Marrone, S.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Mazouz, M.; Voutier, E.] Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Potokar, M.; Sirca, S.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Punjabi, V.] Norfolk State Univ, Norfolk, VA 23504 USA. [Sawatzky, B.; Solvignon, P.] Temple Univ, Philadelphia, PA 19122 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Sirca, S.] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. [Zhu, L.] Univ Illinois, Urbana, IL 61801 USA. RP Higinbotham, DW (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM doug@jlab.org RI Arrington, John/D-1116-2012; Higinbotham, Douglas/J-9394-2014; Cisbani, Evaristo/C-9249-2011; OI Arrington, John/0000-0002-0702-1328; Higinbotham, Douglas/0000-0003-2758-6526; Cisbani, Evaristo/0000-0002-6774-8473; Glamazdin, Alexander/0000-0002-4172-7324; Hachemi, Benaoum/0000-0002-5581-4314; Benaoum, Hachemi/0000-0003-4749-6675 NR 22 TC 161 Z9 164 U1 0 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 13 PY 2008 VL 320 IS 5882 BP 1476 EP 1478 DI 10.1126/science.1156675 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 312MV UT WOS:000256676400039 PM 18511658 ER PT J AU Prested, C Schwadron, N Passuite, J Randol, B Stuart, B Crew, G Heerikhuisen, J Pogorelov, N Zank, G Opher, M Allegrini, F McComas, DJ Reno, M Roelof, E Fuselier, S Funsten, H Moebius, E Saul, L AF Prested, C. Schwadron, N. Passuite, J. Randol, B. Stuart, B. Crew, G. Heerikhuisen, J. Pogorelov, N. Zank, G. Opher, M. Allegrini, F. McComas, D. J. Reno, M. Roelof, E. Fuselier, S. Funsten, H. Moebius, E. Saul, L. TI Implications of solar wind suprathermal tails for IBEX ENA images of the heliosheath SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID TERMINATION SHOCK; INTERSTELLAR; VOYAGER-1; REGION; IONS; MAPS AB Decades of interplanetary measurements of the solar wind and other space plasmas have established that the suprathermal ion intensity distributions (j) are non-Maxwellian and are characterized by high-energy power law tails (j similar to E(-kappa)). Recent analysis by Fisk and Gloeckler of suprathermal ion observations between 1-5 AU demonstrates that a particular differential intensity distribution function emerges universally between similar to 2-10 times the solar wind speed with kappa similar to 1.5. This power law tail is particularly apparent in downstream distributions beyond reverse shocks associated with corotating interaction regions. Similar power law tails have been observed in the downstream flow beyond the termination shock by the Low Energy Charged Particle instrument on both Voyager 1 and Voyager 2. Using kappa distributions with internal energy, density, and bulk flow derived from large-scale magnetohydrodynamic models, we calculate the simulated flux of energetic neutral atoms (ENAs) produced in the heliosheath by charge exchange between solar wind protons and interstellar hydrogen. We then produce simulated ENA maps of the heliosheath, such as will be measured by the Interstellar Boundary Explorer Mission (IBEX). We also estimate the expected signal to noise and background ratio for IBEX. The solar wind suprathermal tail significantly increases the ENA flux within the IBEX energy range, similar to 0.01-6 keV, by more than an order of magnitude at the highest energies over the estimates using a Maxwellian. It is therefore essential to consider suprathermal tails in the interpretation of IBEX ENA images and theoretical modeling of the heliospheric termination shock. C1 [Prested, C.; Schwadron, N.; Passuite, J.; Randol, B.; Stuart, B.; Crew, G.] Boston Univ, Dept Astron, Ctr Space Phys, Boston, MA 02215 USA. [Prested, C.; Schwadron, N.; Passuite, J.; Randol, B.; Stuart, B.; Crew, G.] Boston Univ, Dept Astron, Ctr Integrated Space Weather Modeling, Boston, MA 02215 USA. [Randol, B.; Allegrini, F.; McComas, D. J.; Reno, M.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX USA. [Stuart, B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Crew, G.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Heerikhuisen, J.; Pogorelov, N.; Zank, G.] Univ Calif Riverside, Inst Geophys & Planetary Sci, Riverside, CA 92521 USA. [Opher, M.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Fuselier, S.] Lockheed Martin, Space Phys Lab, Palo Alto, CA 94034 USA. [Funsten, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Moebius, E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Saul, L.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. RP Prested, C (reprint author), Boston Univ, Dept Astron, Ctr Space Phys, 725 Commonwealth Ave, Boston, MA 02215 USA. EM cprested@bu.edu RI Funsten, Herbert/A-5702-2015; OI Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978; Heerikhuisen, Jacob/0000-0001-7867-3633 NR 25 TC 45 Z9 45 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 12 PY 2008 VL 113 IS A6 AR A06102 DI 10.1029/2007JA012758 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 314MY UT WOS:000256814700002 ER PT J AU Sellevag, SR Georgievskii, Y Miller, JA AF Sellevag, Stig R. Georgievskii, Yuri Miller, James A. TI The temperature and pressure dependence of the reactions H+O-2(+M)-> HO2(+M) and H+OH(+M)-> H2O(+M) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POTENTIAL-ENERGY SURFACE; THERMAL UNIMOLECULAR REACTIONS; H/MU+O-2 ADDITION-REACTIONS; TRANSITION-STATE THEORY; MULTIREFERENCE CONFIGURATION-INTERACTION; CORRELATED MOLECULAR CALCULATIONS; GAS-TURBINE CONDITIONS; GAUSSIAN-BASIS SETS; CHEM. CHEM. PHYS.; RATE CONSTANTS AB The reactions H + O-2 (+M) -> HO2 (+M) and H + OH (+M) -> H2O (+M) have been studied using high-level quantum chemistry methods. On the basis of potential energy hypersurfaces obtained at the CASPT2/aug-cc-pVTZ level of theory, high-pressure limiting rate coefficients have been calculated using variable reaction coordinate transition state theory. Over the temperature range 300-3000 K, the following expressions were obtained in units of cm 3 molecule(-1) s(-1); k(infinity)(H + O-2) = (25T(-0.367) + (7.5 x 10(-2))T-0.702 x 10(-11) and k(infinity)(H + OH) = (4.17 x 10(-11))T(0.234)exp(57.5/T). Available experimental data on the pressure dependence of the reactions were analyzed using a two-dimensional master equation. The following low-pressure limiting rate coefficients were obtained over the temperature range 300-3000 K in units of cm 6 molecule(-2) s(-1): k(0)(H + O-2 + Ar) = (9.1 x 10(-29))T(-1.404)exp (-134/T), k(0)(H + O-2 + N-2) = (2.0 x 10(-27))T(-1.73)exp (-270/T), k(0)( H + OH + Ar) = (8.6 x 10(-28))T(-1.527)exp (-185/T), and k(0)(H + OH + N-2) = (1.25 x 10(-26))T(-1.81)exp (-251/T). For the H + O-2 reaction system, F-cent(Ar) = 0.67 and F-cent(N-2) = 0.72 were obtained as center broadening factors, whereas F-cent(Ar) = 0.72 and F-cent(N-2) = 0.73 were obtained for the H + OH reaction system. The calculations provide a good description of most of the experimental data, except the room temperature measurements on the H + OH (+M) -> H2O (+M) reaction. C1 [Sellevag, Stig R.] SINTEF Enegry Res, NO-7465 Trondheim, Norway. [Georgievskii, Yuri; Miller, James A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Sellevag, SR (reprint author), SINTEF Enegry Res, NO-7465 Trondheim, Norway. EM s.r.sellevag@kjemi.uio.no; jamille@sandia.gov NR 97 TC 33 Z9 33 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 12 PY 2008 VL 112 IS 23 BP 5085 EP 5095 DI 10.1021/jp711800z PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 309WZ UT WOS:000256492200010 PM 18491883 ER PT J AU Jung, I Vaupel, M Pelton, M Piner, R Dikin, DA Stankovich, S An, J Ruoff, RS AF Jung, Inhwa Vaupel, Matthias Pelton, Matthew Piner, Richard Dikin, Drnitriy A. Stankovich, Sasha An, Jinho Ruoff, Rodney S. TI Characterization of thermally reduced graphene oxide by imaging ellipsometry SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AQUEOUS DISPERSIONS; GRAPHITE; TRANSPARENT; FILMS AB The dispersion functions for the refractive index and the extinction coefficient of single- and multiple-layer graphene oxide samples were measured by imaging spectroscopic ellipsometry in the wavelength range of 350-1000 nm and were compared to previously reported results measured by confocal microscopy. The dispersion functions for thin platelets were also compared to those obtained by standard spectroscopic ellipsometry on a deposit consisting of many overlapping graphene oxide layers. Changes were observed in both the thickness of the deposits and the values of the dispersion parameters following heating. A model is proposed to explain these observations, based on the removal of water between the graphene-oxide layers upon thermal treatment. C1 [Jung, Inhwa; Piner, Richard; An, Jinho; Ruoff, Rodney S.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Vaupel, Matthias] Nanofilm Technol GmbH, D-37081 Gottingen, Germany. [Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dikin, Drnitriy A.; Stankovich, Sasha] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. RP Ruoff, RS (reprint author), Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. EM r.ruoff@mail.utexas.edu RI Dikin, Dmitriy/B-7592-2009; Ruoff, Rodney/B-7605-2009; Dikin, Dmitriy/A-1086-2010; Pelton, Matthew/H-7482-2013; Dikin, Dmitriy/B-4649-2014; Ruoff, Rodney/K-3879-2015 OI Dikin, Dmitriy/0000-0001-8100-4502; Pelton, Matthew/0000-0002-6370-8765; NR 29 TC 100 Z9 100 U1 6 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 12 PY 2008 VL 112 IS 23 BP 8499 EP 8506 DI 10.1021/jp802173m PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 309XC UT WOS:000256492500002 ER PT J AU Muhlethaler-Mottet, A Meier, R Flahaut, M Bourloud, KB Nardou, K Joseph, JM Gross, N AF Muehlethaler-Mottet, Annick Meier, Roland Flahaut, Marjorie Bourloud, Katia Balmas Nardou, Katya Joseph, Jean-Marc Gross, Nicole TI Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells SO MOLECULAR CANCER LA English DT Article ID INDUCED APOPTOSIS; IN-VIVO; EXPRESSION; CANCER; GROWTH; DEATH; SURVIVIN; VEGF; RECEPTORS; VITRO AB Background: Histone deacetylase inhibitors (HDACi) are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB) is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities. Results: We show here that the HDACi Sodium Butyrate (NaB), suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA) strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and Bim(EL) and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x(L), RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells. Conclusion: HDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells. C1 [Muehlethaler-Mottet, Annick; Flahaut, Marjorie; Bourloud, Katia Balmas; Nardou, Katya; Joseph, Jean-Marc; Gross, Nicole] Univ Hosp CHUV, Dept Paediat, CH-1011 Lausanne, Switzerland. [Meier, Roland] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Gross, N (reprint author), Univ Hosp CHUV, Dept Paediat, CH-1011 Lausanne, Switzerland. EM Annick.Muhlethaler@chuv.ch; RMeier@lbl.gov; Marjorie.Flahaut@chuv.ch; Katia.Balmas-Bourloud@chuv.ch; Katya.Auderset@chuv.ch; Jean-Marc.Joseph@chuv.ch; Nicole.Gross@chuv.ch NR 48 TC 39 Z9 40 U1 0 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1476-4598 J9 MOL CANCER JI Mol. Cancer PD JUN 12 PY 2008 VL 7 AR 55 DI 10.1186/1476-4598-7-55 PG 12 WC Biochemistry & Molecular Biology; Oncology SC Biochemistry & Molecular Biology; Oncology GA 325TF UT WOS:000257610500001 PM 18549473 ER PT J AU de la Cruz, C Huang, Q Lynn, JW Li, JY Ratcliff, W Zarestky, JL Mook, HA Chen, GF Luo, JL Wang, NL Dai, PC AF de la Cruz, Clarina Huang, Q. Lynn, J. W. Li, Jiying Ratcliff, W., II Zarestky, J. L. Mook, H. A. Chen, G. F. Luo, J. L. Wang, N. L. Dai, Pengcheng TI Magnetic order close to superconductivity in the iron-based layered LaO(1-x)F(x)FeAs systems SO NATURE LA English DT Article AB Following the discovery of long- range antiferromagnetic order in the parent compounds of high- transition- temperature ( high- T(c)) copper oxides(1,2), there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare- earth iron- based oxide systems ROFeAs ( R, rare- earth metal) also arises from either electron(3-7) or hole(8) doping of their non- superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150 K in both resistivity and d. c. magnetic susceptibility(3). Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin- density- wave ( SDW) instability that is suppressed by doping with electrons to induce superconductivity(9), there has been no direct evidence of SDW order. Here we report neutron- scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155 K, changing the symmetry from tetragonal ( space group P4/ nmm) to monoclinic ( space group P112/ n) at low temperatures, and then, at similar to 137 K, develops long- range SDW- type antiferromagnetic order with a small moment but simple magnetic structure(9). Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high- T(c) copper oxides, the superconducting regime in these iron- based materials occurs in close proximity to a long- range- ordered antiferromagnetic ground state. C1 [de la Cruz, Clarina; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [de la Cruz, Clarina; Mook, H. A.; Dai, Pengcheng] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Huang, Q.; Lynn, J. W.; Li, Jiying; Ratcliff, W., II] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Li, Jiying] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Zarestky, J. L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zarestky, J. L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Dai, Pengcheng /C-9171-2012; dela Cruz, Clarina/C-2747-2013 OI Dai, Pengcheng /0000-0002-6088-3170; dela Cruz, Clarina/0000-0003-4233-2145 NR 17 TC 1441 Z9 1442 U1 33 U2 281 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 12 PY 2008 VL 453 IS 7197 BP 899 EP 902 DI 10.1038/nature07057 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 311WV UT WOS:000256632000038 PM 18509333 ER PT J AU Hunte, F Jaroszynski, J Gurevich, A Larbalestier, DC Jin, R Sefat, AS McGuire, MA Sales, BC Christen, DK Mandrus, D AF Hunte, F. Jaroszynski, J. Gurevich, A. Larbalestier, D. C. Jin, R. Sefat, A. S. McGuire, M. A. Sales, B. C. Christen, D. K. Mandrus, D. TI Two-band superconductivity in LaFeAsO(0.89)F(0.11) at very high magnetic fields SO NATURE LA English DT Article ID ZRCUSIAS TYPE-STRUCTURE AB The recent synthesis of the superconductor LaFeAsO(0.89)F(0.11) with transition temperature T(c) approximate to 26 K ( refs 1 - 4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO(0.84)F(0.16) ( ref. 5), 43 K in SmFeAsO(0.9)F(0.1) ( ref. 6), and 52 K in NdFeAsO(0.89)F(0.11) and PrFeAsO(0.89)F(0.11) ( refs 7, 8). These discoveries have generated much interest(9,10) in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides LnOTMPn ( Ln: La, Pr, Ce, Sm; TM: Mn, Fe, Co, Ni; Pn: P, As), because many features of these materials set them apart from other known superconductors. Here we report resistance measurements of LaFeAsO(0.89)F(0.11) at high magnetic fields, up to 45 T, that show a remarkable enhancement of the upper critical field B(c2) compared to values expected from the slopes dB(c2)/ dT approximate to 2 T K(-1) near Tc, particularly at low temperatures where the deduced B(c2)(0) approximate to 63 - 65 T exceeds the paramagnetic limit. We argue that oxypnictides represent a new class of high-field superconductors with B(c2) values surpassing those of Nb(3)Sn, MgB(2) and the Chevrel phases, and perhaps exceeding the 100 T magnetic field benchmark of the high- T(c) copper oxides. C1 [Hunte, F.; Jaroszynski, J.; Gurevich, A.; Larbalestier, D. C.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Hunte, F (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. EM hunte@asc.magnet.fsu.edu RI McGuire, Michael/B-5453-2009; Gurevich, Alex/A-4327-2008; Sefat, Athena/R-5457-2016; Christen, David/A-9709-2008; Mandrus, David/H-3090-2014; Larbalestier, David/B-2277-2008 OI McGuire, Michael/0000-0003-1762-9406; Gurevich, Alex/0000-0003-0759-8941; Sefat, Athena/0000-0002-5596-3504; Larbalestier, David/0000-0001-7098-7208 NR 26 TC 367 Z9 374 U1 8 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 12 PY 2008 VL 453 IS 7197 BP 903 EP 905 DI 10.1038/nature07058 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 311WV UT WOS:000256632000039 PM 18509332 ER PT J AU Aguilar-Arevalo, AA Anderson, CE Bazarko, AO Brice, SJ Brown, BC Bugel, L Cao, J Coney, L Conrad, JM Cox, DC Curioni, A Djurcic, Z Finley, DA Fleming, BT Ford, R Garcia, FG Garvey, GT Green, C Green, JA Hart, TL Hawker, E Imlay, R Johnson, RA Karagiori, G Kasper, P Katorri, T Kobilarcik, I Kourbanis, I Koutsoliotas, S Laird, EM Linden, SK Link, JM Liu, Y Liu, Y Louis, WC Mahn, KBM Marsh, W Martin, PS McGregor, G Metcalf, W Meyers, PD Mills, F Mills, GB Monroe, J Moore, CD Nelson, RH Nguyen, V Nienaber, P Nowak, JA Ouedraogo, S Patterson, RB Perevalov, D Polly, CC Prebys, E Raaf, JL Ray, H Roe, BP Russell, AD Sandberg, V Schirato, R Schmitz, D Shaevitz, MH Shoemaker, FC Smith, D Soderberg, M Sorel, M Spentzouris, P Stancu, I Stefanski, RJ Sung, M Tanaka, HA Tayloe, R Tzanov, M de Water, RV Wascko, MO White, DH Wilking, MJ Yang, HJ Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Anderson, C. E. Bazarko, A. O. Brice, S. J. Brown, B. C. Bugel, L. Cao, J. Coney, L. Conrad, J. M. Cox, D. C. Curioni, A. Djurcic, Z. Finley, D. A. Fleming, B. T. Ford, R. Garcia, F. G. Garvey, G. T. Green, C. Green, J. A. Hart, T. L. Hawker, E. Imlay, R. Johnson, R. A. Karagiori, G. Kasper, P. Katorri, T. Kobilarcik, I. Kourbanis, I. Koutsoliotas, S. Laird, E. M. Linden, S. K. Link, J. M. Liu, Y. Liu, Y. Louis, W. C. Mahn, K. B. M. Marsh, W. Martin, P. S. McGregor, G. Metcalf, W. Meyers, P. D. Mills, F. Mills, G. B. Monroe, J. Moore, C. D. Nelson, R. H. Nguyen, V. Nienaber, P. Nowak, J. A. Ouedraogo, S. Patterson, R. B. Perevalov, D. Polly, C. C. Prebys, E. Raaf, J. L. Ray, H. Roe, B. P. Russell, A. D. Sandberg, V. Schirato, R. Schmitz, D. Shaevitz, M. H. Shoemaker, F. C. Smith, D. Soderberg, M. Sorel, M. Spentzouris, P. Stancu, I. Stefanski, R. J. Sung, M. Tanaka, H. A. Tayloe, R. Tzanov, M. de Water, R. Van Wascko, M. O. White, D. H. Wilking, M. J. Yang, H. J. Zeller, G. P. Zimmerman, E. D. TI First observation of coherent pi(0) production in neutrino-nucleus interactions with E(nu) < 2 GeV SO PHYSICS LETTERS B LA English DT Article ID PION-PRODUCTION; MINIBOONE; NUANCE; MESON; DECAY AB The MiniBooNE experiment at Fermilab has amassed the largest sample to date of pi(0)s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This Letter reports a measurement of the momentum distribution of pi(0)s produced in mineral oil (CH(2)) and the first observation of coherent pi(0) production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 +/- 1.1 (stat) +/- 2.5(sys))% of all exclusive NC pi(0) production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for nu(mu) -> nu(e) oscillations. (C) 2008 Elsevier B.V. All rights reserved. C1 Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yale Univ, New Haven, CT 06520 USA. St Marys Univ, Winona, MN 55987 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Louisiana State Univ, Baton Rouge, LA 70803 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Florida, Gainesville, FL 32611 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. Columbia Univ, New York, NY 10027 USA. Univ Colorado, Boulder, CO 80309 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Bucknell Univ, Lewisburg, PA 17837 USA. Univ Alabama, Tuscaloosa, AL 35487 USA. RP Link, JM (reprint author), Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. EM jonathan.link@vt.edu RI Link, Jonathan/L-2560-2013; Nowak, Jaroslaw/P-2502-2016; Yang, Haijun/O-1055-2015; Cao, Jun/G-8701-2012; OI Link, Jonathan/0000-0002-1514-0650; Nowak, Jaroslaw/0000-0001-8637-5433; Wascko, Morgan/0000-0002-8348-4447; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375; Louis, William/0000-0002-7579-3709; Raaf, Jennifer/0000-0002-4533-929X; Sorel, Michel/0000-0003-2141-9508; Van de Water, Richard/0000-0002-1573-327X; Cao, Jun/0000-0002-3586-2319; Schirato, Richard/0000-0002-4216-0235; Schmitz, David/0000-0003-2165-7389 NR 28 TC 74 Z9 74 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 12 PY 2008 VL 664 IS 1-2 BP 41 EP 46 DI 10.1016/j.physletb.2008.05.006 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 320GN UT WOS:000257221800009 ER PT J AU Karny, M Rykaczewski, KP Grzywacz, RK Batchelder, JC Bingham, CR Goodin, C Gross, CJ Hamilton, JH Korgul, A Krolas, W Liddick, SN Li, K Maier, KH Mazzocchi, C Piechaczek, A Rykaczewski, K Schapira, D Simpson, D Tantawy, MN Winger, JA Yu, CH Zganjar, EF Nikolov, N Dobaczewski, J Kruppa, AT Nazarewicz, W Stoitsov, MV AF Karny, M. Rykaczewski, K. P. Grzywacz, R. K. Batchelder, J. C. Bingham, C. R. Goodin, C. Gross, C. J. Hamilton, J. H. Korgul, A. Krolas, W. Liddick, S. N. Li, K. Maier, K. H. Mazzocchi, C. Piechaczek, A. Rykaczewski, K. Schapira, D. Simpson, D. Tantawy, M. N. Winger, J. A. Yu, C. H. Zganjar, E. F. Nikolov, N. Dobaczewski, J. Kruppa, A. T. Nazarewicz, W. Stoitsov, M. V. TI Shell structure beyond the proton drip line studied via proton emission from deformed Ho-141 SO PHYSICS LETTERS B LA English DT Article DE proton radioactivity; proton shell structure; two-body tensor interactions ID MEAN-FIELD THEORY; FINE-STRUCTURE; ROTATIONAL BANDS; EXOTIC NUCLEI; PARAMETRIZATION; DECAY; RADIOACTIVITY; SPECTROSCOPY; EMITTERS; FORCE AB Fine structure in proton emission from the 7/2(-)[523] ground state and from the 1/2(+)[411] isomer in deformed nucleus Ho-141 was studied by means of fusion-evaporation reactions and digital signal processing. Proton transitions to the first excited 2(+) state in Dy-140, with the branching ratio of I-p(gs) (2(+)) = 0.9 +/- 0.2% and I-m(p)(2(+)) = 1.7 +/- 0.5%, were observed. The data are analyzed within the non-adiabatic weak coup. pling model assuming a large quadrupole deformation of the daughter nucleus Dy-140 as predicted by the self-consistent theory. Implications of this result on coexistence effects around N = 74 are discussed. Significant modifications of the proton shell structure when going from the valley of beta stability to the proton drip line are discussed in terms of self-consistent theory involving the two-body tensor interaction. (C) 2008 Elsevier B.V. All rights reserved. C1 [Karny, M.; Korgul, A.] Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. [Karny, M.; Korgul, A.; Krolas, W.; Maier, K. H.; Kruppa, A. T.] Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Rykaczewski, K. P.; Grzywacz, R. K.; Bingham, C. R.; Gross, C. J.; Maier, K. H.; Schapira, D.; Yu, C. H.; Nazarewicz, W.; Stoitsov, M. V.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Grzywacz, R. K.; Bingham, C. R.; Korgul, A.; Liddick, S. N.; Mazzocchi, C.; Simpson, D.; Tantawy, M. N.; Nikolov, N.; Nazarewicz, W.; Stoitsov, M. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Batchelder, J. C.; Liddick, S. N.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Goodin, C.; Hamilton, J. H.; Korgul, A.; Krolas, W.; Li, K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Krolas, W.] Inst Nucl Phys, PL-31342 Krakow, Poland. [Mazzocchi, C.] Univ Milan, IFGA, I-20133 Milan, Italy. [Mazzocchi, C.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Rykaczewski, K.] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Winger, J. A.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Dobaczewski, J.; Nazarewicz, W.] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Kruppa, A. T.] Inst Nucl Res, H-4026 Debrecen, Hungary. [Stoitsov, M. V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. RP Karny, M (reprint author), Univ Warsaw, Inst Expt Phys, Hoza 69, PL-00681 Warsaw, Poland. EM karny@mirnuw.edu.pl RI Krolas, Wojciech/N-9391-2013 NR 52 TC 24 Z9 26 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 12 PY 2008 VL 664 IS 1-2 BP 52 EP 56 DI 10.1016/j.physletb.2008.04.056 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 320GN UT WOS:000257221800011 ER PT J AU Kepko, L Raeder, J Angelopoulos, V McFadden, J Larson, D Auster, HU Magnes, W Frey, HU Carlson, C Henderson, M Mende, SB Yumoto, K Singer, HJ Parks, G Mann, I Russell, CT Donovan, E McPherron, R AF Kepko, L. Raeder, J. Angelopoulos, V. McFadden, J. Larson, D. Auster, H. U. Magnes, W. Frey, H. U. Carlson, C. Henderson, M. Mende, S. B. Yumoto, K. Singer, H. J. Parks, G. Mann, I. Russell, C. T. Donovan, E. McPherron, R. TI Highly periodic stormtime activations observed by THEMIS prior to substorm onset SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID POLEWARD BOUNDARY INTENSIFICATIONS; PULSATIONS AB On March 24, 2007 THEMIS observed near the dusk flank several 10 minute quasi-periodic flow and magnetic field oscillations followed by the onset of a strong substorm (AL similar to -1000 nT). The substorm occurred during an interval of strongly southward IMF, near the start of the recovery phase of a small storm (SYM-H near -80 nT). Each magnetic oscillation was accompanied by a rapid flow variation, auroral intensification, energetic particle injection, and Pi2 pulsations. For several hours both prior to and following the substorm THEMIS observed highly periodic flow oscillations, with the same 10 minute periodicity. The average of these flow oscillations was non-zero and positive, indicating net sunward transport. We suggest that the long interval of oscillatory flow constituted a periodic convective mode of the magnetosphere, and further suggest that the quasi-periodic activations were associated with reconnection near the THEMIS location. C1 [Kepko, L.; Raeder, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03842 USA. [Angelopoulos, V.; McFadden, J.; Larson, D.; Frey, H. U.; Carlson, C.; Mende, S. B.; Parks, G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Frey, H. U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Magnes, W.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Henderson, M.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM 87545 USA. [Yumoto, K.] Kyushu Univ, Space Environm Res Ctr, Fukuoka 8128581, Japan. [Singer, H. J.] NOAA, Space Weather Predict Ctr, Boulder, CO 80303 USA. [Mann, I.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada. [Russell, C. T.; McPherron, R.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. RP Kepko, L (reprint author), Univ New Hampshire, Ctr Space Sci, Morse Hall,39 Coll Rd, Durham, NH 03842 USA. EM larry.kepko@unh.edu RI Kepko, Larry/D-7747-2012; Henderson, Michael/A-3948-2011; OI Kepko, Larry/0000-0002-4911-8208; Henderson, Michael/0000-0003-4975-9029; Donovan, Eric/0000-0002-8557-4155; Frey, Harald/0000-0001-8955-3282 NR 15 TC 2 Z9 2 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 11 PY 2008 VL 35 IS 17 AR L17S24 DI 10.1029/2008GL034235 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 314LA UT WOS:000256809700002 ER PT J AU Bultmark, F Dewhurst, K Singh, DJ Nordstrom, L AF Bultmark, F. Dewhurst, K. Singh, D. J. Nordstrom, Lars TI Tests of the efficiency of an augmented distorted planewave basis in electronic structure calculations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article AB An augmented distorted planewave plus local orbital basis set has been developed and implemented in a simple fashion in order to test its efficiency for electronic structure calculations. It is based on the idea of using distorted planewaves (Gygi 1993 Phys. Rev. B 48 11692) as basis functions in the interstitial region instead of ordinary planewaves, as in the usual linearized augmented planewave and augmented planewave plus local orbitals methods. This is shown to lead to a significantly more rapid convergence for open structures as well as a modestly improved convergence for close packed structures. C1 [Bultmark, F.; Nordstrom, Lars] Uppsala Univ, Dept Phys, SE-71521 Uppsala, Sweden. [Dewhurst, K.] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland. [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. RP Bultmark, F (reprint author), Uppsala Univ, Dept Phys, Box 530, SE-71521 Uppsala, Sweden. NR 7 TC 0 Z9 0 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 11 PY 2008 VL 20 IS 23 AR 235241 DI 10.1088/0953-8984/20/23/235241 PG 7 WC Physics, Condensed Matter SC Physics GA 305IX UT WOS:000256172800043 PM 21694331 ER PT J AU Ehlers, G Mamontov, E Zamponi, M Faraone, A Qiu, Y Cornelius, AL Booth, CH Kam, KC Le Toquin, R Cheetham, AK Gardner, JS AF Ehlers, G. Mamontov, E. Zamponi, M. Faraone, A. Qiu, Y. Cornelius, A. L. Booth, C. H. Kam, K. C. Le Toquin, R. Cheetham, A. K. Gardner, J. S. TI Frustrated spin correlations in diluted spin ice Ho(2-x)La(x)Ti(2)O(7) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY; MAGNETIC-PROPERTIES; POWDER DIFFRACTION; NEUTRON; PYROCHLORES; HO2TI2O7; SPECTRA AB We have studied the evolution of the structural properties as well as the static and dynamic spin correlations of spin ice Ho(2)Ti(2)O(7), where Ho was partially replaced by non-magnetic La. The crystal structure of diluted samples Ho(2-x)La(x)Ti(2)O(7) was characterized by x-ray and neutron diffraction and by Ho L(III)-edge and Ti K-edge extended x-ray absorption fine structure (EXAFS) measurements. It is found that the pyrochlore structure remains intact until about x = 0.3, but a systematic increase in local disorder with increasing La concentration is observed in the EXAFS data, especially from the Ti K edge. Quasi-elastic neutron scattering and ac susceptibility measurements show that, in x <= 0.4 samples at temperatures above macroscopic freezing, the spin -spin correlations are short ranged and dynamic in nature. The main difference with pure spin ice in the dynamics is the appearance of a second, faster, relaxation process. C1 [Ehlers, G.; Mamontov, E.; Zamponi, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zamponi, M.] FZ Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany. [Faraone, A.; Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Faraone, A.; Qiu, Y.; Gardner, J. S.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Cornelius, A. L.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Booth, C. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Kam, K. C.; Le Toquin, R.; Cheetham, A. K.] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Gardner, J. S.] Indiana Univ, Bloomington, IN 47408 USA. RP Ehlers, G (reprint author), Oak Ridge Natl Lab, Bldg 8600, Oak Ridge, TN 37831 USA. EM ehlersg@ornl.gov RI Cornelius, Andrew/A-9837-2008; Gardner, Jason/A-1532-2013; Booth, Corwin/A-7877-2008; Ehlers, Georg/B-5412-2008; Mamontov, Eugene/Q-1003-2015 OI Ehlers, Georg/0000-0003-3513-508X; Mamontov, Eugene/0000-0002-5684-2675 NR 30 TC 6 Z9 6 U1 3 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 11 PY 2008 VL 20 IS 23 AR 235206 DI 10.1088/0953-8984/20/23/235206 PG 7 WC Physics, Condensed Matter SC Physics GA 305IX UT WOS:000256172800008 PM 21694297 ER PT J AU Paudyal, D Pecharsky, VK Gschneidner, KA AF Paudyal, Durga Pecharsky, V. K. Gschneidner, K. A., Jr. TI Origins of ferromagnetism and antiferromagnetism in Gd(5)Ge(4) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; MAGNETOOPTICAL PROPERTIES; CORRELATION-ENERGY; ALLOY SYSTEMS; APPROXIMATION; GD-5(SI2GE2); THERMODYNAMICS; BEHAVIOR; SILICON AB The total and partial density of states (DOS) of two polymorphic modifications of Gd(5)Ge(4) show varying hybridization between the 5d states of Gd and the 4p states of Ge resulting in differences in the magnetism of the compound that are consistent with changes in the chemical bonding. The integrated numbers of electrons in the minority and majority bands differ substantially from one allotrope to another, showing different magnetic moments. A substantial decrease of indirect exchange interactions between 4f spins of specific Gd atoms, which is reflected in the decrease of 5d DOS and the 5d band splitting at the Fermi level, supports the antiferromagnetic ground state of Gd(5)Ge(4). As follows from calculations of 4f-5d exchange interaction energies, total energy analysis of different spin configurations, and band energy analysis, short range interactions are ferromagnetic but long range antiferromagnetic coupling between Gd atoms prevails in the ground state allotrope of Gd(5)Ge(4). On the other hand, only ferromagnetic coupling is found in the high field Gd(5)Ge(4) structure. C1 [Paudyal, Durga; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Paudyal, D (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM vitkp@ameslab.gov NR 61 TC 27 Z9 27 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 11 PY 2008 VL 20 IS 23 AR 235235 DI 10.1088/0953-8984/20/23/235235 PG 8 WC Physics, Condensed Matter SC Physics GA 305IX UT WOS:000256172800037 ER PT J AU Singh, Y Ramakrishnan, S AF Singh, Yogesh Ramakrishnan, S. TI Crystal growth and ambient and high pressure study of the re-entrant superconductor Tm(2)Fe(3)Si(5) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID EARTH-IRON SILICIDES; TEMPERATURE HEAT-CAPACITY; NEUTRON-DIFFRACTION; MAGNETIC ORDER; SUSCEPTIBILITY; DESTRUCTION; MOSSBAUER AB Tm(2)Fe(3)Si(5) is known to undergo a transition to the superconducting state (at ambient or applied pressure depending on the sample) at a temperature T(c1) (similar to 1.8 K), and at a lower temperature T(N) (approximate to 1 K) it undergoes a transition into a long range antiferromagnetically ordered state. Superconductivity is simultaneously destroyed and the sample re-enters the normal state at T(c2) = T(N). The conditions reported in the literature for the observation of superconductivity in Tm(2)Fe(3)Si(5) are sample dependent, but it is now accepted that stoichiometric Tm(2)Fe(3)Si(5) superconducts only under pressure. Here we report single-crystal growth of stoichiometric Tm(2)Fe(3)Si(5) which does not superconduct at ambient pressure down to 100 mK. Measurements of the anisotropic static magnetic susceptibility chi(T) and isothermal magnetization M(H), ac susceptibility chi(ac)(T), electrical resistivity rho(T) and heat capacity C(T) at ambient pressure and chi(ac)(T) at high pressure are reported. The magnetic susceptibility along the c axis, chi(c)(T), shows a curvature over the whole temperature range and does not follow the Curie-Weiss behavior, while the magnetic susceptibility along the a axis, chi(a)(T), follows a Curie-Weiss behavior between 130 and 300 K with a Weiss temperature theta and an effective magnetic moment mu(eff) which depend on the temperature range of the fit. The easy axis of magnetization is perpendicular to the c axis and chi(a)/chi(c) = 3.2 at 1.8 K. The ambient pressure chi(ac)(T) and C(T) measurements confirm bulk antiferromagnetic ordering at T(N) = 1.1 K. The sharp drop in chi(ac)(T) below the antiferromagnetic transition is suggestive of the existence of a spin gap. We observe superconductivity only under applied pressures P >= 2 kbar. The temperature-pressure phase diagram showing the non-monotonic dependence of the superconducting transition temperature T(c) on pressure P is presented. C1 [Singh, Yogesh; Ramakrishnan, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. RP Singh, Y (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI singh, yogesh/F-7160-2016 NR 20 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 11 PY 2008 VL 20 IS 23 AR 235243 DI 10.1088/0953-8984/20/23/235243 PG 7 WC Physics, Condensed Matter SC Physics GA 305IX UT WOS:000256172800045 PM 21694333 ER PT J AU Stishov, SM Petrova, AE Khasanov, S Panova, GK Shikov, AA Lashley, JC Wu, D Lograsso, TA AF Stishov, S. M. Petrova, A. E. Khasanov, S. Panova, G. Kh Shikov, A. A. Lashley, J. C. Wu, D. Lograsso, T. A. TI Heat capacity and thermal expansion of the itinerant helimagnet MnSi SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PHASE-TRANSITIONS; WEAK FERROMAGNETISM; MONOSILICIDES; BEHAVIOR; ORDER AB The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi. C1 [Stishov, S. M.; Petrova, A. E.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142092, Moscow Region, Russia. [Khasanov, S.] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. [Panova, G. Kh; Shikov, A. A.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Lashley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wu, D.; Lograsso, T. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Stishov, SM (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142092, Moscow Region, Russia. EM sergei@hppi.troitsk.ru RI Khasanov, Salavat/R-8690-2016 NR 30 TC 39 Z9 39 U1 4 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 11 PY 2008 VL 20 IS 23 AR 235222 DI 10.1088/0953-8984/20/23/235222 PG 6 WC Physics, Condensed Matter SC Physics GA 305IX UT WOS:000256172800024 PM 21694313 ER PT J AU Coates, L Tuan, HF Tomanicek, S Kovalevsky, A Mustyakimov, M Erskine, P Cooper, J AF Coates, Leighton Tuan, Han-Fang Tomanicek, Stephen Kovalevsky, Andrey Mustyakimov, Marat Erskine, Peter Cooper, Jon TI The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GEM-DIOL INHIBITOR; TETRAHEDRAL INTERMEDIATE; LAUE DIFFRACTION; ALDOSE REDUCTASE; RENIN INHIBITOR; CONCANAVALIN-A; ENDOTHIAPEPSIN; RESOLUTION; COMPLEXES; PEPSTATIN AB Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even high-quality X-ray data to a resolution of I A cannot directly visualize them. Neutron diffraction, however, can locate deuterim atoms even at resolutions 2 angstrom. Both neutron and X-ray diffraction data have been used to investigate the transition state of the aspartic proteinase endothiapepsin. The different techniques reveal a different part of the story, revealing the clearest picture yet of the catalytic mechanism by which the enzyme operates. Room temperature neutron and X-ray diffraction data were used in newly developed joint refinement software packate to visualize deuterium atoms within the active site of the enzyem when a gem-diol transition state analogue inhibitor is bound at the active site. These data were also used to estimate their individual occupancy, while analysis of the differences between the bond lengths of the catalytic aspartates was performed using atomic resolution X-ray data. The two methods are in agreement on the photonation state of the active site with a transition state analogue inhibitor bound confirming the catalytic mechanism at which the enzyme operates. C1 [Coates, Leighton; Tuan, Han-Fang; Tomanicek, Stephen] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Coates, Leighton] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Kovalevsky, Andrey; Mustyakimov, Marat] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Erskine, Peter; Cooper, Jon] UCL, Lab Prot Crystallog, Ctr Amyloidosis & Acute Phase Prot, Dept Med, London NW3 2PF, England. RP Coates, L (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM coatesl@ornl.gov OI Kovalevsky, Andrey/0000-0003-4459-9142; Coates, Leighton/0000-0003-2342-049X FU NIGMS NIH HHS [R01 GM071939-05, R01 GM071939, 1R01GM071939-01] NR 22 TC 76 Z9 76 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 11 PY 2008 VL 130 IS 23 BP 7235 EP + DI 10.1021/ja801269x PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 310SN UT WOS:000256550600034 PM 18479128 ER PT J AU Sergeeva, AP Zubarev, DY Zhai, HJ Boldyrev, AI Wang, LS AF Sergeeva, Alina P. Zubarev, Dmitry Yu. Zhai, Hua-Jin Boldyrev, Alexander I. Wang, Lai-Sheng TI Photoelectron spectroscopic and theoretical study of B-16(-) and B-16(2-): An all-boron naphthalene SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COLLISION-INDUCED DISSOCIATION; AB-INITIO; CLUSTER IONS; ELECTRONIC-STRUCTURE; GENETIC-ALGORITHM; B-13(+) CLUSTERS; BARE BORON; PLANAR; STABILITY; AROMATICITY AB The structure and chemical bonding of B-16(-) were studied using ab initio calculations and photoelectron spectroscopy. Its global minimum is found to be a quasi-planar and elongated structure (C-2h). Addition of an electron to B-16(-) resulted in a perfectly planar and closed shell B-16(2-) (D-2h), which is shown to possess 10 pi electrons with a pi-bonding pattern similar to that of naphthalene and can thus be considered as an "all-boron naphthalene", a new member in the growing family of hydrocarbon analogues of boron clusters. C1 [Sergeeva, Alina P.; Zubarev, Dmitry Yu.; Boldyrev, Alexander I.] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Boldyrev, AI (reprint author), Utah State Univ, Dept Chem & Biochem, 0300 Old Main Hill, Logan, UT 84322 USA. EM boldyrev@cc.usu.edu; ls.wang@pnl.gov RI Boldyrev, Alexander/C-5940-2009 OI Boldyrev, Alexander/0000-0002-8277-3669 NR 47 TC 130 Z9 130 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 11 PY 2008 VL 130 IS 23 BP 7244 EP + DI 10.1021/ja802494z PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 310SN UT WOS:000256550600037 PM 18479137 ER PT J AU Gordon, C Land, K Slosar, A AF Gordon, Christopher Land, Kate Slosar, Abze TI Determining the motion of the Solar system relative to the cosmic microwave background using Type Ia supernovae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE Solar system : general; supernovae : general; cosmic microwave background ID LIGHT-CURVE SHAPES; PECULIAR VELOCITIES; LOCAL GROUP; LUMINOSITY DISTANCE; REDSHIFT SURVEY; POWER SPECTRUM; ANISOTROPIES; COSMOLOGY; DIPOLE; CONSTANT AB We estimate the Solar system motion relative to the cosmic microwave background using Type Ia supernovae (SNe) measurements. We take into account the correlations in the error bars of the SNe measurements arising from correlated peculiar velocities. Without accounting for correlations in the peculiar velocities, the SNe data we use appear to detect the peculiar velocity of the Solar system at about the 3.5 sigma level. However, when the correlations are correctly accounted for, the SNe data only detect the Solar system peculiar velocity at about the 2.5 sigma level. We forecast that the Solar system peculiar velocity will be detected at the 9 sigma level by GAIA and the 11 sigma level by the Large Synoptic Survey Telescope. For these surveys, we find the correlations are much less important as most of the signal comes from higher redshifts where the number density of SNe is insufficient for the correlations to be important. C1 [Gordon, Christopher; Land, Kate; Slosar, Abze] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Slosar, Abze] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Slosar, Abze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gordon, C (reprint author), Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. EM cxg@astro.ox.ac.uk OI Gordon, Chris/0000-0003-4864-5150 NR 43 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2008 VL 387 IS 1 BP 371 EP 376 DI 10.1111/j.1365-2966.2008.13239.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 308HH UT WOS:000256378700035 ER PT J AU Rykoff, ES Evrard, AE McKay, TA Becker, MR Johnston, DE Koester, BP Nord, B Rozo, E Sheldon, ES Stanek, R Wechsler, RH AF Rykoff, E. S. Evrard, A. E. McKay, T. A. Becker, M. R. Johnston, D. E. Koester, B. P. Nord, B. Rozo, E. Sheldon, E. S. Stanek, R. Wechsler, R. H. TI The L-X-M relation of clusters of galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; X-rays: galaxies: clusters ID OPTICAL RICHNESS RELATION; MASS-TEMPERATURE RELATION; DIGITAL SKY SURVEY; RAY-CLUSTERS; MAXBCG; EVOLUTION; CATALOG; SAMPLE; SIMULATIONS; SCATTER AB We present a new measurement of the scaling relation between X-ray luminosity and total mass for 17000 galaxy clusters in the maxBCG cluster sample. Stacking subsamples within fixed ranges of optical richness. N-200, we measure the mean 0.1-2.4 keV X-ray luminosity, (L-X), from the ROSAT All-Sky Survey. The mean mass, (M-200), is measured from weak gravitational lensing of SDSS background galaxies. For 9 <= N-200 < 200, the data are well fitted by a power law, (L-X)/10(42) h(-2) erg s(-1) = [12.6(-1.3)(+1.4) (stat) +/- 1.6 (sys)]((M-200)/10(14)h(-1) M-circle dot)(1.65 +/- 0.13). The slope agrees to within 10 per cent with previous estimates based on X-ray selected catalogues, implying that the covariance in L-X and N-200 at a fixed halo mass is not large. The luminosity intercept is 30 per cent, or 2 nu, lower than that determined from the X-ray flux-limited sample of Reiprich & Bohringer, assuming hydrostatic equilibrium. This slight difference could arise from a combination of Malmquist bias and/or systematic error in hydrostatic mass estimates, both of which are expected. The intercept agrees with that dervied by Stanek et al. using a model for the statistical correspondence between clusters and haloes in a WMAP3 cosmology with power spectrum normalization nu(8) = 0.85. Similar exercises applied to future data sets will allow constraints on the covariance among optical and hot gas properties of clusters at a fixed mass. C1 [Rykoff, E. S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Evrard, A. E.; McKay, T. A.; Becker, M. R.; Nord, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Evrard, A. E.; McKay, T. A.; Stanek, R.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; McKay, T. A.] Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Becker, M. R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Johnston, D. E.] Jet Propuls Lab, Pasadena, CA 91109 USA. [Koester, B. P.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Koester, B. P.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Rozo, E.] Ohio State Univ, Columbus, OH 43210 USA. [Sheldon, E. S.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, KIPAC, Stanford, CA 94305 USA. Stanford Univ, SLAC, Stanford, CA 94305 USA. RP Rykoff, ES (reprint author), Univ Calif Santa Barbara, Dept Phys, 2233B Broida Hall, Santa Barbara, CA 93106 USA. EM erykoff@physics.ucsb.edu RI McKay, Timothy/C-1501-2009; OI McKay, Timothy/0000-0001-9036-6150; Becker, Matthew/0000-0001-7774-2246; Evrard, August/0000-0002-4876-956X FU NSF [AST-0206277, AST-0407061, AST-0708150]; TABASGO foundation FX ESR and TAMcK are pleased to acknowledge financial support from NSF AST-0206277 and AST-0407061, and the hospitality of the MCTP.ESR also thanks the TABASGO foundation. AEE acknowledges support from NSF AST-0708150. We thank A. Finoguenov, T. Reiprich and H. Boehringer for helpful feedback. NR 30 TC 77 Z9 78 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2008 VL 387 IS 1 BP L28 EP L32 DI 10.1111/j.1745-3933.2008.00476.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 308HH UT WOS:000256378700052 ER PT J AU Guan, YF Pearce, RC Melechko, AV Hensley, DK Simpson, ML Rack, PD AF Guan, Y. F. Pearce, R. C. Melechko, A. V. Hensley, D. K. Simpson, M. L. Rack, P. D. TI Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth SO NANOTECHNOLOGY LA English DT Article ID FABRICATION; ABLATION; FILMS; TIPS AB We present a pulsed laser dewetting technique that produces single nickel catalyst particles from lithographically patterned disks for subsequent carbon nanofiber growth through plasma enhanced chemical vapor deposition. Unlike the case for standard heat treated Ni catalyst disks, for which multiple nickel particles and consequently multiple carbon nanofibers (CNFs) are observed, single vertically aligned CNFs could be obtained from the laser dewetted catalyst. Different laser dewetting parameters were tested in this study, such as the laser energy density and the laser processing time measured by the total number of laser pulses. Various nickel disk radii and thicknesses were attempted and the resultant number of carbon nanofibers was found to be a function of the initial disk dimension and the number of laser pulses. C1 [Guan, Y. F.; Pearce, R. C.; Simpson, M. L.; Rack, P. D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Melechko, A. V.; Hensley, D. K.; Simpson, M. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM prack@utk.edu RI Simpson, Michael/A-8410-2011; Melechko, Anatoli/B-8820-2008; Hensley, Dale/A-6282-2016; OI Simpson, Michael/0000-0002-3933-3457; Hensley, Dale/0000-0001-8763-7765; Rack, Philip/0000-0002-9964-3254 NR 15 TC 30 Z9 30 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 11 PY 2008 VL 19 IS 23 AR 235604 DI 10.1088/0957-4484/19/23/235604 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 298BZ UT WOS:000255662700024 PM 21825799 ER PT J AU Patterson, N Adams, DP Hodges, VC Vasile, MJ Michael, JR Kotula, PG AF Patterson, N. Adams, D. P. Hodges, V. C. Vasile, M. J. Michael, J. R. Kotula, P. G. TI Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection SO NANOTECHNOLOGY LA English DT Article ID FIELD OPTICAL MICROSCOPY; SOLID-STATE NANOPORE; DNA TRANSLOCATION; APERTURE PROBES; SURFACE; MEMBRANE; SIZE; FUNCTIONALIZATION; TRANSMISSION; DEFINITION AB We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si(3)N(4) and W/Si(3)N(4) to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations. C1 [Patterson, N.; Adams, D. P.; Hodges, V. C.; Vasile, M. J.; Michael, J. R.; Kotula, P. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Adams, DP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dpadams@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 44 TC 25 Z9 25 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 11 PY 2008 VL 19 IS 23 AR 235304 DI 10.1088/0957-4484/19/23/235304 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 298BZ UT WOS:000255662700012 PM 21825787 ER PT J AU Aganagic, M Beem, C Kachru, S AF Aganagic, Mina Beem, Christopher Kachru, Shamit TI Geometric transitions and dynamical SUSY breaking SO NUCLEAR PHYSICS B LA English DT Article DE dynamical SUSY breaking; geometric transitions; retrofitting; stringy instanton; polonyi; fayet; O'Raifeartaigh ID SUPERSYMMETRY BREAKING; MODELS; DIMENSIONS; MECHANISM AB We show that the physics of D-brane theories that exhibit dynamical SUSY breaking due to stringy instanton effects is well captured by geometric transitions, which recast the nonperturbative superpotential as a classical flux superpotential. This allows for simple engineering of Fayet, Polonyi, O'Raifeartaigh, and other canonical models of supersymmetry breaking in which an exponentially small scale of breaking can be understood either as coming from stringy instantons or as arising from the classical dynamics of fluxes. (c) 2007 Elsevier B.V. All rights reserved. C1 [Aganagic, Mina; Beem, Christopher] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kachru, Shamit] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kachru, Shamit] Stanford Univ, SLAC, Stanford, CA 94305 USA. RP Beem, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM beem@berkeley.edu OI Beem, Christopher/0000-0001-8820-2835 NR 47 TC 45 Z9 45 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD JUN 11 PY 2008 VL 796 IS 1-2 BP 1 EP 24 DI 10.1016/j.nuclphysb.2007.11.032 PG 24 WC Physics, Particles & Fields SC Physics GA 285LY UT WOS:000254779500001 ER PT J AU Cabantous, S Rogers, Y Terwilliger, TC Waldo, GS AF Cabantous, Stephanie Rogers, Yvonne Terwilliger, Thomas C. Waldo, Geoffrey S. TI New Molecular Reporters for Rapid Protein Folding Assays SO PLOS ONE LA English DT Article AB The GFP folding reporter assay [1] uses a C-terminal GFP fusion to report on the folding success of upstream fused polypeptides. The GFP folding assay is widely-used for screening protein variants with improved folding and solubility [2-8], but truncation artifacts may arise during evolution, i.e. from de novo internal ribosome entry sites [9]. One way to reduce such artifacts would be to insert target genes within the scaffolding of GFP circular permuted variants. Circular permutants of fluorescent proteins often misfold and are non-fluorescent, and do not readily tolerate fused polypeptides within the fluorescent protein scaffolding [10-12]. To overcome these limitations, and to increase the dynamic range for reporting on protein misfolding, we have created eight GFP insertion reporters with different sensitivities to protein misfolding using chimeras of two previously described GFP variants, the GFP folding reporter [1] and the robustly-folding ''superfolder'' GFP [13]. We applied this technology to engineer soluble variants of Rv0113, a protein from Mycobacterium tuberculosis initially expressed as inclusion bodies in Escherichia coli. Using GFP insertion reporters with increasing stringency for each cycle of mutagenesis and selection led to a variant that produced large amounts of soluble protein at 37 degrees C in Escherichia coli. The new reporter constructs discriminate against truncation artifacts previously isolated during directed evolution of Rv0113 using the original C-terminal GFP folding reporter. Using GFP insertion reporters with variable stringency should prove useful for engineering protein variants with improved folding and solubility, while reducing the number of artifacts arising from internal cryptic ribosome initiation sites. C1 [Cabantous, Stephanie; Rogers, Yvonne; Terwilliger, Thomas C.; Waldo, Geoffrey S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Cabantous, Stephanie] Ctr Natl Rech Sci, Inst Pharmacol Biol Structurale, Toulouse, France. RP Cabantous, S (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM waldo@lanl.gov RI Terwilliger, Thomas/K-4109-2012; Cabantous, Stephanie/M-3282-2014 OI Terwilliger, Thomas/0000-0001-6384-0320; Cabantous, Stephanie/0000-0002-8406-9421 FU NIH; [1 U54 GM074946-01US] FX This work was supported by the NIH (grant NIH 1 U54 GM074946-01US, Integrated Center for Structure and Function Innovation, PI: Terwilliger). NR 41 TC 28 Z9 30 U1 1 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 11 PY 2008 VL 3 IS 6 AR e2387 DI 10.1371/journal.pone.0002387 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 405UD UT WOS:000263248800026 PM 18545698 ER PT J AU Park, JY Cho, MO Leonard, S Calder, B Mian, IS Kim, WH Wijnhoven, S van Steeg, H Mitchell, J van der Horst, GTJ Hoeijmakers, J Cohen, P Vijg, J Suh, Y AF Park, Jung Yoon Cho, Mi-Ook Leonard, Shanique Calder, Brent Mian, I. Saira Kim, Woo Ho Wijnhoven, Susan van Steeg, Harry Mitchell, James van der Horst, Gijsbertus T. J. Hoeijmakers, Jan Cohen, Pinchas Vijg, Jan Suh, Yousin TI Homeostatic Imbalance between Apoptosis and Cell Renewal in the Liver of Premature Aging Xpd(TTD) Mice SO PLOS ONE LA English DT Article AB Unrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. Xpd(TTD) mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing Xpd(TTD) mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the Xpd(TTD) mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the Xpd(TTD) mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis. C1 [Park, Jung Yoon; Cho, Mi-Ook; Suh, Yousin] Albert Einstein Coll Med, Dept Med, Bronx, NY 10467 USA. [Leonard, Shanique] Univ Texas, Hlth Sci Ctr San Antonio, Barshop Inst Longevity & Aging Stud, Dept Physiol, San Antonio, TX USA. [Calder, Brent; Vijg, Jan] Buck Inst Age Res, Novato, CA USA. [Mian, I. Saira] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Kim, Woo Ho] Seoul Natl Univ, Coll Med, Dept Pathol, Seoul, South Korea. [Wijnhoven, Susan; van Steeg, Harry] Natl Inst Publ Hlth & Env, Lab Toxicol, Pathol & Genet, Bilthoven, Netherlands. [Mitchell, James; van der Horst, Gijsbertus T. J.; Hoeijmakers, Jan] Erasmus MC, MGC Dept Cell Biol & Genet, Rotterdam, Netherlands. [Cohen, Pinchas] Univ Calif Los Angeles, Los Angeles, CA USA. [Park, Jung Yoon; Cho, Mi-Ook; Suh, Yousin] Albert Einstein Coll Med, Dept Mol Genet, Bronx, NY USA. RP Park, JY (reprint author), Albert Einstein Coll Med, Dept Med, Bronx, NY 10467 USA. EM ysuh@aecom.yu.edu RI Kim, Wooho/G-3703-2011; Seoul National University, Pathology/B-6702-2012; van der Horst, Gijsbertus/E-3661-2015 FU US National Institute of Health [RO1 AG024391, RO3 AG023292, PO1 AG17242, RO1AG20438, UO1ES11044] FX This work was supported by grants from the US National Institute of Health (RO1 AG024391 and RO3 AG023292) awarded to YS, and (PO1 AG17242, RO1AG20438, UO1ES11044) awarded to JV. NR 43 TC 17 Z9 18 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 11 PY 2008 VL 3 IS 6 AR e2346 DI 10.1371/journal.pone.0002346 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 405UD UT WOS:000263248800008 PM 18545656 ER PT J AU Zirm, AW Stanford, SA Postman, M Overzier, RA Blakeslee, JP Rosati, P Kurk, J Pentericci, L Venemans, B Miley, GK Rottgering, HJA Franx, M van der Wel, A Demarco, R van Breugel, W AF Zirm, Andrew W. Stanford, S. A. Postman, M. Overzier, R. A. Blakeslee, J. P. Rosati, P. Kurk, J. Pentericci, L. Venemans, B. Miley, G. K. Roettgering, H. J. A. Franx, M. van der Wel, A. Demarco, R. van Breugel, W. TI The nascent red sequence at z similar to 2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : clusters : individual (MRC 1138-262); galaxies : evolution; galaxies : formation; galaxies : high-redshift; galaxies : stellar content ID EARLY-TYPE GALAXIES; H-ALPHA EMITTERS; HIGH-REDSHIFT; STAR-FORMATION; CLUSTER SURVEY; PROTO-CLUSTER; Z=2.16; PHOTOMETRY; COMBO-17; SEARCH AB We present new constraints on the evolution of the early-type galaxy color-magnitude relation (CMR) based on deep near-infrared imaging of a galaxy protocluster at z = 2.16 obtained using NICMOS on board the Hubble Space Telescope. This field contains a spectroscopically confirmed space overdensity of Ly alpha- and H alpha-emitting galaxies that surrounds the powerful radio galaxy MRC 1138-262. Using these NICMOS data we identify a significant surface overdensity (=6.2 times) of red J(110) - H(160) galaxies in the color-magnitude diagram (when compared with deep NICMOS imaging from the HDF-N and UDF). The optical-NIR colors of these prospective red-sequence galaxies indicate the presence of ongoing dust-obscured star formation or recently formed (less than or similar to 1.5 Gyr) stellar populations in a majority of the red galaxies. We measure the slope and intrinsic scatter of the CMR for three different red galaxy samples selected by a wide color cut and using photometric redshifts both with and without restrictions on rest-frame optical morphology. In all three cases both the rest-frame U - B slope and intrinsic color scatter are considerably higher than corresponding values for lower redshift galaxy clusters. These results suggest that while some relatively quiescent galaxies do exist in this protocluster both the majority of the galaxy population and hence the color-magnitude relation are still in the process of forming, as expected. C1 [Zirm, Andrew W.; Overzier, R. A.; van der Wel, A.; Demarco, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Stanford, S. A.; van Breugel, W.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Postman, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Overzier, R. A.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Blakeslee, J. P.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Blakeslee, J. P.] NRC Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Rosati, P.] European So Observ, D-85748 Munich, Germany. [Kurk, J.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Pentericci, L.] Osserv Astron Roma, I-00040 Monte Porzio Catone, Italy. [Venemans, B.] Univ Cambridge, IOA, Cambridge CB3 0HA, England. [Miley, G. K.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Breugel, W.] Univ Calif Merced, Merced, CA 95344 USA. RP Zirm, AW (reprint author), Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA. EM azirm@pha.jhu.edu RI van der Wel, Arjen/G-8365-2011; OI Blakeslee, John/0000-0002-5213-3548 NR 33 TC 45 Z9 45 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2008 VL 680 IS 1 BP 224 EP 231 DI 10.1086/587449 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 310AH UT WOS:000256500800018 ER PT J AU Sato, R Kataoka, J Takahashi, T Madejski, GM Rugamer, S Wagner, SJ AF Sato, R. Kataoka, J. Takahashi, T. Madejski, G. M. Ruegamer, S. Wagner, S. J. TI Suzaku observation of the TeV blazar 1Es 1218+304: Clues on particle acceleration in an extreme TeV blazar SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE BL Lacertae objects : individual (1ES 1218+304); radiation mechanisms : nonthermal; X-rays : galaxies ID ACTIVE GALACTIC NUCLEI; GAMMA-RAY EMISSION; BL-LAC OBJECTS; BOARD SUZAKU; PKS 2155-304; VARIABILITY; DETECTOR; FLARE AB We observed the TeV blazar 1ES 1218 + 304 with the X-ray astronomy satellite Suzaku in 2006 May. At the beginning of the 2 day continuous observation, we detected a large flare in which the 5-10 keV flux changed by a factor of similar to 2 on a timescale of 5 x 10(4) s. During the flare, the increase in the hard X-ray flux clearly lagged behind that observed in the soft X-rays, with the maximum lag of 2.3 x 10(4) s observed between the 0.3-1 keV and 5-10 keV bands. Furthermore, we discovered that the temporal profile of the flare clearly changes with energy, being more symmetric at higher energies. From the spectral fitting of multiwavelength data assuming a one-zone, homogeneous synchrotron self-Compton model, we obtain a magnetic field strength B similar to 0.047 G and an emission region size R = 3.0 x 10(16) cm for an appropriate beaming with a Doppler factor of delta = 20. This value of B is in good agreement with an independent estimate through the model fit to the observed time lag ascribing the energy-dependent variability to the differential acceleration timescale of relativistic electrons provided that the gyrofactor xi is 10(5). C1 [Sato, R.; Takahashi, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Kataoka, J.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Madejski, G. M.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Madejski, G. M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ruegamer, S.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Wagner, S. J.] Univ Heidelberg, D-69117 Heidelberg, Germany. RP Sato, R (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. RI XRAY, SUZAKU/A-1808-2009 NR 34 TC 21 Z9 21 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2008 VL 680 IS 1 BP L9 EP L12 DI 10.1086/589689 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 313DX UT WOS:000256722400003 ER PT J AU White, KM Lee, PL Chupas, PJ Chapman, KW Payzant, EA Jupe, AC Bassett, WA Zha, CS Wilkinson, AP AF White, K. M. Lee, P. L. Chupas, P. J. Chapman, K. W. Payzant, E. A. Jupe, A. C. Bassett, W. A. Zha, C. -S. Wilkinson, A. P. TI Synthesis, symmetry, and physical properties of cerium pyrophosphate SO CHEMISTRY OF MATERIALS LA English DT Article ID POWDER DIFFRACTION DATA; ADVANCED PHOTON SOURCE; P BOND ANGLES; THERMAL-EXPANSION; PHASE-TRANSITIONS; SUPERSTRUCTURE; ZRP2O7; TIP2O7; DIPHOSPHATE; PHOSPHATE AB CeP2O7, a close structural relative of ZrP2O7, and many other (MX2O7)-X-IV (X - P, V, As) phases, forms on heating Ce(HPO4)(2)center dot xH(2)O between similar to 300 and 600 degrees C and decomposes by oxygen loss at higher temperatures. In-situ X-ray diffraction measurements showed, for some precursor batches, the formation of CeP2O7 in two distinct stages. At room temperature,. CeP2O7 is pseudocubic, but probably triclinic, displaying positive thermal expansion below similar to 115 degrees C. Above this temperature, there is a transition to cubic symmetry (Pa (3) over bar) with the linear coefficient of thermal expansion going to zero at similar to 450 degrees C and becoming negative at higher temperatures. CeP2O7 probably undergoes two phase transitions on compression below similar to 10.5 GPa. The phase existing between 0.65 and similar to 5 GPa is soft with an average bulk modulus of similar to 18 GPa. C1 [White, K. M.; Jupe, A. C.; Wilkinson, A. P.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Lee, P. L.; Chupas, P. J.; Chapman, K. W.] Argonne Natl Lab, XOR Adv Photon Source, Argonne, IL 60439 USA. [Payzant, E. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Bassett, W. A.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Zha, C. -S.] Cornell Univ, Wilson Lab, CHESS, Ithaca, NY 14853 USA. RP Wilkinson, AP (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM angus.wilkinson@chemistry.gatech.edu RI Wilkinson, Angus/C-3408-2008; Payzant, Edward/B-5449-2009; Chapman, Karena/G-5424-2012 OI Wilkinson, Angus/0000-0003-2904-400X; Payzant, Edward/0000-0002-3447-2060; NR 35 TC 21 Z9 22 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 10 PY 2008 VL 20 IS 11 BP 3728 EP 3734 DI 10.1021/cm702338h PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 309EQ UT WOS:000256443900029 ER PT J AU Liebrock, LM Goudy, SP AF Liebrock, L. M. Goudy, S. P. TI Methodology for modelling SPMD hybrid parallel computation SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE hybrid parallelism; performance analysis; performance modelling ID PERFORMANCE; SYSTEM AB This research defines and analyzes a methodology for deriving a performance model for SPMD hybrid parallel applications. Hybrid parallelism combines shared memory and message passing computing models. This work extends the current practice of application performance modelling by development of a methodology for hybrid applications with these procedures. Creation of a model based on complexity analysis of an application code and its data structures. Enhancement of a static complexity model by dynamic factors to capture execution time phenomena, such as memory hierarchy effects. Quantitative analysis of model characteristics and the effects of perturbations in measured parameters. These research results are presented in the context of a hybrid parallel implementation of a sparse linear algebra kernel. A model for this kernel is derived and analyzed using the methodology. Application of the model on two large parallel computing platforms provides case A tidies for the methodology. Operating system issues, machine balance factor, and memory hierarchy effects on model accuracy are examined. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 [Liebrock, L. M.] New Mexico Inst Min & Technol, Dept Comp Sci, Socorro, NM 87801 USA. [Goudy, S. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Liebrock, LM (reprint author), New Mexico Inst Min & Technol, Dept Comp Sci, 801 Leroy Pl, Socorro, NM 87801 USA. EM liebrock@cs.nmt.edu NR 55 TC 3 Z9 3 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD JUN 10 PY 2008 VL 20 IS 8 BP 903 EP 940 DI 10.1002/cpe.1214 PG 38 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 311CF UT WOS:000256577000001 ER PT J AU Kalinin, IV Kats, E Koza, M Lauter, VV Lauter, H Puchkov, AV AF Kalinin, I. V. Kats, E. Koza, M. Lauter, V. V. Lauter, H. Puchkov, A. V. TI Observation of a superfluid phase in solid helium SO JETP LETTERS LA English DT Article ID LIQUID-HELIUM; NEUTRON-SCATTERING; COLD NEUTRONS; HE-4; SUPERSOLIDITY; TEMPERATURE; EXCITATIONS; ROTONS AB Evidence of a superfluid liquid phase present in polycrystalline helium at a temperature of 0.2 K and a pressure of 51 bar has been obtained by means of inelastic neutron scattering. The superfluid component is absent at a temperature of 0.6 K and the same pressure. Thus, a "solid helium-superfluid helium" phase transition has been discovered. The sample of solid helium in a porous medium (silica acrogel) has been prepared with the use of a capillary blocking technique. The shape of the structure factor of the superfluid phase indicates the presence of clusters or the effects of a restricted geometry. The results may be used to explain the nonclassical rotational inertia phenomenon in solid helium (often referred to as supersolidity, Nature, 2004). C1 [Kalinin, I. V.; Puchkov, A. V.] Inst Phys & Power Engn, Obninsk 249033, Kaluga Region, Russia. [Kats, E.; Koza, M.; Lauter, H.] Inst Laue Langevin, F-38042 Grenoble, France. [Lauter, V. V.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Kalinin, IV (reprint author), Inst Phys & Power Engn, Pl Bondarenko 1, Obninsk 249033, Kaluga Region, Russia. EM kaliv@ipp.ru FU Russian Foundation; Kaluga Region Government [07-02-96401] FX The work was supported by the Russian Foundation for Basic Research together with the Kaluga Region Government (project no. 07-02-96401). NR 29 TC 4 Z9 4 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0021-3640 J9 JETP LETT+ JI Jetp Lett. PD JUN 10 PY 2008 VL 87 IS 11 BP 645 EP 648 DI 10.1134/S0021364008110118 PG 4 WC Physics, Multidisciplinary SC Physics GA 342IE UT WOS:000258777000011 ER PT J AU Henderson, MA AF Henderson, Michael A. TI Effect of coadsorbed water on the photodecomposition of acetone on TiO(2)(110)) SO JOURNAL OF CATALYSIS LA English DT Article DE photocatalysis; TiO(2); acetone; water; TPD ID VOLATILE ORGANIC-COMPOUNDS; HETEROGENEOUS PHOTOCATALYTIC OXIDATION; TIO2 THIN-FILMS; TITANIUM-DIOXIDE; GAS-PHASE; GASEOUS ACETONE; AIR PURIFICATION; ANATASE TIO2; SURFACE; DEGRADATION AB The influence of coadsorbed water on the photodecomposition of acetone on TiO(2) was evaluated using temperature-programmed desorption (TPD) and the rutile TiO(2)(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatailysis literature (promotion through OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water + acetone coverage was maintained well below the first-layer saturation coverage (1 ML), little inhibition of acetone photodecomposition was observed. However, as the total water + acetone coverage exceeded I ML, acetone was preferentially displaced from the first layer to physisorbed states by water, and the extent of acetone photodecomposition was attenuated. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as acetone. Because the acetate intermediate was more stable on the TiO(2)(110) surface than either water or acetone (as gauged by TPD), and because it had a lower photodecomposition rate than acetone, additional surface sites were not opened up during acetone photodecomposition to allow previously displaced acetone molecules to reenter the first layer. (c) 2008 Elsevier Inc. All rights reserved. C1 Pacific NW Natl Lab, Interfacial Chem & Engn Grp, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Interfacial Chem & Engn Grp, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnl.gov NR 46 TC 34 Z9 34 U1 1 U2 22 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUN 10 PY 2008 VL 256 IS 2 BP 287 EP 292 DI 10.1016/j.jcat.2008.03.020 PG 6 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 314XI UT WOS:000256842100013 ER PT J AU Lee, SK Lin, JF Cai, YQ Hiraoka, N Eng, PJ Okuchi, T Mao, HK Meng, Y Hu, MY Chow, P Shu, JF Li, BS Fukui, H Lee, BH Kim, HN Yoo, CS AF Lee, Sung Keun Lin, Jung-Fu Cai, Yong Q. Hiraoka, Nozomu Eng, Peter J. Okuchi, Takuo Mao, Ho-Kwang Meng, Yue Hu, Michael Y. Chow, Paul Shu, Jinfu Li, Baosheng Fukui, Hiroshi Lee, Bum Han Kim, Hyun Na Yoo, Choong-Shik TI X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered MgSiO3 melt in Earth's mantle SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE silicate melts at high pressure; tricluster oxygen ID POST-PEROVSKITE PHASE; SILICATE MELTS; MAGMA OCEAN; SEISMIC EVIDENCE; BONDING CHANGES; XANES SPECTRA; LIQUID; COORDINATION; OXYGEN; BASE AB Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; 1310) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle. C1 [Lee, Sung Keun; Lee, Bum Han; Kim, Hyun Na] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. [Lin, Jung-Fu] Lawrence Livermore Natl Lab, Livermore, CA 94588 USA. [Cai, Yong Q.; Hiraoka, Nozomu] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Eng, Peter J.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Eng, Peter J.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Okuchi, Takuo] Nagoya Univ, Inst Adv Res, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Mao, Ho-Kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul] Argonne Natl Lab, Adv Photon Source, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Mao, Ho-Kwang; Meng, Yue; Shu, Jinfu] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Li, Baosheng] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Fukui, Hiroshi] Okayama Univ, Inst Study Earths Interior, Tottori 6820193, Japan. [Yoo, Choong-Shik] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Yoo, Choong-Shik] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. RP Lee, SK (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. EM sungklee@snu.ac.kr; lin24@llnl.gov; h.mao@gl.ciw.edu RI Lin, Jung-Fu/B-4917-2011; Cai, Yong/C-5036-2008; OKUCHI, Takuo/B-1884-2011; Li, Baosheng/C-1813-2013; OI Cai, Yong/0000-0002-9957-6426; OKUCHI, Takuo/0000-0001-6907-0945; Fukui, Hiroshi/0000-0002-7880-635X NR 41 TC 71 Z9 71 U1 3 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 10 PY 2008 VL 105 IS 23 BP 7925 EP 7929 DI 10.1073/pnas.0802667105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 314AT UT WOS:000256781800006 PM 18535140 ER PT J AU Salomao, M Zhang, XH Yang, Y Lee, S Hartwig, JH Chasis, JA Mohandas, N An, XL AF Salomao, Marcela Zhang, Xihui Yang, Yang Lee, Soohee Hartwig, John H. Chasis, Joel Anne Mohandas, Narla An, Xiuli TI Protein 4.1R-dependent multiprotein complex: New insights into the structural organization of the red blood cell membrane SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE macromolecular complex; cytoskeleton ID ERYTHROCYTE ANION-EXCHANGER; ANKYRIN-BINDING SITE; GLYCOPHORIN-A; HEREDITARY ELLIPTOCYTOSIS; MOLECULAR-STRUCTURE; BAND-3; DEFICIENCY; SPECTRIN; MICE; STABILITY AB Protein 4.1R (4.1R) is a multifunctional component of the red cell membrane. It forms a ternary complex with actin and spectrin, which defines the nodal junctions of the membrane-skeletal network, and its attachment to the transmembrane protein glycophorin C creates a bridge between the protein network and the membrane bilayer. We now show that deletion of 4.1R in mouse red cells leads to a large diminution of actin accompanied by extensive loss of cytoskeletal lattice structure, with formation of bare areas of membrane. Whereas band 3,,the preponderant transmembrane constituent, and proteins known to be associated with it are present in normal or increased amounts, glycophorin C is missing and XK, Duffy, and Rh are much reduced in the 4.1R-deficient cells. The inference that these are associated with 4.1R was borne out by the results of in vitro pull-down assays. Furthermore, whereas Western blot analysis showed normal levels of band 3 and Kell, flow cytometric analysis using an antibody against the extracellular region of band 3 or Kell revealed reduction of these two proteins, suggesting a conformational change, of band 3 and Kell epitopes. Taken together, we suggest that 4.1R organizes a macromolecular complex of skeletal and transmembrane proteins at the junctional node and that perturbation of this macromolecular complex not only is responsible for the well characterized membrane instability but may also remodel the red cell surface. C1 [Salomao, Marcela; Zhang, Xihui; Yang, Yang; Mohandas, Narla; An, Xiuli] New York Blood Ctr, Red Cell Physiol Lab, New York, NY 10065 USA. [Lee, Soohee] New York Blood Ctr, Dept Membrane Biochem, New York, NY 10065 USA. [Hartwig, John H.] Harvard Univ, Sch Med, Brigham & Womens Hosp, Boston, MA 02115 USA. [Chasis, Joel Anne] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP An, XL (reprint author), New York Blood Ctr, Red Cell Physiol Lab, 310 E 67th St, New York, NY 10065 USA. EM xan@nybloodcenter.org FU NHLBI NIH HHS [HL075716, HL31579, HL78826, P01 HL078826, R01 HL031579, R01 HL075716]; NIDDK NIH HHS [DK32094, P01 DK032094, R01 DK026263, R37 DK026263, DK26263] NR 48 TC 129 Z9 130 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 10 PY 2008 VL 105 IS 23 BP 8026 EP 8031 DI 10.1073/pnas.0803225105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 314AT UT WOS:000256781800024 PM 18524950 ER PT J AU Elkins, JG Podar, M Graham, DE Makarova, KS Wolf, Y Randau, L Hedlund, BP Brochier-Armanet, C Kunin, V Anderson, I Lapidus, A Goltsman, E Barry, K Koonin, EV Hugenholtz, P Kyrpides, N Wanner, G Richardson, P Keller, M Stetter, KO AF Elkins, James G. Podar, Mircea Graham, David E. Makarova, Kira S. Wolf, Yuri Randau, Lennart Hedlund, Brian P. Brochier-Armanet, Celine Kunin, Victor Anderson, Iain Lapidus, Alla Goltsman, Eugene Barry, Kerrie Koonin, Eugene V. Hugenholtz, Phil Kyrpides, Nikos Wanner, Gerhard Richardson, Paul Keller, Martin Stetter, Karl O. TI A korarchaeal genome reveals insights into the evolution of the Archaea SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE microbial cultivation; genomics; hyperthermophiles; Korarchaeota; phylogeny ID YELLOWSTONE-NATIONAL-PARK; TRANSFER-RNA GENES; PYROCOCCUS-FURIOSUS; FERREDOXIN OXIDOREDUCTASE; MICROBIAL DIVERSITY; SPECIES COMPOSITION; CELL-DIVISION; SEQUENCE; BACTERIA; SEA AB The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, "Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382,(85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form. C1 [Elkins, James G.; Stetter, Karl O.] Univ Regensburg, Lehrstuhl Mikrobiol & Archaeenzentrum, D-93053 Regensburg, Germany. [Podar, Mircea; Keller, Martin] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Graham, David E.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. [Makarova, Kira S.; Wolf, Yuri; Koonin, Eugene V.] Natl Inst Hlth, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA. [Randau, Lennart] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA. [Hedlund, Brian P.] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA. [Brochier-Armanet, Celine] Univ Aix Marseille 1, CNRS, Chim Bacterienne Lab, Unite Propre Rech 9043, F-13331 Marseille 3, France. [Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Hugenholtz, Phil; Kyrpides, Nikos; Wanner, Gerhard; Richardson, Paul] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Wanner, Gerhard] Univ Munich, Inst Bot, D-80638 Munich, Germany. [Stetter, Karl O.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Elkins, James G.; Stetter, Karl O.] Univ Regensburg, Archaeenzentrum, D-93053 Regensburg, Germany. RP Stetter, KO (reprint author), Univ Regensburg, Lehrstuhl Mikrobiol, Univ Str 31, D-93343 Regensburg, Germany. EM karl.stetter@biologie.uni-regensburg.de RI Graham, David/F-8578-2010; Hugenholtz, Philip/G-9608-2011; Keller, Martin/C-4416-2012; Elkins, James/A-6199-2011; Kyrpides, Nikos/A-6305-2014; Lapidus, Alla/I-4348-2013; OI Graham, David/0000-0001-8968-7344; Elkins, James/0000-0002-8052-5688; Kyrpides, Nikos/0000-0002-6131-0462; Lapidus, Alla/0000-0003-0427-8731; Podar, Mircea/0000-0003-2776-0205; hugenholtz, philip/0000-0001-5386-7925 NR 52 TC 135 Z9 220 U1 2 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 10 PY 2008 VL 105 IS 23 BP 8102 EP 8107 DI 10.1073/pnas.0801980105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 314AT UT WOS:000256781800037 PM 18535141 ER PT J AU Chen, H Wang, G Dudley, M Xu, Z Edgar, JH Batten, T Kuball, M Zhang, LH Zhu, YM AF Chen, Hui Wang, Guan Dudley, Michael Xu, Zhou Edgar, J. H. Batten, Tim Kuball, Martin Zhang, Lihua Zhu, Yimei TI Single-crystalline B(12)As(2) on m-plane (1(1)over-bar00) 15R-SiC SO APPLIED PHYSICS LETTERS LA English DT Article ID BORON-RICH SOLIDS; CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; HETEROEPITAXIAL GROWTH; STRUCTURAL VARIANTS AB Single crystal, heteroepitaxial growth of icosahedral B(12)As(2) (IBA, a boride semiconductor) on m-plane 15R-SiC is demonstrated. Previous studies of IBA on other substrates, i.e., (111)Si and (0001)6H-SiC, produced polycrystalline and twinned epilayers. In contrast, single-crystalline and untwinned IBA was achieved on m-plane 15R-SiC. Synchrotron white beam x-ray topography, Raman spectroscopy, and high resolution transmission electron microscopy confirm the high quality of the films. High quality growth is shown to be mediated by ordered nucleation of IBA on (474) substrate facets. This work demonstrates that m-plane 15R-SiC is a good substrate choice to grow high-quality untwinned IBA epilayers for future device applications. (C) 2008 American Institute of Physics. C1 [Chen, Hui; Wang, Guan; Dudley, Michael] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Xu, Zhou; Edgar, J. H.] Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA. [Batten, Tim; Kuball, Martin] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Zhang, Lihua; Zhu, Yimei] Brookhaven Natl Lab, Ctr Funct Mat, Upton, NY 11973 USA. RP Chen, H (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM huichen@ic.sunysb.edu RI Zhang, Lihua/F-4502-2014 NR 15 TC 7 Z9 7 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 9 PY 2008 VL 92 IS 23 AR 231917 DI 10.1063/1.2945635 PG 3 WC Physics, Applied SC Physics GA 312XP UT WOS:000256706000026 ER PT J AU El-Kady, I Olsson, RH Fleming, JG AF El-Kady, I. Olsson, R. H., III Fleming, J. G. TI Phononic band-gap crystals for radio frequency communications SO APPLIED PHYSICS LETTERS LA English DT Article ID ELASTIC-WAVES AB We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over 25 dB suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high-Q materials such as silicon oxide, silicon, and tungsten. (C) 2008 American Institute of Physics. C1 [El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. [Olsson, R. H., III] Sandia Natl Labs, Adv MEMS Dept, Albuquerque, NM 87185 USA. [Fleming, J. G.] Sandia Natl Labs, Microelect Dev Lab, Albuquerque, NM 87185 USA. RP El-Kady, I (reprint author), Sandia Natl Labs, Dept Photon Microsyst Technol, POB 5800, Albuquerque, NM 87185 USA. EM ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 NR 9 TC 49 Z9 49 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 9 PY 2008 VL 92 IS 23 AR 233504 DI 10.1063/1.2938863 PG 3 WC Physics, Applied SC Physics GA 312XP UT WOS:000256706000086 ER PT J AU Liu, Y Cai, Y Zhang, LX Xie, MH Wang, N Zhang, SB Wu, HS AF Liu, Y. Cai, Y. Zhang, Lixin Xie, M. H. Wang, N. Zhang, S. B. Wu, H. S. TI Dislocation network at InN/GaN interface revealed by scanning tunneling microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; MISFIT DISLOCATIONS; LAYERS; HETEROEPITAXY; RELAXATION; GAN(0001); GROWTH AB For heteroepitaxy of InN on GaN(0001) by molecular-beam epitaxy, the lattice misfit strain is relieved by misfit dislocations (MDs) formed at the interface between InN and GaN. Imaging by scanning tunneling microscopy (STM) of the surfaces of thin InN epifilms reveals line feature parallel to < 11 (2) over bar0 >. Their contrast becomes less apparent for thicker epifilms. From the interline spacing as well as a comparison with transmission electron microscopy studies, it is suggested that they correspond to the MDs beneath the surface. The STM contrast originates from both the surface distortion caused by the local strain at MDs and the electronic states of the defects. (C) 2008 American Institute of Physics. C1 [Liu, Y.; Xie, M. H.; Wu, H. S.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Cai, Y.; Wang, N.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Zhang, Lixin; Zhang, S. B.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Liu, Y (reprint author), Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. EM mhxie@hkusua.hku.hk RI Wang, Ning/B-5436-2011; Wu, Hua Sheng/D-3145-2009; Xie, Mao Hai/D-3147-2009; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013 OI Wang, Ning/0000-0002-4902-5589; Zhang, Shengbai/0000-0003-0833-5860 NR 13 TC 10 Z9 10 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 9 PY 2008 VL 92 IS 23 AR 231907 DI 10.1063/1.2944145 PG 3 WC Physics, Applied SC Physics GA 312XP UT WOS:000256706000016 ER PT J AU Mara, NA Bhattacharyya, D Dickerson, P Hoagland, RG Misra, A AF Mara, N. A. Bhattacharyya, D. Dickerson, P. Hoagland, R. G. Misra, A. TI Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOSCALE MULTILAYERS; MECHANICAL-PROPERTIES; BEHAVIOR; PLASTICITY; SCALE; SLIP; CU AB In this work, micropillar compression testing has been used to obtain stress-strain curves for sputter-deposited Cu-Nb nanolaminate composites with nominal bilayer thickness of 10 nm. In addition to the extremely high flow strength of 2.4 GPa, the 5 nm Cu/5 nm Nb nanolaminate exhibits significant ductility, in excess of 25% true strain. (C) 2008 American Institute of Physics. C1 [Mara, N. A.; Dickerson, P.; Hoagland, R. G.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Bhattacharyya, D.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Mara, NA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM namara@lanl.gov RI Misra, Amit/H-1087-2012; Hoagland, Richard/G-9821-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 NR 13 TC 121 Z9 123 U1 3 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 9 PY 2008 VL 92 IS 23 AR 231901 DI 10.1063/1.2938921 PG 3 WC Physics, Applied SC Physics GA 312XP UT WOS:000256706000010 ER PT J AU Rodriguez, BJ Jesse, S Kim, J Ducharme, S Kalinin, SV AF Rodriguez, Brian J. Jesse, Stephen Kim, Jihee Ducharme, Stephen Kalinin, Sergei V. TI Local probing of relaxation time distributions in ferroelectric polymer nanomesas: Time-resolved piezoresponse force spectroscopy and spectroscopic imaging SO APPLIED PHYSICS LETTERS LA English DT Article ID LANGMUIR-BLODGETT-FILMS AB Time-resolved piezoresponse force spectroscopy (TR-PFS) and spectroscopic imaging are developed to probe the spatial variability of relaxation behavior in nanoscale ferroelectric materials and structures. TR-PFS was applied to study polarization dynamics in polyvinylidine fluoride and trifluoroethylene nanomesas. We demonstrate that polarization relaxation in ferroelectric polymers is slow even on the similar to 10 nm length scale of piezoresponse force microscopy (PFM) signal generation. Furthermore, the relaxation times are found to be nonuniform within the nanomesa, indicative of a complex internal structure. The applicability of TR-PFM for studies of polarization dynamics in ferroelectric polymers and relaxors is discussed. (C) 2008 American Institute of Physics. C1 [Rodriguez, Brian J.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Rodriguez, Brian J.; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Jihee; Ducharme, Stephen] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Kim, Jihee; Ducharme, Stephen] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Rodriguez, BJ (reprint author), Max Planck Inst Microstruct Phys, Weinberg 2, D-06120 Halle, Germany. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016; Ducharme, Stephen/A-1909-2009 OI Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483; Ducharme, Stephen/0000-0003-0936-7995 NR 14 TC 17 Z9 17 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 9 PY 2008 VL 92 IS 23 AR 232903 DI 10.1063/1.2942390 PG 3 WC Physics, Applied SC Physics GA 312XP UT WOS:000256706000049 ER PT J AU Van Neste, CW Senesac, LR Thundat, T AF Van Neste, C. W. Senesac, L. R. Thundat, T. TI Standoff photoacoustic spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID QUANTUM CASCADE LASERS AB Here, we demonstrate a variation of photoacoustic spectroscopy that can be used for obtaining spectroscopic information of surface adsorbed chemicals in a standoff fashion. Pulsed light scattered from a target excites an acoustic resonator and the variation of the resonance amplitude as a function of illumination wavelength yields a representation of the absorption spectrum of the target. We report sensitive and selective detection of surface adsorbed compounds such as tributyl phosphate and residues of explosives such as trinitrotoluene at standoff distances ranging from 0.5-20 m, with a detection limit on the order of 100 ng/cm(2). (C) 2008 American Institute of Physics. C1 [Van Neste, C. W.; Senesac, L. R.; Thundat, T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Senesac, L. R.; Thundat, T.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Thundat, T (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM thundattg@ornl.gov NR 12 TC 53 Z9 53 U1 0 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 9 PY 2008 VL 92 IS 23 AR 234102 DI 10.1063/1.2945288 PG 3 WC Physics, Applied SC Physics GA 312XP UT WOS:000256706000097 ER PT J AU Heilmann, RK Ahn, M Gullikson, EM Schattenburg, ML AF Heilmann, Ralf K. Ahn, Minseung Gullikson, Eric M. Schattenburg, Mark L. TI Blazed high-efficiency x-ray diffraction via transmission through arrays of nanometer-scale mirrors SO OPTICS EXPRESS LA English DT Article ID EXTREME-ULTRAVIOLET LIGHT; PHASE-CONTRAST; GRATINGS; FABRICATION; REFLECTION; INTERFEROMETER; SURFACE; REGION; ATOMS AB Diffraction gratings are ubiquitous wavelength dispersive elements for photons as well as for subatomic particles, atoms, and large molecules. They serve as enabling devices for spectroscopy, microscopy, and interferometry in numerous applications across the physical sciences. Transmission gratings are required in applications that demand high alignment and figure error tolerances, low weight and size, or a straight-through zero-order beam. However, photons or particles are often strongly absorbed upon transmission, e. g., in the increasingly important extreme ultraviolet (EUV) and soft x-ray band, leading to low diffraction efficiency. We demonstrate the performance of a critical-angle transmission ( CAT) grating in the EUV and soft x-ray band that for the first time combines the advantages of transmission gratings with the superior broadband efficiency of blazed reflection gratings via reflection from nanofabricated periodic arrays of atomically smooth nanometer-thin silicon mirrors at angles below the critical angle for total external reflection. The efficiency of the CAT grating design is not limited to photons, but also opens the door to new, sensitive, and compact experiments and applications in atom and neutron optics, as well as for the efficient diffraction of electrons, ions, or molecules. (c) 2008 Optical Society of America. C1 [Heilmann, Ralf K.; Ahn, Minseung; Schattenburg, Mark L.] MIT, Kavli Inst Astrophys & Space Res, Space Nanotechnol Lab, Cambridge, MA 02026 USA. [Gullikson, Eric M.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Heilmann, RK (reprint author), MIT, Kavli Inst Astrophys & Space Res, Space Nanotechnol Lab, Cambridge, MA 02026 USA. EM ralf@space.mit.edu RI Heilmann, Ralf/D-4680-2009 NR 41 TC 28 Z9 29 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 9 PY 2008 VL 16 IS 12 BP 8658 EP 8669 DI 10.1364/OE.16.008658 PG 12 WC Optics SC Optics GA 315ED UT WOS:000256859900034 PM 18545579 ER PT J AU Lee, JH Leung, W Kim, TG Constant, K Ho, KM AF Lee, Jae-Hwang Leung, Wai Kim, Tae Guen Constant, Kristen Ho, Kai-Ming TI Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating SO OPTICS EXPRESS LA English DT Article ID DOPED SILICON; EMISSION; TEMPERATURE; SURFACES AB Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 mu m, as well as high emissivity up to 0.65 at a wavelength of 3.7 mu m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization. (c) 2008 Optical Society of America. C1 [Lee, Jae-Hwang; Leung, Wai; Constant, Kristen; Ho, Kai-Ming] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Kim, Tae Guen] Korea Univ, Dept Elect Engn, Seoul 136701, South Korea. RP Lee, JH (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM leejh@iastate.edu RI Constant, Kristen/C-3673-2014 OI Constant, Kristen/0000-0001-7138-9365 NR 21 TC 10 Z9 10 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 9 PY 2008 VL 16 IS 12 BP 8742 EP 8747 DI 10.1364/OE.16.008742 PG 6 WC Optics SC Optics GA 315ED UT WOS:000256859900042 PM 18545587 ER PT J AU Dunne, JF Su, JC Ellern, A Sadow, AD AF Dunne, James F. Su, Jiachun Ellern, Arkady Sadow, Aaron D. TI A new scorpionate ligand: Tris(4,4-dimethyl-2-oxazolinyl)borate and its zirconium(IV) complexes SO ORGANOMETALLICS LA English DT Article ID HINDERED HYDROTRIS(PYRAZOLYL)BORATE LIGANDS; RAY CRYSTAL-STRUCTURES; ETHYLENE POLYMERIZATION; TRIS(PYRAZOLYL)BORATE ZIRCONIUM; POLYPYRAZOLYLBORATE LIGANDS; STRUCTURAL-CHARACTERIZATION; ASYMMETRIC CATALYSIS; MOLECULAR-STRUCTURE; EFFICIENT SYNTHESIS; AMINE ELIMINATION AB The first example of a new class of oxazoline-based scorpionate ligand, tris(4,4-dimethyl-2-oxazolinyl)phenyl borate, [To(M)](-), is prepared by reaction of 2-lithio-4,4-dimethyl-2-oxazolide and 0.3 equiv of dichlorophenylborane. The steric bulk of this ligand is greater than that of tris(3,5-Me(2)-pyrazolyl)borate (Tp*), as quantified by comparison of solid angles of crystallographically characterized zirconium(IV) complexes. C1 [Dunne, James F.; Su, Jiachun; Ellern, Arkady; Sadow, Aaron D.] Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. RP Sadow, AD (reprint author), Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. EM sadow@iastate.edu NR 50 TC 35 Z9 36 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUN 9 PY 2008 VL 27 IS 11 BP 2399 EP 2401 DI 10.1021/om800252p PG 3 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 306FB UT WOS:000256232600003 ER PT J AU Hay, BP Bryantsev, VS AF Hay, Benjamin P. Bryantsev, Vyacheslav S. TI Anion-arene adducts: C-H hydrogen bonding, anion-pi interaction, and carbon bonding motifs SO CHEMICAL COMMUNICATIONS LA English DT Review ID ELECTRON-TRANSFER REACTIONS; DENSITY-FUNCTIONAL THEORY; CATION-PI; AB-INITIO; CRYSTALLOGRAPHIC EVIDENCE; MOLECULAR RECOGNITION; SYNTHETIC RECEPTORS; STRUCTURAL CRITERIA; AQUEOUS-SOLUTION; MODULAR APPROACH AB This article summarizes experimental and theoretical evidence for the existence of four distinct binding modes for complexes of anions with charge-neutral arenes. These include C-H hydrogen bonding and three motifs involving the arene-pi system-the noncovalent anion-pi interaction, weakly covalent sigma interaction, and strongly covalent sigma interaction. C1 [Hay, Benjamin P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Bryantsev, Vyacheslav S.] CALTECH, Mat & Proc Simulat Ctr, Div Chem & Chem Engn, Pasadena, CA 91125 USA. RP Hay, BP (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM haybp@ornl.gov; slava@wag.caltech.edu RI Bryantsev, Vyacheslav/M-5111-2016 OI Bryantsev, Vyacheslav/0000-0002-6501-6594 NR 121 TC 276 Z9 276 U1 7 U2 73 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD JUN 7 PY 2008 IS 21 BP 2417 EP 2428 DI 10.1039/b800055g PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 303WV UT WOS:000256072600001 PM 18491003 ER PT J AU Ashcroft, JM Gu, W Zhang, T Hughes, SM Hartman, KB Hofmann, C Kanaras, AG Kilcoyne, DA Le Gros, M Yin, Y Alivisatos, AP Larabell, CA AF Ashcroft, Jared M. Gu, Weiwei Zhang, Tierui Hughes, Steven M. Hartman, Keith B. Hofmann, Cristina Kanaras, Antonios G. Kilcoyne, David A. Le Gros, Mark Yin, Yadong Alivisatos, A. Paul Larabell, Carolyn A. TI TiO(2) nanoparticles as a soft X-ray molecular probe SO CHEMICAL COMMUNICATIONS LA English DT Article ID ABSORPTION SPECTROSCOPY; RESOLUTION; NANOCOMPOSITES; TOMOGRAPHY; MICROSCOPY; SIZE AB This communication reports the development of a TiO(2)-streptavidin nanoconjugate as a new biological label for X-ray bioimaging applications; this new probe, used in conjunction with the nanogold probe, will make it possible to obtain quantitative, high-resolution information about the location of proteins using X-ray microscopy. C1 [Ashcroft, Jared M.; Le Gros, Mark; Larabell, Carolyn A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Gu, Weiwei; Larabell, Carolyn A.] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. [Zhang, Tierui; Yin, Yadong] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Hughes, Steven M.; Kanaras, Antonios G.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hartman, Keith B.; Hofmann, Cristina] Rice Univ, Dept Chem, Houston, TX 77251 USA. RP Larabell, CA (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM carolyn.larabell@ucsf.edu RI Kanaras, Antonios/A-4898-2010; Zhang, Tierui/D-1633-2011; Yin, Yadong/D-5987-2011; Alivisatos , Paul /N-8863-2015; Kilcoyne, David/I-1465-2013; OI Zhang, Tierui/0000-0002-7948-9413; Yin, Yadong/0000-0003-0218-3042; Alivisatos , Paul /0000-0001-6895-9048; Kanaras, Antonios/0000-0002-9847-6706 FU NCRR NIH HHS [P41 RR019664, P41RR019664]; NIGMS NIH HHS [R01 GM070445, GM 63948, GM 70445, R01 GM063948] NR 18 TC 27 Z9 28 U1 1 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD JUN 7 PY 2008 IS 21 BP 2471 EP 2473 DI 10.1039/b801392f PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 303WV UT WOS:000256072600016 PM 18491018 ER PT J AU Bytautas, L Ruedenberg, K AF Bytautas, Laimutis Ruedenberg, Klaus TI Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RARE-GAS DIMERS; SET SUPERPOSITION ERROR; MOLECULAR ELECTRONIC-STRUCTURE; MONTE-CARLO SIMULATIONS; WAVE-FUNCTIONS; HELIUM DIMER; INTERMOLECULAR INTERACTIONS; THERMOPHYSICAL PROPERTIES; BENCHMARK CALCULATIONS; ACCURATE CALCULATION AB A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion. (c) 2008 American Institute of Physics. C1 [Ruedenberg, Klaus] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Bytautas, L (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM ruedenberg@iastate.edu NR 79 TC 11 Z9 12 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2008 VL 128 IS 21 AR 214308 DI 10.1063/1.2927302 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 310KJ UT WOS:000256527500016 PM 18537423 ER PT J AU Chialvo, AA Chialvo, S Simonson, JM Kalyuzhnyi, YV AF Chialvo, Ariel A. Chialvo, Sebastian Simonson, J. Michael Kalyuzhnyi, Yu. V. TI Solvation phenomena in dilute multicomponent solutions I. Formal results and molecular outlook SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TEMPERATURE ELECTROLYTE-SOLUTIONS; INTEGRAL-EQUATION CALCULATIONS; NEAR-CRITICAL SOLUTIONS; PARTIAL MOLAR VOLUMES; SUPERCRITICAL FLUIDS; FUGACITY COEFFICIENTS; AQUEOUS-SOLUTIONS; MIXTURES; SOLUBILITY; ENTRAINER AB We derive second-order thermodynamically consistent truncated composition expansions for the species residual partial molar properties-including volume, enthalpy, entropy, and Gibbs free energy-of dilute ternary systems aimed at the molecular account of solvation phenomena in compressible media. Then, we provide explicit microscopic interpretation of the expansion coefficients in terms of direct and total correlation function integrals over the microstructure of the corresponding infinite dilution reference system, as well as their pressure and temperature derivatives, allowing for the direct prediction of the species partial molar properties from the knowledge of the effective intermolecular interactions. Finally, we apply these formal results (a) to derive consistent expressions for the corresponding properties of the binary system counterparts, (b) to illustrate how the formal expressions converge, at the zero density limit, to those for multicomponent mixtures of imperfect gases obeying the virial equation of state Z=1+BP/kT, and (c) to discuss, and highlight with examples from the literature, the thermodynamic inconsistencies encountered in the currently available first-order truncated expansions, by pinpointing the mathematical origin and physical meaning of the inconsistencies that render the first-order truncated expansions invalid. (C) 2008 American Institute of Physics. C1 [Chialvo, Ariel A.] Oak Ridge Natl Lab, Div Chem Sci, Aqueous Chem & Geochem Grp, Oak Ridge, TN 37831 USA. [Chialvo, Sebastian] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Simonson, J. Michael] Oak Ridge Natl Lab, Ctr Nanophase, Div Mat Sci, Macromol Struct Grp, Oak Ridge, TN 37831 USA. [Simonson, J. Michael] Oak Ridge Natl Lab, Div Chem Sci, Macromol Struct Grp, Oak Ridge, TN 37831 USA. [Kalyuzhnyi, Yu. V.] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine. RP Chialvo, AA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Aqueous Chem & Geochem Grp, Oak Ridge, TN 37831 USA. EM chialvoaa@ornl.gov OI Chialvo, Ariel/0000-0002-6091-4563 NR 49 TC 2 Z9 2 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2008 VL 128 IS 21 AR 214512 DI 10.1063/1.2931942 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 310KJ UT WOS:000256527500031 PM 18537438 ER PT J AU Hanson, JA Yang, H AF Hanson, Jeffery A. Yang, Haw TI A general statistical test for correlations in a finite-length time series SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SINGLE-MOLECULE FLUORESCENCE; CONFORMATIONAL DYNAMICS; SPECTROSCOPY AB The statistical properties of the autocorrelation function from a time series composed of independently and identically distributed stochastic variables has been studied. Analytical expressions for the autocorrelation function's variance have been derived. It has been found that two common ways of calculating the autocorrelation, moving-average and Fourier transform, exhibit different uncertainty characteristics. For periodic time series, the Fourier transform method is preferred because it gives smaller uncertainties that are uniform through all time lags. Based on these analytical results, a statistically robust method has been proposed to test the existence of correlations in a time series. The statistical test is verified by computer simulations and an application to single-molecule fluorescence spectroscopy is discussed. (c) 2008 American Institute of Physics. C1 [Yang, Haw] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Hanson, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM hawyang@berkeley.edu OI Yang, Haw/0000-0003-0268-6352 FU NIGMS NIH HHS [R01 GM069937] NR 12 TC 10 Z9 10 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2008 VL 128 IS 21 AR 214101 DI 10.1063/1.2931943 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 310KJ UT WOS:000256527500002 PM 18537409 ER PT J AU Huang, LP Santiso, EE Nardelli, MB Gubbins, KE AF Huang, Liping Santiso, Erik E. Nardelli, Marco Buongiorno Gubbins, Keith E. TI Catalytic role of carbons in methane decomposition for CO- and CO(2)-free hydrogen generation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NICKEL-CATALYSTS; PD CATALYSTS; NI CATALYSTS; NANOFIBERS; GRAPHENE; APPROXIMATION; HYDROCARBON; REACTIVITY; DEFECTS; DENSITY AB Decomposition of methane is an environmentally attractive approach to CO- and CO(2)-free hydrogen production. Using first principles calculations at the density functional theory level, our studies demonstrate that the defective carbons can be used as catalysts for methane decomposition, without the need for other catalysts, such as transition metals or oxides, and the catalytic sites can be regenerated by the deposition of carbon decomposed from methane, to make the hydrogen production a continuous process. Additionally, since no other gases are produced in the process, the cost of CO(2) sequestration and hydrogen purification from CO contamination will be dramatically reduced. (C) 2008 American Institute of Physics. C1 [Huang, Liping; Santiso, Erik E.; Gubbins, Keith E.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Huang, Liping; Santiso, Erik E.; Nardelli, Marco Buongiorno; Gubbins, Keith E.] N Carolina State Univ, Ctr High Performance Comp Simulat, Raleigh, NC 27695 USA. [Huang, Liping; Nardelli, Marco Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, Marco Buongiorno] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37381 USA. RP Huang, LP (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. EM liping.s.huang@gmail.com RI Buongiorno Nardelli, Marco/C-9089-2009; Huang, Liping/B-4412-2008 NR 56 TC 14 Z9 14 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2008 VL 128 IS 21 AR 214702 DI 10.1063/1.2931456 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 310KJ UT WOS:000256527500035 PM 18537442 ER PT J AU Pierce, F Tsige, M Borodin, O Perahia, D Grest, GS AF Pierce, Flint Tsige, Mesfin Borodin, Oleg Perahia, Dvora Grest, Gary S. TI Interfacial properties of semifluorinated alkane diblock copolymers SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; LIQUID-VAPOR INTERFACE; SURFACE-TENSION; BRANCHED ALKANES; FORCE-FIELDS; AB-INITIO; HYDROCARBON; PERFLUOROALKANES; VISCOSITY; BEHAVIOR AB The liquid-vapor interfacial properties of semifluorinated linear alkane diblock copolymers of the form F(3)C(CF(2))(n-1)(CH(2))(m-1)CH(3) are studied by fully atomistic molecular dynamics simulations. The chemical composition and the conformation of the molecules at the interface are identified and correlated with the interfacial energies. A modified form of the Optimized Parameter for Liquid Simulation All-Atom (OPLS-AA) force field of Jorgensen and co-workers [J. Am. Chem. Soc. 106, 6638 (1984); 118, 11225 (1996); J. Phys. Chem. A 105, 4118 (2001)], which includes specific dihedral terms for H-F blocks-and corrections to the H-F nonbonded interaction, is used together with a new version of the exp-6 force field developed in this work. Both force fields yield good agreement with the available experimental liquid density and surface tension data as well as each other over significant temperature ranges and for a variety of chain lengths and compositions. The interfacial regions of semifluorinated alkanes are found to be rich in fluorinated groups compared to hydrogenated groups, an effect that decreases with increasing temperature but is independent of the fractional length of the fluorinated segments. The proliferation of fluorine at the surface substantially lowers the surface tension of the diblock copolymers, yielding values near those of perfluorinated alkanes and distinct from those of protonated alkanes of the same chain length. With decreasing temperatures within the liquid state, chains are found to preferentially align perpendicular to the interface, as previously seen. (C) 2008 American Institute of Physics. C1 [Pierce, Flint; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Tsige, Mesfin] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Borodin, Oleg] Wasatch Mol Inc, Salt Lake City, UT 84112 USA. [Borodin, Oleg] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pierce, F (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM fpierce@clemson.edu; gsgrest@sandia.gov RI Borodin, Oleg/B-6855-2012 OI Borodin, Oleg/0000-0002-9428-5291 NR 63 TC 18 Z9 18 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2008 VL 128 IS 21 AR 214903 DI 10.1063/1.2924120 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 310KJ UT WOS:000256527500040 PM 18537447 ER PT J AU Whitelam, S Geissler, PL AF Whitelam, Stephen Geissler, Phillip L. TI Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles (vol 127, art no 154101, 2007) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Correction C1 [Whitelam, Stephen] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Whitelam, S (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov NR 1 TC 7 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2008 VL 128 IS 21 AR 219901 DI 10.1063/1.2931944 PG 2 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 310KJ UT WOS:000256527500044 ER PT J AU Ferrer, D Blom, DA Allard, LF Mejia, S Perez-Tijerina, E Jose-Yacaman, M AF Ferrer, Domingo Blom, Douglas A. Allard, Lawrence F. Mejia, Sergio Perez-Tijerina, Eduardo Jose-Yacaman, Miguel TI Atomic structure of three-layer Au/Pd nanoparticles revealed by aberration-corrected scanning transmission electron microscopy SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID BIMETALLIC NANOPARTICLES; SIMULATION AB The study of nanomaterials can be greatly improved with the use of aberration-corrected transmission electron microscopy (TEM), which provides image resolutions at the level of I A and lower. Sub-Angstrom image resolution can yield a new level of understanding of the behavior of matter at the nanoscale. For example, bimetallic nanoparticles are extremely important in catalysis applications; the addition of a second metal in many cases produces much-improved catalysts. In this paper, we study the structure and morphology of Au/Pd bimetallic particles using primarily the high-angle annular dark-field (HAADF) imaging mode in an aberration-corrected STEM/TEM. It is well established that, when recorded under appropriate illumination and collection geometries, incoherent HAADF-STEM images are compositionally sensitive and provide direct information on atomic positions. We matched the experimental intensities of atomic columns with theoretical models of three-layer Au/Pd nanoparticles, in different orientations. Our findings indicate that the surface layer of the nanoparticle contains kinks, terraces and steps at the nanoscale. The effect of adding a second metal induces the formation of such defects, which might very likely promote the well-known improved catalytic activity of this system. C1 [Ferrer, Domingo; Jose-Yacaman, Miguel] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Blom, Douglas A.; Allard, Lawrence F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Mejia, Sergio; Perez-Tijerina, Eduardo] Univ Autonoma Nuevo Leon, Ctr Innovat Res & Dev Engn & Technol CIIDIT, Monterrey 64440, Nuevo Leon, Mexico. [Perez-Tijerina, Eduardo] CIMAV, Adv Mat Res Ctr, Chihuahua 31109, Mexico. RP Jose-Yacaman, M (reprint author), Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. EM yacaman@che.utexas.edu RI jose yacaman, miguel/B-5622-2009; Mejia, Sergio/I-3223-2012 OI Mejia, Sergio/0000-0003-0053-2632 NR 20 TC 54 Z9 55 U1 3 U2 38 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PD JUN 7 PY 2008 VL 18 IS 21 BP 2442 EP 2446 DI 10.1039/b801320a PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 308QK UT WOS:000256404900007 ER PT J AU Reardon, PT Feng, S Graham, AL Chawla, V Admuthe, RS Abbott, J AF Reardon, P. T. Feng, S. Graham, A. L. Chawla, V. Admuthe, R. S. Abbott, J. TI Shear-thinning of polydisperse suspensions SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID FALLING-BALL VISCOMETRY; CONCENTRATED SUSPENSIONS; RHEOLOGICAL BEHAVIOR; SIZE DISTRIBUTION; NEWTONIAN FLUIDS; VISCOSITY; SPHERES; SYSTEMS; RODS; FLOW AB The effects of the polydispersivity of the particle phase on the rheology of suspensions are studied with falling-ball rheometry. The model suspensions consist of large, neutrally buoyant spheres in a viscous Newtonian suspending fluid. The experiments determine the average velocity of the settling particle along the centreline or axis of the containing cylinders. The objective of this study was to determine the effects of the dispersivity of the particulate phase on the relative viscosity of the suspensions. In dilute and moderately concentrated suspensions, there is no statistically significant difference in the relative viscosity, eta(r), between the model suspensions of spheres of uniform sizes and suspensions of spheres with polydisperse sizes for all settling sphere sizes examined. As phi increases to 0.5, suspensions made up of particles with very narrow size distributions have viscosities that are essentially shear-rate independent. As the standard deviation of the particle distribution normalized by the average particle size increases from 0.01 to 0.2, we find that eta(r) exhibits significant shear thinning with a power-law exponent, n, decreasing to 0.50 from the roughly Newtonian behaviour (n = 1). Over the range of our data, eta(r) increased as the degree of polydispersivity increased. C1 [Reardon, P. T.; Feng, S.; Graham, A. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chawla, V.; Admuthe, R. S.; Abbott, J.] Texas Tech Univ, Lubbock, TX 79409 USA. RP Feng, S (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sfeng@lanl.gov NR 32 TC 3 Z9 3 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUN 7 PY 2008 VL 41 IS 11 AR 115408 DI 10.1088/0022-3727/41/11/115408 PG 7 WC Physics, Applied SC Physics GA 305IR UT WOS:000256172200046 ER PT J AU Wick, CD Dang, LX AF Wick, Collin D. Dang, Liem X. TI Recent advances in understanding transfer ions across aqueous interfaces SO CHEMICAL PHYSICS LETTERS LA English DT Article ID LIQUID-LIQUID INTERFACE; SUM-FREQUENCY SPECTROSCOPY; MOLECULAR-DYNAMICS; AIR/WATER INTERFACE; VAPOR INTERFACE; WATER; SIMULATIONS; SOLVATION; MECHANISM; POLARITY AB Understanding the composition of aqueous interfaces and the mechanism for ion transport across these interfaces is of fundamental importance for biological, environmental, and industrial processes. Molecular dynamics simulations, using the potential of mean force technique, can map the free energy pro. le across interfaces. In some cases, where the free energy of ion transfer between two phases has been determined experimentally, the potential of mean force technique can validate the results obtained from simulations against the experimental results. In addition, the inclusion of polarizability in the interaction potential can be of paramount importance for understanding interfacial properties and the ion transfer mechanism in interfacial environments. This review discusses recent studies of ion transport across aqueous interfaces, and provides insight into the ion transport mechanism and why certain interfacial behavior is observed. Published by Elsevier B.V. C1 [Dang, Liem X.] Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. [Wick, Collin D.] Louisiana Tech Univ, Dept Chem, Ruston, LA 71270 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. EM liem.dang@pnl.gov NR 35 TC 39 Z9 39 U1 3 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 6 PY 2008 VL 458 IS 1-3 BP 1 EP 5 DI 10.1016/j.cplett.2008.03.097 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 306YR UT WOS:000256284900001 ER PT J AU Fan, PD Valiev, M Kowalski, K AF Fan, Peng-Dong Valiev, M. Kowalski, K. TI Large-scale parallel calculations with combined coupled cluster and molecular mechanics formalism: Excitation energies of zinc-porphyrin in aqueous solution SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SYMMETRY-ADAPTED-CLUSTER; SAC CI THEORIES; EXCITED-STATES; BASIS SETS; CONFIGURATION-INTERACTION; SIZE-CONSISTENT; WAVE-FUNCTIONS; EXPANSION; DENSITY; WAVEFUNCTION AB The need for combined QM/MM approaches with high-level coupled cluster (CC) methods in the QM core is unquestionable. In an effort to make these methods widely applicable, the scalability of CC approaches across hundreds/thousands of CPUs will play a central role. In this Letter we report the performance of our CC codes in calculations of vertical excitation energies of low-lying excited states of the zinc-porphyrin molecule in aqueous solution. Coupled cluster description of excited states is based on equation-of-motion approach with singles and doubles (EOMCCSD) as well as its non-iterative extension for triply excited configurations. These results are compared with those obtained with time-dependent density functional theory (TD-DFT). Published by Elsevier B.V. C1 [Valiev, M.; Kowalski, K.] Battelle Mem Inst, Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Fan, Peng-Dong] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kowalski, K (reprint author), Battelle Mem Inst, Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K1-96,POB 999, Richland, WA 99352 USA. EM marat.valiev@pnl.gov; kowalski@pnl.gov NR 48 TC 42 Z9 42 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 6 PY 2008 VL 458 IS 1-3 BP 205 EP 209 DI 10.1016/j.cplett.2008.04.071 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 306YR UT WOS:000256284900043 ER PT J AU Mriziq, KS Abia, JA Lee, Y Guiochon, G AF Mriziq, Khaled S. Abia, Jude A. Lee, Youngmi Guiochon, Georges TI Structural radial heterogeneity of a silica-based wide-bore monolithic column SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE column efficiency; monolithic columns; radial column homogeneity ID PERFORMANCE LIQUID-CHROMATOGRAPHY; HPLC COLUMNS; DISPERSION; EFFICIENCY; BEDS; FLOW AB The radial distribution of the main characteristics (elution time and standard deviation) of the elution profiles of a flat injected band recorded at the exit of a monolithic column were determined. These distributions provide the radial distributions of the average mobile phase velocity, the elution time and the maximum height of the peak of an analyte, the column efficiency and the analyte concentration. The band profiles were measured at the exit of a 10-mm i.d., 100-mm long silica-based monolithic column. An on-column local electrochemical amperometric detector allowed the recording of the elution profiles at different spatial positions throughout the column cross-section. The local spatial distribution of the mobile phase velocity does not follow a piston-flow behavior but exhibits radial heterogeneity. The local efficiency near the wall is lower than that near the column center. The radial distribution of the maximum concentration of the peaks varies throughout the column exit section, partially due to the radial variations of the column efficiency. These results might explain the rather large value of the A term of the Van Deemter or the Knox equations reported previously for monolithic columns. (c) 2008 Elsevier B.V. All rights reserved. C1 [Mriziq, Khaled S.; Abia, Jude A.; Lee, Youngmi; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mriziq, Khaled S.; Abia, Jude A.; Guiochon, Georges] Oak Ridge Natl Lab, Dept Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 24 TC 45 Z9 45 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUN 6 PY 2008 VL 1193 IS 1-2 BP 97 EP 103 DI 10.1016/j.chroma.2008.04.004 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 310VK UT WOS:000256558600013 PM 18433761 ER PT J AU Bianconi, G Gulbahce, N AF Bianconi, Ginestra Gulbahce, Natali TI Algorithm for counting large directed loops SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article; Proceedings Paper CT Workshop on Complex Networks - from Biology to Information Technology CY JUL, 2007 CL Pula, ITALY ID SMALL-WORLD; NETWORKS AB We derive a Belief-Propagation algorithm for counting large loops in a directed network. We evaluate the distribution of the number of small loops in a directed random network with given degree sequence. We apply the algorithm to a few characteristic directed networks of various network sizes and loop structures and compare the algorithm with exhaustive counting results when possible. The algorithm is adequate in estimating loop counts for large directed networks and can be used to compare the loop structure of directed networks and their randomized counterparts. C1 [Bianconi, Ginestra] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy. [Gulbahce, Natali] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gulbahce, Natali] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Bianconi, G (reprint author), Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34014 Trieste, Italy. NR 16 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUN 6 PY 2008 VL 41 IS 22 SI SI AR 224003 DI 10.1088/1751-8113/41/22/224003 PG 8 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 308KG UT WOS:000256387900004 ER PT J AU Ivill, M Pearton, SJ Rawal, S Leu, L Sadik, P Das, R Hebard, AF Chisholm, M Budai, JD Norton, DP AF Ivill, M. Pearton, S. J. Rawal, S. Leu, L. Sadik, P. Das, R. Hebard, A. F. Chisholm, M. Budai, J. D. Norton, D. P. TI Structure and magnetism of cobalt-doped ZnO thin films SO NEW JOURNAL OF PHYSICS LA English DT Article ID PULSED-LASER DEPOSITION; OPTICAL-PROPERTIES; IMPLANTED ZNO; CO; FERROMAGNETISM; SEMICONDUCTORS; SPINTRONICS; TRANSITION; OXIDE; BANDGAP AB The structure and magnetic properties of Co-doped ZnO films are discussed in relation to cobalt doping levels and growth conditions. Films were deposited by pulsed-laser deposition (PLD) from ZnO targets containing cobalt concentrations from 0 to 30 at.%. The structure of the films is examined by x-ray diffraction (XRD) and transmission electron microscopy (TEM), and optical absorption is used to infer the substitution of cobalt inside the ZnO lattice. Magnetic properties are characterized by superconducting quantum interference device (SQUID) magnetometry. Films doped with cobalt concentrations of a few per cent appear to be composed of two magnetic components: a paramagnetic component and a low-field ferromagnetic component. Films doped with 30% cobalt show a larger FM signature at room temperature with clear hysteretic shape, but films grown at low pressure are plagued by the precipitation of metallic cobalt nanoparticles within the lattice which can be easily detected by XRD. These particles are well oriented with the ZnO crystal structure. By increasing the base pressure of the vacuum chamber to pressures above 1 x 10(-5) Torr, metallic cobalt precipitates are undetectable in XRD scans, whereas the films still show an FM signature of similar to 0.08 mu(B)/Co. Depositions in the presence of oxygen background gas at 0.02m Torr decreases the magnetization. The decreased magnetization with oxygen suggests that the activation of ferromagnetism depends on defects, such as oxygen vacancies, created during growth. Optical absorption measurements show a sequential increase in the Co+2 absorption peaks in these films, along with an almost linearly increasing bandgap with cobalt concentration suggesting a large solubility of cobalt in ZnO. Bright-field TEM imaging and electron diffraction do not show signs of precipitation; however, dark-field imaging shows circular areas of varying contrast which could be associated with cobalt precipitation. Therefore, the possibility that ferromagnetism results from secondary phases cannot be ruled out. C1 [Das, R.; Hebard, A. F.; Norton, D. P.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Chisholm, M.; Budai, J. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Norton, DP (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM dnort@mse.ufl.edu RI Budai, John/R-9276-2016 OI Budai, John/0000-0002-7444-1306 NR 81 TC 80 Z9 81 U1 6 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUN 6 PY 2008 VL 10 AR 10 DI 10.1088/1367-2630/10/6/065002 PG 21 WC Physics, Multidisciplinary SC Physics GA 312GO UT WOS:000256657400001 ER PT J AU Abe, S Ebihara, T Enomoto, S Furuno, K Gando, Y Ichimura, K Ikeda, H Inoue, K Kibe, Y Kishimoto, Y Koga, M Kozlov, A Minekawa, Y Mitsui, T Nakajima, K Nakajima, K Nakamura, K Nakamura, M Owada, K Shimizu, I Shimizu, Y Shirai, J Suekane, F Suzuki, A Takemoto, Y Tamae, K Terashima, A Watanabe, H Yonezawa, E Yoshida, S Busenitz, J Classen, T Grant, C Keefer, G Leonard, DS McKee, D Piepke, A Decowski, MP Detwiler, JA Freedman, SJ Fujikawa, BK Gray, F Guardincerri, E Hsu, L Kadel, R Lendvai, C Luk, KB Murayama, H O'Donnell, T Steiner, HM Winslow, LA Dwyer, DA Jillings, C Mauger, C McKeown, RD Vogel, P Zhang, C Berger, BE Lane, CE Maricic, J Miletic, T Batygov, M Learned, JG Matsuno, S Pakvasa, S Foster, J Horton-Smith, GA Tang, A Dazeley, S Downum, KE Gratta, G Tolich, K Bugg, W Efremenko, Y Kamyshkov, Y Perevozchikov, O Karwowski, HJ Markoff, DM Tornow, W Heeger, KM Piquemal, F Ricol, JS AF Abe, S. Ebihara, T. Enomoto, S. Furuno, K. Gando, Y. Ichimura, K. Ikeda, H. Inoue, K. Kibe, Y. Kishimoto, Y. Koga, M. Kozlov, A. Minekawa, Y. Mitsui, T. Nakajima, K. Nakajima, K. Nakamura, K. Nakamura, M. Owada, K. Shimizu, I. Shimizu, Y. Shirai, J. Suekane, F. Suzuki, A. Takemoto, Y. Tamae, K. Terashima, A. Watanabe, H. Yonezawa, E. Yoshida, S. Busenitz, J. Classen, T. Grant, C. Keefer, G. Leonard, D. S. McKee, D. Piepke, A. Decowski, M. P. Detwiler, J. A. Freedman, S. J. Fujikawa, B. K. Gray, F. Guardincerri, E. Hsu, L. Kadel, R. Lendvai, C. Luk, K. -B. Murayama, H. O'Donnell, T. Steiner, H. M. Winslow, L. A. Dwyer, D. A. Jillings, C. Mauger, C. McKeown, R. D. Vogel, P. Zhang, C. Berger, B. E. Lane, C. E. Maricic, J. Miletic, T. Batygov, M. Learned, J. G. Matsuno, S. Pakvasa, S. Foster, J. Horton-Smith, G. A. Tang, A. Dazeley, S. Downum, K. E. Gratta, G. Tolich, K. Bugg, W. Efremenko, Y. Kamyshkov, Y. Perevozchikov, O. Karwowski, H. J. Markoff, D. M. Tornow, W. Heeger, K. M. Piquemal, F. Ricol, J. -S. CA KamLAND Collaboration TI Precision measurement of neutrino oscillation parameters with KamLAND SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANTINEUTRINO SPECTRA; FISSION-PRODUCTS; REACTOR; FUTURE; FLUX AB The KamLAND experiment has determined a precise value for the neutrino oscillation parameter Delta m(21)(2) and stringent constraints on theta(12). The exposure to nuclear reactor antineutrinos is increased almost fourfold over previous results to 2.44x10(32) proton yr due to longer livetime and an enlarged fiducial volume. An undistorted reactor (nu) over bar (e) energy spectrum is now rejected at > 5 sigma. Analysis of the reactor spectrum above the inverse beta decay energy threshold, and including geoneutrinos, gives a best fit at Delta m(21)(2)=7.58(-0.13)(+0.14)(stat)(-0.15)(+0.15)(syst) x 10(-5) eV(2) and tan(2)theta(12)=0.56(-0.07)(+0.10)(stat)(-0.06)(+0.10)(syst). Local Delta chi(2) minima at higher and lower Delta m(21)(2) are disfavored at > 4 sigma. Combining with solar neutrino data, we obtain Delta m(21)(2)=7.59(-0.21)(+0.21) x 10(-5) eV(2) and tan(2)theta(12)=0.47(-0.05)(+0.06). C1 [Abe, S.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Kozlov, A.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Decowski, M. P.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Kadel, R.; Lendvai, C.; Luk, K. -B.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Decowski, M. P.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Kadel, R.; Lendvai, C.; Luk, K. -B.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Berger, B. E.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Lane, C. E.; Maricic, J.; Miletic, T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Foster, J.; Tang, A.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Horton-Smith, G. A.; Dazeley, S.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Downum, K. E.; Gratta, G.; Tolich, K.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] N Carolina Cent Univ, Dept Phys, Durham, NC 27707 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Univ N Carolina, Chapel Hill, NC USA. [Heeger, K. M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Piquemal, F.; Ricol, J. -S.] CEN Bordeaux Gradignan, IN2P3, CNRS, F-33175 Gradignan, France. [Piquemal, F.; Ricol, J. -S.] Univ Bordeaux 1, F-33175 Gradignan, France. RP Abe, S (reprint author), Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. RI Decowski, Patrick/A-4341-2011; Murayama, Hitoshi/A-4286-2011; Horton-Smith, Glenn/A-4409-2011; Heeger, Karsten/A-9533-2011; Kamyshkov, Yuri/J-7999-2016 OI Gray, Frederick/0000-0003-4073-8336; Zhang, Chao/0000-0003-2298-6272; Horton-Smith, Glenn/0000-0001-9677-9167; Heeger, Karsten/0000-0002-4623-7543; Kamyshkov, Yuri/0000-0002-3789-7152 NR 19 TC 419 Z9 421 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 6 PY 2008 VL 100 IS 22 AR 221803 DI 10.1103/PhysRevLett.100.221803 PG 5 WC Physics, Multidisciplinary SC Physics GA 310KM UT WOS:000256528400011 PM 18643415 ER PT J AU Graf, J d'Astuto, M Jozwiak, C Garcia, DR Saini, NL Krisch, M Ikeuchi, K Baron, AQR Eisaki, H Lanzara, A AF Graf, J. d'Astuto, M. Jozwiak, C. Garcia, D. R. Saini, N. L. Krisch, M. Ikeuchi, K. Baron, A. Q. R. Eisaki, H. Lanzara, A. TI Bond stretching phonon softening and kinks in the angle-resolved photoemission spectra of optimally doped Bi2Sr1.6La0.4Cu2O6+delta superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID INELASTIC NEUTRON-SCATTERING; LATTICE-DYNAMICS; DISPERSION; BI2SR2CACU2O8+DELTA; LA1.85SR0.15CUO4 AB We report the first measurement of the Cu-O bond stretching phonon dispersion in optimally doped Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a softening of this phonon at q=(approximate to 0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A comparison with angle-resolved photoemission data on the same sample revealed an excellent agreement in terms of energy and momentum between the angle-resolved photoemission nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 +/- 5 meV kink is observed can be connected with a vector q=(xi,0,0) with xi >= 0.22, corresponding exactly to the soft part of the bond stretching phonon. C1 [Graf, J.; Garcia, D. R.; Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [d'Astuto, M.] Univ Paris 06, IMPMC, F-75252 Paris 05, France. [Jozwiak, C.; Garcia, D. R.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Saini, N. L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Krisch, M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Ikeuchi, K.] SPring 8JAEA, Sayo, Hyogo 670, Japan. [Baron, A. Q. R.] SPring 8RIKEN & JAEA, Sayo, Hyogo 670, Japan. [Eisaki, H.] AIST, Tsukuba, Ibaraki 3058568, Japan. RP Graf, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM ALanzara@lbl.gov RI d'Astuto, Matteo/F-8235-2013; Saini, Naurang/J-7918-2013 OI d'Astuto, Matteo/0000-0002-7583-4427; Saini, Naurang/0000-0003-3684-1517 NR 27 TC 38 Z9 38 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 6 PY 2008 VL 100 IS 22 AR 227002 DI 10.1103/PhysRevLett.100.227002 PG 4 WC Physics, Multidisciplinary SC Physics GA 310KM UT WOS:000256528400043 PM 18643447 ER PT J AU Gurevich, A Vinokur, VM AF Gurevich, A. Vinokur, V. M. TI Size effects in the nonlinear resistance and flux creep in a virtual Berezinskii-Kosterlitz-Thouless state of superconducting films SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-DIMENSIONAL SUPERCONDUCTORS; TRANSITION; CURRENTS; SYSTEMS; VOLTAGE; GAS AB We show that the size effects radically affect the electric-field-current (E-I) relation of superconducting films. We calculate E(J) due to thermally activated hopping of single vortices driven by a current I across the film in a magnetic field H, taking into account the interaction of free vortices with their antivortex images and peaks in the Meissner currents at the film edges. The unbinding of the virtual vortex-antivortex pairs not only mimics the transport uniform Berezinskii-Kosterlitz-Thouless behavior, it can also dominate the observed E(J) and result in the field-dependent Ohmic resistance at small I. We show that E(I) can be tuned by changing the film geometry and propose experimental tests of this theory. C1 [Gurevich, A.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Gurevich, A (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RI Gurevich, Alex/A-4327-2008 OI Gurevich, Alex/0000-0003-0759-8941 NR 26 TC 25 Z9 25 U1 3 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 6 PY 2008 VL 100 IS 22 AR 227007 DI 10.1103/PhysRevLett.100.227007 PG 4 WC Physics, Multidisciplinary SC Physics GA 310KM UT WOS:000256528400048 PM 18643452 ER PT J AU Kar, S Borghesi, M Bulanov, SV Key, MH Liseykina, TV Macchi, A Mackinnon, AJ Patel, PK Romagnani, L Schiavi, A Willi, O AF Kar, S. Borghesi, M. Bulanov, S. V. Key, M. H. Liseykina, T. V. Macchi, A. Mackinnon, A. J. Patel, P. K. Romagnani, L. Schiavi, A. Willi, O. TI Plasma jets driven by ultraintense-laser interaction with thin foils SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOLID TARGETS; GENERATION; PULSES; ACCELERATION; ABSORPTION AB Experimental evidence of plasma jets ejected from the rear side of thin solid targets irradiated by ultraintense (> 10(19) W cm(-2)) laser pulses is presented. The jets, detected by transverse interferometric measurements with high spatial and temporal resolutions, show collimated expansion lasting for several hundreds of picoseconds and have substantially steep density gradients at their periphery. The role played by radiation pressure of the laser in the jet formation process is highlighted analytically and by extensive two-dimensional particle-in-cell simulations. C1 [Kar, S.; Borghesi, M.; Romagnani, L.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Bulanov, S. V.] JAEA, APRC, Kyoto 61290215, Japan. [Key, M. H.; Mackinnon, A. J.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Liseykina, T. V.] MPI K, Heidelberg, Germany. [Liseykina, T. V.] SB RAS, ICT, Novosibirsk, Russia. [Macchi, A.] Univ Pisa, Dept Phys, I-56100 Pisa, Italy. [Macchi, A.] Univ Pisa, polyLAB, CNR INFM, Pisa, Italy. [Schiavi, A.] Univ Roma 1 La Sapienza, Dipartimento Energet, Rome, Italy. [Willi, O.] Univ Dusseldorf, Inst Laser & Plasmaphys, Dusseldorf, Germany. RP Kar, S (reprint author), Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. EM s.kar@qub.ac.uk RI Macchi, Andrea/B-1900-2009; Kar, Satyabrata/E-5220-2010; Patel, Pravesh/E-1400-2011; Borghesi, Marco/K-2974-2012; MacKinnon, Andrew/P-7239-2014; Bulanov, Sergei/A-1721-2013; Liseykina, Tatyana/B-1229-2009; Schiavi, Angelo/D-2924-2017 OI Macchi, Andrea/0000-0002-1835-2544; MacKinnon, Andrew/0000-0002-4380-2906; Liseykina, Tatyana/0000-0002-5070-3543; Schiavi, Angelo/0000-0002-7081-2747 NR 24 TC 66 Z9 66 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 6 PY 2008 VL 100 IS 22 AR 225004 DI 10.1103/PhysRevLett.100.225004 PG 4 WC Physics, Multidisciplinary SC Physics GA 310KM UT WOS:000256528400022 ER PT J AU Li, CK Seguin, FH Rygg, JR Frenje, JA Manuel, M Petrasso, RD Betti, R Delettrez, J Knauer, JP Marshall, F Meyerhofer, DD Shvarts, D Smalyuk, VA Stoeckl, C Landen, OL Town, RPJ Back, CA Kilkenny, JD AF Li, C. K. Seguin, F. H. Rygg, J. R. Frenje, J. A. Manuel, M. Petrasso, R. D. Betti, R. Delettrez, J. Knauer, J. P. Marshall, F. Meyerhofer, D. D. Shvarts, D. Smalyuk, V. A. Stoeckl, C. Landen, O. L. Town, R. P. J. Back, C. A. Kilkenny, J. D. TI Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion SO PHYSICAL REVIEW LETTERS LA English DT Article ID UNIFORMITY; PLASMAS; OMEGA AB Time-gated, monoenergetic radiography with 15-MeV protons provides unique measurements of implosion dynamics in direct-drive inertial-confinement fusion. Images obtained during acceleration, coasting, deceleration, and stagnation display a comprehensive picture of spherical implosions. Critical information inferred from such images, hitherto unavailable, characterizes the spatial structure and temporal evolution of self-generated fields and plasma areal density. Results include the first observation of a radial electric field inside the imploding capsule. It is initially directed inward (at similar to 10(9) V/m), eventually reverses direction (similar to 10(8) V/m), and is the probable consequence of the evolution of the electron pressure gradient. C1 [Li, C. K.; Seguin, F. H.; Rygg, J. R.; Frenje, J. A.; Manuel, M.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Betti, R.; Delettrez, J.; Knauer, J. P.; Marshall, F.; Meyerhofer, D. D.; Shvarts, D.; Smalyuk, V. A.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Landen, O. L.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Back, C. A.; Kilkenny, J. D.] Gen Atom Co, San Diego, CA 92186 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn Phys & Astron, Rochester, NY 14623 USA. [Shvarts, D.] Ben Gurion Univ Negev, IL-84015 Beer Sheva, Israel. [Shvarts, D.] NRCN, IL-84015 Beer Sheva, Israel. RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Manuel, Mario/L-3213-2015 OI Manuel, Mario/0000-0002-5834-1161 NR 20 TC 64 Z9 66 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 6 PY 2008 VL 100 IS 22 AR 225001 DI 10.1103/PhysRevLett.100.225001 PG 4 WC Physics, Multidisciplinary SC Physics GA 310KM UT WOS:000256528400019 PM 18643423 ER PT J AU Moreo, A Dagotto, E AF Moreo, Adriana Dagotto, Elbio TI Comment on "Large-scale Monte Carlo study of a realistic lattice model for Ga(1-x)Mn(x)As" - Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Moreo, Adriana] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Moreo, A (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. NR 5 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 6 PY 2008 VL 100 IS 22 AR 229702 DI 10.1103/PhysRevLett.100.229702 PG 1 WC Physics, Multidisciplinary SC Physics GA 310KM UT WOS:000256528400066 ER PT J AU Pohl, T Vrinceanu, D Sadeghpour, HR AF Pohl, T. Vrinceanu, D. Sadeghpour, H. R. TI Rydberg atom formation in ultracold plasmas: Small energy transfer with large consequences SO PHYSICAL REVIEW LETTERS LA English DT Article ID RADIO RECOMBINATION LINES; NEUTRAL PLASMA; HYDROGEN-ATOMS; IONIZATION; LASER; ANTIHYDROGEN; EXCITATION; ELECTRONS AB We present extensive Monte Carlo calculations of electron-impact-induced transitions between highly excited Rydberg states and provide accurate rate coefficients. For moderate energy changes, our calculations confirm the widely applied expressions in P. Mansbach and J. Keck [Phys. Rev. 181, 275 (1969)] but reveal strong deviations at small energy transfer. Simulations of ultracold plasmas demonstrate that these corrections significantly impact the short-time dynamics of three-body Rydberg atom formation. The improved rate coefficients yield quantitative agreement with recent ultracold plasma experiments. C1 [Pohl, T.; Sadeghpour, H. R.] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. [Vrinceanu, D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Pohl, T (reprint author), Harvard Smithsonian Ctr Astrophys, ITAMP, 60 Garden St, Cambridge, MA 02138 USA. RI Pohl, Thomas/B-5133-2013 NR 37 TC 44 Z9 44 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 6 PY 2008 VL 100 IS 22 AR 223201 DI 10.1103/PhysRevLett.100.223201 PG 4 WC Physics, Multidisciplinary SC Physics GA 310KM UT WOS:000256528400015 PM 18643419 ER PT J AU Smilowitz, L Henson, BF Romero, JJ Asay, BW Schwartz, CL Saunders, A Merrill, FE Morris, CL Kwiatkowski, K Hogan, G Nedrow, P Murray, MM Thompson, TN McNeil, W Rightley, P Marr-Lyon, M AF Smilowitz, L. Henson, B. F. Romero, J. J. Asay, B. W. Schwartz, C. L. Saunders, A. Merrill, F. E. Morris, C. L. Kwiatkowski, K. Hogan, G. Nedrow, P. Murray, M. M. Thompson, T. N. McNeil, W. Rightley, P. Marr-Lyon, M. CA pRad Collaboration TI Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography SO PHYSICAL REVIEW LETTERS LA English DT Article ID BASE PROPELLANT COMBUSTION; COOK-OFF; BURNING RATE; HMX; PRESSURE; VIOLENCE; LX-04; RDX AB We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 mu s. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning. C1 [Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.; pRad Collaboration] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Smilowitz, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Morris, Christopher/0000-0003-2141-0255; Merrill, Frank/0000-0003-0603-735X NR 20 TC 16 Z9 16 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 6 PY 2008 VL 100 IS 22 AR 228301 DI 10.1103/PhysRevLett.100.228301 PG 4 WC Physics, Multidisciplinary SC Physics GA 310KM UT WOS:000256528400062 PM 18643466 ER PT J AU Christiaen, L Davidson, B Kawashima, T Powell, W Nolla, H Vranizan, K Levine, M AF Christiaen, Lionel Davidson, Brad Kawashima, Takeshi Powell, Weston Nolla, Hector Vranizan, Karen Levine, Michael TI The transcription/migration interface in heart precursors of Ciona intestinalis SO SCIENCE LA English DT Article ID SIMPLE CHORDATE; ACTIN; MIGRATION; CELLS; RHO; LAMELLIPODIA; DROSOPHILA; FILOPODIA; NETWORKS; CDC42 AB Gene regulatory networks direct the progressive determination of cell fate during embryogenesis, but how they control cell behavior during morphogenesis remains largely elusive. Cell sorting, microarrays, and targeted molecular manipulations were used to analyze cardiac cell migration in the ascidian Ciona intestinalis. The heart network regulates genes involved in most cellular activities required for migration, including adhesion, cell polarity, and membrane protrusions. We demonstrated that fibroblast growth factor signaling and the forkhead transcription factor FoxF directly upregulate the small guanosine triphosphatase RhoDF, which synergizes with Cdc42 to contribute to the protrusive activity of migrating cells. Moreover, RhoDF induces membrane protrusions independently of other cellular activities required for migration. We propose that transcription regulation of specific effector genes determines the coordinated deployment of discrete cellular modules underlying migration. C1 [Christiaen, Lionel; Davidson, Brad; Powell, Weston; Levine, Michael] Univ Calif Berkeley, Ctr Integrat Genom, Div Genet Genom & Dev, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Kawashima, Takeshi] Dept Energy, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Nolla, Hector] Univ Calif Berkeley, Canc Res Lab, Berkeley, CA 94720 USA. [Vranizan, Karen] Univ Calif Berkeley, Funct Genom Lab, Berkeley, CA 94720 USA. RP Christiaen, L (reprint author), Univ Calif Berkeley, Ctr Integrat Genom, Div Genet Genom & Dev, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM lionelchristiaen@berkeley.edu; mlevine@berkeley.edu RI Kawashima, Takeshi/M-4510-2015; OI Powell, Weston/0000-0002-1555-1425 FU PHS HHS [18B-106681] NR 22 TC 69 Z9 70 U1 3 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 6 PY 2008 VL 320 IS 5881 BP 1349 EP 1352 DI 10.1126/science.1158170 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 309DO UT WOS:000256441100047 PM 18535245 ER PT J AU Ramana, CV Becker, U Shutthanandan, V Julien, CM AF Ramana, C. V. Becker, U. Shutthanandan, V. Julien, C. M. TI Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics SO GEOCHEMICAL TRANSACTIONS LA English DT Article ID MOS2; SULFIDE; CRYSTALS; LITHIUM; RAMAN AB Molybdenum disulfide (MoS(2)), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS(2) is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing. C1 [Ramana, C. V.; Becker, U.] Univ Michigan, Dept Geol Sci, Nanosci & Surface Chem Lab, Ann Arbor, MI 48109 USA. [Ramana, C. V.] Univ Texas El Paso, Dept Met & Mat Engn, El Paso, TX 79968 USA. [Shutthanandan, V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Julien, C. M.] Univ Paris 06, CNRS, UMR 7588, Inst Nanosci Paris, F-75015 Paris, France. RP Ramana, CV (reprint author), Univ Michigan, Dept Geol Sci, Nanosci & Surface Chem Lab, Ann Arbor, MI 48109 USA. EM rvchintalapalle@utep.edu; ubecker@umich.edu; shuttha@pnl.gov; cjul@ccr.jussieu.fr RI Becker, Udo/F-7339-2011 OI Becker, Udo/0000-0002-1550-0484 NR 23 TC 5 Z9 5 U1 1 U2 32 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD JUN 5 PY 2008 VL 9 AR 8 DI 10.1186/1467-4866-9-8 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 325AZ UT WOS:000257561800001 PM 18534025 ER PT J AU Beste, A Buchanan, AC Harrison, RJ AF Beste, Ariana Buchanan, A. C., III Harrison, Robert J. TI Computational prediction of alpha/beta selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HYDROGEN ABSTRACTION; AB-INITIO; LIGNIN; MODEL; THERMOCHEMISTRY; HYDROXYL; KINETICS; DENSITY AB Phenethyl phenyl ether (PPE; PhCH2CH2OPh) is the simplest model for the most common beta-O-4 linkage in lignin. Previously, we developed a computational scheme to calculate the alpha/beta product selectivity in the pyrolysis of PPE by systematically exploiting error cancellation in the computation of relative rate constants. The alpha/beta selectivity is defined as the selectivity between the competitive hydrogen abstraction reaction paths on the alpha- and beta-carbons of PPE. We use density functional theory and employ transition state theory where we include diagonal anharmonic correction in the vibrational partition functions for low frequency modes for which a semiclassical expression is used. In this work we investigate the effect of oxygen substituents (hydroxy, methoxy) in the para position on the phenethyl ring of PPE on the alpha/beta selectivities. The total alpha/beta selectivity increases when substituents are introduced and is larger for the methoxy than the hydroxy substituent. The strongest effect of the substituents is observed for the alpha-pathway of the hydrogen abstraction by the phenoxyl chain carrying radical for which the rate increases. For the P pathway and the abstraction by the R-benzyl radical (R = OH,OCH3) the rate decreases with the introduction of the substituents. These findings are compared with results from recent experimental studies. C1 [Beste, Ariana; Harrison, Robert J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Buchanan, A. C., III] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Harrison, Robert J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Beste, A (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM bestea@ornl.gov OI Beste, Ariana/0000-0001-9132-792X NR 23 TC 45 Z9 48 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 5 PY 2008 VL 112 IS 22 BP 4982 EP 4988 DI 10.1021/jp800767j PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 306TK UT WOS:000256270500017 PM 18473447 ER PT J AU Ma, YZ Miller, RA Fleming, GR Francis, MB AF Ma, Ying-Zhong Miller, Rebekah A. Fleming, Graham R. Francis, Matthew B. TI Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CRYSTAL-STRUCTURE; ARTIFICIAL PHOTOSYNTHESIS; CORE COMPLEX; SYSTEMS; ABSORPTION; PORPHYRINS; DENDRIMERS; PARTICLES; NANOWIRES; SCAFFOLD AB Picosecond time-resolved fluorescence spectroscopy was used to characterize energy transfer between chromophores displayed on a rod assembly of tobacco mosaic virus coat protein. The incorporation of donor chromophores, with broad and overlapping absorption and emission spectra creates an "antenna" with a large absorption cross section, which can convey excitation energy over large distances before transfer to an acceptor chromophore. The possibility for both donor-to-donor and donor-to-acceptor transfer results in complex kinetic behavior at any single wavelength. Thus, to describe the various pathways of energy transfer within this system accurately, a global lifetime analysis was performed to obtain decay associated spectra. We found the energy transfer from donor to acceptor chromophores occurs in 187 ps with an efficiency of 36%. A faster decay component of 70 ps was also observed from global lifetime analysis and is attributed to donor-to-donor transfer. Although more efficient three-chromophore systems have been demonstrated, a two-chromophore system was studied here to facilitate analysis. C1 [Ma, Ying-Zhong; Miller, Rebekah A.; Fleming, Graham R.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Miller, Rebekah A.; Francis, Matthew B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ma, Ying-Zhong; Fleming, Graham R.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu RI Ma, Yingzhong/L-6261-2016 OI Ma, Yingzhong/0000-0002-8154-1006 FU NIGMS NIH HHS [1 T32 GM066698] NR 44 TC 41 Z9 41 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 5 PY 2008 VL 112 IS 22 BP 6887 EP 6892 DI 10.1021/jp8006393 PG 6 WC Chemistry, Physical SC Chemistry GA 306RH UT WOS:000256265000020 PM 18471010 ER PT J AU Brown, MA Ashby, PD Ogletree, DF Salmeron, M Hemminger, JC AF Brown, Matthew A. Ashby, Paul D. Ogletree, D. Frank Salmeron, Miquel Hemminger, John C. TI Reactivity of ozone with solid potassium iodide investigated by atomic force microscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BROMIDE; WATER; SEGREGATION; SURFACES; KINETICS AB The reaction of ozone with the (100) plane of solid potassium iodide (KI) was investigated using atomic force microscopy (AFM). The reaction forming potassium iodate (KIO3) initiates at step edges prior to reacting on the flat terraces. Small domains of KIO3, initially 3.8 angstrom in height, are formed on the top of step edges. Following reaction at the step edge, domains of KIO3 are formed across the terraces. With prolonged exposure to ozone, KIO3 domains nucleate further growth until the surface is evenly covered with KIO3 particles that are 4-6 nm in height, at which point the surface is passivated and the reaction terminates. C1 [Brown, Matthew A.; Hemminger, John C.] Univ Calif Irvine, Dept Chem & AirUCI, Irvine, CA 92697 USA. [Ashby, Paul D.; Ogletree, D. Frank; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hemminger, JC (reprint author), Univ Calif Irvine, Dept Chem & AirUCI, Irvine, CA 92697 USA. EM jchemmin@uci.edu RI Brown, Matthew/D-9236-2012; Ogletree, D Frank/D-9833-2016 OI Ogletree, D Frank/0000-0002-8159-0182 NR 20 TC 14 Z9 14 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 5 PY 2008 VL 112 IS 22 BP 8110 EP 8113 DI 10.1021/jp801620w PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 306RI UT WOS:000256265100002 ER PT J AU Cropek, D Kemme, PA Makarova, OV Chen, LX Rajh, T AF Cropek, Donald Kemme, Patricia A. Makarova, Olga V. Chen, Lin X. Rajh, Tijana TI Selective photocatalytic decomposition of nitrobenzene using surface modified TiO2 nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZERO-VALENT IRON; ELECTRON-PARAMAGNETIC-RESONANCE; ILLUMINATED TITANIUM-DIOXIDE; RAY-ABSORPTION SPECTROSCOPY; MIXED-PHASE TIO2; WASTE-WATER; PHOTOCHEMICAL REDUCTION; K EDGES; DEGRADATION; PHENOL AB Adsorption and photocatalytic degradation of nitrobenzene (NB) in the presence and absence of phenol (Ph) over UV-illuminated arginine-modified TiO2 Colloids have been investigated by infrared absorption, electron paramagnetic resonance spectroscopy, and X-ray absorption spectroscopy. High performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry were used for monitoring degradation conversion rates and byproduct identification. It was found that photodegradation of NB and Ph strongly depends on the nature of the TiO2 surface. Through the use of the HPLC peak area ratio before and after illumination, the photocatalytic decomposition rate of NB and Ph individually using bare TiO2 is nearly identical (1.7 and 1.5, respectively) and occurs via oxidative mechanism. Through the use of arginine-modified TiO2 nanoparticles, a three-fold increase in the NB decomposition rate is observed while no Ph decomposition is observed. Furthermore, the degradation pathway using the arginine-modified photocatalyst is completely altered to a reductive mechanism, providing a more efficient means to degrade nitrocompounds that are already in a highly oxidized state and limiting the number of byproduct. These results indicate that a critical parameter in the photocatalytic decomposition of NB and Ph is their specific adsorption and coupling to the TiO2 surface. Modification of the TiO2 particle surface with chelating agents demonstrates enhanced interaction with the desired target contaminant to impart selectivity to photocatalysis. C1 [Cropek, Donald; Kemme, Patricia A.] USA, Corps Engineers, Construct Engn Res Lab, Champaign, IL 61822 USA. [Makarova, Olga V.; Chen, Lin X.; Rajh, Tijana] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [Makarova, Olga V.; Chen, Lin X.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Cropek, D (reprint author), USA, Corps Engineers, Construct Engn Res Lab, Champaign, IL 61822 USA. EM Donald.M.Cropek@usace.army.mil; rajh@anl.gov NR 77 TC 52 Z9 55 U1 7 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 5 PY 2008 VL 112 IS 22 BP 8311 EP 8318 DI 10.1021/jp712137x PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 306RI UT WOS:000256265100036 ER PT J AU Yin, HF Ma, Z Overbury, SH Dai, S AF Yin, Hongfeng Ma, Zhen Overbury, Steven H. Dai, Sheng TI Promotion of Au(en)(2)Cl-3-derived Au/fumed SiO2 by treatment with KMnO4 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE CO OXIDATION; SUPPORTED GOLD CATALYSTS; MESOPOROUS SILICA MATERIALS; IN-SITU SURFACTANT; AU CATALYSTS; CARBON-MONOXIDE; PERFORMANCE-CHARACTERISTICS; POTASSIUM-PERMANGANATE; NANOPARTICLE CATALYSTS; ELECTROLESS-DEPOSITION AB A new method for the removal of organic ligands used in the synthesis of nanoparticle catalysts via solution-phase chemical oxidation and subsequent pretreatment at moderate temperatures was developed. This synthesis protocol is advantageous for the preparation of highly dispersed gold catalysts with minimum sintering. Highly active Au/SiO2-based catalysts were prepared by treating Au(en)(2)Cl-3-derived Au/fumed SiO2 in strongly oxidative KMnO4 solutions. The low-temperature activity in CO oxidation increased dramatically following the KMnO4 treatment and subsequent thermal activation (including treatment in O-2-He at 300-600 degrees C). The influences of the pH values of KMnO4 solutions and temperatures of activation in O-2-He prior to the reaction testing were investigated, and relevant characterization using XRD, TEM, TG/bTG, SEM, EDX, and ICP-OES was conducted. The catalyst stability in CO oxidation was studied as a function of reaction time on stream. The origin of the promotional effect was discussed. C1 [Yin, Hongfeng; Ma, Zhen; Overbury, Steven H.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Ma, Zhen/F-1348-2010; Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 NR 69 TC 25 Z9 25 U1 5 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 5 PY 2008 VL 112 IS 22 BP 8349 EP 8358 DI 10.1021/jp800797t PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 306RI UT WOS:000256265100042 ER PT J AU Grieves, GA Petrik, N Herring-Captain, J Olanrewaju, B Aleksandrov, A Tonkyn, RG Barlow, SA Kimmel, GA Orlando, TM AF Grieves, G. A. Petrik, N. Herring-Captain, J. Olanrewaju, B. Aleksandrov, A. Tonkyn, R. G. Barlow, S. A. Kimmel, G. A. Orlando, T. M. TI Photoionization of sodium salt solutions in a liquid jet SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EUV SYNCHROTRON-RADIATION; WATER-SURFACE; PHOTOELECTRON-SPECTROSCOPY; MASS-SPECTROMETRY; AQUEOUS ALKALI; INTERFACE; CHEMISTRY; DYNAMICS; OZONE; BEAM AB A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X = Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)(n) and Na+(H2O) from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)(n) at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice, and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O) is not quantitatively accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of NaI(H2O) from high concentration (10(-2) and 10(-1) M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10(-2) and 10(-1) M solution surfaces. C1 [Grieves, G. A.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Orlando, T. M.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Petrik, N.; Tonkyn, R. G.; Barlow, S. A.; Kimmel, G. A.] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Orlando, TM (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM Thomas.Orlando@chemistry.gatech.edu NR 34 TC 5 Z9 5 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 5 PY 2008 VL 112 IS 22 BP 8359 EP 8364 DI 10.1021/jp7102534 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 306RI UT WOS:000256265100043 ER PT J AU Han, HX Frei, H AF Han, Hongxian Frei, Heinz TI Controlled assembly of hetero-binuclear sites on mesoporous silica: Visible light charge-transfer units with selectable redox properties SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NEAR-EDGE STRUCTURE; MOLECULAR-SIEVES; HETEROGENEOUS CATALYSTS; DIFFUSE-REFLECTANCE; CHROMIUM CATALYSTS; ELECTRON-TRANSFER; TITANIUM CENTERS; EXCITED-STATE; SPECTROSCOPY; ABSORPTION AB Mild synthetic methods are demonstrated for the selective assembly of oxo-bridged heterobinuclear units of the type TiOCrIII, TiOCoII, and TiOCeIII on mesoporous silica support MCM-41. One method takes advantage of the higher acidity and, hence, higher reactivity of titanol compared to silanol OH groups toward Ce-III or Coll precursors. The procedure avoids the customary use of a strong base. The controlled assembly of the TiOCr system exploits the selective redox reactivity of one metal toward another (Ti-III precursor reacting with anchored Cr-VI centers). The observed selectivity for linking a metal precursor to an already anchored partner versus formation of isolated centers ranges from a factor of 6 (TiOCe) to complete (TiOCr, TiOCo). Evidence for oxo bridges and determination of the coordination environment of each metal center is based on K-edge extended X-ray absorption fine structure spectroscopy (TiOCr), L-edge absorption spectroscopy (Ce), and X-ray absorption near edge structure measurements (Co, Cr). Electron paramagnetic resonance, optical, Fourier transform Raman, and Fourier transform infrared spectroscopy furnish additional details on oxidation state and coordination environment of donor and acceptor metal centers. In the case of TiOCr, the integrity of the anchored group upon calcination (350 degrees C) and cycling of the Cr oxidation state is demonstrated. The binuclear units possess metal-to-metal charge-transfer transitions that absorb deep in the visible region. The flexible synthetic method for assembling the units opens up the use of visible light charge-transfer pumps featuring donor or acceptor metals with selectable redox potential. C1 [Han, Hongxian; Frei, Heinz] Univ Calif Berkeley, Phys Biosci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Phys Biosci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM HMFrei@lbl.gov RI Han, Hongxian/Q-6054-2016 OI Han, Hongxian/0000-0002-2522-1817 NR 63 TC 41 Z9 41 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 5 PY 2008 VL 112 IS 22 BP 8391 EP 8399 DI 10.1021/jp800556g PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 306RI UT WOS:000256265100047 ER PT J AU Purewal, J Hwang, SJ Bowman, RC Ronnebro, E Fultz, B Ahn, C AF Purewal, Justin Hwang, Son-Jong Bowman, Robert C. Ronnebro, Ewa Fultz, Brent Ahn, Channing TI Hydrogen sorption behavior of the ScH(2)-LiBH(4) system: Experimental assesment of chemical destabilization effects SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STORAGE PROPERTIES; METAL-HYDRIDES; LIBH4; MGH2 AB The hydrogen storage reaction ScH(2) + 2LiBH(4) -> ScB(2) + 2LiH + 4H(2) (8-91 wt %), based on the thermodynamic destabilization of LiBH(4), is predicted to have a reaction enthalpy of Delta H(300K) = 34.1 kJ/mol H(2). The isothermal kinetic desorption behavior in this system was measured. At temperatures up to 450 degrees C, less than 5 wt % H(2) is released, which is only half of the theoretical capacity. Powder X-ray diffraction data indicate that LiBH(4) has decomposed into LiH in the final desorption product, but the data provide no evidence that ScH(2) has participated in the reaction. Magic angle spinning NMR (MAS NMR) results do not show that the expected ScB2 equilibrium product phase has formed during desorption. While the addition of 2 mol % TiCl(3) catalyst does improve desorption kinetics at 280 degrees C, it does not otherwise assist the destabilization reaction. The calculated reaction enthalpy suggests that this system should be of interest at moderate temperatures, but the large heats of formation of the reactant phases in this system appear to play a critical role in determining overall kinetics. Furthermore, the formation of a Li(2)B(12)H(12) intermediate phase was determined by MAS NMR, which is an undesirable stable product if reaction reversibility is to be accomplished. C1 [Purewal, Justin; Fultz, Brent; Ahn, Channing] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Hwang, Son-Jong] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Ronnebro, Ewa] Sandia Natl Labs, Energy Syst Dept, Livermore, CA 94551 USA. [Bowman, Robert C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Purewal, J (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. EM purewal@caltech.edu OI Bowman, Robert/0000-0002-2114-1713 NR 21 TC 55 Z9 56 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 5 PY 2008 VL 112 IS 22 BP 8481 EP 8485 DI 10.1021/jp800486n PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 306RI UT WOS:000256265100059 ER PT J AU Raebiger, H Lany, S Zunger, A AF Raebiger, Hannes Lany, Stephan Zunger, Alex TI Charge self-regulation upon changing the oxidation state of transition metals in insulators SO NATURE LA English DT Article ID IMPURITIES; SYSTEM AB Transition- metal atoms embedded in an ionic or semiconducting crystal can exist in various oxidation states that have distinct signatures in X- ray photoemission spectroscopy and 'ionic radii' which vary with the oxidation state of the atom. These oxidation states are often tacitly associated with a physical ionization of the transition- metal atoms(1,2) - that is, a literal transfer of charge to or from the atoms. Physical models have been founded on this charge- transfer paradigm(3-6), but first- principles quantum mechanical calculations show only negligible changes in the local transition-metal charge(7-12) as the oxidation state is altered. Here we explain this peculiar tendency of transition- metal atoms to maintain a constant local charge under external perturbations in terms of an inherent, homeostasis- like negative feedback. We show that signatures of oxidation states and multivalence - such as X- ray photoemission core- level shifts, ionic radii and variations in local magnetization - that have often been interpreted as literal charge transfer(3,4,13-16) are instead a consequence of the negative- feedback charge regulation. C1 [Raebiger, Hannes; Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Raebiger, H (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM hannes_raebiger@nrel.gov; alex_zunger@nrel.gov RI Zunger, Alex/A-6733-2013; Raebiger, Hannes/D-1881-2013; OI Raebiger, Hannes/0000-0003-3969-9165; Lany, Stephan/0000-0002-8127-8885 NR 23 TC 98 Z9 98 U1 4 U2 58 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 5 PY 2008 VL 453 IS 7196 BP 763 EP 766 DI 10.1038/nature07009 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 308UK UT WOS:000256415300039 PM 18528391 ER PT J AU Spalding, KL Arner, E Westermark, PO Bernard, S Buchholz, BA Bergmann, O Blomqvist, L Hoffstedt, J Naslund, E Britton, T Concha, H Hassan, M Ryden, M Frisen, J Arner, P AF Spalding, Kirsty L. Arner, Erik Westermark, Pal O. Bernard, Samuel Buchholz, Bruce A. Bergmann, Olaf Blomqvist, Lennart Hoffstedt, Johan Naslund, Erik Britton, Tom Concha, Hernan Hassan, Moustapha Ryden, Mikael Frisen, Jonas Arner, Peter TI Dynamics of fat cell turnover in humans SO NATURE LA English DT Article ID ADIPOSE-TISSUE CELLULARITY; MECHANISMS LINKING OBESITY; NUCLEAR TESTS; ADIPOCYTES; DISEASE; NUMBER; SIZE; C-14; AGE AB Obesity is increasing in an epidemic manner in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes(1,2). Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history(3). The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells ( adipocytes) is thought to be most important(4,5). Here we show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese individuals, even after marked weight loss, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analysing the integration of (14)C derived from nuclear bomb tests in genomic DNA(6). Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in early onset obesity, suggesting a tight regulation of fat cell number in this condition during adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity. C1 [Spalding, Kirsty L.; Arner, Erik; Bergmann, Olaf; Frisen, Jonas] Karolinska Inst, Dept Cell & Mol Biol, SE-17177 Stockholm, Sweden. [Westermark, Pal O.] Humboldt Univ, ITB, D-10115 Berlin, Germany. [Westermark, Pal O.] Charite Univ Med Berlin, D-10115 Berlin, Germany. [Bernard, Samuel] Fdn Res & Technol, Inst Appl & Computat Math, Iraklion 71110, Greece. [Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Blomqvist, Lennart; Hoffstedt, Johan; Concha, Hernan; Hassan, Moustapha; Ryden, Mikael; Arner, Peter] Karolinska Univ Hosp, Dept Med, SE-14186 Stockholm, Sweden. [Naslund, Erik] Karolinska Inst, Div Surg, Dept Clin Sci, Danderyd Hosp, SE-18288 Stockholm, Sweden. [Britton, Tom] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden. RP Spalding, KL (reprint author), Karolinska Inst, Dept Cell & Mol Biol, SE-17177 Stockholm, Sweden. EM kirsty.spalding@ki.se; jonas.frisen@ki.se; peter.arner@ki.se RI Bergmann, Olaf/A-5706-2009; Arner, Erik/A-1895-2010; Bernard, Samuel/A-5623-2009; Buchholz, Bruce/G-1356-2011; Hassan, Moustapha/H-9260-2015; OI Bergmann, Olaf/0000-0003-1065-4107; Arner, Erik/0000-0003-1225-4908; Bernard, Samuel/0000-0002-8442-9968; Hassan, Moustapha/0000-0003-1927-5859; Westermark, Pal/0000-0002-6637-2566 FU NCRR NIH HHS [RR13461, P41 RR013461] NR 30 TC 861 Z9 884 U1 14 U2 114 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 5 PY 2008 VL 453 IS 7196 BP 783 EP 787 DI 10.1038/nature06902 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 308UK UT WOS:000256415300044 PM 18454136 ER PT J AU Jeon, YM Armatas, GS Heo, J Kanatzidis, MG Mirkin, CA AF Jeon, You-Moon Armatas, Gerasimos S. Heo, Jungseok Kanatzidis, Mercouri G. Mirkin, Chad A. TI Amorphous infinite coordination polymer microparticles: A new class of selective hydrogen storage materials SO ADVANCED MATERIALS LA English DT Article ID METAL-ORGANIC FRAMEWORKS; INTRINSIC MICROPOROSITY; CARBOXYLATO COMPLEXES; VIBRATIONAL-SPECTRA; COLLOIDAL PARTICLES; SUBMICROMETER-SCALE; SORPTION PROPERTIES; HYBRID MATERIALS; POROUS MATERIAL; SURFACE-AREA AB A new class of micrometer-sized amorphous infinite coordination particles is selectively prepared from the coordination chemistry of a metallo-salen building block and Zn2+ ions. The particles show moderately high H-2 uptake and almost no N-2 adsorption, even though they are amorphous and do not have the well-defined channels typically used to explain such selectivity in metal-organic framework systems. C1 [Jeon, You-Moon; Heo, Jungseok; Mirkin, Chad A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Jeon, You-Moon; Heo, Jungseok; Mirkin, Chad A.] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA. [Armatas, Gerasimos S.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM chadnano@northwestern.edu RI Mirkin, Chad/E-3911-2010; Armatas, Gerasimos/F-4753-2011 OI Armatas, Gerasimos/0000-0001-9475-1929 NR 53 TC 78 Z9 78 U1 4 U2 58 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 4 PY 2008 VL 20 IS 11 BP 2105 EP + DI 10.1002/adma.200702605 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 317UC UT WOS:000257044600014 ER PT J AU Liu, F Collazo, R Mita, S Sitar, Z Pennycook, SJ Duscher, G AF Liu, Fude Collazo, Ramon Mita, Seiji Sitar, Zlatko Pennycook, Stephen J. Duscher, Gerd TI Direct observation of inversion domain boundaries of GaN on c-sapphire at sub-Angstrom resolution SO ADVANCED MATERIALS LA English DT Article ID MOLECULAR-BEAM-EPITAXY; POLARITY; HETEROSTRUCTURES; LATTICE AB Inversion domain boundaries (IDBs) of GaN are studied by a high-resolution technique. The IDB separates adjacent domains of opposite polarity. The image shows a GaN IDB in the [(2) over bar 110] projection. The theoretical IDB structure fits the experimentally obtained structure well. The inset is an image acquired from a very thin region on the right side of the IDB. It can indicate the polarity of GaN directly. C1 [Pennycook, Stephen J.; Duscher, Gerd] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Liu, Fude; Collazo, Ramon; Mita, Seiji; Sitar, Zlatko; Duscher, Gerd] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA. RP Liu, F (reprint author), Natl Ctr Photovolta, Natl Renewable Energy Lab, MailStop 32, Golden, CO 80401 USA. EM fude_liu@nrel.gov RI Liu, Fude/E-9873-2010; Duscher, Gerd/G-1730-2014 OI Duscher, Gerd/0000-0002-2039-548X NR 21 TC 16 Z9 16 U1 4 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 4 PY 2008 VL 20 IS 11 BP 2162 EP + DI 10.1002/adma.200702522 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 317UC UT WOS:000257044600025 ER PT J AU Todd, BD Willson, JD Winne, CT Semlitsch, RD Gibbons, JW AF Todd, Brian D. Willson, John D. Winne, Christopher T. Semlitsch, Raymond D. Gibbons, J. Whitfield TI Ecology of the Southeastern Crowned Snake, Tantilla coronata SO COPEIA LA English DT Article ID SEXUAL SIZE DIMORPHISM; BODY-SIZE; PHENOTYPIC PLASTICITY; VIVIPAROUS SNAKE; CLUTCH SIZE; COLUBRIDAE; ENVIRONMENT; SERPENTES; ABUNDANCE; SELECTION AB There are very few comprehensive studies of the ecology of small-bodied snakes. Here, we describe the ecology and demography of the Southeastern Crowned Snake (Tantilla coronata) based on 1,640 captures on the Savannah River Site in the Upper Coastal Plain of South Carolina, USA from 1951-2007. Female T. coronata were significantly longer, heavier, and heavier-bodied than males but had relatively shorter tails. Clutch size based on oviductal eggs was positively correlated to maternal body mass and length. Snakes exhibited a unimodal seasonal activity pattern that peaked in summer. Pitfall captures were significantly male-biased from July-October, corresponding to the suggested mating period for this species in this part of its range. We identified three classes of animals in the population: neonates, second year animals, and older animals that included both non-reproductive subadults and reproductive adults. Longevity was at least five years for two recaptured males originally captured as mature adults. Centipede species were the exclusive prey identified from T. coronata collected on the Savannah River Site. Our study demonstrates that research on underrepresented species is possible and can contribute to understanding of snake ecology. C1 [Todd, Brian D.; Willson, John D.; Winne, Christopher T.; Gibbons, J. Whitfield] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Semlitsch, Raymond D.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. RP Todd, BD (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM btodd@uga.edu OI Semlitsch, Raymond/0000-0002-7999-5762 NR 48 TC 9 Z9 13 U1 1 U2 10 PU AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS PI CHARLESTON PA UNIV CHARLESTON, GRICE MARINE LABORATORY, 205 FORT JOHNSON RD, CHARLESTON, SC 29412 USA SN 0045-8511 J9 COPEIA JI Copeia PD JUN 4 PY 2008 IS 2 BP 388 EP 394 DI 10.1643/CE-06-289 PG 7 WC Zoology SC Zoology GA 311DD UT WOS:000256579500015 ER PT J AU Willson, JD Winne, CT Keck, MB AF Willson, John D. Winne, Christopher T. Keck, Michael B. TI Empirical tests of biased body size distributions in aquatic snake captures SO COPEIA LA English DT Article ID CHOLINESTERASE-INHIBITING PESTICIDE; SWIMMING PERFORMANCE; TROPICAL AUSTRALIA; ARAFURA FILESNAKES; SEMINATRIX-PYGAEA; ISOLATED WETLAND; WATER SNAKES; POPULATION; DEMOGRAPHY; PATTERNS AB Ecologists often rely on a suite of demographic parameters-such as age structure, body size distributions, population density, and sex ratios-to understand life history patterns, population dynamics, and community structure of snakes. Unfortunately, in many cases little consideration is given to how sampling techniques may influence the outcome of demographic studies. Herein, we use a combination of field capture techniques, an extensive database of field-captured snakes, and laboratory and field experiments to evaluate how capture methods may influence demographic assessments of several North American semi-aquatic snake species, including Agkistrodon piscivorus, Farancia abacura, Nerodia fasciata, N. floridana, N. rhombifer, N. taxispliota, Regina rigida, Seminatrix pygaea, and Thamnophis sauritus. We found that commercially available aquatic funnel traps (i.e., minnow traps) generally yielded biased assessments of population demography, but that the nature and magnitude of these biases varied predictably by species and trap type. Experimental manipulations of funnel opening diameter in aquatic funnel traps demonstrated that such modifications allowed for capture of larger snakes but that the size of funnel opening necessary to capture the largest individuals varied between species. Additionally, we found differences between snake species in their ability to escape from different types of traps at birth, suggesting that escape of neonates through trap mesh can lead to the lack of small snakes often observed in field samples. Overall, our results demonstrate that capture methods may bias assessments of snake population demography, but that careful design of sampling methodology, with consideration of potential biases, can yield meaningful data on snake biology. C1 [Willson, John D.; Winne, Christopher T.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Keck, Michael B.] Grayson County Coll, Denison, TX 75020 USA. RP Willson, JD (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM willson@uga.edu; ctwinne@uga.edu; mikebkeck@yahoo.com NR 37 TC 18 Z9 19 U1 1 U2 9 PU AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS PI CHARLESTON PA UNIV CHARLESTON, GRICE MARINE LABORATORY, 205 FORT JOHNSON RD, CHARLESTON, SC 29412 USA SN 0045-8511 J9 COPEIA JI Copeia PD JUN 4 PY 2008 IS 2 BP 401 EP 408 DI 10.1643/CH-07-035 PG 8 WC Zoology SC Zoology GA 311DD UT WOS:000256579500017 ER PT J AU Niehof, JT Fritz, TA Friedel, RHW Chen, JS AF Niehof, Jonathan T. Fritz, Theodore A. Friedel, Reiner H. W. Chen, Jiasheng TI Interdependence of magnetic field and plasma pressures in cusp diamagnetic cavities SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HOT PLASMA; POLAR; MAGNETOSPHERE; RECONNECTION; SPACECRAFT AB We examine Polar data for several high-altitude cusp crossings to characterize "Cusp Diamagnetic Cavities'' (CDCs). In particular, we determine the relationship between the magnetic field and thermal pressure of the local plasma. The cusp is characterized by high density and the presence of stagnant solar wind plasma throughout. The CDCs represent a distinct region within the cusp, possessing a depressed and turbulent magnetic field in addition to the other cusp properties. We find the CDCs are colocated with "Cusp Energetic Particle'' (CEP) events. In CDCs, depressions in the field are strongly correlated to local enhancements in plasma density and thus pressure, supporting the "diamagnetic'' label. No correlation between field and plasma is found in the cusp outside of the CDC. The colocation of CDCs and CEP events suggests constraints on the origin of CEPs. C1 [Niehof, Jonathan T.; Fritz, Theodore A.; Chen, Jiasheng] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Friedel, Reiner H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Niehof, JT (reprint author), Boston Univ, Ctr Space Phys, 725 Commonwealth Ave, Boston, MA 02215 USA. EM jniehof@bu.edu RI Friedel, Reiner/D-1410-2012; OI Friedel, Reiner/0000-0002-5228-0281; Niehof, Jonathan/0000-0001-6286-5809 NR 18 TC 12 Z9 12 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 4 PY 2008 VL 35 IS 11 AR L11101 DI 10.1029/2008GL033589 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 310VH UT WOS:000256558300001 ER PT J AU Criado, R Gray, LJ Mantic, V Paris, F AF Criado, R. Gray, L. J. Mantic, V. Paris, F. TI Green's function evaluation for three-dimensional exponentially graded elasticity SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE functionally graded materials; boundary integral equation; boundary element method; Galerkin approximation ID BOUNDARY-ELEMENT METHOD; STRESS INTENSITY FACTORS; HEAT-CONDUCTION; INTEGRAL-EQUATION; FUNDAMENTAL-SOLUTIONS; SURFACE INTEGRALS; FORMULATION; HELMHOLTZ; MEDIA; SOIL AB The numerical implementation of Green's function for an isotropic exponentially graded three-dimensional elastic solid is reported. The formulas for the non-singular 'grading term' in this Green's function, originally deduced by Martin et al. (Proc. R. Soc. Lond. Ser A 2002; 458:1931-1947), are quite complicated, and a small error in one of the formulas is corrected. The evaluation of the fundamental solution is tested by employing an indirect boundary integral formulation using a Galerkin approximation to solve several problems having analytic solutions. The numerical results indicate that Green's function formulas, and their evaluation, are correct. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 [Criado, R.; Mantic, V.; Paris, F.] Univ Seville, Grp Elast & Strength Mat, Sch Engn, E-41092 Seville, Spain. [Gray, L. J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Mantic, V (reprint author), Univ Seville, Grp Elast & Strength Mat, Sch Engn, Camino Descubrimientos S-N, E-41092 Seville, Spain. EM mantic@esi.us.es RI Mantic, Vladislav/G-1111-2010 OI Mantic, Vladislav/0000-0002-7569-7442 NR 43 TC 15 Z9 16 U1 1 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JUN 4 PY 2008 VL 74 IS 10 BP 1560 EP 1591 DI 10.1002/nme.2223 PG 32 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 314NZ UT WOS:000256817400002 ER PT J AU Cheng, CH Lehmann, J Thies, JE Burton, SD AF Cheng, Chih-Hsin Lehmann, Johannes Thies, Janice E. Burton, Sarah D. TI Stability of black carbon in soils across a climatic gradient SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID TEMPERATURE SENSITIVITY; PYROGENIC CARBON; ORGANIC-CARBON; NORTH-CAROLINA; TERRA-PRETA; FOREST SOIL; CHARCOAL; MINERALIZATION; DECOMPOSITION; LITTER AB The recalcitrant properties of black carbon (BC) grant it to be a significant pool of stable organic C (OC) in soils. Up to now, however, the longevity of BC under different climates is still unclear. In this study, we used BC samples from historical charcoal blast furnace sites to examine the stability of BC across a climatic gradient of mean annual temperatures (MAT) from 3.9 to 17.2 degrees C. The results showed that OC concentration and OC storage in the BC-containing soils at a soil depth of 0-0.2 m were 9.0 and 4.7 times higher than those in adjacent soils, respectively. Organic C in the BC-containing soils was more stable, with a significantly lower amount of the labile OC fraction (4.4 mg g(-1) OC versus 27.5 mg g(-1) OC) and longer half-life of the recalcitrant OC fraction (59 years versus 9 years) than the adjacent soils determined by incubation experiments. The stability of BC was primarily due to its inherently recalcitrant chemical composition as suggested by short-term incubation and solid state C-13 nuclear magnetic resonance spectra of isolated BC particles. A significant negative relationship between OC storage and MAT further indicated that OC storage was decreased with warmer climate. However, the lack of a relationship between MAT and BC mineralization suggested that the stability of the remaining BC was similar between sites with very different MAT. Despite the fact that warming or cooling result in immediate consequences for BC stocks, it may have little impact on the stability of remaining BC over the period studied. C1 [Cheng, Chih-Hsin] Natl Taiwan Univ, Sch Forestry & Resource Conservat, Taipei 106, Taiwan. [Burton, Sarah D.] Pacific NW Natl Lab, Environm Mol & Sci Lab, Richland, WA 99352 USA. [Lehmann, Johannes; Thies, Janice E.] Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14853 USA. RP Cheng, CH (reprint author), Natl Taiwan Univ, Sch Forestry & Resource Conservat, Taipei 106, Taiwan. EM cl273@cornell.edu RI Thies, Janice/A-5074-2014; Lehmann, Johannes/H-2682-2014 OI Lehmann, Johannes/0000-0002-4701-2936 NR 46 TC 90 Z9 94 U1 9 U2 53 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUN 4 PY 2008 VL 113 IS G2 AR G02027 DI 10.1029/2007JG000642 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 310WS UT WOS:000256562100001 ER PT J AU Yan, L Sun, Q Jia, Y AF Yan, Li Sun, Qiang Jia, Yu TI First-principles calculations of carbon nanotubes adsorbed on diamond (100) surfaces SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 12th International Conference on Vibrations at Surfaces CY JUL 20-26, 2007 CL Erice, ITALY ID GENERALIZED GRADIENT APPROXIMATION; SCANNING TUNNELING MICROSCOPE; PASSIVATED SI(100) SURFACES; ELECTRONIC DEVICES; C(100) SURFACES; AB-INITIO; SINGLE; MANIPULATION AB We report first-principles total-energy calculations on the adsorption of (3, 3) and (4, 4) single-walled carbon nanotubes (SWCNTs) on clean and hydrogenated diamond (100) surfaces. For the nanotubes adsorbed on the clean surface we find that the stable geometries for the nanotubes are on top of dimer rows and between two consecutive dimer rows where C-C chemical bonds between carbons of the nanotubes and the surface dimers are formed. The binding energies for a (3, 3) nanotube at the two sites are 2.26 and 0.83 eV angstrom(-1), while they are 1.74 and 0.36 eV angstrom(-1) for a (4, 4) nanotube. Our results show that to reach the stable geometry the nanotubes initially experience weakly adsorbed states at the position similar to 2.6 angstrom above the surface and then overcome a barrier of similar to 0.7 eV. Concerning the electronic properties, the most noticeable feature is that for the most stable geometry the electronic structure of the adsorbed metallic nanotube becomes semiconducting, i. e. a small band gap appears, due to the formation of C-C bonds between the nanotube and the dimer atoms. As a result, the adsorbed metallic nanotubes are realized in a metal-to-semiconductor transition. In contrast, on the fully hydrogenated C(100) surface, the nanotubes are weakly adsorbed on the surface, preserving an almost unchanged metallic character. C1 [Yan, Li; Sun, Qiang; Jia, Yu] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450001, Peoples R China. [Jia, Yu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jia, Y (reprint author), Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450001, Peoples R China. EM jiayu@zzu.edu.cn NR 39 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 4 PY 2008 VL 20 IS 22 AR 225016 DI 10.1088/0953-8984/20/22/225016 PG 6 WC Physics, Condensed Matter SC Physics GA 304YT UT WOS:000256145700044 ER PT J AU Werkema, EL Andersen, RA AF Werkema, Evan L. Andersen, Richard A. TI Fluorine for hydrogen exchange in the hydrofluorobenzene derivatives C6HxF(6-x), where x=2, 3, 4 and 5 by monomeric [1,2,4-(Me3C)(3)C5H2](2)CeH: The solid state isomerization of [1,2,4-(Me3C)(3)C5H2](2)Ce(2,3,4,5-C6HF4) to [1,2,4-(Me3C)(3)C5H2](2)Ce(2,3,4,6-C6HF4) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article AB The reaction between monomeric bis(1,2,4-tri-tert-butylcyclopentadienyl)cerium hydride, CP'2CeH, and several hydrofluorobenzene derivatives is described. The aryl derivatives that are the primary products, CP'Ce-2(C6H5-xFx) where x = 1,2,3,4, are thermally stable enough to be isolated in only two cases, since all of them decompose at different rates to CP'2CeF and a fluorobenzyne; the latter is trapped by either solvent when C6D6 is used or by a Cp'H ring when C6D12 is the solvent. The trapped products are identified by GC/MS analysis after hydrolysis. The aryl derivatives are generated cleanly by reaction of the metallacycle, Cp'((Me3C)(2)C5H2C(Me-2)CH2)Ce, with a hydrofluorobenzene, and the resulting arylcerium products, in each case, are identified by their H-1 and F-19 NMR spectra at 20 degrees C. The stereochemical principle that evolves from these studies is that the thermodynamic isomer is the one in which the CeC bond is flanked by two ortho-CF bonds. This orientation is suggested to arise from the negative charge that is localized on the ipso-carbon atom due to C-o(delta+)F-o(delta-) polarization. The preferred regioisomer is determined by thermodynamic rather than kinetic effects; this is illustrated by the quantitative, irreversible solid-state conversion at 25 degrees C over two months of CP'Ce-2(2,3,4,5-C6HF4) to CP'Ce-2(2,3,4,6-C6HF4), an isomerization that involves a CeC(ipso) for C(ortho)F site exchange. C1 [Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Andersen, RA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. EM raandersen@lbl.gov NR 11 TC 20 Z9 20 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 4 PY 2008 VL 130 IS 22 BP 7153 EP 7165 DI 10.1021/ja800639f PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 307EQ UT WOS:000256301200052 PM 18465863 ER PT J AU Close, S Hamlin, T Oppenheim, M Cox, L Colestock, P AF Close, S. Hamlin, T. Oppenheim, M. Cox, L. Colestock, P. TI Dependence of radar signal strength on frequency and aspect angle of nonspecular meteor trails SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ECHOES; RADIO; SCATTERING; MASS; VHF AB [1] When a meteoroid penetrates Earth's atmosphere, it forms a high-density ionized plasma column immersed in the ionosphere between approximately 70 and 140 km altitude. High-power, large-aperture ( HPLA) radars detect nonspecular trails when VHF or UHF radio waves reflect off structures in a turbulent meteor trail. These trails persist from a few milliseconds to many minutes and the return from these trails is referred to as nonspecular trails or range-spread trail echoes. In this paper, we present analysis of nonspecular trails detected with ALTAIR, which is an HPLA radar operating simultaneously at 160 MHz and 422 MHz on the Kwajalein Atoll. First, we investigate the aspect sensitivity of nonspecular trails and show that as the angle between the radar beam and the background magnetic field increases, the signal strength falls off 3 to 4 dB per degree at 160 MHz. For ALTAIR, this means that the aspect angle must be within approximately 12 degrees in order to detect nonspecular trails using the chosen waveforms. Second, we compare and contrast the meteoroids that form nonspecular trails and find that the meteoroid energy causes much of the variability in the nonspecular trail's signal-to-noise ratio (SNR) for a given aspect angle. In addition, we show two range-resolved fragmentation events that also affect the SNR. Finally, we determine the dependence of SNR on wavelength using two wavelengths and show that the maximum nonspecular trail SNR scales as approximately gimel(6), with a variation that depends upon altitude. C1 [Close, S.; Hamlin, T.; Cox, L.; Colestock, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Oppenheim, M.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. RP Close, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM sc_mars@yahoo.com OI Oppenheim, Meers/0000-0002-8581-6177 NR 18 TC 13 Z9 13 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 3 PY 2008 VL 113 IS A6 AR A06203 DI 10.1029/2007JA012647 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 310YR UT WOS:000256567500003 ER PT J AU Lane, JMD Chandross, M Lorenz, CD Stevens, MJ Grest, GS AF Lane, J. Matthew D. Chandross, Michael Lorenz, Christian D. Stevens, Mark J. Grest, Gary S. TI Water penetration of damaged self-assembled monolayers SO LANGMUIR LA English DT Article ID MOLECULAR-DYNAMICS; MODEL; MEMS; MICA AB The interaction of water with self-assembled monolayers (SAMs) on amorphous silica is investigated using classical molecular dynamics simulation. Damage is induced through shear simulations with model atomic force microscopy (AFM) tips and separately with controlled extraction. We find that SAM coatings that have been slightly damaged (by normal loads close to 10 nN from a 10-nm-diameter AFM tip) are susceptible to water penetration and migration to the underlying hydrophilic substrate. The controlled damage studies indicate that the presence of water tends to heal damage below a threshold radius and exploits and magnifies damage above this threshold. For the systems studied here, Si(OH)(3)(CH2)(10)CH3 alkylsilane chains on amorphous silica, this threshold radius is between 0.5 and 1.0 nm. C1 [Lane, J. Matthew D.; Chandross, Michael; Stevens, Mark J.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorenz, Christian D.] Kings Coll London, Mat Res Grp, London WC2R 2LS, England. RP Lane, JMD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jlane@sandia.gov NR 19 TC 27 Z9 27 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 3 PY 2008 VL 24 IS 11 BP 5734 EP 5739 DI 10.1021/la703492j PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 306FE UT WOS:000256232900017 PM 18341361 ER PT J AU Bala, G Duffy, PB Taylor, KE AF Bala, G. Duffy, P. B. Taylor, K. E. TI Impact of geoengineering schemes on the global hydrological cycle SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE climate change; global hydrology; radiative forcing; mitigation ID EARTHS RADIATION BALANCE; CLIMATE-CHANGE; CARBON BALANCE; MODEL; PERTURBATIONS; SIMULATIONS; BIOSPHERE; ALBEDO; CO2 AB The rapidly rising CO2 level in the atmosphere has led to proposals of climate stabilization by "geoengineering" schemes that would mitigate climate change by intentionally reducing solar radiation incident on Earth's surface. In this article we address the impact of these climate stabilization schemes on the global hydrological cycle. By using equilibrium climate simulations, we show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in global mean precipitation. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO2 forcing of a similar magnitude. In the model used here, the hydrological sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% K-1 for solar forcing, but only 1.5% K-1 for CO2 forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. For the same surface temperature change, insolation changes result in relatively larger changes in net radiative fluxes at the surface; these are compensated by larger changes in the sum of latent and sensible heat fluxes. Hence, the hydrological cycle is more sensitive to temperature adjustment by changes in insolation than by changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once. C1 [Bala, G.; Duffy, P. B.; Taylor, K. E.] Lawrence Livermore Natl Lab, Atmosphere Earth & Energy Div, Livermore, CA 94550 USA. RP Bala, G (reprint author), Lawrence Livermore Natl Lab, Atmosphere Earth & Energy Div, Livermore, CA 94550 USA. EM bala1@llnl.gov RI Taylor, Karl/F-7290-2011 OI Taylor, Karl/0000-0002-6491-2135 NR 35 TC 126 Z9 130 U1 3 U2 45 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 3 PY 2008 VL 105 IS 22 BP 7664 EP 7669 DI 10.1073/pnas.0711648105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 312DF UT WOS:000256648600009 PM 18505844 ER PT J AU Hendrix, DA Hong, JW Zeitlinger, J Rokhsar, DS Levine, MS AF Hendrix, David A. Hong, Joung-Woo Zeitlinger, Julia Rokhsar, Daniel S. Levine, Michael S. TI Promoter elements associated with RNA Pol 11 stalling in the Drosophila embryo SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE bioinformatics; core promoter motifs; developmental biology ID CORE PROMOTER; POLYMERASE-II; REGULATORY NETWORKS; GAGA FACTOR; IN-VIVO; DORSAL; TRANSCRIPTION; GENOME; IDENTIFICATION; ACTIVATION AB RNA Polymerase II (Pol II) is bound to the promoter regions of many or most developmental control genes before their activation during Drosophila embryogenesis. It has been suggested that Pol 11 stalling is used to produce dynamic and rapid responses of developmental patterning genes to transient cues such as extracellular signaling molecules. Here, we present a combined computational and experimental analysis of stalled promoters to determine how they come to bind Pol 11 in the early Drosophila embryo. At least one-fourth of the stalled promoters contain a shared sequence motif, the "pause button" (PB): KCGRWCG. The PB motif is sometimes located in the position of the DPE, and over one-fifth of the stalled promoters contain the following arrangement of core elements: GAGA, Inr, PB, and/or DPE. This arrangement was used to identify additional stalled promoters in the Drosophila genome, and permanganate footprint assays were used to confirm that the segmentation gene engrailed contains paused Pol 11 as seen for heat-shock genes. We discuss different models for Pol 11 binding and gene activation in the early embryo. C1 [Hendrix, David A.; Hong, Joung-Woo; Rokhsar, Daniel S.; Levine, Michael S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Genet Genom & Dev, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Zeitlinger, Julia] Stowers Inst Med Res, Kansas City, MO 64110 USA. [Rokhsar, Daniel S.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP Levine, MS (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Genet Genom & Dev, Ctr Integrat Genom, 229 Stanley Hall, Berkeley, CA 94720 USA. EM mlevine@berkeley.edu FU NIGMS NIH HHS [GM34431, R01 GM034431] NR 27 TC 86 Z9 86 U1 1 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 3 PY 2008 VL 105 IS 22 BP 7762 EP 7767 DI 10.1073/pnas.0802406105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 312DF UT WOS:000256648600026 PM 18505835 ER PT J AU Zhou, JZ Kang, S Schadt, CW Garten, CT AF Zhou, Jizhong Kang, Sanghoon Schadt, Christopher W. Garten, Charles T., Jr. TI Spatial scaling of functional gene diversity across various microbial taxa SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE canonical correspondence analysis; GeoChip; taxa-area relationship ID SPECIES-AREA RELATIONSHIPS; DECIDUOUS FOREST; ISLAND SIZE; ECOLOGY; SCALES; BIOGEOGRAPHY; COMMUNITIES; DEFINITION; MICROARRAY; ECOSYSTEM AB Understanding the spatial patterns of organisms and the underlying mechanisms shaping biotic communities is a central goal in community ecology. One of the most well documented spatial patterns in plant and animal communities is the positive-power law relationship between species (or taxa) richness and area. Such taxa-area relationships (TARS) are one of the principal generalizations in ecology, and are fundamental to our understanding of the distribution of global biodiversity. However, TARS remain elusive in microbial communities, especially in soil habitats, because of inadequate sampling methodologies. Here, we describe TARs as gene-area relationships (GARs), at a whole-community level, across various microbial functional and phylogenetic groups in a forest soil, using a comprehensive functional gene array with > 24,000 probes. Our analysis indicated that the forest soil microbial community exhibited a relatively flat gene-area relationship (slope z = 0.0624), but the z values varied considerably across different functional and phylogenetic groups (z = 0.0475-0.0959). However, the z values are several times lower than those commonly observed in plants and animals. These results suggest that the turnover in space of microorganisms may be, in general, lower than that of plants and animals. C1 [Zhou, Jizhong; Kang, Sanghoon] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong; Kang, Sanghoon] Univ Oklahoma, Inst Environm Genom, Dept Bot & Microbiol, Norman, OK 73019 USA. [Zhou, Jizhong; Kang, Sanghoon; Schadt, Christopher W.; Garten, Charles T., Jr.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37923 USA. [Zhou, Jizhong; Kang, Sanghoon; Schadt, Christopher W.; Garten, Charles T., Jr.] Oak Ridge Natl Lab, Div Biosci, Oak Ridge, TN 37923 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu RI Schadt, Christopher/B-7143-2008; OI Schadt, Christopher/0000-0001-8759-2448; Kang, Sanghoon/0000-0002-3504-7955 NR 32 TC 119 Z9 125 U1 14 U2 82 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 3 PY 2008 VL 105 IS 22 BP 7768 EP 7773 DI 10.1073/pnas.0709016105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 312DF UT WOS:000256648600027 PM 18509054 ER PT J AU Halas, S Pienkos, T Czarnacki, M Durakiewicz, T AF Halas, S. Pienkos, T. Czarnacki, M. Durakiewicz, T. TI Determination of work function of metals and alloys using diode with spiral anode SO VACUUM LA English DT Article; Proceedings Paper CT 9th Electron Technology Conference CY SEP 04-07, 2007 CL Cracow, POLAND SP Dept Elect, Fac Elect Eng, Automat Comp Sci & Elect, AGH Univ Sci & Technol, Polish Acad Sci, Comm Elect & Telecommun, Jagiellonian Univ, Ctr Sci Res DE computer simulation; ReMo alloy; spiral anode; thermionic method; tungsten; vacuum diode; work function ID TEMPERATURE DISTRIBUTION AB A new variety of thermionic method for determining the work function (WF) is described. Thermionic current flow from electrically heated short homogeneous filament to spiral anode, voltage drop along the filament, and temperature of the filament ends are measured, whereas temperature distribution along the filament and WFs are obtained by computer simulation. The WFs obtained for tungsten and ReMo alloy are 4.53 and 4.23 eV, respectively. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Halas, S.; Pienkos, T.; Czarnacki, M.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. [Durakiewicz, T.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. RP Halas, S (reprint author), Marie Curie Sklodowska Univ, Inst Phys, Pl M Curie Sklodowskiej 1, PL-20031 Lublin, Poland. EM halas@tytan.umcs.lublin.pl OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 5 TC 1 Z9 1 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD JUN 3 PY 2008 VL 82 IS 10 BP 1094 EP 1098 DI 10.1016/j.vacuum.2008.01.023 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 313NS UT WOS:000256747900031 ER PT J AU Wronski, CR Von Roedern, B Kolodziej, A AF Wronski, C. R. Von Roedern, B. Kolodziej, A. TI Thin-film Si : H-based solar cells SO VACUUM LA English DT Article; Proceedings Paper CT 9th Electron Technology Conference CY SEP 04-07, 2007 CL Cracow, POLAND SP Dept Elect, Fac Elect Eng, Automat Comp Sci & Elect, AGH Univ Sci & Technol, Polish Acad Sci, Comm Elect & Telecommun, Jagiellonian Univ, Ctr Sci Res DE thin silicon film; phase transition; solar cells; stability ID TIME SPECTROSCOPIC ELLIPSOMETRY; HYDROGENATED AMORPHOUS-SILICON; MICROCRYSTALLINE SILICON; OPTIMIZATION; EFFICIENCY; DILUTION AB Recent developments in the photovoltaic (PV) industry, driven by a shortage of solar grade Si feedstock to grow Si wafers or ribbons, have stimulated a strong renewed interest in thin-film technologies and in particular in solar cells based on protocrystalline hydrogenated amorphous silicon (a-Si:H) or nanocrystalline/microcrystalline (nc/mu c)-Si:H. There are a number of institutions around the world developing protocrystalline thin-film Si:H technologies as well as those based on tandem and triple junction cells consisting of a-Si:H, a-Si:Ge:H and nc/mu c-Si:H. There are also several large commercial companies actively marketing large production-scale plasma-enhanced chemical vapor deposition (PECVD) deposition equipment for the production of such modules. Reduction in the cost of the modules can be achieved by increasing their stabilized efficiencies and the deposition rates of the Si:H materials. In this paper, recent results are presented which provide insights into the nature of protocrystalline Si:H materials, optimization of cell structures and their light-induced degradation that are helpful in addressing these issues. The activities in these areas that are being carried out in the United States are also briefly reviewed. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Kolodziej, A.] AGH Univ Sci & Technol, PL-30059 Krakow, Poland. [Wronski, C. R.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Von Roedern, B.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kolodziej, A (reprint author), AGH Univ Sci & Technol, Al Mickiewicza 30, PL-30059 Krakow, Poland. EM crwece@engr.psu.edu; kolodzie@agh.edu.pl NR 24 TC 33 Z9 33 U1 4 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD JUN 3 PY 2008 VL 82 IS 10 BP 1145 EP 1150 DI 10.1016/j.vacuum.2008.01.043 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 313NS UT WOS:000256747900043 ER PT J AU Andersson, J Anders, A AF Andersson, Joakim Anders, Andre TI Gasless sputtering: Opportunities for ultraclean metallization, coatings in space, and propulsion SO APPLIED PHYSICS LETTERS LA English DT Article ID PHYSICAL VAPOR-DEPOSITION; MAGNETRON; ARC AB Pulsed magnetron sputtering was demonstrated in high vacuum: no sputter gas was used at any time. Sustained self-sputtering was initiated by multiply charged ions from a short vacuum arc. Copper ion currents to an ion collector in excess of 30 A were measured, implying a plasma density of about 6x10(18) m(-3). This technology may prove useful for metal coatings free of noble gas inclusions and suggests that magnetrons could operate in the vacuum of space. In addition to coating objects in space, the momentum of the sputtered atoms and ions may be utilized in space thrusters. (C) 2008 American Institute of Physics. C1 [Andersson, Joakim; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Andersson, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM joakim.andersson@fysik.uu.se RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009 OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505 NR 16 TC 45 Z9 45 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 2 PY 2008 VL 92 IS 22 AR 221503 DI 10.1063/1.2938414 PG 3 WC Physics, Applied SC Physics GA 310KL UT WOS:000256527900017 ER PT J AU Kang, HC Yan, HF Winarski, RP Holt, MV Maser, J Liu, CA Conley, R Vogt, S Macrander, AT Stephenson, GB AF Kang, Hyon Chol Yan, Hanfei Winarski, Robert P. Holt, Martin V. Maser, Joerg Liu, Chian Conley, Ray Vogt, Stefan Macrander, Albert T. Stephenson, G. Brian TI Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens SO APPLIED PHYSICS LETTERS LA English DT Article ID ZONE PLATES AB We report improved results for hard x-ray focusing using a multilayer Laue lens (MLL). We have measured a line focus of 16 nm width with an efficiency of 31% at a wavelength lambda=0.064 nm (19.5 keV) using a partial MLL structure with an outermost zone width of 5 nm. The results are in good agreement with the theoretically predicted performance. (C) 2008 American Institute of Physics. C1 [Kang, Hyon Chol; Yan, Hanfei; Winarski, Robert P.; Holt, Martin V.; Maser, Joerg; Stephenson, G. Brian] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Liu, Chian; Conley, Ray; Vogt, Stefan; Macrander, Albert T.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Stephenson, G. Brian] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Maser, J (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM maser@anl.gov RI Conley, Ray/C-2622-2013; Maser, Jorg/K-6817-2013; Yan, Hanfei/F-7993-2011; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Yan, Hanfei/0000-0001-6824-0367; Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 NR 21 TC 128 Z9 129 U1 0 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 2 PY 2008 VL 92 IS 22 AR 221114 DI 10.1063/1.2912503 PG 3 WC Physics, Applied SC Physics GA 310KL UT WOS:000256527900014 ER PT J AU Kugland, NL Moody, JD Kozioziemski, BJ Rubenchik, AM Niemann, C AF Kugland, N. L. Moody, J. D. Kozioziemski, B. J. Rubenchik, A. M. Niemann, C. TI Reduction in helium thermal conductivity by 1 mg/cc silica aerogel foam SO APPLIED PHYSICS LETTERS LA English DT Article AB Ultralow density 1 mg/cc aerogel foam reduces the thermal conductivity of pure helium gas by about a factor of 3 at 1 Torr and 20 K, with smaller reductions at higher temperatures and pressures. The measurements were made using the dc hot wire method over temperatures ranging between 15 and 300 K and pressures ranging from 0.05 to 100 Torr. The results are generally consistent with a simple model that accounts for a reduction in the He mean free path due to the foam. (C) 2008 American Institute of Physics. C1 [Kugland, N. L.; Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Moody, J. D.; Kozioziemski, B. J.; Rubenchik, A. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kugland, NL (reprint author), Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. EM kugland@ucla.edu NR 18 TC 4 Z9 4 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 2 PY 2008 VL 92 IS 22 AR 221913 DI 10.1063/1.293888 PG 3 WC Physics, Applied SC Physics GA 310KL UT WOS:000256527900035 ER PT J AU Martin, J Wang, H Nolas, GS AF Martin, J. Wang, H. Nolas, G. S. TI Optimization of the thermoelectric properties of Ba(8)Ga(16)Ge(30) SO APPLIED PHYSICS LETTERS LA English DT Article AB Polycrystalline Ba(8)Ga(16)Ge(30) clathrates with a systematic variation in the Ga:Ge stoichiometry were prepared to investigate the thermoelectric properties as a function of carrier concentration. Their corresponding transport properties were evaluated to identify the optimal carrier concentration for high temperature thermoelectric performance. These polycrystalline specimens demonstrate thermoelectric properties comparable to those obtained in single-crystal Ba(8)Ga(16)Ge(30), confirming that polycrystalline clathrates can be optimized for high temperature thermoelectric applications. (C) 2008 American Institute of Physics. C1 [Martin, J.; Nolas, G. S.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Wang, H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Martin, J (reprint author), Univ S Florida, Dept Phys, Tampa, FL 33620 USA. EM gnolas@cas.usf.edu RI Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 NR 14 TC 54 Z9 54 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 2 PY 2008 VL 92 IS 22 AR 222110 DI 10.1063/1.2939438 PG 3 WC Physics, Applied SC Physics GA 310KL UT WOS:000256527900045 ER PT J AU Polvino, SM Murray, CE Kalenci, O Noyan, IC Lai, B Cai, ZG AF Polvino, Sean M. Murray, Conal E. Kalenci, Oezgur Noyan, I. C. Lai, Barry Cai, Zhoghou TI Synchrotron microbeam x-ray radiation damage in semiconductor layers SO APPLIED PHYSICS LETTERS LA English DT Article ID CREATION; FILMS AB Radiation induced structural damage is observed in silicon-on-insulator (SOI) and SiGe on SOI samples illuminated with monochromatic (11.2 keV) x-ray microbeams approximately 250 nm in diameter. The x-ray diffraction peaks from the irradiated layers irreversibly degrade with time, indicating permanent structural damage to the crystal lattice. The size of the damaged regions is almost an order of magnitude larger than the beam size. The magnitude of damage decreases as one moves away from the center of the illuminated volume. We discuss the threshold dosage required for damage initiation and possible mechanisms for the observed damage. (c) 2008 American Institute of Physics. C1 [Polvino, Sean M.; Kalenci, Oezgur; Noyan, I. C.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Murray, Conal E.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Lai, Barry; Cai, Zhoghou] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Polvino, SM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM icn2@columbia.edu NR 17 TC 11 Z9 11 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 2 PY 2008 VL 92 IS 22 AR 224105 DI 10.1063/1.2942380 PG 3 WC Physics, Applied SC Physics GA 310KL UT WOS:000256527900115 ER PT J AU Rack, PD Guan, Y Fowlkes, JD Melechko, AV Simpson, ML AF Rack, Philip D. Guan, Yingfeng Fowlkes, Jason D. Melechko, Anatoli V. Simpson, Michael L. TI Pulsed laser dewetting of patterned thin metal films: A means of directed assembly SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON AB Thin nickel films were patterned into various shapes and treated with a series of laser pulses. The edges and vertices of the patterned shapes act as programable instabilities, which enable directed assembly via dewetting when the laser energy density is above the melting threshold. The pattern formations were monitored as a function of laser pulse and the retraction process was attributed liquid dewetting and a subsequent resolidification. The calculated retraction velocity (83 m/s) and liquid lifetime (12.3 ns) were consistent with the measured nickel retraction distances. The vertices of the shapes had an initially larger retraction velocity which was attributed to an additional in-plane curvature. (C) 2008 American Institute of Physics. C1 [Rack, Philip D.; Guan, Yingfeng; Simpson, Michael L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Rack, Philip D.; Fowlkes, Jason D.; Melechko, Anatoli V.; Simpson, Michael L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM prack@utk.edu RI Melechko, Anatoli/B-8820-2008; Simpson, Michael/A-8410-2011; OI Simpson, Michael/0000-0002-3933-3457; Rack, Philip/0000-0002-9964-3254 NR 14 TC 41 Z9 41 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 2 PY 2008 VL 92 IS 22 AR 223108 DI 10.1063/1.2939436 PG 3 WC Physics, Applied SC Physics GA 310KL UT WOS:000256527900076 ER PT J AU Song, JW Kabir, NA Kawano, Y Ishibashi, K Aizin, GR Mourokh, L Reno, JL Markelz, AG Bird, JP AF Song, J. W. Kabir, N. A. Kawano, Y. Ishibashi, K. Aizin, G. R. Mourokh, L. Reno, J. L. Markelz, A. G. Bird, J. P. TI Terahertz response of quantum point contacts SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD-EFFECT TRANSISTORS; RESONANT DETECTION; PLASMA-WAVES; RADIATION; TRANSPORT; SUBTERAHERTZ; DETECTOR; DEVICES AB We measure a clear terahertz response in the low-temperature conductance of a quantum point contact at 1.4 and 2.5 THz. We show that this photoresponse does not arise from a heating effect, but that it is instead excellently described by a classical model of terahertz-induced gate-voltage rectification. This effect is distinct from the rectification mechanisms that have been studied previously, being determined by the phase-dependent interference of the source drain and gate voltage modulations induced by the terahertz field. (C) 2008 American Institute of Physics. C1 [Song, J. W.; Kabir, N. A.; Bird, J. P.] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. [Kawano, Y.; Ishibashi, K.] RIKEN, Inst Phys & Chem Res, Adv Device Lab, Wako, Saitama 3510198, Japan. [Aizin, G. R.] CUNY, Kingsborough Coll, Dept Phys Sci, Brooklyn, NY 11235 USA. [Mourokh, L.] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA. [Reno, J. L.] Sandia Natl Labs, Nanostruct & Semicond Phys Dept, Albuquerque, NM 87185 USA. [Markelz, A. G.] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. RP Bird, JP (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. EM jbird@buffalo.edu RI Bird, Jonathan/G-4068-2010; Ishibashi, Koji/G-7065-2012; OI Bird, Jonathan/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319 NR 21 TC 17 Z9 18 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 2 PY 2008 VL 92 IS 22 AR 223115 DI 10.1063/1.2938416 PG 3 WC Physics, Applied SC Physics GA 310KL UT WOS:000256527900083 ER PT J AU Skanthakumar, S Antonio, MR Soderholm, L AF Skanthakumar, S. Antonio, Mark R. Soderholm, L. TI A comparison of neptunyl(V) and neptunyl(VI) solution coordination: The stability of cation-cation interactions SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-SCATTERING; AQUEOUS PERCHLORATE SOLUTIONS; PENTAVALENT ACTINIDES; CRYSTAL-STRUCTURES; AQUA ION; COMPLEXES; NPO2+; NEPTUNIUM(V); UO22+; NP(V)-CR(III) AB The solution coordination environments of pentavalent and hexavalent Np are studied by high-energy X-ray scattering. Np5+ and Np6+ both exist as the neptunyl moiety coordinated with five equatorial waters at Np-0 distances of 2.46(2) and 2.37(2) A, respectively. NPO22+ also has a second coordination sphere of 6-10 waters at 4.37(3) angstrom. The NpO2+ scattering is complicated by the presence of scattering at about 4.2 angstrom that is attributed to Np-Np cation-cation interactions. The analysis of changing intensity of this peak as a function of Np concentration is used to determine a stability constant of K-eq 0.74(9) M-1 for the dimeric complex. C1 [Skanthakumar, S.; Antonio, Mark R.; Soderholm, L.] Argonne Natl Lab, Heavy Elements & Separat Sci Grp, Argonne, IL 60439 USA. RP Soderholm, L (reprint author), Argonne Natl Lab, Heavy Elements & Separat Sci Grp, 9700 S Cass Ave,CSE 200, Argonne, IL 60439 USA. EM LS@anl.gov NR 38 TC 37 Z9 38 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 2 PY 2008 VL 47 IS 11 BP 4591 EP 4595 DI 10.1021/ic702478w PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 306NL UT WOS:000256255000025 PM 18454516 ER PT J AU Khanra, S Kuepper, K Weyhermuller, T Prinz, M Raekers, M Voget, S Postnikov, AV de Groot, FMF George, SJ Coldea, M Neumann, M Chaudhuri, P AF Khanra, Sumit Kuepper, Karsten Weyhermueller, Thomas Prinz, Manuel Raekers, Michael Voget, Sebastian Postnikov, Andrei V. de Groot, Frank M. F. George, Simon J. Coldea, Marin Neumann, Manfred Chaudhuri, Phalguni TI Star-shaped molecule of (Mn4O6)-O-II core with an S-t=10 high-spin state. A theoretical and experimental study with XPS, XMCD, and other magnetic methods SO INORGANIC CHEMISTRY LA English DT Article ID ELECTRONIC-STRUCTURE; CIRCULAR-DICHROISM; MAGNETOSTRUCTURAL CORRELATIONS; NICKEL(II) COMPLEXES; IRON(III) COMPLEX; OXIDATION-STATES; METAL-COMPLEXES; BRIDGE ANGLE; SCHIFF-BASE; LIGAND AB We report a comprehensive study of the electronic and magnetic properties of a star-shaped molecule comprising a (Mn4O6)-O-II core. One feature of this compound is weak magnetic coupling constants compared to other similar polyoxo compounds. This leads to complicated low-lying magnetic states in which the ground state is not well separated from the upper-lying states, yielding a high-spin molecule with a giant magnetic moment of up to 20 mu(B)/formula unit. We apply X-ray diffraction and magnetometry as well as other X-ray spectroscopic techniques, namely, X-ray photoelectron spectroscopy, X-ray magnetic circular dichroism, and X-ray emission spectroscopy. We compare our experimental results with ab initio electronic band structure calculations as well as the localized electronic structure around the Mn2+ ions with charge-transfer multiplet calculations. C1 [Prinz, Manuel; Raekers, Michael; Voget, Sebastian; Neumann, Manfred] Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany. [Khanra, Sumit; Weyhermueller, Thomas; Chaudhuri, Phalguni] Max Planck Inst Bioanorgan Chem, D-45470 Mulheim, Germany. [Kuepper, Karsten] Inst Ion Beam Phys & Mat Res, Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Postnikov, Andrei V.] Paul Verlaine Univ, Inst Phys Elect & Chim, Lab Phys Milieux Denses, F-57078 Metz, France. [de Groot, Frank M. F.] Univ Utrecht, Dept Inorgan Chem & Catalysis, NL-3584 CA Utrecht, Netherlands. [George, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Biol & Environm Xray Facil, Berkeley, CA 94720 USA. [Coldea, Marin] Univ Babes Bolyai, Fac Phys, R-3400 Cluj Napoca, Romania. RP Neumann, M (reprint author), Univ Osnabruck, Dept Phys, Barbarastr 7, D-49069 Osnabruck, Germany. EM mneumann@uos.de; chaudh@mpi-muelheim.mpg.de RI Weyhermuller, Thomas/G-6730-2012; de Groot, Frank/A-1918-2009; Institute (DINS), Debye/G-7730-2014; Kupper, Karsten/G-1397-2016 OI Weyhermuller, Thomas/0000-0002-0399-7999; NR 81 TC 30 Z9 30 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUN 2 PY 2008 VL 47 IS 11 BP 4605 EP 4617 DI 10.1021/ic7023007 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 306NL UT WOS:000256255000027 PM 18459725 ER PT J AU Nelson, AGD Bray, TH Zhan, W Haire, RG Sayler, TS Albrecht-Schmitt, TE AF Nelson, Anna-Gay D. Bray, Travis H. Zhan, Wei Haire, Richard G. Sayler, Todd S. Albrecht-Schmitt, Thomas E. TI Further examples of the failure of surrogates to properly model the structural and hydrothermal chemistry of transuranium elements: Insights provided by uranium and neptunium diphosphonates SO INORGANIC CHEMISTRY LA English DT Article ID BOND-VALENCE PARAMETERS; TETRAVALENT ACTINIDE PHOSPHATES; LAYERED LEAD(II) DIPHOSPHONATES; METAL PHOSPHONATE CHEMISTRY; POWDER DIFFRACTION DATA; CRYSTAL-STRUCTURES; SOLID-SOLUTIONS; URANYL PHENYLPHOSPHONATE; CATALYZED TRANSFORMATION; COORDINATION POLYMERS AB In situ hydrothermal reduction of Np(VI) to Np(IV) in the presence of methylenediphosphonic acid (C1P2) results in the crystallization of Np[CH2(PO3)(2)](H2O)(2) (NpC1P2-1). Similar reactions have been explored with U(VI) resulting in the isolation of the U(IV) diphosphonate U[CH2(PO3)(2)](H2O) (UC1P2-1), and the two U(VI) diphosphonates (UO2)(2)[CH2(PO3)(2)](H2O)(3) center dot H2O (UC1P2-2) and UO2[CH2(PO3H)(2)](H2O) (UC1P2-3). Single crystal diffraction studies of NpC1P2-1 reveal that it consists of eight-coordinate Np(IV) bound by diphosphonate anions and two coordinating. water molecules to create a polar three-dimensional framework structure wherein the water molecules reside in channels. The structure of UC1P2-1 is similar to that of NpC1P2-1 in that it also adopts a three-dimensional structure. However, the U(IV) centers are seven-coordinate with only a single bound water molecule. UC1P2-2 and UC1P2-3 both contain U(VI), Nevertheless, their structures are quite distinct with UC1P2-2 being composed of corrugated layers containing UO6 and UO7 units bridged by C1P2; whereas, UC1P2-3 is found as a polar three-dimensional network structure containing only pentagonal bipyramidal U(VI), Fluorescence measurements on UC1P2-2 and UC1P2-3 exhibit emission from the uranyl moieties with classical vibronic fine-structure. C1 [Nelson, Anna-Gay D.; Bray, Travis H.; Zhan, Wei; Sayler, Todd S.; Albrecht-Schmitt, Thomas E.] Auburn Univ, Dept Chem & Biochem, Auburn, AL 36849 USA. [Nelson, Anna-Gay D.; Bray, Travis H.; Zhan, Wei; Sayler, Todd S.; Albrecht-Schmitt, Thomas E.] Auburn Univ, Ctr Actinide Sci, Auburn, AL 36849 USA. [Haire, Richard G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Albrecht-Schmitt, TE (reprint author), Auburn Univ, Dept Chem & Biochem, Auburn, AL 36849 USA. EM albreth@auburn.edu NR 68 TC 34 Z9 34 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 2 PY 2008 VL 47 IS 11 BP 4945 EP 4951 DI 10.1021/ic800255h PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 306NL UT WOS:000256255000065 PM 18452285 ER PT J AU Klaehn, JR Peterman, DR Harrup, MK Tillotson, RD Luther, TA Law, JD Daniels, LM AF Klaehn, John R. Peterman, Dean R. Harrup, Mason K. Tillotson, Richard D. Luther, Thomas A. Law, Jack D. Daniels, Lee M. TI Synthesis of symmetric dithiophosphinic acids for "minor actinide" extraction SO INORGANICA CHIMICA ACTA LA English DT Article DE synthesis; characterization; dithiophosphinic acid; actinide extractant; X-ray crystal structure ID SECONDARY PHOSPHINE OXIDES; METAL-COMPLEXES; ORGANOPHOSPHORUS COMPOUNDS; TRIVALENT ACTINIDES; TAUTOMERIC EQUILIBRIUM; SOLVENT-EXTRACTION; NUCLEAR-FUEL; F-ELEMENTS; SEPARATION; LANTHANIDES AB New aromatic dithiophosphinic acid (R(2)PS(2)H; DPAH) derivatives were isolated using a synthetic pathway based on nucleophilic addition at phosphorus, which leads to regiospecific aromatic substituents on phosphorus. The synthesis improves DPAH designs that can provide insight into the differences in binding/chelation between DPAH and trivalent actinides/lanthanides. The synthesis gives good yields via isolation of the DPAH as the ammonium salt. Multinuclear NMR spectroscopy and X-ray structure determination are used for the identification of both the ammonium salt and free acid of the dithiophosphinic derivatives. The DPAH products are stable when exposed to the ambient atmospheric conditions for long periods. For instance, the bis(o-trifluoromethylphenyl) DPAH derivative showed very little degradation when contacted with water and nitric acid for prolonged periods. Furthermore, this derivative selectively extracts a trivalent actinide from a lanthanide with separation factors of similar to 100000 at low pH. Overall, these DPAH derivatives are exciting new compounds for potential application in actinide and lanthanide separations technologies. Published by Elsevier B.V. C1 [Klaehn, John R.; Peterman, Dean R.; Harrup, Mason K.; Tillotson, Richard D.; Luther, Thomas A.; Law, Jack D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Daniels, Lee M.] Rigaku Amer Corp, The Woodlands, TX 77381 USA. RP Klaehn, JR (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM John.Klaehn@inl.gov RI Klaehn, John/C-6011-2017; OI Klaehn, John/0000-0002-7077-4509; Law, Jack/0000-0001-7085-7542 NR 71 TC 43 Z9 45 U1 2 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD JUN 2 PY 2008 VL 361 IS 8 BP 2522 EP 2532 DI 10.1016/j.ica.2008.01.007 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 304EU UT WOS:000256093600041 ER PT J AU Gibbons, J Holm, DD Tronci, C AF Gibbons, John Holm, Darryl D. Tronci, Cesare TI Geometry of Vlasov kinetic moments: A bosonic Fock space for the symmetric Schouten bracket SO PHYSICS LETTERS A LA English DT Article ID POISSON BRACKETS; BEAM DYNAMICS; LONG WAVES; EQUATIONS; INVARIANTS; SYSTEMS; FIELDS; FORM AB The dynamics of Vlasov kinetic moments is shown to be Lie-Poisson on the dual Lie algebra of symmetric contravariant tensor fields. The corresponding Lie bracket is identified with the symmetric Schouten bracket and the moment Lie algebra is related with a bundle of bosonic Fock spaces, where creation and annihilation operators are used to construct the cold plasma closure. Kinetic moments are also shown to define a momentum map, which is infinitesimally equivariant. This momentum map is the dual of a Lie algebra homomorphism, defined through the Schouten bracket. Finally the moment Lie-Poisson bracket is extended to anisotropic interactions. (C) 2008 Elsevier B.V. All rights reserved. C1 [Gibbons, John; Holm, Darryl D.; Tronci, Cesare] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Tronci, Cesare] TERA Fdn Oncol Hadrontherapy, I-28100 Novara, Italy. RP Tronci, C (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Math, Huxley Bldg, London SW7 2AZ, England. EM cesare.tronci@imperial.ac.uk RI Tronci, Cesare/B-7542-2016; OI Tronci, Cesare/0000-0002-8868-8027; Holm, Darryl D/0000-0001-6362-9912 NR 58 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUN 2 PY 2008 VL 372 IS 23 BP 4184 EP 4196 DI 10.1016/j.physleta.2008.03.034 PG 13 WC Physics, Multidisciplinary SC Physics GA 311AK UT WOS:000256572100009 ER PT J AU Los, GV Encell, LP McDougall, MG Hartzell, DD Karassina, N Zimprich, C Wood, MG Learish, R Ohane, RF Urh, M Simpson, D Mendez, J Zimmerman, K Otto, P Vidugiris, G Zhu, J Darzins, A Klaubert, DH Bulleit, RF Wood, KV AF Los, Georgyi V. Encell, Lance P. McDougall, Mark G. Hartzell, Danette D. Karassina, Natasha Zimprich, Chad Wood, Monika G. Learish, Randy Ohane, Rachel Friedman Urh, Marjeta Simpson, Dan Mendez, Jacqui Zimmerman, Kris Otto, Paul Vidugiris, Gediminas Zhu, Ji Darzins, Aldis Klaubert, Dieter H. Bulleit, Robert F. Wood, Keith V. TI HatoTag: A novel protein labeling technology for cell imaging and protein analysis SO ACS CHEMICAL BIOLOGY LA English DT Article ID NF-KAPPA-B; SINGLE LIVING CELLS; FUSION PROTEINS; IN-VIVO; HALOALKANE DEHALOGENASES; NUCLEAR TRANSLOCATION; SMALL MOLECULES; FLUORESCENCE; BINDING; TRANSCRIPTION AB We have designed a modular protein tagging system that allows different functionalities to be linked onto a single genetic fusion, either in solution, in living cells, or in chemically fixed cells. The protein tag (HaloTag) is a modified haloalkane dehalogenase designed to covalently bind to synthetic ligands (HaloTag ligands). The synthetic ligands comprise a chloroalkane linker attached to a variety of useful molecules, such as fluorescent dyes, affinity handles, or solid surfaces. Covalent bond formation between the protein tag and the chloroalkane linker is highly specific, occurs rapidly under physiological conditions, and is essentially irreversible. We demonstrate the utility of this system for cellular imaging and protein immobilization by analyzing multiple molecular processes associated with NF-kappa B-mediated cellular physiology, including imaging of subcellular protein translocation and capture of protein-protein and protein-DNA complexes. C1 [Los, Georgyi V.; Encell, Lance P.; Hartzell, Danette D.; Karassina, Natasha; Zimprich, Chad; Wood, Monika G.; Learish, Randy; Ohane, Rachel Friedman; Urh, Marjeta; Simpson, Dan; Mendez, Jacqui; Zimmerman, Kris; Otto, Paul; Vidugiris, Gediminas; Darzins, Aldis; Bulleit, Robert F.; Wood, Keith V.] Promega Corp, Madison, WI 53711 USA. [McDougall, Mark G.; Zhu, Ji; Klaubert, Dieter H.] Promega Biosci Inc, San Luis Obispo, CA 93401 USA. [Darzins, Aldis] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Los, GV (reprint author), Promega Corp, 2800 Woods Hollow Rd, Madison, WI 53711 USA. EM georgyi.los@promega.com NR 33 TC 482 Z9 491 U1 26 U2 134 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD JUN PY 2008 VL 3 IS 6 BP 373 EP 382 DI 10.1021/cb800025k PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 316RV UT WOS:000256968300009 PM 18533659 ER PT J AU Sayle, DC Seal, S Wang, Z Mangili, BC Price, DW Karakoti, AS Kuchibhatla, SVTN Hao, Q Mobus, G Xu, X Sayle, TXT AF Sayle, Dean C. Seal, Sudipta Wang, Zhongwu Mangili, Benoit C. Price, David W. Karakoti, Ajay S. Kuchibhatla, Satyanarayana V. T. N. Hao, Quan Mobus, Gunter Xu, Xiaojing Sayle, Thi X. T. TI Mapping nanostructure: A systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions SO ACS NANO LA English DT Article DE molecular dynamics; nanobuilding blocks; crystallography; mesostructure; oxide; atomistic model; nanostructure; X-ray diffraction; electron microscopy ID TRANSMISSION ELECTRON-MICROSCOPY; MESOPOROUS MAGNESIUM-OXIDE; NANOPARTICLE SUPERLATTICES; CMK-3 CARBON; THIN-FILMS; NANOCRYSTALS; CRYSTALLIZATION; SIMULATION; DESIGN; MESOSTRUCTURES AB Nanomaterials synthesized from nanobuilding blocks promise size-dependent properties, associated with individual nanoparticles, together with collective properties of ordered arrays. However, one cannot position nanoparticles at specific locations; rather innovative ways of coaxing these particles to self-assemble must be devised. Conversely, model nanoparticles can be placed in any desired position, which enables a systematic enumeration of ramostructure from model nanobuilding blocks. This is desirable because a list of chemically feasible hypothetical structures will help guide the design of strategies leading to their synthesis. Moreover, the models can help characterize nanostructure, calculate (predict) properties, or simulate processes. Here, we start to formulate and use a simulation strategy to generate atomistic models of nanomaterials, which can, potentially, be synthesized from nanobuilding block precursors. Clearly, this represents a formidable task because the number of ways nanoparticles can be arranged into a superlattice is infinite. Nevertheless, numerical tools are available to help build nanoparticle arrays in a systematic way. Here, we exploit the "rules of crystallography" and position nanoparticles, rather than atoms, at crystallographic sites. Specifically, we explore nanoparticle arrays with cubic, tetragonal, and hexagonal symmetries together with primitive, face centered cubic and body centered cubic nanoparticle "packing". We also explore binary nanoparticle superlattices. The resulting nanomaterials, spanning CeO2, Ti-doped CeO2, ZnO, ZnS, MgO, CaO, SrO, and BaO, comprise framework architectures, with cavities interconnected by channels traversing (zero), one, two and three dimensions. The final, fully atomistic models comprise three hierarchical levels of structural complexity: crystal structure, microstructure (i.e., grain boundaries, dislocations), and superlattice structure. C1 [Seal, Sudipta; Karakoti, Ajay S.; Kuchibhatla, Satyanarayana V. T. N.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32862 USA. [Sayle, Dean C.; Mangili, Benoit C.; Sayle, Thi X. T.] Cranfield Univ, Dept Appl Sci, Secur & Resilience Def Coll Management & Technol, Def Acad United Kingdom, Shrivenham SN6 8LA, England. [Seal, Sudipta] Univ Cent Florida, Nanosci & Technol Ctr, Orlando, FL 32862 USA. [Wang, Zhongwu; Hao, Quan] Cornell Univ, Wilson Lab, Cornell High Energy Synchrotron Source, New York, NY 14853 USA. [Price, David W.] AWE, Mat Sci Res Div, Aldermaston RG7 4PR, England. [Karakoti, Ajay S.; Kuchibhatla, Satyanarayana V. T. N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Mobus, Gunter; Xu, Xiaojing] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. RP Sayle, DC (reprint author), Cranfield Univ, Dept Appl Sci, Secur & Resilience Def Coll Management & Technol, Def Acad United Kingdom, Shrivenham SN6 8LA, England. EM d.c.sayle@cranfield.ac.uk RI Hao, Quan/C-4304-2009; Price, David/B-5017-2013; Sayle, Dean/D-8555-2013 OI Sayle, Dean/0000-0001-7227-9010 NR 53 TC 38 Z9 38 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUN PY 2008 VL 2 IS 6 BP 1237 EP 1251 DI 10.1021/nn800065g PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 318VL UT WOS:000257120800021 PM 19206342 ER PT J AU Sknepnek, R Anderson, JA Lamm, MH Schmalian, J Travesset, A AF Sknepnek, Rastko Anderson, Joshua A. Lamm, Monica H. Schmalian, Joerg Travesset, Alex TI Nanoparticle ordering via functionalized block copolymers in solution SO ACS NANO LA English DT Article DE end-functionalized block copolymers; nanoparticle/copolymer composites; nanoparticle ordering; coarse grained model; molecular dynamics simulation ID DIBLOCK COPOLYMERS; MOLECULAR-DYNAMICS; ARRAYS; NANOSTRUCTURES; LITHOGRAPHY; COMPOSITES; MIXTURES; CRYSTALS; BEHAVIOR AB We consider nanoparticles and functionalized copolymers, block copolymers with attached end groups possessing a specific affinity for nanoparticles, in solution. Using molecular dynamics, we show that nanoparticles are able to direct the self-assembly of the polymer/nanoparticle composite. We perform a detailed study for a wide range of nanoparticle sizes and concentrations. We show that the nanoparticles order in a number of distinct phases: simple cubic, layered hexagonal, hexagonal columnar, gyroid, and a novel square columnar. Our results show that nanoparticles ordered with functionalized block copolymers can provide a simple and efficient tool for assembling novel materials with nanometer scale resolution. C1 [Sknepnek, Rastko; Anderson, Joshua A.; Schmalian, Joerg; Travesset, Alex] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lamm, Monica H.] Iowa State Univ, Dept Biol & Chem Engn, Ames, IA 50011 USA. [Lamm, Monica H.] Ames Lab, Ames, IA 50011 USA. RP Sknepnek, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM sknepnek@amesiab.gov RI Schmalian, Joerg/H-2313-2011; Anderson, Joshua/H-4262-2011; OI Sknepnek, Rastko/0000-0002-0144-9921 NR 37 TC 37 Z9 37 U1 7 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2008 VL 2 IS 6 BP 1259 EP 1265 DI 10.1021/nn8001449 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 318VL UT WOS:000257120800023 PM 19206343 ER PT J AU Blackburn, JL Barnes, TM Beard, MC Kim, YH Tenent, RC McDonald, TJ To, B Coutts, TJ Heben, MJ AF Blackburn, Jeffrey L. Barnes, Teresa M. Beard, Matthew C. Kim, Yong-Hyun Tenent, Robert C. McDonald, Timothy J. To, Bobby Coutts, Timothy J. Heben, Michael J. TI Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes SO ACS NANO LA English DT Article DE carbon nanotubes; conductivity; photovoltaic; doping; separation; thin films; optical properties; electrical properties ID TRANSISTORS; FILMS; SPECTRA; ACID AB We present a comprehensive study of the optical and electrical properties of transparent conductive films made from precisely tuned ratios of metallic and semiconducting single-wall carbon nanotubes. The conductivity and transparency of the SWNT films are controlled by an interplay between localized and delocalized carriers, as determined by the SWNT electronic structure, tube-tube junctions, and intentional and unintentional redox dopants. The results suggest that the main resistance in the SWNT thin films is the resistance associated with tube-tube junctions. Redox dopants are found to increase the delocalized carrier density and transmission probability through intertube junctions more effectively for semiconductor-enriched films than for metal-enriched films. As a result, redox-doped semiconductor-enriched films are more conductive than either intrinsic or redox-doped metal-enriched films. C1 [Blackburn, Jeffrey L.; Barnes, Teresa M.; Beard, Matthew C.; Kim, Yong-Hyun; Tenent, Robert C.; McDonald, Timothy J.; To, Bobby; Coutts, Timothy J.; Heben, Michael J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jeffrey_blackburn@nrel.gov RI Tenent, Robert/B-3711-2009; Barnes, Teresa/A-2182-2010; Kim, Yong-Hyun/C-2045-2011; Blackburn, Jeffrey/D-7344-2012 OI BEARD, MATTHEW/0000-0002-2711-1355; Kim, Yong-Hyun/0000-0003-4255-2068; NR 34 TC 191 Z9 193 U1 3 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2008 VL 2 IS 6 BP 1266 EP 1274 DI 10.1021/nn800200d PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 318VL UT WOS:000257120800024 PM 19206344 ER PT J AU Merritt, EA Holmes, M Buckner, FS Van Voorhis, WC Quartly, E Phizicky, EM Lauricella, A Luft, J DeTitta, G Neely, H Zucker, F Hol, WGJ AF Merritt, Ethan A. Holmes, Margaret Buckner, Frederick S. Van Voorhis, Wesley C. Quartly, Erin Phizicky, Eric M. Lauricella, Angela Luft, Joseph DeTitta, George Neely, Helen Zucker, Frank Hol, Wim G. J. TI Structure of a Trypanosoma brucei alpha/beta-hydrolase fold protein with unknown function SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CRYSTALLIZATION AB The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 angstrom using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the alpha/beta-hydrolase fold family. Structural superposition onto representative alpha/beta-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands beta 6 and beta 7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family. C1 [Merritt, Ethan A.; Holmes, Margaret; Neely, Helen; Zucker, Frank; Hol, Wim G. J.] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Buckner, Frederick S.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA 98195 USA. [Quartly, Erin; Phizicky, Eric M.] Univ Rochester, Sch Med, Dept Biochem & Biophys, Rochester, NY 14642 USA. [Lauricella, Angela; Luft, Joseph; DeTitta, George] Hauptman Woodward Inst, Buffalo, NY 14203 USA. Stanford Synchrotron Radiat Lab, Stanford, CA USA. EM merritt@u.washington.edu FU NIAID NIH HHS [P01 AI067921, AI067921]; NIGMS NIH HHS [GM64655, P50 GM064655] NR 18 TC 3 Z9 3 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JUN PY 2008 VL 64 BP 474 EP 478 DI 10.1107/S174430910801141X PN 6 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 307CI UT WOS:000256295000007 PM 18540054 ER PT J AU Jung, NY Bae, WJ Chang, JH Kim, YC Cho, Y AF Jung, Nam Young Bae, Won Jin Chang, Jeong Ho Kim, Young Chang Cho, Yunje TI Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the central zinc-binding domain of the human Mcm10 DNA-replication factor SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID POLYMERASE ALPHA-PRIMASE; SACCHAROMYCES-CEREVISIAE; CHROMATIN ASSOCIATION; CATALYTIC SUBUNIT; CHROMOSOMAL DNA; FISSION YEAST; BUDDING YEAST; CDC23 MCM10; COMPLEX; ORIGINS AB The initiation of eukaryotic DNA replication requires the tightly controlled assembly of a set of replication factors. Mcm10 is a highly conserved nuclear protein that plays a key role in the initiation and elongation processes of DNA replication by providing a physical link between the Mcm2-7 complex and DNA polymerases. The central domain, which contains the CCCH zinc-binding motif, is most conserved within Mcm10 and binds to DNA and several proteins, including proliferative cell nuclear antigen. In this study, the central domain of human Mcm10 was crystallized using the hanging-drop vapour-diffusion method in the presence of PEG 3350. An X-ray diffraction data set was collected to a resolution of 2.6 angstrom on a synchrotron beamline. The crystals formed belonged to space group R3, with unit-cell parameters a = b = 99.5, c = 133.0 angstrom. According to Matthews coefficient calculations, the crystals were predicted to contain six MCM10 central domain molecules in the asymmetric unit. C1 [Jung, Nam Young; Bae, Won Jin; Chang, Jeong Ho; Cho, Yunje] Pohang Univ Sci & Technol, Dept Life Sci, Pohang, Kyungbook, South Korea. [Kim, Young Chang] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. RP Cho, Y (reprint author), Pohang Univ Sci & Technol, Dept Life Sci, San 31, Pohang, Kyungbook, South Korea. EM yunje@postech.ac.kr NR 21 TC 1 Z9 2 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JUN PY 2008 VL 64 BP 495 EP 497 DI 10.1107/S1744309108011640 PN 6 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 307CI UT WOS:000256295000011 PM 18540058 ER PT J AU Weiss, KL Meilleur, F Blakeley, MP Myles, DAA AF Weiss, K. L. Meilleur, F. Blakeley, M. P. Myles, D. A. A. TI Preliminary neutron crystallographic analysis of selectively CH3-protonated deuterated rubredoxin from Pyrococcus furiosus SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID SOFTWARE SUITE; PROTEIN; THERMOSTABILITY; STABILITY; DYNAMICS AB Neutron crystallography is used to locate H atoms in biological materials and can distinguish between negatively scattering hydrogen-substituted and positively scattering deuterium-substituted positions in isomorphous neutron structures. Recently, Hauptman & Langs ( 2003; Acta Cryst. A59, 250-254) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering H atoms in the structure. Selective-labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of H to D atoms can be precisely controlled. Methyl selective-labeling protocols were applied to introduce (H-1-delta methyl)-leucine and (H-1-gamma methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here, the production, crystallization and preliminary neutron analysis of a selectively CH3-protonated deuterated PfRd sample, which provided a high-quality neutron data set that extended to 1.75 angstrom resolution using the new LADI-III instrument at the Institut Laue-Langevin, are reported. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of H atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure. C1 [Weiss, K. L.; Myles, D. A. A.] Oak Ridge Natl Lab, Div Chem Sci, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [Meilleur, F.] N Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA. [Meilleur, F.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Blakeley, M. P.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. RP Myles, DAA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Ctr Struct Mol Biol, POB 2008, Oak Ridge, TN 37831 USA. EM mylesda@ornl.gov RI Weiss, Kevin/I-4669-2013; myles, dean/D-5860-2016; Blakeley, Matthew/G-7984-2015 OI Weiss, Kevin/0000-0002-6486-8007; myles, dean/0000-0002-7693-4964; Blakeley, Matthew/0000-0002-6412-4358 NR 18 TC 16 Z9 16 U1 0 U2 4 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JUN PY 2008 VL 64 BP 537 EP 540 DI 10.1107/S1744309108013997 PN 6 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 307CI UT WOS:000256295000022 PM 18540070 ER PT J AU Podzelinska, K He, SM Soares, AX Zechel, D Hove-Jensen, B Jia, ZC AF Podzelinska, Kateryna He, Shumei Soares, Alexei Zechel, David Hove-Jensen, Bjarne Jia, Zongchao TI Expression, purification and preliminary diffraction studies of PhnP SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID ESCHERICHIA-COLI; PHOSPHONATE DEGRADATION; IDENTIFICATION; OPERON AB PhnP belongs to a 14-gene operon that supports the growth of Escherichia coli on alkylphosphonates as a sole source of phosphorus; however, the exact biochemistry of phosphonate degradation by this pathway is poorly understood. The protein was recombinantly expressed in Escherichia coli and purified to homogeneity. Sitting-drop vapour diffusion in combination with microseeding was used to obtain crystals that were suitable for X-ray diffraction. Data were collected to 1.3 angstrom and the crystals belonged to space group C2, with unit-cell parameters a = 111.65, b = 75.41, c = 83.23 angstrom, alpha = gamma = 90, beta = 126.3 degrees. C1 [Podzelinska, Kateryna; Jia, Zongchao] Queens Univ, Dept Biochem, Kingston, ON K7L 3N6, Canada. [He, Shumei; Zechel, David] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada. [Soares, Alexei] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Hove-Jensen, Bjarne] Univ Copenhagen, Dept Mol Biol, Copenhagen, Denmark. RP Jia, ZC (reprint author), Queens Univ, Dept Biochem, Kingston, ON K7L 3N6, Canada. EM jia@queensu.ca RI Soares, Alexei/F-4800-2014 OI Soares, Alexei/0000-0002-6565-8503 NR 14 TC 5 Z9 5 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JUN PY 2008 VL 64 BP 554 EP 557 DI 10.1107/S1744309108014656 PN 6 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 307CI UT WOS:000256295000026 PM 18540074 ER PT J AU Kawasaki, M Beyerlein, IJ Vogel, SC Langdon, TG AF Kawasaki, Megumi Beyerlein, Irene J. Vogel, Sven C. Langdon, Terence G. TI Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing SO ACTA MATERIALIA LA English DT Article DE aluminum; creep; equal-channel angular pressing; texture; severe plastic deformation ID SEVERE PLASTIC-DEFORMATION; ULTRAFINE-GRAINED CU; MICROSTRUCTURAL EVOLUTION; NEUTRON-DIFFRACTION; MG ALLOY; ROUTE-C; EXTRUSION; REFINEMENT; ECAP; BOUNDARIES AB High-purity aluminum was processed by equal-channel angular pressing (ECAP) and then tested under creep conditions at 473 K. The results show conventional power-law creep with a stress exponent of n = 5 which is consistent with an intragranular dislocation process involving the glide and climb of dislocations. It is demonstrated that diffusion creep is not important in these tests because the ultrafine grains produced by ECAP are not stable at this temperature. Texture measurements were undertaken using the high-pressure preferred orientation neutron time-of-flight diffractometer and they reveal significant differences in the evolution of texture during creep in pressed and unpressed specimens. These experimental measurements of texture are in excellent agreement with theoretical textures predicted using a visco-plastic self-consistent model that limits deformation to plastic slip. The calculations provide additional confirmation that creep occurs through an intragranular dislocation process. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Kawasaki, Megumi] Univ So Calif, Dept Aerosp & Mech Engn & Mat Sci, Los Angeles, CA 90089 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Langdon, Terence G.] Univ Southampton, Sch Engn Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England. RP Kawasaki, M (reprint author), Univ So Calif, Dept Aerosp & Mech Engn & Mat Sci, Los Angeles, CA 90089 USA. EM mkawasak@use.edu RI Langdon, Terence/B-1487-2008; Kawasaki, Megumi/A-1872-2010; Lujan Center, LANL/G-4896-2012; Beyerlein, Irene/A-4676-2011; OI Kawasaki, Megumi/0000-0003-0028-3007; Vogel, Sven C./0000-0003-2049-0361 NR 54 TC 31 Z9 31 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUN PY 2008 VL 56 IS 10 BP 2307 EP 2317 DI 10.1016/j.actamat.2008.01.023 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 316HI UT WOS:000256939800015 ER PT J AU Marian, J Knap, J Campbell, GH AF Marian, J. Knap, J. Campbell, G. H. TI A Quasicontinuum study of nanovoid collapse under uniaxial loading in Ta SO ACTA MATERIALIA LA English DT Article ID SINGLE-CRYSTAL COPPER; EMBEDDED-ATOM METHOD; MOLECULAR-DYNAMICS; TRANSITION-METALS; PEIERLS STRESS; TANTALUM; DEFORMATION; TRANSFORMATION; SIMULATIONS; NUCLEATION AB The mechanisms underlying the deformation of nanovoids in Ta single crystals are analyzed when they are subjected to cyclic uniaxial deformation using numerical simulations. Boundary and cell-size effects have been mitigated by means of the Quasicontinuum (QC) method. We have considered approximate to 1 billion-atom systems containing 10.9 nm voids. Two kinds of simulations have been performed, each characterized by a different boundary condition. First, we compress the material along the nominal [001] direction, resulting in a highly symmetric configuration that results in high stresses. Second, we load the material along the high-index [(4) over bar 819] direction to confine plasticity to a single slip system and break the symmetry. We find that the plastic response under these two conditions is strikingly different, the former governed by dislocation loop emission and dipole formation, while the latter is dominated by twinning. We calculate the irreversible plastic work budget derived from a loading-unloading cycle and identify the most relevant yield points. These calculations represent the first fully three-dimensional, fully non-local simulations of any body-centered cubic metal using QC. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Marian, J.; Knap, J.; Campbell, G. H.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94551 USA. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94551 USA. EM marianl@llnl.gov RI Campbell, Geoffrey/F-7681-2010 NR 54 TC 25 Z9 25 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUN PY 2008 VL 56 IS 10 BP 2389 EP 2399 DI 10.1016/j.actamat.2008.01.050 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 316HI UT WOS:000256939800023 ER PT J AU Clausen, B Tome, CN Brown, DW Agnew, SR AF Clausen, B. Tome, C. N. Brown, D. W. Agnew, S. R. TI Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg SO ACTA MATERIALIA LA English DT Article DE neutron diffraction; magnesium alloys; twinning; texture; elastic-plastic self-consistent (EPSC) model ID PLASTIC-DEFORMATION; ROD TEXTURE; POLYCRYSTALS; DIFFRACTION; ZIRCALOY-2; SIMULATION; MAGNESIUM; ALLOYS AB A study of the mechanical response of Mg AZ31 when deformed under twinning dominated conditions is presented. In addition to the well-known rapid texture variation, neutron diffraction measurements reveal a 'sense-reversal' of the internal stress in the twinned grains. The latter is characterized experimentally and an elasto-plastic polycrystal model is extended in order to account for twin domain reorientation and associated stress relaxation. It is concluded that the texture variation due to twinning is sufficient to explain the observed macroscopic stress-strain response. However, the evolution of internal stresses in diffracting subsets of grains is complex and more challenging to explain. It seems to be strongly controlled by the order in which slip and twinning are activated, the stress relaxation associated with twin propagation, and neighbor constraint effects. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Clausen, B.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. [Tome, C. N.; Brown, D. W.] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. [Agnew, S. R.] Univ Virginia, Charlottesville, VA 22904 USA. RP Clausen, B (reprint author), Los Alamos Natl Lab, LANSCE LC, POB 1663, Los Alamos, NM 87545 USA. EM clausen@lanl.gov RI Tome, Carlos/D-5058-2013; Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X NR 26 TC 223 Z9 226 U1 1 U2 62 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUN PY 2008 VL 56 IS 11 BP 2456 EP 2468 DI 10.1016/j.actamat.2008.01.057 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 322IG UT WOS:000257367800005 ER PT J AU Clarke, AJ Field, RD McCabe, RJ Cady, CM Hackenberg, RE Thoma, DJ AF Clarke, A. J. Field, R. D. McCabe, R. J. Cady, C. M. Hackenberg, R. E. Thoma, D. J. TI EBSD and FIB/TEM examination of shape memory effect deformation structures in U-14 at.% Nb SO ACTA MATERIALIA LA English DT Article DE shape memory effect (SME); electron backscatter diffraction (EBSD); transmission electron microscopy (TEM); deformation structure; twinning ID ELECTRON BACKSCATTER DIFFRACTION; INDUCED MARTENSITIC-TRANSFORMATION; FE-NI BICRYSTALS; GRAIN-BOUNDARY; ALPHA-URANIUM; ALLOY; NIOBIUM; MICROSTRUCTURE; CRYSTALLOGRAPHY; MECHANISMS AB Detailed examinations of shape memory effect (SME) deformation structures in martensite of U-14 at.% Nb were performed with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). An accommodation strain analysis, which has been previously used to predict SME deformation structures and texture evolution in polycrystalline material, was also performed. Martensite variants and twin relationships observed with EBSD after compressive or tensile deformation were determined to be consistent with those expected from calculated accommodation strains. Focused ion beam (FIB) was used to select twinned regions identified with EBSD for more detailed TEM analysis to verify the presence of these specific twins. The observed SME twinning systems in the martensite agree with previous TEM observations and the predicted {(1) over bar 76} twinning system was observed experimentally for the first time in U-14 at.% Nb using these complementary techniques. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Clarke, A. J.; Field, R. D.; McCabe, R. J.; Cady, C. M.; Hackenberg, R. E.; Thoma, D. J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Clarke, AJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mail Stop G770, Los Alamos, NM 87545 USA. EM aclarke@lanl.gov OI Hackenberg, Robert/0000-0002-0380-5723; McCabe, Rodney /0000-0002-6684-7410 NR 32 TC 14 Z9 15 U1 2 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUN PY 2008 VL 56 IS 11 BP 2638 EP 2648 DI 10.1016/j.actamat.2008.02.008 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 322IG UT WOS:000257367800025 ER PT J AU Wang, ZL Liang, JG Tang, DW Zhu, YT AF Wang Zhao-Liang Liang Jin-Guo Tang Da-Wei Zhu, Y. T. TI Experimental and theoretical study of the length-dependent thermal conductivity of individual single-walled carbon nanotubes SO ACTA PHYSICA SINICA LA Chinese DT Article DE 3 omega method; single-walled carbon nanotube; thermal conductivity; second order-3-phonon process ID MOLECULAR-DYNAMICS; CONDUCTANCE; HEAT AB We report measurements on the length-dependent thermal conductivity of individual single-walled carbon nanotubes (SWNTs) on a substrate using a four-pad 3 omega method with the consideration of heat loss between the sample and substrate. An increase in thermal conductivity with length (0.5-7 mu m) was observed at room temperature. The length-dependence of thermal conductivity was theoretically predicted by the modified WV model with consideration of second order -3-phonon process. The predicted phonon mean free path is about 175 nm. Both the measurement and the prediction show the scale effect of the length on the thermal conductivity of SWNTs. C1 [Tang Da-Wei] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100080, Peoples R China. [Wang Zhao-Liang; Liang Jin-Guo] Petr Univ China Huadong, Inst Storage & Transportat, Dongying 257061, Peoples R China. [Zhu, Y. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tang, DW (reprint author), Chinese Acad Sci, Inst Engn Thermophys, Beijing 100080, Peoples R China. EM dwtang@mail.etp.ac.cn NR 16 TC 11 Z9 13 U1 0 U2 4 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1000-3290 J9 ACTA PHYS SIN-CH ED JI Acta Phys. Sin. PD JUN PY 2008 VL 57 IS 6 BP 3391 EP 3396 PG 6 WC Physics, Multidisciplinary SC Physics GA 315JL UT WOS:000256874600016 ER PT J AU Santiso, EE Nardelli, MB Gubbins, KE AF Santiso, Erik E. Nardelli, Marco Buongiorno Gubbins, Keith E. TI Isomerization kinetics of small hydrocarbons in confinement SO ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY LA English DT Article DE chemical reactions; confinement; carbon; density functional theory; variational transition state theory ID EQUILIBRIUM MOLECULAR-DYNAMICS; CHEMICAL-REACTION EQUILIBRIA; CARBON MICROPORES; DENSITY; DIMERIZATION; ADSORPTION; NANOTUBES; SURFACE; SEARCH; NO AB Chemical reactions are often carried out in nano-structured materials, which can enhance reactions due to their large specific surface area, their interactions with the reacting mixture and confinement effects. In this work, we present a systematic study of the effect that the geometrical restrictions imposed by the pore walls can have on reactions that involve a three dimensional rearrangement of the atoms in a molecule. In particular, we consider the isomerization of three 4-membered hydrocarbons-n-butane, 1-butene and 1,3-butadiene confined in carbon nanopores of slit geometry. Our results illustrate the fact that, in the molecular sieving limit, the reaction rates change as the double exponential of the pore size (Santiso et al., in J. Chem. Phys., 2007a, submitted), and therefore the transition rates in nanopores can be many orders of magnitude different from the corresponding bulk values. These results can be used as a guideline for the molecular-level design of improved catalytic materials. C1 [Santiso, Erik E.; Nardelli, Marco Buongiorno; Gubbins, Keith E.] N Carolina State Univ, Dept Chem Engn, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Nardelli, Marco Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, CCS CSM, Oak Ridge, TN 37831 USA. RP Santiso, EE (reprint author), N Carolina State Univ, Dept Chem Engn, Ctr High Performance Simulat, Raleigh, NC 27695 USA. EM eesantis@unity.ncsu.edu RI Buongiorno Nardelli, Marco/C-9089-2009 NR 39 TC 4 Z9 4 U1 3 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-5607 J9 ADSORPTION JI Adsorpt.-J. Int. Adsorpt. Soc. PD JUN PY 2008 VL 14 IS 2-3 BP 181 EP 188 DI 10.1007/s10450-007-9075-8 PG 8 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 277RZ UT WOS:000254233700004 ER PT J AU Eckelmeyer, KH AF Eckelmeyer, K. H. TI Scanning Auger microprobe SO ADVANCED MATERIALS & PROCESSES LA English DT Article AB Auger electron spectroscopy involves precise measurements of the number of emitted secondary electrons as a function of kinetic energy. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Eckelmeyer, KH (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD JUN PY 2008 VL 166 IS 6 BP 45 EP 47 PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA 308GO UT WOS:000256376500044 ER PT J AU Campisi, J AF Campisi, Judith TI Aging and cancer cell biology, 2008 SO AGING CELL LA English DT Article DE apoptosis; cellular senescence; DNA damage; DNA repair; longevity; p53; telomeres; tumor suppression ID LIFE-SPAN; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; DAMAGE RESPONSE; TUMOR-GROWTH; P53; MICE; MUTATIONS; RESISTANCE; STABILITY AB There is increasing support for the idea that aging and cancer are intimately connected by the activity of specific genes and the cellular responses to potentially oncogenic insults. This Hot Topics review discusses some recently published articles that shed light on both the commonalities - and intricacies - of the cancer-aging relationship. These articles reveal the expected complexities, but also surprising conservation, in mechanisms that link cancer and aging. C1 [Campisi, Judith] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Campisi, Judith] Inst Age Res, Novato, CA 94945 USA. RP Campisi, J (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jcampisi@lbl.gov NR 28 TC 36 Z9 36 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1474-9718 J9 AGING CELL JI Aging Cell PD JUN PY 2008 VL 7 IS 3 BP 281 EP 284 DI 10.1111/j.1474-9726.2008.00383.x PG 4 WC Cell Biology; Geriatrics & Gerontology SC Cell Biology; Geriatrics & Gerontology GA 300ID UT WOS:000255816600001 PM 18331618 ER PT J AU Igci, Y Andrews, AT Sundaresan, S Pannala, S O'Brien, T AF Igci, Yesim Andrews, Arthur T. Sundaresan, Sankaran Pannala, Sreekanth O'Brien, Thomas TI Filtered two-fluid models for fluidized gas-particle suspensions SO AICHE JOURNAL LA English DT Article DE circulating fluidized beds; computational fluid dynamics (CFD); fluidization; particle technology; fluid mechanics ID KINETIC-THEORY APPROACH; REYNOLDS-NUMBER; GRANULAR FLOW; SOLID FLOWS; MESOSCALE STRUCTURES; VERTICAL RISERS; BINARY-MIXTURES; RANDOM ARRAYS; SIMULATION; SPHERES AB Starting from a kinetic theory based two-fluid model for gas-particle flows, we first construct filtered two-fluid model equations that average over small scale inhomogeneities that we do not wish to resolve in numerical simulations. We then outline a procedure to extract constitutive models for these filtered two-fluid models through highly resolved simulations of the kinetic theory based model equations in periodic domains. Two- and three-dimensional simulations show that the closure relations for the filtered two-fluid models manifest a definite and systematic dependence on the filter size. Linear stability analysis of the filtered two-fluid model equations reveals that filtering does indeed remove small scale structures that are afforded by the microscopic two-fluid model. (C) 2008 American Institute of Chemical Engineers. C1 [Igci, Yesim; Andrews, Arthur T.; Sundaresan, Sankaran] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. [Pannala, Sreekanth] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [O'Brien, Thomas] Natl Engn Technol Lab, Morgantown, WV 26507 USA. RP Sundaresan, S (reprint author), Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. EM sundar@princeton.edu RI Pannala, Sreekanth/F-9507-2010 NR 46 TC 136 Z9 142 U1 6 U2 41 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0001-1541 J9 AICHE J JI AICHE J. PD JUN PY 2008 VL 54 IS 6 BP 1431 EP 1448 DI 10.1002/aic.11481 PG 18 WC Engineering, Chemical SC Engineering GA 302MB UT WOS:000255971300004 ER PT J AU Hamre, KM Du, XP Kincaide, K Donohue, K O'Hara, B Philip, V Duvvuru, S Chesler, E Goldowitz, D AF Hamre, K. M. Du, X. P. Kincaide, K. Donohue, K. O'Hara, B. Philip, V. Duvvuru, S. Chesler, E. Goldowitz, D. TI Behavioral analysis of the genetic modulation of depression and ataxia using an extended panel of BXD recombinant inbred mouse lines SO ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH LA English DT Meeting Abstract CT Joint Scientific Meeting of the Research-Society-on-Alcoholism and the International-Society-for-Biomedical-Research-on-Alcoholism CY JUN 27-JUL 02, 2008 CL Washington, DC SP Res Soc Alcoholism, Int Soc Biomed Res Alcoholism C1 Univ Tennessee, Hlth Sci Ctr, Memphis, TN 38103 USA. Univ Kent, Lexington, KY USA. Oak Ridge Nat Lab, Knoxville, TN USA. UBC, CMMT, Vancouver, BC, Canada. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0145-6008 J9 ALCOHOL CLIN EXP RES JI Alcoholism (NY) PD JUN PY 2008 VL 32 IS 6 SU 1 BP 12A EP 12A PG 1 WC Substance Abuse SC Substance Abuse GA 309YX UT WOS:000256497200006 ER PT J AU Chesler, EJ Duvurru, S Philip, V Galloway, L Ansah, T Blaha, C Cook, M Grisel, JE Hamre, KM Lariviere, WR Mittleman, G Goldowitz, D AF Chesler, E. J. Duvurru, S. Philip, V. Galloway, L. Ansah, T. Blaha, C. Cook, M. Grisel, J. E. Hamre, K. M. Lariviere, W. R. Mittleman, G. Goldowitz, D. TI A multi-dimensional genetic analysis of alcoholism and addiction susceptibility phenotypes SO ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH LA English DT Meeting Abstract CT Joint Scientific Meeting of the Research-Society-on-Alcoholism and the International-Society-for-Biomedical-Research-on-Alcoholism CY JUN 27-JUL 02, 2008 CL Washington, DC SP Res Soc Alcoholism, Int Soc Biomed Res Alcoholism C1 Univ Tennessee, Ctr Hlth Sci, Memphis, TN 38163 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Meharry Med Coll, Nashville, TN 37208 USA. Univ Memphis, Memphis, TN 38152 USA. Furman Univ, Greenville, SC 29613 USA. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Univ British Columbia, Vancouver, BC V5Z 4H4, Canada. NR 0 TC 0 Z9 0 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0145-6008 J9 ALCOHOL CLIN EXP RES JI Alcoholism (NY) PD JUN PY 2008 VL 32 IS 6 SU 1 BP 14A EP 14A PG 1 WC Substance Abuse SC Substance Abuse GA 309YX UT WOS:000256497200016 ER PT J AU Philip, V Jay, J Zhang, Y Langston, MA Baker, EJ Chesler, EJ AF Philip, V. Jay, J. Zhang, Y. Langston, M. A. Baker, E. J. Chesler, E. J. TI The ontological discovery environment: an internet resource for integration of phenomic information through gene-centric analyses SO ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH LA English DT Meeting Abstract CT Joint Scientific Meeting of the Research-Society-on-Alcoholism/International-Society-for-Biomedical-Rese arch-on-Alcoholism CY JUN 27-JUL 02, 2008 CL Washington, DC SP Res Soc Alcoholism, Int Soc Biomed Res Alcoholism C1 Univ Tennessee, Knoxville, TN USA. ORNL, BSD, Syst Genet Grp, Oak Ridge, TN USA. Univ Tennessee, Dept Elect Engg & Comp Sci, Knoxville, TN USA. Baylor Univ, Dept Comp Sci, Waco, TX 76798 USA. RI Langston, Michael/A-9484-2011 NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0145-6008 J9 ALCOHOL CLIN EXP RES JI Alcoholism (NY) PD JUN PY 2008 VL 32 IS 6 SU 1 BP 14A EP 14A PG 1 WC Substance Abuse SC Substance Abuse GA 309YX UT WOS:000256497200017 ER PT J AU Jones, DNM Thode, AB Kruse, SW Nix, JC AF Jones, D. N. M. Thode, A. B. Kruse, S. W. Nix, J. C. TI The role of multiple hydrogen bonding groups in specific alcohol binding sites in proteins: Insights from structural studies of lush SO ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH LA English DT Meeting Abstract CT Joint Scientific Meeting of the Research-Society-on-Alcoholism and the International-Society-for-Biomedical-Research-on-Alcoholism CY JUN 27-JUL 02, 2008 CL Washington, DC SP Res Soc Alcoholism, Int Soc Biomed Res Alcoholism C1 Univ Colorado, Sch Med, Dept Pharmacol, Aurora, CO 80045 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Biol Consortium, Berkeley, CA 94720 USA. RI Jones, David/C-5764-2013 NR 0 TC 0 Z9 0 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0145-6008 J9 ALCOHOL CLIN EXP RES JI Alcoholism (NY) PD JUN PY 2008 VL 32 IS 6 SU 1 BP 151A EP 151A PG 1 WC Substance Abuse SC Substance Abuse GA 309YX UT WOS:000256497200564 ER PT J AU Thanos, PK Hwang, YF Michaelides, M Patel, U Rice, O Jayne, M Shea, C Fowler, JS Wang, GJ Volkow, ND AF Thanos, P. K. Hwang, Y. F. Michaelides, M. Patel, U. Rice, O. Jayne, M. Shea, C. Fowler, J. S. Wang, G. J. Volkow, N. D. TI Brain glucose metabolism and dopamine D2 receptor availability following acute ethanol binge drinking in rats SO ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH LA English DT Meeting Abstract CT Joint Scientific Meeting of the Research-Society-on-Alcoholism/International-Society-for-Biomedical-Rese arch-on-Alcoholism CY JUN 27-JUL 02, 2008 CL Washington, DC SP Res Soc Alcoholism, Int Soc Biomed Res Alcoholism C1 Brookhaven Natl Lab, Upton, NY 11973 USA. NIAAA, NIH, Dept Hlth & Human Serv, Bethesda, MD USA. Furman Univ, Dept Psychol, Greenville, SC 29613 USA. RI Michaelides, Michael/K-4736-2013 OI Michaelides, Michael/0000-0003-0398-4917 NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0145-6008 J9 ALCOHOL CLIN EXP RES JI Alcoholism (NY) PD JUN PY 2008 VL 32 IS 6 SU 1 BP 214A EP 214A PG 1 WC Substance Abuse SC Substance Abuse GA 309YX UT WOS:000256497200816 ER PT J AU Thanos, PK Subramani, S Ramalhete, RC Piyis, YK Henn, F Wang, GJ Volkow, ND AF Thanos, P. K. Subramani, S. Ramalhete, R. C. Piyis, Y. K. Henn, F. Wang, G. J. Volkow, N. D. TI The effects of chronic mild stress (CMS) and ethanol intake on D2R binding levels in a rodent model of depression SO ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH LA English DT Meeting Abstract CT Joint Scientific Meeting of the Research-Society-on-Alcoholism/International-Society-for-Biomedical-Rese arch-on-Alcoholism CY JUN 27-JUL 02, 2008 CL Washington, DC SP Res Soc Alcoholism, Int Soc Biomed Res Alcoholism C1 Brookhaven Natl Lab, Upton, NY 11973 USA. NIAAA, NIH, Dept Hlth & Human Serv, Bethesda, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0145-6008 J9 ALCOHOL CLIN EXP RES JI Alcoholism (NY) PD JUN PY 2008 VL 32 IS 6 SU 1 BP 214A EP 214A PG 1 WC Substance Abuse SC Substance Abuse GA 309YX UT WOS:000256497200815 ER PT J AU Paxton, WF O'Hara, MJ Peper, SM Petersen, SL Grate, JW AF Paxton, Walter F. O'Hara, Matthew J. Peper, Shane M. Petersen, Steven L. Grate, Jay W. TI Accelerated analyte uptake on single beads in microliter-scale batch separations using acoustic streaming: Plutonium uptake by anion exchange for analysis by mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID ION-EXCHANGE; ENHANCEMENT; RESIN; HYBRIDIZATION; ISOTOPES; URANIUM; NP-237; MIXERS; WAVES AB The use of acoustic streaming as a noncontact mixing platform to accelerate mass-transport-limited diffusion processes in small-volume heterogeneous reactions has been investigated. Single-bead anion exchange of plutonium at nanomolar and subpicomolar concentrations in 20 mu L liquid volumes was used to demonstrate the effect of acoustic mixing. Pu uptake rates on individual similar to 760 mu m diameter AG 1 x 4 anion-exchange resin beads were determined using acoustic mixing and compared with Pu uptake rates achieved by static diffusion alone. An 82 MHz surface acoustic wave (SAW) device was placed in contact with the underside of a 384-well microplate containing flat-bottomed semiconical wells. Acoustic energy was coupled into the solution in the well, inducing acoustic streaming. Pu uptake rates were determined by the plutonium remaining in solution after specific elapsed time intervals using liquid scintillation counting (LSC) for nanomolar concentrations and thermal ionization mass spectrometry (TIMS) analysis for the subpicomolar concentration experiments. It was found that this small batch uptake reaction could be accelerated by a factor of about 5-fold or more, depending on the acoustic power applied. C1 [Paxton, Walter F.; O'Hara, Matthew J.; Peper, Shane M.; Petersen, Steven L.; Grate, Jay W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM jwgrate@pnl.gov OI O'Hara, Matthew/0000-0003-3982-5897 NR 50 TC 9 Z9 9 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 1 PY 2008 VL 80 IS 11 BP 4070 EP 4077 DI 10.1021/ac800160n PG 8 WC Chemistry, Analytical SC Chemistry GA 307OC UT WOS:000256327200027 PM 18442264 ER PT J AU Colwell, FS Boyd, S Delwiche, ME Reed, DW Phelps, TJ Newby, DT AF Colwell, F. S. Boyd, S. Delwiche, M. E. Reed, D. W. Phelps, T. J. Newby, D. T. TI Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID A MCRA GENES; GAS HYDRATE; NANKAI TROUGH; MICROBIAL COMMUNITIES; MIDDENDORF AQUIFER; BIOMASS RETENTION; QUANTITATIVE PCR; ORGANIC-CARBON; SEA-FLOOR; SUBSURFACE AB Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle. C1 [Colwell, F. S.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Colwell, F. S.; Boyd, S.; Delwiche, M. E.; Reed, D. W.; Newby, D. T.] Idaho Natl Lab, Dept Biol Sci, Idaho Falls, ID 83415 USA. [Boyd, S.] Univ Idaho, Dept Environm Sci, Moscow, ID 83844 USA. [Phelps, T. J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Colwell, FS (reprint author), Oregon State Univ, Coll Ocean & Atmospher Sci, 104 COAS Admin Bldg, Corvallis, OR 97331 USA. EM rcolwell@coas.oregonstate.edu RI phelps, tommy/A-5244-2011; Reed, David/C-3337-2017 OI Reed, David/0000-0003-4877-776X NR 65 TC 59 Z9 61 U1 6 U2 48 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUN PY 2008 VL 74 IS 11 BP 3444 EP 3452 DI 10.1128/AEM.02114-07 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 309KX UT WOS:000256460400016 PM 18344348 ER PT J AU Pearson, A Pi, YD Zhao, WD Li, WJ Li, YL Inskeep, W Perevalova, A Romanek, C Li, SG Zhang, CL AF Pearson, Ann Pi, Yundan Zhao, Weidong Li, WenJun Li, Yiliang Inskeep, William Perevalova, Anna Romanek, Christopher Li, Shuguang Zhang, Chuanlun L. TI Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CRENARCHAEOTAL MEMBRANE-LIPIDS; YELLOWSTONE-NATIONAL-PARK; SP-NOV REPRESENTS; METHANOPYRUS-KANDLERI; ANAEROBIC OXIDATION; MARINE ARCHAEA; MICROBIAL MAT; ETHER LIPIDS; BLACK-SEA; TEMPERATURE AB Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX86 paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleo-climate studies. C1 [Pearson, Ann; Pi, Yundan] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Pi, Yundan; Li, Shuguang] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China. [Pi, Yundan; Zhao, Weidong; Li, Yiliang; Romanek, Christopher; Zhang, Chuanlun L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Li, WenJun] Yunnan Univ, Yunnan Inst Microbiol, Kunming 650091, Peoples R China. [Inskeep, William] Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA. [Inskeep, William] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Perevalova, Anna] Russian Acad Sci, Inst Microbiol, Moscow, Russia. RP Pearson, A (reprint author), 20 Oxford St, Cambridge, MA 02138 USA. EM pearson@eps.harvard.edu; czsrel@uga.edu RI Pearson, Ann/A-6723-2009 NR 62 TC 64 Z9 70 U1 2 U2 31 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUN PY 2008 VL 74 IS 11 BP 3523 EP 3532 DI 10.1128/AEM.02450-07 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 309KX UT WOS:000256460400024 PM 18390673 ER PT J AU West, KA Johnson, DR Hu, P DeSantis, TZ Brodie, EL Lee, PKH Feil, H Andersen, GL Zinder, SH Alvarez-Cohen, L AF West, Kimberlee A. Johnson, David R. Hu, Ping DeSantis, Todd Z. Brodie, Eoin L. Lee, Patrick K. H. Feil, Helene Andersen, Gary L. Zinder, Stephen H. Alvarez-Cohen, Lisa TI Comparative genomics of "Dehalococcoides ethenogenes" 195 and an enrichment culture containing unsequenced "Dehalococcoides" strains SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID REDUCTIVE DEHALOGENASE GENES; STRICTLY ANAEROBIC BACTERIUM; DEHALOSPIRILLUM-MULTIVORANS; RESPIRING BACTERIUM; HOMOLOGOUS GENES; ELECTRON-DONORS; VINYL-CHLORIDE; SP-NOV; TETRACHLOROETHENE; TRICHLOROETHENE AB Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by some "Dehalococcoides" organisms. A Dehalococcoides-organism-containing microbial consortium (referred to as ANAS) with the ability to degrade TCE to ethene, an innocuous end product, was previously enriched from contaminated soil. A whole-genome photolithographic microarray was developed based on the genome of "Dehalococcoides ethenogenes" 195. This microarray contains probes designed to hybridize to >99% of the predicted protein-coding sequences in the strain 195 genome. DNA from ANAS was hybridized to the microarray to characterize the genomic content of the ANAS enrichment. The microarray results revealed that the genes associated with central metabolism, including an apparently incomplete carbon fixation pathway, cobalamin-salvaging system, nitrogen fixation pathway, and five hydrogenase complexes, are present in both strain 195 and ANAS. Although the gene encoding the TCE reductase, tceA, was detected, 13 of the 19 reductive dehalogenase genes present in strain 195 were not detected in ANAS. Additionally, 88% of the genes in predicted integrated genetic elements in strain 195 were not detected in ANAS, consistent with these elements being genetically mobile. Sections of the tryptophan operon and an operon encoding an ABC transporter in strain 195 were also not detected in ANAS. These insights into the diversity of Dehalococcoides genomes will improve our understanding of the physiology and evolution of these bacteria, which is essential in developing effective strategies for the bioremediation of PCE and TCE in the environment. C1 [West, Kimberlee A.; Johnson, David R.; Lee, Patrick K. H.; Feil, Helene; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Hu, Ping; DeSantis, Todd Z.; Brodie, Eoin L.; Andersen, Gary L.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zinder, Stephen H.] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 760 Davis Hall, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu RI Brodie, Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; Lee, Patrick K H/L-1844-2016; Hu, Ping/G-2384-2015 OI Brodie, Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; Lee, Patrick K H/0000-0003-0911-5317; FU NIEHS NIH HHS [P42 ES004705, ES04705] NR 38 TC 37 Z9 37 U1 2 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUN PY 2008 VL 74 IS 11 BP 3533 EP 3540 DI 10.1128/AEM.01835-07 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 309KX UT WOS:000256460400025 PM 18359838 ER PT J AU Norton, JM Klotz, MG Stein, LY Arp, DJ Bottomley, PJ Chain, PSG Hauser, LJ Land, ML Larimer, FW Shin, MW Starkenburg, SR AF Norton, Jeanette M. Klotz, Martin G. Stein, Lisa Y. Arp, Daniel J. Bottomley, Peter J. Chain, Patrick S. G. Hauser, Loren J. Land, Miriam L. Larimer, Frank W. Shin, Maria W. Starkenburg, Shawn R. TI Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID METHYLOCOCCUS-CAPSULATUS BATH; RNA GENE-SEQUENCES; NITROSOMONAS-EUROPAEA; NITRITE REDUCTASE; NITRIFYING BACTERIA; MOLECULAR DIVERSITY; OCEANI ATCC-19707; NITROUS-OXIDE; TRANSCRIPTION; EXPRESSION AB The complete genome of the ammonia-oxidizing bacterium Nitrosospira multiformis (ATCC 25196(T)) consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2,827 putative proteins. Of the 2,827 putative proteins, 2,026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and Nitrosomonas eutropha were the best match for 42% of the predicted genes in N. multiformis. The N. multiformis genome contains three nearly identical copies of amo and hao gene clusters as large repeats. The features of N. multiformis that distinguish it from N. europaea include the presence of gene clusters encoding urease and hydrogenase, a ribulose-bisphosphate carboxylase/oxygenase-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced genomes of ammonia-oxidizing bacteria. Gene clusters encoding proteins associated with outer membrane and cell envelope functions, including transporters, porins, exopolysaccharide synthesis, capsule formation, and protein sorting/export, were abundant. Numerous sensory transduction and response regulator gene systems directed toward sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate, and cyanophycin storage and utilization were identified, providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments. C1 [Norton, Jeanette M.] Utah State Univ, Dept Plants Soils & Climate, Logan, UT 84322 USA. [Klotz, Martin G.] Univ Louisville, Dept Biol, Louisville, KY 40292 USA. [Klotz, Martin G.] Univ Louisville, Dept Microbiol & Immunol, Louisville, KY 40292 USA. [Stein, Lisa Y.] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. [Arp, Daniel J.; Bottomley, Peter J.; Starkenburg, Shawn R.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Chain, Patrick S. G.; Shin, Maria W.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. [Chain, Patrick S. G.; Shin, Maria W.] Joint Genome Inst, Microbial Program, Walnut Creek, CA 94598 USA. [Chain, Patrick S. G.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Hauser, Loren J.; Land, Miriam L.; Larimer, Frank W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Norton, JM (reprint author), Utah State Univ, Dept Plants Soils & Climate, Logan, UT 84322 USA. EM jennyn@cc.usu.edu RI Land, Miriam/A-6200-2011; Hauser, Loren/H-3881-2012; chain, patrick/B-9777-2013; Stein, Lisa/A-3760-2014; Norton, Jeanette/G-2633-2011; Klotz, Martin/D-2091-2009; Stein, Lisa/E-6374-2016 OI Land, Miriam/0000-0001-7102-0031; Norton, Jeanette/0000-0002-6596-8691; Klotz, Martin/0000-0002-1783-375X; Stein, Lisa/0000-0001-5095-5022 NR 76 TC 80 Z9 81 U1 4 U2 35 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUN PY 2008 VL 74 IS 11 BP 3559 EP 3572 DI 10.1128/AEM.02722-07 PG 14 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 309KX UT WOS:000256460400028 PM 18390676 ER PT J AU Jarman, KH Kreuzer-Martin, HW Wunschel, DS Valentine, NB Cliff, JB Petersen, CE Colburn, HA Wahl, KL AF Jarman, Kristin H. Kreuzer-Martin, Helen W. Wunschel, David S. Valentine, Nancy B. Cliff, John B. Petersen, Catherine E. Colburn, Heather A. Wahl, Karen L. TI Bayesian-integrated microbial forensics SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID STABLE-ISOTOPE RATIOS; MASS-SPECTROMETRY; BACILLUS-SUBTILIS; SPORES; GROWTH; PROTEIN; IDENTIFICATION; ANIMALS; CULTURE; MEDIA AB In the aftermath of the 2001 anthrax letters, researchers have been exploring ways to predict the production environment of unknown-source microorganisms. Culture medium, presence of agar, culturing temperature, and drying method are just some of the broad spectrum of characteristics an investigator might like to infer. The effects of many of these factors on microorganisms are not well understood, but the complex way in which microbes interact with their environments suggests that numerous analytical techniques measuring different properties will eventually be needed for complete characterization. In this work, we present a Bayesian statistical framework for integrating disparate analytical measurements. We illustrate its application to the problem of characterizing the culture medium of Bacillus spores using three different mass spectral techniques. The results of our study suggest that integrating data in this way significantly improves the accuracy and robustness of the analyses. C1 [Jarman, Kristin H.; Kreuzer-Martin, Helen W.; Wunschel, David S.; Valentine, Nancy B.; Cliff, John B.; Petersen, Catherine E.; Colburn, Heather A.; Wahl, Karen L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jarman, KH (reprint author), Pacific NW Natl Lab, POB 999,MS K9-72, Richland, WA 99352 USA. EM Kristin.jarman@pnl.gov RI Wunschel, David/F-3820-2010; Cliff, John/C-7696-2011 OI Cliff, John/0000-0002-7395-5604 NR 36 TC 20 Z9 20 U1 0 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUN PY 2008 VL 74 IS 11 BP 3573 EP 3582 DI 10.1128/AEM.02526-07 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 309KX UT WOS:000256460400029 PM 18390682 ER EF